Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba
2013-01-01
A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.
Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan
2015-09-01
In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kakiuchi, Kenta; Matsuda, Kenichi; Harii, Norikazu; Sou, Keitaro; Aoki, Junko; Takeoka, Shinji
2015-09-01
Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.
Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua
2016-04-01
A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lan, Guoqiang; Liu, Shugang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin
2015-10-01
In this work, we use the liquid-prism SPR sensing configuration to determine the chromatic dispersion of different liquids, since the condition of SPR is sensitive to the refractive index of the liquid prism. We use the glass slide coated with 50 nm Au film as the sensing chip, and use AvaLight - HAL (360 nm - 2500 nm) light source as the broaden band light source in our experiments. We adopt the deionized water as the standard sample to determine the chromatic dispersion of different liquid samples (ethanol and n-hexane), and we implement the experiment through the SPR sensing configuration in angular and spectral interrogations. According to the experimental data, the chromatic dispersions of ethanol and n-hexane are obtained. The proposed technique provides a new high sensitive method for the determination of chromatic dispersion of liquids.
Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming
2011-11-30
The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Taheri, Salman; Jalali, Fahimeh; Fattahi, Nazir; Jalili, Ronak; Bahrami, Gholamreza
2015-10-01
Dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high-performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1-Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid-liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvents of traditional dispersive liquid-liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Burdel, Martin; Šandrejová, Jana; Balogh, Ioseph S; Vishnikin, Andriy; Andruch, Vasil
2013-03-01
Three modes of liquid-liquid based microextraction techniques--namely auxiliary solvent-assisted dispersive liquid-liquid microextraction, auxiliary solvent-assisted dispersive liquid-liquid microextraction with low-solvent consumption, and ultrasound-assisted emulsification microextraction--were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound-assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10(-5) mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02-0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie
2018-04-15
Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
Werner, Justyna
2016-04-01
Task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task-specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT-TL-1, INCT-MPH-2) with the recovery values in the range of 90-104%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resonant acoustic propagation and negative density in liquid foams.
Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin
2014-04-11
We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.
Resonant Acoustic Propagation and Negative Density in Liquid Foams
NASA Astrophysics Data System (ADS)
Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin
2014-04-01
We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.
Behbahani, Mohammad; Najafi, Fatemeh; Bagheri, Saman; Bojdi, Majid Kalate; Hassanlou, Parmoon Ghareh; Bagheri, Akbar
2014-04-01
A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L(-1) (based on 3S(b)/m) in water and 0.4 and 1.6 μg L(-1) in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1-300 and 2-400 μg L(-1), repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira
2016-05-01
Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.
Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke
2014-11-01
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fiorentini, Emiliano F; Escudero, Leticia B; Wuilloud, Rodolfo G
2018-04-19
A simple, highly efficient, batch, and centrifuge-less dispersive liquid-liquid microextraction method based on a magnetic ionic liquid (MIL-DLLME) and electrothermal atomic absorption spectrometry (ETAAS) detection was developed for ultra-trace Cd determination in honey. Initially, Cd(II) was chelated with ammonium diethyldithiophosphate (DDTP) at pH 0.5 followed by its extraction with the MIL trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P 6,6,6,14 ]FeCl 4 ) and acetonitrile as dispersant. The MIL phase containing the analyte was separated from the aqueous phase using only a magnet. A back-extraction procedure was applied to recover Cd from the MIL phase using diluted HNO 3 and this solution was directly injected into the graphite furnace of ETAAS instrument. An extraction efficiency of 93% and a sensitivity enhancement factor of 112 were obtained under optimal experimental conditions. The detection limit (LOD) was 0.4 ng L -1 Cd, while the relative standard deviation (RSD) was 3.8% (at 2 μg L -1 Cd and n = 10), calculated from the peak height of absorbance signals. This work reports the first application of the MIL [P 6,6,6,14 ]FeCl 4 along with the DLLME technique for the successful determination of Cd at trace levels in different honey samples. Graphical abstract Preconcentration of ultratraces of Cd in honey using a magnetic ionic liquid and dispersive liquid-liquid microextraction technique.
A dynamic gain equalizer based on holographic polymer dispersed liquid crystal gratings
NASA Astrophysics Data System (ADS)
Xin, Zhaohui; Cai, Jiguang; Shen, Guotu; Yang, Baocheng; Zheng, Jihong; Gu, Lingjuan; Zhuang, Songlin
2006-12-01
The dynamic gain equalizer consisting of gratings made of holographic polymer dispersed liquid crystal is explored and the structure and principle presented. The properties of the holographic polymer dispersed liquid crystal grating are analyzed in light of the rigorous coupled-wave theory. Experimental study is also conducted in which a beam of infrared laser was incident to the grating sample and an alternating current electric field applied. The electro-optical properties of the grating and the influence of the applied field were observed. The results of the experiment agree with that of the theory quite well. The design method of the dynamic gain equalizer with the help of numerical simulation is presented too. The study shows that holographic polymer dispersed liquid crystal gratings have great potential to play a role in fiber optics communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Prabhash; Department of Nanoengineering, Samara State Aerospace University, 443086 Samara; Pavelyev, V.S.
2016-06-15
Graphical abstract: Ionic liquid ([C6-mim]PF6) used as dispersant agent for SWCNTs: An investigations were carried out to find the structural quality and surface modification for sensor application. - Highlights: • An effective technique based on Ionic liquids (IL) and their use as a dispersant. • Electron microscopy and spectroscopy for structure characterization. • Covalent linkage of ILs with SWNTs and dispersion of SWCNTs. • The IL-wrapped sensing film, capable for detecting trace levels of gas. - Abstract: Single-walled carbon nanotubes (SWCNTs) were dispersed in an imidazolium-based ionic liquid (IL) and investigated in terms of structural quality, surface functionalization and inter-CNTmore » force. Analysis by field emission electron microscopy and transmission electron microscopy shows the IL layer to coat the SWNTs, and FTIR and Raman spectroscopy confirm strong binding of the ILs to the SWNTs. Two kinds of resistive sensors were fabricated, one by drop casting of IL-wrapped SWCNTs, the other by conventional dispersion of SWCNTs. Good response and recovery to NO{sub 2} is achieved with the IL-wrapped SWCNTs material upon UV-light exposure, which is needed because decrease the desorption energy barrier to increase the gas molecule desorption. NO{sub 2} can be detected in the 1–20 ppm concentration range. The sensor is not interfered by humidity due to the hydrophobic tail of PF6 (ionic liquid) that makes our sensor highly resistant to moisture.« less
NASA Astrophysics Data System (ADS)
Li, Yong; Peng, Guilong; He, Qiang; Zhu, Hui; Al-Hamadani, Sulala M. Z. F.
2015-04-01
In the present work, a dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of Pb, Co, Cu, Ni, Zn. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent volume, concentration of chelating agent on the quantitative recoveries of Pb, Co, Cu, Ni, Zn were investigated. The effect of the interfering ions on the analytes recovery was also investigated. Under the optimized conditions, the limits of detection were 0.97-2.18 ng L-1. The relative standard deviations (RSDs) were 2.62-4.51% (n = 7, C = 20 ng L-1). The proposed method was successfully applied for the analysis of ultra trace metals in wastewater samples.
Saraji, Mohammad; Ghambari, Hoda
2018-06-21
In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Larki, Arash; Nasrabadi, Mehdi Rahimi; Pourreza, Nahid
2015-06-01
In the present study, a simple, fast and inexpensive method based on dispersive liquid-liquid microextraction (DLLME) prior to microvolume UV-vis spectrophotometry was developed for the preconcentration and determination of trinitrotoluene (TNT). The procedure is based on the color reaction of TNT in alkaline medium and extraction into CCl4 as an ion pair assisted by trioctylmethylammonium chloride, which also acts as a disperser agent. Experimental parameters affecting the DLLME method such as pH, concentration of sodium hydroxide, amount of trioctylmethylammonium chloride, type and volume of extraction solvent were investigated and optimized. Under the optimum conditions, the limit of detection (LOD) was 0.9ng/mL and the calibration curve was linear in the range of 3-200ng/mL. The relative standard deviation for 25 and 100ng/mL of TNT were 3.7% and 1.5% (n=6), respectively. The developed DLLME method was applied for the determination of TNT in different water and soil samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kaykhaii, Massoud; Sargazi, Mona
2014-01-01
Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Hou, Xiaohong; Zheng, Xin; Zhang, Conglu; Ma, Xiaowei; Ling, Qiyuan; Zhao, Longshan
2014-10-15
A novel ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (UA-DLLME-SFO) combined with gas chromatography (GC) was developed for the determination of eight pyrethroid pesticides in tea for the first time. After ultrasound and centrifugation, 1-dodecanol and ethanol was used as the extraction and dispersive solvent, respectively. A series of parameters, including extraction solvent and volume, dispersive solvent and volume, extraction time, pH, and ultrasonic time influencing the microextraction efficiency were systematically investigated. Under the optimal conditions, the enrichment factors (EFs) were from 292 to 883 for the eight analytes. The linear ranges for the analytes were from 5 to 100μg/kg. The method recoveries ranged from 92.1% to 99.6%, with the corresponding RSDs less than 6.0%. The developed method was considered to be simple, fast, and precise to satisfy the requirements of the residual analysis of pyrethroid pesticides. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanoparticle guests in lyotropic liquid crystals
NASA Astrophysics Data System (ADS)
Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.
In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.
Wang, Ruifeng; Qi, Xiujuan; Zhao, Lei; Liu, Shimin; Gao, Shuang; Ma, Xiangyuan; Deng, Youquan
2016-07-01
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1-Octyl-3-methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10-1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal-to-noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220-fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Çabuk, Hasan; Köktürk, Mustafa
2013-01-01
A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535
Providing the Efficiency and Dispersion Characteristics of Aerosols in Ultrasonic Atomization
NASA Astrophysics Data System (ADS)
Khmelev, V. N.; Shalunov, A. V.; Golykh, R. N.; Nesterov, V. A.; Dorovskikh, R. S.; Shalunova, A. V.
2017-07-01
This article is devoted to the investigation of the process of atomization of liquids under the action of ultrasonic vibrations. It has been shown that the ultrasonic atomization parameters are determined by the regimes of action (vibration frequency and amplitude of the atomization surface), the liquid properties (viscosity, surface tension), and the thickness of the liquid layer covering the atomization surface. To reveal the dependences of the efficiency of the process at various dispersion characteristics of produced liquid droplets, we propose a model based on the cavitation-wave theory of droplet formation. The obtained results can be used in designing and using ultrasonic atomizers producing an aerosol with characteristics complying with the requirements on efficiency and dispersivity for the process being realized.
Diuzheva, Alina; Balogh, József; Jekő, József; Cziáky, Zoltán
2018-05-17
A dispersive liquid-liquid microextraction method for the simultaneous determination of 11 pharmaceuticals has been developed. The method is based on a microextraction procedure applied to wastewater samples from different regions of Hungary followed by high performance liquid chromatography with mass spectrometry. The effect of the nature of the extractant, dispersive solvent, different additives and extraction time were examined on the extraction efficiently of the dispersive liquid-liquid microextraction method. Under optimal conditions, the linearity for determining the pharmaceuticals was in the range of 1-500 ng mL -1 , with the correlation coefficients ranging from 0.9922 to 0.9995. The limits of detection and limits of quantification were in the range 0.31-6.65 and 0.93-22.18 ng mL -1 , respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin
2011-06-24
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong
2016-09-01
In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from the first microextraction into an extractor in the second microextraction. Single-factor experiment and central composite design were applied for optimizing operational parameters using 3D response surfaces and contour lines. Under optimized conditions, the method provided high extraction recoveries and low LODs for five FQs in swine feed. The prominent advantage of the dual microextraction is rapid and highly efficient extraction of moderately to highly polar fluoroquinolones from complex matrices.
Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza
2018-04-01
In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2 ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.
Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayesteh; Talebianpoor, Mohammad Sharif; Khodadoust, Saeid
2016-05-01
In this work, a fast, easy, and efficient dispersive liquid-liquid microextraction method based on solidification of floating organic drop followed by high-performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1-dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min(-1) . The linear response (r(2) = 0.997) was obtained in the range of 0.013-10.0 μg mL(-1) with a limit of detection of 4.0 ng mL(-1) and relative standard deviations of less than 5.0 % (n = 6). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
YangDai, Tianyi; Zhang, Li
2016-02-01
Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.
NASA Astrophysics Data System (ADS)
Takizawa, Kuniharu
A novel three-dimensional (3-D) projection display used with polarized eyeglasses is proposed. It consists of polymer-dispersed liquid crystal-light valves that modulate the illuminated light based on light scattering, a polarization beam splitter, and a Schlieren projection system. The features of the proposed display include a 3-D image display with a single projector, half size and half power consumption compared with a conventional 3-D projector with polarized glasses. Measured electro-optic characteristics of a polymer-dispersed liquid-crystal cell inserted between crossed polarizers suggests that the proposed display achieves small cross talk and high-extinction ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryk, Taras; Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv; Ruocco, G.
Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations inmore » liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.« less
Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi
2013-05-21
We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.
Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi
2014-10-15
The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanoparticles in ionic liquids: interactions and organization.
He, Zhiqi; Alexandridis, Paschalis
2015-07-28
Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.
Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R
2015-05-01
Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Huazi; Hu, Lu; Li, Wanzhen; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang
2016-11-04
A pretreatment method using in-syringe dispersive liquid-liquid microextraction based on the direct solidification of ionic liquids before high performance liquid chromatography analysis was developed for the determination of benzoylurea insecticides (BUs) in honey samples. The hydrophobic ionic liquid [N 4444 ][PF 6 ], formed in situ by the hydrophilic ionic liquid [N 4444 ]Cl and the ion exchange reagent KPF 6 , was used to extract the target analytes. The entire extraction procedure was performed in a syringe. The extractant was solidified at room temperature and collected using a nylon membrane filter. This technique did not require a dispersive solvent, vortex mixer, ultrasound bath, or centrifugation. The parameters affecting the extraction efficiency were investigated through an experimental design. Under the optimal conditions, the limits of detection for the four BUs varied from 0.21 to 0.42μgL -1 in solution (2.1-4.2μgkg -1 in honey). Good linearities were obtained in the range of 2-300μgL -1 , with coefficients of determination greater than 0.999. The recoveries of the four BUs ranged from 80.94% to 84.59%. The intra-day (n=3) and inter-day (n=3) relative standard deviations were less than 5.08%. Finally, the proposed method was applied to the determination of BUs in commercial honey samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Duan, Weikuan; Zhang, Yanyan; Wang, Zhongyue; Jiang, Jingyi; Liang, Chen; Wei, Wei
2014-05-01
K5NdLi2F10 nanocrystals were synthesized by a novel synthetic route in the liquid phase, which could improve the morphology and reduce the size effectively, for the first time. The luminescence intensities of the K5NdLi2F10 nanocrystals and their dispersion in polyethylene glycol 400 (PEG-400) approximate to that of neodymium doped phosphate glass (3 mol%), while the lifetimes of the nanocrystals alone and when dispersed with Nd3+ ions (1 × 1020 cm-3) are 303.4 μs and 174.6 μs respectively. Based on the Judd-Ofelt analysis, the emission quantum yield of the dispersion reaches 39.57%. In all, the K5NdLi2F10 nanocrystals and their dispersion have promising applications as liquid laser materials and biological fluorescent markers.K5NdLi2F10 nanocrystals were synthesized by a novel synthetic route in the liquid phase, which could improve the morphology and reduce the size effectively, for the first time. The luminescence intensities of the K5NdLi2F10 nanocrystals and their dispersion in polyethylene glycol 400 (PEG-400) approximate to that of neodymium doped phosphate glass (3 mol%), while the lifetimes of the nanocrystals alone and when dispersed with Nd3+ ions (1 × 1020 cm-3) are 303.4 μs and 174.6 μs respectively. Based on the Judd-Ofelt analysis, the emission quantum yield of the dispersion reaches 39.57%. In all, the K5NdLi2F10 nanocrystals and their dispersion have promising applications as liquid laser materials and biological fluorescent markers. Electronic supplementary information (ESI) available: Fitting curve of refractive index and detailed contents of Judd-Ofelt analysis. See DOI: 10.1039/c3nr06825k
NASA Astrophysics Data System (ADS)
Liu, Chengbao; Du, Peng; Nan, Feng; Zhao, Haichao; Wang, Liping
2018-06-01
Dispersion of graphene nanosheets in a water and polymer matrix has been rarely achieved due to graphene’s hydrophobicity, which thus impedes its potential anticorrosive application. In this study, stable graphene aqueous dispersion was obtained by using imidazole-based polymeric ionic liquid (PIL) as the dispersant with ultrasonic vibration. Stacked graphene sheets were exfoliated to a few layers via cation-π interaction between PIL and graphene nanosheets. Electrochemical impedance measurements were taken to investigate the anticorrosion performance of epoxy coatings with or without polymeric ionic liquid–graphene (PIL–G) hybrids. Results indicated that the PIL–G hybrid significantly enhanced the long-term protective performance of epoxy coatings, which was attributed to the synergistic effects of the corrosion-inhibitive PIL and impermeable graphene nanosheets.
Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji
2010-06-30
A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.
Controlled release liquid dosage formulation
Benton, Ben F.; Gardner, David L.
1989-01-01
A liquid dual coated dosage formulation sustained release pharmaceutic having substantial shelf life prior to ingestion is disclosed. A dual coating is applied over controlled release cores to form dosage forms and the coatings comprise fats melting at less than approximately 101.degree. F. overcoated with cellulose acetate phthalate or zein. The dual coated dosage forms are dispersed in a sugar based acidic liquid carrier such as high fructose corn syrup and display a shelf life of up to approximately at least 45 days while still retaining their release profiles following ingestion. Cellulose acetate phthalate coated dosage form cores can in addition be dispersed in aqueous liquids of pH <5.
Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I
2014-05-01
We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.
High-Performance, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants
NASA Technical Reports Server (NTRS)
Bergeron, Bryan; Skyler, David; Roberts, Kyle; Stevens, Amy
2013-01-01
The synthesis and characterization of six new ionic liquids, with fluoroether moeties on the imidazolium ring, each with vapor pressures shown to be <10(exp -7 Torr at 25 C, have been demonstrated. Thermal stability of the ionic liquids up to 250 C was demonstrated. The ionic liquids had no measurable influence upon viscosity upon addition to perfluoropolyether (PFPE) base fluids. They also had no measureable influence upon corrosion on steel substrates upon addition to base fluids. In general, 13 to 34% lower COFs (coefficients of friction), and 30 to 80% higher OK load of base fluids upon addition of the ionic liquids was shown. The compound consists of a 1,3-disubstituted imidazolium cation. The substituents comprise perfluoroether groups. A bis(trifluoromethanesulfonyl) imide anion counterbalances the charge. The fluorinated groups are intended to enhance dispersion of the ionic liquid in the PFPE base fluid. The presence of weak Van der Waals forces associated with fluorine atoms will limit interaction of the substituents on adjacent ions. The longer interionic distances will reduce the heat of melting and viscosity, and will increase dispersion capabilities.
Explosive fragmentation of liquids in spherical geometry
NASA Astrophysics Data System (ADS)
Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.
2017-05-01
Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster ( F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.
Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh
2014-03-25
A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Kumar, Rajesh; Pant, H J; Goswami, Sunil; Sharma, V K; Dash, A; Mishra, S; Bhanja, K; Mohan, Sadhana; Mahajani, S M
2017-03-01
Holdup and axial dispersion of liquid phase in a catalytic exchange column were investigated by measuring residence time distributions (RTD) using a radiotracer technique. RTD experiments were independently carried out with two different types of packings i.e. hydrophobic water-repellent supported platinum catalyst and a mixture (50% (v/v)) of hydrophobic catalyst and a hydrophillic wettable packing were used in the column. Mean residence times and hold-ups of the liquid phase were estimated at different operating conditions. Axial dispersion model (ADM) and axial dispersion with exchange model (ADEM) were used to simulate the measured RTD data. Both the models were found equally suitable to describe the measured data. The degree of axial mixing was estimated in terms of Peclet number (Pe) and Bodenstein number (Bo). Based on the obtained parameters of the ADM, correlations for total liquid hold-up (H T ) and axial mixing in terms of Bo were proposed for design and scale up of the full-scale catalytic exchange column. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
New PDLC materials obtained from dispersion of LC under microgravity
NASA Astrophysics Data System (ADS)
Matos, M. R.; Leitao, J. C.; Andre, R. M.; Zambujal, R.; Carmelo Rosa, Carla; Simeao Carvalho, P.; Podgorski, Thomas
Aknowledgements: This project has been supported by ESA-Education, the University of Porto, IFIMUP and INESC-Porto. Bibliography: [1] F Bloisi and L Vicari. Optical Applications of Liquid Crystals, chapter 4: Polymer-dispersed liquid crystals. Institute of Physics Publishing, 2003. [2] J. William Doane. Liquid Crystals Applications and Uses, volume 1, chapter 14: Polymer Dispersed Liquid Crystal Displays, pages 361-391. World Scientific, 1990. [3] K. Parbhakar, J. M. Jin, H. M. Nguyen, and L. H. Dao. Effect of microgravity on the distribution of liquid-crystal droplets dispersed in a polymer matrix. CHEMISTRY OF MA-TERIALS, 8(??):1210-1216, Jun 1996. [4] Paul S. Drzaic. Liquid Crystal Dispersions, volume 1. World Scientific, 1995.
NASA Astrophysics Data System (ADS)
Liang, Ko-Yuan; Yang, Wein-Duo
2018-01-01
This study is to discuss solvent selection with graphene dispersion concentration of directly exfoliation graphite. That limiting boundaries of fractional cohesion parameters will be draw on the triangular diagram to prediction and estimate. It is based on the literature of data and check with experimental or other literature results, include organic solution, aqueous solution and ionic liquid. In this work, we found that estimated the graphene dispersion concentration by distance (Ra) of Hansen solubility parameters (HSP) between graphene and solvent, the lower Ra; the higher concentration, some case the lower Ra; the lower dispersion concentration (such as acetone). It is compatible with the graphene dispersion concentration on the Hansen space or Triangular fractional cohesion parameters dispersion diagram. From Triangular fractional cohesion parameters dispersion diagram, 2D maps are more convenient for researchers than 3D maps of Hansen space and quickly to find the appropriate combination of solvents for different application.
Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G
2012-08-01
A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.
Effect of dispersion forces on the capillary-wave fluctuations of liquid surfaces.
Chacón, Enrique; Fernández, Eva M; Tarazona, Pedro
2014-04-01
We present molecular dynamics evidence for the nonanalytic effects of the long-range dispersion forces on the capillary waves fluctuations of a Lennard-Jones liquid surface. The results of the intrinsic sampling method, for the analysis of the instantaneous interfacial shape, are obtained in large systems for several cut-off distances of the potential tail, and they show good agreement with the theoretical prediction by Napiórkowski and Dietrich, based on a density functional analysis. The enhancement of the capillary waves is quantified to be within 1% for a simple liquid near its triple point.
Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won
2017-08-01
A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong
2012-04-01
Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping
2014-07-01
A new mode of ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) is developed. In this work, [C6MIm][PF6] was chosen as the extraction solvent, and two kinds of hydrophilic ionic liquids, [EMIm][BF4] and [BSO3HMIm][OTf], functioned as the dispersive solvent. So in the whole extraction procedure, no organic solvent was used. With the aid of SO3H group, the acidic compound was extracted from the sample solution without pH adjustment. Two phenolic compounds, namely, 2-naphthol and 4-nitrophenol were chosen as the target analytes. Important parameters affecting the extraction efficiency, such as the type of hydrophilic ionic liquids, the volume ratio of [EMIm][BF4] to [BSO3HMIm][OTf], type and volume of extraction solvent, pH value of sample solution, sonication time, extraction time and centrifugation time were investigated and optimized. Under the optimized extraction conditions, the method exhibited good sensitivity with the limits of detection (LODs) at 5.5 μg L(-1)and 10.0 μg L(-1) for 4-nitrophenol and 2-naphthol, respectively. Good linearity over the concentration ranges of 24-384 μg L(-1) for 4-nitrophenol and 28-336 μg L(-1) for 2-naphthol was obtained with correlation coefficients of 0.9998 and 0.9961, respectively. The proposed method can directly extract acidic compound from environmental sample or even more complex sample matrix without any pH adjustment procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan
2017-05-10
A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.
Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee
2016-03-18
An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Lingling; Zhang, Danfeng; Xu, Xu; Zhang, Lei
2016-04-15
Ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME) method was successfully developed for extracting three endocrine disrupting compounds (EDCs) (bisphenol A, bisphenol AF and bisphenol AP) from the food packaging. 1-Octyl-3-methylimidazoliumhexafluorophosphate ([C8MIM][PF6]) was selected as extraction solution. The extraction procedure did not require a dispersive solvent. Three EDCs extraction kinetics were found to be very fast and the equilibrium was attained within 3.0 min following the pseudo-first-order model. The H-bonding and hydrophobic interactions play an important role in the partitioning of EDCs into IL from aqueous solution. The recovered IL could be reused for three runs without significant loss of extraction efficiencies. The spiked recoveries of three targets in food packaging were in the range of 97.8-103.1%. The limits of detection ranged from 0.50 to 1.50 ng mL(-1) (S/N=3). As a result, this method has been successfully applied for the sensitive detection of three EDCs in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Frizzarin, Rejane M; Maya, Fernando; Estela, José M; Cerdà, Víctor
2016-12-01
A novel fully-automated magnetic stirring-assisted lab-in-syringe analytical procedure has been developed for the fast and efficient dispersive liquid-liquid microextraction (DLLME) of caffeine in coffee beverages. The procedure is based on the microextraction of caffeine with a minute amount of dichloromethane, isolating caffeine from the sample matrix with no further sample pretreatment. Selection of the relevant extraction parameters such as the dispersive solvent, proportion of aqueous/organic phase, pH and flow rates have been carefully evaluated. Caffeine quantification was linear from 2 to 75mgL(-1), with detection and quantification limits of 0.46mgL(-1) and 1.54mgL(-1), respectively. A coefficient of variation (n=8; 5mgL(-1)) of a 2.1% and a sampling rate of 16h(-1), were obtained. The procedure was satisfactorily applied to the determination of caffeine in brewed, instant and decaf coffee samples, being the results for the sample analysis validated using high-performance liquid chromatography. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aeenehvand, Saeed; Toudehrousta, Zahra; Kamankesh, Marzieh; Mashayekh, Morteza; Tavakoli, Hamid Reza; Mohammadi, Abdorreza
2016-01-01
This study developed an analytical method based on microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of three polar heterocyclic aromatic amines from hamburger patties. Effective parameters controlling the performance of the microextraction process, such as the type and volume of extraction and disperser solvents, microwave time, nature of alkaline aqueous solution, pH and salt amount, were optimized. The calibration graphs were linear in the range of 1-200 ng g(-1), with a coefficient of determination (R(2)) better than 0.9993. The relative standard deviations (RSD) for seven analyses were between 3.2% and 6.5%. The recoveries of those compounds in hamburger patties were from 90% to 105%. Detection limits were between 0.06 and 0.21 ng g(-1). A comparison of the proposed method with the existing literature demonstrates that it is a simple, rapid, highly selective and sensitive, and it gives good enrichment factors and detection limits for determining HAAs in real hamburger patties samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mixing liquid-liquid stratified flows using transverse jets in cross flows
NASA Astrophysics Data System (ADS)
Wright, Stuart; Matar, Omar K.; Markides, Christos N.
2017-11-01
Low pipeline velocities in horizontal liquid-liquid flows lead to gravitationally-induced stratification. This results in flow situations that have no point where average properties can be measured. Inline mixing limits the stratification effect by forming unstable liquid-liquid dispersions. An experimental system is used to measure the mixing performance of various jet-in-cross-flow (JICF) configurations as examples of active inline mixers. The test section consists of a 8.5-m long ETFE pipe with a 50-mm diameter, which is refractive index-matched to both a 10 cSt silicone oil and a 51 wt% glycerol solution. This practice allows advanced laser-based optical techniques, namely PLIF and PIV/PTV, to be applied to these flows in order to measure the phase fractions and velocity fields, respectively. A volume of a fluid (VOF) CFD code is then used to simulate simple jet geometries and to demonstrate the breakup and dispersion capabilities of JICFs in stratified pipeline flows by predicting their mixing efficiency. These simulation results are contrasted with the experimental results to examine the effectiveness of these simulations in predicting the dispersion and breakup. Funding from Cameron/Schlumberger, and the TMF Consortium gratefully acknowledged.
Modeling selected emulsions and double emulsions as memristive systems.
Spasic, Aleksandar M; Jovanovic, Jovan M; Jovanovic, Mica
2012-06-15
The recent development in basic and applied science and engineering of finely dispersed systems is presented in general, but more attention has been paid to the liquid-liquid finely dispersed systems or to the particular emulsions and double emulsions. The selected systems for theoretical and experimental research were emulsions and double emulsions that appeared in the pilot plant for extraction of uranium from wet phosphoric acid. The objective of this research was to try to provide a new or different approach to elaborate the complex phenomena that occur at developed liquid-liquid interfaces. New concepts were introduced, the first is a concept of an entity, and the corresponding classification of finely dispersed systems and the second concept consider the introduction of an almost forgotten basic electrodynamics element memristor, and the corresponding memristive systems. Based on these concepts a theory of electroviscoelasticity was proposed and experimentally corroborated using the selected representative liquid-liquid system. Also, it is shown that the droplet, and/or droplet-film structure, that is, selected emulsion and/or double emulsion may be considered as the particular example of memristive systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Corazza, Marcela Zanetti; Pires, Igor Matheus Ruiz; Diniz, Kristiany Moreira; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira
2015-08-01
A facile and reliable UV-Vis spectrophotometric method associated with vortex-assisted dispersive liquid-liquid microextraction has been developed and applied to the determination of U(VI) at low levels in water samples. It was based on preconcentration of 24.0 mL sample at pH 8.0 in the presence of 7.4 µmol L(-1) 1-(2-pyridylazo)-2-naphthol, 1.0 mL of methanol as disperser solvent and 1.0 mL of chloroform as extraction solvent. A high preconcentration factor was achieved (396 times), thus providing a wide analytical curve from 6.9 up to 75.9 µg L(-1) (r=0.9982) and limits of detection and quantification of 0.40 and 1.30 µg L(-1), respectively. When necessary, EDTA or KCN can be used to remove interferences of foreign ions. The method was applied to the analysis of real water samples, such as tap, mineral and lake waters with good recovery values.
Vela-Soria, Fernando; Jiménez-Díaz, Inmaculada; Díaz, Caridad; Pérez, José; Iribarne-Durán, Luz María; Serrano-López, Laura; Arrebola, Juan Pedro; Fernández, Mariana Fátima; Olea, Nicolás
2016-09-01
Human populations are widely exposed to numerous so-called endocrine-disrupting chemicals, exogenous compounds able to interfere with the endocrine system. This exposure has been associated with several health disorders. New analytical procedures are needed for biomonitoring these xenobiotics in human matrices. A quick and inexpensive methodological procedure, based on sample treatment by dispersive liquid-liquid microextraction, is proposed for the determination of bisphenols, parabens and benzophenones in samples. LOQs ranged from 0.4 to 0.7 ng ml(-1) and RSDs from 4.3 to 14.8%. This methodology was satisfactorily applied in the simultaneous determination of a wide range of endocrine-disrupting chemicals in human milk samples and is suitable for application in biomonitoring studies.
Paintable band-edge liquid crystal lasers.
Gardiner, Damian J; Morris, Stephen M; Hands, Philip J W; Mowatt, Carrie; Rutledge, Rupert; Wilkinson, Timothy D; Coles, Harry J
2011-01-31
In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.
Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations
NASA Astrophysics Data System (ADS)
Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar
2016-11-01
Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.
Duan, Weikuan; Zhang, Yanyan; Wang, Zhongyue; Jiang, Jingyi; Liang, Chen; Wei, Wei
2014-06-07
K5NdLi2F10 nanocrystals were synthesized by a novel synthetic route in the liquid phase, which could improve the morphology and reduce the size effectively, for the first time. The luminescence intensities of the K5NdLi2F10 nanocrystals and their dispersion in polyethylene glycol 400 (PEG-400) approximate to that of neodymium doped phosphate glass (3 mol%), while the lifetimes of the nanocrystals alone and when dispersed with Nd(3+) ions (1 × 10(20) cm(-3)) are 303.4 μs and 174.6 μs respectively. Based on the Judd-Ofelt analysis, the emission quantum yield of the dispersion reaches 39.57%. In all, the K5NdLi2F10 nanocrystals and their dispersion have promising applications as liquid laser materials and biological fluorescent markers.
Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie
2014-11-01
A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho
2004-12-01
A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.
Xu, Hui; Ding, Zongqing; Lv, Lili; Song, Dandan; Feng, Yu-Qi
2009-03-16
A new dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of five kinds of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. In this method, no specific holder, such as the needle tip of microsyringe and the hollow fiber, is required for supporting the organic microdrop due to the using of organic solvent with low density and proper melting point. Furthermore, the extractant droplet can be collected easily by solidifying it in the lower temperature. 1-Dodecanol was chosen as extraction solvent in this work. A series of parameters that influence extraction were investigated systematically. Under optimal conditions, enrichment factors (EFs) for PAHs were in the range of 88-118. The limit of detections (LODs) for naphthalene, diphenyl, acenaphthene, anthracene and fluoranthene were 0.045, 0.86, 0.071, 1.1 and 0.66ngmL(-1), respectively. Good reproducibility and recovery of the method were also obtained. Compared with the traditional liquid-phase microextraction (LPME) and dispersive liquid-liquid microextraction (DLLME) methods, the proposed method obtained about 2 times higher enrichment factor than those in LPME. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvent in the traditional DLLME method. The proposed method was successfully applied to determinate PAHs in the environmental water samples. The simple and low-cost method provides an alternative method for the analysis of non-polar compounds in complex environmental water.
Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto
2018-01-01
In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.
López-Nogueroles, Marina; Chisvert, Alberto; Salvador, Amparo
2014-05-15
A new analytical method based on simultaneous derivatization and dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS), for the determination of the allergenic compounds atranol and chloroatranol in perfumes, is presented. Derivatization of the target analytes by means of acetylation with anhydride acetic in carbonate buffer was carried out. Thereby volatility and detectability were increased for improved GC-MS sensitivity. In addition, extractability by DLLME was also enhanced due to a less polar character of the solutes. A liquid-liquid extraction was performed before DLLME to clean up the sample and to obtain an aqueous sample solution, free of the low polar matrix from the essential oils, as donor phase. Different parameters, such as the nature and volume of both the extraction and disperser solvents, the ionic strength of the aqueous donor phase or the effect of the derivatization reagent volume, were optimized. Under the selected conditions (injection of a mixture of 750μL of acetone as disperser solvent, 100μL of chloroform as extraction solvent and 100μL of anhydride acetic as derivatization reagent) the figures of merit of the proposed method were evaluated. Limits of detection in the low ngmL(-1) range were obtained. Matrix effect was observed in real perfume samples and thus, standard addition calibration is recommended. Copyright © 2014 Elsevier B.V. All rights reserved.
The effect of the London-van der Waals dispersion force on interline heat transfer
NASA Technical Reports Server (NTRS)
Wayner, P. C., Jr.
1978-01-01
A theoretical procedure to determine the heat transfer characteristics of the interline region (junction of liquid-solid-vapor) from the macroscopic optical and thermophysical properties of the system is outlined. The analysis is based on the premise that the interline transport processes are controlled by the London-van der Waals dispersion force between condensed phases (solid and liquid). Numerical values of the dispersion constant are presented. The procedure is used to compare the relative size of the interline heat sink of various systems using a constant heat flux mode. This solution demonstrates the importance of the interline heat flow number, which is evaluated for various systems.
Farajzadeh, Mir Ali; Khorram, Parisa; Pazhohan, Azar
2016-04-01
A simple, sensitive, and efficient method has been developed for simultaneous estimation of valsartan and atorvastatin in human plasma by combination of solid-based dispersive liquid-liquid microextraction and high performance liquid chromatography-diode array detection. In the proposed method, 1,2-dibromoethane (extraction solvent) is added on a sugar cube (as a solid disperser) and it is introduced into plasma sample containing the analytes. After manual shaking and centrifugation, the resultant sedimented phase is subjected to back extraction into a small volume of sodium hydrogen carbonate solution using air-assisted liquid-liquid microextraction. Then the cloudy solution is centrifuged and the obtained aqueous phase is transferred into a microtube and analyzed by the separation system. Under the optimal conditions, extraction recoveries are obtained in the range of 81-90%. Calibration curves plotted in drug-free plasma sample are linear in the ranges of 5-5000μgL(-1) for valsartan and 10-5000μgL(-1) for atorvastatin with the coefficients of determination higher than 0.997. Limits of detection and quantification of the studied analytes in plasma sample are 0.30-2.6 and 1.0-8.2μgL(-1), respectively. Intra-day (n=6) and inter-days (n=4) precisions of the method are satisfactory with relative standard deviations less than 7.4% (at three levels of 10, 500, and 2000μgL(-1), each analyte). These data suggest that the method can be successfully applied to determine trace amounts of valsartan and atorvastatin in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Asadollahzadeh, Mehdi; Tavakoli, Hamed; Torab-Mostaedi, Meisam; Hosseini, Ghaffar; Hemmati, Alireza
2014-06-01
Dispersive-solidification liquid-liquid microextraction (DSLLME) coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of inorganic arsenic (III, V) in water samples. At pH=1, As(III) formed complex with ammonium pyrrolidine dithiocarbamate (APDC) and extracted into the fine droplets of 1-dodecanol (extraction solvent) which were dispersed with ethanol (disperser solvent) into the water sample solution. After extraction, the organic phase was separated by centrifugation, and was solidified by transferring into an ice bath. The solidified solvent was transferred to a conical vial and melted quickly at room temperature. As(III) was determined in the melted organic phase while As(V) remained in the aqueous layer. Total inorganic As was determined after the reduction of the pentavalent forms of arsenic with sodium thiosulphate and potassium iodide. As(V) was calculated by difference between the concentration of total inorganic As and As(III). The variable of interest in the DSLLME method, such as the volume of extraction solvent and disperser solvent, pH, concentration of APDC (chelating agent), extraction time and salt effect, was optimized with the aid of chemometric approaches. First, in screening experiments, fractional factorial design (FFD) was used for selecting the variables which significantly affected the extraction procedure. Afterwards, the significant variables were optimized using response surface methodology (RSM) based on central composite design (CCD). In the optimum conditions, the proposed method has been successfully applied to the determination of inorganic arsenic in different environmental water samples and certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.
Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri
2014-02-03
Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.
Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong
2017-01-15
In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Altunay, Nail; Yıldırım, Emre; Gürkan, Ramazan
2018-04-15
In the study, a simple, and efficient microextraction approach, which is termed as vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction (VA-IL-DLLME), was developed for flame atomic absorption spectrometric analysis of aluminum (Al) and chromium (Cr) in vegetables. The method is based on the formation of anionic chelate complexes of Al(III) and Cr(VI) with o-hydroxy azo dye, at pH 6.5, and then extraction of the hydrophobic ternary complexes formed in presence of cetyltrimethylammonium bromide (CTAB) into a 125 μL volume of 1-butyl-3-methylimidazolium bis(trifluorosulfonyl)imide [C 4 mim][Tf 2 N]) as extraction solvent. Under optimum conditions, the detection limits were 0.02 µg L -1 in linear working range of 0.07-100 µg L -1 for Al(III), and 0.05 µg L -1 in linear working range of 0.2-80 µg L -1 for Cr(VI). After the validation by analysis of a certified reference material (CRM), the method was successfully applied to the determination of Al and Cr in vegetables using standard addition method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah
2015-01-25
In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (2(4)) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL(-1) with detection limit of 6.7 ng mL(-1) (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n=7, c=50 ng mL(-1)). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination. Copyright © 2014. Published by Elsevier B.V.
Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik
2017-07-01
This is a feasibility study of a modified immersion liquid technique for determining the refractive index of micro-sized particles. The practical challenge of the traditional liquid immersion method is to find or produce a suitable host liquid whose refractive index equals that of a solid particle. Usually, the immersion liquid method uses a set of immersion liquids with different refractive indices or continuously mixes two liquids with different refractive indices, e.g., using a pumping system. Here, the phenomenon of liquid evaporation has been utilized in defining the time-dependent refractive index variation of the host liquid. From the spectral transmittance data measured during the evaporation process, the refractive index of a solid particle in the host liquid can be determined as a function of the wavelength. The method was tested using calcium fluoride (CaF 2 ) particles with an immersion liquid mixed from diethyl ether and diffusion pump fluid. The dispersion data obtained were consistent with the literature values thus indicating the proper functioning of the proposed procedure.
Shariati, Shahab; Golshekan, Mostafa
2011-06-01
In the present study, a simple and efficient extraction method based on dispersive liquid-liquid microextraction prior to UV-Vis spectrophotometry was developed for the preconcentration and determination of copper ions in environmental samples. Briefly, cupric ions (Cu II) were reduced to cuprous (Cu I) with addition of hydroxyl amine hydrochloride and formed hydrophobic chelates with neocuproine. Then, a proper mixture of acetonitrile (as dispersive solvent) and choloroform (as extraction solvent) was rapidly injected into the solution and a cloudy solution was formed. After centrifuging, choloroform was sedimented at the bottom of a conical tube and diluted with 100 µL of methanol for further UV-Vis spectrophotometry measurement. An orthogonal array design (OAD) was employed to study the effects of different parameters on the extraction efficiency. Under the optimum experimental conditions, a preconcentration factor up to 63.6 was achieved for extraction from 5.0 mL of sample solution. The limit of detection (LOD) based on S/N = 3 was 0.33 µg L-1 and the calibration curve was linear in the range of 1-200 µg L-1 with reasonable linearity (r2 > 0.997). Finally, the accuracy of the proposed method was successfully evaluated by determination of trace amounts of copper ions in different water samples and satisfactory results were obtained.
Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai
2010-08-03
In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.
Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang
An apparatus to promote gas-liquid contact and facilitate enhanced mass transfer. The dispersed bubble reactor (DBR) operates in the dispersed bubble flow regime to selectively absorb gas phase constituents into the liquid phase. The dispersion is achieved by shearing the large inlet gas bubbles into fine bubbles with circulating liquid and additional pumped liquid solvent when necessary. The DBR is capable of handling precipitates that may form during absorption or fine catalysts that may be necessary to promote liquid phase reactions. The DBR can be configured with multistage counter current flow sections by inserting concentric cylindrical sections into the risermore » to facilitate annular flow. While the DBR can absorb CO.sub.2 in liquid solvents that may lead to precipitates at high loadings, it is equally capable of handling many different types of chemical processes involving solids (precipitates/catalysts) along with gas and liquid phases.« less
Campillo, Natalia; Iniesta, María Jesús; Viñas, Pilar; Hernández-Córdoba, Manuel
2015-01-01
Seven strobilurin fungicides were pre-concentrated from soya-based drinks using dispersive liquid-liquid micro-extraction (DLLME) with a prior protein precipitation step in acid medium. The enriched phase was analysed by liquid chromatography (LC) with dual detection, using diode array detection (DAD) and electrospray-ion trap tandem mass spectrometry (ESI-IT-MS/MS). After selecting 1-undecanol and methanol as the extractant and disperser solvents, respectively, for DLLME, the Taguchi experimental method, an orthogonal array design, was applied to select the optimal solvent volumes and salt concentration in the aqueous phase. The matrix effect was evaluated and quantification was carried out using external aqueous calibration for DAD and matrix-matched calibration method for MS/MS. Detection limits in the 4-130 and 0.8-4.5 ng g(-1) ranges were obtained for DAD and MS/MS, respectively. The DLLME-LC-DAD-MS method was applied to the analysis of 10 different samples, none of which was found to contain residues of the studied fungicides.
Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin
2017-11-01
The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.
Design and fabrication of a variable optical attenuator based on polymer-dispersed liquid crystal
NASA Astrophysics Data System (ADS)
She, Jun; Xu, Su; Tao, Tao; Wang, Qian
2005-02-01
In order to obtain a low polarization dependent loss (PDL) and a large attenuation range simultaneously, an optimal design and fabrication of a polymer-dispersed liquid crystal (PDLC) based variable optical attenuator (VOA) is presented. First, an optimal diameter of the liquid crystal droplets is determined by the anomalous diffraction approach (ADA). This optimal diameter gives maximal scattering and thus a large attenuation range is achieved with a relatively thin liquid crystal cell. Secondly, the fabrication of PDLC cell is carried out. The influence of the ultraviolet (UV) curing condition on the morphology of the LC droplets is investigated. For a given liquid crystal concentration, the optimal UV curing power is obtained after a series of statistically designed experiments. Finally, an optical configuration of the PDLC based VOA is presented. Measurements of the attenuation and the PDL are carried out with this configuration. The measured results show that the device has a typical attenuation range of 25dB. The corresponding PDL is nearly 1dB and the insertion loss is 1.8dB. The threshold voltage is 8Vrms and the saturation voltage is 40Vrms. From these measured results, one can see that the fabricated VOA based on PDLC is much more practical for optical communications as compared to the existing ones.
NASA Astrophysics Data System (ADS)
Perlt, Eva; Ray, Promit; Hansen, Andreas; Malberg, Friedrich; Grimme, Stefan; Kirchner, Barbara
2018-05-01
Ionic liquids raise interesting but complicated questions for theoretical investigations due to the fact that a number of different inter-molecular interactions, e.g., hydrogen bonding, long-range Coulomb interactions, and dispersion interactions, need to be described properly. Here, we present a detailed study on the ionic liquids ethylammonium nitrate and 1-ethyl-3-methylimidazolium acetate, in which we compare different dispersion corrected density functional approximations to accurate local coupled cluster data in static calculations on ionic liquid clusters. The efficient new composite method B97-3c is tested and has been implemented in CP2K for future studies. Furthermore, tight-binding based approaches which may be used in large scale simulations are assessed. Subsequently, ab initio as well as classical molecular dynamics simulations are conducted and structural analyses are presented in order to shed light on the different short- and long-range structural patterns depending on the method and the system size considered in the simulation. Our results indicate the presence of strong hydrogen bonds in ionic liquids as well as the aggregation of alkyl side chains due to dispersion interactions.
Yang, Miyi; Wu, Xiaoling; Jia, Yuhan; Xi, Xuefei; Yang, Xiaoling; Lu, Runhua; Zhang, Sanbing; Gao, Haixiang; Zhou, Wenfeng
2016-02-04
In this work, a novel effervescence-assisted microextraction technique was proposed for the detection of four fungicides. This method combines ionic liquid-based dispersive liquid-liquid microextraction with the magnetic retrieval of the extractant. A magnetic effervescent tablet composed of Fe3O4 magnetic nanoparticles, sodium carbonate, sodium dihydrogen phosphate and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonimide) was used for extractant dispersion and retrieval. The main factors affecting the extraction efficiency were screened by a Plackett-Burman design and optimized by a central composite design. Under the optimum conditions, good linearity was obtained for all analytes in pure water model and real water samples. Just for the pure water, the recoveries were between 84.6% and 112.8%, the limits of detection were between 0.02 and 0.10 μg L(-1) and the intra-day precision and inter-day precision both are lower than 4.9%. This optimized method was successfully applied in the analysis of four fungicides (azoxystrobin, triazolone, cyprodinil, trifloxystrobin) in environmental water samples and the recoveries ranged between 70.7% and 105%. The procedure promising to be a time-saving, environmentally friendly, and efficient field sampling technique. Copyright © 2015 Elsevier B.V. All rights reserved.
Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal
2009-01-01
Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.
Nojavan, Yones; Kamankesh, Marzieh; Shahraz, Farzaneh; Hashemi, Maryam; Mohammadi, Abdorreza
2015-05-01
A novel technique for simultaneous determination of five folate derivatives in various food matrices was developed by ion pair-based dispersive liquid-liquid microextraction (IP-DLLME) combined with high-performance liquid chromatography (HPLC). In the proposed method, N-methyl-N,N-dioctyloctan-1-ammonium chloride (aliquat-336) was used as an ion-pair reagent. Effective variables of microextraction process were optimized. Under optimum conditions, the method yielded a linear calibration curve ranging from 1-200 ng g(-1) with correlation coefficients (r(2)) higher than 0.98. The relative standard deviation for the seven analyses was 5.2-7.4%. Enrichment factors for the five folates ranged between 108-135. Limits of detection were 2-4.1 ng g(-1). A comparison of this method with other methods described that the new proposed method is rapid and accurate, and gives very good enrichment factors and detection limits for determining five folate derivatives. The newly developed method was successfully applied for the determination of five folate derivatives in wheat flour, egg yolk and orange juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar
2016-01-01
A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.
Polymer dispersed nematic liquid crystal for large area displays and light valves
NASA Astrophysics Data System (ADS)
Drzaic, Paul S.
1986-09-01
A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.
Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-05-29
An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mixtures of amino-acid based ionic liquids and water.
Chaban, Vitaly V; Fileti, Eudes Eterno
2015-09-01
New ionic liquids (ILs) involving increasing numbers of organic and inorganic ions are continuously being reported. We recently developed a new force field; in the present work, we applied that force field to investigate the structural properties of a few novel imidazolium-based ILs in aqueous mixtures via molecular dynamics (MD) simulations. Using cluster analysis, radial distribution functions, and spatial distribution functions, we argue that organic ions (imidazolium, deprotonated alanine, deprotonated methionine, deprotonated tryptophan) are well dispersed in aqueous media, irrespective of the IL content. Aqueous dispersions exhibit desirable properties for chemical engineering. The ILs exist as ion pairs in relatively dilute aqueous mixtures (10 mol%), while more concentrated mixtures feature a certain amount of larger ionic aggregates.
Pastor-Belda, M; Fernández-García, A J; Campillo, N; Pérez-Cárceles, M D; Motas, M; Hernández-Córdoba, M; Viñas, P
2017-08-04
Glyoxal (GO) and methylglyoxal (MGO) are α-oxoaldehydes that can be used as urinary diabetes markers. In this study, their levels were measured using a sample preparation procedure based on salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC-MS). The effect of the derivatization reaction with 2,3-diaminonaphthalene, the addition of acetonitrile and sodium chloride to urine, and the DLLME step using the acetonitrile extract as dispersant solvent and carbon tetrachloride as extractant solvent were carefully optimized. Quantification was performed by the internal standard method, using 5-bromo-2-chloroanisole. The intraday and interday precisions were lower than 6%. Limits of detection were 0.12 and 0.06ngmL -1 , and enrichment factors 140 and 130 for GO and MGO, respectively. The concentrations of these α-oxoaldehydes in urine were between 0.9 and 35.8ngg -1 levels (creatinine adjusted). A statistical comparison of the analyte contents of urine samples from non-diabetic and diabetic patients pointed to significant differences (P=0.046, 24 subjects investigated), particularly regarding MGO, which was higher in diabetic patients. The novelty of this study compared with previous procedures lies in the treatment of the urine sample by SALLE based on the addition of acetonitrile and sodium chloride to the urine. The DLLME procedure is performed with a sedimented drop of the extractant solvent, without a surfactant reagent, and using acetonitrile as dispersant solvent. Separation of the analytes was performed using GC-MS detection, being the analytes unequivocal identified. The proposed procedure is the first microextraction method applied to the analysis of urine samples from diabetic and non-diabetic patients that allows a clear differentiation between both groups using a simple analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri
2016-05-01
A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-01
Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475
NASA Astrophysics Data System (ADS)
Godet, Christian; David, Denis
2017-12-01
Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged < ɛ ( q, ω) > q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) < Im[-1/ ɛ ( q, ω)] > q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.
Kamath, Ganesh; Baker, Gary A
2012-06-14
Free energies for graphene exfoliation from bilayer graphene using ionic liquids based on various cations paired with the bis(trifluoromethylsulfonyl)imide anion were determined from adaptive bias force-molecular dynamics (ABF-MD) simulation and fall in excellent qualitative agreement with experiment. This method has notable potential as an a priori screening tool for performance based rank order prediction of novel ionic liquids for the dispersion and exfoliation of various nanocarbons and inorganic graphene analogues.
Hamedi, Raheleh; Hadjmohammadi, Mohammad Reza
2016-12-01
A sensitive and rapid method based on alcohol-assisted dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of fluoxetine in human plasma and urine samples was developed. The effects of six parameters on the extraction recovery were investigated and optimized utilizing Plackett-Burman design and Box-Benken design, respectively. According to the Plackett-Burman design results, the volume of disperser solvent, extraction time, and stirring speed had no effect on the recovery of fluoxetine. The optimized conditions included a mixture of 172 μL of 1-octanol as extraction solvent and 400 μL of methanol as disperser solvent, pH of 11.3 and 0% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 90.15%. The detection limit of fluoxetine in human plasma was obtained 3 ng/mL, and the linearity was in the range of 10-1200 ng/mL. The corresponding values for human urine were 4.2 ng/mL with the linearity range from 10 to 2000 ng/mL. Relative standard deviations for intra and inter day extraction of fluoxetine were less than 7% in five measurements. The developed method was successfully applied for the determination of fluoxetine in human plasma and urine samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the dispersion of liquid in coaxial supersonic gas jet
NASA Astrophysics Data System (ADS)
Poplavski, S. V.; Boiko, V. M.; Lotov, V. V.; Nesterov, A. U.
2017-10-01
The aim of this work was to study the dispersion of liquids in gas jets in connection with the creation of high productivity nozzles. For effective combustion of fuel, systems with intensive air supply to the spray of a liquid are promising. In connection with this, a supersonic coaxial jet was experimentally studied with a central supply of liquid beyond the slit of the confuser nozzle at the modes Npr = 4 and Npr = 6. New data are obtained on the structure of the gas-liquid jet: the gas velocity field, the shadow visualization of the geometry and wave structure of the jet with and without liquid, the velocity profiles of the liquid phase, the dispersion of the droplets. The spatial distribution of the concentration of the spray was first determined. From these data, the parameters of the dispersion processes are obtained in terms the We numbers. A physical model of a supersonic coaxial gas-liquid jet with a central fluid supply is proposed.
Tavlarides, Lawrence L.; Bae, Jae-Heum
1991-01-01
A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.
NASA Astrophysics Data System (ADS)
Kiełczyński, P.; Szalewski, M.; Balcerzak, A.
2014-07-01
Simultaneous determination of the viscosity and density of liquids is of great importance in the monitoring of technological processes in the chemical, petroleum, and pharmaceutical industry, as well as in geophysics. In this paper, the authors present the application of Love waves for simultaneous inverse determination of the viscosity and density of liquids. The inversion procedure is based on measurements of the dispersion curves of phase velocity and attenuation of ultrasonic Love waves. The direct problem of the Love wave propagation in a layered waveguide covered by a viscous liquid was formulated and solved. Love waves propagate in an elastic layered waveguide covered on its surface with a viscous (Newtonian) liquid. The inverse problem is formulated as an optimization problem with appropriately constructed objective function that depends on the material properties of an elastic waveguide of the Love wave, material parameters of a liquid (i.e., viscosity and density), and the experimental data. The results of numerical calculations show that Love waves can be efficiently applied to determine simultaneously the physical properties of liquids (i.e., viscosity and density). Sensors based on this method can be very attractive for industrial applications to monitor on-line the parameters (density and viscosity) of process liquid during the course of technological processes, e.g., in polymer industry.
Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel
2016-01-01
A new procedure based on direct insert microvial thermal desorption injection allows the direct analysis of ionic liquid extracts by gas chromatography and mass spectrometry (GC-MS). For this purpose, an in situ ionic liquid dispersive liquid-liquid microextraction (in situ IL DLLME) has been developed for the quantification of bisphenol A (BPA), bisphenol Z (BPZ) and bisphenol F (BPF). Different parameters affecting the extraction efficiency of the microextraction technique and the thermal desorption step were studied. The optimized procedure, determining the analytes as acetyl derivatives, provided detection limits of 26, 18 and 19 ng L(-1) for BPA, BPZ and BPF, respectively. The release of the three analytes from plastic containers was monitored using this newly developed analytical method. Analysis of the migration test solutions for 15 different plastic containers in daily use identified the presence of the analytes at concentrations ranging between 0.07 and 37 μg L(-1) in six of the samples studied, BPA being the most commonly found and at higher concentrations than the other analytes.
Zhang, Cheng; Cagliero, Cecilia; Pierson, Stephen A; Anderson, Jared L
2017-01-20
A simple and rapid ionic liquid (IL)-based in situ dispersive liquid-liquid microextraction (DLLME) method was developed and coupled to headspace gas chromatography (HS-GC) employing electron capture (ECD) and mass spectrometry (MS) detection for the analysis of polychlorinated biphenyls (PCBs) and acrylamide at trace levels from milk and coffee samples. The chemical structures of the halide-based ILs were tailored by introducing various functional groups to the cations to evaluate the effect of different structural features on the extraction efficiency of the target analytes. Extraction parameters including the molar ratio of IL to metathesis reagent and IL mass were optimized. The effects of HS oven temperature and the HS sample vial volume on the analyte response were also evaluated. The optimized in situ DLLME method exhibited good analytical precision, good linearity, and provided detection limits down to the low ppt level for PCBs and the low ppb level for acrylamide in aqueous samples. The matrix-compatibility of the developed method was also established by quantifying acrylamide in brewed coffee samples. This method is much simpler and faster compared to previously reported GC-MS methods using solid-phase microextraction (SPME) for the extraction/preconcentration of PCBs and acrylamide from complex food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song
2015-05-01
A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chirality transfer technique between liquid crystal microdroplets using microfluidic systems
NASA Astrophysics Data System (ADS)
Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun
2018-02-01
Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.
Digital microfluidics: Droplet based logic gates
NASA Astrophysics Data System (ADS)
Cheow, Lih Feng; Yobas, Levent; Kwong, Dim-Lee
2007-01-01
The authors present microfluidic logic gates based on two-phase flows at low Reynold's number. The presence and the absence of a dispersed phase liquid (slug) in a continuous phase liquid represent 1 and 0, respectively. The working principle of these devices is based on the change in hydrodynamic resistance for a channel containing droplets. Logical operations including AND, OR, and NOT are demonstrated, and may pave the way for microfludic system automation and computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rishi, E-mail: kkraina@gmail.com; Sood, Srishti, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com
2014-04-24
We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.
Sobhi, Hamid Reza; Azadikhah, Efat; Behbahani, Mohammad; Esrafili, Ali; Ghambarian, Mahnaz
2018-05-09
A fast, simple, low cost surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for the determination of low level of Cr(VI) ions in several aquatic samples has been developed. Initially, Cr(VI) ions present in the aqueous sample were readily reacted with 1,5‑diphenylcarbazide (DPC) in acidic medium through complexation. Sodium dodecyl sulfate (SDS), as an anionic surfactant, was then employed as an ion-pair agent to convert the cationic complex into the neutral one. Following on, the whole aqueous phase underwent a dispersive liquid-liquid microextraction (DLLME) leading to the transfer of the neutral complex into the fine droplet of organic extraction phase. A micro-volume spectrophotometer was used to determine Cr(VI) concentrations. Under the optimized conditions predicted by the statistical design, the limit of quantification (LOQ) obtained was reported to be 5.0 μg/L, and the calibration curve was linear over the concentration range of 5-100 μg/L. Finally, the method was successfully implemented for the determination of low levels of Cr(VI) ions in various real aquatic samples and the accuracies fell within the range of 83-102%, while the precision varied in the span of 1.7-5.2%. Copyright © 2018. Published by Elsevier B.V.
Rocha, Bruno Alves; da Costa, Bruno Ruiz Brandão; de Albuquerque, Nayara Cristina Perez; de Oliveira, Anderson Rodrigo Moraes; Souza, Juliana Maria Oliveira; Al-Tameemi, Maha; Campiglia, Andres Dobal; Barbosa, Fernando
2016-07-01
In this study, a novel method combining dispersive liquid-liquid microextraction (DLLME) and fast liquid chromatography coupled to mass spectrometry (LC-MS/MS) was developed and validated for the extraction and determination of bisphenol A (BPA) and six bisphenol analogues, namely bisphenol S (BPS), bisphenol F (BPF), bisphenol P (BPP), bisphenol Z (BPZ), bisphenol AP (BPAP) and bisphenol AF (BPAF) in human urine samples. Type and volume of extraction and disperser solvents, pH sample, ionic strength, and agitation were evaluated. The matrix-matched calibration curves of all analytes were linear with correlation coefficients higher than 0.99 in the range level of 0.5-20.0ngmL(-1). The relative standard deviation (RSD), precision, at three concentrations (1.0, 8.0 and 15.0ngmL(-1)) was lower than 15% with accuracy ranging from 90 to 112%. The biomonitoring capability of the new method was confirmed with the analysis of 50 human urine samples randomly collected from Brazilians. BPA was detected in 92% of the analyzed samples at concentrations ranging
USDA-ARS?s Scientific Manuscript database
Oxytetracycline (OTC) residue in catfish muscle was screened by dispersive liquid-liquid microextraction (DLLME) and europium-sensitized luminescence (ESL). After extraction in EDTA, HCl, and acetonitrile, cleanup was carried out by DLLME, and ESL was measured at microgram = 385 nm and wavelength = ...
USDA-ARS?s Scientific Manuscript database
A rapid luminescence method was developed to screen residues of enrofloxacin (ENRO) and its metabolite, ciprofloxacin (CIPRO), in swine liver. Target analytes were extracted in acetonitrile-2.5% trifluoroacetic acid-NaCl, cleaned up by dispersive liquid-liquid microextraction (DLLME), and finally de...
Tavlarides, L.L.; Bae, J.H.
1991-12-24
A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.
Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions
Tsouris, Constantinos; Dong, Junhang
2002-01-01
The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.
Tsai, Chia-Ju; Chen, Yen-Ling; Feng, Chia-Hsien
2013-10-04
This study explored dispersive liquid-liquid microextraction for extraction and concentration of lipoic acid in human urine. To improve the detection of lipoic acid by both capillary liquid chromatography (CapLC) with UV detection and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), microwave-assisted derivatization with 4-bromomethyl-6,7-dimethoxycoumarin was performed to render lipoic acid chromophores for UV detection and also high ionization efficiency in MALDI. All parameters that affected lipoic acid extraction and derivatization from urine were investigated and optimized. In the analyses of human urine samples, the two methods had a linear range of 0.1-20 μM with a correlation coefficient of 0.999. The detection limits of CapLC-UV and MALDI-TOF MS were 0.03 and 0.02 μM (S/N ≧ 3), respectively. The major metabolites of lipoic acid, including 6,8-bismethylthio-octanoic acid, 4,6-bismethylthio-hexanoic acid, and 2,4-bismethylthio-butanoic acid were also extracted by dispersive liquid-liquid microextraction and detected by MALDI-TOF MS. The minor metabolites (undetectable by MALDI-TOF MS), bisnorlipoic acid and tetranorlipoic acid were also extracted by dispersive liquid-liquid microextraction and identified with an LTQ Orbitrap mass spectrometer. After dispersive liquid-liquid microextraction and microwave-assisted derivatization, all lipoic acid derivatizations and metabolites were structurally confirmed by LTQ Orbitrap. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Hou, Fang; Deng, Xiaoying; Jiang, Xinyu; Yu, Jingang
2014-01-01
A simple and efficient method for dispersive liquid-liquid microextraction of methylparaben, ethylparaben, propylparaben and butylparaben in real beverage samples was developed. It is making use of solidified floating organic droplets of 1-dodecanol which has low density and a proper melting point. Parameters influencing the extraction efficiency, such as the type of extraction and dispersive solvent, the volume of extraction and dispersive solvent, salt effect, pH, extraction time, were optimized and resulted in enrichment factors (EFs) of 84 for methylparaben, 103 for ethylparaben, 115 for propylparaben and 126 for butylparaben. The limits of detection for parabens were 1.52, 1.06, 0.32 and 0.17 ng/mL, respectively. Excellent linearity with coefficients of correlation from 0.9970 to 0.9997 was observed in the concentration range of 5-1,000 ng/mL. The repeatability of the proposed method expressed as relative standard deviations (RSDs) ranged from 2.54 to 3.89% (n = 5). The relative recoveries for parabens in beverage samples were good and in the ranges of 89.8-109.9, 90.2-107.3, 90.9-101.7 and 92.3-118.1%, respectively. Thus, the proposed method has excellent potential for the determination of parabens in beverage samples. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yan, Zhi-Yuan; Jia, Li-Ping; Yan, Bing
2014-01-01
Two typical kinds of rare earth fluoride nanocrystals codoped with rare earth ions (Eu(3+) and Tm(3+)/Er(3+),Yb(3+)) are synthesized and dispersed in ionic liquid compound (1-chlorohexane-3-methylimidazolium chloride, abbreviated as [C6mim][Cl]). Assisted by agarose, the luminescent hydrogels are prepared homogeneously. The down/up-conversion luminescence of these hydrogels can be realized for the dispersed rare earth fluoride nanocrystals. The results provide a strategy to prepare luminescent (especially up-conversion luminescent) hydrogels with ionic liquid to disperse rare earth fluoride nanocrystals. Copyright © 2013 Elsevier B.V. All rights reserved.
Niskanen, Ilpo; Räty, Jukka; Myllylä, Risto; Sutinen, Veijo; Matsuda, Kiyofumi; Homma, Kazuhiro; Silfsten, Pertti; Peiponen, Kai-Erik
2012-07-01
We describe a method to determine the wavelength-dependent refractive index of liquids by measurement of light transmittance with a spectrophotometer. The method is based on using roughened glass slides with different a priori known refractive indices and immersing the slides into the transparent liquid with unknown refractive index. Using the dispersion data on the glass material it is possible to find the index match between the liquid and the glass slide, and hence the refractive index of the liquid.
Ramirez, Daniela Andrea; Locatelli, Daniela Ana; Torres-Palazzolo, Carolina Andrea; Altamirano, Jorgelina Cecilia; Camargo, Alejandra Beatriz
2017-01-15
Organosulphur compounds (OSCs) present in garlic (Allium sativum L.) are responsible of several biological properties. Functional foods researches indicate the importance of quantifying these compounds in food matrices and biological fluids. For this purpose, this paper introduces a novel methodology based on dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography with ultraviolet detector (HPLC-UV) for the extraction and determination of organosulphur compounds in different matrices. The target analytes were allicin, (E)- and (Z)-ajoene, 2-vinyl-4H-1,2-dithiin (2-VD), diallyl sulphide (DAS) and diallyl disulphide (DADS). The microextraction technique was optimized using an experimental design, and the analytical performance was evaluated under optimum conditions. The desirability function presented an optimal value for 600μL of chloroform as extraction solvent using acetonitrile as dispersant. The method proved to be reliable, precise and accurate. It was successfully applied to determine OSCs in cooked garlic samples as well as blood plasma and digestive fluids. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutta, Rituraj; Kumar, Ashok
2016-10-01
Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.
LIQUID-LIQUID EXTRACTION COLUMNS
Thornton, J.D.
1957-12-31
This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.
Quan, Ji; Hu, Zeshu
2018-01-01
Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel
2009-10-23
This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.
Wang, Xiaojun; Wu, Long; Cao, Jiaqi; Hong, Xincheng; Ye, Rui; Chen, Weiji; Yuan, Ting
2016-07-01
A novel, simple and rapid method based on magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction (MEA-IL-DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) determination was established for the speciation of selenium in various food and beverage samples. In the procedure, a special magnetic effervescent tablet containing CO2 sources (sodium carbonate and sodium dihydrogenphosphate), ionic liquids and Fe3O4 magnetic nanoparticles (MNPs) was used to combine extractant dispersion and magnetic recovery procedures into a single step. The parameters influencing the microextraction efficiency, such as pH of the sample solution, volume of ionic liquid, amount of MNPs, concentration of the chelating agent, salt effect and matrix effect were investigated and optimised. Under the optimised conditions, the limits of detection (LODs) for Se(IV) were 0.021 μg l(-)(1) and the linear dynamic range was 0.05-5.0 μg l(-)(1). The relative standard deviation for seven replicate measurements of 1.0 μg l(-)(1) of Se(IV) was 2.9%. The accuracy of the developed method was evaluated by analysis of the standard reference materials (GBW10016 tea, GBW10017 milk powder, GBW10043 Liaoning rice, GBW10046 Henan wheat, GBW10048 celery). The proposed method was successfully applied to food and beverage samples including black tea, milk powder, mushroom, soybean, bamboo shoots, energy drink, bottled water, carbonated drink and mineral water for the speciation of Se(IV) and Se(VI) with satisfactory relative recoveries (92.0-108.1%).
Amoli-Diva, Mitra; Taherimaslak, Zohreh; Allahyari, Mehdi; Pourghazi, Kamyar; Manafi, Mohammad Hanif
2015-03-01
An efficient, simple and fast low-density solvent based dispersive liquid-liquid microextraction (LDS-DLLME) followed by vortex-assisted dispersive solid phase extraction (VA-D-SPE) has been developed as a new approach for extraction and preconcentration of aflatoxin M1 in milk samples prior to its micelle enhanced spectrofluorimetic determination. In this LDS-DLLME coupled VA-D-SPE method, milk samples were first treated with methanol/water (80:20, v/v) after removing the fat layer. This solvent was directly used as the dispersing solvent in DLLME along with using 1-heptanol (as a low-density solvent with respect to water) as the extracting solvent. In VA-D-SPE approach, hydrophobic oleic acid modified Fe3O4 nanoparticles were used to retrieve the analyte from the DLLME step. It is considerably that the target of VA-D-SPE was 1-heptanol rather than the aflatoxin M1 directly. The main parameters affecting the efficiency of LDS-DLLME and VA-D-SPE procedures and signal enhancement of aflatoxin M1 were investigated and optimized. Under the optimum conditions, the method was linear in the range from 0.02 to 200 µg L(-1) with the correlation coefficient (R(2)) of 0.9989 and detection limit of 13 ng L(-1). The intra-day precision was 2.9 and 4.3% and the inter-day precision was 2.1 and 3.3% for concentration of 2 and 50 µg L(-1) respectively. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method. Copyright © 2014 Elsevier B.V. All rights reserved.
Liang, Pei; Wang, Fang; Wan, Qin
2013-02-15
A highly efficient and environmentally friendly sample preparation method termed ionic liquid-based ultrasound-assisted emulsification microextraction (IL-USAEME) combined with high performance liquid chromatography has been developed for the determination of four fungicides (azoxystrobin, diethofencarb, pyrimethanil and kresoxim-methyl) in water samples. In this novel approach, ionic liquid (IL) was used as extraction solvent in place of the organic solvent used in conventional USAEME assay, and there is no need for using organic dispersive solvent which is typically required in the common dispersive liquid-liquid microextraction method. Various parameters that affect the extraction efficiency, such as the kind and volume of IL, ultrasound emulsification time, extraction temperature and salt addition were investigated and optimized. Under the optimum extraction condition, the linearities of calibration curves were in the range from 3 to 5000 ng mL(-1) for target analytes with the correlation coefficient higher than 0.9992. The enrichment factors and the limits of detection were in the range of 88-137 and 0.73-2.2 ng mL(-1), depending on the analytes. The environmental water samples were successfully analyzed using the proposed method, and the relative recoveries at fortified levels of 50 and 100 ng mL(-1) were in the range of 83.9%-116.2%. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Juan; Shi, Yali; Cai, Yaqi
2018-04-06
In the present study, a highly selective fluorous affinity-based dispersive liquid-liquid microextraction (DLLME) technique was developed for the extraction and analysis of per- and polyfluoroalkyl substances (PFASs) followed by high performance liquid chromatography tandem-mass spectrometry. Perfluoro-tert-butanol with multiple C-F bonds was chosen as the extraction solvent, which was injected into the aqueous samples with a dispersive solvent (acetonitrile) in a 120:800 (μL, v/v) mixture for PFASs enrichment. The fluorous affinity-based extraction mechanism was confirmed by the significantly higher extraction recoveries for PFASs containing multiple fluorine atoms than those for compounds with fewer or no fluorine atoms. The extraction recoveries of medium and long-chain PFASs (CF 2 > 5) exceeded 70%, except perfluoroheptanoic acid, while those of short-chain PFASs were lower than 50%, implying that the proposed DLLME may not be suitable for their extraction due to weak fluorous affinity. This highly fluoroselective DLLME technique can greatly decrease the matrix effect that occurs in mass spectrometry detection when applied to the analysis of urine samples. Under the optimum conditions, the relative recoveries of PFASs with CF 2 > 5 ranged from 80.6-121.4% for tap water, river water and urine samples spiked with concentrations of 10, 50 and 100 ng/L. The method limits of quantification for PFASs in water and urine samples were in the range of 0.6-8.7 ng/L. Furthermore, comparable concentrations of PFASs were obtained via DLLME and solid-phase extraction, confirming that the developed DLLME technique is a promising method for the extraction of PFASs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
He, Yongrui; Zhao, Xian-En; Wang, Renjun; Wei, Na; Sun, Jing; Dang, Jun; Chen, Guang; Liu, Zhiqiang; Zhu, Shuyun; You, Jinmao
2016-11-02
A simple, rapid, sensitive, selective, and environmentally friendly method, based on in situ derivatization ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) coupled with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using multiple reaction monitoring (MRM) mode has been developed for the simultaneous determination of food-related biogenic amines and amino acids. A new mass-spectrometry-sensitive derivatization reagent 4'-carbonyl chloride rosamine (CCR) was designed, synthesized, and first reported. Parameters and conditions of in situ DUADLLME and UHPLC-MS/MS were optimized in detail. Under the optimized conditions, the in situ DUADLLME was completed speedily (within 1 min) with high derivatization efficiencies (≥98.5%). With the cleanup and concentration of microextraction step, good analytical performance was obtained for the analytes. The results showed that this method was accurate and practical for quantification of biogenic amines and amino acids in common food samples (red wine, beer, wine, cheese, sausage, and fish).
Focusing of light by polymer-dispersed liquid-crystal films with nanosized droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.
2006-12-15
An analysis is presented of polarization-independent electrically tunable light focusing by polymerdispersed liquid-crystal films with nanosized liquid-crystal droplets. Polymer-dispersed liquid-crystal films with axially symmetric distributions of liquid-crystal droplet concentration and layers with axially symmetric thickness profiles are considered. The paraxial, Rayleigh, and Rayleigh-Gans approximations, as well as the Foldy-Twersky equation, are used to examine the dependence of focal length on lens geometry, droplet size, concentration of nematic liquid-crystal droplets, and applied field. The tunable focusing ranges are evaluated for both lens types considered in the study. Dependence of the transmittance of polymer-dispersed liquid-crystal film on its characteristics is analyzed. Themore » results obtained are compared with those available from the literature.« less
Separation dynamics of dense dispersions in laminar pipe flows: An experimental and numerical study
NASA Astrophysics Data System (ADS)
Voulgaropoulos, Victor; Jamshidi, Rashid; Zainal Abidin, M. I. I.; Angeli, Panagiota
2017-11-01
The physical mechanisms governing the separation of dense liquid dispersed flows in pipes are not well understood. In this work, both experiments and numerical simulations are performed to investigate these mechanisms. Liquid-liquid dispersions are generated using a static mixer and their evolution is studied along a horizontal pipe (26mm ID) at laminar flow and input dispersed phase volume fractions up to 50%. To conduct optical measurements (PLIF and PIV) in the dense dispersions, the refractive index of both liquids is matched. Measurements are carried out at two axial locations downstream the mixer (15D and 135D, where D is the pipe diameter). Homogeneous dispersions, observed at 15D, segregate at 135D. The packing of the drops results in asymmetric velocity profiles and high slip velocities. The mixture approach is used in the numerical simulations, including gravity and shear-induced diffusion of drops. The predictions on separation and on velocity fields agree well with the experiments. Research funded by Chevron.
Chen, Nan-Kuang; Lee, Cheng-Ling; Chi, Sien
2007-12-24
We demonstrate tunable highly wavelength-selective filter based on a 2 x 2 asymmetric side-polished fiber coupler with dispersive interlayer in one of the coupling arms. The asymmetric fiber coupler is made of two side-polished fibers using identical single-mode fibers and one of the polished fibers is further chemically etched at the central evanescent coupling region to gain closer to the core. An optical liquid with different dispersion characteristics than that of silica fiber is used to fill up the etched hollow and therefore the propagation constant for the polished fiber with dispersive liquid becomes more dispersive and crosses with that of another untreated polished fiber. The location of the cross point and the cross angle between two propagation constant curves determine the coupling wavelength and coupling bandwidth as well as channel wavelength separation, respectively. The coupling wavelength can be tuned at least wider than 84 nm (1.326-1.410 microm) under index variation of 0.004 and with coupling ratios of higher than 30 dB.
Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong
2017-11-01
In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several analytical fields. Graphical Abstract A salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) was developed for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan and methyltriclosan, with log K ow ranging from -1.32 to 5.40. The novelty of SILM-DS method lies in (1) simultaneous quantification of pollutants with contrasting polarity; (2) microextraction based on a dual-role solvent (as a disperser and extractant); (3) giving high recoveries for analytes with a wide range of polarities; and (4) reducing workload for ordinary environmental monitoring and food tests.
Baskaran, Rengarajan; Madheswaran, Thiagarajan; Sundaramoorthy, Pasupathi; Kim, Hwan Mook; Yoo, Bong Kyu
2014-01-01
Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO)-based liquid crystalline nanoparticles (LCNs) and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C), and the in vitro release of curcumin was sustained (10% or less over 15 days). Fluorescence-activated cell sorting (FACS) analysis using a human colon cancer cell line (HCT116) exhibited 99.1% fluorescence gating for 5 μM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO), indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers. PMID:25061290
Baskaran, Rengarajan; Madheswaran, Thiagarajan; Sundaramoorthy, Pasupathi; Kim, Hwan Mook; Yoo, Bong Kyu
2014-01-01
Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO)-based liquid crystalline nanoparticles (LCNs) and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C), and the in vitro release of curcumin was sustained (10% or less over 15 days). Fluorescence-activated cell sorting (FACS) analysis using a human colon cancer cell line (HCT116) exhibited 99.1% fluorescence gating for 5 μM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO), indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers.
Theoretical Investigation of Phonon Dispersion Relation of 3d Liquid Transition Metals
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.
2011-12-01
The phonon dispersion relations of 3d liquid transition metals have been obtained in the present study. We have used Hubbard and Beeby (HB) method to generate phonon dispersion relation of liquid metals. To describe the structural information, the structure factor S(q) due to the Percus-Yevick hard sphere (PYHS) reference systems is used along with our newly constructed parameter free model potential. The influence of exchange and correlation effect on the phonon dispersion relation of 3d liquid transition metals is examined explicitly, which reflects the varying effects of screening. We have used different local field correction functions like Hartree (H), Taylor (T) and Sarkar et al (S). Present results have found good in agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Kamiya, Hidehiro; Iijima, Motoyuki
2010-08-01
Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.
Lai, Xian-Wen; Sun, Dai-Li; Ruan, Chun-Qiang; Zhang, He; Liu, Cheng-Lan
2014-01-01
A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid-liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid-liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid-liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06-0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9-112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gandhi, Sahil Sandesh; Chien, Liang-Chy
2016-04-01
We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.
Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi
2015-12-01
Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan
2017-08-01
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Studies on formation of unconfined detonable vapor cloud using explosive means.
Apparao, A; Rao, C R; Tewari, S P
2013-06-15
Certain organic liquid fuels like hydrocarbons, hydrocarbon oxides, when dispersed in air in the form of small droplets, mix with surrounding atmosphere forming vapor cloud (aerosol) and acquire explosive properties. This paper describes the studies on establishment of conditions for dispersion of fuels in air using explosive means resulting in formation of detonable aerosols of propylene oxide and ethylene oxide. Burster charges based on different explosives were evaluated for the capability to disperse the fuels without causing ignition. Parameters like design of canister, burster tube, burster charge type, etc. have been studied based on dispersion experiments. The detonability of the aerosol formed by the optimized burster charge system was also tested. Copyright © 2013 Elsevier B.V. All rights reserved.
Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro
2018-04-15
A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biata, N Raphael; Nyaba, Luthando; Ramontja, James; Mketo, Nomvano; Nomngongo, Philiswa N
2017-12-15
The aim of this study was to develop a simple and fast ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction (UA-IL-DLLME) method for preconcetration of trace antimony and tin in beverage samples. The novelty of this study was based on the application of ligandless UA-IL-DLLME using low-density ionic liquid and organic solvents for preconcentration of Sb and Sn. The concentration of Sb and Sn were quantified using ICP-OES. Under the optimum conditions, the calibration graph was found to be LOQ-250µgL -1 (r 2 =0.9987) for Sb and LOQ-350µgL -1 for Sn. The LOD and LOQ of Sb and Sn ranged from 1.2to 2.5ngL -1 and 4.0 to 8.3ngL -1 , respectively, with high preconcentration factors. The precisions (%RSD) of the proposed method ranged from 2.1% to 2.5% and 3.9% to 4.7% for Sb and Sn, respectively. The proposed method was successfully applied for determination of Sb and Sn in beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhu, Shuqiang; Wang, Lijun; Su, Along; Zhang, Haixia
2017-08-01
A novel method was developed for the determination of two endocrine-disrupting chemicals, bisphenol A and 4-nonylphenol, in vegetable oil by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography with tandem mass spectrometry. Using a magnetic liquid as the microextraction solvent, several key parameters were optimized, including the type and volume of the magnetic liquid, extraction time, amount of dispersant, and the type of reverse extractant. The detection limits for bisphenol A and 4-nonylphenol were 0.1 and 0.06 μg/kg, respectively. The recoveries were 70.4-112.3%, and the relative standard deviations were less than 4.2%. The method is simple for the extraction of bisphenol A and 4-nonylphenol from vegetable oil and suitable for routine analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba; Pirsaheb, Meghdad
2013-11-01
A novel, simple, rapid and sensitive dispersive liquid-liquid microextraction method based on the solidification of floating organic drop (DLLME-SFO) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine opium alkaloids in human plasma. During the extraction procedure, plasma protein was precipitated by using a mixture of zinc sulfate solution and acetonitrile. Some effective parameters on extraction were studied and optimized. Under the optimum conditions (extraction solvent: 30.0 μl 1-undecanol; disperser solvent: 470 μl acetone; pH: 9; salt addition: 1%(w/v) NaCl and extraction time: 0.5 min), calibration curves are linear in the range of 1.5-1000 μgl(-1) and limit of detections (LODs) are in the range of 0.5-5 μgl(-1). The relative standard deviations (RSDs) for 100 μgl(-1) of morphine and codeine, 10.0 μgl(-1) of papaverine and 20.0 μgl(-1) of noscapine in diluted human plasma are in the range of 4.3-7.4% (n=5). Finally, the method was successfully applied in the determination of opium alkaloids in the actual human plasma samples. The relative recoveries of plasma samples spiked with alkaloids are 88-110.5%. The obtained results show that DLLME-SFO combined with HPLC-UV is a fast and simple method for the determination of opium alkaloids in human plasma. Copyright © 2013 Elsevier B.V. All rights reserved.
Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz
2013-12-15
A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Shen, Xiong; Liang, Jian; Zheng, Luxia; Lv, Qianzhou; Wang, Hong
2017-11-01
A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid-liquid microextraction based on the solidification of floating organic drops and determined by high-performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket-Burman design and Box-Behnken design. The optimized values were: 58 μL of 1-decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high-performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0-1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2-0.4 and 0.1-0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Escudero, Leticia B; Berton, Paula; Martinis, Estefanía M; Olsina, Roberto A; Wuilloud, Rodolfo G
2012-01-15
In the present work, a simple and highly sensitive analytical methodology for determination of Tl(+) and Tl(3+) species, based on the use of modern and non-volatile solvents, such as ionic liquids (ILs), was developed. Initially, Tl(+) was complexed by iodide ion at pH 1 in diluted sulfuric acid solution. Then, tetradecyl(trihexyl)phosphonium chloride ionic liquid (CYPHOS(®) IL 101) was used as ion-pairing reagent and a dispersive liquid-liquid microextraction (DLLME) procedure was developed by dispersing 60 mg of 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6) mim][PF(6)] with 500 μL of ethanol in the aqueous solution. After the microextraction procedure was finished, the final IL phase was solubilized in methanol and directly injected into the graphite furnace of an electrothermal atomic absorption spectrometer (ETAAS). An extraction efficiency of 77% and a sensitivity enhancement factor of 100 were obtained with only 5.00 mL of sample. The limit of detection (LOD) was 3.3 ng L(-1) Tl while the relative standard deviation (RSD) was 5.3% (at 0.4 μg L(-1) Tl and n=10), calculated from the peak height of absorbance signals. The method was finally applied to determine Tl species in tap and river water samples after separation of Tl(3+) species. To the best of our knowledge, this work reports the first application of ILs for Tl extraction and separation in the analytical field. Copyright © 2011 Elsevier B.V. All rights reserved.
Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M
2016-07-01
Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.
2016-01-01
Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…
Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin
2016-11-01
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong
2015-10-01
In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Huilin; Jiang, Yan; Ding, Mingya; Li, Jin; Hao, Jia; He, Jun; Wang, Hui; Gao, Xiu-Mei; Chang, Yan-Xu
2018-02-03
A simple and effective sample preparation process based on miniaturized matrix solid-phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5-dicaffeoylqunic acid, 1,5-dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol-3-O-rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5-hydroxymethylfurfural) in Naoxintong capsule by ultra high-performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P
2005-12-02
The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.
Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin
2018-04-01
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Technical product bulletin: this solvent-based dispersant for oil spill cleanups is not affected by salinity, and is effective on any liquid hydrocarbon. Solvent is paraffinic hydrocarbons, surfactants include sorbitan fatty acid esters and polysorbates.
Long-range dipolar order and dispersion forces in polar liquids
NASA Astrophysics Data System (ADS)
Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene
2017-11-01
Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.
Hatami, Mehdi; Farhadi, Khalil; Abdollahpour, Assem
2011-11-01
A simple, rapid, and efficient method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0-2, 2-4, and 4-6 h and concentration and ratio of two enantiomers was determined. The ratio of R-(-) to S-(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH(2)Cl(2). After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid-liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Karadaş, Cennet; Kara, Derya
2017-04-01
A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.
Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nozohor, Mahnaz
2013-12-01
A novel dispersive liquid-liquid microextraction-solidified floating organic drop (DLLME-SFOD) method combined with fiber optic-linear array detection spectrophotometry has been developed for the indirect determination of selenium. The method is based on the oxidation of the I(-) to iodine by inorganic Se(IV). The produced I2 reacts with the excess of I(-) ions in acidic media to give triiodide ions. The I3(-) is then extracted into 1-undecanol by DLLME-SFOD upon the formation of an ion pair with cetyltrimethylammonium cation. The extracted ion pair is determined by measuring its absorption at 360 nm. The absorbance signal is proportional to the selenium concentration in the aqueous phase. Under optimum conditions, the method provided an enrichment factor of 250 with a detection limit of 16.0 μg L(-1) and a linear dynamic range of 40.0-1000.0 μg L(-1). The relative standard deviation was found to be 2.1% (n=7) at 100.0 μg L(-1) concentration level. The method was successfully applied to th e determination of selenium in water samples and selenium plus tablet. Copyright © 2013 Elsevier B.V. All rights reserved.
Birgani, Nasrin Taghipour; Elhami, Shahla
2017-01-01
A simple and sensitive method was proposed for the preconcentration of trace levels of Al(III) prior to its determination by spectrophotometry, based on dispersive liquid-liquid microextraction. The complexation of the Al(III) was performed by chelation with Eriochrome Cyanine R (ECR). In this method, cetyltrimethyl ammonium bromide (CTAB) as a dispersant was dissolved in chloroform as an extractant solvent, and then the solution was rapidly injected by a syringe into the samples containing Al(III), which had already been complexed by ECR at optimized pH. Various parameters were studied and optimized for a 10 mL sample volume. Under the optimum conditions, the LOD (3 times the SD of 10 replicate readings of the reagent blank) and the dynamic range of the calibration obtained were 0.2 ng mL-1 (7 nM) and 1.0-80.0 ng mL-1, respectively. The RSDs for eight replicate determinations of 10 and 60 ng mL-1 of Al(III) were 3.3 and 1.8%, respectively. This strategy was successfully applied to determine the Al concentration in water, wastewater, yogurt, apple, carrot, celery, bread, potato, urine, and Al-Mg syrup samples.
Malaei, Reyhane; Ramezani, Amir M; Absalan, Ghodratollah
2018-05-04
A sensitive and reliable ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) procedure was developed and validated for extraction and analysis of malondialdehyde (MDA) as an important lipids-peroxidation biomarker in human plasma. In this methodology, to achieve an applicable extraction procedure, the whole optimization processes were performed in human plasma. To convert MDA into readily extractable species, it was derivatized to hydrazone structure-base by 2,4-dinitrophenylhydrazine (DNPH) at 40 °C within 60 min. Influences of experimental variables on the extraction process including type and volume of extraction and disperser solvents, amount of derivatization agent, temperature, pH, ionic strength, sonication and centrifugation times were evaluated. Under the optimal experimental conditions, the enhancement factor and extraction recovery were 79.8 and 95.8%, respectively. The analytical signal linearly (R 2 = 0.9988) responded over a concentration range of 5.00-4000 ng mL -1 with a limit of detection of 0.75 ng mL -1 (S/N = 3) in the plasma sample. To validate the developed procedure, the recommend guidelines of Food and Drug Administration for bioanalytical analysis have been employed. Copyright © 2018. Published by Elsevier B.V.
Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei
2017-07-01
A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pinto, Edgar; Melo, Armindo; Ferreira, Isabel M P L V O
2014-05-14
A new method involving ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction was optimized with the aid of chemometrics for the extraction, cleanup, and determination of polyamines in plant foods. Putrescine, cadaverine, spermidine, and spermine were derivatized with 3,5-dinitrobenzoyl chloride and extracted by dispersive liquid-liquid microextraction using acetonitrile and carbon tetrachloride as dispersive and extraction solvents, respectively. Two-level full factorial design and central composite design were applied to select the most appropriate derivatization and extraction conditions. The developed method was linear in the 0.5-10.0 mg/L range, with a R(2) ≥ 0.9989. Intra- and interday precisions ranged from 0.8 to 6.9% and from 3.0 to 10.3%, respectively, and the limit of detection ranged between 0.018 and 0.042 μg/g of fresh weight. This method was applied to the analyses of six different types of plant foods, presenting recoveries between 81.7 and 114.2%. The method is inexpensive, versatile, simple, and sensitive.
Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2014-11-01
Vortex-assisted dispersive liquid-liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high-performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5-39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01-0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4-110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A comparative study on the breakup of Newtonian and viscoelastic liquid films
NASA Astrophysics Data System (ADS)
Qian, Lijuan; Song, Shaobo; Jiang, Lisha; Li, Xiaolu; Lin, Jianzhong
2018-05-01
The breakup of viscoelastic liquid films are investigated experimentally and analytically. The breakup phenomena of viscoelastic liquid film are recorded by the time resolved high speed camera. Video images reveal the difference behavior of liquid bubble breakup for Newtonian and viscoelastic liquid. For the Newtonian liquid, cylindrical ligaments are stretched into droplets with large distributions of drop size. For the viscoelastic liquid, the pinch-off point is located on the liquid connections to the nozzle and finally the main part of the ligament no longer elongates. Furthermore, a dispersion relation based on the stability analysis is involved to predict the ligament length and drop mean size after breakup for liquid film. The calculated ligament length is validated by the measured drop mean size at higher air-to-liquid mass flow ratio.
Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.
Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun
2015-08-19
A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.
Droplets size evolution of dispersion in a stirred tank
NASA Astrophysics Data System (ADS)
Kysela, Bohus; Konfrst, Jiri; Chara, Zdenek; Sulc, Radek; Jasikova, Darina
2018-06-01
Dispersion of two immiscible liquids is commonly used in chemical industry as wall as in metallurgical industry e. g. extraction process. The governing property is droplet size distribution. The droplet sizes are given by the physical properties of both liquids and flow properties inside a stirred tank. The first investigation stage is focused on in-situ droplet size measurement using image analysis and optimizing of the evaluation method to achieve maximal result reproducibility. The obtained experimental results are compared with multiphase flow simulation based on Euler-Euler approach combined with PBM (Population Balance Modelling). The population balance model was, in that specific case, simplified with assumption of pure breakage of droplets.
2016-10-14
Nematic Liquid Crystals allowing for rapidly changing moving pictures during the time frame below about 5-10 ms. Ferroelectric Liquid Crystals (FLCs...could fill this gap bearing some advantages over Nematic Liquid Crystals , mainly a fast switching time in the microsecond range, better optical...AFRL-RX-WP-JA-2017-0210 FERROELECTRIC BaTiO3 AND LiNbO3 NANOPARTICLES DISPERSED IN FERROELECTRIC LIQUID CRYSTAL MIXTURES: ELECTROOPTIC
Electrowetting on polymer dispersed liquid crystal
NASA Astrophysics Data System (ADS)
Fan, Shih-Kang; Chiu, Cheng-Pu; Lin, Jing-Wei
2009-04-01
Polymer dispersed liquid crystal (PDLC) is used as a dielectric layer in electrowetting. By applying voltage between a liquid droplet and the electrode underlying PDLC, electrowetting occurs at the liquid/PDLC interface accompanied with electro-optic responses of the reoriented LC droplets embedded in PDLC. Two basic experiments investigating the electrowetting by sessile water droplets and the electro-optic effects through squeezed water droplets were design and performed. The basic functions of a liquid lens and droplet manipulations, including transporting, splitting, and merging, were demonstrated.
Chisvert, Alberto; Benedé, Juan L; Anderson, Jared L; Pierson, Stephen A; Salvador, Amparo
2017-08-29
With the aim of contributing to the development and improvement of microextraction techniques, a novel approach combining the principles and advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) is presented. This new approach, termed stir bar dispersive liquid microextraction (SBDLME), involves the addition of a magnetic ionic liquid (MIL) and a neodymium-core magnetic stir bar into the sample allowing the MIL coat the stir bar due to physical forces (i.e., magnetism). As long as the stirring rate is maintained at low speed, the MIL resists rotational (centrifugal) forces and remains on the stir bar surface in a manner closely resembling SBSE. By increasing the stirring rate, the rotational forces surpass the magnetic field and the MIL disperses into the sample solution in a similar manner to DLLME. After extraction, the stirring is stopped and the MIL returns to the stir bar without the requirement of an additional external magnetic field. The MIL-coated stir bar containing the preconcentrated analytes is thermally desorbed directly into a gas chromatographic system coupled to a mass spectrometric detector (TD-GC-MS). This novel approach opens new insights into the microextraction field, by using the benefits provided by SBSE and DLLME simultaneously, such as automated thermal desorption and high surface contact area, respectively, but most importantly, it enables the use of tailor-made solvents (i.e., MILs). To prove its utility, SBDLME has been used in the extraction of lipophilic organic UV filters from environmental water samples as model analytical application with excellent analytical features in terms of linearity, enrichment factors (67-791), limits of detection (low ng L -1 ), intra- and inter-day repeatability (RSD<15%) and relative recoveries (87-113%, 91-117% and 89-115% for river, sea and swimming pool water samples, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.
Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani; Assadi, Yaghoub
2008-03-03
The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 microL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 microgL(-1) with a detection limit of 0.5 microgL(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 microgL(-1) of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 microgL(-1) ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.
Lv, Yu-Zhen; Li, Chao; Sun, Qian; Huang, Meng; Li, Cheng-Rong; Qi, Bo
2016-12-01
Dispersion stability of nanoparticles in the liquid media is of great importance to the utilization in practice. This study aims to investigate the effects of mechanical dispersion method on the dispersibility of functionalized TiO 2 nanoparticles in the transformer oil. Dispersion methods, including stirring, ultrasonic bath, and probe processes, were systematically tested to verify their versatility for preparing stable nanofluid. The test results reveal that the combination of ultrasonic bath process and stirring method has the best dispersion efficiency and the obtained nanofluid possesses the highest AC breakdown strength. Specifically, after aging for 168 h, the size of nanoparticles in the nanofluid prepared by the combination method has no obvious change, while those obtained by the other three paths are increased obviously.
Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao
2017-06-01
In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Caldas, Sergiane Souza; Rombaldi, Caroline; Arias, Jean Lucas de Oliveira; Marube, Liziane Cardoso; Primel, Ednei Gilberto
2016-01-01
A rapid and efficient sample pretreatment using solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was studied for the extraction of 58 pharmaceuticals and personal care products (PPCPs) and pesticides from water samples. Type and volume of extraction and disperser solvents, pH, salt addition, amount of salt and type of demulsification solvent were evaluated. Limits of quantification (LOQ) in the range from 0.0125 to 1.25 µg L(-1) were reached, and linearity was in the range from the LOQ of each compound to 25 μg L(-1). Recoveries ranged from 60% to 120% for 84% of the compounds, with relative standard deviations lower than 29%. The proposed method demonstrated, for the first time, that sample preparation by SD-DLLME with determination by LC-MS/MS can be successfully used for the simultaneous extraction of 32 pesticides and 26 PPCPs from water samples. The entire procedure, including the extraction of 58 organic compounds from the aqueous sample solution and the breaking up of the emulsion after extraction with water, rather than with an organic solvent, was environmentally friendly. In addition, this technique was less expensive and faster than traditional techniques. Finally, the analytical method under study was successfully applied to the analysis of all 58 pesticides and PPCPs in surface water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
UV response on dielectric properties of nano nematic liquid crystal
NASA Astrophysics Data System (ADS)
Pandey, Kamal Kumar; Tripathi, Pankaj Kumar; Misra, Abhishek Kumar; Manohar, Rajiv
2018-03-01
In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB) and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz-10 MHz in the nematic mesophase range.
Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Ghorbanpour, Houshang
2014-06-20
In the present study, a rapid, highly efficient, and reliable sample preparation method named "elevated temperature dispersive liquid-liquid microextraction" followed by gas chromatography-nitrogen-phosphorus detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and difenoconazole) in honey samples. In this method the temperature of high-volume aqueous phase was adjusted at an elevated temperature and then a disperser solvent containing an extraction solvent was rapidly injected into the aqueous phase. After cooling to room temperature, the phase separation was accelerated by centrifugation. Various parameters affecting the extraction efficiency such as type and volume of the extraction and disperser solvents, temperature, salt addition, and pH were evaluated. Under the optimum extraction conditions, the method resulted in low limits of detection and quantification within the range 0.05-0.21ngg(-1) in honey (15-70ngL(-1) in solution) and 0.15-1.1ngg(-1) in honey (45-210ngL(-1) in solution), respectively. Enrichment factors and extraction recoveries were in the ranges of 1943-1994 and 97-100%, respectively. The method precision was evaluated at 1.5ngg(-1) of each analyte, and the relative standard deviations were found to be less than 4% for intra-day (n=6) and less than 6% for inter-days. The method was successfully applied to the analysis of honey samples and difenoconazole was determined at ngg(-1) levels. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Shuo; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Sheng, Xiaoli; Fang, Jiasheng; Zhang, Mingyu; Yang, Yong
2017-04-01
Here we present a facile method for the preparation of highly dispersive ZnO materials by using ionic liquid 1-methyl-3-[3‧-(trimethoxysilyl) propyl] imidazolium chloride as the template. The influence of ionic liquid concentration and calcined atmosphere on the photoactivity is studied. The samples were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscope (SEM), N2 gas sorption and ultraviolet-visible diffuse reflectance spectroscopy. The results showed that the as-fabricated ZnO materials consisted of individual microrods with self-assembled bowknot-like architecture whose size was about 1 μm. The formation mechanism of the bowknot-like ZnO materials which is based on the self-assembly of ionic liquid is tentatively elucidated. Moreover, the ZnO-2.6N sample exhibited the higher activity for the photodegradation of MB than the photodegradation of MO and RhB. Furthermore, it was found that the ZnO materials calcined under air atmosphere showed the better photocatalytic activities than that of samples calcined under nitrogen atmosphere in the degradation of methylene blue (MB) under UV irradiation. And the special structure, surface area, adsorption capability of dye, the separation rate of photogenerated electron-hole pairs and band gap had effects on the photocatalytic activity of ZnO photocatalysts. O2rad - was the main active species for the photocatalytic degradation of MB. It is valuable to develop this facile route preparing the highly dispersive bowknot-like ZnO materials and the ZnO materials can be beneficial for environmental protection.
Zhang, Yaohai; Zhang, Xuelian; Jiao, Bining
2014-09-15
Dispersive liquid-liquid microextraction (DLLME) sample preparation and the quick, easy, cheap, effective, rugged and safe (QuEChERS) method combined with DLLME were developed and compared for the analysis of ten pyrethroids in various fruit juices using gas chromatography-electron capture detection (GC-ECD). QuEChERS-DLLME method has found its widespread applications to all the fruit juices including those samples with more complex matrices (orange, lemon, kiwi and mango) while DLLME was confined to the fruit juices with simpler matrices (apple, pear, grape and peach). The two methods provided acceptable recoveries and repeatability. In addition, the applicabilities of two methods were demonstrated with the real samples and further confirmed by gas chromatography-mass spectrometry (GC-MS). Copyright © 2014. Published by Elsevier Ltd.
Shimizu, Karina; Tariq, Mohammad; Costa Gomes, Margarida F; Rebelo, Luís P N; Canongia Lopes, José N
2010-05-06
Molecular dynamics simulations were used to calculate the density and the cohesive molar internal energy of seventeen different ionic liquids in the liquid phase. The results were correlated with previously reported experimental density and molar refraction data. The link between the dispersive component of the total cohesive energy of the fluid and the corresponding molar refraction was established in an unequivocal way. The results have shown that the two components of the total cohesive energy (dispersive and electrostatic) exhibit strikingly different trends and ratios along different families of ionic liquids, a notion that may help explain their diverse behavior toward different molecular solutes and solvents.
Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities
NASA Astrophysics Data System (ADS)
Avino, S.; Giorgini, A.; Salza, M.; Fabian, M.; Gagliardi, G.; De Natale, P.
2013-05-01
We demonstrate evanescent-wave fiber cavity-enhanced spectroscopy in the liquid phase using a near-infrared frequency comb. Exploiting strong fiber-dispersion effects, we show that liquid absorption spectra can be recorded without any external dispersive element. The fiber cavity is used both as sensor and spectrometer. The resonance modes are frequency locked to the comb teeth while the cavity photon lifetime is measured over 155 nm, from 1515 nm to 1670 nm, where absorption bands of liquid polyamines are detected as a proof of concept. Our fiber spectrometer lends itself to in situ, real-time chemical analysis in environmental monitoring, biomedical assays, and micro-opto-fluidic systems.
Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI
NASA Technical Reports Server (NTRS)
Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.
1994-01-01
The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.
NASA Astrophysics Data System (ADS)
Chen, Kuan-Yu; Yang, Thomas C.; Chang, Sarah Y.
2012-06-01
A novel method for the determination of macrolide antibiotics using dispersive liquid-liquid microextraction coupled to surface-assisted laser desorption/ionization mass spectrometric detection was developed. Acetone and dichloromethane were used as the disperser solvent and extraction solvent, respectively. A mixture of extraction solvent and disperser solvent were rapidly injected into a 1.0 mL aqueous sample to form a cloudy solution. After the extraction, macrolide antibiotics were detected using surface-assisted laser desorption/ionization mass spectrometry (SALDI/MS) with colloidal silver as the matrix. Under optimum conditions, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 2, 3, 3, and 2 nM for erythromycin (ERY), spiramycin (SPI), tilmicosin (TILM), and tylosin (TYL), respectively. This developed method was successfully applied to the determination of macrolide antibiotics in human urine samples.
Electrostatic stabilization of multi-walled carbon nanotubes dispersed in nonaqueous media.
Damasceno, João Paulo V; Zarbin, Aldo J G
2018-06-04
Dispersing carbon nanotubes is an easy and low-cost way to manipulate these solids and allows the preparation of more complex materials or devices, so it is fundamental for further uses that these dispersions have controlled properties and high colloidal stability. In this work we report the spontaneous electrical charge build-up in pristine multi-walled carbon nanotubes dispersed in common organic solvents such as chloroform and tetrahydrofuran and the achievement of dispersions stable for long periods without adding passivant agents or functional groups on nanotubes surface. Results from electrokinetics, homo- and heterocoagulation provided macroscopic evidences that carbon nanotubes acquire electric charges after dispersion in some organic liquids and we confirmed this process by measuring in situ Raman spectra of the nanotubes dispersions with higher surface electric potentials. We also show that the signal of electric potential of the dispersions can be predicted by the acid-base behaviour of the dispersing medium, corroborating previously reports for other dispersions of carbon nanomaterials. Copyright © 2018 Elsevier Inc. All rights reserved.
Liquid-filled simplified hollow-core photonic crystal fiber
NASA Astrophysics Data System (ADS)
Liu, Shengnan; Gao, Wei; Li, Hongwei; Dong, Yongkang; Zhang, Hongying
2014-12-01
We report on a novel type of liquid-filled simplified hollow-core photonic crystal fibers (HC-PCFs), and investigate their transmission properties with various filling liquids, including water, ethanol and FC-40. The loss and dispersion characterizations are calculated for different fiber parameters including strut thickness and core diameter. The results show that there are still low-loss windows existing for liquid-filled simplified HC-PCFs, and the low-loss windows and dispersions can be easily tailored by filling different liquids. Such liquid-filled simplified HC-PCFs open up many possibilities for nonlinear fiber optics, optical, biochemical and medical sensing.
Modeling emulsification processes in rotary-disk mixers
NASA Astrophysics Data System (ADS)
Laponov, S. V.; Shulaev, N. S.; Ivanov, S. P.; Bondar', K. E.; Suleimanov, D. F.
2017-10-01
This article presents the experimental studies results of emulsification processes in liquid-liquid systems in rotary-disk mixers, allowing regulating the distribution of dispersed particles by changing the process conditions and the ratio of the dispersed phase. It is shown that with the increase of mixer’s revolutions per minute (RPM), both the size of dispersed particles and the deviation of dispersed particles sizes from the average decrease. The increase of the dispersed particles part results in the increase of particles average sizes at the current energy consumption. Discovered relationships can be used in the design of industrial equipment and laboratory research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less
Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit
2017-09-01
A green approach using chitosan solution as a novel bio-dispersive agent for the dispersive liquid-liquid microextraction (DLLME) of trace amounts of Cu(II) in edible oils is presented. An emulsion was formed by mixing the oil sample with 300µL of 0.25% (w/v) chitosan solution containing 200µL of 6molL -1 HCl. Deionized water was used to induce emulsion breaking without centrifugation. The centrifuged Cu(II) extract was collected and analyzed using an inductively coupled plasma-optical emission spectrometer. The detection and quantitation limits were 2.1 and 6.8µgL -1 , respectively. Trace amounts of Cu(II) in six edible oil samples were tested under optimum conditions for DLLME, with a recovery ranging from 90.3% to 109.3%. Therefore, the new dispersive agent in DLLME offers superior performance owing to the non-toxic nature of the solvent, short extraction time, high sensitivity, and easy operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uysal, Deniz; Karadaş, Cennet; Kara, Derya
2017-05-01
A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.
Disposition of Orange Herbicide by Incineration. Revised Draft Environmental Statement
1974-04-01
a ship , the "Vulcanls," has beer equipped to carry certain hazardous liquid chemical cargoes ...dispersed. For this analyses the dispersion zone is based on a one knot wind speed , "crosswind" of the ship’s course, 10 knot speed for the ship during... shipping company; the wind speed and effective mixing height are very con- servative. For such a low wind speed , it is anticipated that the
Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal
NASA Astrophysics Data System (ADS)
Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan
2016-07-01
Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm-2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm-2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.
Determination of tramadol by dispersive liquid-liquid microextraction combined with GC-MS.
Habibollahi, Saeed; Tavakkoli, Nahid; Nasirian, Vahid; Khani, Hossein
2015-01-01
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) has been developed for preconcentration and determination of tramadol, ((±)-cis-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol-HCl), in aqueous and biological samples (urine, blood). DLLME is a simple, rapid and efficient method for determination of drugs in aqueous samples. Efficient factors on the DLLME process has defined and optimized for extraction of tramadol including type of extraction and disperser solvents and their volumes, pH of donor phase, time of extraction and ionic strength of donor phase. Based on the results of this study, under optimal conditions and by using 2-nitro phenol as internal standard, tramadol was determined by GC-MS, and the figures of merit of this work were evaluated. The enrichment factor, relative recovery and limit of detection were obtained 420, 99.2% and 0.08 µg L(-1), respectively. The linear range was between 0.26 and 220.00 µg L(-1) (R(2) = 0.9970). The relative standard deviation for 50.00 µg L(-1) of tramadol in aqueous samples by using 2-nitro phenol as IS was 3.6% (n = 7). Finally, the performance of DLLME was evaluated for analysis of tramadol in urine and blood. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Jain, Rajeev; Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Ch, Ratnasekhar; Murthy, R C; Khan, Haider A
2013-11-01
A simple, rapid and economical method has been proposed for the quantitative determination of parabens (methyl, ethyl, propyl and butyl paraben) in different samples (food, cosmetics and water) based on isobutyl chloroformate (IBCF) derivatisation and preconcentration using dispersive liquid-liquid microextraction in single step. Under optimum conditions, solid samples were extracted with ethanol (disperser solvent) and 200 μL of this extract along with 50 μL of chloroform (extraction solvent) and 10 μL of IBCF was rapidly injected into 2 mL of ultra-pure water containing 150 μL of pyridine to induce formation of a cloudy state. After centrifugation, 1 μL of the sedimented phase was analysed using gas chromatograph-flame ionisation detector (GC-FID) and the peaks were confirmed using gas chromatograph-positive chemical ionisation-mass spectrometer (GC-PCI-MS). Method was found to be linear over the range of 0.1-10 μg mL(-1) with square of correlation coefficient (R(2)) in the range of 0.9913-0.9992. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029-0.102 μg mL(-1) and 0.095-0.336 μg mL(-1) with a signal to noise ratio of 3:1 and 10:1, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arain, Salma Aslam; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Mariam Shahzadi; Panhwar, Abdul Haleem; Khan, Naeemullah; Baig, Jameel Ahmed; Shah, Faheem
2016-04-01
A simple and rapid dispersive liquid-liquid microextraction procedure based on ionic liquid assisted microemulsion (IL-µE-DLLME) combined with cloud point extraction has been developed for preconcentration copper (Cu(2+)) in drinking water and serum samples of adolescent female hepatitits C (HCV) patients. In this method a ternary system was developed to form microemulsion (µE) by phase inversion method (PIM), using ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and nonionic surfactant, TX-100 (as a stabilizer in aqueous media). The Ionic liquid microemulsion (IL-µE) was evaluated through visual assessment, optical light microscope and spectrophotometrically. The Cu(2+) in real water and aqueous acid digested serum samples were complexed with 8-hydroxyquinoline (oxine) and extracted into IL-µE medium. The phase separation of stable IL-µE was carried out by the micellar cloud point extraction approach. The influence of of different parameters such as pH, oxine concentration, centrifugation time and rate were investigated. At optimized experimental conditions, the limit of detection and enhancement factor were found to be 0.132 µg/L and 70 respectively, with relative standard deviation <5%. In order to validate the developed method, certified reference materials (SLRS-4 Riverine water) and human serum (Sero-M10181) were analyzed. The resulting data indicated a non-significant difference in obtained and certified values of Cu(2+). The developed procedure was successfully applied for the preconcentration and determination of trace levels of Cu(2+) in environmental and biological samples. Copyright © 2015 Elsevier Inc. All rights reserved.
An, Jiwoo; Rahn, Kira L; Anderson, Jared L
2017-05-15
A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Ren Chung; Marinova, Vera; Lin, Shiuan Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken Yuh
2014-06-01
A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range.
Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu
2015-06-01
A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Faraji, Mohammad; Hamdamali, Mohammadrezza; Aryanasab, Fezzeh; Shabanian, Meisam
2018-07-13
In this research, an ultrasonic-assisted extraction followed by 2-naphthalenthiol derivatization and dispersive liquid-liquid microextraction of acrylamide (AA) was developed as simple and sensitive sample preparation method for AA in bread and biscuit samples using high performance liquid chromatography. Influence of derivatization and microextraction parameters were evaluated and optimized. Results showed that the derivatization of AA leads to improve its hydrophobicity and chromatographic behavior. Under optimum conditions of derivatization and microextraction, the method yielded a linear calibration curve ranging from 10 to 1000 μg L -1 with a determination coefficient (R 2 ) of 0.9987. Limit of detection (LOD) and limit of quantification (LOQ) were 3.0 and 9.0 μg L -1 , respectively. Intra-day (n = 6) and inter-day (n = 3) precisions based on relative standard deviation percent (RSD%) for extraction and determination of AA at 50 and 500 μg L -1 levels were less than 9.0%. Finally, the performance of proposed method was investigated for determination of AA in some bread and biscuit samples, and satisfactory results were obtained (relative recovery ≥ 90%). Copyright © 2018. Published by Elsevier B.V.
Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying
2016-03-11
This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Fernández, P; Regenjo, M; Bermejo, A M; Fernández, A M; Lorenzo, R A; Carro, A M
2015-04-01
Opioids and cocaine are widely used at present, both for recreational purposes and as drugs of abuse. This raises the need to develop new analytical methods specifically designed for the simultaneous detection of several drugs of abuse in biological samples. In this work, dispersive liquid-liquid microextraction (DLLME) was assessed as a new sample treatment for the simultaneous extraction of morphine (MOR), 6-acetylmorphine (6AM), cocaine (COC), benzoylecgonine (BZE) and methadone (MET) from human plasma. Preliminary assays were done before developing an experimental design based on a Uniform Network Doehlert which allowed the optimum extraction conditions to be identified, namely: a volume of extractant solvent (chloroform) and dispersant solvent (acetonitrile) of 220 µl and 3.2 ml, respectively; 0.2 g of NaCl as a salting-out additive; pH 10.6 and ultrasound stirring for 3.5 min. The resulting extracts were analyzed by high-performance liquid chromatography with photodiode array detection (HPLC-PDA), using an XBridge® RP18 column (250 × 4.6 mm i.d., 5 µm particle size). Calibration graphs were linear over the concentration range 0.1-10 µg ml⁻¹, and detection limits ranged from 13.9 to 28.5 ng ml⁻¹. Precision calculated at three different concentration levels in plasma was included in the range 0.1-6.8% RSD. Recoveries of the five drugs were all higher than 84% on average. Finally the proposed method was successfully applied to 22 plasma samples from heroin, cocaine and/or methadone users, and the most frequently detected drug was benzoylecgonine, followed by methadone, cocaine and morphine. Copyright © 2014 John Wiley & Sons, Ltd.
Ionic liquid and nanoparticle hybrid systems: Emerging applications.
He, Zhiqi; Alexandridis, Paschalis
2017-06-01
Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bergin, Shane D.; Nicolosi, Valeria; Giordani, Silvia; de Gromard, Antoine; Carpenter, Leslie; Blau, Werner J.; Coleman, Jonathan N.
2007-11-01
Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent γ-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was CNT~0.004 mg ml-1, suggesting that this can be considered the nanotube dispersion limit in γ-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 × 10-4 mg ml-1. The number density of individual nanotubes peaks at a concentration of ~6 × 10-3 mg ml-1 where almost 10% of the nanotubes by mass are individualized.
Pirsa, Sajad; Alizadeh, Naader
2011-12-15
Polypyrrole (PPy) gas sensor has been prepared by polymerization of pyrrole on surfaces of commercial polymer fibers in the presence of an oxidizing agent. The sensing behavior of PPy gas sensor was investigated in the presence of pyridine derivatives. The resistive responses of the PPy gas sensor to pyridine derivatives were in the order of quinoline>pyridine>4-methyl pyridine and 2-methyl pyridine. The PPy gas sensor was used as gas chromatography (GC) detector and exhibited linear responses to pyridine derivatives in the ranges 40-4,000 ng. Dispersive liquid-liquid microextraction (DLLME) combined with GC/PPy gas sensor has been developed for simultaneous determination of pyridine derivatives and quinoline. The purposed method was used for determination of pyridine derivatives from cigarette smoke. The GC runs were completed in 4 min. The reproducibility of this method is suitable and good standard deviations were obtained. RSD value is less than 10% for all analytes. Copyright © 2011 Elsevier B.V. All rights reserved.
Werner, Justyna
2018-05-15
Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase was used for preconcentration of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in natural water samples prior to liquid chromatography with UV detection. In the proposed method, the ammonium pyrrolidinedithiocarbamate was used as a complexing agent and the phosphonium ionic liquid trihexyl(tetradecyl)phosphonium bis[(2,4,4-trimethyl)pentyl]phosphinate (Cyphos IL 104) was used as an extractant. Ultrasound energy was used to disperse the extractant in the aqueous phase. After microextraction, the ionic liquid and aqueous phases were separated by centrifugation. Then the aqueous phase was frozen and the lighter than water ionic liquid phase containing metal ions complexes with pyrrolidinedithiocarbamate was separated and dissolved in a small volume of methanol prior to injection into the liquid chromatograph. Several parameters including the volume of extractant, the pH of the sample, the concentration of complexing agent, the time of ultrasound energy treatment, the time and speed of centrifugation and the effect of ionic strength were optimized. Under the optimized conditions (10 µL of Cyphos IL 104, pH = 5, 0.3% w/v ammonium pyrrolidinedithiocarbamate, 60 s of ultrasound use, 5 min/5000 rpm (2516×g) of centrifugation, 2.0 mg of NaCl), preconcentration factors were 211, 210, 209, 207 and 211 for Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ and Pb 2+ respectively. Linearity was observed in the ranges 0.2-75.0 µg L -1 for Pb 2+ , Cd 2+ , Co 2+ and 0.5-100.0 µg L -1 for Cu 2+ , Ni 2+ . The limits of detection were 0.03 µg L -1 for Ni 2+ , 0.03 µg L -1 for Co 2+ , 0.03 µg L -1 for Cd 2+ , 0.02 µg L -1 for Cu 2+ , 0.02 µg L -1 for Pb 2+ , respectively. The accuracy of this method was evaluated by preconcentration and determination of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in certified reference materials (TMRAIN-04 and NIST 1643e) with the recovery values in the range of 97-102%. The presented method has been successfully applied for the determination of analytes in natural water samples (river and lake waters). Copyright © 2018 Elsevier B.V. All rights reserved.
Determination of the dispersion constant in a constrained vapor bubble thermosyphon
NASA Technical Reports Server (NTRS)
Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.
1995-01-01
The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using an image analyzing interferometer which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young Laplace Equation. These isothermal results characterized the interfacial force field in-siru at the start of the heat transfer experiments by quantifying the dispersion constant, which is a function of the liquid-solid system and cleaning procedures. The experimentally obtained values of the disjoining pressure and the dispersion constants were compared to that predicted from the DLP theory and good agreements were obtained. The measurements are critical to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the Constrained Vapor Bubble Thermosyphon, CVBT, is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'estimated'. One of the major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for the force field at the solid-liquid-vapor interfaces.
Boonchiangma, Suthasinee; Ngeontae, Wittaya; Srijaranai, Supalax
2012-01-15
Dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography (HPLC) with UV detection was applied for the determination of six pyrethroids (tetramethrin, fenpropathrin, cypermethrin, deltamethrin, fenvalerate and permethrin) in various fruit juices including apple, red grape, orange, kiwi, passion fruit, pomegranate and guava juice. Six pyrethroids were separated within 30 min using a Waters Atlantis T3 column under an isocratic elution of acetonitrile-water (72:28). The parameters affecting extraction efficiency of the DLLME method such as type of disperser and extraction solvent, volume of disperser and extraction solvent and centrifugation time were investigated. Under the optimum conditions, 5.00 mL of sample solution, 300 μL of chloroform as extraction solvent and 1.25 mL of methanol as dispersive solvent gave high enrichment factor in the range of 62-84. Good linearity was obtained from 2 to 1,500 μg/L (r(2)>0.995). The mean recoveries of the pyrethroids evaluated by fortification of real samples were in the range of 84-94%. The limits of detection ranging from 2 to 5 μg/L are sufficient to analyze pyrethroid residues at the maximum residue limits (MRLs) established by the European Union (EU) in fruit juices. The proposed method can be applied to direct determination of pyrethroid residues in fruit juices. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhao, Pengfei; Zhao, Jing; Lei, Shuo; Guo, Xingjie; Zhao, Longshan
2018-08-01
A rapid and sensitive multi-residue method was developed for the simultaneous quantification of eight chiral pesticides (including diniconazole, metalaxyl, paclobutrazol, epoxiconazole, myclobutanil, hexaconazole, napropamide and isocarbophos) at enantiomeric levels in environmental soils and sediments using chiral liquid chromatography-tandem mass spectrometry based on a combined pretreatment of matrix solid-phase dispersion and dispersive liquid-liquid microextraction (MSPD-DLLME). Under optimized conditions, 0.1 g of solid sample was dispersed with 0.4 g of C18-bonded silica sorbent, and 3 mL of methanol was used for eluting the analytes. The collected eluant was dried and then further purified by DLLME with 550 μL of dichloromethane and 960 μL of acetonitrile as extraction and disperser solvent, respectively. The established method was validated and found to be linear, precise, and accurate over the concentration range of 2-500 ng g -1 for epoxiconazole, paclobutrazol and metalaxyl and 4-500 ng g -1 for isocarbophos, hexaconazole, myclobutanil, diniconazole and napropamide. Recoveries of sixteen enantiomers varied from 87.0 to 104.1% and the relative standard deviations (RSD) were less than 10.1%. Method detection and quantification limits (MDLs and MQLs) varied from 0.22 to 1.54 ng g -1 and from 0.91 to 4.00 ng g -1 , respectively. Finally, the method was successfully applied to analyze the enantiomeric composition of the eight chiral pesticides in environmental solid matrices, which will help better understand the behavior of individual enantiomer and make accurate risk assessment on the ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gritti, Fabrice; McDonald, Thomas; Gilar, Martin
2015-09-04
An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Shu-Hsia; Wu, Shin-Tson
1992-10-01
A broad range of interdisciplinary subjects related to display technologies is addressed, with emphasis on high-definition displays, CRTs, projection displays, materials for display application, flat-panel displays, display modeling, and polymer-dispersed liquid crystals. Particular attention is given to a CRT approach to high-definition television display, a superhigh-resolution electron gun for color display CRT, a review of active-matrix liquid-crystal displays, color design for LCD parameters in projection and direct-view applications, annealing effects on ZnS:TbF3 electroluminescent devices prepared by RF sputtering, polycrystalline silicon thin film transistors with low-temperature gate dielectrics, refractive index dispersions of liquid crystals, a new rapid-response polymer-dispersed liquid-crystal material, and improved liquid crystals for active-matrix displays using high-tilt-orientation layers. (No individual items are abstracted in this volume)
CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.
Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah
2018-04-01
This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.
De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials
NASA Astrophysics Data System (ADS)
Gubernat, Maciej; Tomala, Janusz; Frohs, Wilhelm; Fraczek-Szczypta, Aneta; Blazewicz, Stanislaw
2016-03-01
The aim of the work was to characterise coal tar pitch (CTP) modified with selected nanoparticles as a binder precursor for the manufacture of synthetic carbon materials. Different factors influencing the preliminary preparative steps in the preparation of homogenous nanoparticle/CTP composition were studied. Graphene flakes, carbon black and nano-sized silicon carbide were used to modify CTP. Prior to introducing them into liquid CTP, nanoparticles were subjected to sonication. Various dispersants were used to prepare the suspensions, i.e. water, ethanol, dimethylformamide (DMF) and N-methylpyrrolidone (NMP).The results showed that proper dispersant selection is one of the most important factors influencing the de-agglomeration process of nanoparticles. DMF and NMP were found to be effective dispersants for the preparation of homogenous nanoparticle-containing suspensions. The presence of SiC and carbon black nanoparticles in the liquid pitch during heat treatment up to 2000 °C leads to the inhibition of crystallite growth in carbon residue.
Catalytic Fast Pyrolysis of Cellulose by Integrating Dispersed Nickel Catalyst with HZSM-5 Zeolite
NASA Astrophysics Data System (ADS)
Lei, Xiaojuan; Bi, Yadong; Zhou, Wei; Chen, Hui; Hu, Jianli
2018-01-01
The effect of integrating dispersed nickel catalyst with HZSM-5 zeolite on upgrading of vapors produced from pyrolysis of lignocellulosic biomass was investigated. The active component nickel nitrate was introduced onto the cellulose substrate by impregnation technique. Based on TGA experimental results, we discovered that nickel nitrate first released crystallization water, and then successively decomposed into nickel oxide which was reduced in-situ to metallic nickel through carbothermal reduction reaction. In-situ generated nickel nanoparticles were found highly dispersed over carbon substrate, which were responsible for catalyzing reforming and cracking of tars. In catalytic fast pyrolysis of cellulose, the addition of nickel nitrate caused more char formation at the expense of the yield of the condensable liquid products. In addition, the selectivity of linear oxygenates was increased whereas the yield of laevoglucose was reduced. Oxygen-containing compounds in pyrolysis vapors were deoxygenated into aromatics using HZSM-5. Moreover, the amount of condensable liquid products was decreased with the addition of HZSM-5.
Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han
2017-01-01
In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Farajzadeh, Mir Ali; Mohebbi, Ali; Feriduni, Behruz
2016-05-12
In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography-flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3-6% (n = 6, C = 30 μg L(-1)) for intra-day and 4-7% (n = 4, C = 30 μg L(-1)) for inter-day precisions. The limits of detection were in the range of 0.20-0.86 μg L(-1). Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Application of ionic liquid in liquid phase microextraction technology.
Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho
2012-11-01
Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José
2017-10-15
A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.
You, Xiangwei; Chen, Xiaochu; Liu, Fengmao; Hou, Fan; Li, Yiqiang
2018-01-15
A novel and simple ionic liquid-based air-assisted liquid-liquid microextraction technique combined with high performance liquid chromatography was developed to analyze five fungicides in juice samples. In this method, ionic liquid was used instead of a volatile organic solvent as the extraction solvent. The emulsion was formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent repeatedly using a 10mL glass syringe. No organic dispersive solvent was required. Under the optimized conditions, the limits of detection (LODs) were 0.4-1.8μgL -1 at a signal-to-noise ratio of 3. The limits of quantification (LOQs) set as the lowest spiking levels with acceptable recovery in juices were 10μgL -1 , except for fludioxonil whose LOQ was 20μgL -1 . The proposed method was applied to determine the target fungicides in juice samples, and acceptable recoveries ranging from 74.9% to 115.4% were achieved. Copyright © 2017. Published by Elsevier Ltd.
Saraji, Mohammad; Ghambari, Hoda
2015-10-01
Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid-liquid microextraction was carried out using an organic solvent lighter than water (n-hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05-100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, respectively. The values of intra- and inter-day relative standard deviations were in the range of 3.0-6.4 and 6.1-9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sutherland, Richard L.
2002-12-01
Polarization properties and electro-optical switching behavior of holographic polymer-dispersed liquid-crystal (HPDLC) reflection and transmission gratings are studied. A theoretical model is developed that combines anisotropic coupled-wave theory with an elongated liquid-crystal-droplet switching model and includes the effects of a statistical orientational distribution of droplet-symmetry axes. Angle- and polarization-dependent switching behaviors of HPDLC gratings are elucidated, and the effects on dynamic range are described. A new type of electro-optical switching not seen in ordinary polymer-dispersed liquid crystals, to the best of the author's knowledge, is presented and given a physical interpretation. The model provides valuable insight to the physics of these gratings and can be applied to the design of HPDLC holographic optical elements.
Wang, Huazi; Hu, Lu; Liu, Xinya; Yin, Shujun; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang
2017-09-22
In the present study, a simple and rapid sample preparation method designated ultrasound-assisted dispersive liquid-liquid microextraction based on a deep eutectic solvent (DES) followed by high-performance liquid chromatography with ultraviolet (UV) detection (HPLC-UVD) was developed for the extraction and determination of UV filters from water samples. The model analytes were 2,4-dihydroxybenzophenone (BP-1), benzophenone (BP) and 2-hydroxy-4-methoxybenzophenone (BP-3). The hydrophobic DES was prepared by mixing trioctylmethylammonium chloride (TAC) and decanoic acid (DecA). Various influencing factors (selection of the extractant, amount of DES, ultrasound duration, salt addition, sample volume, sample pH, centrifuge rate and duration) on UV filter recovery were systematically investigated. Under optimal conditions, the proposed method provided good recoveries in the range of 90.2-103.5% and relative standard deviations (inter-day and intra-day precision, n=5) below 5.9%. The enrichment factors for the analytes ranged from 67 to 76. The limits of detection varied from 0.15 to 0.30ngmL -1 , depending on the analytes. The linearities were between 0.5 and 500ngmL -1 for BP-1 and BP and between 1 and 500ngmL -1 for BP-3, with coefficients of determination greater than 0.99. Finally, the proposed method was applied to the determination of UV filters in swimming pool and river water samples, and acceptable relative recoveries ranging from 82.1 to 106.5% were obtained. Copyright © 2017. Published by Elsevier B.V.
URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL
Teitel, R.J.
1959-10-27
The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.
Optical Limiting Based on Liquid-Liquid Immiscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.
A nonionic surfactant is used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using anmore » alkyl end-capped polyethylene glycol ether. The salt concentration was adjusted so that the index-matched mixture exhibited a large pass band. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is thought to be a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Mie scattering. The presence of many boundaries significantly amplifies the effect. Experiments also were conducted on the phase-inverted system (aqueous phase in organic liquid). Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved limiters based upon this optical deflection approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong
Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented withinmore » flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.« less
Fasih Ramandi, Negin; Shemirani, Farzaneh
2015-01-01
For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of Developing Gas/liquid Two-Phase Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal
The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made inmore » simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.« less
Optical Limiting by Index-Matched Phase-Segregated Mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Manijeh Razeghi, Gail J. Brown
The nonlinear optical response for index-matched, non-absorbing immiscible phases (liquid-solid, liquid-liquid, solid-solid) has been determined by means of open aperture z-scan measurements. In mixtures where one constituent shows a relatively high optical nonlinearity, rapid and reversible transformation to a light-scattering state is observed under conditions where a critical incident light fluence is exceeded. This passive broadband response is induced by a transient change in the dispersive part of the refractive index, and is based upon the Christiansen-Shelyubskii filter that at one time was used as a means to monitor the temperature of glass melts. Modeling studies are used to simulatemore » scattering intensities in such textured composites as a function of composition, microstructure, and constituent optical properties. Results provide a rational approach to the selection of materials for use in these limiters. Challenges to preparing dispersed phase mixtures and their response to 532 nm nanosecond pulsed laser irradiation are described.« less
NASA Astrophysics Data System (ADS)
Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li
2016-11-01
Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.
Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami
2017-09-15
In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.
Letseka, Thabiso
2017-01-01
We report the application of the dispersive liquid-liquid microextraction coupled to hollow-fibre membrane-assisted liquid-phase microextraction and its application for extraction of atrazine and triclosan. Under optimum conditions, namely, 25 μL of a 1 : 4 chlorobenzene : ethyl acetate mixture dispersed in 1 mL of aqueous sample, 10% (m/v) NaCl, a magnetic stirrer speed at 600 rpm, and 10 minutes' extraction time with toluene-filled fibre as the acceptor phase, the method demonstrates sufficient figures of merit. These include linearity (R2 ≥ 0.9975), intravial precision (%RSD ≤ 7.6), enrichment factors (127 and 142), limits of detection (0.0081 and 0.0169 µg/mL), and recovery from river water and sewerage (96–101%). The relatively high detection limits are attributed to the flame ionization detector which is less preferred than a mass spectrometer in trace analyses. This is the first report of a homogenous mixture of the dispersed organic solvent in aqueous solutions and its employment in extraction of organic compounds from aqueous solutions. It therefore adds yet another candidate in the pool of miniaturised solvent microextraction techniques. PMID:29158736
Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.
Williams, G R; Doran, P M
2000-01-01
A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems.
Refractive index dispersion sensing using an array of photonic crystal resonant reflectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.
2015-08-10
Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only amore » minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.« less
Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima
2018-06-06
The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.
Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing
2017-04-22
An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r 2 ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Dan; Li, Gang; Liu, Haiou
2018-01-01
A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.
Experimental program on nucleation and structure in undercooled melts
NASA Technical Reports Server (NTRS)
1982-01-01
Undercooling and structural refinements in droplets of molten metal levitated in an induction field and/or by dispersion in a fluid carrier were studied. Nickel base and lower melting point alloys levitated in molten carrier fluids are considered. The dispersion of molten alloy droplets in a high temperature fluid following the procedures developed by Perepezko and co-workers for lower melting point alloys; obtaining a similar dispersion by room temperature mechanical mixing of particles of the metal and solidified liquid carrier; and solidification of single relatively large droplets in a transparent fluid carrier, enabling high-speed temperature measurement of the recalescence and subsequent cooling behavior are described.
Zhu, Yulong; Liu, Xingang; Xu, Jun; Dong, Fengshou; Liang, Xuyang; Li, Minmin; Duan, Lifang; Zheng, Yongquan
2013-07-19
A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for the simultaneous determination of spirotetramat and its four metabolites in fruits (apple, peach) and vegetables (cabbage, tomato, potato, cucumber), based on the use of liquid extraction/partition and dispersive solid phase extraction (dispersive-SPE) followed by ultrahigh-performance chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS), was established. Acidified acetonitrile (containing 1% (v/v) acetic acid) as the extraction solvent and simultaneous liquid-liquid partitioning formed by adding anhydrous magnesium sulfate (MgSO4) and anhydrous sodium acetate (NaOAc). The extract was then cleaned up by dispersive-SPE using graphitized carbon black (GCB) as selective sorbent. Further optimization of sample preparation and determination achieved recoveries of between 82 and 110% for all analytes with RSD values lower than 14% in apple, peach, cabbage, tomato, potato and cucumber at three levels (10, 100 and 1000μg/kg). The method showed excellent linearity (R(2)≥0.9895) for all studied analytes. The determination of the target compounds was achieved in less than 6.0min using an electrospray ionization source in positive mode (ESI+). The method is demonstrated to be convenient and reliable for the routine monitoring of spirotetramat and its metabolites in fruits and vegetables. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fırat, Merve; Bakırdere, Sezgin; Fındıkoğlu, Maral Selin; Kafa, Emine Betül; Yazıcı, Elif; Yolcu, Melda; Büyükpınar, Çağdaş; Chormey, Dotse Selali; Sel, Sabriye; Turak, Fatma
2017-03-01
This study was performed to develop a sensitive analytical method for the determination of cadmium by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) after dispersive liquid-liquid microextraction (DLLME). The parameters affecting the cadmium complex formation and its extraction output were optimized to obtain high extraction efficiency. These included the pH and amount of the buffer solution, and the concentration of the ligand. The DLLME method was comprehensively optimized based on the type and amount of extraction solvent, dispersive solvent and salt. The type and period of mixing needed for a more effective extraction was also investigated. In order to further improve the sensitivity for the determination of cadmium, the flame atomic absorption spectrometry was fitted with a slotted quartz tube to increase the residence time of cadmium atoms in the pathway of incident light from a hollow cathode lamp. The limits of detection and quantitation (LOD and LOQ) for the FAAS were found to be 42 and 140 μg L- 1, respectively. Under the optimum conditions, LOD and LOQ of the FAAS after DLLME were calculated as 1.3 and 4.4 μg L- 1, respectively. Combining both optimized parameters of the DLLME and SQT-FAAS gave 0.5 and 1.5 μg L- 1 as LOD and LOQ, respectively. Accuracy of the method was also checked using a wastewater certified reference material (EU-L-2), and the result was in good agreement with the certified value.
Self-similarity of solitary waves on inertia-dominated falling liquid films.
Denner, Fabian; Pradas, Marc; Charogiannis, Alexandros; Markides, Christos N; van Wachem, Berend G M; Kalliadasis, Serafim
2016-03-01
We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.
Tseng, Wan-Chi; Chen, Pai-Shan; Huang, Shang-Da
2014-03-01
Novel sample preparation methods termed "up-and-down shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME)" and "water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction (WLSEME)" coupled with gas chromatography-mass spectrometry (GC-MS) have been developed for the analysis of 11 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. For UDSA-DLLME, an up-and-down shaker-assisted emulsification was employed. Extraction was complete in 3min. Only 14 μL of 1-heptanol was required, without a dispersive solvent. Under the optimum conditions, the linear range was 0.08-100 µg L(-1), and the LODs were in the range 0.022-0.060 µg L(-1). The enrichment factors (EFs) ranged from 392 to 766. Relative recoveries were between 84% and 113% for river, lake, and field water. In WLSEME, 9 μL of 1-nonanol as extraction solvent and 240 μL of 1 mg L(-1) Triton X-100 as surfactant were mixed in a microsyringe to form a cloudy emulsified solution, which was then injected into the samples. Compared with other surfactant-assisted emulsion methods, WLSEME uses much less surfactant. The linear range was 0.08-100 µg L(-1), and the LODs were 0.022-0.13 µg L(-1). The EFs ranged from 388 to 649. The relative recoveries were 86-114% for all three water specimens. Copyright © 2013 Elsevier B.V. All rights reserved.
Calculation of Hamaker constants in non-aqueous fluid media
DOE Office of Scientific and Technical Information (OSTI.GOV)
BELL,NELSON S.; DIMOS,DUANE B.
2000-05-09
Calculations of the Hamaker constants representing the van der Waals interactions between conductor, resistor and dielectric materials are performed using Lifshitz theory. The calculation of the parameters for the Ninham-Parsegian relationship for several non-aqueous liquids has been derived based on literature dielectric data. Discussion of the role of van der Waals forces in the dispersion of particles is given for understanding paste formulation. Experimental measurements of viscosity are presented to show the role of dispersant truncation of attractive van der Waals forces.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius
2002-01-01
Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.
NASA Technical Reports Server (NTRS)
Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.
1979-01-01
Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.
Numerical modeling of flow focusing: Quantitative characterization of the flow regimes
NASA Astrophysics Data System (ADS)
Mamet, V.; Namy, P.; Dedulle, J.-M.
2017-09-01
Among droplet generation technologies, the flow focusing technique is a major process due to its control, stability, and reproducibility. In this process, one fluid (the continuous phase) interacts with another one (the dispersed phase) to create small droplets. Experimental assays in the literature on gas-liquid flow focusing have shown that different jet regimes can be obtained depending on the operating conditions. However, the underlying physical phenomena remain unclear, especially mechanical interactions between the fluids and the oscillation phenomenon of the liquid. In this paper, based on published studies, a numerical diphasic model has been developed to take into consideration the mechanical interaction between phases, using the Cahn-Hilliard method to monitor the interface. Depending on the liquid/gas inputs and the geometrical parameters, various regimes can be obtained, from a steady state regime to an unsteady one with liquid oscillation. In the dispersed phase, the model enables us to compute the evolution of fluid flow, both in space (size of the recirculation zone) and in time (period of oscillation). The transition between unsteady and stationary regimes is assessed in relation to liquid and gas dimensionless numbers, showing the existence of critical thresholds. This model successfully highlights, qualitatively and quantitatively, the influence of the geometry of the nozzle, in particular, its inner diameter.
Wu, Chunxia; Liu, Huimin; Liu, Weihua; Wu, Qiuhua; Wang, Chun; Wang, Zhi
2010-07-01
A simple dispersive liquid-liquid microextraction based on solidification of floating organic droplet coupled with high-performance liquid chromatography-diode array detection was developed for the determination of five organophosphorus pesticides (OPs) in water samples. In this method, the extraction solvent used is of low density, low toxicity, and proper melting point near room temperature. The extractant droplet could be collected easily by solidifying it in the lower temperature. Some important experimental parameters that affect the extraction efficiencies were optimized. Under the optimum conditions, the calibration curve was linear in the concentration range from 1 to 200 ng mL(-1) for the five OPs (triazophos, parathion, diazinon, phoxim, and parathion-methyl), with the correlation coefficients (r) varying from 0.9991 to 0.9998. High enrichment factors were achieved ranging from 215 to 557. The limits of detection were in the range between 0.1 and 0.3 ng mL(-1). The recoveries of the target analytes from water samples at spiking levels of 5.0 and 50.0 ng mL(-1) were 82.2-98.8% and 83.6-104.0%, respectively. The relative standard deviations fell in the range of 4.4% to 6.3%. The method was suitable for the determination of the OPs in real water samples.
Streck, Letícia; Sarmento, Víctor H V; Machado, Paula R L; Farias, Kleber J S; Fernandes-Pedrosa, Matheus F; da Silva-Júnior, Arnóbio Antônio
2016-06-30
Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment.
Streck, Letícia; Sarmento, Víctor H. V.; Machado, Paula R. L.; Farias, Kleber J. S.; Fernandes-Pedrosa, Matheus F.; da Silva-Júnior, Arnóbio Antônio
2016-01-01
Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278
Cruise control for segmented flow.
Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel
2012-11-21
Capitalizing on the benefits of microscale segmented flows, e.g., enhanced mixing and reduced sample dispersion, so far requires specialist training and accommodating a few experimental inconveniences. For instance, microscale gas-liquid flows in many current setups take at least 10 min to stabilize and iterative manual adjustments are needed to achieve or maintain desired mixing or residence times. Here, we report a cruise control strategy that overcomes these limitations and allows microscale gas-liquid (bubble) and liquid-liquid (droplet) flow conditions to be rapidly "adjusted" and maintained. Using this strategy we consistently establish bubble and droplet flows with dispersed phase (plug) velocities of 5-300 mm s(-1), plug lengths of 0.6-5 mm and continuous phase (slug) lengths of 0.5-3 mm. The mixing times (1-5 s), mass transfer times (33-250 ms) and residence times (3-300 s) can therefore be directly imposed by dynamically controlling the supply of the dispersed and the continuous liquids either from external pumps or from local pressurized reservoirs. In the latter case, no chip-external pumps, liquid-perfused tubes or valves are necessary while unwanted dead volumes are significantly reduced.
Confinement of surface waves at the air-water interface to control aerosol size and dispersity
NASA Astrophysics Data System (ADS)
Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.
2017-11-01
The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.
The Determination of Birefringence Dispersion in Nematic Liquid Crystals by Using the S-Transform
NASA Astrophysics Data System (ADS)
Coşkun, E.; Özder, S.; Kocahan, Ö.; Köysal, O.
2007-04-01
Transmittance spectra of 5CB and ZLI-6000 coded nematic liquid crystals were acquired in the 12600-22200 cm-1 region at room temperature. The S-transform was applied to analyze the transmittance signal. Dispersion curves of the birefringence were obtained for 5CB and ZLI-6000 by this analysis and data were fitted to the Cauchy formula whereby the dispersion parameters were extracted. Results are found to be in favorable accordance with the published values.
Khan, Sumaira; Soylak, Mustafa; Kazi, Tasneem Gul
2013-12-01
The current work develops a new green methodology for the separation/preconcentration of cadmium ions (Cd(2+)) using room temperature ionic liquid-dispersive liquid phase microextraction (RTIL-DLME) prior to analysis by flame atomic absorption spectrometry with microsample introduction system. Room temperature ionic liquids (RTIL) are considered "Green Solvents" for their thermally stable and non-volatile properties, here 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] was used as an extractant. The preconcentration of Cd(2+) in different waters and acid digested scalp hair samples were complexed with 1-(2-pyridylazo)-2-naphthol and extracted into the fine drops of RTILs. Some significant factors influencing the extraction efficiency of Cd(2+) and its subsequent determination, including pH, amount of ligand, volume of RTIL, dispersant solvent, sample volume, temperature, and incubation time were investigated in detail. The limit of detection and the enhancement factor under the optimal conditions were 0.05 μg/L and 50, respectively. The relative standard deviation of 100 μg/L Cd(2+) was 4.3 %. The validity of the proposed method was checked by determining Cd(2+) in certified reference material (TM-25.3 fortified water). The sufficient recovery (>98 %) of Cd(2+) with the certified value. The mean concentrations of Cd in lake water 13.2, waste water 15.7 and hair sample 16.8 μg/L, respectively and the developed method was applied satisfactorily to the preconcentration and determination of Cd(2+) in real samples.
Tejada-Casado, Carmen; Moreno-González, David; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud
2017-03-24
A novel method based on capillary zone electrophoresis-tandem mass spectrometry has been proposed and validated for the identification and simultaneous quantification of twelve benzimidazoles in meat samples. Electrophoretic separation was carried out using 500mM formic acid (pH 2.2) as background electrolyte and applying a voltage of 25kV at 25°C. In order to improve the sensitivity, stacking mode injection was applied, using as injection solvent a mixture of 30:70 acetonitrile/water at 50mbar for 75s. Sensitivity enhancement factors from 74 to 317 were obtained under these conditions. Detection using an ion trap as analyzer, operating in multiple reactions monitoring mode was employed. The main MS/MS parameters as well as the composition of the sheath liquid and other electrospray variables were optimized in order to obtain the highest sensitivity and precision in conjunction with an unequivocal identification. The method was applied to poultry and pork muscle samples. The deproteinization of samples and extraction of benzimidazoles was carried out with acetonitrile. MgSO 4 and NaCl were added as salting-out agents. Subsequently, dispersive liquid-liquid microextraction was applied as clean up procedure. The organic layer (acetonitrile, used as dispersant) containing the benzimidazoles was mixed with the extractant (chloroform) and both were injected in water, producing a cloudy solution. Recoveries for fortified samples were higher than 70%, with relative standard deviations lower than 16% were obtained in all cases. The limits of detection were below 3μgkg -1 , demonstrating the applicability of this fast, simple, and environmentally friendly method. Copyright © 2017 Elsevier B.V. All rights reserved.
Peng, Guilong; He, Qiang; Al-Hamadani, Sulala M Z F; Zhou, Guangming; Liu, Mengzi; Zhu, Hui; Chen, Junhua
2015-05-01
Dispersive liquid-liquid microextraction with solidification of a floating organic droplet (DLLME-SFO) followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection was applied for the determination of thiamphenicol (TAP), florfenicol (FF) in water samples. 1-Undecanol was used as the extraction solvent which has lower density than water, low toxicity, and low melting point (19°C). A mixture of 800mL acetone (disperser solvent) and 80µL of 1-undecanol (extraction solvent) was injected into 20mL of aqueous solution. After 5min, 0.6g of NaCl was added and the sample vial was shaken. After 5min, the sample was centrifuged at 3500rpm for 3min, and then placed in an ice bath. When the extraction solvent floating on the aqueous solution had solidified, it was transferred into another conical vial where it was melted quickly at room temperature, and was diluted with methanol to 1mL, and analyzed by HPLC-UV detection. Parameters influencing the extraction efficiency were thoroughly examined and optimized. The extraction recoveries (ER) and the enrichment factors (EF) ranged from 67% to 72% and 223 to 241, respectively. The limits of detection (LODs) (S/N=3) were 0.33 and 0.56µgL(-1) for TAP and FF, respectively. Linear dynamic range (LDR) was in the range of 1.0-550µgL(-1) for TAP and 1.5-700µgL(-1) for FF, the relative standard deviations (RSDs) were in the range of 2.6-3.5% and the recoveries of spiked samples ranged from 94% to 106%. Copyright © 2015 Elsevier Inc. All rights reserved.
Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid
2013-01-01
A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.
Heat dissipation for microprocessor using multiwalled carbon nanotubes based liquid.
Hung Thang, Bui; Trinh, Pham Van; Chuc, Nguyen Van; Khoi, Phan Hong; Minh, Phan Ngoc
2013-01-01
Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU's temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU's temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for the μ -processor and other high power electronic devices.
Atomization of liquids in a Pease-Anthony Venturi scrubber. Part II. Droplet dispersion.
Gonçalves, J A S; Costa, M A M; Aguiar, M L; Coury, J R
2004-12-10
Droplet distribution is of fundamental importance to the performance of a Venturi scrubber. Ensuring good liquid distribution can increase performance at minimal liquid usage. In this study, droplet dispersion in a rectangular Pease-Anthony Venturi scrubber, operating horizontally, was examined both theoretically and experimentally. The Venturi throat cross-section was 24 mm x 35 mm, and the throat length varied from 63 to 140 mm. Liquid was injected through a single orifice (1.0 mm diameter) on the throat wall. This arrangement allowed the study of the influence of jet penetration on droplet distribution. Gas velocity at the throat was 58.3 and 74.6 m/s, and the liquid flow rate was 286, 559 and 853 ml/min. A probe with a 2.7 mm internal diameter was used to isokinetically remove liquid from several positions inside the equipment. It was possible to study liquid distribution close to the injection point. A new model for droplet dispersion, which incorporates the new description of the jet atomization process developed by the present authors in the first article of this series, is proposed and evaluated. The model predicted well the experimental data.
Low gravity containerless processing of immiscible gold rhodium alloys
NASA Technical Reports Server (NTRS)
Andrews, J. Barry
1986-01-01
Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data.
NASA Astrophysics Data System (ADS)
Watters, Arianna L.; Palmese, Giuseppe R.
2014-09-01
Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.
Shuai, Binbin; Xia, Li; Liu, Deming
2012-11-05
We present and numerically characterize a liquid-core photonic crystal fiber based plasmonic sensor. The coupling properties and sensing performance are investigated by the finite element method. It is found that not only the plasmonic mode dispersion relation but also the fundamental mode dispersion relation is rather sensitive to the analyte refractive index (RI). The positive and negative RI sensitivity coexist in the proposed design. It features a positive RI sensitivity when the increment of the SPP mode effective index is larger than that of the fundamental mode, but the sensor shows a negative RI sensitivity once the increment of the fundamental mode gets larger. A maximum negative RI sensitivity of -5500nm/RIU (Refractive Index Unit) is achieved in the sensing range of 1.50-1.53. The effects of the structural parameters on the plasmonic excitations are also studied, with a view of tuning and optimizing the resonant spectrum.
CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor
NASA Astrophysics Data System (ADS)
Gelves, R.
2013-10-01
In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.
Sadeghi, Susan; Ashoori, Vahid
2017-10-01
The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less
Serroukh, Sonia; Huber, Patrick; Lallam, Abdelaziz
2018-01-19
Inverse liquid chromatography is a technique for studying solid/liquid interaction and most specifically for the determination of solute adsorption isotherm. For the first time, the adsorption behaviour of microfibrillated cellulose was assessed using inverse liquid chromatography. We showed that microfibrillated cellulose could adsorb 17 mg/g of tetrasulfonated optical brightening agent in typical papermaking conditions. The adsorbed amount of hexasulfonated optical brightening agent was lower (7 mg/g). The packing of the column with microfibrillated cellulose caused important axial dispersion (D a = 5e-7 m²/s). Simulation of transport phenomena in the column showed that neglecting axial dispersion in the analysis of the chromatogram caused significant error (8%) in the determination of maximum adsorbed amount. We showed that conventional chromatogram analysis technique such as elution by characteristic point could not be used to fit our data. Using a bi-Langmuir isotherm model improved the fitting, but did not take into account axial dispersion, thus provided adsorption parameters which may have no physical significance. Using an inverse method with a single Langmuir isotherm, and fitting the transport equation to the chromatogram was shown to provide a satisfactory fitting to the chromatogram data. In general, the inverse method could be recommended to analyse inverse liquid chromatography data for column packing with significant axial dispersion (D a > 1e-7 m²/s). Copyright © 2017 Elsevier B.V. All rights reserved.
Salahinejad, Maryam; Aflaki, Fereydoon
2011-06-01
Dispersive liquid-liquid microextraction followed by inductively coupled plasma-optical emission spectrometry has been investigated for determination of Cd(II) ions in water samples. Ammonium pyrrolidine dithiocarbamate was used as chelating agent. Several factors influencing the microextraction efficiency of Cd (II) ions such as extracting and dispersing solvent type and their volumes, pH, sample volume, and salting effect were optimized. The optimization was performed both via one variable at a time, and central composite design methods and the optimum conditions were selected. Both optimization methods showed nearly the same results: sample size 5 mL; dispersive solvent ethanol; dispersive solvent volume 2 mL; extracting solvent chloroform; extracting solvent volume 200 [Formula: see text]L; pH and salt amount do not affect significantly the microextraction efficiency. The limits of detection and quantification were 0.8 and 2.5 ng L( - 1), respectively. The relative standard deviation for five replicate measurements of 0.50 mg L( - 1) of Cd (II) was 4.4%. The recoveries for the spiked real samples from tap, mineral, river, dam, and sea waters samples ranged from 92.2% to 104.5%.
Wu, Hongliang; Li, Guoliang; Liu, Shucheng; Hu, Na; Geng, Dandan; Chen, Guang; Sun, Zhiwei; Zhao, Xianen; Xia, Lian; You, Jinmao
2016-02-01
This research established a sensitive and efficient pre-column derivatization HPLC method based on dispersive liquid-liquid microextraction (DLLME) for the simultaneous determination of six steroidal and phenolic endocrine disrupting chemicals (EDCs). In this study, EDCs were firstly labeled by the derivatization reagent 2-(11H-benzo[a]carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) and then extracted by DLLME. The response surface methodology was employed to investigate the key parameters of pre-column derivatization and DLLME. Under the optimal conditions, a good linear relationship between the peak area and the concentration of analytes was observed with correlation coefficients of >0.9991. Limits of detection for all EDCs derivatives were achieved within the range of 0.02-0.07 μg L(-1). The proposed method has the advantages of simple operation, low consumption of organic solvent, saving time, low output limit and good selectivity. When applied to several food and water samples analysis, it demonstrated good applicability for the determination of EDCs. Copyright © 2015 Elsevier Ltd. All rights reserved.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
Electric field controlled emulsion phase contactor
Scott, Timothy C.
1995-01-01
A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.
Method of using an electric field controlled emulsion phase contactor
Scott, Timothy C.
1993-01-01
A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.
Electric field controlled emulsion phase contactor
Scott, T.C.
1995-01-31
A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.
Dispersion polymerization of L-lactide utilizing ionic liquids as reaction medium
NASA Astrophysics Data System (ADS)
Fahmiati, Sri; Minami, Hideto; Haryono, Agus; Adilina, Indri B.
2017-11-01
Dispersion polymerization of L-lactide was proceeded in various ionic liquids. Ionic liquids as 1-Hexyl-3-methylimidazolium bis (trifluormethylsulfonyl) imide, [HMIM] [TFSI], 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, [BMP] [TFSI], and N,N,N-Trimethyl-N-Propylammonium Bis (trifloromethanesulfonyl) imide, [TMPA] [TFSI], were employed as reaction medium that dissolved both of lactide and stabilizer (polyvinylprrolidone). Sn-supported on bentonite was used as a ring opening catalyst of L-lactide. Gel Permeation Chromatography result showed that poly-(L-lactic acid) were formed in ionic liquids [HMIM] [TFSI] and [BMP] [TFSI] with molecular weight as 19390 and 20844, respectively.
Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani
2015-01-09
A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Van, Hieu Le; Buczynski, Ryszard; Long, Van Cao; Trippenbach, Marek; Borzycki, Krzysztof; Manh, An Nguyen; Kasztelanic, Rafal
2018-01-01
We present experimental and simulation results of the zero-dispersion shift in photonics crystal fibers infiltrated with water-ethanol mixture. The fiber based on the fused silica glass with a hexagonal lattice consists of seven rings of air-holes filled by liquid. We show that it is possible to shift the zero-dispersion wavelength by 35 ps/nm/km when changing the temperature by 60 °C, and by 42 ps/nm/km when changing the concentration of ethanol from 0 to 100%. The results also show that for the optical fiber filed with pure ethanol the flattened part of the dispersion shifts from anomalous to the normal regime at temperatures below -70 °C.
Fernández, Elena; Vidal, Lorena; Iniesta, Jesús; Metters, Jonathan P; Banks, Craig E; Canals, Antonio
2014-03-01
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid-liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett-Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L(-1) and 9 μg L(-1), respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L(-1)), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Li, Danping; Ma, Xiaoguo; Wang, Rui; Yu, Yumian
2017-02-01
Bisphenol A (BPA), an endocrine-disrupting chemical, has received much attention from researchers and the general public. In this paper, a novel method of determining BPA at trace levels was developed, using magnetic reduced graphene oxide (rGO-Fe 3 O 4 )-based solid-phase extraction coupled with dispersive liquid-liquid microextraction (DLLME), followed by high-performance liquid chromatographic determination. The rGO-Fe 3 O 4 was prepared and then characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The greatest saturation magnetization of rGO-Fe 3 O 4 was up to 43.8 emu g -1 , which allowed rapid isolation of the rGO-Fe 3 O 4 from solutions upon applying an appropriate magnetic field. The effects of solution pH, adsorbent amount, type and volume of eluent and extraction solvent, extraction time, and salt concentration on the extraction efficiency of BPA were examined and optimized. Under the optimum conditions, an enrichment factor of 5217 and an LOD of 0.01 μg L -1 for BPA were obtained. The reusability of rGO-Fe 3 O 4 for at least 12 repeated cycles without any significant decrease in the extraction recovery of BPA was demonstrated. The proposed method was applied to the determination of BPA in different real water samples, with relative recoveries of 84.8-104.9 % and RSDs of 0.8-8.3 % in the spiked concentration range 1-10 μg L -1 .
Fernández, Elena; Vidal, Lorena; Martín-Yerga, Daniel; Blanco, María del Carmen; Canals, Antonio; Costa-García, Agustín
2015-04-01
A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid-liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L(-1) was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L(-1), which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L(-1) and 1 µg L(-1), respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L(-1)) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan
2016-06-01
A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sharma, Vandna; Kumar, Pankaj
2017-11-01
Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.
A Polymer-Dispersed Liquid Crystal-Based Dynamic Gain Equalizer
NASA Astrophysics Data System (ADS)
Barge, M.; Battarel, D.; de Bougrenet de La Tocnaye, J. L.
2005-08-01
This paper presents results obtained with a spatial light modulator (SLM) using a polymer-dispersed liquid-crystal (LC) material to provide dynamic gain equalization (DGE) for wavelength-division multiplexing (WDM) networks. We show the benefit of using a nonchannelized approach to adjust some physical parameters such as the ripple and the maximum obtainable attenuation slope for the spectra to be equalized. Particular attention is paid here to polarization dependence that can result from parasitic anisotropic multiple path interferences as well as induced anisotropy due to a planar transverse field when using a free-space SLM structure. In this frame, we demonstrate an original approach using a depolarizing prism that is only appropriate to such choice of material and that mitigates these effects. Finally, material engineering to widen the operating temperature range is also shortly presented in this paper.
Mansour, Fotouh R; Danielson, Neil D
2017-08-01
Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj
2016-10-01
Source apportionment study of PM 10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM 10 . Copyright © 2016. Published by Elsevier B.V.
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel
2009-12-01
Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).
Modelling of evaporation of a dispersed liquid component in a chemically active gas flow
NASA Astrophysics Data System (ADS)
Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.
1994-01-01
A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.
NASA Astrophysics Data System (ADS)
Garbovskiy, Yuriy
2016-05-01
The ion capturing effect in liquid crystal nanocolloids was quantified by means of the ion trapping coefficient. The dependence of the ion trapping coefficient on the concentration of nano-dopants and their ionic purity was calculated for a variety of nanosolids dispersed in liquid crystals: carbon nanotubes, graphene nano-flakes, diamond nanoparticles, anatase nanoparticles, and ferroelectric nanoparticles. The proposed method perfectly fits existing experimental data and can be useful in the design of highly efficient ion capturing nanomaterials.
ASTP science demonstration data analysis
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bourgeois, S. V.
1977-01-01
Analyses of the Apollo-Soyuz science demonstrations on chemical foams and liquid spreading are presented. The chemical foams demonstation showed that aqueous foams and gas/liquid dispersions are more stable in low-g than on the ground. Unique chemical reactions in low-g foams and gas/liquid dispersions are therefore possible. Further ground tests on the formaldehyde clock reaction led to the rather surprising conclusions that surfaces can exert a nucleation effect and that long-range surface influences on chemical reaction rates are apparently operative.
Zhang, Xingwang; Xing, Huijie; Zhao, Yue; Ma, Zhiguo
2018-06-23
Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.
Energy dispersive-EXAFS of Pd nucleation at a liquid/liquid interface
NASA Astrophysics Data System (ADS)
Chang, S.-Y.; Booth, S. G.; Uehara, A.; Mosselmans, J. F. W.; Cibin, G.; Pham, V.-T.; Nataf, L.; Dryfe, R. A. W.; Schroeder, S. L. M.
2016-05-01
Energy dispersive extended X-ray absorption fine structure (EDE) has been applied to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K edge-step height determination shows that under supersaturated conditions the concentration of Pd near the interface fluctuate over a period of several hours, likely due to the continuous formation and dissolution of sub-critical nuclei. Open circuit potential measurements conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the fluctuations in Pd concentration are also visible as variations in potential across the liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common ion (tetraethylammonium, TEA+) the Pd nanoparticle growth rate could be slowed down, resulting in a smooth nucleation process. Eventually, when the TEA+ ions reached an equilibrium potential, Pd nucleation and particle growth were inhibited.
Reverse-mode microdroplet liquid crystal display
NASA Astrophysics Data System (ADS)
Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang
1990-04-01
This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.
Liang, Ning; Huang, Peiting; Hou, Xiaohong; Li, Zhen; Tao, Lei; Zhao, Longshan
2016-02-01
A novel method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was developed for ultra-preconcentration of 10 antibiotics in different environmental water samples prior to ultra-high performance liquid chromatography-tandem mass spectrometry detection. The optimized results were obtained as follows: after being adjusted to pH 4.0, the water sample was firstly passed through PEP-2 column at 10 mL min(-1), and then methanol was used to elute the target analytes for the following steps. Dichloromethane was selected as extraction solvent, and methanol/acetonitrile (1:1, v/v) as dispersive solvent. Under optimal conditions, the calibration curves were linear in the range of 1-1000 ng mL(-1) (sulfamethoxazole, cefuroxime axetil), 5-1000 ng mL(-1) (tinidazole), 10-1000 ng mL(-1) (chloramphenicol), 2-1000 ng mL(-1) (levofloxacin oxytetracycline, doxycycline, tetracycline, and ciprofloxacin) and 1-400 ng mL(-1) (sulfadiazine) with a good precision. The LOD and LOQ of the method were at very low levels, below 1.67 and 5.57 ng mL(-1), respectively. The relative recoveries of the target analytes were in the range from 64.16% to 99.80% with relative standard deviations between 0.7 and 8.4%. The matrix effect of this method showed a great decrease compared with solid-phase extraction and a significant value of enrichment factor (EF) compared with dispersive liquid-liquid microextraction. The developed method was successfully applied to the extraction and analysis of antibiotics in different water samples with satisfactory results.
Islas, Gabriela; Hernandez, Prisciliano
2017-01-01
To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027
Shih, Hou-Kuang; Shu, Ting-Yun; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon
2015-01-07
In this study, a novel fatty-acid-based in-tube dispersive liquid-liquid microextraction (FA-IT-DLLME) technique is proposed for the first time and is developed as a simple, rapid and eco-friendly sample extraction method for the determination of alkylphenols in aqueous samples using high-performance liquid chromatography-ultraviolet detection (HPLC-UV). In this extraction method, medium-chain saturated fatty acids were investigated as a pH-dependent phase because they acted as either anionic surfactants or neutral extraction solvents based on the acid-base reaction caused solely by the adjustment of the pH of the solution. A specially designed home-made glass extraction tube with a built-in scaled capillary tube was utilized as the phase-separation device for the FA-IT-DLLME to collect and measure the separated extractant phase for analysis. Nonylphenol (NP) and 4-tert-octylphenol (4-tOP) were chosen as model analytes. The parameters influencing the FA-IT-DLLME were thoroughly investigated and optimized. Under the optimal conditions, the detector responses of NP and 4-tOP were linear in the concentration ranges of 5-4000 μg L(-1), with correlation coefficients of 0.9990 and 0.9996 for NP and 4-tOP, respectively. The limits of detection based on a signal-to-noise ratio of 3 were 0.7 and 0.5 μg L(-1), and the enrichment factors were 195 and 143 for NP and 4-tOP, respectively. The applicability of the developed method was demonstrated for the analysis of alkylphenols in environmental wastewater samples, and the recoveries ranged from 92.9 to 107.1%. The extraction process required less than 4 min and utilized only acids, alkalis, and fatty acids to achieve the extraction. The results demonstrated that the presented FA-IT-DLLME approach is highly cost-effective, simple, rapid and environmentally friendly in its sample preparation. Copyright © 2014 Elsevier B.V. All rights reserved.
Majedi, Seyed Mohammad; Lee, Hian Kee
2017-02-24
Short-chain aliphatic amines are ubiquitous in the atmospheric environment. They play an important role in the formation and growth of atmospheric particles. As such, there is a pressing need to monitor these particle-bound compounds present at trace quantities. The present work describes an efficient, one-step microextraction technique for the preconcentration and detection of trace levels of 10 aliphatic amines on fine particles (particulate matter of 2.5μm or less (PM 2.5 )) in the atmosphere. After extraction of amines from particles in acidified water samples, carbon-based sorbents (in dispersive solid-phase extraction mode), and vortex agitation were utilized for simultaneous derivatization-extraction and dispersive liquid-liquid microextraction. The approach significantly increased the recoveries and enrichment of the amine derivatives. This one-step, combined technique is proposed for the first time. Several influential factors including type and concentration of derivatization reagent (for gas chromatographic separation), type of buffer, sample pH, types and volumes of extraction and disperser solvents, type and amount of sorbent, vortex time and temperature, desorption solvent type and volume, and salt content were investigated and optimized. Under the optimum conditions, high enrichment factors (in the range of between 307 and 382) and good reproducibility (relative standard deviations, below 7.0%, n=5) were achieved. The linearity ranged from 0.1μg/L-100μg/L, and from 0.5μg/L-100μg/L, depending on the analytes. The limits of detection were between 0.02μg/L (corresponding to ∼0.01ng/m 3 in air) and 0.09μg/L (corresponding to ∼0.04ng/m 3 in air). The developed method was successfully applied to the analysis of PM 2.5 samples collected by air sampling through polytetrafluoroethylene filters. The concentration levels of amines ranged from 1.04 to 4.16ng/m 3 in the air sampled. Copyright © 2016 Elsevier B.V. All rights reserved.
Ebrahimi, Amir; Jafari, Mohammad T
2015-03-01
This paper deals with a method based on negative corona discharge ionization ion mobility spectrometry (NCD-IMS) for the analysis of ethion (as an organophosphorus pesticide). The negative ions such as O2(-) and NO(x)(-) were eliminated from the background spectrum to increase the instrument sensitivity. The method was used to specify the sample extracted via dispersive liquid-liquid microextraction (DLLME) based on low density extraction solvent. The ion mobility spectrum of ethion in the negative mode and the reduced mobility value for its ion peak are firstly reported and compared with those of the positive mode. In order to combine the low density solvent DLLME directly with NCD-IMS, cyclohexane was selected as the extraction solvent, helping us to have a direct injection up to 20 µL solution, without any signal interference. The method was exhaustively validated in terms of sensitivity, enrichment factor, relative recovery, and repeatability. The linear dynamic range of 0.2-100.0 µg L(-1), detection limit of 0.075 µg L(-1), and the relative standard deviation (RSD) of about 5% were obtained for the analysis of ethion through this method. The average recoveries were calculated about 68% and 92% for the grape juice and underground water, respectively. Finally, some real samples were analyzed and the feasibility of the proposed method was successfully verified by the efficient extraction of the analyte using DLLME before the analysis by NCD-IMS. Copyright © 2014 Elsevier B.V. All rights reserved.
Miralles, Pablo; Chisvert, Alberto; Alonso, M José; Hernandorena, Sandra; Salvador, Amparo
2018-03-30
An analytical method for the determination of traces of formaldehyde in cosmetic products containing formaldehyde-releasing preservatives has been developed. The method is based on reversed-phase dispersive liquid-liquid microextraction (RP-DLLME), that allows the extraction of highly polar compounds, followed by liquid chromatography-ultraviolet/visible (LC-UV/vis) determination with post-column derivatization. The variables involved in the RP-DLLME process were studied to provide the best enrichment factors. Under the selected conditions, a mixture of 500 μL of acetonitrile (disperser solvent) and 50 μL of water (extraction solvent) was rapidly injected into 5 mL of toluene sample solution. The extracts were injected into the LC-UV/vis system using phosphate buffer 6 mmol L -1 at pH 2 as mobile phase. After chromatographic separation, the eluate merged with a flow stream of pentane-2,4-dione in ammonium acetate solution as derivatizing reagent and passed throughout a post-column reactor at 85 °C in order to derivatize formaldehyde into 3,5-diacetyl-1,4-dihydrolutidine, according to Hantzsch reaction, which was finally measured spectrophotometrically at 407 nm. The method was successfully validated showing good linearity, an enrichment factor of 86 ± 2, limits of detection and quantification of 0.7 and 2.3 ng mL -1 , respectively, and good repeatability (RSD < 9.2%). Finally, the proposed analytical method was applied to the determination of formaldehyde in different commercial cosmetic samples containing formaldehyde-releasing preservatives, such as bronopol, diazolidinyl urea, imidazolidinyl urea, and DMDM hydantoin, with good relative recovery values (91-113%) thus showing that matrix effects were negligible. The good analytical features of the proposed method besides of its simplicity and affordability, make it useful to carry out the quality control of cosmetic products containing formaldehyde-releasing preservatives. Copyright © 2018 Elsevier B.V. All rights reserved.
Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján
2016-02-04
Simplicity, effectiveness, swiftness, and environmental friendliness - these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid-liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed. In this first part, an introduction to LPME and their static and dynamic operation modes as well as their automation methodologies is given. The LPME techniques are classified according to the different approaches of protection of the extraction solvent using either a tip-like (needle/tube/rod) support (drop-based approaches), a wall support (film-based approaches), or microfluidic devices. In the second part, the LPME techniques based on porous supports for the extraction solvent such as membranes and porous media are overviewed. An outlook on future demands and perspectives in this promising area of analytical chemistry is finally given. Copyright © 2015 Elsevier B.V. All rights reserved.
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad
2017-01-25
A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin
2017-11-01
An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical measurements in evolving dispersed pipe flows
NASA Astrophysics Data System (ADS)
Voulgaropoulos, Victor; Angeli, Panagiota
2017-12-01
Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid-liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m^{-3}, 0.0046 Pa s) and aqueous phases (1146 kg m^{-3}, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop.
Fan, Chen; Li, Nai; Cao, Xueli
2015-05-01
In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Faraji, Hakim; Helalizadeh, Masoumeh; Kordi, Mohammad Reza
2018-01-01
A rapid, simple, and sensitive approach to the analysis of trihalomethanes (THMs) in swimming pool water samples has been developed. The main goal of this study was to overcome or to improve the shortcomings of conventional dispersive liquid-liquid microextraction (DLLME) and to maximize the realization of green analytical chemistry principles. The method involves a simple vortex-assisted microextraction step, in the absence of the dispersive solvent, followed by salting-out effect for the elimination of the centrifugation step. A bell-shaped device and a solidifiable solvent were used to simplify the extraction solvent collection after phase separation. Optimization of the independent variables was performed by using chemometric methods in three steps. The method was statistically validated based on authentic guidance documents. The completion time for extraction was less than 8 min, and the limits of detection were in the range between 4 and 72 ng L -1 . Using this method, good linearity and precision were achieved. The results of THMs determination in different real samples showed that in some cases the concentration of total THMs was more than threshold values of THMs determined by accredited healthcare organizations. This method indicated satisfactory analytical figures of merit. Graphical Abstract A novel green microextraction technique for overcoming the challenges of conventional DLLME. The proposed procedure complies with the principles of green/sustainable analytical chemistry, comprising decreasing the sample size, making easy automation of the process, reducing organic waste, diminishing energy consumption, replacing toxic reagents with safer reagents, and enhancing operator safety.
Method of using an electric field controlled emulsion phase contactor
Scott, T.C.
1993-11-16
A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.
Nonadditivity of van der Waals forces on liquid surfaces
NASA Astrophysics Data System (ADS)
Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.
2016-09-01
We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.
NASA Astrophysics Data System (ADS)
Rodarte, Andrea L.
The interaction of semiconducting quantum dot nanoparticles (QDs) within thermotropic liquid crystalline (LC) materials are studied in this thesis. LC materials are ideal for bottom-up organization of nanoparticles as an active matrix that can be externally manipulated via electric or magnetic fields. In addition, the optical properties of QDs can be modified by the surrounding LC resulting in novel devices such as a quantum dot/liquid crystal laser. The first system studies the dispersion of spherical nanoparticles in the phase. The dispersion is investigated with the use of polarized optical microscopy, fluorescence microscopy and confocal scanning microscopy. Quantum dots well dispersed in the isotropic phase are expelled from ordered domains of LC at the phase transition. Under controlled conditions, the majority of QDs in the system can form ordered three dimensional assemblies that are situated at defect points in the liquid crystal. The internal order of the assemblies is probed utilizing Forster resonance energy transfer (FRET), combined with small angle X-ray scattering (SAXS). Furthermore, the location of these assemblies can be predetermined with the use of beads as defect nucleation points in the cell. The interaction of QDs in a cholesteric liquid crystal (CLC) is also investigated. The reflection band created by the periodic change of index of refraction in a planar aligned CLC acts as a 1-D photonic cavity when the CLC is doped with a low concentration of QDs. A Cano-wedge cell varies the pitch of the CLC leading to the formation of Grandjean steps. This spatially tunes the photonic stop band, changing the resonance condition and continuously altering both the emission wavelength and polarization state of the QD ensemble. Using high resolution spatially and spectrally resolved photoluminescence measurements, the emission is shown to be elliptically polarized and that the tilt of the ellipse, while dependent on the emission wavelength, additionally varies with distance across the Grandjean steps. Using ultrafast spectroscopic techniques the time-resolved emission from QD ensembles in CLC matrices with either planar or homeotropic alignment is observed. In the case of planar alignment and a well-defined spectral stop band the emergence of a second, faster decay time of less than 2 ns is observed. This short recombination pathway is observed only in samples where the QD emission spectrum partially overlaps the CLC stop band by 50% or more. Samples prepared with homeotropic alignment do not have a stop band and, consequently, do not lead to spectral or dynamical modulation of the QD emission. These observations indicate that coupling between the excitonic and the photonic cavity modes results in an enhancement and modulation of spontaneous emission in the liquid crystal medium. This work opens up the possibility of designing new QD based optical devices, such as tunable single photon sources, where spatial control of wavelength and polarization of the embedded QDs would allow great flexibility and added functionalities. For hybrid materials such as soft tunable photonic devices like liquid crystal lasers, stable dispersions of nanoparticles in LC are desired. For the system we investigate functionalizing the nanoparticles with LC like ligands. Isotropic and mesogenic ligands attached to the surface of CdSe (core only) and CdSe/ZnS (core/shell) QDs. The mesogenic ligand's flexible arm structure enhances ligand alignment with the local liquid crystal director, enhancing QD dispersion in the isotropic and nematic phases. To characterize QD dispersion on different length scales, fluorescence microscopy, x-ray scattering and scanning confocal photoluminescent imaging are used. These combined techniques demonstrate that the LC-modified QDs do not aggregate into the dense clusters observed for dots with simple isotropic ligands when dispersed in liquid crystal, but loosely associate in a fluid-like aggregate with an average inter-particle spacing of >10nm. The major goal in this research is to identify the strengths and weaknesses of utilizing liquid crystal materials for hybrid and metamaterials. The techniques developed within this thesis will be useful for the next step of bottom-up metamaterial fabrication.
Fernández, Purificación; González, Cristina; Pena, M Teresa; Carro, Antonia M; Lorenzo, Rosa A
2013-03-12
A simple and efficient ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) method has been developed for the determination of seven benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, lormetazepam and tetrazepam) in human plasma samples. Chloroform and methanol were used as extractant and disperser solvents, respectively. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, pH, ultrasonic time and ionic strength) was carefully evaluated and optimized, using an asymmetric screening design 3(2)4(2)//16. Analysis of extracts was performed by ultra-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). Under the optimum conditions, two reversed-phases, Shield RP18 and C18 columns were successfully tested, obtaining good linearity in a range of 0.01-5μgmL(-1), with correlation coefficients r>0.996. Quantification limits ranged between 4.3-13.2ngmL(-1) and 4.0-14.8ngmL(-1), were obtained for C18 and Shield RP18 columns, respectively. The optimized method exhibited a good precision level, with relative standard deviation values lower than 8%. The recoveries studied at two spiked levels, ranged from 71 to 102% for all considered compounds. The proposed method was successfully applied to the analysis of seven benzodiazepines in real human plasma samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Xiu, Xiaoli; Zhang, Li; Wang, Xin; Chen, Jing
2015-10-01
A rapid screening method based on high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry (HPLC-LTQ/Orbitrap MS) for 22 disperse dyes in ecological textiles has been established. The target compounds were extracted by pyridine/water (1:1, v/v) by shaking extraction in 90 degrees C water bath. The extracts were then separated by a CAPCELL PAK C18 column (100 mm x 2.0 mm, 5 μm) using gradient elution with acetonitrile-5 mmol/L ammonium acetate containing 0.01% (v/v) formic acid as mobile phases, and finally analyzed by HPLC-LTQ/Orbitrap in positive and negative ESI modes. The retention time and accurate mass of parent ion were used for fast screening of 22 disperse dyes, while the confirmatory analysis was obtained by fragments generated by collision-induced dissociation (CID) MS/MS. Target analysis exhibited high mass accuracy (< 5 x 10(-6)). Each target showed a good linearity in its own concentration range and the correlation coefficient was higher than 0.99. The LOQs were 0.125-2.5 mg/kg. Except for Disperse Yellow 49, the average recoveries of most disperse dyes at three spiked levels were 65%-120%, and the relative standard deviations (n = 6) were less than 15%. The method was applied for screening 40 different kinds of textiles, and Disperse Orange 37/76 was detected in one of them. With high selectivity and strong anti-jamming ability, this method is simple, rapid, accurate, and it can be used for the inspection of disperse dyes in textiles.
Co-dispersion of plasmonic nanorods in thermotropic nematic liquid crystals
NASA Astrophysics Data System (ADS)
Sheetah, Ghadah; Liu, Qinkun; Smalukh, Ivan
Colloidal dispersions of plasmonic metal nanoparticles in liquid crystals promise the capability of pre-engineering tunable optical properties of mesostructured metal-dielectric composites. Recently, concentrated dispersions of anisotropic gold, silver, and metal alloy nanoparticles in nematic hosts have been achieved and successfully controlled by low-voltage fields. However, to enable versatile designs of material behavior of the composites, simultaneous co-dispersion of anisotropic particles with different shapes, alignment properties, and compositions are often needed. We achieve such co-dispersions and explore their switching characteristics in response to external stimuli like light and electric fields. We demonstrated that spectral characteristics of co-dispersions of multiple types of anisotropic nanoparticles in a common nematic host provides unprecedented variety of electrically- and optically-tunable material behavior, with a host of potential practical applications in electro-optic devices and displays Ghadah acknowledges support from the King Faisal University (KFU) graduate fellowship.
Atmospheric Dispersion of Hypergolic Liquid Rocket Fuels. Volume 1
1984-11-01
hydrazlnes by nitrosonium ton (NO+), formed from the ionization of nitrogen tetroxide which is promoted by donor solvents such as aminen and hydrazines. 10... ion ). C. CALCULATION OF FIREBALL SIZE AND QUANTIFICATION OF HEAT FLUX Mie fireball size and heat flux calculations presented here are based on the
Holographic Gratings for Slow-Neutron Optics
Klepp, Juergen; Pruner, Christian; Tomita, Yasuo; Geltenbort, Peter; Drevenšek-Olenik, Irena; Gyergyek, Saso; Kohlbrecher, Joachim; Fally, Martin
2012-01-01
Recent progress in the development of holographic gratings for neutron-optics applications is reviewed. We summarize the properties of gratings recorded in deuterated (poly)methylmethacrylate, holographic polymer-dispersed liquid crystals and nanoparticle-polymer composites revealed by diffraction experiments with slow neutrons. Existing and anticipated neutron-optical instrumentations based on holographic gratings are discussed.
Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy
NASA Astrophysics Data System (ADS)
Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.
2015-11-01
The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.
NASA Astrophysics Data System (ADS)
Inui, M.; Koura, A.; Kajihara, Y.; Hosokawa, S.; Chiba, A.; Kimura, K.; Shimojo, F.; Tsutsui, S.; Baron, A. Q. R.
2018-05-01
Collective dynamics in liquid GeTe was investigated by inelastic x-ray scattering at 2 ≤Q ≤31 nm-1 . The dynamic structure factor shows clear inelastic excitations. The excitation energies at low Q disperse with increasing Q , consistent with the behavior of a longitudinal-acoustic excitation. The dispersion curve has a flat-topped region around the pseudo-Brillouin-zone boundary, similar to what is observed in liquid Bi [Inui et al., Phys. Rev. B 92, 054206 (2015), 10.1103/PhysRevB.92.054206]. The dynamic structure factor shows a low-frequency excitation, and its coupling with the longitudinal-acoustic mode plays an important role for a flat-topped dispersion. From these results, it is inferred that atomic dynamics in liquid GeTe is strongly affected by a Peierls distortion similar to liquid Bi. By comparing the momentum transfer dependence of the excitation energy and quasielastic linewidth to partial structure factors obtained by our own ab initio molecular dynamics simulation for liquid GeTe, the quasielastic and inelastic components were found to be correlated with Te-Te and Ge-(Ge,Te) partial structure factors, respectively.
Mandrah, Kapil; Satyanarayana, G N V; Roy, Somendu Kumar
2017-12-15
In the present study, a method has been efficiently developed for the first time to determine nine bisphenol analogues [bisphenol A (BPA), bisphenol C (BPC), bisphenol AF (BPAF), bisphenol E (BPE), bisphenol F (BPF), bisphenol G (BPG), bisphenol M (BPM), bisphenol S (BPS), and bisphenol Z (BPZ)] together in bottled carbonated beverages (collected from the local market of Lucknow, India) using dispersive liquid-liquid microextraction process. This is based on solidification of floating organic droplet (DLLME-SFO) followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry. The process investigated parameters of DLLME-SFO (including the type of extraction and disperser solvents with their volumes, effect of pH, ionic strength, and the sample volume), factors influencing to injection port derivatization like, collision energy, injector port temperature, derivatizing reagent with sample injection volume, and type of organic solvent. BPA, BPF, BPZ, and BPS were detected in each sample; whereas, other bisphenols were also detected in some carbonated beverage samples. After optimizing the required conditions, good linearity of analytes was achieved in the range of 0.097-100ngmL -1 with coefficients of determination (R 2 )≥0.995. Intra-day and inter day precision of the method was good, with relative standard deviation (% RSD)≤10.95%. The limits of detection (LOD) and limits of quantification (LOQ) values of all bisphenols were ranged from 0.021 to 0.104ngmL -1 and 0.070 to 0.343ngmL -1 , respectively. The recovery of extraction was good (73.15-95.08%) in carbonated beverage samples and good enrichment factors (96.36-117.33) were found. Thus, the developed method of microextraction was highly precise, fast, and reproducible to determine the level of contaminants in bottled carbonated beverages. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.
2013-04-01
Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.
Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M
2018-07-20
Nine organophosphorus pesticides (OPPs) were determined in environmental waters from different origins using in situ ionic liquid dispersive liquid microextraction (IL-DLLME). This preconcentration technique was coupled to gas chromatography-mass spectrometry (GC-MS) using microvial insert thermal desorption, an approach that uses a thermal desorption injector as sample introduction system. The parameters affecting both the microextraction and sample injection steps were optimized. The proposed method showed good precision, with RSD values ranging from 4.1 to 9.7%, accuracy with recoveries in the 85-118% range, and sensitivity with DLs ranging from 5 to 16 ng L -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
de Prost, Nicolas; Roux, Damien; Dreyfuss, Didier; Ricard, Jean-Damien; Le Guludec, Dominique; Saumon, Georges
2007-04-01
To evaluate whether PEEP affects intrapulmonary alveolar edema liquid movement and alveolar permeability to proteins during high volume ventilation. Experimental study in an animal research laboratory. 46 male Wistar rats. A (99m)Tc-labeled albumin solution was instilled in a distal airway to produce a zone of alveolar flooding. Conventional ventilation (CV) was applied for 30 min followed by various ventilation strategies for 3 h: CV, spontaneous breathing, and high volume ventilation with different PEEP levels (0, 6, and 8 cmH(2)O) and different tidal volumes. Dispersion of the instilled liquid and systemic leakage of (99m)Tc-albumin from the lungs were studied by scintigraphy. The instillation protocol produced a zone of alveolar flooding that stayed localized during CV or spontaneous breathing. High volume ventilation dispersed alveolar liquid in the lungs. This dispersion was prevented by PEEP even when tidal volume was the same and thus end-inspiratory pressure higher. High volume ventilation resulted in the leakage of instilled (99m)Tc-albumin from the lungs. This increase in alveolar albumin permeability was reduced by PEEP. Albumin permeability was more affected by the amplitude of tidal excursions than by overall lung distension. PEEP prevents the dispersion of alveolar edema liquid in the lungs and lessens the increase in alveolar albumin permeability due to high volume ventilation.
USDA-ARS?s Scientific Manuscript database
A new procedure was developed to speciate and quantify As(III) and As(V) in fruit juices. At pH 3.0, As(III) and ammonium pyrrolidine dithiocarbamate (APDC) formed a complex, which was extracted into carbon tetrachloride by dispersive liquid–liquid microextraction (DLLME) and subsequently quantified...
Case, F.N.; Ketchen, E.E.
1975-10-14
A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.
González, Alba; Avivar, Jessica; Cerdà, Víctor
2015-09-25
A new procedure for the extraction, preconcentration and simultaneous determination of the estrogens most used in contraception pharmaceuticals (estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol), cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA), is proposed. The developed system performs an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (in-syringe-MSA-DLLME) prior derivatization and gas chromatography (GC-MS). Different extraction (carbon tetrachloride, ethyl acetate, chloroform and trichloroethylene) and disperser solvents (acetone, acetonitrile and methanol) were tested. Chloroform and acetone were chosen as extraction and disperser solvent, respectively, as they provided the best extraction efficiency. Then, a multivariate optimization of the extraction conditions was carried out. Derivatization conditions were also studied to ensure the conversion of the estrogens to their respective trimethylsilyl derivatives. Low LODs and LOQs were achieved, i.e. between 11 and 82ngL(-1), and 37 and 272ngL(-1), respectively. Good values for intra and inter-day precision were obtained (RSDs≤7.06% and RSD≤7.11%, respectively). The method was successfully applied to wastewater samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Salgueiro-González, N; Concha-Graña, E; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2012-02-03
A fast, simple, sensitive and green analytical chemistry method for the simultaneous determination of alkylphenols (4-tert-octylphenol, 4-octylphenol, 4-n-nonylphenol, nonylphenol) and bisphenol A in seawater was developed and validated. The procedure was based on a dispersive liquid-liquid microextraction (DLLME) of a small volume of seawater sample (30 mL) using only 100 μL of 1-octanol, combined with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). The matrix effect was studied and compensated using deuterated labelled standards as surrogate standards for the quantitation of target compounds. The analytical features of the proposed method were satisfactory: repeatability and intermediate precision were <10% and recoveries were around 84-104% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.005 and 0.03 μg L⁻¹, therefore the levels established in the Directive 2008/105/EC were achieved. The applicability of the proposed method was demonstrated analyzing seawater samples from different sites of A Coruña (Northwest of Spain). The analyses showed the presence of all compounds at levels between 0.035 (bisphenol A) and 0.14 μg L⁻¹ (nonylphenol). Copyright © 2011 Elsevier B.V. All rights reserved.
Corbanie, E A; Vervaet, C; van Eck, J H H; Remon, J P; Landman, W J M
2008-08-18
Vaccination of chickens with dispersable dry powder vaccines was compared with commercial liquid vaccines. A Clone 30 Newcastle disease vaccine virus was spray dried with mannitol or with a mixture of trehalose, polyvinylpyrrolidone and bovine serum albumin. A coarse (+/-30 microm) and fine (+/-7 microm) powder were produced with both formulations. A commercial reconstituted Clone 30 vaccine was applied as coarse liquid spray (+/-222 microm) or fine liquid aerosol (+/-24 microm). Reduction of virus concentration in the air after dispersion/nebulization was monitored by air sampling and was explained by sedimentation of coarse particles/droplets and evaporation of fine droplets. The vaccine formulations induced high haemagglutination inhibition antibody titres in the serum of 4-week-old broilers (2(7) at 4 weeks post-vaccination). The good serum antibody response with the fine liquid aerosol despite extensive inactivation of virus due to evaporation of droplets, suggested that powder formulations (without inactivation due to evaporation) might allow a significant reduction of vaccine dose, thereby offering new options for fine aerosol vaccination with low-titre vaccines.
Hosoya, Ken; Kubo, Takuya; Takahashi, Katsuo; Ikegami, Tohru; Tanaka, Nobuo
2002-12-06
Uniformly sized packing materials based on synthetic polymer particles for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have been prepared from polymerization mixtures containing methacrylic acid (MAA) as a functional monomer and by using a novel surface modification method. This "dispersion method" affords effectively modified separation media. Both the amount of MAA utilized in the preparation and reaction time affect the selectivity of chromatographic separation in both the HPLC and the CEC mode and electroosmotic flow. This detailed study revealed that the dispersion method effectively modified internal surface of macroporous separation media and, based on the amount of MAA introduced, exclusion mechanism for the separation of certain solutes could be observed.
Viñas, Pilar; Pastor-Belda, Marta; Campillo, Natalia; Bravo-Bravo, María; Hernández-Córdoba, Manuel
2014-06-01
Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material. Copyright © 2014 Elsevier B.V. All rights reserved.
Liquid identification by Hilbert spectroscopy
NASA Astrophysics Data System (ADS)
Lyatti, M.; Divin, Y.; Poppe, U.; Urban, K.
2009-11-01
Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- Tc Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.
Bolzan, Cátia M; Caldas, Sergiane S; Guimarães, Bruno S; Primel, Ednei G
2016-09-01
A simple, rapid, and sensitive method for the determination of atrazine, simazine, cyproconazole, tebuconazole, and epoxiconazole in mineral water employing the dispersive liquid-liquid microextraction with solidification of a floating organic drop with determination by liquid chromatography tandem mass spectrometry has been developed. A mixed solution of 250 μL 1-dodecanol and 1250 μL methanol was injected rapidly into 10 mL aqueous solution (pH 7.0) with 2% w/v NaCl. After centrifugation for 5 min at 2000 rpm, the organic solvent droplets floated on the surface of the aqueous solution and the floating solvent solidified. The method limits of detection were between 3.75 and 37.5 ng/L and limits of quantification were between 12.5 and 125 ng/L. The recoveries ranged from 70 to 118% for repeatability and between 76 and 95% for intermediate precision with a relative standard deviation from 2 to 18% for all compounds. Low matrix effect was observed. The proposed method can be successfully applied in routine analysis for determination of pesticide residues in mineral water samples, allowing for monitoring of triazine and triazoles at levels below the regulatory limits set by international and national legislations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effect of Orifice Eccentricity on Instability of Liquid Jets
NASA Astrophysics Data System (ADS)
Amini, Ghobad; Dolatabadi, Ali
2011-11-01
The hydrodynamic instability of inviscid jets issuing from elliptic orifices is studied. A linear stability analysis is presented for liquid jets that includes the effect of the surrounding gas and an explicit dispersion equation is derived for waves on an infinite uniform jet column. Elliptic configuration has two extreme cases; round jet when ratio of minor to major axis is unity and plane sheet when this ratio approaches zero. Dispersion equation of elliptic jet is approximated for large and small aspect ratios considering asymptotic of the dispersion equation. In case of aspect ratio equal to one, the dispersion equation is analogous to one of the circular jets derived by Yang. In case of aspect ratio approaches zero, the behavior of waves is qualitatively similar to that of long waves on a two dimensional liquid jets and the varicose and sinuous modes are predicted. The growth rate of initial disturbances for various azimuthal modes has been presented in a wide range of disturbances. PhD Candidate.
Pizzoccaro, Marie-Alix; Drobek, Martin; Petit, Eddy; Guerrero, Gilles; Hesemann, Peter; Julbe, Anne
2016-01-01
Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al2O3) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO2 separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N2 adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to 31P and 13C solid state nuclear magnetic resonance spectroscopy (NMR). PMID:27472321
Gold nanoparticle-based plasmonic random fiber laser
NASA Astrophysics Data System (ADS)
Hu, Zhijia; Liang, Yunyun; Xie, Kang; Gao, Pengfei; Zhang, Douguo; Jiang, Haiming; Shi, Fan; Yin, Leicheng; Gao, Jiangang; Ming, Hai; Zhang, Qijin
2015-03-01
We have reported the realization of a plasmonic random fiber laser based on the localized surface plasmonic resonance of gold nanoparticles (NPs) in the liquid core optical fiber. The liquid core material contains a dispersive solution of gold NPs and laser dye pyrromethene 597 in toluene. It was experimentally proved that the fluorescence quenching of the dye is restrained in the optical fiber, which is considered one of the main sources of loss in the traditional laser system. Meanwhile, the random lasing can be more easily obtained in the random laser system with more overlap between the plasmonic resonance of the gold NPs and the photoluminescence spectrum of the dye molecules.
Theoretical study of liquid droplet dispersion in a venturi scrubber.
Fathikalajahi, J; Talaie, M R; Taheri, M
1995-03-01
The droplet concentration distribution in an atomizing scrubber was calculated based on droplet eddy diffusion by a three-dimensional dispersion model. This model is also capable of predicting the liquid flowing on the wall. The theoretical distribution of droplet concentration agrees well with experimental data given by Viswanathan et al. for droplet concentration distribution in a venturi-type scrubber. The results obtained by the model show a non-uniform distribution of drops over the cross section of the scrubber, as noted by the experimental data. While the maximum of droplet concentration distribution may depend on many operating parameters of the scrubber, the results of this study show that the highest uniformity of drop distribution will be reached when penetration length is approximately equal to one-fourth of the depth of the scrubber. The results of this study can be applied to evaluate the removal efficiency of a venturi scrubber.
Tailored Ink For Piston-Driven Electrostatic Liquid Drop Modulator
Wong, Raymond W.; Breton, Marcel P.; Bedford, Christine E.; Carreira, Leonard M.; Gooray, Arthur M.; Roller, George J.; Zavadil, Kevin; Galambos, Paul; Crowley, Joseph
2005-04-19
The present invention relates to an ink composition including water, a solvent, a solvent-soluble dye, and a surfactant, where the ink exhibits a stable liquid microemulsion phase at a first temperature and a second temperature higher than the first temperature and has a conductivity of at most about 200 .mu.S/cm and a dielectric constant of at least about 60, and methods of making such ink compositions. The present invention also relates to a method of making an ink composition for use in a microelectromechanical system-based fluid ejector. The method involves providing a solution or dispersion including a dye or a pigment and adding to the solution or dispersion an additive which includes a material that enhances dielectric permittivity and/or reduces conductivity under conditions effective to produce an ink composition having a conductivity of at most about 200 .mu.S/cm and a dielectric constant of at least about 60.
Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants
Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.
2017-01-01
This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463
Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics.
Wei, D; Bortolozzo, U; Huignard, J P; Residori, S
2013-08-26
Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time.
NASA Astrophysics Data System (ADS)
Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong
2018-03-01
In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.
Creation of energetic biothermite inks using ferritin liquid protein
NASA Astrophysics Data System (ADS)
Slocik, Joseph M.; McKenzie, Ruel; Dennis, Patrick B.; Naik, Rajesh R.
2017-04-01
Energetic liquids function mainly as fuels due to low energy densities and slow combustion kinetics. Consequently, these properties can be significantly increased through the addition of metal nanomaterials such as aluminium. Unfortunately, nanoparticle additives are restricted to low mass fractions in liquids because of increased viscosities and severe particle agglomeration. Nanoscale protein ionic liquids represent multifunctional solvent systems that are well suited to overcoming low mass fractions of nanoparticles, producing stable nanoparticle dispersions and simultaneously offering a source of oxidizing agents for combustion of reactive nanomaterials. Here, we use iron oxide-loaded ferritin proteins to create a stable and highly energetic liquid composed of aluminium nanoparticles and ferritin proteins for printing and forming 3D shapes and structures. In total, this bioenergetic liquid exhibits increased energy output and performance, enhanced dispersion and oxidation stability, lower activation temperatures, and greater processability and functionality.
Noncircular Cross Sections Could Enhance Mixing in Sprays
NASA Technical Reports Server (NTRS)
Bellan, Josette; Abdel-Hameed, Hesham
2003-01-01
A computational study has shown that by injecting drops in jets of gas having square, elliptical, triangular, or other noncircular injection cross sections, it should be possible to increase (relative to comparable situations having circular cross section) the entrainment and dispersion of liquid drops. This finding has practical significance for a variety of applications in which it is desirable to increase dispersion of drops. For example, in chemical-process sprays, increased dispersion leads to increases in chemical- reaction rates; in diesel engines, increasing the dispersion of drops of sprayed fuel reduces the production of soot; and in household and paint sprays, increasing the dispersion of drops makes it possible to cover larger surfaces. It has been known for some years that single-phase fluid jets that enter flow fields through noncircular inlets entrain more fluid than do comparable jets entering through circular inlets. The computational study reported here was directed in part toward determining whether and how this superior mixing characteristic of noncircular single phase jets translates to a similar benefit in cases of two-phase jets (that is, sprays). The study involved direct numerical simulations of single- and two-phase free jets with circular, elliptical, rectangular, square, and triangular inlet cross sections. The two-phase jets consisted of gas laden with liquid drops randomly injected at the inlets. To address the more interesting case of evaporating drops, the carrier gas in the jets was specified to be initially unvitiated by the vapor of the liquid chemical species and the initial temperature of the drops was chosen to be smaller than that of the gas. The mathematical model used in the study was constructed from the conservation equations for the two-phase flow and included complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the enthalpy, internal energy, and latent heat of vaporization of the vapor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casagrande, I.; Cravarolo, L.; Hassid, A.
1963-05-01
A discussion is given of the experimental data obtained at CISE on two- phase adiabatic flow under the following conditions: vertical upward (dispersed regime) flow; circular conduit (15 to 25 mm diameter); gaseous phase argon or nitrogen; liquid phase water or ethyl alcohol-water solution (,90% by wt. of alcohol); gas fiow rate of 15 to 82 g/ cm/sup 2/; liquid flow rate of 20 to 208 g/ cm/sup 2/ sec; temperature of 18 to 20 deg C; pressure of up to approximates 22 kg/cm/sup 2/. The measured quantities are pressure drop and liquid film thickness on the wall of themore » conduit. The pressure loss and film flow rate are evaluated. The experimental data are discussed and the influence of surface tension and gas and liquid viscosity investigated. A simple relationship for the pressure loss over a wide range of experimental conditions in adiabatic dispersed regime is given. (auth)« less
Alothman, Zeid A; Al-Shaalan, Nora H; Habila, Mohamed A; Unsal, Yunus E; Tuzen, Mustafa; Soylak, Mustafa
2015-02-01
A dispersive liquid-liquid microextraction procedure for lead(II) as its 5-(4-dimethylaminobenzylidene) rhodanine complex has been established prior to its microsampling flame atomic absorption spectrometric determination. The influences of various analytical parameters including pH, solvent type and volume, dispersive solvent type and volume, 5-(4-dimethylaminobenzylidene) rhodanine amount, salt effect, and centrifugation time and speed were investigated. The effects of certain alkali, alkaline earth, and transition metal ions on the quantitative extraction of lead(II) were also studied. Quantitative recoveries were obtained at pH 6. The enrichment factor was calculated as 125. The detection limit for lead is 1.1 μg/L. The accuracy of the method was tested with the additions recovery test and analysis of the standard reference materials (SPS-WW2 waste water, NIST SRM 1515 apple leaves, and TMDA-51.3 fortified water). Applications of the present procedure were tested by analyzing water and food samples.
Quigley, Andrew; Walsh, Siobhán W; Hayes, Eva; Connolly, Damian; Cummins, Wayne
2018-06-07
A dispersive liquid-liquid microextraction (DLLME) method, combined with HPLC-UV detection, was developed for the extraction and preconcentration of δ-tocopherol from bovine milk. This method was used to study the effect of supplementing cow feed with the seaweed Ascophyllum nodosum on vitamin content in milk. The optimal experimental conditions were determined: 200 μL of chloroform (extraction solvent), 1.0 mL of ethanol (dispersive solvent), 5 mL of water (aqueous phase). Under these optimal conditions the DLLME method provided linearity in the range 0.01 μg/mL to 8 μg/mL with R 2 values of 0.998. Limit of detection (LOD) was 0.01 μg/mL, while the enrichment factor was 89. Cow feed that was supplemented with Ascophyllum nodosum was shown to increase δ-tocopherol levels from 3.82 μg/mL to 5.96 μg/mL. Copyright © 2018. Published by Elsevier B.V.
Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Rezaee Aghdam, Samaneh; Nouri, Nina; Bamorrowat, Mahdi
2016-12-01
In the present study, an elevated temperature, dispersive, liquid-liquid microextraction/gas chromatography-flame ionization detection was investigated for the determination, pre-concentration, and extraction of six organophosphorus pesticides (malathion, phosalone, dichlorvos, diazinon, profenofos, and chlorpyrifos) residues in fruit juice and aqueous samples. A mixture of 1,2-dibromoethane (extraction solvent) and dimethyl sulfoxide (disperser solvent) was injected rapidly into the sample solution heated at an elevated temperature. Analytical parameters, including enrichment factors (1600-2075), linearity (r>0.994), limits of detection (0.82-2.72ngmL(-1)) and quantification (2.60-7.36ngmL(-1)), relative standard deviations (<7%) and extraction recoveries (64-83%), showed the high efficiency of the method developed for analysis of the target analytes. The proposed procedure was used effectively to analyse selected analytes in river water and fruit juice, and diazinon was found at ngmL(-1) concentrations in apple juice. Copyright © 2016 Elsevier Ltd. All rights reserved.
You, Xiangwei; Wang, Suli; Liu, Fengmao; Shi, Kaiwei
2013-07-26
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction technique based on the solidification of a floating organic droplet followed by high performance liquid chromatography with diode array detection was developed for simultaneous determination of six fungicide residues in juices and red wine samples. The low-toxicity solvent, 1-dodecanol, was used as an extraction solvent. For its low density and proper melting point near room temperature, the extractant droplet was collected easily by solidifying it at a low temperature. The surfactant, Tween 80, was used as an emulsifier to enhance the dispersion of the water-immiscible extraction solvent into an aqueous phase, which hastened the mass-transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid-liquid microextraction methods was not used in the proposed method. Some parameters (e.g., the type and volume of extraction solvent, the type and concentration of surfactant, ultrasound extraction time, salt addition, and volume of samples) that affect the extraction efficiency were optimized. The proposed method showed a good linearity within the range of 5μgL(-1)-1000μgL(-1), with the correlation coefficients (γ) higher than 0.9969. The limits of detection for the method ranged from 0.4μgL(-1) to 1.4μgL(-1). Further, this simple, practical, sensitive, and environmentally friendly method was successfully applied to determine the target fungicides in juice and red wine samples. The recoveries of the target fungicides in red wine and fruit juice samples were 79.5%-113.4%, with relative standard deviations that ranged from 0.4% to 12.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, Dong Wuk; Kwon, Min Seok; Yousaf, Abid Mehmood; Balakrishnan, Prabagar; Park, Jong Hyuck; Kim, Dong Shik; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2014-12-19
The intention of this study was to compare the physicochemical properties, stability and bioavailability of a clopidogrel napadisilate (CN)-loaded solid dispersion (SD) and solid self-microemulsifying drug delivery system (solid SMEDDS). SD was prepared by a surface attached method using different ratios of Cremophor RH60 (surfactant) and HPMC (polymer), optimized based on their drug solubility. Liquid SMEDDS was composed of oil (peceol), a surfactant (Cremophor RH60) and a co-surfactant (Transcutol HP). A pseudo-ternary phase diagram was constructed to identify the emulsifying domain, and the optimized liquid SMEDDS was spray dried with an inert solid carrier (silicon dioxide), producing the solid SMEDDS. The physicochemical properties, solubility, dissolution, stability and pharmacokinetics were assessed and compared to clopidogrel napadisilate (CN) and bisulfate (CB) powders. In solid SMEDDS, liquid SMEDDS was absorbed or coated inside the pores of silicon dioxide. In SD, hydrophilic polymer and surfactants were adhered onto drug surface. The drug was in crystalline and molecularly dispersed form in SD and solid SMEDDS, respectively. Solid SMEDDS and SD greatly increased the solubility of CN but gave lower drug solubility compared to CB powder. These preparations significantly improved the dissolution of CN, but the latter more increased than the former. Stability under accelerated condition showed that they were more stable compared to CB powder, and SD was more stable than solid SMEDDS. They significantly increased the oral bioavailability of CN powder. Furthermore, SD showed significantly improved oral bioavailability compared to solid SMEDDS and CB powder. Thus, SD with excellent stability and bioavailability is recommended as an alternative for the clopidogrel-based oral formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Goett, J.J.
1961-01-24
A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.
Mu, Jingqing; Gao, Xun; Li, Qing; Yang, Xiaomei; Yang, Wenling; Sun, Xu; Bi, Kaishun; Zhang, Huifen
2017-08-01
Guanxin Shutong Capsule, an effective traditional Chinese medicine, is widely used for coronary heart disease clinically. Volatile components are one of its important bioactive constituents. To better understand the material basis for the therapeutic effects, the components of Guanxin Shutong Capsule absorbed into the blood and their metabolites were identified based on gas chromatography with mass spectrometry coupled with vortex-ultrasound-assisted dispersive liquid-liquid microextraction. As a result, three prototypes and 15 metabolites were identified or tentatively characterized in rat plasma. Subsequently, a pharmacokinetic study was carried out to monitor the concentrations of the main bioactive constituents and metabolites (isoborneol, borneol, eugenol, and camphor) by gas chromatography with mass spectrometry in rat plasma following oral administration of single herb extract and different combinations of herbs in this prescription. Compared to other groups, a statistically significant difference of the pharmacokinetic properties was obtained when the total complex prescription was administered, indicating possible drug-drug interactions among the complex ingredients of Guanxin Shutong Capsule. These findings provided an experimental basis concerning the clinical application and medicinal efficacy of Guanxin Shutong Capsule in the treatment of coronary heart disease. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Del Río, A I; García, C; Molina, J; Fernández, J; Bonastre, J; Cases, F
2017-09-01
The electrochemical behavior of different carbon-based electrodes with and without nanoparticles of platinum electrochemically dispersed on their surface has been studied. Among others, reduced graphene oxide based electrodes was used to determine the best conditions for the decolorization/degradation of the reactive dye C.I. Reactive Orange 4 in sulfuric medium. Firstly, the electrochemical behavior was evaluated by cyclic voltammetry. Secondly, different electrolyses were performed using two cell configurations: cell with anodic and cathodic compartments separated (divided configuration) and without any separation (undivided configuration). The best results were obtained when reduced graphene oxide based anodes were used. The degree of decolorization was monitored by spectroscopic methods and high performance liquid chromatography. It was found that all of them followed pseudo-first order kinetics. When reduced graphene oxide-based electrodes coated with dispersed platinum by alternate current methods electrodes were used, the lowest energy consumption and the higher decolorization kinetics rate were obtained. Scanning Electronic Microscopy was used to observe the morphological surface differences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Zhihong; Xu, Dan; Zhao, Xuan; Li, Xinghong; Shen, Huimin; Yang, Bing; Zhang, Hongyi
2017-12-01
A novel dispersive admicelle solid-phase extraction method based on sodium dodecyl sulfate-coated Fe 3 O 4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen-Qinlian oral liquid before high-performance liquid chromatography. Fe 3 O 4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe 3 O 4 nanoparticles was coated with sodium dodecyl sulfate to form a nano-sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte-adsorbed nanoparticles from the sample solution was performed by using Nd-Fe-B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe 3 O 4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9-120.3%, relative standard deviations for intra- and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen-Qinlian oral liquids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic evolution of liquid–liquid phase separation during continuous cooling
Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; ...
2015-01-06
Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al 90In 10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due tomore » a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.« less
Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor
NASA Technical Reports Server (NTRS)
Wiencek, John M.; Hu, Shih-Yao
2000-01-01
This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.
NASA Technical Reports Server (NTRS)
Fontecchio, Adam K. (Inventor); Rai, Kashma (Inventor)
2017-01-01
Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed. XXXX Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband 10 HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more 15 motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting 20 a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically switchable beam steering capability is disclosed.
Aqueous vinylidene fluoride polymer coating composition
NASA Technical Reports Server (NTRS)
Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)
1978-01-01
A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.
NASA Astrophysics Data System (ADS)
Choi, Hyejun; Woo, Jong Seok; Tark Han, Joong; Park, Soo-Young
2017-11-01
Dispersion of nanocarbon materials in liquid media, via solution processing such as spraying, printing, spinning, etc. is one of the prerequisites for practical applications. Here we report that water-dispersible single-walled carbon nanotubes (SWCNTs) were prepared through successive treatments with chlorosulfuric acid (CSA)/H2O2 and N-methylmorpholine N-oxide (NMO) monohydrate. The powder of the CSA/H2O2- and NMO-treated SWCNTs (N-SWCNTs) could be readily redispersed in water in concentrations as high as 1 g l-1 without requiring a dispersant. The mechanism responsible for the high dispersity of the N-SWCNT powder in polar solvents, including water, was elucidated based on the high polarity of the NMO molecule. In order to highlight the wide applicability of the N-SWCNTs, they were used successfully to prepare conducting thin films by spray-coating plastic substrates with an aqueous hybrid solution containing the N-SWCNTs and Ag nanowires (NWs). In addition, a flexible, large-area thin-film heater was prepared based on the N-SWCNT/AgNW hybrid film with a transmittance of 93% and sheet resistance of 30 Ω sq-1.
NASA Astrophysics Data System (ADS)
Zhang, Daojie; Nastac, Laurentiu
2016-12-01
In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.
Guan, Jin; Zhang, Chi; Wang, Yang; Guo, Yiguang; Huang, Peiting; Zhao, Longshan
2016-11-01
A new analytical method was developed for simultaneous determination of 12 pharmaceuticals using ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) followed by ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). Six nonsteroidal anti-inflammatory drugs (NSAIDs, ketoprofen, mefenamic acid, tolfenamic acid, naproxen, sulindac, and piroxicam) and six antibiotics (tinidazole, cefuroxime axetil, ciprofloxacin, sulfamethoxazole, sulfadiazine, and chloramphenicol) were extracted by ultrasound-assisted DLLME using dichloromethane (800 μL) and methanol/acetonitrile (1:1, v/v, 1200 μL) as the extraction and dispersive solvents, respectively. The factors affecting the extraction efficiency, such as the type and volume of extraction and dispersive solvent, vortex and ultrasonic time, sample pH, and ionic strength, were optimized. The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution by using a small volume of dispersive solvent, which increased the extraction efficiency and reduced the equilibrium time. Under the optimal conditions, the calibration curves showed good linearity in the range of 0.04-20 ng mL -1 (ciprofloxacin and sulfadiazine), 0.2-100 ng mL -1 (ketoprofen, tinidazole, cefuroxime axetil, naproxen, sulfamethoxazole, and sulindac), and 1-200 ng mL -1 (mefenamic acid, tolfenamic acid, piroxicam, and chloramphenicol). The LODs and LOQs of the method were in the range of 0.006-0.091 and 0.018-0.281 ng mL -1 , respectively. The relative recoveries of the target analytes were in the range from 76.77 to 99.97 % with RSDs between 1.6 and 8.8 %. The developed method was successfully applied to the extraction and analysis of 12 pharmaceuticals in five kinds of water samples (drinking water, running water, river water, influent and effluent wastewater) with satisfactory results. Graphical Abstract Twelve pharmaceuticals in water samples analyted by UHPLC-MS/MS using ultrasound-assisted DLLME.
Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan
2015-03-01
A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.
Du, Li-Jing; Huang, Jian-Ping; Wang, Bin; Wang, Chen-Hui; Wang, Qiu-Yan; Hu, Yu-Han; Yi, Ling; Cao, Jun; Peng, Li-Qing; Chen, Yu-Bo; Zhang, Qi-Dong
2018-06-04
A rapid, simple and efficient sample extraction method based on micro-matrix-solid-phase dispersion (micro-MSPD) was applied to the extraction of polyphenols from pomegranate peel. Five target analytes were determined by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Carbon molecular sieve (CMS) was firstly used as dispersant to improve extraction efficiency in micro-MSPD. The major micro-MSPD parameters, such as type of dispersant, amount of dispersant, grinding time and the type and the volume of elution solvents, were studied and optimized. Under optimized conditions, 26 mg of pomegranate peel was dispersed with 32.5 mg of CMS, the grinding time was selected as 90 s, the dispersed sample was eluted with 100 μL of methanol. Results showed that the proposed method was of good linearity for concentrations of analytes against their peak areas (coefficient of determination r 2 >0.990), the limit of the detection was as low as 3.2 ng/mL, and the spiking recoveries were between 88.1% and 106%. Satisfactory results were obtained for the extraction of gallic acid, punicalagin A, punicalagin B, catechin and ellagic acid from pomegranate peel sample, which demonstrated nice reliability and high sensitivity of this approach. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon.
Gros, Jonas; Socolofsky, Scott A; Dissanayake, Anusha L; Jun, Inok; Zhao, Lin; Boufadel, Michel C; Reddy, Christopher M; Arey, J Samuel
2017-09-19
During the Deepwater Horizon disaster, a substantial fraction of the 600,000-900,000 tons of released petroleum liquid and natural gas became entrapped below the sea surface, but the quantity entrapped and the sequestration mechanisms have remained unclear. We modeled the buoyant jet of petroleum liquid droplets, gas bubbles, and entrained seawater, using 279 simulated chemical components, for a representative day (June 8, 2010) of the period after the sunken platform's riser pipe was pared at the wellhead (June 4-July 15). The model predicts that 27% of the released mass of petroleum fluids dissolved into the sea during ascent from the pared wellhead (1,505 m depth) to the sea surface, thereby matching observed volatile organic compound (VOC) emissions to the atmosphere. Based on combined results from model simulation and water column measurements, 24% of released petroleum fluid mass became channeled into a stable deep-water intrusion at 900- to 1,300-m depth, as aqueously dissolved compounds (∼23%) and suspended petroleum liquid microdroplets (∼0.8%). Dispersant injection at the wellhead decreased the median initial diameters of simulated petroleum liquid droplets and gas bubbles by 3.2-fold and 3.4-fold, respectively, which increased dissolution of ascending petroleum fluids by 25%. Faster dissolution increased the simulated flows of water-soluble compounds into biologically sparse deep water by 55%, while decreasing the flows of several harmful compounds into biologically rich surface water. Dispersant injection also decreased the simulated emissions of VOCs to the atmosphere by 28%, including a 2,000-fold decrease in emissions of benzene, which lowered health risks for response workers.
Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon
Gros, Jonas; Socolofsky, Scott A.; Dissanayake, Anusha L.; Jun, Inok; Zhao, Lin; Boufadel, Michel C.; Reddy, Christopher M.; Arey, J. Samuel
2017-01-01
During the Deepwater Horizon disaster, a substantial fraction of the 600,000–900,000 tons of released petroleum liquid and natural gas became entrapped below the sea surface, but the quantity entrapped and the sequestration mechanisms have remained unclear. We modeled the buoyant jet of petroleum liquid droplets, gas bubbles, and entrained seawater, using 279 simulated chemical components, for a representative day (June 8, 2010) of the period after the sunken platform’s riser pipe was pared at the wellhead (June 4–July 15). The model predicts that 27% of the released mass of petroleum fluids dissolved into the sea during ascent from the pared wellhead (1,505 m depth) to the sea surface, thereby matching observed volatile organic compound (VOC) emissions to the atmosphere. Based on combined results from model simulation and water column measurements, 24% of released petroleum fluid mass became channeled into a stable deep-water intrusion at 900- to 1,300-m depth, as aqueously dissolved compounds (∼23%) and suspended petroleum liquid microdroplets (∼0.8%). Dispersant injection at the wellhead decreased the median initial diameters of simulated petroleum liquid droplets and gas bubbles by 3.2-fold and 3.4-fold, respectively, which increased dissolution of ascending petroleum fluids by 25%. Faster dissolution increased the simulated flows of water-soluble compounds into biologically sparse deep water by 55%, while decreasing the flows of several harmful compounds into biologically rich surface water. Dispersant injection also decreased the simulated emissions of VOCs to the atmosphere by 28%, including a 2,000-fold decrease in emissions of benzene, which lowered health risks for response workers. PMID:28847967
Sweetlove, Cyril; Chenèble, Jean-Charles; Barthel, Yves; Boualam, Marc; L'Haridon, Jacques; Thouand, Gérald
2016-09-01
Difficulties encountered in estimating the biodegradation of poorly water-soluble substances are often linked to their limited bioavailability to microorganisms. Many original bioavailability improvement methods (BIMs) have been described, but no global approach was proposed for a standardized comparison of these. The latter would be a valuable tool as part of a wider strategy for evaluating poorly water-soluble substances. The purpose of this study was to define an evaluation strategy following the assessment of different BIMs adapted to poorly water-soluble substances with ready biodegradability tests. The study was performed with two poorly water-soluble chemicals-a solid, anthraquinone, and a liquid, isodecyl neopentanoate-and five BIMs were compared to the direct addition method (reference method), i.e., (i) ultrasonic dispersion, (ii) adsorption onto silica gel, (iii) dispersion using an emulsifier, (iv) dispersion with silicone oil, and (v) dispersion with emulsifier and silicone oil. A two-phase evaluation strategy of solid and liquid chemicals was developed involving the selection of the most relevant BIMs for enhancing the biodegradability of tested substances. A description is given of a BIM classification ratio (R BIM), which enables a comparison to be made between the different test chemical sample preparation methods used in the various tests. Thereby, using this comparison, the BIMs giving rise to the greatest biodegradability were ultrasonic dispersion and dispersion with silicone oil or with silicone oil and emulsifier for the tested solid chemical, adsorption onto silica gel, and ultrasonic dispersion for the liquid one.
Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi
2011-01-15
A simple, rapid and environmentally friendly method has been developed for the determination of four triazole fungicides (myclobutanil, tebuconazole, triadimenol, hexaconazole) in water samples by dispersion-solidification liquid-liquid microextraction coupled with high performance liquid chromatography-diode array detection. Several variables that affect the extraction efficiencies, including the type and volume of the extraction solvent and dispersive solvent, extraction time, effect of pH and salt addition, were investigated and optimized. Under the optimum conditions, the proposed method is sensitive and shows a good linearity within a range of 0.5-200 ng mL(-1), with the correlation coefficients (r) varying from 0.9992 to 0.9998. High enrichment factors were achieved ranging from 190 to 450. The recoveries of the target analytes from water samples at spiking levels of 1.0, 5.0 and 50.0 ng mL(-1) were between 84.8% and 110.2%. The limits of detection (LODs) for the analytes were ranged in 0.06-0.1 ng mL(-1), and the relative standard deviations (RSD) varied from 3.9% to 5.7%. The proposed method has been successfully applied for the determination of the triazole fungicides in real water samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Liang, Pei; Kang, Caiyan; Mo, Yajun
2016-01-01
A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318
Zhang, Jiaheng; Gao, Haixiang; Peng, Bing; Li, Yubo; Li, Songqing; Zhou, Zhiqiang
2012-01-15
A novel pretreatment method termed ultrasound-assisted dispersive liquid-liquid microextraction (UADLLME) coupled with high-performance liquid chromatography-ultraviolet detector (HPLC-UV) was applied for the detection of four synthesized metabolites of mequindox in pig urine samples. A total volume of 200 μL of methanol (dispersant) and 60 μL of 1,1,2,2-tetrachloroethane (extract) were injected into 5.0 mL of urine sample and then emulsified by ultrasound treatment for 4 min to form a cloudy solution. The effect of several factors on the recovery of each metabolite was investigated by a fitting derivation method for the first time. Under optimum conditions, the method yields a linear calibration curve in the concentration range from 0.5 to 500 μg/L and a limit of detection (LOD) of 0.16-0.28 μg/L for target analytes. The recoveries ranged from 72.0% to 91.3% with a relative standard deviation (RSD) of less than 5.2%. The enrichment factors for the four compounds ranged from 75 to 95. Two pig urine samples were successfully analyzed using the proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fabris, Gracio
1994-01-01
Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.
Creation of energetic biothermite inks using ferritin liquid protein
Slocik, Joseph M.; McKenzie, Ruel; Dennis, Patrick B.; Naik, Rajesh R.
2017-01-01
Energetic liquids function mainly as fuels due to low energy densities and slow combustion kinetics. Consequently, these properties can be significantly increased through the addition of metal nanomaterials such as aluminium. Unfortunately, nanoparticle additives are restricted to low mass fractions in liquids because of increased viscosities and severe particle agglomeration. Nanoscale protein ionic liquids represent multifunctional solvent systems that are well suited to overcoming low mass fractions of nanoparticles, producing stable nanoparticle dispersions and simultaneously offering a source of oxidizing agents for combustion of reactive nanomaterials. Here, we use iron oxide-loaded ferritin proteins to create a stable and highly energetic liquid composed of aluminium nanoparticles and ferritin proteins for printing and forming 3D shapes and structures. In total, this bioenergetic liquid exhibits increased energy output and performance, enhanced dispersion and oxidation stability, lower activation temperatures, and greater processability and functionality. PMID:28447665
Asghari, Alireza; Fahimi, Ebrahim; Bazregar, Mohammad; Rajabi, Maryam; Boutorabi, Leila
2017-05-01
Simple and rapid determinations of some psychotropic drugs in some pharmaceutical wastewater and human plasma samples were successfully accomplished via the tandem dispersive liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection (TDLLME-HPLC-UV). TDLLME of the three psychotropic drugs clozapine, chlorpromazine, and thioridazine was easily performed through two consecutive dispersive liquid-liquid microextractions. By performing this convenient method, proper sample preconcentrations and clean-ups were achieved in just about 7min. In order to achieve the best extraction efficiency, the effective parameters involved were optimized. The optimal experimental conditions consisted of 100μL of CCl 4 (as the extraction organic solvent), and the pH values of 13 and 2 for the donor and acceptor phases, respectively. Under these optimum experimental conditions, the proposed TDLLME-HPLC-UV technique provided a good linearity in the range of 5-3000ngmL -1 for the three psychotropic drugs with the correlation of determinations (R 2 s) higher than 0.996. The limits of quantification (LOQs) and limits of detection (LODs) obtained were 5.0ngmL -1 and 1.0-1.5ngmL -1 , respectively. Also the proper enrichment factors (EFs) of 96, 99, and 88 for clozapine, chlorpromazine, and thioridazine, respectively, and good extraction repeatabilities (relative standard deviations below 9.3%, n=5) were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Torres, Juan C; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán
2014-05-02
A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.
Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa
2013-01-01
A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.
Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa
2015-04-01
A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Farajzadeh, Mir Ali; Nouri, Nina; Alizadeh Nabil, Ali Akbar
2013-12-01
A one-step derivatization and microextraction technique for the determination of amantadine in the human plasma and urine samples is presented. An appropriate mixture of methanol (disperser solvent), 1,2-dibromoethane (extraction solvent), and butylchloroformate (derivatization agent) is rapidly injected into samples. After centrifuging, the sedimented phase is analyzed by gas chromatography-flame ionization detection (GC-FID). The kind of extraction and disperser solvents and their volumes, amount of derivatization agent and reaction/extraction time which are effective in derivatization/dispersive liquid-liquid microextraction (DLLME) procedure are optimized. Under the optimal conditions, the enrichment factor (EF) of the target analyte was obtained to be 408 and 420, and limit of detection (LOD) 4.2 and 2.7ngmL(-1), in plasma and urine respectively. The linear range is 14-5000 and 8.7-5000ng/mL for plasma and urine, respectively (squared correlation coefficient≥0.990). The relative recoveries obtained for the spiked plasma and urine samples are between 72% and 93%. Moreover, the inter- and intra-day precisions are acceptable at all spiked concentrations (relative standard deviation <7%). Finally the method was successfully applied to determine amantadine in biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Web-Based Toxic Gas Dispersion Model for Shuttle Launch Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
During the launch of the Space Shuttle vehicle, the burning of liquid hydrogen fuel with liquid oxygen at extreme high temperatures inside the three space shuttle main engines, and the burning of the solid propellant mixture of ammonium perchlorate oxidizer, aluminum fuel, iron oxide catalyst, polymer binder, and epoxy curing agent in the two solid rocket boosters result in the formation of a large cloud of hot, buoyant toxic exhaust gases near the ground level which subsequently rises and entrains into ambient air until the temperature and density of the cloud reaches an approximate equilibrium with ambient conditions. In this paper, toxic gas dispersion for various gases are simulated over the web for varying environmental conditions which is provided by rawinsonde data. The model simulates chemical concentration at ground level up to 10 miles (1 KM grids) in downrange up to an hour after launch. The ambient concentration of the gas dispersion and the deposition of toxic particles are used as inputs for a human health risk assessment model. The advantage of the present model is the accessibility and dissemination of model results to other NASA centers over the web. The model can be remotely operated and various scenarios can be analyzed.
Zhang, Yupu; Xu, Xu; Qi, Xiao; Gao, Wenquan; Sun, Shuo; Li, Xiaotian; Jiang, Chengfei; Yu, Aimin; Zhang, Hanqi; Yu, Yong
2012-01-01
The matrix solid-phase dispersion (MSPD) was applied for extracting seven sulfonamides (SAs) in liver samples. The separation and determination were carried out by high-performance liquid chromatography. The analytes were derivated with fluorescamine and detected with fluorescence detector. The types of dispersion adsorbents for MSPD were examined and the highest recovery was obtained when the diatomaceous earth was used as the dispersion adsorbent and the mass ratio of dispersion adsorbent to sample was 3:1. The acetone was used as the elution solvent. Under the optimal conditions, the linear range for determining the SAs in liver samples was 5.0-1000.0 ng/g. The porcine, chicken and cattle liver samples were analyzed and the average recoveries of seven SAs were higher than 84.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiong, Wei; Tao, Xiaoqiu; Pang, Su; Yang, Xue; Tang, GangLing; Bian, Zhaoyang
2014-01-01
A method for the determination of three acidic herbicides, dicamba, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in tobacco and soil has been developed based on the use of liquid-liquid extraction and dispersive solid-phase extraction (dispersive-SPE) followed by UPLC-MS/MS. Two percentage of (v/v) formic acid in acetonitrile as the extraction helped partitioning of analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using primary secondary amine as selective sorbents. Quantitative analysis was done in the multiple-reaction monitoring mode using stable isotope-labeled internal standards for each compound. A separate internal standard for each analyte is required to minimize sample matrix effects on each analyte, which can lead to poor analyte recoveries and decreases in method accuracy and precision. The total analysis time was <4 min. The linear range of the method was from 1 to 100 ng mL(-1) with a limit of detection of each herbicide varied from 0.012 to 0.126 ng g(-1). The proposed method is faster, more sensitive and selective than the traditional methods and more accurate and robust than the published LC-MS/MS methods. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Active motility in bimodular bacterial aggregates
NASA Astrophysics Data System (ADS)
Zeng, Yu; Liu, Bin
2017-11-01
Dispersal capability is essential for microorganisms to achieve long-distance translocation, thus crucial for their abundance in various environments. In general, active dispersals are attributed to the movements of self-powered planktonic cells, while sessile cells that live a colonial life often disperse passively through flow entrainments. Here, we report another means of active dispersal employed by aggregates of sessile cells. The spherical rosette colonies of the bacterium Caulobacter crescentus are aggregates of sessile stalked cells, of which a small proportion undergo cell division, grow active flagella and effect whole-rosette motility. We show that these rosettes actively disperse both in bulk water and near the solid-liquid interface. In particular, the proximity of a self-powered rosette to the solid surface promotes a rolling movement, leading to its persistent transportation along the solid boundary. The active dispersal of these rosettes demonstrated a novel mode of colonial transportation that is based on the division of labor between sessile and motile cells. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).
Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M
2018-04-01
This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli
2013-10-15
Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique doesmore » not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup −1} after 50 cycles @100 mA g{sup −1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.« less
Liquid methane gelled with methanol and water reduces rate of nitrogen absorption
NASA Technical Reports Server (NTRS)
Vanderwall, E. M.
1972-01-01
Dilution of gelant vapor with inert carrier gas accomplishes gelation. Mixture is injected through heated tube and orifice into liquid methane for immediate condensation within bulk of liquid. Direct dispersion of particles in liquid avoids condensation on walls of vessel and eliminates additional mixing.
Beiraghi, Asadollah; Shokri, Masood
2018-02-01
In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Niskanen, I; Räty, J; Peiponen, K E
2013-10-15
The knowledge of the refractive index of a particle is important in sensing and imaging applications, e.g., in biology, medicine and process industry. The refractive index of tiny solid particles such as microsize particles can be determined by the so-called liquid immersion technique. This study deals with three different types of interrogation methods to get the refractive index of a particle in a liquid matrix. These methods utilize thermo-optical properties and wavelength-dependent refractive index of the particle and the immersion liquids, as well as, the classical method using a set of in advance prepared set of immersion liquids with different refractive indices. The emphasis is on a method to get especially the wavelength-dependent refractive index of microparticles and exploiting different wavelength-dependences of immersion liquid and a solid particle because identification of a particle is more reliable if the refractive index of the particle is known at several wavelengths. In this study glycerol-water mixtures served as immersion liquids to obtain the refractive index of CaF2 at several discrete wavelengths in the spectral range 200-500 nm. The idea is to find the maximum value of light transmission of suspension by scanning the wavelength of a commercial spectrophotometer. The light dispersion-based method is suggested as a relatively easy, economic and fast method to determine the refractive index of a particle by a spectrophotometer at several wavelengths of light. The accuracy of the detection of the refractive index is suggested to be better than ± 0.005 refractive index units. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Lixin; Chen, Mohan; Sun, Zhaoru; Ko, Hsin-Yu; Santra, Biswajit; Dhuvad, Pratikkumar; Wu, Xifan
2018-04-01
We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximation (GGA) functional approximation and carry out systematic comparisons with the results obtained from the GGA-level Perdew-Burke-Ernzerhof (PBE) functional and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.
Wang, Qing; Qiu, Bin; Chen, Xianbo; Wang, Bin; Zhang, Hui; Zhang, Xiaoyuan
2017-06-01
A novel mixed hemimicelles and magnetic dispersive solid-phase extraction method based on long-chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe 3 O 4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent, and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02-10 ng/mL) and good linearity were attained (0.9997-0.9999). The intraday and interday RSDs were 2.1-8.3%. Limits of detection were 0.004-0.01 ng/mL, which were decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Zhong, Zhihui
2016-10-01
A simple method based on dispersive solid-phase extraction (DSPE) and dispersive liquid-liquid microextraction method based on solidification of floating organic droplets (DLLME-SFO) was developed for the extraction of chlorpyrifos (CP), chlorpyrifos-methyl (CPM), and their main degradation product 3,5,6-trichloro-2-pyridinol (TCP) in tomato and cucumber samples. The determination was carried out by high performance liquid chromatography with ultraviolet detection (HPLC-UV). In the DSPE-DLLME-SFO, the analytes were first extracted with acetone. The clean-up of the extract by DSPE was carried out by directly adding activated carbon sorbent into the extract solution, followed by shaking and filtration. Under the optimum conditions, the proposed method was sensitive and showed a good linearity within a range of 2-500 ng/g, with the correlation coefficients (r) varying from 0.9991 to 0.9996. The enrichment factors ranged from 127 to 138. The limit of detections (LODs) were in the range of 0.12-0.68 ng/g, and the relative standard deviations (RSDs) for 50 ng/g of each analytes in tomato samples were in the range of 3.25-6.26 % (n = 5). The proposed method was successfully applied for the extraction and determination of the mentioned analytes residues in tomato and cucumber samples, and satisfactory results were obtained.
An ab initio study of the structure and dynamics of bulk liquid Ag and its liquid-vapor interface
NASA Astrophysics Data System (ADS)
Gonzalez Del Rio, Beatriz; Gonzalez Tesedo, Luis Enrique; Gonzalez Fernandez, David Jose
Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behaviour with two different wavelenghts, as the spacing between the outer and first inner layer is different from that between the other inner layers.
NASA Astrophysics Data System (ADS)
Lin, Sheng-Yu; Chen, Pin-Shiuan; Chang, Sarah Y.
2015-03-01
A simple, rapid, and sensitive method for the detection of posaconazole using dispersive liquid-liquid microextraction (DLLME) coupled to surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. After the DLLME, posaconazole was detected using SALDI/MS with colloidal gold and α-cyano-4-hydroxycinnamic acid (CHCA) as the co-matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 1.0 to 100.0 nM for posaconazole, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 0.3 nM for posaconazole. This novel method was successfully applied to the determination of posaconazole in human urine samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried
2015-11-16
We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue ormore » red shifted depending on the frequency of the applied voltage.« less
Nanophosphor composite scintillator with a liquid matrix
McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark
2010-03-16
An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.
Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán
2014-01-01
A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632
Ogilvie, Sean P; Large, Matthew J; Fratta, Giuseppe; Meloni, Manuela; Canton-Vitoria, Ruben; Tagmatarchis, Nikos; Massuyeau, Florian; Ewels, Christopher P; King, Alice A K; Dalton, Alan B
2017-12-01
N-methyl-2-pyrrolidone (NMP) has been shown to be the most effective solvent for liquid phase exfoliation and dispersion of a range of 2D materials including graphene, molybdenum disulphide (MoS 2 ) and black phosphorus. However, NMP is also known to be susceptible to sonochemical degradation during exfoliation. We report that this degradation gives rise to strong visible photoluminescence of NMP. Sonochemical modification is shown to influence exfoliation of layered materials in NMP and the optical absorbance of the solvent in the dispersion. The emerging optical properties of the degraded solvent present challenges for spectroscopy of nanomaterial dispersions; most notably the possibility of observing solvent photoluminescence in the spectra of 2D materials such as MoS 2 , highlighting the need for stable solvents and exfoliation processes to minimise the influence of solvent degradation on the properties of liquid-exfoliated 2D materials.
Temperature dependent structural and vibrational properties of liquid indium
NASA Astrophysics Data System (ADS)
Patel, A. B.; Bhatt, N. K.
2018-05-01
The influence of the temperature effect on both the structure factor and the phonon dispersion relation of liquid indium have been investigated by means of pseudopotential theory. The Percus-Yevick Hard Sphere reference system is applied to describe the structural calculation. The effective electron-ion interaction is explained by using modified empty core potential due to Hasegawa et al. along with a local field correction function due to Ichimaru-Utsumi (IU). The temperature dependence of pair potential needed at higher temperatures was achieved by multiplying the damping factor exp(- π/kBT2k F r ) in the pair potential. Very close agreement of static structure factor, particularly, at elevated temperatures confirms the validity of the local potential. A positive dispersion is found in low-q region and the correct trend of phonon dispersion branches like the experimental; shows all broad features of collective excitations in liquid metals.
Electron Dispersion in Liquid Alkali and Their Alloys
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2010-07-01
Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta-Singwi (VS), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li → K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.
Non-aqueous liquid compositions comprising ion exchange polymers
Kim, Yu Seung; Lee, Kwan-Soo; Rockward, Tommy Q. T.
2013-03-12
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Non-aqueous liquid compositions comprising ion exchange polymers
Kim, Yu Seung [Los Alamos, NM; Lee, Kwan-Soo [Blacksburg, VA; Rockward, Tommy Q. T. [Rio Rancho, NM
2011-07-19
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
40 CFR 227.29 - Initial mixing.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Initial mixing is defined to be that dispersion or diffusion of liquid, suspended particulate, and solid... adequate to predict initial dispersion and diffusion of the waste, these shall be used, if necessary, in.... (2) When field data on the dispersion and diffusion of a waste of characteristics similar to that...
40 CFR 227.29 - Initial mixing.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Initial mixing is defined to be that dispersion or diffusion of liquid, suspended particulate, and solid... adequate to predict initial dispersion and diffusion of the waste, these shall be used, if necessary, in.... (2) When field data on the dispersion and diffusion of a waste of characteristics similar to that...
40 CFR 227.29 - Initial mixing.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Initial mixing is defined to be that dispersion or diffusion of liquid, suspended particulate, and solid... adequate to predict initial dispersion and diffusion of the waste, these shall be used, if necessary, in.... (2) When field data on the dispersion and diffusion of a waste of characteristics similar to that...
40 CFR 227.29 - Initial mixing.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Initial mixing is defined to be that dispersion or diffusion of liquid, suspended particulate, and solid... adequate to predict initial dispersion and diffusion of the waste, these shall be used, if necessary, in.... (2) When field data on the dispersion and diffusion of a waste of characteristics similar to that...
Zhao, Pengfei; Deng, Miaoduo; Huang, Peiting; Yu, Jia; Guo, Xingjie; Zhao, Longshan
2016-09-01
This report describes, for the first time, the simultaneous enantioselective determination of proton-pump inhibitors (PPIs-omeprazole, lansoprazole, pantoprazole, and rabeprazole) in environmental water matrices based on solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) and chiral liquid chromatography-tandem mass spectrometry. The optimized results of SPE-DLLME were obtained with PEP-2 column using methanol-acetonitrile (1/1, v/v) as elution solvent, dichloroethane, and acetonitrile as extractant and disperser solvent, respectively. The separation and determination were performed using reversed-phase chromatography on a cellulose chiral stationary phase, a Chiralpak IC (250 mm × 4.6 mm, 5 μm) column, under isocratic conditions at 0.6 mL min(-1) flow rate. The analytes were detected in multiple reaction monitoring (MRM) mode by triple quadrupole mass spectrometry. Isotopically labeled internal standards were used to compensate matrix interferences. The method provided enrichment factors of around 500. Under optimal conditions, the mean recoveries for all eight enantiomers from the water samples were 89.3-107.3 % with 0.9-10.3 % intra-day RSD and 2.3-8.1 % inter-day RSD at 20 and 100 ng L(-1) levels. Correlation coefficients (r (2)) ≥ 0.999 were achieved for all enantiomers within the range of 2-500 μg L(-1). The method detection and quantification limits were at very low levels, within the range of 0.67-2.29 ng L(-1) and 2.54-8.68 ng L(-1), respectively. This method was successfully applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in wastewater and river water, making it applicable to the assessment of the enantiomeric fate of PPIs in the environment. Graphical Abstract Simultaneous enantioselective determination of representative proton-pump inhibitors in water samples.
Viñas, Pilar; Bravo-Bravo, María; López-García, Ignacio; Hernández-Córdoba, Manuel
2013-10-15
A simple and rapid method was developed using reversed-phase liquid chromatography (LC) with both diode array (DAD) and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of the vitamins ergocalciferol (D2), cholecalciferol (D3), phylloquinone (K1), menaquinone-4 (K2) and a synthetic form of vitamin K, menadione (K3). The Taguchi experimental method, an orthogonal array design (OAD), was used to optimize an efficient and clean preconcentration step based on dispersive liquid-liquid microextraction (DLLME). A factorial design was applied with six factors and three levels for each factor, namely, carbon tetrachloride volume, methanol volume, aqueous sample volume, pH of sample, sodium chloride concentration and time of the centrifugation step. The DLLME optimized procedure consisted of rapidly injecting 3 mL of acetonitrile (disperser solvent) containing 150 µL carbon tetrachloride (extraction solvent) into the aqueous sample, thereby forming a cloudy solution. Phase separation was performed by centrifugation, and the sedimented phase was evaporated with nitrogen, reconstituted with 50 µL of acetonitrile, and injected. The LC analyses were carried out using a mobile phase composed of acetonitrile, 2-propanol and water, under gradient elution. Quantification was carried out by the standard additions method. The APCI-MS spectra, in combination with UV spectra, permitted the correct identification of compounds in the food samples. The method was validated according to international guidelines and using a certified reference material. The validated method was applied for the analysis of vitamins D and K in infant foods and several green vegetables. There was little variability in the forms of vitamin K present in vegetables, with the most abundant vitamer in all the samples being phylloquinone, while menadione could not be detected. Conversely, cholecalciferol, which is present in food of animal origin, was the main form in infant foods, while ergocalciferol was not detected. Copyright © 2013 Elsevier B.V. All rights reserved.
Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján
2016-02-11
A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.
Maciel, Juliana V; Soares, Bruno M; Mandlate, Jaime S; Picoloto, Rochele S; Bizzi, Cezar A; Flores, Erico M M; Duarte, Fabio A
2014-08-20
This work reports the development of a method for Fe extraction in white and red wines using dispersive liquid-liquid microextraction (DLLME) and determination by ultraviolet-visible spectrophotometry. For optimization of the DLLME method, the following parameters were evaluated: type and volume of dispersive (1300 μL of acetonitrile) and extraction (80 μL of C(2)Cl(4)) solvents, pH (3.0), concentration of ammonium pyrrolidinedithiocarbamate (APDC, 500 μL of 1% m/v APDC solution), NaCl concentration (not added), and extraction time. The calibration curve was performed using the analyte addition method, and the limit of detection and relative standard deviation were 0.2 mg L(-1) and below 7%, respectively. The accuracy was evaluated by comparison of results obtained after Fe determination by graphite furnace atomic absorption spectrometry, with agreement ranging from 94 to 105%. The proposed method was applied for Fe determination in white and red wines with concentrations ranging from 1.3 to 4.7 mg L(-1).
Mirzaei, Javad; Urbanski, Martin; Kitzerow, Heinz-S; Hegmann, Torsten
2014-05-19
Chemically and thermally robust liquid crystal silane-functionalized gold nanoparticles (i.e. AuNP1-AuNP3) were synthesized through silane conjugation. Colloidal dispersions of these particles with mesogenic ligands that are structurally identical (as in AuNP1, AuNP2) or compatible (as in AuNP3) with molecules of the nematic liquid crystal (N-LC) host showed superior colloidal stability and dispersibility. The thermal, optical, and electro-optic behaviors of the N-LC composites at different concentrations of each gold nanoparticle were investigated. All dispersions showed lower values for the rotational viscosity and elastic constant, but only AuNP3 with a dissimilar structure between the nanoparticle ligand and the host displayed the most drastic thermal effects and overall strongest impact on the electro-optic properties of the host. The observed results were explained considering both the structure and the density of the surface ligands of each gold nanoparticle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chu, Shang-Ping; Tseng, Wan-Chi; Kong, Po-Hsin; Huang, Chun-Kai; Chen, Jung-Hsuan; Chen, Pai-Shan; Huang, Shang-Da
2015-10-15
An up-and-down-shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME) method coupled with gas chromatography-mass spectrometry was developed for the determination of fungicides (cyprodinil, procymidone, fludioxonil, flusilazole, benalaxyl, and tebuconazole) in wine. The developed method requires 11 μL of 1-octanol without the need for dispersive solvents. The total extraction time was approximately 3 min. Under optimum conditions, the linear range of the method was 0.05-100 μg L(-1) for all fungicides and the limit of detection was 0.007-0.025 μg L(-1). The absolute and relative recoveries were 31-83% and 83-107% for white wine, respectively, and 32-85% and 83-108% for red wine, respectively. The intra-day and inter-day precision were 0.5-7.5% and 0.7-6.1%, respectively. Our developed method had good sensitivity and high extraction efficiency. UDSA-DLLME is a desirable method in terms of performance and speed. Copyright © 2015 Elsevier Ltd. All rights reserved.
High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls
Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...
2015-05-15
The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less
Tseng, Wan-Chi; Chu, Shang-Ping; Kong, Po-Hsin; Huang, Chun-Kai; Chen, Jung-Hsuan; Chen, Pai-Shan; Huang, Shang-Da
2014-09-17
A sample preparation method, dispersive liquid-liquid microextraction assisted by an emulsion with low concentration of a surfactant in water and dispersed solvent coupled with gas chromatography-mass spectrometry, was developed for the analysis of the fungicides cyprodinil, procymidone, fludioxonil, flusilazole, benalaxyl, and tebuconazole in wine. A microsyringe was used to withdraw and discharge a mixture of extraction solvent and 240 μL of an aqueous solution of Triton X-100 (the dispersed agent) four times within 10 s to form a cloudy emulsion in the syringe. This emulsion was then injected into a 5 mL wine sample spiked with all of the above fungicides. The total extraction time was approximately 0.5 min. Under optimum conditions using 1-octanol (12 μL) as extraction solvent, the linear range of the method in analysis of all six fungicides was 0.05-100 μg L(-1), and the limit of detection ranged from 0.013 to 0.155 μg L(-1). The absolute recoveries (n = 3) and relative recoveries (n = 3) were 30-83 and 81-108% for white wine at 0.5, 5, and 5 μg L(-1), and 30-92 and 81-110% for red wine, respectively. The intraday (n = 7) and interday (n = 6) relative standard deviations ranged from 4.4 to 8.8% and from 4.3 to 11.2% at 0.5 μg L(-1), respectively. The method achieved high enrichment factors. It is an alternative sample preparation technique with good performance.
Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates.
Holzammer, Christine; Schicks, Judith M; Will, Stefan; Braeuer, Andreas S
2017-09-07
We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO 2 ) gas hydrates using Raman spectroscopy. The CO 2 hydrates were formed from sodium chloride/water solutions with salinities of 0-10 wt %, which were pressurized with liquid CO 2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO 2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, x H , and the fraction of the dispersed liquid water-rich phase, x L , from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate x H contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO 2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO 2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO 2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect.
Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-12-01
Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.
Shape-memory effect of nanocomposites based on liquid-crystalline elastomers
NASA Astrophysics Data System (ADS)
Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.
2016-05-01
In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Holmes, H. K.
1993-01-01
Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.
Laser imaging in liquid-liquid flows
NASA Astrophysics Data System (ADS)
Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota
2016-11-01
In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.
Koga, Hirotaka; Nogi, Masaya; Isogai, Akira
2017-11-22
Functional molecules play a significant role in the development of high-performance composite materials. Functional molecules should be well dispersed (ideally dissolved) and supported within an easy-to-handle substrate to take full advantage of their functionality and ensure easy handling. However, simultaneously achieving the dissolution and support of functional molecules remains a challenge. Herein, we propose the combination of a nonvolatile ionic liquid and an easy-to-handle cellulose paper substrate for achieving this goal. First, the photochromic molecule, i.e., diarylethene, was dissolved in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim]NTf 2 ). Then, diarylethene/[bmim]NTf 2 was supported on cellulose fibers within the paper, through hydrogen bonding between [bmim] cations of the ionic liquid and the abundant hydroxyl groups of cellulose. The as-prepared paper composites exhibited reversible, rapid, uniform, and vivid coloration and bleaching upon ultraviolet and visible light irradiation. The photochromic performance was superior to that of the paper prepared in the absence of [bmim]NTf 2 . This concept could be applied to other functional molecules. For example, lithium perchlorate/[bmim] tetrafluoroborate supported within cellulose paper acted as a flexible electrolyte to provide a paper-based electrochromic device. These findings are expected to further the development of composite materials with high functionality and practicality.
Wang, Hui; Gao, Jiajia; Yu, Nana; Qu, Jingang; Fang, Fang; Wang, Huili; Wang, Mei; Wang, Xuedong
2016-07-01
In traditional ionic liquids (ILs)-based microextraction, the hydrophobic and hydrophilic ILs are often used as extractant and disperser, respectively. However, the functional effects of ILs are not utilized in microextraction procedures. Herein, we introduced 1-naphthoic acid into imidazolium ring to synthesize a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]), and its structure was characterized by IR, (1)H NMR and MS. On the basis of its acidic property and lower solubility than common [CnMIM][BF4], it was used as a mixing dispersive solvent with [C4MIM][BF4] in "functionalized ionic liquid-based no organic solvent microextraction (FIL-NOSM)". Utilization of [C4MIM][NPA] in FIL-NOSM procedures has two obvious advantages: (1) it promoted the non-polar environment, increased volume of the sedimented phase, and thus could enhance the extraction recoveries of triclosan (TCS) and methyltriclosan (MTCS) by more than 10%; and (2) because of the acidic property, it can act as a pH modifier, avoiding extra pH adjustment step. By combining single factor optimization and central composite design, the main factors in the FIL-NOSM method were optimized. Under the optimal conditions, the relative recoveries of TCS and MTCS reached up to 98.60-106.09%, and the LODs of them were as low as 0.12-0.15µgL(-1) in plasma and urine samples. In total, this [C4MIM][NPA]-based FIL-NOSM method provided high extraction efficiency, and required less pretreatment time and unutilized any organic solvent. To the best of our knowledge, this is the first application of [C4mim][NPA]-based microextraction method for the simultaneous quantification of trace TCS and MTCS in human fluids. Copyright © 2016 Elsevier B.V. All rights reserved.
Pacheco-Fernández, Idaira; Pino, Verónica; Ayala, Juan H; Afonso, Ana M
2018-07-20
The IL-based surfactant octylguanidinium chloride (C 8 Gu-Cl) was designed and synthetized with the purpose of obtaining a less harmful surfactant: containing guanidinium as core cation and a relatively short alkyl chain. Its interfacial and aggregation behavior was evaluated through conductivity and fluorescence measurements, presenting a critical micelle concentration value of 42.5 and 44.6mmolL -1 , respectively. Cytotoxicity studies were carried out with C 8 Gu-Cl and other IL-based and conventional surfactants, specifically the analogue 1-octyl-3-methylimidazolium chloride (C 8 MIm-Cl), and other imidazolium- (C 16 MIm-Br) and pyridinium- (C 16 Py-Cl) based surfactants, together with the conventional cationic CTAB and the conventional anionic SDS. From these studies, C 8 Gu-Cl was the only one to achieve the classification of low cytotoxicity. An in situ dispersive liquid-liquid microextraction (DLLME) method based on transforming the water-soluble C 8 Gu-Cl IL-based surfactant into a water-insoluble IL microdroplet via a simple metathesis reaction was then selected as the extraction/preconcentration method for a group of 6 personal care products (PCPs) present in cosmetic samples. The method was carried out in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The method was properly optimized, requiring the use of only 30μL of C 8 Gu-Cl for 10mL of aqueous sample with a NaCl content of 8% (w/v) to adjust the ionic strength and pH value of 5. The metathesis reaction required the addition of the anion exchange reagent (bis[(trifluoromethyl)sulfonyl]imide - 1:1 molar ratio), followed by vortex and centrifugation, and dilution of the final microdroplet up to 60μL with acetonitrile before the injection in the HPLC-DAD system. The optimum in situ DLLME-HPLC-DAD method takes ∼10min for the extraction step and ∼22min for the chromatographic separation, with analytical features of low detection limits: down to 0.4μgL -1 ; high reproducibility: with RSD values lower than 10% (intra-day) and 16% (inter-day) for a spiked level of 15μgL -1 ; and an average enrichment factor of 89. The requirement of low volumes (30μL) of a low cytotoxic IL-based surfactant allows the method to be considered less harmful than other common analytical microextraction approaches. Copyright © 2017 Elsevier B.V. All rights reserved.
Nematic Liquid-Crystal Colloids
Muševič, Igor
2017-01-01
This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574
Liquid Metal Engineering by Application of Intensive Melt Shearing
NASA Astrophysics Data System (ADS)
Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun
In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.
Liquid for absorption of solar heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T.; Iwamoto, Y.; Kadotani, K.
A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayat, Mitra
2016-01-01
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography–mass spectrometry (GC–MS) was used for the extraction and determination of 13 polycyclic aromatic hydrocarbons (PAHs) in mineral water samples. In this procedure, the suitable combination of extraction solvent (500 µL chloroform) and disperser solvent (1000 µL acetone) were quickly injected into the water sample (10.00 mL) by Hamilton syringe. After centrifugation, 500 µL of the lower organic phase was dried under a gentle stream of nitrogen, re-dissolved in chloroform and injected into GC-MS. Chloroform and acetone were found to be the best extraction and disperser solvent, respectively. Validation of the method was performed using spiked calibration curves. The enrichment factor ranged from 93 to 129 and the recovery ranged from 71 to 90%. The linear ranges for all the PAHs were 0.10-2.80 ngmL-1. The relative standard deviations (RSDs) of PAHs in water by using anthracene-d10 as internal standard, were in the range of 4-11% for most of the analytes (n = 3). Limit of detection (LOD) for different PAHs were between 0.03 and 0.1 ngmL-1. The method was successfully applied for the analysis of PAHs in mineral water samples collected from Tehran. PMID:27610156
Jiang, Wenqing; Chen, Xiaochu; Liu, Fengmao; You, Xiangwei; Xue, Jiaying
2014-11-01
A novel effervescence-assisted dispersive liquid-liquid microextraction method has been developed for the determination of four fungicides in apple juice samples. In this method, a solid effervescent agent is added into samples to assist the dispersion of extraction solvent. The effervescent agent is environmentally friendly and only produces an increase in the ionic strength and a negligible variation in the pH value of the aqueous sample, which does not interfere with the extraction of the analytes. The parameters affecting the extraction efficiency were investigated including the composition of effervescent agent, effervescent agent amount, formulation of effervescent agent, adding mode of effervescent agent, type and volume of extraction solvent, and pH. Under optimized conditions, the method showed a good linearity within the range of 0.05-2 mg/L for pyrimethanil, fludioxonil, and cyprodinil, and 0.1-4 mg/L for kresoxim-methyl, with the correlation coefficients >0.998. The limits of detection for the method ranged between 0.005 and 0.01 mg/L. The recoveries of the target fungicides in apple juice samples were in the range of 72.4-110.8% with the relative standard deviations ranging from 1.2 to 6.8%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016-01-01
Levetiracetam (LEV) is an antiepileptic drug that is clinically effective in generalized and partial epilepsy syndromes. The use of this drug has been increasing in clinical practice and intra- or -interindividual variability has been exhibited for special population. For this reason, bioanalytical methods are required for drug monitoring in biological matrices. So this work presents a dispersive liquid-liquid microextraction method followed by gas chromatography-mass spectrometry (DLLME-GC-MS) for LEV quantification in human plasma. However, due to the matrix complexity a previous purification step is required. Unlike other pretreatment techniques presented in the literature, for the first time, a procedure employing ultrafiltration tubes Amicon® (10 kDa porous size) without organic solvent consumption was developed. GC-MS analyses were carried out using a linear temperature program, capillary fused silica column, and helium as the carrier gas. DLLME optimized parameters were type and volume of extraction and dispersing solvents, salt addition, and vortex agitation time. Under chosen parameters (extraction solvent: chloroform, 130 μL; dispersing solvent: isopropyl alcohol, 400 μL; no salt addition and no vortex agitation time), the method was completely validated and all parameters were in agreement with the literature recommendations. LEV was quantified in patient's plasma sample using less than 550 μL of organic solvent. PMID:27830105
Luo, Mai; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng
2013-09-01
A rapid, simple, reliable, and environment-friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid-liquid microextraction (DLLME) pretreatment followed by chiral high-performance liquid chromatography (HPLC)-DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n-hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy-driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30-1500 µg L(-1) with the correlation coefficients (R(2)) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L(-1) (for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L(-1) (S/N = 3). © 2013 Wiley Periodicals, Inc.
Terminal velocity of liquids and granular materials dispersed by a high explosive
NASA Astrophysics Data System (ADS)
Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.
2018-05-01
The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass ( M/ C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/ C ratio, with larger M/ C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.
Terminal velocity of liquids and granular materials dispersed by a high explosive
NASA Astrophysics Data System (ADS)
Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.
2018-04-01
The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass (M/C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/C ratio, with larger M/C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.
Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network
Danila, Octavian; Ganea, Constantin Paul
2018-01-01
Electro-optical devices that work in a similar fashion as PDLCs (polymer-dispersed liquid crystals), produced from cellulose acetate (CA) electrospun fibers deposited onto indium tin oxide coated glass and a nematic liquid crystal (E7), were studied. CA and the CA/liquid crystal composite were characterized by multiple investigation techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the dielectric loss with the Havriliak–Negami functions. To determine the electrical characteristics of the studied samples, impedance measurements results were treated using the Cole–Cole diagram and the three-element equivalent model. PMID:29441261
Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network.
Maximean, Doina Manaila; Danila, Octavian; Almeida, Pedro L; Ganea, Constantin Paul
2018-01-01
Electro-optical devices that work in a similar fashion as PDLCs (polymer-dispersed liquid crystals), produced from cellulose acetate (CA) electrospun fibers deposited onto indium tin oxide coated glass and a nematic liquid crystal (E7), were studied. CA and the CA/liquid crystal composite were characterized by multiple investigation techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the dielectric loss with the Havriliak-Negami functions. To determine the electrical characteristics of the studied samples, impedance measurements results were treated using the Cole-Cole diagram and the three-element equivalent model.
He, Xin; Wang, Geng Nan; Yang, Kun; Liu, Hui Zhi; Wu, Xia Jun; Wang, Jian Ping
2017-04-15
In this study, a magnetic graphene-based dispersive solid phase extraction method was developed that was combined with high performance liquid chromatography to determine the residues of fluoroquinolone drugs in foods of animal origin. During the experiments, several parameters possible influencing the extraction performance were optimized (amount of magnetic graphene, sample pH, extraction time and elution solution). This extraction method showed high absorption capacities (>6800ng) and high enrichment factors (68-79-fold) for seven fluoroquinolones. Furthermore, this absorbent could be reused for at least 40 times. The limits of detection were in the range of 0.05-0.3ng/g, and the recoveries from the standards fortified blank samples (bovine milk, chicken muscle and egg) were in the range of 82.4-108.5%. Therefore, this method could be used as a simple and sensitive tool to determine the residues of fluoroquinolones in foods of animal origin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Observation of rocket pollution with overhead sensors
NASA Astrophysics Data System (ADS)
Fisher, Annette
2011-12-01
The objective of this thesis is to study the dispersal of rocket pollution through remote sensing techniques. Substantial research with remote sensors has been dedicated to observation of volcanic plumes, particulate dispersion, and aircraft contrails with less emphasis on observing rocket launches and the effects on the surrounding environment. This research focuses on observation of rocket exhaust constituents, particularly carbon soot, alumina, and water vapor. The sensors utilized in this thesis have unique capabilities that provide measurements that are likely capable of detecting the rocket exhaust constituents. Methodology and analysis included choosing an appropriate launch vehicle with obtainable launch data and various booster combinations of liquid propellant only or a combination of liquid and solid propellant, prioritizing the data based on launch time versus sensor passing, processing the data, and applying known constituent properties to the data sets where key areas of work in this endeavor. Results of this work demonstrate a unique capability in monitoring man-made pollution and the extent the pollution can spread to surrounding areas.
Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells
NASA Astrophysics Data System (ADS)
Williams, Bryce Arthur
A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis techniques. From these results, a deeper understanding of the interplay between the numerous annealing variables was achieved and improved annealing processes were developed.
Spread of pathogens through rain drop impact
NASA Astrophysics Data System (ADS)
Kim, Seungho; Gruszewski, Hope; Gidley, Todd; Schmale, David G., III; Jung, Sunghwan
2017-11-01
Rain drop impact can disperse micron-sized pathogenic particles over long distances. In this study, we aim to elucidate mechanisms for disease dispersal when a rain drop impacts a particle-laden solid surface. Three different dispersal types were observed depending on whether the dispersed glass particles were dry or wet. For a dry particle dispersal, the movement of contact line made the particles initially jump off the surface with relatively high velocity. Then, air vortex was formed due to the air current entrained along with the falling drop, and advected the particles with relatively low velocity. For a wet particle dispersal, the contact line of a spreading liquid became unstable due to the presence of the particles on the substrate. This caused splashing at the contact line and ejected liquid droplets carrying the particles. Finally, we released a drop onto wheat plants infected with the rust fungus, Puccinia triticina, and found that nearly all of the satellite droplets from a single drop contained at least one rust spore. Also, we visualized such novel dispersal dynamics with a high-speed camera and characterized their features by scaling models. This research was partially supported by National Science Foundation Grant CBET-1604424.
Gilbert-López, Bienvenida; García-Reyes, Juan F; Lozano, Ana; Fernández-Alba, Amadeo R; Molina-Díaz, Antonio
2010-09-24
In this work we have evaluated the performance of two sample preparation methodologies for the large-scale multiresidue analysis of pesticides in olives using liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). The tested sample treatment methodologies were: (1) liquid-liquid partitioning with acetonitrile followed by dispersive solid-phase extraction clean-up using GCB, PSA and C18 sorbents (QuEChERS method - modified for fatty vegetables) and (2) matrix solid-phase dispersion (MSPD) using aminopropyl as sorbent material and a final clean-up performed in the elution step using Florisil. An LC-MS/MS method covering 104 multiclass pesticides was developed to examine the performance of these two protocols. The separation of the compounds from the olive extracts was achieved using a short C18 column (50 mm x 4.6 mm i.d.) with 1.8 microm particle size. The identification and confirmation of the compounds was based on retention time matching along with the presence (and ratio) of two typical MRM transitions. Limits of detection obtained were lower than 10 microgkg(-1) for 89% analytes using both sample treatment protocols. Recoveries studies performed on olives samples spiked at two concentration levels (10 and 100 microgkg(-1)) yielded average recoveries in the range 70-120% for most analytes when QuEChERS procedure is employed. When MSPD was the choice for sample extraction, recoveries obtained were in the range 50-70% for most of target compounds. The proposed methods were successfully applied to the analysis of real olives samples, revealing the presence of some of the target species in the microgkg(-1) range. Besides the evaluation of the sample preparation approaches, we also discuss the use of advanced software features associated to MRM method development that overcome several limitations and drawbacks associated to MS/MS methods (time segments boundaries, tedious method development/manual scheduling and acquisition limitations). This software feature recently offered by different vendors is based on an algorithm that associates retention time data for each individual MS/MS transition, so that the number of simultaneously traced transitions throughout the entire chromatographic run (dwell times and sensitivity) is maximized. Copyright 2010 Elsevier B.V. All rights reserved.
Stable dispersions of polymer-coated graphitic nanoplatelets
NASA Technical Reports Server (NTRS)
Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)
2011-01-01
A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.
Bosentan comes as a tablet and as a dispersible tablet (tablet that can be dissolved in liquid) to take by mouth. It is usually taken ... your doctor.If you are taking the dispersible tablet, place the tablet in a small amount of ...
You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu
2015-05-22
A novel air assisted liquid-liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μgL(-1). The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3-13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2015 Elsevier B.V. All rights reserved.
Lv, Tao; Zhao, Xian-En; Zhu, Shuyun; Qu, Fei; Song, Cuihua; You, Jinmao; Suo, Yourui
2014-10-01
A novel hyphenated method based on ultrasound-assisted dispersive liquid-liquid microextraction coupled to precolumn derivatization has been established for the simultaneous determination of bisphenol A, 4-octylphenol, and 4-nonylphenol by high-performance liquid chromatography with fluorescence detection. Different parameters that influence microextraction and derivatization have been optimized. The quantitative linear range of analytes is 5.0-400.0 ng/L, and the correlation coefficients are more than 0.9998. Limits of detection for soft drinks and dairy products have been obtained in the range of 0.5-1.2 ng/kg and 0.01-0.04 μg/kg, respectively. Relative standard deviations of intra- and inter-day precision for retention time and peak area are in the range of 0.47-2.31 and 2.76-8.79%, respectively. Accuracy is satisfactory in the range of 81.5-118.7%. Relative standard deviations of repeatability are in the range of 0.35-1.43 and 2.36-4.75% for retention time and peak area, respectively. Enrichment factors for bisphenol A, 4-octylphenol, and 4-nonylphenol are 170.5, 240.3, and 283.2, respectively. The results of recovery and matrix effect are in the range of 82.7-114.9 and 92.0-109.0%, respectively. The proposed method has been applied to the determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products with much higher sensitivity than many other methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-aqueous liquid compositions comprising ion exchange polymers reference to related application
Kim,; Yu Seung, Lee [Los Alamos, NM; Kwan-Soo, Rockward [Los Alamos, NM; T, Tommy Q [Rio Rancho, NM
2012-08-07
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Simple and double emulsions via electrospray
NASA Astrophysics Data System (ADS)
Barrero, Antonio; Loscertales, Ignacio G.
2005-11-01
Generation of nanoemulsions is of great interest in medical and pharmaceutical applications; drug delivery or antiviral emulsions are typical examples. The use of electrosprays for dispersing liquids inside liquid insulator baths have been recently reported, (Barrero et al. J. Colloid Interf. Sci. 272, 104, 2004). Capsules, nanotubes and coaxial nanofibers have been obtained from electrified coaxial jets (Loscertales et al. Science 295, n. 5560, 1695, 2002; J. American Chem. Soc. 126, 5376, 2004). Here we present a method for making double emulsions (both water-oil-water and o/w/o) based on the generation of compound electrosprays inside insulator liquid baths. Basically, a conducting liquid injected throughout a capillary needle is electroatomized in cone-jet mode inside a dielectric liquid bath. A third insulating liquid is injected inside the Taylor cone to form a second meniscus. Then, a steady coaxial jet, in which the insulating liquid is coated by the conducting one, develops. A double emulsion forms as a result of the jet breaking up into compound droplets electrically charged. Experimental results carried out with glycerine and different oils in a bath of heptane are reported.
NASA Astrophysics Data System (ADS)
Fedi, Filippo; Miglietta, Maria Lucia; Polichetti, Tiziana; Ricciardella, Filiberto; Massera, Ettore; Ninno, Domenico; Di Francia, Girolamo
2015-03-01
Straightforward methods to produce pristine graphene flakes in large quantities are based on the liquid-phase exfoliation processes. These one-step physical transformations of graphite into graphene offer many unique advantages. To date, a large number of liquids have been employed as exfoliation media exploiting their thermodynamic and chemical features as compared to those of graphene. Here, we pursued the goal of realizing water based mixtures to exfoliate graphite and disperse graphene without the aid of surfactants. To this aim, aqueous mixtures with suitable values of surface tension and Hansen solubility parameters (HSPs), were specifically designed and used. The very high water surface tension was decreased by the addition of solvents with lower surface tensions such as alcohols, obtaining, in this way, more favourable HSP distances. The specific role of each of these thermodynamic features was finally investigated. The results showed that the designed hydroalcoholic solutions were effective in both the graphite exfoliation and dispersion without the addition of any surfactants or other stabilizing agents. Stable graphene suspensions were obtained at concentration comparable to those produced with low-boiling solvents and water/surfactants.
Tuzen, Mustafa; Pekiner, Ozlem Zeynep
2015-12-01
A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo
2017-11-01
In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zeeb, Mohsen; Farahani, Hadi; Papan, Mohammad Kazem
2016-06-01
An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to a sample solution containing an ion-pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2-750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90-96.7% and satisfactory intra-assay (4.8-5.1%, n = 6) and interassay (5.0-5.6%, n = 9) precision along with a substantial sample clean-up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air
NASA Astrophysics Data System (ADS)
Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan
2005-05-01
The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.
Performance of NCAP projection displays
NASA Astrophysics Data System (ADS)
Jones, Philip J.; Tomita, Akira; Wartenberg, Mark
1991-08-01
Prototypes of projection displays based on dispersions of liquid crystal in polymer matrices are beginning to appear. The principle of operation depends on electrically switchable light scattering. They are potentially much brighter than current cathode ray tube (CRT) or twisted nematic liquid crystal (TN LC) cell based displays. Comparisons of efficacy and efficiency show this. The contrast and brightness of such displays depend on a combination of the f- number of the projection system and the scattering characteristics of the light valve. Simplified equations can be derived to show these effects. The degree of scattering of current NCAP formulations is sufficient to produce good contrast projection displays, at convenient voltages, that are around three times brighter than TN LC projectors because of the lack of polarizers in the former.
Liu, Zhongling; Yu, Wei; Zhang, Hanqi; Gu, Fanbin; Jin, Xiangqun
2016-12-01
Salting-out homogenous extraction followed by ionic liquid/ionic liquid dispersive liquid-liquid micro-extraction system was developed and applied to the extraction of sulfonamides in blood. High-performance liquid chromatography was applied to the determination of the analytes. The blood sample was centrifuged to obtain the serum. After the proteins in the serum were removed in the presence of acetonitrile, ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, dipotassium hydrogen phosphate, ionic liquid 1-Hexyl-3-methylimidazolium hexafluorophosphate were added into the resulting solution. After the resulting mixture was ultrasonically shaken and centrifuged, the precipitate was separated. The acetonitrile was added in the precipitate and the analytes were extracted into the acetonitrile phase. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of dipotassium hydrogen phosphate, volume of dispersant, extraction time and temperature were investigated. The limits of detection of sulfamethizole (STZ), sulfachlorpyridazine (SCP), sulfamethoxazole (SMX) and Sulfisoxazole (SSZ) were 4.78, 3.99, 5.21 and 3.77μgL -1 , respectively. When the present method was applied to the analysis of real blood samples, the recoveries of analytes ranged from 90.0% to 113.0% and relative standard deviations were lower than 7.2%. Copyright © 2016 Elsevier B.V. All rights reserved.
Composite anode for lithium ion batteries
de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.
2018-03-06
A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.
Petrarca, Mateus Henrique; Ccanccapa-Cartagena, Alexander; Masiá, Ana; Godoy, Helena Teixeira; Picó, Yolanda
2017-05-12
A new selective and sensitive liquid chromatography triple quadrupole mass spectrometry method was developed for simultaneous analysis of natural pyrethrins and synthetic pyrethroids residues in baby food. In this study, two sample preparation methods based on ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and salting-out assisted liquid-liquid extraction (SALLE) were optimized, and then, compared regarding the performance criteria. Appropriate linearity in solvent and matrix-based calibrations, and suitable recoveries (75-120%) and precision (RSD values≤16%) were achieved for selected analytes by any of the sample preparation procedures. Both methods provided the analytical selectivity required for the monitoring of the insecticides in fruit-, cereal- and milk-based baby foods. SALLE, recognized by cost-effectiveness, and simple and fast execution, provided a lower enrichment factor, consequently, higher limits of quantification (LOQs) were obtained. Some of them too high to meet the strict legislation regarding baby food. Nonetheless, the combination of ultrasound and DLLME also resulted in a high sample throughput and environmental-friendly method, whose LOQs were lower than the default maximum residue limit (MRL) of 10μgkg -1 set by European Community for baby foods. In the commercial baby foods analyzed, cyhalothrin and etofenprox were detected in different samples, demonstrating the suitability of proposed method for baby food control. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.
2018-05-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.
2018-03-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
NASA Astrophysics Data System (ADS)
Arain, Mariam S.; Arain, Salma A.; Kazi, Tasneem G.; Afridi, Hassan I.; Ali, Jamshaid; Naeemulllah; Arain, Sadaf S.; Brahman, Kapil Dev; Mughal, Moina Akhtar
2015-02-01
A green and sensitive temperature controlled dispersive liquid-liquid microextraction (TIL-DLLME) methodology based on the application of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], as an extractant solvent was proposed for the preconcentration of trace levels of aluminium (Al3+) in scalp hair samples of Alzheimer's (AD) patients, prior to analyzing by flame atomic absorption spectrometry (FAAS). The Al3+ was complexed with 8-hydrooxyquinoline (oxine) (L1) and 3,5,7,2‧-4‧ pentahydroxy flavone (morin) (L2) separately and then extracted by IL at temperature (50 ± 2.0 °C). Some effective factors that influence the TIL-DLLME efficiency such as pH, ligands concentrations, volume of IL, ionic strength, and incubation time were investigated and optimized by multivariate analysis. In the optimum experimental conditions, the limit of detection (3 s) and enhancement factor were 0.56 μg L-1, 0.64 μg L-1 and 85, 73 for both ligands, respectively. The relative standard deviation (RSD) for six replicate determinations of 100 μg L-1 Al3+ complexed with oxine and morin were found to be 3.88% and 4.74%, respectively. The developed method was validated by the analysis of certified reference material of human hair (NCSZC81002).and applied satisfactorily to the determination of Al3+ in acid digested scalp hair samples of AD patients and healthy controls. The resulted data shows significant higher level in scalp hair samples of AD male patients with related to referents of same age and socioeconomic status.
Alves, Andreia; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan
2016-09-01
A new, fast, and environmentally friendly method based on ultrasound assisted extraction combined with dispersive liquid-liquid microextraction (US-DLLME) was developed and optimized for assessing the levels of seven phthalate metabolites (including the mono(ethyl hexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP), and mono-benzyl phthalate (MBzP)) in human nails by UPLC-MS/MS. The optimization of the US-DLLME method was performed using a Taguchi combinatorial design (L9 array). Several parameters such as extraction solvent, solvent volume, extraction time, acid, acid concentration, and vortex time were studied. The optimal extraction conditions achieved were 180 μL of trichloroethylene (extraction solvent), 2 mL trifluoroacetic acid in methanol (2 M), 2 h extraction and 3 min vortex time. The optimized method had a good precision (6-17 %). The accuracy ranged from 79 to 108 % and the limit of method quantification (LOQm) was below 14 ng/g for all compounds. The developed US-DLLME method was applied to determine the target metabolites in 10 Belgian individuals. Levels of the analytes measured in nails ranged between <12 and 7982 ng/g. The MEHP, MBP isomers, and MEP were the major metabolites and detected in every sample. Miniaturization (low volumes of organic solvents used), low costs, speed, and simplicity are the main advantages of this US-DLLME based method. Graphical Abstract Extraction and phase separation of the US-DLLME procedure.
NASA Astrophysics Data System (ADS)
Hayden, Jakob; Hugger, Stefan; Fuchs, Frank; Lendl, Bernhard
2018-02-01
We employ a novel spectroscopic setup based on an external cavity quantum cascade laser and a Mach-Zehnder interferometer to simultaneously record spectra of absorption and dispersion of liquid samples in the mid-infrared. We describe the theory underlying the interferometric measurement and discuss its implications for the experiment. The capability of simultaneously recording a refractive index and absorption spectrum is demonstrated for a sample of acetone in cyclohexane. The recording of absorption spectra is experimentally investigated in more detail to illustrate the method's capabilities as compared to direct absorption spectroscopy. We find that absorption signals are recorded with strongly suppressed background, but with smaller absolute sensitivity. A possibility of optimizing the setup's performance by unbalancing the interferometer is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V.; Zyryanov, V. Ya.
2017-03-15
We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing themore » volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.« less
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Koda, S.
2010-03-01
The mode-coupling theory for molecular liquids based on the interaction-site model is applied to a representative molecular ionic liquid, dimethylimidazolium chloride, and dynamic properties such as shear viscosity, self-diffusion coefficients, reorientational relaxation time, electric conductivity, and dielectric relaxation spectrum are analyzed. Molecular dynamics (MD) simulation is also performed on the same system for comparison. The theory captures the characteristics of the dynamics of the ionic liquid qualitatively, although theoretical relaxation times are several times larger than those from the MD simulation. Large relaxations are found in the 100 MHz region in the dispersion of the shear viscosity and the dielectric relaxation, in harmony with various experiments. The relaxations of the self-diffusion coefficients are also found in the same frequency region. The dielectric relaxation spectrum is divided into the contributions of the translational and reorientational modes, and it is demonstrated that the relaxation in the 100 MHz region mainly stems from the translational modes. The zero-frequency electric conductivity is close to the value predicted by the Nernst-Einstein equation in both MD simulation and theoretical calculation. However, the frequency dependence of the electric conductivity is different from those of self-diffusion coefficients in that the former is smaller than the latter in the gigahertz-terahertz region, which is compensated by the smaller dispersion of the former in the 100 MHz region. The analysis of the theoretical calculation shows that the difference in their frequency dependence is due to the different contribution of the short- and long-range liquid structures.
Hemmati, Maryam; Asghari, Alireza; Bazregar, Mohammad; Rajabi, Maryam
2016-11-01
In this research work, an efficient tandem dispersive liquid-liquid microextraction (TDLLME) procedure coupled with high performance liquid chromatography-ultraviolet detection (HPLC-UV) was successfully applied for the determination of beta-blockers in human plasma and pharmaceutical wastewater samples. High clean-up and preconcentration factor are easily and rapidly feasible via this novel, cheap, and safe microextraction method, leading to high quality experimental data. It consists of two sequential dispersive liquid-liquid microextraction methods, accomplished via air/ultrasonic agitation and air agitation, respectively. In order to enrich the optimal values for the mentioned procedures, the Box-Behnken design (BBD) combined with the desirability function (DF) was used. The optimum values were found to be 11.0 % (w/v) of the salt amount, an initial pH value of 12.0, 103 μL of organic extractant phase, and 45 μL of aqueous extractant phase with pH value of 2.0, resulted in reasonable recovery percentages with a logical desirability. Under optimal experimental conditions, good linear ranges (3-2000 ng mL -1 for metoprolol and 2.5-2500 ng mL -1 for propranolol with the correlation of determinations (R 2 s) higher than 0.99) and low limits of detection (0.8 and 1.0 ng mL -1 for propranolol and metoprolol, respectively) were obtainable. Also, TDLLME-HPLC-UV provided good proper repeatabilities (relative standard deviations (RSDs) below 5.7 %, n = 3) and high enrichment factors (EFs) of 75-100. Graphical abstract TDLLME of beta-blockers from complicated matrices.
Random lasing in dye-doped polymer dispersed liquid crystal film
NASA Astrophysics Data System (ADS)
Wu, Rina; Shi, Rui-xin; Wu, Xiaojiao; Wu, Jie; Dai, Qin
2016-09-01
A dye-doped polymer-dispersed liquid crystal film was designed and fabricated, and random lasing action was studied. A mixture of laser dye, nematic liquid crystal, chiral dopant, and PVA was used to prepare the dye-doped polymer-dispersed liquid crystal film by means of microcapsules. Scanning electron microscopy analysis showed that most liquid crystal droplets in the polymer matrix ranged from 30 μm to 40 μm, the size of the liquid crystal droplets was small. Under frequency doubled 532 nm Nd:YAG laser-pumped optical excitation, a plurality of discrete and sharp random laser radiation peaks could be measured in the range of 575-590 nm. The line-width of the lasing peak was 0.2 nm and the threshold of the random lasing was 9 mJ. Under heating, the emission peaks of random lasing disappeared. By detecting the emission light spot energy distribution, the mechanism of radiation was found to be random lasing. The random lasing radiation mechanism was then analyzed and discussed. Experimental results indicated that the size of the liquid crystal droplets is the decisive factor that influences the lasing mechanism. The surface anchor role can be ignored when the size of the liquid crystal droplets in the polymer matrix is small, which is beneficial to form multiple scattering. The transmission path of photons is similar to that in a ring cavity, providing feedback to obtain random lasing output. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Colleges and Universities in Liaoning Province Outstanding Young Scholars Growth Plans, China (Grant No. LJQ2015093), and Shenyang Ligong University Laser and Optical Information of Liaoning Province Key Laboratory Open Funds, China.
Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates
2017-01-01
We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO2) gas hydrates using Raman spectroscopy. The CO2 hydrates were formed from sodium chloride/water solutions with salinities of 0–10 wt %, which were pressurized with liquid CO2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, xH, and the fraction of the dispersed liquid water-rich phase, xL, from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate xH contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect. PMID:28817275
Hong, Bo; Wang, Zhe; Xu, Tianjiao; Li, Chengchong; Li, Wenjing
2015-03-25
A simple and low-cost method based on matrix solid-phase dispersion (MSPD) extraction, HPLC separation, diode array detection and UPLC-Q-TOF-MS have been developed for the determination of Hydroxysafflor yellow A (HSYA), Kaempferol and other main compounds in Carthamus tinctorius. The experimental parameters that may affect the MSPD method, including dispersing sorbent, ratio of dispersing sorbent to sample, elution solvent, and volume of the elution solvent were examined and optimized. The optimized conditions were determined to be that silica gel was used as dispersing sorbent, the ratio of silica gel to sample mass was selected to be 3:1, and 10 mL of methanol: water (1:3, v:v) was used as elution solvent. The highest extraction yields of the two compounds were obtained under the optimized conditions. The method showed good linearity (r(2)≥0.999 2) and precision (RSD≤3.4%) for HSYA and Kaempferol, with the limits of detection of 35.2 and 14.5 ng mL(-1), respectively. The recoveries were in the range of 92.62-101.7% with RSD values ranging from 1.5 to 3.5%. At the meanwhile, there were 21 compounds in the extraction by MSPD method were identified by TOF-MS method to improve the quality control for safflower. Comparing to ultrasonic and soxhlet methods, the proposed MSPD procedure was more convenient and less time-consuming with reduced requirements on sample and solvent amounts. The proposed procedure was applied to analyze four real samples that were collected from different localities. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weiss, Volker C.; Leroy, Frédéric
2016-06-01
More than two decades ago, the elusiveness of a liquid-vapor equilibrium and a corresponding critical point in simulations of the supposedly simple model of dipolar hard spheres came as a surprise to many liquid matter theorists. van Leeuwen and Smit [Phys. Rev. Lett. 71, 3991 (1993)] showed that a minimum of attractive dispersion interactions among the dipolar particles may be needed to observe regular fluid behavior. Here, we adopt their approach and use an only slightly modified model, in which the original point dipole is replaced by a dipole moment produced by charges that are separated in space, to study the influence of dispersion interactions of variable strength on the coexistence and interfacial properties of a polar fluid. The thermophysical properties are discussed in terms of Guggenheim's corresponding-states approach. In this way, the coexistence curve, the critical compressibility factor, the surface tension, Guggenheim's ratio, and modifications of Guldberg's and Trouton's rules (related to the vapor pressure and the enthalpy of vaporization) are analyzed. As the importance of dispersion is decreased, a crossover from simple-fluid behavior to that characteristic of strongly dipolar systems takes place; for some properties, this transition is monotonic, but for others it occurs non-monotonically. For strongly dipolar systems, the reduced surface tension is very low, whereas Guggenheim's ratio and Guldberg's ratio are found to be high. The critical compressibility factor is smaller, and the coexistence curve is wider and more skewed than for simple fluids. For very weak dispersion, liquid-vapor equilibrium is still observable, but the interfacial tension is extremely low and may, eventually, vanish marking the end of the existence of a liquid phase. We discuss the implications of our findings for real fluids, in particular, for hydrogen fluoride.
Farajzadeh, Mir Ali; Mohebbi, Ali
2018-01-12
In this study, for the first time, a magnetic dispersive solid phase extraction method using an easy-accessible, cheap, and efficient magnetic sorbent (toner powder) combined with dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of some widely used pesticides (diazinon, ametryn, chlorpyrifos, penconazole, oxadiazon, diniconazole, and fenazaquin) from fruit juices prior to their determination by gas chromatography-flame ionization detection. In this method, the magnetic sorbent is mixed with an appropriate dispersive solvent (methanol-water, 80:20, v/v) and then injected into an aqueous sample containing the analytes. By this action the analytes are rapidly adsorbed on the sorbent by binding to its carbon. The sorbent particles are isolated from the aqueous solution in the presence of an external magnetic field. Then an appropriate organic solvent (acetone) is used to desorb the analytes from the sorbent. Finally, the obtained supernatant is mixed with an extraction solvent and injected into deionized water in order to achieve high enrichment factors and sensitivity. Several significant factors affecting the performance of the introduced method were investigated and optimized. Under the optimum experimental conditions, the extraction recoveries of the proposed method for the selected analytes ranged from 49-75%. The relative standard deviations were ≤7% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 10 μg L -1 of each analyte. The limits of detection were in the range of 0.15-0.36 μg L -1 . Finally, the applicability of the proposed method was evaluated by analysis of the selected analytes in some fruit juices. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... characteristics of anisotropic particles. Quantitative analysis involves the use of point counting. Point counting... 0.004. • Refractive Index Liquids for Dispersion Staining: high-dispersion series, 1.550, 1.605, 1... hand. Repeat the series. Collect the dispersed solids by centrifugation at 1000 rpm for 5 minutes. Wash...
Code of Federal Regulations, 2010 CFR
2010-07-01
... characteristics of anisotropic particles. Quantitative analysis involves the use of point counting. Point counting... 0.004. • Refractive Index Liquids for Dispersion Staining: high-dispersion series, 1.550, 1.605, 1... hand. Repeat the series. Collect the dispersed solids by centrifugation at 1000 rpm for 5 minutes. Wash...
Code of Federal Regulations, 2011 CFR
2011-07-01
... characteristics of anisotropic particles. Quantitative analysis involves the use of point counting. Point counting... 0.004. • Refractive Index Liquids for Dispersion Staining: high-dispersion series, 1.550, 1.605, 1... hand. Repeat the series. Collect the dispersed solids by centrifugation at 1000 rpm for 5 minutes. Wash...
Code of Federal Regulations, 2012 CFR
2012-07-01
... characteristics of anisotropic particles. Quantitative analysis involves the use of point counting. Point counting... 0.004. • Refractive Index Liquids for Dispersion Staining: high-dispersion series, 1.550, 1.605, 1... hand. Repeat the series. Collect the dispersed solids by centrifugation at 1000 rpm for 5 minutes. Wash...
Code of Federal Regulations, 2013 CFR
2013-07-01
... characteristics of anisotropic particles. Quantitative analysis involves the use of point counting. Point counting... 0.004. • Refractive Index Liquids for Dispersion Staining: high-dispersion series, 1.550, 1.605, 1... hand. Repeat the series. Collect the dispersed solids by centrifugation at 1000 rpm for 5 minutes. Wash...
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Singh, J. J.
1993-01-01
Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.
Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications
NASA Astrophysics Data System (ADS)
Czerwinski, Frank; Birsan, Gabriel
2017-04-01
The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.
Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng
2017-04-14
An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.
Vollmer, Christian; Redel, Engelbert; Abu-Shandi, Khalid; Thomann, Ralf; Manyar, Haresh; Hardacre, Christopher; Janiak, Christoph
2010-03-22
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (M-NPs) have been reproducibly obtained by facile, rapid (3 min), and energy-saving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal-carbonyl precursors [M(x)(CO)(y)] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF(4)]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180-250 degrees C, 6-12 h) of [M(x)(CO)(y)] in ILs. The MWI-obtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active and easily recyclable catalysts for the biphasic liquid-liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product) (mol Ru)(-1) h(-1) and 884 (mol product) (mol Rh)(-1) h(-1) and give almost quantitative conversion within 2 h at 10 bar H(2) and 90 degrees C. Catalyst poisoning experiments with CS(2) (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of Ru-NPs.
Sun, Jianzhi; He, Hui; Liu, Shuhui
2014-07-01
A simple method that consumes low organic solvent is proposed for the analysis of phthalic acid esters in Chinese white spirit using dispersive liquid-liquid microextraction coupled with sweeping-micellar electrokinetic chromatography. Tetrachloromethane and white-spirit-containing ethanol were used as the extraction and dispersing solvents, respectively. The electrophoresis separation buffer was composed of 5 mM β-cyclodextrin, 50 mM sodium dodecyl sulfate and 25 mM borate buffer (pH 9.2) with 9% acetonitrile, enabling the baseline resolution of the analytes within 13 min. Under the optimum conditions, satisfactory linearities (5-1000 ng/mL, r ≥ 0.9909), good reproducibility (RSD ≤ 6.7% for peak area, and RSD ≤ 2.8% for migration time), low detection limits (0.4-0.8 ng/mL) and acceptable recovery rates (89.6-105.7%) were obtained. The proposed method was successfully applied to 22 Chinese white spirits, and the content of dibutyl phthalate in 55% of the samples exceeded the Specific Migration Limit of 0.3 mg/kg established by the domestic and international regulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Shuilian; Wu, Huizhen; Li, Zuguang; Wang, Jianmei; Zhang, Hu; Qian, Mingrong
2015-01-01
A one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18 , and carbon-GCB. Parameters that could influence the ultrasound/microwave-assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4-113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1-100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alshana, Usama; Ertaş, Nusret; Göğer, Nilgün G
2015-08-15
Dispersive liquid-liquid microextraction (DLLME) with back-extraction was used prior to capillary electrophoresis (CE) for the extraction of four parabens. Optimum extraction conditions were: 200 μL chloroform (extraction solvent), 1.0 mL acetonitrile (disperser solvent) and 1 min extraction time. Back-extraction of parabens from chloroform into a 50mM sodium hydroxide solution within 10s facilitated their direct injection into CE. The analytes were separated at 12°C and 25 kV with a background electrolyte of 25 mM borate buffer containing 5.0% (v/v) acetonitrile. Enrichment factors were in the range of 4.3-10.7 and limits of detection ranged from 0.1 to 0.2 μg mL(-1). Calibration graphs showed good linearity with coefficients of determination (R(2)) higher than 0.9957 and relative standard deviations (%RSDs) lower than 3.5%. DLLME-CE was demonstrated to be a simple and rapid method for the determination of parabens in human milk and food with relative recoveries in the range of 86.7-103.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz
2018-06-01
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The temperature dependent collective dynamics of liquid sodium
NASA Astrophysics Data System (ADS)
Patel, A. B.; Khambholja, S. G.; Bhatt, N. K.; Thakore, B. Y.; Vyas, P. R.; Jani, A. R.
2012-06-01
Liquid alkali metals show, near the melting point, an upward bending of the dispersion relation at small momentum transfer values. This so-called positive dispersion can be described within generalized hydrodynamics as a visco-elastic reaction of the liquid. There is a speculation that long-living clusters could be the physical reason behind this phenomenon. To shed light on this question a treatment of pseudopotential theory on liquid sodium was performed at different temperatures starting at the melting point. In the present study, we used the modified empty core potential due to Hasegawa et al. (J. Non-Cryst. Solids, 117/118 (1990) 300) along with a local field correction due to Ichimaru-Utsumi (IU) to explain electron-ion interaction. The potential used is composed of a full electron-ion interaction and a repulsive delta function, which represents the orthogonalisation effect due to the s core states. The temperature dependence of pair potential is calculated by using the damping term exp(-πkBTr/2kF). While the expression for phonon dispersions are derived within the memory function formalism. Results thus obtained are well compared with the other theoretical and experimental results.
Asati, Ankita; Satyanarayana, G N V; Patel, Devendra K
2017-09-01
Two low density organic solvents based liquid-liquid microextraction methods, namely Vortex assisted liquid-liquid microextraction based on solidification of floating organic droplet (VALLME-SFO) and Dispersive liquid-liquid microextraction based on solidification of floating organic droplet(DLLME-SFO) have been compared for the determination of multiclass analytes (pesticides, plasticizers, pharmaceuticals and personal care products) in river water samples by using liquid chromatography tandem mass spectrometry (LC-MS/MS). The effect of various experimental parameters on the efficiency of the two methods and their optimum values were studied with the aid of Central Composite Design (CCD) and Response Surface Methodology(RSM). Under optimal conditions, VALLME-SFO was validated in terms of limit of detection, limit of quantification, dynamic linearity range, determination of coefficient, enrichment factor and extraction recovery for which the respective values were (0.011-0.219ngmL -1 ), (0.035-0.723ngmL -1 ), (0.050-0.500ngmL -1 ), (R 2 =0.992-0.999), (40-56), (80-106%). However, when the DLLME-SFO method was validated under optimal conditions, the range of values of limit of detection, limit of quantification, dynamic linearity range, determination of coefficient, enrichment factor and extraction recovery were (0.025-0.377ngmL -1 ), (0.083-1.256ngmL -1 ), (0.100-1.000ngmL -1 ), (R 2 =0.990-0.999), (35-49), (69-98%) respectively. Interday and intraday precisions were calculated as percent relative standard deviation (%RSD) and the values were ≤15% for VALLME-SFO and DLLME-SFO methods. Both methods were successfully applied for determining multiclass analytes in river water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Zolotarev, K V
2012-08-01
The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.
Timofeeva, Irina; Kanashina, Daria; Moskvin, Leonid; Bulatov, Andrey
2017-08-25
A sample pre-treatment technique based on evaporation-assisted dispersive liquid-liquid microextraction (EVA-DLLME), followed by HPLC-MS/MS has been developed for the determination of organophosphate insecticides (malathion, diazinon, phosalone) in wine samples. The procedure includes the addition of mixture of organic solvents (with density higher than water), consisting of the extraction (low density) and volatile (high density) solvents, to aqueous sample followed by heating of the mixture obtained, what promotes the volatile solvent evaporation and moving extraction solvent droplets from down to top of the aqueous sample and, as a consequence, microextraction of target analytes. To initiate the evaporation process an initiator is required. It was established that hexanol (extraction solvent) and dichloromethane (volatile solvent) mixture (1:1, v/v) provides effective microextraction of the insecticides from wine samples with recovery from 92 to 103%. The conditions of insecticides' microextraction such as selection of extraction solvent, ratio of hexanol/dichloromethane and hexanol/sample, type and concentration of initiator, and effect of ethanol as one of the main components of wine have been studied. Under optimal experimental conditions the linear detection ranges were found to be 10 -7 -10 -3 gL -1 for malathion, 10 -9 -10 -4 gL -1 for diazinon, and 10 -6 -10 -2 gL -1 for phosalone. The LODs, calculated from a blank test, based on 3σ, found to be 3×10 -8 gL -1 for malathion, 3×10 -10 gL -1 for diazinon and 3×10 -7 gL -1 for phosalone. The advantages of EVA-DLLME are the rapidity, simplicity, high sample throughput and low cost. As an outcome, the analytical results agreed fairly well with the results obtained by a reference GC-MS method. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Wonmok; Kim, Seulgi; Kim, Seulki; Kim, Jin-Ho; Lee, Hyunjung
2015-02-15
There are active researches on well ordered opal films due to their possible applications to various photonic devices. A recently developed slide coating method is capable of rapid fabrication of large area opal films from aqueous colloidal dispersion. In the current study, the slide coating of polystyrene colloidal dispersions in water/i-propanol (IPA) binary media is investigated. Under high IPA content in a dispersing medium, resulting opal film showed a deterioration of long range order, as well as a decreased film thickness due to dilution effect. From the binary liquid, the dried opal films exhibited the unprecedented topological groove patterns with varying periodic distances as a function of alcohol contents in the media. The groove patterns were consisted of the hierarchical structures of the terraced opal layers with periodic thickness variations. The origin of the groove patterns was attributed to a shear-induced periodic instability of colloidal concentration within a thin channel during the coating process which was directly converted to a groove patterns in a resulting opal film due to rapid evaporation of liquid. The groove periods of opal films were in the range of 50-500 μm, and the thickness differences between peak and valley of the groove were significantly large enough to be optically distinguishable, such that the coated films can be utilized as the optical grating film to disperse infra-red light. Utilizing a lowered hydrophilicity of water/IPA dispersant, an opal film could be successfully coated on a flexible Mylar film without significant dewetting problem. Copyright © 2014 Elsevier Inc. All rights reserved.
Ebrahim, Karim; Poursafa, Parinaz; Amin, Mohammad Mehdi
2017-11-01
A new method was developed for the trace determination of phthalic acid esters in plasma using dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry analysis. Plasma proteins were efficiently precipitated by trichloroacetic acid and then a mixture of chlorobenzene (as extraction solvent) and acetonitrile (as dispersive solvent) rapidly injected to clear supernatant using a syringe. After centrifuging, chlorobenzene sedimented at the bottom of the test tube. 1 μL of this sedimented phase was injected into the gas chromatograph for phthalic acid esters analysis. Different factors affecting the extraction performance, such as the type of extraction and dispersive solvent, their volume, extraction time, and the effects of salt addition were investigated and optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were satisfactory and ranged between 820-1020 and 91-97%, respectively. The linear range was wide (50-1000 ng/mL) and limit of detection was very low (1.5-2.5 ng/mL for all analytes). The relative standard deviations for analysis of 1 μg/mL of the analytes were between 3.2-6.1%. Salt addition showed no significant effect on extraction recovery. Finally, the proposed method was successfully utilized for the extraction and determination of the phthalic acid esters in human plasma samples and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sereshti, Hassan; Izadmanesh, Yahya; Samadi, Soheila
2011-07-22
Ultrasonic assisted extraction-dispersive liquid-liquid microextraction (UAE-DLLME) coupled with gas chromatography (GC) was applied for extraction and determination of essential oil constituents of the plant Oliveria decumbens Vent. Scanning electron microscopy (SEM) was used to see the effect of ultrasonic radiation on the extraction efficiency. By comparison with hydrodistillation, UAE-DLLME is fast, low cost, simple, efficient and consuming small amount of plant materials (∼1.0 g). The effects of various parameters such as temperature, ultrasonication time, volume of disperser and extraction solvents were investigated by a full factorial design to identify significant variables and their interactions. The results demonstrated that temperature and ultrasonication time had no considerable effect on the results. In the next step, a central composite design (CCD) was performed to obtain the optimum levels of significant parameters. The obtained optimal conditions were: 0.45 mL for disperser solvent (acetonitrile) and 94.84 μL for extraction solvent (chlorobenzene). The limits of detection (LODs), linear dynamic range and determination coefficients (R(2)) were 0.2-29 ng mL(-1), 1-2100 ng mL(-1) and 0.995-0.998, respectively. The main components of the essential oil were: thymol (47.06%), carvacrol (23.31%), gamma-terpinene (18.94%), p-cymene (8.71%), limonene (0.76%) and myristicin (0.63%). Copyright © 2011 Elsevier B.V. All rights reserved.
Deformation and breakup of liquid-liquid threads, jets, and drops
NASA Astrophysics Data System (ADS)
Doshi, Pankaj
The formation and breakup of two-fluid jets and drops find application in various industrially important processes like microencapsulation, inkjet printing, dispersion and emulsion formation, micro fluidics. Two important aspects of these problems are studied in this thesis. The first regards the study of the dynamics of a two-fluid jet issuing out of a concentric nozzle and breaking into multiple liquid drops. The second aspect concerns the study of the dynamics of liquid-liquid interface rupture. Highly robust and accurate numerical algorithms based on the Galerkin finite element method (G/FEM) and elliptic mesh generation technique are developed. The most important results of this research are the prediction of compound drop formation and volume partitioning between primary drop and satellite drops, which are of critical importance for microencapsulation technology. Another equally important result is computational and experimental demonstration of a self-similar behavior for the rupture of liquid-liquid interface. The final focus is the study of the pinch-off dynamics of generalized-Newtonian fluids with deformation-rate-dependent rheology using asymptotic analysis and numerical computation. A significant result is the first ever prediction of self-similar pinch-off of liquid threads of generalized Newtonian fluids.
Tankiewicz, Maciej; Biziuk, Marek
2018-02-01
A simple and efficient dispersive liquid-liquid microextraction technique (DLLME) was developed by using a mixture of two solvents: 40 μL of tetrachlorethylene (extraction solvent) and 1.0 mL of methanol (disperser solvent), which was rapidly injected with a syringe into 10 mL of water sample. Some important parameters affecting the extraction efficiency, such as type and volume of solvents, water sample volume, extraction time, temperature, pH adjustment and salt addition effect were investigated. Simultaneous determination of 34 commonly used pesticides was performed by using gas chromatography coupled with mass spectrometry (GC-MS). The procedure has been validated in order to obtain the highest efficiency at the lowest concentration levels of analytes to fulfill the requirements of regulations on maximum residue limits. Under the optimum conditions, the linearity range was within 0.0096-100 μg L -1 . The limits of detection (LODs) of the developed DLLME-GC-MS methodology for all investigated pesticides were in the range of 0.0032 (endrin)-0.0174 (diazinon) μg L -1 and limits of quantification (LOQs) from 0.0096 to 0.052 μg L -1 . At lower concentration of 1 μg L -1 for each pesticide, recoveries ranged between 84% (tebufenpyrad) and 108% (deltamethrin) with relative standard deviations (RSDs) (n = 7) from 1.1% (metconazole) to 11% (parathion-mehtyl). This methodology was successfully applied to check contamination of environmental samples. The procedure has proved to be selective, sensitive and precise for the simultaneous determination of various pesticides. The optimized analytical method is very simple and rapid (less than 5 min). Graphical abstract Analytical procedure for testing water samples consists of dispersive liquid-liquid microextraction (DLLME) and gas chromatography coupled with mass spectrometry (GC-MS).
Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars
2014-12-01
A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.
Farajzadeh, Mir Ali; Feriduni, Behruz; Mogaddam, Mohammad Reza Afshar
2016-01-01
In this paper, a new extraction method based on counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction and preconcentration of widely used pesticides in fruit juice samples prior to their analysis by gas chromatography-flame ionization detection (GC-FID). In this method, initially, sodium chloride as a separation reagent is filled into a small column and a mixture of water (or fruit juice) and acetonitrile is passed through the column. By passing the mixture sodium chloride is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected organic phase (acetonitrile) is removed with a syringe and mixed with 1,1,2,2-tetrachloroethane (extraction solvent at µL level). In the second step, for further enrichment of the analytes the above mixture is injected into 5 mL de-ionized water placed in a test tube with conical bottom in order to dissolve acetonitrile into water and to achieve a sedimented phase at µL-level volume containing the enriched analytes. Under the optimal extraction conditions (extraction solvent, 1.5 mL acetonitrile; pH, 7; flow rate, 0.5 mL min(-1); preconcentration solvent, 20 µL 1,1,2,2-tetrachloroethane; NaCl concentration; 5%, w/w; and centrifugation rate and time, 5000 rpm and 5 min, respectively), the extraction recoveries and enrichment factors ranged from 87% to 96% and 544 to 600, respectively. Repeatability of the proposed method, expressed as relative standard deviations, ranged from 2% to 6% for intra-day (n=6, C=250 or 500 µg L(-1)) and inter-days (n=4, C=250 or 500 µg L(-1)) precisions. Limits of detection are obtained between 2 and 12 µg L(-1). Finally, the proposed method is applied for the determination of the target pesticide residues in the juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Konieczna, Lucyna; Roszkowska, Anna; Niedźwiecki, Maciej; Bączek, Tomasz
2016-01-29
A simple and sensitive method using dispersive liquid-liquid microextraction (DLLME) followed by liquid chromatography coupled to mass spectrometry (LC-MS) with a hydrophilic interaction chromatography (HILIC) column was developed for the simultaneous determination of 13 compounds of different polarities, comprising monoamine neurotransmitters (dopamine, norepinephrine, epinephrine and serotonin) along with their respective precursors and metabolites, in human urine samples. The microextraction procedure was based on the fast injection of a mixture of ethanol (disperser solvent) and dichloromethane (extraction solvent) into a human urine sample, forming a cloudy solution in the Eppendorf tube. After centrifugation, the sedimented phase was collected and subsequently analyzed by LC-HILIC-MS in about 12min without a derivatization step. The separation was performed on an XBridge Amide™ BEH column 3.0×100mm, 3.5mm and the mobile phase consisted of phase A: 10mM ammonium formate buffer in water pH 3.0 and phase B: 10 mM ammonium formate buffer in acetonitrile, under gradient program elution. Tyrosine, tryptophan, 5-hydroxytryptophan, dopamine, epinephrine, norepinephrine, serotonin, 3-methoxytyramine, 5-hydroxyindole-3-acetic acid, 3,4-dihydroxy-l-phenylalanine and norvaline (internal standard) were detected in the positive ionization mode. While vanillylmandelic acid, homovanillic acid, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxybenzylamine (internal standard) were detected in the negative ionization mode. Parameters influencing DLLME and LC-HILIC-MS were investigated. Under the optimum conditions, the proposed method exhibited a low detection limit (5-10ngmL(-1)), and good linearity with R between 0.9991 and 0.9998. The recoveries in human urine samples were 99.0%±3.6%. for the 13 studied biogenic amines with intra- and inter-day RSDs of 0.24-9.55% and 0.31-10.0%, respectively. The developed DLLME-LC-MS method could be successfully applied for the determination of trace amounts of polar endogenous compounds, such as neurotransmitters, in human urine samples, including samples with a reduced volume obtained from pediatric patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Laminar dispersion at low and high Peclet numbers in finite-length patterned microtubes
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Cerbelli, Stefano
2017-06-01
Laminar dispersion of solutes in finite-length patterned microtubes is investigated at values of the Reynolds number below unity. Dispersion is strongly influenced by axial flow variations caused by patterns of periodic pillars and gaps in the flow direction. We focus on the Cassie-Baxter state, where the gaps are filled with air pockets, therefore enforcing free-slip boundary conditions at the flat liquid-air interface. The analysis of dispersion is approached by considering the temporal moments of solute concentration. Based on this approach, we investigate the dispersion properties in a wide range of values of the Peclet number, thus gaining insight into how the patterned structure of the microtube influences both the Taylor-Aris and the convection-dominated dispersion regimes. Numerical results for the velocity field and for the moment hierarchy are obtained by means of finite element method solution of the corresponding transport equations. We show that for different patterned geometries, in a range of Peclet values spanning up to six decades, the dispersion features in a patterned microtube are equivalent to those of a microtube characterized by a uniform slip velocity equal to the wall-average velocity of the patterned case. This suggests that two patterned micropipes with different geometry yet characterized by the same flow rate and average wall velocity will exhibit the same dispersion features as well as the same macroscopic pressure drop.
Synthesis, stabilization, and characterization of metal nanoparticles
NASA Astrophysics Data System (ADS)
White, Gregory Von, II
Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.
Zgoła-Grześkowiak, Agnieszka
2010-03-12
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography with fluorescence detector was applied for the determination of alkylphenols and their short-chained ethoxylates in water samples. Development of DLLME procedure included optimisation of some important parameters such as kind and volume of extracting and dispersing solvents. Under optimised conditions 50 microL of trichloroethylene in 1.5 mL of acetone were rapidly injected into 5 mL of a water sample. After centrifuging the organic phase containing the analytes was taken for evaporation with a gentle nitrogen purge and reconstituted to 50 microL of acetonitrile. The aliquot of this solution was analysed with the use of HPLC. For octylphenol (OP) and octylphenol ethoxylates (OPEOs) linearity was satisfactory in the range 8-1000 microg L(-1) and for nonylphenol (NP) and nonylphenol ethoxylates (NPEOs) linearity was in the range from 50 to about 3000 microg L(-1). Limit of quantitation was 0.1 microg L(-1) for OP and OPEOs and 0.3 microg L(-1) for NP and NPEOs. Satisfactory recoveries between 66 and 79% were obtained for environmental samples. The results showed that DLLME is a simple, rapid and sensitive analytical method for the preconcentration of trace amounts of alkylphenols and their ethoxylates in environmental water samples. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wright, M. Clara; Manuel, Michele; Wallace, Terryl
2013-01-01
A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.
Du, Kunze; Li, Jin; Bai, Yun; An, Mingrui; Gao, Xiu-Mei; Chang, Yan-Xu
2018-04-01
A simple and green ionic liquid-based vortex-forced matrix solid phase dispersion (IL-VFMSPD) method was presented to simultaneously extract 5-hydroxymethyl furfurol (5-HMF) and iridoid glycosides in Fructus Corni by ultra-high performance liquid chromatography. Ionic liquid was used as a green elution reagent in vortex-forced MSPD process. A few parameters such as the type of ionic liquid, the type of sorbent, ratio of sample to sorbent, the concentration and volume of ionic liquid, grinding time and vortex time, were investigated in detail and an orthogonal design experiment was introduced to confirm the best conditions in this procedure. With the final optimized method, the recoveries of the target compounds in Fructus Corni were in the range of 95.2-103% (RSD<5.0%) and the method displayed a good linearity within the range of 0.8-200 μg mL -1 for morroniside, sweroside, loganin, cornuside and 1.2-300 μg mL -1 for 5-HMF. The limits of detection ranged from 0.02 to 0.08 μg mL -1 for all compounds. The results showed that the newly established method was efficiently applied to extract and determine iridoid glycosides and 5-HMF for quality control of Fructus Corni. Copyright © 2017 Elsevier Ltd. All rights reserved.
Costa, Luciano T; Ribeiro, Mauro C C
2006-05-14
Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.
Fontana, Ariel; Rodríguez, Isaac; Cela, Rafael
2018-04-20
The suitability of dispersive liquid-liquid microextraction (DLLME) and gas chromatography accurate mass spectrometry (GC-MS), based on a time-of-flight (TOF) MS analyzer and using electron ionization (EI), for the characterization of volatile and semi-volatile profiles of grape marc distillates (grappa) are evaluated. DLLME conditions are optimized with a selection of compounds, from different chemical families, present in the distillate spirit. Under final working conditions, 2.5 mL of sample and 0.5 mL of organic solvents are consumed in the sample preparation process. The absolute extraction efficiencies ranged from 30 to 100%, depending on the compound. For the same sample volume, DLLME provided higher responses than solid-phase microextraction (SPME) for most of the model compounds. The GC-EI-TOF-MS records of grappa samples were processed using a data mining non-targeted search algorithm. In this way, chromatographic peaks and accurate EI-MS spectra of sample components were linked. The identities of more than 140 of these components are proposed from comparison of their accurate spectra with those in a low resolution EI-MS database, accurate masses of most intense fragment ions of known structure, and available chromatographic retention index. The use of chromatographic and spectral data, associated to the set of components mined from different grappa samples, for multivariate analysis purposes is also illustrated in the study. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A rapid, effective technique applying vortex-assisted liquid–liquid microextraction (VALLME) prior to ultra high performance liquid chromatography-evaporating light scattering detectection/ mass spectroscopy (UHPLC-ELSD/MS) determination was developed for the analysis of four cucurbitane triterpenoi...
Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José
2016-07-01
Dispersive liquid-liquid microextraction was used to preconcentrate three spirocyclic tetronic/tetramic acid derivatives (spirotetramat, spiromesifen and spirodiclofen) and five neonicotinoid (thiamethoxam, chlotianidin, imidacloprid, acetamiprid and thiacloprid) insecticides previously extracted from fruit and vegetable matrices with acetonitrile. The organic enriched phase was evaporated, reconstituted in 25μL acetonitrile and analyzed by reversed-phase liquid chromatography with tandem mass spectrometry using a triple quadrupole in selected reaction monitoring mode. Enrichment factors in the 15-100 range were obtained. A matrix effect was observed, the detection limits varying between 0.025 and 0.5ngg(-1), depending on the compound and the sample matrix. The developed method was applied to the analysis of 25 samples corresponding to five different fruit and vegetable matrices. Only thiamethoxam was detected in a lemon sample at a concentration close to the quantification limit, and spiromesifen and spirotetramat at concentrations between 11.6 and 54.5ngg(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Shuaimin; Wu, Di; Li, Guoliang; Lv, Zhengxian; Gong, Peiwei; Xia, Lian; Sun, Zhiwei; Chen, Guang; Chen, Xuefeng; You, Jinmao; Wu, Yongning
2017-11-01
The intake of N-nitrosamines (NAs) from foodstuffs is considered to be an important influence factor for several cancers. But the rapid and sensitive screening of NAs remains a challenge in the field of food safety. Inspired by that, a sensitive and rapid method was demonstrated for determination of five NAs (Nitrosopyrrolidine, Nitrosodimethylamine, Nitrosodiethylamine, Nitrosodipropylamine and Nitrosodibutylamine) using dispersive liquid-liquid microextraction (DLLME) followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The NAs were firstly denitrosated and labeled by 2-(11H-benzo[a]carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) and finally enriched by DLLME. Furthermore, the main DLLME conditions were optimized systematically. Under the optimal conditions, satisfactory limits of detection (LODs) were obtained with a range of 0.01-0.07ngg -1 , which were significantly lower than the reported methods. The developed method showed many merits including rapidity, simplicity, high sensitivity and excellent selectivity, which shows a broad prospect in food safety analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nguyen, Luan; Tao, Franklin Feng
2018-02-01
Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.
Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali
2014-10-15
A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.
Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin
2018-05-01
Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus it has great potential for the determination of trace endogenous steroids in complex human fluids. Graphical abstract The newly developed method has three obvious advantages: combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously. It avoids a heating and cooling process which significantly reduces the extraction time and energy cost and easily produces high recoveries for target analytes.
Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air
NASA Technical Reports Server (NTRS)
Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott
2000-01-01
The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet trajectory analysis overpredicts the liquid mass penetration, and indicates a need for a more rigorous model to account for the three-dimensional mixing field induced by the jet-crossflow interaction. Nonetheless, the general procedures and criteria that are outlined can be used to efficiently assess and compare the quality of sprays formed under different conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome C.
The complex optical refractive index contains the optical constants, n(more » $$\\tilde{u}$$)and k($$\\tilde{u}$$), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.« less
He, Yongrui; Zhao, Xian-En; Zhu, Shuyun; Wei, Na; Sun, Jing; Zhou, Yubi; Liu, Shu; Liu, Zhiqiang; Chen, Guang; Suo, Yourui; You, Jinmao
2016-08-05
Simultaneous monitoring of several neurotransmitters (NTs) linked to Parkinson's disease (PD) has important scientific significance for PD related pathology, pharmacology and drug screening. A new simple, fast and sensitive analytical method, based on in situ derivatization-ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) in a single step, has been proposed for the quantitative determination of catecholamines and their biosynthesis precursors and metabolites in rat brain microdialysates. The method involved the rapid injection of the mixture of low toxic bromobenzene (extractant) and acetonitrile (dispersant), which containing commercial Lissamine rhodamine B sulfonyl chloride (LRSC) as derivatization reagent, into the aqueous phase of sample and buffer, and the following in situ DUADLLME procedure. After centrifugation, 50μL of the sedimented phase (bromobenzene) was directly injected for ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) detection in multiple reaction monitoring (MRM) mode. This interesting combination brought the advantages of speediness, simpleness, low matrix effects and high sensitivity in an effective way. Parameters of in situ DUADLLME and UHPLC-MS/MS conditions were all optimized in detail. The optimum conditions of in situ DUADLLME were found to be 30μL of microdialysates, 150μL of acetonitrile containing LRSC, 50μL of bromobenzene and 800μL of NaHCO3-Na2CO3 buffer (pH 10.5) for 3.0min at 37°C. Under the optimized conditions, good linearity was observed with LODs (S/N>3) and LOQs (S/N>10) of LRSC derivatized-NTs in the range of 0.002-0.004 and 0.007-0.015 nmol/L, respectively. It also brought good precision (3.2-12.8%, peak area CVs%), accuracy (94.2-108.6%), recovery (94.5-105.5%) and stability (3.8-8.1%, peak area CVs%) results. Moreover, LRSC derivatization significantly improved chromatographic resolution and MS detection sensitivity of NTs when compared with the reported studies through the introduction of a permanent charged moiety from LRSC into NTs. Taken together, this in situ DUADLLME method was successfully applied for the simultaneous determination of six NTs in biological samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Optical probing of the metal-to-insulator transition in a two-dimensional high-mobility electron gas
NASA Astrophysics Data System (ADS)
Dionigi, F.; Rossella, F.; Bellani, V.; Amado, M.; Diez, E.; Kowalik, K.; Biasiol, G.; Sorba, L.
2011-06-01
We study the quantum Hall liquid and the metal-insulator transition in a high-mobility two-dimensional electron gas, by means of photoluminescence and magnetotransport measurements. In the integer and fractional regime at ν>1/3, by analyzing the emission energy dispersion we probe the magneto-Coulomb screening and the hidden symmetry of the electron liquid. In the fractional regime above ν=1/3, the system undergoes metal-to-insulator transition, and in the insulating phase the dispersion becomes linear with evidence of an increased renormalized mass.
Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun; Pang, Xiao-Qing; Xu, Jing-Jing
2016-01-01
A simple, rapid, and highly selective trace matrix solid phase dispersion (MSPD) technique, coupled with ultra-performance liquid chromatography-ultraviolet detection, was proposed for extracting flavonoids from orange fruit peel matrices. Molecular sieve SBA-15 was applied for the first time as a solid support in trace MSPD. Parameters, such as the type of dispersant, mass ratio of the sample to the dispersant, grinding time, and elution pH, were optimized in detail. The optimal extraction conditions involved dispersing a powdered fruit peel sample (25 mg) into 25mg of SBA-15 and then eluting the target analytes with 500 μL of methanol. A satisfactory linearity (r(2) > 0.9990) was obtained, and the calculated limits of detection reached 0.02-0.03 μg/mL for the compounds. The results showed that the method developed was successfully applied to determine the content of flavonoids in complex fruit peel matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abdelhamid, Hani Nasser; Bhaisare, Mukesh L; Wu, Hui-Fen
2014-03-01
A new ceria (CeO2) nanocubic modified surfactant is used as the basis of a novel nano-based microextraction technique for highly sensitive detection of pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus). The technique uses ultrasound enhanced surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME) with and without ceria (CeO2) followed by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). In order to achieve high separation efficiency, we investigated the influential parameters, including extraction time of ultrasonication, type and volume of the extraction solvent and surfactant. Among various surfactants, the cationic surfactants can selectively offer better extraction efficiency on bacteria analysis than that of the anionic surfactants due to the negative charges of bacteria cell membranes. Extractions of the bacteria lysate from aqueous samples via UESA-DLLME-MALDI-MS were successfully achieved by using cetyltrimethyl ammonium bromide (CTAB, 10.0 µL, 1.0×10(-3) M) as surfactants in chlorobenzene (10.0 µL) and chloroform (10.0 µL) as the optimal extracting solvent for P. aeruginosa and S. aureus, respectively. Ceria nanocubic was synthesized, and functionalized with CTAB (CeO2@CTAB) and then characterized using transmission electron microscopy (TEM) and optical spectroscopy (UV and FTIR). CeO2@CTAB demonstrates high extraction efficiency, improve peaks ionization, and enhance resolution. The prime reasons for these improvements are due to the large surface area of nanoparticles, and its absorption that coincides with the wavelength of MALDI laser (337 nm, N2 laser). CeO2@CTAB-based microextraction offers lowest detectable concentrations tenfold lower than that of without nanoceria. The present approach has been successfully applied to detect pathogenic bacteria at low concentrations of 10(4)-10(5) cfu/mL (without ceria) and at 10(3)-10(4) cfu/mL (with ceria) from bacteria suspensions. Finally, the current approach was applied for analyzing the pathogenic bacteria in biological samples (blood and serum). Ceria assist surfactant (CeO2@CTAB) liquid-liquid microextraction (LLME) offers better extraction efficiency than that of using the surfactant in LLME alone. © 2013 Elsevier B.V. All rights reserved.