Science.gov

Sample records for liquid chemical agents

  1. Comparative sporicidal effects of liquid chemical agents.

    PubMed Central

    Sagripanti, J L; Bonifacino, A

    1996-01-01

    We compared the effectiveness of glutaraldehyde, formaldehyde, hydrogen peroxide, peracetic acid, cupric ascorbate (plus a sublethal amount of hydrogen peroxide), sodium hypochlorite, and phenol to inactivate Bacillus subtilis spores under various conditions. Each chemical agent was distinctly affected by pH, storage time after activation, dilution, and temperature. Only three of the preparations (hypochlorite, peracetic acid, and cupric ascorbate) studied here inactivated more than 99.9% of the spore load after a 30-min incubation at 20 degrees C at concentrations generally used to decontaminate medical devices. Under similar conditions, glutaraldehyde inactivated approximately 90%, and hydrogen peroxide, formaldehyde, and phenol produced little killing of spores in suspension. By kinetic analysis at different temperatures, we calculated the rate of spore inactivation (k) and the activation energy of spore killing (delta E) for each chemical agent. Rates of spore inactivation had a similar delta E value of approximately 20 kcal/mol (ca.83.68 kJ/mol) for every substance tested. The variation among k values allowed a quantitative comparison of liquid germicidal agents. PMID:8593054

  2. Liquid contents verification for explosives, chemical agents, and dissolved narcotics

    NASA Astrophysics Data System (ADS)

    Kumar, Sankaran; McMichael, W. Casey; Magnuson, Erik E.; Lee, Young K.; Moeller, Charles R.; Czipott, Peter V.; Rayner, Timothy J.; Newman, David E.; Wroblewski, Dariusz

    2001-02-01

    An increasingly important need today is to guard against terrorist attacks at key locations such as airports and public buildings. Liquid explosives can avoid detection at security checkpoints by being concealed as beverages or other benign liquids. Magnetic resonance (MR) offers a safe, non-invasive technology for probing and classifying the liquid contents inside sealed non-metallic containers or packages. Quantum Magnetics has developed a Liquid Explosives Screening System or `Bottle Scanner' to screen for liquid explosives and flammables, described at an earlier SPIE conference in 1996. Since then, the Bottle Scanner's performance has been significantly improved by the incorporation of neural network-based liquid classification. Recently we have shown that the incorporation of additional discrimination parameters can further enhance liquid classification. In addition to screening for explosives and flammables, the Bottle Scanner can be effective against chemical agents, many of which contain fluorine or phosphorous, both of which have MR signatures. Finally, we have evidence that the Bottle Scanner may also be able to detect narcotics dissolved in beverages, one of the methods used to smuggle narcotics across international borders. The development of the Bottle Scanner has been funded by the Federal Aviation Administration.

  3. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    PubMed

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. PMID:21944706

  4. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    PubMed

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies.

  5. Chemical warfare agents.

    PubMed

    Chauhan, S; Chauhan, S; D'Cruz, R; Faruqi, S; Singh, K K; Varma, S; Singh, M; Karthik, V

    2008-09-01

    Chemical warfare agents (CWA's) are defined as any chemical substance whose toxic properties are utilised to kill, injure or incapacitate an enemy in warfare and associated military operations. Chemical agents have been used in war since times immemorial, but their use reached a peak during World War I. During World War II only the Germans used them in the infamous gas chambers. Since then these have been intermittently used both in war and acts of terrorisms. Many countries have stockpiles of these agents. There has been a legislative effort worldwide to ban the use of CWA's under the chemical weapons convention which came into force in 1997. However the manufacture of these agents cannot be completely prohibited as some of them have potential industrial uses. Moreover despite the remedial measures taken so far and worldwide condemnation, the ease of manufacturing these agents and effectiveness during combat or small scale terrorist operations still make them a powerful weapon to reckon with. These agents are classified according to mechanism of toxicity in humans into blister agents, nerve agents, asphyxiants, choking agents and incapacitating/behavior altering agents. Some of these agents can be as devastating as a nuclear bomb. In addition to immediate injuries caused by chemical agents, some of them are associated with long term morbidities and psychological problems. In this review we will discuss briefly about the historical background, properties, manufacture techniques and industrial uses, mechanism of toxicity, clinical features of exposure and pharmacological management of casualties caused by chemical agents. PMID:21783898

  6. Broad-Spectrum Liquid- and Gas-Phase Decontamination of Chemical Warfare Agents by One-Dimensional Heteropolyniobates.

    PubMed

    Guo, Weiwei; Lv, Hongjin; Sullivan, Kevin P; Gordon, Wesley O; Balboa, Alex; Wagner, George W; Musaev, Djamaladdin G; Bacsa, John; Hill, Craig L

    2016-06-20

    A wide range of chemical warfare agents and their simulants are catalytically decontaminated by a new one-dimensional polymeric polyniobate (P-PONb), K12 [Ti2 O2 ][GeNb12 O40 ]⋅19 H2 O (KGeNb) under mild conditions and in the dark. Uniquely, KGeNb facilitates hydrolysis of nerve agents Sarin (GB) and Soman (GD) (and their less reactive simulants, dimethyl methylphosphonate (DMMP)) as well as mustard (HD) in both liquid and gas phases at ambient temperature and in the absence of neutralizing bases or illumination. Three lines of evidence establish that KGeNb removes DMMP, and thus likely GB/GD, by general base catalysis: a) the k(H2 O)/k(D2 O) solvent isotope effect is 1.4; b) the rate law (hydrolysis at the same pH depends on the amount of P-PONb present); and c) hydroxide is far less active against the above simulants at the same pH than the P-PONbs themselves, a critical control experiment.

  7. Broad-Spectrum Liquid- and Gas-Phase Decontamination of Chemical Warfare Agents by One-Dimensional Heteropolyniobates.

    PubMed

    Guo, Weiwei; Lv, Hongjin; Sullivan, Kevin P; Gordon, Wesley O; Balboa, Alex; Wagner, George W; Musaev, Djamaladdin G; Bacsa, John; Hill, Craig L

    2016-06-20

    A wide range of chemical warfare agents and their simulants are catalytically decontaminated by a new one-dimensional polymeric polyniobate (P-PONb), K12 [Ti2 O2 ][GeNb12 O40 ]⋅19 H2 O (KGeNb) under mild conditions and in the dark. Uniquely, KGeNb facilitates hydrolysis of nerve agents Sarin (GB) and Soman (GD) (and their less reactive simulants, dimethyl methylphosphonate (DMMP)) as well as mustard (HD) in both liquid and gas phases at ambient temperature and in the absence of neutralizing bases or illumination. Three lines of evidence establish that KGeNb removes DMMP, and thus likely GB/GD, by general base catalysis: a) the k(H2 O)/k(D2 O) solvent isotope effect is 1.4; b) the rate law (hydrolysis at the same pH depends on the amount of P-PONb present); and c) hydroxide is far less active against the above simulants at the same pH than the P-PONbs themselves, a critical control experiment. PMID:27061963

  8. Detection of chemical agent aerosols

    NASA Astrophysics Data System (ADS)

    Fox, Jay A.; Ahl, Jeffrey L.; D'Amico, Francis M.; Vanderbeek, Richard G.; Moon, Raphael; Swim, Cynthia R.

    1999-05-01

    One of the major threats presented by a chemical agent attack is that of a munition exploding overhead and 'raining' aerosols which can contaminate surfaces when they impact. Since contact with these surfaces can be fatal, it is imperative to know when such an attack has taken place and the likely threat density and location. We present the results of an experiment designed to show the utility of a CO2 lidar in detecting such an attack. Testing occurred at Dugway Proving Grounds, Utah and involved the simulation of an explosive airburst chemical attack. Explosions occurred at a height of 30 m and liquid droplets from two chemicals, PEG-200 (polyethylene glycol 200) and TEP (triethylphosphate), were expelled and fell to the ground. The munition was the U.S. Army M9 Simulator, Projectile, Airburst, Liquid (SPAL) system that is designed for chemical warfare training exercises. The instrument that was used to detect the presence of the aerosols was the Laser Standoff Chemical Detector (LSCD) which is a light detection and ranging (LIDAR) system that utilizes a rapidly tunable, pulsed CO2 laser. The LIDAR scanned a horizontal path approximately 5 - 8 m above the ground in order to measure the concentration of liquid deposition. The LIDAR data were later correlated with card data to determine how well the system could predict the location and quantity of liquid deposition on the ground.

  9. Chemical warfare agents

    PubMed Central

    Ganesan, K.; Raza, S. K.; Vijayaraghavan, R.

    2010-01-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  10. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention.

    PubMed

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud, Raghavender D; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-05-27

    A simple, sensitive and low temperature sample preparation method is developed for detection and identification of Chemical Warfare Agents (CWAs) and scheduled esters in organic liquid using magnetic dispersive solid phase extraction (MDSPE) followed by gas chromatography-mass spectrometry analysis. The method utilizes Iron oxide@Poly(methacrylic acid-co-ethylene glycol dimethacrylate) resin (Fe2O3@Poly(MAA-co-EGDMA)) as sorbent. Variants of these sorbents were prepared by precipitation polymerization of methacrylic acid-co-ethylene glycol dimethacrylate (MAA-co-EGDMA) onto Fe2O3 nanoparticles. Fe2O3@poly(MAA-co-EGDMA) with 20% MAA showed highest recovery of analytes. Extractions were performed with magnetic microspheres by MDSPE. Parameters affecting the extraction efficiency were studied and optimized. Under the optimized conditions, method showed linearity in the range of 0.1-3.0μgmL(-1) (r(2)=0.9966-0.9987). The repeatability and reproducibility (relative standard deviations (RSDs) %) were in the range of 4.5-7.6% and 3.4-6.2% respectively for organophosphorous esters in dodecane. Limits of detection (S/N=3/1) and limit of quantification (S/N=10/1) were found to be in the range of 0.05-0.1μgmL(-1) and 0.1-0.12μgmL(-1) respectively in SIM mode for selected analytes. The method was successfully validated and applied to the extraction and identification of targeted analytes from three different organic liquids i.e. n-hexane, dodecane and silicon oil. Recoveries ranged from 58.7 to 97.3% and 53.8 to 95.5% at 3μgmL(-1) and 1μgmL(-1) spiking concentrations. Detection of diethyl methylphosphonate (DEMP) and O-Ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) in samples provided by the Organization for Prohibition of Chemical Weapons Proficiency Test (OPCW-PT) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals.

  11. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention.

    PubMed

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud, Raghavender D; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-05-27

    A simple, sensitive and low temperature sample preparation method is developed for detection and identification of Chemical Warfare Agents (CWAs) and scheduled esters in organic liquid using magnetic dispersive solid phase extraction (MDSPE) followed by gas chromatography-mass spectrometry analysis. The method utilizes Iron oxide@Poly(methacrylic acid-co-ethylene glycol dimethacrylate) resin (Fe2O3@Poly(MAA-co-EGDMA)) as sorbent. Variants of these sorbents were prepared by precipitation polymerization of methacrylic acid-co-ethylene glycol dimethacrylate (MAA-co-EGDMA) onto Fe2O3 nanoparticles. Fe2O3@poly(MAA-co-EGDMA) with 20% MAA showed highest recovery of analytes. Extractions were performed with magnetic microspheres by MDSPE. Parameters affecting the extraction efficiency were studied and optimized. Under the optimized conditions, method showed linearity in the range of 0.1-3.0μgmL(-1) (r(2)=0.9966-0.9987). The repeatability and reproducibility (relative standard deviations (RSDs) %) were in the range of 4.5-7.6% and 3.4-6.2% respectively for organophosphorous esters in dodecane. Limits of detection (S/N=3/1) and limit of quantification (S/N=10/1) were found to be in the range of 0.05-0.1μgmL(-1) and 0.1-0.12μgmL(-1) respectively in SIM mode for selected analytes. The method was successfully validated and applied to the extraction and identification of targeted analytes from three different organic liquids i.e. n-hexane, dodecane and silicon oil. Recoveries ranged from 58.7 to 97.3% and 53.8 to 95.5% at 3μgmL(-1) and 1μgmL(-1) spiking concentrations. Detection of diethyl methylphosphonate (DEMP) and O-Ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) in samples provided by the Organization for Prohibition of Chemical Weapons Proficiency Test (OPCW-PT) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. PMID:27113675

  12. A New Understanding of Chemical Agent Release

    SciTech Connect

    Nakafuji, G; Greenman, R; Theofanous, T

    2002-07-24

    The evolution of thickened chemical agent released at supersonic velocities, due to a missile defense intercept or a properly functioning warhead, has been misunderstood. Current and historical experimental and modeling efforts have attributed agent breakup to a variety of droplet breakup mechanisms. According to this model, drops of agent fragment into subsequent generations of smaller drops until a stable drop size is reached. Recent experimental data conducted in a supersonic wind tunnel show that agent breakup is not driven by any droplet breakup mechanism. The breakup of agent is instead governed by viscoelastic behavior and aerodynamic history effects. This viscoelastic breakup mechanism results in the formation of threads and sheets of liquid, instead of drops. The evolution and final state of agent released has broad implications not only for aerobreakup models, but also for all atmospheric dispersion models.

  13. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  14. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  15. Dehydration of a polyether type extraction agent and of the corresponding K⁺ complex: insights into liquid-liquid extraction mechanisms by quantum chemical methods.

    PubMed

    Valente, Mário; Sousa, Sérgio Filipe; Magalhães, Alexandre L; Freire, Cristina

    2012-11-01

    In this paper we report a quantum chemical study performed at the B3LYP/6-311G++(d,p) level of theory on structural and energetic aspects of the sequential dehydration of a tetra-hydrated polyethylene-glycol type podand (1,2-bis-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-benzene, hereafter b33) and its complex with the K⁺ cation. Thermodynamical parameters were determined by hessian quantum calculations performed using a self-consistent reaction field (SCRF) method, taking into account solvent (dichloromethane) effects. The results allowed the estimation of dehydration enthalpies, entropies and free energies for the hydrated free b33 podand and its corresponding K⁺ cation complex in dichloromethane. The low absolute values found for the dehydration free energies as well as the structural features found for the optimized structures and the corresponding basis superposition calculated interaction energies, support the hypothesis of an interfacial complexation type mechanism governing the assisted extraction of K⁺ from an aqueous toward an organic phase, in liquid/liquid extraction.

  16. On-line high-performance liquid chromatography-ultraviolet-nuclear magnetic resonance method of the markers of nerve agents for verification of the Chemical Weapons Convention.

    PubMed

    Mazumder, Avik; Gupta, Hemendra K; Garg, Prabhat; Jain, Rajeev; Dubey, Devendra K

    2009-07-01

    This paper details an on-flow liquid chromatography-ultraviolet-nuclear magnetic resonance (LC-UV-NMR) method for the retrospective detection and identification of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the markers of the toxic nerve agents for verification of the Chemical Weapons Convention (CWC). Initially, the LC-UV-NMR parameters were optimized for benzyl derivatives of the APAs and AAPAs. The optimized parameters include stationary phase C(18), mobile phase methanol:water 78:22 (v/v), UV detection at 268nm and (1)H NMR acquisition conditions. The protocol described herein allowed the detection of analytes through acquisition of high quality NMR spectra from the aqueous solution of the APAs and AAPAs with high concentrations of interfering background chemicals which have been removed by preceding sample preparation. The reported standard deviation for the quantification is related to the UV detector which showed relative standard deviations (RSDs) for quantification within +/-1.1%, while lower limit of detection upto 16mug (in mug absolute) for the NMR detector. Finally the developed LC-UV-NMR method was applied to identify the APAs and AAPAs in real water samples, consequent to solid phase extraction and derivatization. The method is fast (total experiment time approximately 2h), sensitive, rugged and efficient.

  17. Wipe selection for the analysis of surface materials containing chemical warfare agent nitrogen mustard degradation products by ultra-high pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Willison, Stuart A

    2012-12-28

    Degradation products arising from nitrogen mustard chemical warfare agent were deposited on common urban surfaces and determined via surface wiping, wipe extraction, and liquid chromatography–tandem mass spectrometry detection. Wipes investigated included cotton gauze, glass fiber filter, non-woven polyester fiber and filter paper, and surfaces included several porous (vinyl tile, painted drywall, wood) and mostly non-porous (laminate, galvanized steel, glass) surfaces. Wipe extracts were analyzed by ultra-high pressure liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) and compared with high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) results. An evaluation of both techniques suggests UPLC–MS/MS provides a quick and sensitive analysis of targeted degradation products in addition to being nearly four times faster than a single HPLC run, allowing for greater throughput during a wide-spread release concerning large-scale contamination and subsequent remediation events. Based on the overall performance of all tested wipes, filter paper wipes were selected over other wipes because they did not contain interferences or native species (TEA and DEA) associated with the target analytes, resulting in high percent recoveries and low background levels during sample analysis. Other wipes, including cotton gauze, would require a pre-cleaning step due to the presence of large quantities of native species or interferences of the targeted analytes. Percent recoveries obtained from a laminate surface were 47–99% for all nitrogen mustard degradation products. The resulting detection limits achieved from wipes were 0.2 ng/cm(2) for triethanolamine (TEA), 0.03 ng/cm(2) for N-ethyldiethanolamine (EDEA), 0.1 ng/cm(2) for N-methyldiethanolamine (MDEA), and 0.1 ng/cm(2) for diethanolamine (DEA).

  18. Lightweight standoff chemical agent detector

    NASA Astrophysics Data System (ADS)

    Ditillo, John T.; Gross, Robert L.; Althouse, Mark L.; Lagna, William M.; Loerop, William R.; Deluca, Paul; Quinn, Thomas G.; Grim, Larry B.

    1995-02-01

    The lightweight standoff chemical agent detector (LSCAD) is an infrared Michelson interferometer operating in the 8 - 12 micron band and is designed primarily for military applications. The first group of prototypes has been delivered and is undergoing testing. A secondary and no less important mission of LSCAD is its application to the civilian environmental monitoring field. Trials with earlier systems at industrial sites have been successful. The system is designed to be operated from a vehicle while on the move. Platforms which have been used are road vehicles, helicopters, unmanned air vehicles (UAV), and scanning from a fixed emplacement. To meet the restrictions of military applications, the prototype system has a weight of about 22 lbs and is approximately 0.3 cu ft in size. It employs an onboard instrument control, data collection, and analysis and detection decision system which is key to its real-time operation. The hardware, data system, and preliminary results are discussed.

  19. Characterization of chemical agent transport in paints.

    PubMed

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials.

  20. History of chemical and biological warfare agents.

    PubMed

    Szinicz, L

    2005-10-30

    Chemical and biological warfare agents constitute a low-probability, but high-impact risk both to the military and to the civilian population. The use of hazardous materials of chemical or biological origin as weapons and for homicide has been documented since ancient times. The first use of chemicals in terms of weapons of mass destruction goes back to World War I, when on April 22, 1915 large amounts of chlorine were released by German military forces at Ypres, Belgium. Until around the 1970s of the 20th century, the awareness of the threat by chemical and biological agents had been mainly confined to the military sector. In the following time, the development of increasing range delivery systems by chemical and biological agents possessors sensitised public attention to the threat emanating from these agents. Their proliferation to the terrorists field during the 1990s with the expanding scale and globalisation of terrorist attacks suggested that these agents are becoming an increasing threat to the whole world community. The following article gives a condensed overview on the history of use and development of the more prominent chemical and biological warfare agents.

  1. History of chemical and biological warfare agents.

    PubMed

    Szinicz, L

    2005-10-30

    Chemical and biological warfare agents constitute a low-probability, but high-impact risk both to the military and to the civilian population. The use of hazardous materials of chemical or biological origin as weapons and for homicide has been documented since ancient times. The first use of chemicals in terms of weapons of mass destruction goes back to World War I, when on April 22, 1915 large amounts of chlorine were released by German military forces at Ypres, Belgium. Until around the 1970s of the 20th century, the awareness of the threat by chemical and biological agents had been mainly confined to the military sector. In the following time, the development of increasing range delivery systems by chemical and biological agents possessors sensitised public attention to the threat emanating from these agents. Their proliferation to the terrorists field during the 1990s with the expanding scale and globalisation of terrorist attacks suggested that these agents are becoming an increasing threat to the whole world community. The following article gives a condensed overview on the history of use and development of the more prominent chemical and biological warfare agents. PMID:16111798

  2. Screening of degradation products, impurities and precursors of chemical warfare agents in water and wet or dry organic liquid samples by in-sorbent tube silylation followed by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Terzic, Oliver

    2010-07-23

    A standard method used by inspection teams of the Organisation for the Prohibition of Chemical Weapons (OPCW) for preparation of aqueous samples requires several extraction and derivatization steps. This results in tedious and time consuming on-site analysis. A simple thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to analyse for a broad range of degradation products, impurities and precursors of chemical warfare agents (CWA) in water solutions and wet or dry organic liquid samples. The method is fast, sensitive, requires only microliter volumes of sample and enables the simultaneous determination of a wide range of compounds with widely differing polarity, volatility and reactivity. The applicability of the method was demonstrated by successful analysis of five OPCW Official Proficiency Test samples.

  3. 12 CFR 709.2 - NCUA Board as liquidating agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false NCUA Board as liquidating agent. 709.2 Section... INSURED CREDIT UNIONS IN LIQUIDATION § 709.2 NCUA Board as liquidating agent. (a) The Board, as... connection with any assets or property of any nature of the credit union. (b) The Board, as liquidating...

  4. Medical defense against blistering chemical warfare agents.

    PubMed

    Smith, W J; Dunn, M A

    1991-08-01

    First used in World War I, chemical blistering agents present a serious medical threat that has stimulated renewed interest in the light of extensive use in recent conflicts. Current medical management cannot yet prevent or minimize injury from the principal agent of concern--sulfur mustard. Research directed at this goal depends on defining effective intervention in the metabolic alterations induced by exposure to sulfur mustard.

  5. Development of a chemical vision spectrometer to detect chemical agents.

    SciTech Connect

    Demirgian, J.

    1999-02-23

    This paper describes initial work in developing a no-moving-parts hyperspectral-imaging camera that provides both a thermal image and specific identification of chemical agents, even in the presence of nontoxic plumes. The camera uses enhanced stand-off chemical agent detector (ESCAD) technology based on a conventional thermal-imaging camera interfaced with an acousto-optical tunable filter (AOTF). The AOTF is programmed to allow selected spectral frequencies to reach the two dimensional array detector. These frequencies are combined to produce a spectrum that is used for identification. If a chemical agent is detected, pixels containing the agent-absorbing bands are given a colored hue to indicate the presence of the agent. In test runs, two thermal-imaging cameras were used with a specially designed vaporizer capable of controlled low-level (low ppm-m) dynamic chemical releases. The objective was to obtain baseline information about detection levels. Dynamic releases allowed for realistic detection scenarios such as low sky, grass, and wall structures, in addition to reproducible laboratory releases. Chemical releases consisted of dimethylmethylphosphonate (DMMP) and methanol. Initial results show that the combination of AOTF and thermal imaging will produce a chemical image of a plume that can be detected in the presence of interfering substances.

  6. Detection of electrophilic and nucleophilic chemical agents

    SciTech Connect

    McElhanon, James R.; Shepodd, Timothy J.

    2014-08-12

    A "real time" method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.

  7. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis. PMID:19122437

  8. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  9. The Respiratory Toxicity of Chemical Warefare Agents

    EPA Science Inventory

    Inhalation is one of the most important routes of exposure for chemical warfare agents (CWAs) and thus, the lung remains a critical target of injury. Depending on the mode of action by which the CWAs cause injury, the nature of injury, the location being impacted within the respi...

  10. Detection of Electrophilic and Nucleophilic Chemical Agents

    DOEpatents

    McElhanon, James R.; Shepodd, Timothy J.

    2008-11-11

    A "real time" method for detecting electrophilic and nucleophilic species generally by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species.

  11. Environmental mimics of chemical warfare agents.

    PubMed

    Claborn, David M

    2004-12-01

    There are several natural and artificial factors that mimic the effects of chemical warfare agents, thereby causing unwarranted alarm and confusion on the battlefield. Symptoms associated with chemical warfare include paralysis, muscle tremors, heavy salivation, severe burns, blistering, and corrosive skin injuries among others. Similar symptoms can be produced from a variety of environmental sources, artificial and natural. This article reviews several published and unpublished examples of environmental factors that produce syndromes similar to those caused by these agents. Examples of such mimics include pesticides, blistering exudates from insects and plants, various types of bites, and naturally occurring diseases. The potential for confusion caused by these factors is discussed and means of discriminating between warfare agents and naturally occurring events are identified. Recommendations for the use of this information and for needed research are also discussed. PMID:15646185

  12. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Tak, Vijay; Purohit, Ajay; Pardasani, Deepak; Goud, D Raghavender; Jain, Rajeev; Dubey, D K

    2014-11-28

    Environmental markers of chemical warfare agents (CWAs) comprise millions of chemical structures. The simultaneous detection and identification of these environmental markers poses difficulty due to their diverse chemical properties. In this work, by using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF), a generic analytical method for the detection and identification of wide range of environmental markers of CWAs (including precursors, degradation and co-products of nerve agents and sesqui-mustards) in drinking water, was developed. The chromatographic analysis of 55 environmental markers of CWAs including isomeric and isobaric compounds was accomplished within 20 min, using 1.8 μm particle size column. Subsequent identification of the compounds was achieved by the accurate mass measurement of either protonated molecule [M+H](+) or ammonium adduct [M+NH4](+) and fragment ions. Isomeric and isobaric compounds were distinguished by chromatographic retention time, characteristic fragment ions generated by both in-source collision induced dissociation (CID) and CID in the collision cell by MS/MS experiments. The exact mass measurement errors for all ions were observed less than 3 ppm with internal calibration. The method limits of detection (LODs) and limits of quantification (LOQs) were determined in drinking water and found to be 1-50 ng mL(-1) and 5-125 ng mL(-1), respectively. Applicability of the proposed method was proved by determining the environmental markers of CWAs in aqueous samples provided by Organization for the Prohibition of Chemical Weapons during 34th official proficiency test.

  13. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Tak, Vijay; Purohit, Ajay; Pardasani, Deepak; Goud, D Raghavender; Jain, Rajeev; Dubey, D K

    2014-11-28

    Environmental markers of chemical warfare agents (CWAs) comprise millions of chemical structures. The simultaneous detection and identification of these environmental markers poses difficulty due to their diverse chemical properties. In this work, by using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF), a generic analytical method for the detection and identification of wide range of environmental markers of CWAs (including precursors, degradation and co-products of nerve agents and sesqui-mustards) in drinking water, was developed. The chromatographic analysis of 55 environmental markers of CWAs including isomeric and isobaric compounds was accomplished within 20 min, using 1.8 μm particle size column. Subsequent identification of the compounds was achieved by the accurate mass measurement of either protonated molecule [M+H](+) or ammonium adduct [M+NH4](+) and fragment ions. Isomeric and isobaric compounds were distinguished by chromatographic retention time, characteristic fragment ions generated by both in-source collision induced dissociation (CID) and CID in the collision cell by MS/MS experiments. The exact mass measurement errors for all ions were observed less than 3 ppm with internal calibration. The method limits of detection (LODs) and limits of quantification (LOQs) were determined in drinking water and found to be 1-50 ng mL(-1) and 5-125 ng mL(-1), respectively. Applicability of the proposed method was proved by determining the environmental markers of CWAs in aqueous samples provided by Organization for the Prohibition of Chemical Weapons during 34th official proficiency test. PMID:25454132

  14. Bacterial spores and chemical sporicidal agents.

    PubMed Central

    Russell, A D

    1990-01-01

    Bacterial spores are among the most resistant of all living cells to biocides, although the response depends on the stage of sporulation. The development of resistance to some agents such as chlorhexidine occurs much earlier in sporulation than does resistance to glutaraldehyde, which is a very late event. During germination or outgrowth or both, resistance is lost and the cells become as susceptible to biocides as nonsporulating bacteria. Mechanisms of spore resistance to, and the action of, biocides are discussed, and possible means of enhancing antispore activity are considered. The clinical and other uses of sporicidal and sporostatic chemical agents are described. Images PMID:2187595

  15. Chemical Warfare Agent Degradation and Decontamination

    SciTech Connect

    Talmage, Sylvia Smith; Watson, Annetta Paule; Hauschild, Veronique; Munro, Nancy B; King, J.

    2007-02-01

    The decontamination of chemical warfare agents (CWA) from structures, environmental media, and even personnel has become an area of particular interest in recent years due to increased homeland security concerns. In addition to terrorist attacks, scenarios such as accidental releases of CWA from U.S. stockpile sites or from historic, buried munitions are also subjects for response planning. To facilitate rapid identification of practical and effective decontamination approaches, this paper reviews pathways of CWA degradation by natural means as well as those resulting from deliberately applied solutions and technologies; these pathways and technologies are compared and contrasted. We then review various technologies, both traditional and recent, with some emphasis on decontamination materials used for surfaces that are difficult to clean. Discussion is limited to the major threat CWA, namely sulfur mustard (HD, bis(2-chloroethyl)sulfide), VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate), and the G-series nerve agents. The principal G-agents are GA (tabun, ethyl N,N-dimethylphosphoramidocyanidate), GB (sarin, isopropyl methylphosphonofluoridate), and GD (soman, pinacolyl methylphosphonofluoridate). The chemical decontamination pathways of each agent are outlined, with some discussion of intermediate and final degradation product toxicity. In all cases, and regardless of the CWA degradation pathway chosen for decontamination, it will be necessary to collect and analyze pertinent environmental samples during the treatment phase to confirm attainment of clearance levels.

  16. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  17. Differential mobility spectroscopy for chemical agent detection

    NASA Astrophysics Data System (ADS)

    Griffin, M. Todd

    2006-05-01

    General Dynamics ATP (GDATP) and Sionex Corporation (Sionex) are carrying out a cooperative development for a handheld chemical agent detector, being called JUNO TM, which will have lower false positives, higher sensitivity, and improved interference rejection compared with presently available detectors. This enhanced performance is made possible by the use of a new principle of ion separation called Differential Mobility Spectrometry (DMS). The enhanced selectivity is provided by the field tunable nature of the Sionex differential mobility technology (microDMxTM) which forms the analytical heart of the JUNO system and enables fingerprinting of molecules by characterization of the ionized molecular behavior under multiple electric field conditions. This enhanced selectivity is valuable in addressing not only the traditional list of chemical warfare agents (CWA) but also the substantial list of Toxic Industrial Compounds (TICs) and Toxic Industrial Materials (TIMs) which may be released in warfare or terrorist situations. Experimental results showing the ability of the microDMx to reject interferences, detect and resolve live agents are presented. An additional breakthrough in the technology was realized by operating the device at a reduced pressure of around 0.5 atmospheres. This reduced pressure operation resulted in roughly doubling the spectrometers resolution over what has previously been reported [1]. Advances have also been made in power consumption and packaging leading to a device suitable for portable, handheld, applications. Experimental results illustrating the performance of the microDMx technology employed in JUNO are highlighted.

  18. Remote sensing of chemical warfare agent by CO2 -lidar

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.

    2014-11-01

    The possibilities of remote sensing of chemical warfare agent by differential absorption method were analyzed. The CO2 - laser emission lines suitable for sounding of chemical warfare agent with provision for disturbing absorptions by water vapor were choose. The detection range of chemical warfare agents was estimated for a lidar based on CO2 - laser The other factors influencing upon echolocation range were analyzed.

  19. In-Situ Chemical Precipitation of Radioactive Liquid Waste - 12492

    SciTech Connect

    Osmanlioglu, Ahmet Erdal

    2012-07-01

    This paper presented in-situ chemical precipitation for radioactive liquid waste by using chemical agents. Results are reported on large-scale implementation on the removal of {sup 137}Cs, {sup 134}Cs and {sup 60}Co from liquid radioactive waste generating from Nuclear Research and Training Centre. Total amount of liquid radioactive waste was 35 m{sup 3} and main radionuclides were Cs-137, Cs- 134 and Co-60. Initial radioactivity concentration of the liquid waste was 2264, 17 and 9 Bq/liter for Cs-137, Cs-134 and Co-60 respectively. Potassium ferro cyanide was selected as chemical agent at high pH levels 8-10 according to laboratory tests. After the process, radioactive sludge precipitated at the bottom of the tank and decontaminated clean liquid was evaluated depending on discharge limits. By this precipitation method decontamination factors were determined as 60, 9 and 17 for Cs-137, Cs-134 and Co-60 respectively. At the bottom of the tank radioactive sludge amount was 0.98 m{sup 3}. It was transferred by sludge pumps to cementation unit for solidification. By in situ chemical processing 97% of volume reduction was achieved. Using the optimal concentration of 0.75 M potassium ferro cyanide about 98% of the {sup 137}Cs can be removed at pH 8. The Potassium ferro cyanide precipitation method could be used successfully in large scale applications with nickel and ferrum agents for removal of Cs-137, Cs-134 and Co- 60. Although DF values of laboratory test were much higher than in-situ implementation, liquid radioactive waste was decontaminated successfully by using potassium ferro cyanide. Majority of liquid waste were discharged as clean liquid. %97.2 volumetric amount of liquid waste was cleaned and discharged at the original site. Reduced amount of sludge transportation in drums is more economical and safer method than liquid transportation. Although DF values could be different for each of applications related to main specifications of original liquid waste, this

  20. Optical detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Webber, Michael E.; Pushkarsky, Michael B.; Patel, C. Kumar N.

    2004-12-01

    We present an analytical model evaluating the suitability of optical absorption based spectroscopic techniques for detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in ambient air. The sensor performance is modeled by simulating absorption spectra of a sample containing both the target and multitude of interfering species as well as an appropriate stochastic noise and determining the target concentrations from the simulated spectra via a least square fit (LSF) algorithm. The distribution of the LSF target concentrations determines the sensor sensitivity, probability of false positives (PFP) and probability of false negatives (PFN). The model was applied to CO2 laser based photoacosutic (L-PAS) CWA sensor and predicted single digit ppb sensitivity with very low PFP rates in the presence of significant amount of interferences. This approach will be useful for assessing sensor performance by developers and users alike; it also provides methodology for inter-comparison of different sensing technologies.

  1. Chemical and biological sensing using liquid crystals

    PubMed Central

    Carlton, Rebecca J.; Hunter, Jacob T.; Miller, Daniel S.; Abbasi, Reza; Mushenheim, Peter C.; Tan, Lie Na; Abbott, Nicholas L.

    2014-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output. PMID:24795857

  2. Exposure assessment for chemical and physical agents.

    PubMed

    Moretto, Angelo

    2015-01-01

    Exposure assessment to either chemical or physical agents, as applicable, is a necessary step for both etiologic diagnosis of occupational disease and health surveillance of workers. The assessment can be carried out by measurements of concentrations in air of the substance by either fixed or personal samplers. The former give an indication of the general environment, the latter, applied near the mouth of the worker, provide personalized information. Dermal exposure (deposition) and absorption occur in the occupational setting, but their measurement is so complex that there are no routine methods and no exposure limits established. Oral exposure is accidental or associated with poor hygienic practices, is very difficult to assess, and there are no occupational exposure limits of oral intake. Also accidental injuries caused by needles or other sharp objects that might be contaminated by chemicals occur but exposure assessment in this condition is almost impossible. Exposure is also assessed by biologic monitoring that entails measurements of the substance and/or of its metabolite(s) in accessible fluids, generally urine, blood, or expired air. Biochemical changes, e.g., enzyme inhibition, associated with exposure are also measured. The results of these measurements are compared with existing limit values in order to conclude on the safety of the working conditions. Since the limit values are derived with the application of conservative assumptions, there are no fine lines between health and disease. Therefore, in the clinical setting values below the limit can be generally regarded as safe. Values above the limits should be considered in conjunction with all other information to judge on the likelihood that the disease under investigation may have been caused by exposure to the substance. PMID:26563782

  3. [Decontamination of chemical warfare agents by photocatalysis].

    PubMed

    Hirakawa, Tsutomu; Mera, Nobuaki; Sano, Taizo; Negishi, Nobuaki; Takeuchi, Koji

    2009-01-01

    Photocatalysis has been widely applied to solar-energy conversion and environmental purification. Photocatalyst, typically titanium dioxide (TiO(2)), produces active oxygen species under irradiation of ultraviolet light, and can decompose not only conventional pollutants but also different types of hazardous substances at mild conditions. We have recently started the study of photocatalytic decontamination of chemical warfare agents (CWAs) under collaboration with the National Research Institute of Police Science. This article reviews environmental applications of semiconductor photocatalysis, decontamination methods for CWAs, and previous photocatalytic studies applied to CWA degradation, together with some of our results obtained with CWAs and their simulant compounds. The data indicate that photocatalysis, which may not always give a striking power, certainly helps detoxification of such hazardous compounds. Unfortunately, there are not enough data obtained with real CWAs due to the difficulty in handling. We will add more scientific data using CWAs in the near future to develop useful decontamination systems that can reduce the damage caused by possible terrorism. PMID:19122438

  4. The threat of mid-spectrum chemical warfare agents.

    PubMed

    Aas, Pål

    2003-01-01

    There is a spectrum of several threat agents, ranging from nerve agents and mustard agents to natural substances, such as biotoxins and new, synthetic, bioactive molecules produced by the chemical industry, to the classical biological warfare agents. The new, emerging threat agents are biotoxins produced by animals, plants, fungi, and bacteria. Examples of such biotoxins are botulinum toxin, tetanus toxin, and ricin. Several bioactive molecules produced by the pharmaceutical industry can be even more toxic than are the classical chemical warfare agents. Such new agents, like the biotoxins and bioregulators, often are called mid-spectrum agents. The threat to humans from agents developed by modern chemical synthesis and by genetic engineering also must be considered, since such agents may be more toxic or more effective in causing death or incapacitation than classical warfare agents. By developing effective medical protection and treatment against the most likely chemical and mid-spectrum threat agents, the effects of such agents in a war scenario or following a terrorist attack can be reduced.

  5. The Fate of Chemical Warfare Agents in the Environment

    SciTech Connect

    Talmage, Sylvia Smith; Munro, Nancy B; Watson, Annetta Paule; King, J.; Hauschild, Veronique

    2007-05-01

    Chemical Warfare Agents, Second Edition has been totally revised since the successful first edition and expanded to about three times the length, with many new chapters and much more in-depth consideration of all the topics. The chapters have been written by distinguished international experts in various aspects of chemical warfare agents and edited by an experienced team to produce a clear review of the field. The book now contains a wealth of material on the mechanisms of action of the major chemical warfare agents, including the nerve agent cyclosarin, formally considered to be of secondary importance, as well as ricin and abrin. Chemical Warfare Agents, Second Edition discusses the physico-chemical properties of chemical warfare agents, their dispersion and fate in the environment, their toxicology and management of their effects on humans, decontamination and protective equipment. New chapters cover the experience gained after the use of sarin to attack travelers on the Tokyo subway and how to deal with the outcome of the deployment of riot control agents such as CS gas. This book provides a comprehensive review of chemical warfare agents, assessing all available evidence regarding the medical, technical and legal aspects of their use. It is an invaluable reference work for physicians, public health planners, regulators and any other professionals involved in this field.

  6. [Chemical treatment and decomposition technique of the chemical warfare agents containing arsenicals].

    PubMed

    Kaise, Toshikazu; Kinoshita, Kenji

    2009-01-01

    The old Japanese army developed several chemical warfare agents on Ohkuno Island in Seto inland sea, Hiroshima Japan, during the period between 1919 and 1944. These chemical agents including yperite (mustard; irritating agent), lewisite (irritating agent), diphenylchloroarsine (DA; vomiting agent), diphenylcyanoarsine (DC; vomiting agent) and other poisonous gases were manufactured to be used in China. After World War II, the old Japanese army abandoned or dumped these agents into seas inside or outside of Japan and interior of China. Rather than being used for terrorism, these chemical warfare agents containing arsenicals may cause injury to some workers at the digging site of abandoned chemical weapons. Moreover, the leakage of chemical agents or an explosion of the bomb may result in environmental pollution, as a result, it is highly possible to cause serious health damage to the residents. There are still many abandoned or dumped warfare agents in Japan and China, therefore chemical agents containing arsenic are needed to be treated with alkaline for decomposition or to decompose with oxidizing agent. Presently, a large quantity of chemical agents and the contaminated soil are processed by combustion, and industrial waste is treated with sulfur compounds as the insoluble sulfur arsenic complex. This report describes the methods for the disposal of these organic arsenic agents that have been implemented until present and examines the future prospects. PMID:19122436

  7. Biomaterials for mediation of chemical and biological warfare agents.

    PubMed

    Russell, Alan J; Berberich, Jason A; Drevon, Geraldine F; Koepsel, Richard R

    2003-01-01

    Recent events have emphasized the threat from chemical and biological warfare agents. Within the efforts to counter this threat, the biocatalytic destruction and sensing of chemical and biological weapons has become an important area of focus. The specificity and high catalytic rates of biological catalysts make them appropriate for decommissioning nerve agent stockpiles, counteracting nerve agent attacks, and remediation of organophosphate spills. A number of materials have been prepared containing enzymes for the destruction of and protection against organophosphate nerve agents and biological warfare agents. This review discusses the major chemical and biological warfare agents, decontamination methods, and biomaterials that have potential for the preparation of decontamination wipes, gas filters, column packings, protective wear, and self-decontaminating paints and coatings.

  8. Laser Induced Chemical Liquid Phase Deposition (LCLD)

    SciTech Connect

    Nanai, Laszlo; Balint, Agneta M.

    2012-08-17

    Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

  9. Diphosphonium Ionic Liquids as Broad Spectrum Antimicrobial Agents

    PubMed Central

    O’Toole, George A.; Wathier, Michel; Zegans, Michael E.; Shanks, Robert M.Q.; Kowalski, Regis; Grinstaff, Mark W.

    2011-01-01

    Purpose One of the most disturbing trends in recent years is the growth of resistant strains of bacteria with the simultaneous dearth of new antimicrobial agents. Thus, new antimicrobial agents for use on the ocular surface are needed. Methods We synthesized a variety of ionic liquid compounds, which possess two positively charged phosphonium groups separated by ten methylene units in a “bola” type configuration. We tested these compounds for antimicrobial activity versus a variety of ocular pathogens, as well as their cytoxicity in vitro in a corneal cell line and in vivo in mice. Results The ionic liquid Di-Hex C10 demonstrated broad in vitro antimicrobial activity at the low micromolar concentrations versus Gram-negative and Gram-positive organisms, including methicillin-resistant Staphylococcus aureus strains, as well as ocular fungal pathogens. Treatment with Di-Hex C10 resulted in bacterial killing in as little as 15 minutes in vitro. Di-Hex C10 showed little cytotoxicity at 1 μM versus a corneal epithelial cell line or at 10 μM in a mouse corneal wound model. We also show that this bis-phosphonium ionic liquid structure is key, as a comparable mono phosphonium ionic liquid is cytotoxic to both bacteria and corneal epithelial cells. Conclusions Here we report the first use of dicationic bis-phosphonium ionic liquids as antimicrobial agents. Our data suggest that diphosphonium ionic liquids may represent a new class of broad-spectrum antimicrobial agents for use on the ocular surface. PMID:22236790

  10. Chemical Agents: Personal Cleaning and Disposal of Contaminated Clothing

    MedlinePlus

    ... Facts About Sheltering Facts About Personal Cleaning Public Health Emergency Response Guide Reaching At-Risk Populations MedCon Chemical Agents: Facts About Personal Cleaning and Disposal of Contaminated ...

  11. The induction of synaesthesia with chemical agents: a systematic review

    PubMed Central

    Luke, David P.; Terhune, Devin B.

    2013-01-01

    Despite the general consensus that synaesthesia emerges at an early developmental stage and is only rarely acquired during adulthood, the transient induction of synaesthesia with chemical agents has been frequently reported in research on different psychoactive substances. Nevertheless, these effects remain poorly understood and have not been systematically incorporated. Here we review the known published studies in which chemical agents were observed to elicit synaesthesia. Across studies there is consistent evidence that serotonin agonists elicit transient experiences of synaesthesia. Despite convergent results across studies, studies investigating the induction of synaesthesia with chemical agents have numerous methodological limitations and little experimental research has been conducted. Cumulatively, these studies implicate the serotonergic system in synaesthesia and have implications for the neurochemical mechanisms underlying this phenomenon but methodological limitations in this research area preclude making firm conclusions regarding whether chemical agents can induce genuine synaesthesia. PMID:24146659

  12. Chemical Action of Halogenated Agents in Fire Extinguishing

    NASA Technical Reports Server (NTRS)

    Belles, Frank E.

    1955-01-01

    The action of halogenated agents in preventing flame propagation in fuel-air mixtures in laboratory tests is discussed in terms of a possible chemical mechanism. The mechanism chosen is that of chain-breaking reactions between agent and active particles (hydrogen and oxygen atoms and hydroxyl radicsls). Data from the literature on the flammability peaks of n-heptane agent-air mixtures are treated. Ratings of agent effectiveness in terms of the fuel equivalent of the agent, based on both fuel and agent concentrations at the peak, are proposed as preferable to ratings in terms of agent concentration alone. These fuel-equivalent ratings are roughly correlated by reactivities assigned to halogen and hydrogen atoms in the agent molecules. It is concluded that the presence of hydrogen in agent need not reduce its fire-fighting ability, provided there is enough halogen to make the agent nonflammable. A method is presented for estimating from quenching-distance data a rate constant for the reaction of agent with active particles. A quantitative result is obtained for methyl bromide. This rate constant predicts the observed peak concentration of methyl bromide quite well. However, more data are needed to prove the validity of the method. The assumption that hal.ogenatedagents act mainly by chain-bresking reactions with active particles is consistent with the experimental facts and should help guide the selection of agents for further tests.

  13. The chemical agent experience at Rocky Mountain Arsenal

    SciTech Connect

    Mohrman, G.

    1995-06-01

    Rocky Mountain Arsenal (RMA) was constructed and commissioned in 1942 for the production of sulfur mustard and other chemical munitions for possible use in World War II. RMA also became a production site for Lewisite and Sarin, including synthesis and munition filling. Other chemical agents such as Phosgene were routinely handled, filled into munitions and demilitarized. During the 1970`s and the early 1980`s, RMA served as a primary demilitarization facility for the destruction of chemical agents. Throughout its chemical weapons history, RMA generated waste materials from production, neutralization, decontamination and testing. These operations led to the possibility of chemical agent contamination in soils, process equipment and structures that have required special attention as part of the overall Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) environmental cleanup operations being conducted by the Program Manager Rocky Mountain Arsenal (PMRMA). Adjusting normal sampling operations associated with CERCLA-type activities for the special Army regulations covering chemical agents has been a difficult task. This presentation will describe the evolution of chemical agent related efforts and operations as they pertain to RMA environmental cleanup activities, to include field sampling requirements, analytical methods, commercial laboratory use and the role of the on-site PMRMA laboratory.

  14. IMS software developments for the detection of chemical warfare agent

    NASA Technical Reports Server (NTRS)

    Klepel, ST.; Graefenhain, U.; Lippe, R.; Stach, J.; Starrock, V.

    1995-01-01

    Interference compounds like gasoline, diesel, burning wood or fuel, etc. are presented in common battlefield situations. These compounds can cause detectors to respond as a false positive or interfere with the detector's ability to respond to target compounds such as chemical warfare agents. To ensure proper response of the ion mobility spectrometer to chemical warfare agents, two special software packages were developed and incorporated into the Bruker RAID-1. The programs suppress interferring signals caused by car exhaust or smoke gases resulting from burning materials and correct the influence of variable sample gas humidity which is important for detection and quantification of blister agents like mustard gas or lewisite.

  15. Development of a persistent chemical agent simulation system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A Persistent Chemical Agent Simulation System was developed (PCASS) to simulate, for force-on-force training exercises, the field environment produced by the presence of persistent chemical agents. Such a simulant system must satisfy several requirements to be of value as a training aid. Specifically, it must provide for realistic training which will generate competency in at least the following areas: (1) detection of the persistent agent presence; (2) proper use of protective equipment and procedures; (3) determination of the extent of contamination; and (4) decontamination of equipment and personnel.

  16. A decontamination study of simulated chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  17. A decontamination study of simulated chemical and biological agents

    SciTech Connect

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  18. Solid-water detoxifying reagents for chemical and biological agents

    DOEpatents

    Hoffman, Dennis M.; Chiu, Ing Lap

    2006-04-18

    Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.

  19. Destruction of chemical warfare agents using metal-organic frameworks.

    PubMed

    Mondloch, Joseph E; Katz, Michael J; Isley, William C; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W; Snurr, Randall Q; Cramer, Christopher J; Hupp, Joseph T; Farha, Omar K

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy. PMID:25774952

  20. Destruction of chemical warfare agents using metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Mondloch, Joseph E.; Katz, Michael J.; Isley, William C., III; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W.; Hall, Morgan G.; Decoste, Jared B.; Peterson, Gregory W.; Snurr, Randall Q.; Cramer, Christopher J.; Hupp, Joseph T.; Farha, Omar K.

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic ZrIV ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  1. Destruction of chemical warfare agents using metal-organic frameworks.

    PubMed

    Mondloch, Joseph E; Katz, Michael J; Isley, William C; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W; Snurr, Randall Q; Cramer, Christopher J; Hupp, Joseph T; Farha, Omar K

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  2. Air monitoring and detection of chemical and biological agents

    SciTech Connect

    Leonelli, J.; Althouse, M.L.

    1999-06-01

    This volume contains the proceedings of SPIE`s remote sensing symposium which was held November 2--3, 1998 in Boston, Massachusetts. Topics of discussion include the following: system simulations, atmospheric modeling, and performance prediction studies of chemical warfare remote sensing technologies; ultraviolet laser-induced fluorescence and aerosol detection methods for remote sensing of biological warfare agents; passive detection methods for remote detection of chemical warfare agents; and lidar-based system performance assessments, demonstrations, and new concepts for chemical warfare/biological warfare detection.

  3. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    DOEpatents

    Yang, Xiaoguang; Swanson, Basil I.

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  4. Fighting nerve agent chemical weapons with enzyme technology.

    PubMed

    LeJeune, K E; Dravis, B C; Yang, F; Hetro, A D; Doctor, B P; Russell, A J

    1998-12-13

    The extreme toxicity of organophosphorous-based compounds has been known since the late 1930s. Starting in the mid-1940s, many nations throughout the world have been producing large quantities of organophosphorous (OP) nerve agents. Huge stockpiles of nerve agents have since developed. There are reportedly more than 200,000 tons of nerve agents in existence worldwide. There is an obvious need for protective clothing capable of guarding an individual from exposure to OP chemical weapons. Also, chemical processes that can effectively demilitarize and detoxify stored nerve agents are in great demand. The new and widely publicized Chemical Weapons Treaty requires such processes to soon be in place throughout the world. Biotechnology may provide the tools necessary to make such processes not only possible, but quite efficient in reducing the nerve agent dilemma. The following paper discusses some of the history in developing enzyme technology against nerve agents. Our laboratory has interest in enhancing the productivity and potential utility of these systems in both demilitarization and decontamination applications. Freeze-dried nerve agent-hydrolyzing enzyme preparations have been shown to be effective in decontaminating gaseous nerve agents. The direct incorporation of nerve agent-hydrolyzing enzymes within cross-linked polyurethane foam matrices during polymer synthesis has been shown to dramatically enhance the productivity of two different enzyme systems. The future goal of such work lies in building a bridge between the clinical application of nerve agent-hydrolyzing enzymes and practical processing techniques that may take advantage of the initial results already achieved in the laboratory.

  5. Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants

    NASA Astrophysics Data System (ADS)

    Kullander, F.; Landström, L.; Lundén, H.; Wästerby, Pär.

    2015-05-01

    Laser induced Raman scattering from the commonly used chemical warfare agent simulants dimethyl sulfoxide, tributyl phosphate, triethyl phosphonoacetate was measured at excitation wavelengths ranging from 210 to 410 nm using a pulsed laser based spectrometer system with a probing distance of 1.4 m and with a field of view on the target of less than 1mm. For the purpose of comparison with well explored reference liquids the Raman scattering from simulants was measured in the form of an extended liquid surface layer on top of a silicon wafer. This way of measuring enabled direct comparison to the Raman scattering strength from cyclohexane. The reference Raman spectra were used to validate the signal strength of the simulants and the calibration of the experimental set up. Measured UV absorbance functions were used to calculate Raman cross sections. Established Raman cross sections of the simulants make it possible to use them as reference samples when measuring on chemical warfare agents in droplet form.

  6. Molecular Rotors for the Detection of Chemical Warfare Agent Simulants.

    PubMed

    Kim, Tae-Il; Maity, Shubhra Bikash; Bouffard, Jean; Kim, Youngmi

    2016-09-20

    The fluorogenic probe o-OH is able to detect and quantify organophosphorus nerve agent mimics in solution and in the vapor phase following immobilization on a solid substrate, making the system a suitable candidate for the field detection of chemical warfare agents. Detection is achieved by the suppression of internal rotation upon phosphorylation of a reactive phenolate, resulting in a large fluorescence "turn-on" response.

  7. Molecular Rotors for the Detection of Chemical Warfare Agent Simulants.

    PubMed

    Kim, Tae-Il; Maity, Shubhra Bikash; Bouffard, Jean; Kim, Youngmi

    2016-09-20

    The fluorogenic probe o-OH is able to detect and quantify organophosphorus nerve agent mimics in solution and in the vapor phase following immobilization on a solid substrate, making the system a suitable candidate for the field detection of chemical warfare agents. Detection is achieved by the suppression of internal rotation upon phosphorylation of a reactive phenolate, resulting in a large fluorescence "turn-on" response. PMID:27536955

  8. Oxidizer gels for detoxification of chemical and biological agents

    DOEpatents

    Hoffman, Dennis M.; McGuire, Raymond R.

    2002-01-01

    A gel composition containing oxidizing agents and thickening or gelling agents is used to detoxify chemical and biological agents by application directly to a contaminated area. The gelling agent is a colloidal material, such as silica, alumina, or alumino-silicate clays, which forms a viscous gel that does not flow when applied to tilted or contoured surfaces. Aqueous or organic solutions of oxidizing agents can be readily gelled with less than about 30% colloidal material. Gel preparation is simple and suitable for field implementation, as the gels can be prepared at the site of decontamination and applied quickly and uniformly over an area by a sprayer. After decontamination, the residue can be washed away or vacuumed up for disposal.

  9. Development of a solid-phase microextraction fiber by the chemical binding of graphene oxide on a silver-coated stainless-steel wire with an ionic liquid as the crosslinking agent.

    PubMed

    Sun, Min; Feng, Juanjuan; Bu, Yanan; Duan, Huimin; Wang, Xiaojiao; Luo, Chuannan

    2014-12-01

    Graphene oxide was bonded onto a silver-coated stainless-steel wire using an ionic liquid as the crosslinking agent by a layer-by-layer strategy. The novel solid-phase microextraction fiber was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and Raman microscopy. A multilayer graphene oxide layer was closely coated onto the supporting substrate. The thickness of the coating was about 4 μm. Coupled with gas chromatography, the fiber was evaluated using five polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, 1,2-benzophenanthrene, and benzo(a)pyrene) as model analytes in direct-immersion mode. The main conditions (extraction time, extraction temperature, ionic strength, and desorption time) were optimized by a factor-by-factor optimization. The as-established method exhibited a wide linearity range (0.5-200 μg/L) and low limits of determination (0.05-0.10 μg/L). It was applied to analyze environmental water samples of rain and river water. Three kinds of the model analytes were quantified and the recoveries of samples spiked at 10 μg/L were in the range of 92.3-120 and 93.8-115%, respectively. The obtained results indicated the fiber was efficient for solid-phase microextraction analysis.

  10. Ultraviolet Raman scattering from persistent chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  11. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate.

    PubMed

    Du, Ling-Ran; Lu, Xiao-Jing; Guan, Hai-Tao; Yang, Yong-Jie; Gu, Meng-Jie; Zheng, Zhuo-Zhao; Lv, Tian-Shi; Yan, Zi-Guang; Song, Li; Zou, Ying-Hua; Fu, Nai-Qi; Qi, Xian-Rong; Fan, Tian-Yuan

    2014-08-25

    New type of liquid embolic agents based on a liquid crystalline material of glyceryl monooleate (GMO) was developed and evaluated in this study. Ternary phase diagram of GMO, water and ethanol was constructed and three isotropic liquids (ILs, GMO:ethanol:water=49:21:30, 60:20:20 and 72:18:10 (w/w/w)) were selected as potential liquid embolic agents, which could spontaneously form viscous gel cast when contacting with water or physiological fluid. The ILs exhibited excellent microcatheter deliverability due to low viscosity, and were proved to successfully block the saline flow when performed in a device to simulate embolization in vitro. The ILs also showed good cytocompatibility on L929 mouse fibroblast cell line. The embolization of ILs to rabbit kidneys was performed successfully under monitoring of digital subtraction angiography (DSA), and embolic degree was affected by the initial formulation composition and used volume. At 5th week after embolization, DSA and computed tomography (CT) confirmed the renal arteries embolized with IL did not recanalize in follow-up period, and an obvious atrophy of the embolized kidney was observed. Therefore, the GMO-based liquid embolic agents showed feasible and effective to embolize, and potential use in clinical interventional embolization therapy.

  12. Development and evaluation of liquid embolic agents based on liquid crystalline material of glyceryl monooleate.

    PubMed

    Du, Ling-Ran; Lu, Xiao-Jing; Guan, Hai-Tao; Yang, Yong-Jie; Gu, Meng-Jie; Zheng, Zhuo-Zhao; Lv, Tian-Shi; Yan, Zi-Guang; Song, Li; Zou, Ying-Hua; Fu, Nai-Qi; Qi, Xian-Rong; Fan, Tian-Yuan

    2014-08-25

    New type of liquid embolic agents based on a liquid crystalline material of glyceryl monooleate (GMO) was developed and evaluated in this study. Ternary phase diagram of GMO, water and ethanol was constructed and three isotropic liquids (ILs, GMO:ethanol:water=49:21:30, 60:20:20 and 72:18:10 (w/w/w)) were selected as potential liquid embolic agents, which could spontaneously form viscous gel cast when contacting with water or physiological fluid. The ILs exhibited excellent microcatheter deliverability due to low viscosity, and were proved to successfully block the saline flow when performed in a device to simulate embolization in vitro. The ILs also showed good cytocompatibility on L929 mouse fibroblast cell line. The embolization of ILs to rabbit kidneys was performed successfully under monitoring of digital subtraction angiography (DSA), and embolic degree was affected by the initial formulation composition and used volume. At 5th week after embolization, DSA and computed tomography (CT) confirmed the renal arteries embolized with IL did not recanalize in follow-up period, and an obvious atrophy of the embolized kidney was observed. Therefore, the GMO-based liquid embolic agents showed feasible and effective to embolize, and potential use in clinical interventional embolization therapy. PMID:24858389

  13. Toxicity of vesicant agents scheduled for destruction by the Chemical Stockpile Disposal Program.

    PubMed

    Watson, A P; Griffin, G D

    1992-11-01

    The vesicant agents of the unitary chemical munitions stockpile include various formulations of sulfur mustard [bis-(2-chloroethyl) sulfide; agents H, HD, and HT] and small quantities of the organic arsenical Lewisite [dichloro(2-chlorovinyl) arsine; agent L]. These agents can be dispersed in liquid, aerosol, or vapor form and are capable of producing severe chemical burns upon direct contact with tissue. Moist tissues such as the eyes, respiratory tract, and axillary areas are particularly affected. Available data summarizing acute dose response in humans and laboratory animals are summarized. Vesicant agents are also capable of generating delayed effects such as chronic bronchitis, carcinogenesis, or keratitis/keratopathy of the eye under appropriate conditions of exposure and dose. These effects may not become manifest until years following exposure. Risk analysis derived from carcinogenesis data indicates that sulfur mustard possesses a carcinogenic potency similar to that of benzo[a]pyrene. Because mustard agents are alkylating compounds, they destroy individual cells by reaction with cellular proteins, enzymes, RNA, and DNA. Once begun, tissue reaction is irreversible. Mustard agents are mutagenic; data for cellular and laboratory animal assays are presented. Reproductive effects have not been demonstrated in the offspring of laboratory rats. Acute Lewisite exposure has been implicated in cases of Bowen's disease, an intraepidermal squamous cell carcinoma. Lewisite is not known to generate reproductive or teratogenic effects.

  14. Toxicity of vesicant agents scheduled for destruction by the Chemical Stockpile Disposal Program.

    PubMed Central

    Watson, A P; Griffin, G D

    1992-01-01

    The vesicant agents of the unitary chemical munitions stockpile include various formulations of sulfur mustard [bis-(2-chloroethyl) sulfide; agents H, HD, and HT] and small quantities of the organic arsenical Lewisite [dichloro(2-chlorovinyl) arsine; agent L]. These agents can be dispersed in liquid, aerosol, or vapor form and are capable of producing severe chemical burns upon direct contact with tissue. Moist tissues such as the eyes, respiratory tract, and axillary areas are particularly affected. Available data summarizing acute dose response in humans and laboratory animals are summarized. Vesicant agents are also capable of generating delayed effects such as chronic bronchitis, carcinogenesis, or keratitis/keratopathy of the eye under appropriate conditions of exposure and dose. These effects may not become manifest until years following exposure. Risk analysis derived from carcinogenesis data indicates that sulfur mustard possesses a carcinogenic potency similar to that of benzo[a]pyrene. Because mustard agents are alkylating compounds, they destroy individual cells by reaction with cellular proteins, enzymes, RNA, and DNA. Once begun, tissue reaction is irreversible. Mustard agents are mutagenic; data for cellular and laboratory animal assays are presented. Reproductive effects have not been demonstrated in the offspring of laboratory rats. Acute Lewisite exposure has been implicated in cases of Bowen's disease, an intraepidermal squamous cell carcinoma. Lewisite is not known to generate reproductive or teratogenic effects. PMID:1486858

  15. The fate of the chemical warfare agent during DNA extraction.

    PubMed

    Wilkinson, Della A; Hulst, Albert G; de Reuver, Leo P J; van Krimpen, Simon H; van Baar, Ben M L

    2007-11-01

    Forensic laboratories do not have the infrastructure to process or store contaminated DNA samples that have been recovered from a crime scene contaminated with chemical or biological warfare agents. Previous research has shown that DNA profiles can be recovered from blood exposed to several chemical warfare agents after the agent has been removed. The fate of four toxic agents, sulfur mustard, sodium 2-fluoroacetate, sarin, and diazinon, in a lysis buffer used in Promega DNA IQ extraction protocol was studied to determine if extraction would render the samples safe. Two independent analytical methods were used per agent, selected from GC-MS, 1H NMR, 19F NMR, (31)P NMR, or LC-ES MS. The methods were validated before use. Determinations were carried out in a semi-quantitative way, by direct comparison to standards. Agent levels in the elution buffer were found to be below the detectable limits for mustard, sarin, sodium 2-fluoroacetate or low (<0.02 mg/mL) for diazinon. Therefore, once extracted these DNA samples could be safely processed in a forensic laboratory. PMID:18093062

  16. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse (II): effects of some currently used skin decontaminants (RSDL and Fuller's earth) against liquid sulphur mustard and VX exposure.

    PubMed

    Taysse, L; Dorandeu, F; Daulon, S; Foquin, A; Perrier, N; Lallement, G; Breton, P

    2011-06-01

    Using the hairless mouse screening model presented in the companion paper(1) the aim of this study was to assess two skin decontaminating systems: Fuller's earth (FE) and Reactive Skin Decontamination Lotion (RSDL) against two extremely toxic chemical warfare agents that represent a special percutaneous hazard, sulphur mustard (SM) and O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX). Five minutes after being exposed on the back to either 2 µL of neat sulphur mustard or 50 µg.kg(-1) of diluted VX, mice were decontaminated. Both systems were able to reduce blisters 3 days after SM exposure. However, RSDL was found to be more efficient than FE in reducing the necrosis of the epidermis and erosion. In the case of VX exposure, RSDL, whatever the ratio of decontaminant to toxicant used (RSDL 10, 20, 50), was not able to sufficiently prevent the inhibition of plasma cholinesterases taken as a surrogate marker of exposure and toxicity. Only FE reduced significantly the ChE inhibition. Some of these observations are different from our previous results obtained in domestic swine and these changes are thus discussed in the perspective of using SKH-1 hairless mice for the initial in vivo screening of decontaminants. PMID:20534641

  17. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse (II): effects of some currently used skin decontaminants (RSDL and Fuller's earth) against liquid sulphur mustard and VX exposure.

    PubMed

    Taysse, L; Dorandeu, F; Daulon, S; Foquin, A; Perrier, N; Lallement, G; Breton, P

    2011-06-01

    Using the hairless mouse screening model presented in the companion paper(1) the aim of this study was to assess two skin decontaminating systems: Fuller's earth (FE) and Reactive Skin Decontamination Lotion (RSDL) against two extremely toxic chemical warfare agents that represent a special percutaneous hazard, sulphur mustard (SM) and O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX). Five minutes after being exposed on the back to either 2 µL of neat sulphur mustard or 50 µg.kg(-1) of diluted VX, mice were decontaminated. Both systems were able to reduce blisters 3 days after SM exposure. However, RSDL was found to be more efficient than FE in reducing the necrosis of the epidermis and erosion. In the case of VX exposure, RSDL, whatever the ratio of decontaminant to toxicant used (RSDL 10, 20, 50), was not able to sufficiently prevent the inhibition of plasma cholinesterases taken as a surrogate marker of exposure and toxicity. Only FE reduced significantly the ChE inhibition. Some of these observations are different from our previous results obtained in domestic swine and these changes are thus discussed in the perspective of using SKH-1 hairless mice for the initial in vivo screening of decontaminants.

  18. Appendix C. Collection of Samples for Chemical Agent Analysis

    SciTech Connect

    Koester, C; Thompson, C; Doerr, T; Scripsick, R

    2005-09-23

    This chapter describes procedures for the collection and analysis of samples of various matrices for the purpose of determining the presence of chemical agents in a civilian setting. This appendix is intended to provide the reader with sufficient information to make informed decisions about the sampling and analysis process and to suggest analytical strategies that might be implemented by the scientists performing sampling and analysis. This appendix is not intended to be used as a standard operating procedure to provide detailed instructions as to how trained scientists should handle samples. Chemical agents can be classified by their physical and chemical properties. Table 1 lists the chemical agents considered by this report. In selecting sampling and analysis methods, we have considered procedures proposed by the Organization for Prohibition of Chemical Weapons (OPCW), the U. S. Environmental Protection Agency (EPA), and peer-reviewed scientific literature. EPA analytical methods are good resources describing issues of quality assurance with respect to chain-of-custody, sample handling, and quality control requirements.

  19. 12 CFR 709.4 - Powers and duties of liquidating agent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... desirable or expedient in its discretion to wind up the affairs of the credit union including, but not... power to: (1) Pay all costs and expenses of the liquidation as determined by the liquidating agent; (2... performance of their duties. (e) Assets, claims, and contracts. The liquidating agent shall have power to:...

  20. 12 CFR 709.4 - Powers and duties of liquidating agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Powers and duties of liquidating agent. 709.4... INSURED CREDIT UNIONS IN LIQUIDATION § 709.4 Powers and duties of liquidating agent. (a) Inventory of... desirable or expedient in its discretion to wind up the affairs of the credit union including, but...

  1. DESI-MS/MS of Chemical Warfare Agents and Related Compounds

    NASA Astrophysics Data System (ADS)

    D'Agostino, Paul A.

    Solid phase microextraction (SPME) fibers were used to headspace ­sample chemical warfare agents and their hydrolysis products from glass vials and glass vials containing spiked media, including Dacron swabs, office carpet, paper and fabric. The interface of the Z-spray source was modified to permit safe introduction of the SPME fibers for desorption electrospray ionization mass spectrometric (DESI-MS) analysis. A "dip and shoot" method was also developed for the rapid sampling and DESI-MS analysis of chemical warfare agents and their hydrolysis products in liquid samples. Sampling was performed by simply dipping fused silica, stainless steel or SPME tips into the organic or aqueous samples. Replicate analyses were completed within several minutes under ambient conditions with no sample pre-treatment, resulting in a significant increase in sample throughput. The developed sample handling and analysis method was applied to the determination of chemical warfare agent content in samples containing unknown chemical and/or biological warfare agents. Ottawa sand was spiked with sulfur mustard, extracted with water and autoclaved to ensure sterility. Sulfur mustard was completely hydrolysed during the extraction/autoclave step and thiodiglycol was identified by DESI-MS, with analyses generally being completed within 1 min using the "dip and shoot" method.

  2. Chemically modified tetracyclines: The novel host modulating agents

    PubMed Central

    Swamy, Devulapalli Narasimha; Sanivarapu, Sahitya; Moogla, Srinivas; Kapalavai, Vasavi

    2015-01-01

    Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA), including Non Steroidal Anti Inflammatory Drugs (NSAIDS), bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs) are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators. PMID:26392682

  3. Chemically modified tetracyclines: The novel host modulating agents.

    PubMed

    Swamy, Devulapalli Narasimha; Sanivarapu, Sahitya; Moogla, Srinivas; Kapalavai, Vasavi

    2015-01-01

    Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA), including Non Steroidal Anti Inflammatory Drugs (NSAIDS), bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs) are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators. PMID:26392682

  4. Chemical cleaning agents and bonding to glass-fiber posts.

    PubMed

    Gonçalves, Ana Paula Rodrigues; Ogliari, Aline de Oliveira; Jardim, Patrícia dos Santos; Moraes, Rafael Ratto de

    2013-01-01

    The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreated control specimens. All failures were interfacial. Although all agents improved the bond strength, dichloromethane and isopropanol were particularly effective.

  5. Development of a Persistent Chemical Agent Simulator System (PCASS)

    NASA Technical Reports Server (NTRS)

    Mcginness, W. G.

    1983-01-01

    The development of a persistent chemical agent simulation system (PCASS) is described. This PCASS is to be used for the military training of troops to simulate actual chemical warfare. The purpose of this system is to facilitate in the determination of chemical contamination and effectiveness of decontamination for training purposes. The fluorescent tracer employed has no daylight activation, but yet is easily removed with a decontaminate solution or water and surfactants. Also employed is a time delayed color developing system. When an individual is subjected to the PCASS and does not decontaminate adequately, red blotches or red coloration will develop as a function of time and temperature. The intent of this is to simulate the delayed chemical reaction of mustard contaminates.

  6. Tissue-based standoff biosensors for detecting chemical warfare agents

    DOEpatents

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  7. Agent-Based Chemical Plume Tracing Using Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William

    2004-01-01

    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  8. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  9. Chemical agent detection by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.

    2004-03-01

    In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.

  10. I-SCAD® standoff chemical agent detector overview

    NASA Astrophysics Data System (ADS)

    Popa, Mirela O.; Griffin, Matthew T.

    2012-06-01

    This paper presents a system-level description of the I-SCAD® Standoff Chemical Agent Detector, a passive Fourier Transform InfraRed (FTIR) based remote sensing system, for detecting chemical vapor threats. The passive infrared detection system automatically searches the 7 to 14 micron region of the surrounding atmosphere for agent vapor clouds. It is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The lightweight, passive, and fully automatic detection system scans the surrounding atmosphere for chemical warfare agent vapors. It provides on-the-move, 360-deg coverage from a variety of tactical and reconnaissance platforms at distances up to 5 km. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The modular system design facilitates interfacing to many platforms. A Reduced Field of View (RFOV) variant includes novel modifications to the scanner subcomponent assembly optical design that gives extended performance in detection range and detection probability without sacrificing existing radiometric sensitivity performance. This paper will deliver an overview of system.

  11. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    SciTech Connect

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  12. Chemical Exchange Saturation Transfer (CEST) Agents: Quantum Chemistry and MRI.

    PubMed

    Li, Jikun; Feng, Xinxin; Zhu, Wei; Oskolkov, Nikita; Zhou, Tianhui; Kim, Boo Kyung; Baig, Noman; McMahon, Michael T; Oldfield, Eric

    2016-01-01

    Diamagnetic chemical exchange saturation transfer (CEST) contrast agents offer an alternative to Gd(3+) -based contrast agents for MRI. They are characterized by containing protons that can rapidly exchange with water and it is advantageous to have these protons resonate in a spectral window that is far removed from water. Herein, we report the first results of DFT calculations of the (1) H nuclear magnetic shieldings in 41 CEST agents, finding that the experimental shifts can be well predicted (R(2) =0.882). We tested a subset of compounds with the best MRI properties for toxicity and for activity as uncouplers, then obtained mice kidney CEST MRI images for three of the most promising leads finding 16 (2,4-dihydroxybenzoic acid) to be one of the most promising CEST MRI contrast agents to date. Overall, the results are of interest since they show that (1) H NMR shifts for CEST agents-charged species-can be well predicted, and that several leads have low toxicity and yield good in vivo MR images.

  13. [Development of anti-HIV agents based on chemical biology].

    PubMed

    Tamamura, Hirokazu

    2012-01-01

    Recently, highly active anti-retroviral therapy (HAART), which involves a combinational use of reverse transcriptase inhibitors and HIV protease inhibitors, has brought us a great success in the clinical treatment of AIDS patients. However, HAART has several serious clinical problems. These drawbacks encouraged us to find novel drugs and increase repertoires of anti-HIV agents with various action mechanisms. The recent disclosing of the dynamic supramolecular mechanism in HIV-entry has provided potentials to find a new type of drugs. To date, we have synthesized HIV-entry inhibitors, especially coreceptor CXCR4 antagonists. In addition, CD4 mimics in consideration of synergic effects with other entry inhibitors or neutralizing antibodies have been developed. The development of the above anti-HIV agents is based on the concept of reverse chemical genomics, in which target molecules are fixed. On the other hand, based on the concept of forward chemical genomics, in which active compounds are searched according to the screening of random libraries, effective peptide leads such as integrase inhibitors derived from fragment peptides of HIV-1 Vpr have been discovered. As such, from a point of view on chemical biology, anti-HIV leads have been found utilizing reverse and forward chemical genomics. Furthermore, antibody-based therapy or AIDS vaccine is still thought to be a promising treatment. Thus, peptidic antigen molecules based on artificial remodeling of the dynamic structures of a surface protein gp41 in HIV fusion have been developed. The present chemical biology approaches would be essential for discovery of anti-HIV agents in consideration of cocktail therapy of AIDS.

  14. Bird repellents: interaction of chemical agents in mixtures.

    PubMed

    Clark, L

    1998-07-01

    Numerous studies characterize the concentration-behavioral response for odorants, tastants, and irritants. However, to achieve ecological validity, interaction of agents in mixtures must be considered. Equiresponse and equimolar molar models of interactions have been proposed, and methods for testing whether agents in mixture interact independently have been evaluated. Yet these averaging models cannot a priori predict whether agents will interact antagonistically, independently, or synergistically. I studied the bird repellent properties of several structurally similar and well-described trigeminally mediated avian irritants, singly and in mixture. Compounds within a chemical class, in which the electron withdrawing groups were similar, interacted independently to produce their repellent effects, e.g., 2-amino methyl benzoate v methyl-2-methoxy benzoate, and o-aminoacetophenone v 2-methoxy acetophenone. The response to mixtures drawn from compounds of dissimilar chemical class, e.g., 2-amino methyl benzoate v o-aminoacetophenone, interacted antagonistically at concentrations below 10 mM, suggesting meditation by a different mechanism within the trigeminally mediated sensory modality. At 10 mM and near saturation of the solutions, there was no evidence of interaction between agents, suggesting responses became saturated. These observations underscore our previous findings for the importance of the molecular properties of the carbonyl group for aromatic bird repellents and suggests the possible existence of multiple receptor mechanisms for avian trigeminal repellents. These data also underscore the importance of attending to interactions of agents in mixtures when designing repellents as tools for the management of wildlife and resolution of conflicts between humans and wildlife.

  15. Chemical Computer Man: Chemical Agent Response Simulation (CARS). Technical report, January 1983-September 1985

    SciTech Connect

    Davis, E.G.; Mioduszewski, R.J.

    1988-03-01

    The Chemical Computer Man: Chemical Agent Response Simulation (CARS) is a computer model and simulation program for estimating the dynamic changes in human physiological dysfunction resulting from exposures to chemical-threat nerve agents. The newly developed CARS methodology simulates agent exposure effects on the following five indices of human physiological function: mental, vision, cardio-respiratory, visceral, and limbs. Mathematical models and the application of basic pharmacokinetic principles were incorporated into the simulation so that for each chemical exposure, the relationship between exposure dosage, absorbed dosage (agent blood plasma concentration), and level of physiological response are computed as a function of time. CARS, as a simulation tool, is designed for the users with little or no computer-related experience. The model combines maximum flexibility with a comprehensive user-friendly interactive menu-driven system. Users define an exposure problem and obtain immediate results displayed in tabular, graphical, and image formats. CARS has broad scientific and engineering applications, not only in technology for the soldier in the area of Chemical Defense, but also in minimizing animal testing in biomedical and toxicological research and the development of a modeling system for human exposure to hazardous-waste chemicals.

  16. Test for desorption of Agents HD and gd from chemical-agent-resistant coating (CARC). Final report, March 1984-December 1985

    SciTech Connect

    Sturdivan, L.M.; Thomas, J.; Bodt, B.A.

    1990-08-01

    A method of measuring the desorbed residual agent from chemical agent resistant coating (CARC) paint, after exposure and rinsing, is thoroughly examined in a round-robin test. The test showed that some CARC formulations met the agent-resistance specifications desorbed excess agent, but other formulations met the agent-resistance specification. There is evidence showing that those paints that do not meet specification for agent resistance do so because of excess porosity (in the mesopore range) due to the paint, as applied, being above the critical pigment volume concentration (CPVC). That is, the ratio of pigment-to-liquid component is greater than that proportion at which the liquid component, after complete polymerization and evaporation of all residual solvent, is not sufficient to fill all the voids between the pigment particles. CARC must be formulated near the CPVC to have the necessary surface roughness to meet the specification for low sheen and spectral reflectance required in the camouflage colors. Limitations of the round-robin test are presented with suggestions for an improved test. A statistical determination of acceptability, using thetest in a two-stage experimental determination of the amount of agent desorbed to accept or reject prospective lots of CARC, is presented.

  17. Absorbent agents for clean-up of liquid hydrocarbons

    SciTech Connect

    Waldmann, J.J.

    1993-08-24

    A method is described for absorbing liquid hydrocarbon from a liquid hydrocarbon-contaminated substrate comprising applying to said contaminated substrate an effective amount of a chemical absorbent composition of formula: A[sub m]B[sub n]C[sub p] wherein A[sub m] is an acid leached bentonite in a form of hydrous silicate of alumina modified by a hydrophobic alkyl (C[sub 12]-C[sub 24]) amine which has been double protonized by an aliphatic acid with C[sub 1]-C[sub 18] carbon atoms in which m = 0 to 100% by weight of the composition; B[sub n] is a modified aminoplast resin comprised of cyanoguanidine-melamine-urea-formaldehyde in a foam form in which n is 0 to 100% by weight; and C[sub p] is a siliceous support-modified hydrophobic material in which p is 0 to 100% by weight; provided that at least one of m and n is a positive numerical value.

  18. The efficacy of chemical agents in cleaning and disinfection programs

    PubMed Central

    Penna, Thereza Christina Vessoni; Mazzola, Priscila Gava; Silva Martins, Alzira Maria

    2001-01-01

    Background Due to the growing number of outbreaks of infection in hospital nurseries, it becomes essential to set up a sanitation program that indicates that the appropriate chemical agent was chosen for application in the most effective way. Method For the purpose of evaluating the efficacy of a chemical agent, the minimum inhibitory concentration (MIC) was reached by the classic method of successive broth dilutions. The reference bacteria utilized were Bacillus subtilis var. globigii ATCC 9372, Bacillus stearothermophilus ATCC 7953, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923. The strains of Enterobacter cloacae IAL 1976 (Adolfo Lutz Institute), Serratia marcescens IAL 1478 and Acinetobactev calcoaceticus IAL 124 (ATCC 19606), were isolated from material collected from babies involved in outbreaks of infection in hospital nurseries. Results The MIC intervals, which reduced bacteria populations over 08 log10, were: 59 to 156 mg/L of quaternarium ammonium compounds (QACs); 63 to 10000 mg/L of chlorhexidine digluconate; 1375 to 3250 mg/L of glutaraldehyde; 39 to 246 mg/L of formaldehyde; 43750 to 87500 mg/L of isopropanol or ethanol; 1250 to 6250 mg/L of iodine in polyvinyl-pyrolidone complexes, 150 to 4491 mg/L of chlorine-releasing-agents (CRAs); 469 to 2500 mg/L of hydrogen peroxide; and, 2310 to 18500 mg/L of peracetic acid. Conclusions Chlorhexidine showed non inhibitory activity over germinating spores. A. calcoaceticus, was observed to show resistance to the majority of the agents tested, followed by E. cloacae and S. marcescens. PMID:11591223

  19. Supercritical fluid extraction of chemical warfare agent simulants from soil.

    PubMed

    Griest, W H; Ramsey, R S; Ho, C H; Caldwell, W M

    1992-05-29

    Chemical warfare agent simulants are efficiently recovered from 2-ppm spikes in 1 g of Rocky Mountain Arsenal Standard Soil using methanol-carbon dioxide (5:95) at 300 atm for 2 min at 60 degrees C. Recoveries (n = 3) were 79 +/- 23% for dimethylmethylphosphonate, 93 +/- 14% for 2-chloroethylethyl sulfide, 92 +/- 13% for diisopropylfluorophosphate and 95 +/- 17% for diisopropylmethylphosphonate. Recoveries are higher than, but less precise than those achieved from a 5-min ultrasonic micro-scale extraction using methanol. Much less laboratory waste is generated than the current standard organic solvent extraction method (33 g of soil shaken with 100 ml of chloroform). PMID:1400849

  20. Modeling and Visualizing Flow of Chemical Agents Across Complex Terrain

    NASA Technical Reports Server (NTRS)

    Kao, David; Kramer, Marc; Chaderjian, Neal

    2005-01-01

    Release of chemical agents across complex terrain presents a real threat to homeland security. Modeling and visualization tools are being developed that capture flow fluid terrain interaction as well as point dispersal downstream flow paths. These analytic tools when coupled with UAV atmospheric observations provide predictive capabilities to allow for rapid emergency response as well as developing a comprehensive preemptive counter-threat evacuation plan. The visualization tools involve high-end computing and massive parallel processing combined with texture mapping. We demonstrate our approach across a mountainous portion of North California under two contrasting meteorological conditions. Animations depicting flow over this geographical location provide immediate assistance in decision support and crisis management.

  1. Detection of chemical agents using a novel energy cell

    NASA Astrophysics Data System (ADS)

    Shewchun, John

    2007-04-01

    The detection, classification and tracking of chemical agents (explosives) being surreptitiously smuggled into public areas, such as airports, for destructive purposes is difficult to solve by unobtrusive means. We propose the use of a novel energy cell with gas/vapor sniffing capability. Variants of such devices are routinely used by police to detect alcohol emanating from the breath of suspected impaired vehicle drivers. We have advanced this technology with the development of a Pethanol Alkaline Energy Cell which is capable of reading gaseous emissions ultimately in the parts per billion range. Our work is described in terms of detecting TATAP (acetone peroxide).

  2. 78 FR 56837 - 2012 Liquid Chemical Categorization Updates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... date of the interim rule published at 78 FR 50147, August 16, 2013, and amending 46 CFR parts 30, 150... SECURITY Coast Guard 46 CFR Parts 30, 150, and 153 RIN 1625-AB94 2012 Liquid Chemical Categorization... tables that list liquid hazardous materials, liquefied gases, and compressed gases that have...

  3. Detection of simulants and degradation products of chemical warfare agents by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruiz-Pesante, Orlando; Pacheco-Londoño, Leonardo C.; Primera-Pedrozo, Oliva M.; Ortiz, William; Soto-Feliciano, Yadira M.; Nieves, Deborah E.; Ramirez, Michael L.; Hernández-Rivera, Samuel P.

    2007-04-01

    This work was focused in the measurement of spectroscopic signatures of Chemical Warfare Agent Simulants (CWAS) and degradation products of chemical agents using vibrational spectroscopy for the generation of spectroscopic libraries. The chemicals studied were: DMMP, DIMP, 2-CEES, 2-BAET, 1,4-thioxane, thiodiglycol sulfoxide, dihexylamine, cyclohexylamine, among others. Raman microscopy experiments were performed at different excitation wavelengths that spanned from NIR at 1064 and 785 nm to the VIS at 532, 514.5 and 488 nm and even the deep ultraviolet region at 244 nm. For the compounds studied the optimum excitation lines were 488 nm and 532 nm with a laser power of 25 mW. Among the most prominent bands were at these incident wavelengths were located ca. 652 and 1444 cm-1. Fourier Transform Infrared Spectroscopy in liquid and gas phase and Fiber Optics Coupled-Grazing Angle Probe-FTIR (FOCGAP- FTIR) were used to characterize the spectroscopic signature of target threat agents. The surface experiments were performed at detection levels of about 1 μg/cm2 suggest that limits of detection (LOD) achievable could be as low as nanograms/cm2. Remote sensing experiments were performed using a telescope coupled with a Raman spectrophotometer as a function of power and acquisition time. Characterization of compounds by vibrational spectroscopy and the early stages of the transition from the lab based experiments to remote detection experiments will be presented.

  4. Hand-Held Devices Detect Explosives and Chemical Agents

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  5. Management of Root Resorption Using Chemical Agents: A Review

    PubMed Central

    Mohammadi, Zahed; C. Cehreli, Zafer; Shalavi, Sousan; Giardino, Luciano; Palazzi, Flavio; Asgary, Saeed

    2016-01-01

    Root resorption (RR) is defined as the loss of dental hard tissues because of clastic activity inside or outside of tooth the root. In the permanent dentition, RR is a pathologic event; if untreated, it might result in the premature loss of the affected tooth. Several hypotheses have been suggested as the mechanisms of root resorption such as absence of the remnants of Hertwig's epithelial root sheath (HERS) and the absence of some intrinsic factors in cementum and predentin such as amelogenin or osteoprotegerin (OPG). It seems that a barrier is formed by the less-calcified intermediate cementum or the cementodentin junction that prevents external RR. There are several chemical strategies to manage root resorption. The purpose of this paper was to review several chemical agents to manage RR such as tetracycline, sodium hypochlorite, acids (citric acid, phosphoric acid, ascorbic acid and hydrochloric acid), acetazolamide, calcitonin, alendronate, fluoride, Ledermix and Emdogain. PMID:26843869

  6. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  7. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs. PMID:17630721

  8. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.

    PubMed

    Martin, Audrey N; Farquar, George R; Frank, Matthias; Gard, Eric E; Fergenson, David P

    2007-08-15

    Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.

  9. Technological advancements for the detection of and protection against biological and chemical warfare agents.

    PubMed

    Eubanks, Lisa M; Dickerson, Tobin J; Janda, Kim D

    2007-03-01

    There is a growing need for technological advancements to combat agents of chemical and biological warfare, particularly in the context of the deliberate use of a chemical and/or biological warfare agent by a terrorist organization. In this tutorial review, we describe methods that have been developed both for the specific detection of biological and chemical warfare agents in a field setting, as well as potential therapeutic approaches for treating exposure to these toxic species. In particular, nerve agents are described as a typical chemical warfare agent, and the two potent biothreat agents, anthrax and botulinum neurotoxin, are used as illustrative examples of potent weapons for which countermeasures are urgently needed.

  10. 12 CFR 709.4 - Powers and duties of liquidating agent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Powers and duties of liquidating agent. 709.4 Section 709.4 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS INVOLUNTARY LIQUIDATION OF FEDERAL CREDIT UNIONS AND ADJUDICATION OF CREDITOR CLAIMS INVOLVING FEDERALLY INSURED CREDIT UNIONS IN LIQUIDATION...

  11. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2014-07-01 2014-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards....

  12. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2013-07-01 2013-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards....

  13. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2012-07-01 2012-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards....

  14. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2011-07-01 2011-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards....

  15. A Survey of Commercially Available Chemical Agent Instrumentation for Use in the Field

    SciTech Connect

    Haas, J S; Alcaraz, A; Andresen, B D; Pruneda, C O

    2002-03-01

    Lawrence Livermore National Laboratory's (LLNL) Forensic Science Center (FSC) has extensive experience and capabilities in the analysis of chemical agents (CA) and related compounds as well as experience in identifying these materials in the field (i.e. samples such as those found in soils, liquids, gases). An open source survey was performed to determine viable, commercially available technology that can detect, in situ, CA and also meet field-use performance criteria as specified by the Program Management Consultant (PMC). The performance requirements of the technology include accuracy, reliability, integration onto robotics, and chemical detection sensitivities that meet required specifications. Not included in this survey are technologies and methodologies to detect CA decomposition products and related waste streams.

  16. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.

  17. Anti-ulcer agents: chemical aspect of solving the problem

    NASA Astrophysics Data System (ADS)

    Rogoza, L. N.; Salakhutdinov, N. F.

    2015-01-01

    The data on chemical structures and specific activities of compounds functioning as histamine H2-receptor antagonists, H+/K+-ATPase inhibitors at the exchange sites of hydrogen ions (proton pump inhibitors) and potassium ions (K+-competitive acid blockers) published from 1990 to 2013 are surveyed. The antisecretory agents with studied cytoprotective activity or with additional therapeutic properties compensating for disorders of internal defence mechanisms are presented. A separate section is devoted to the drugs that prevent or mitigate the NSAID-induced intestinal damage. All of the considered structures are classified according to the type of biological mechanism of action. Some aspects of the structure-activity relationships for such compounds are considered. The bibliography includes 83 references.

  18. 28 CFR 552.25 - Use of chemical agents or non-lethal weapons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Use of chemical agents or non-lethal weapons. 552.25 Section 552.25 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE... agents or non-lethal weapons. The Warden may authorize the use of chemical agents or non-lethal...

  19. Antidotes and treatments for chemical warfare/terrorism agents: an evidence-based review.

    PubMed

    Rodgers, G C; Condurache, C T

    2010-09-01

    This article reviews the evidence supporting the efficacy of antidotes used or recommended for the potential chemical warfare agents of most concern. Chemical warfare agents considered include cyanide, vesicants, pulmonary irritants such as chlorine and phosgene, and nerve agents. The strength of evidence for most antidotes is weak, highlighting the need for additional research in this area.

  20. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    PubMed

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals. PMID:16856738

  1. 12 CFR 709.4 - Powers and duties of liquidating agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... desirable or expedient in its discretion to wind up the affairs of the credit union including, but not... liquidating agent; (4) Pay off and discharge any assessments, liens, claims, or charges of any kind...

  2. Forward-Osmosis Desalination with Poly(Ionic Liquid) Hydrogels as Smart Draw Agents.

    PubMed

    Fan, Xuelin; Liu, Huili; Gao, Yating; Zou, Zhu; Craig, Vincent S J; Zhang, Guangzhao; Liu, Guangming

    2016-06-01

    The combination of high desalination efficiency, negligible draw-solute leakage, nontoxicity, ease of regeneration, and effective separation to produce liquid water makes the smart draw agents developed here highly suited for forward-osmosis desalination.

  3. Forward-Osmosis Desalination with Poly(Ionic Liquid) Hydrogels as Smart Draw Agents.

    PubMed

    Fan, Xuelin; Liu, Huili; Gao, Yating; Zou, Zhu; Craig, Vincent S J; Zhang, Guangzhao; Liu, Guangming

    2016-06-01

    The combination of high desalination efficiency, negligible draw-solute leakage, nontoxicity, ease of regeneration, and effective separation to produce liquid water makes the smart draw agents developed here highly suited for forward-osmosis desalination. PMID:27007083

  4. Chemical Programming of the Domain of Existence of Liquid Crystals.

    PubMed

    Dutronc, Thibault; Terazzi, Emmanuel; Guénée, Laure; Buchwalder, Kerry-Lee; Floquet, Sébastien; Piguet, Claude

    2016-01-22

    This work illustrates how enthalpy and entropy changes responsible for successive phase transitions of cyanobiphenyl-based liquid crystals can be combined to give cohesive free energy densities. These new parameters are able to rationalize and quantify the demixing of the melting and clearing processes that occur in thermotropic liquid crystals. Minor structural variations at the molecular level can be understood as pressure increments that alter either the melting or clearing temperatures in a predictable way. This assessment of microsegregation operating in amphiphilic molecules paves the way for the chemical programming of the domain of existence of liquid-crystalline phases.

  5. Micropyrolyzer for chemical analysis of liquid and solid samples

    DOEpatents

    Mowry, Curtis D.; Morgan, Catherine H.; Manginell, Ronald P.; Frye-Mason, Gregory C.

    2006-07-18

    A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

  6. Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?

    SciTech Connect

    Visser, A.; Bridges, N.; Tosten, M.

    2013-04-09

    Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  7. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    PubMed

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  8. Downhole chemical addition owing to convection in annular liquid

    SciTech Connect

    Babu, D.R.; Dhodapkar, P.K.; Pradhan, S.P.; Sharma, A.N.

    1994-03-01

    Production of waxy crude oils normally is associated with such operational problems as wax deposition in the tubulars and gelling of flowlines. Different methods are available to control wax deposition. Continuous addition of certain chemicals at low dosages to the well is popular because it reduces oil viscosity and other downstream problems. These chemicals, known as pour-point depressants (PPD's), remain in semisolid state at ambient temperatures. During winter, the chemical solution needs more expensive solvents or heating to maintain its fluidity. To avoid the costs involved in the surface setup and its maintenance and monitoring, the authors tried a simple method in a few pumping wells with satisfactory results. In this method, the oil column in the casing above the pump suction depth is replaced with a chemical solution. Density of the solution is maintained below that of the produced liquid. This prevents gravity swapping and ensures the presence of a chemical reservoir within the wellbore. When the pump is in operation, the temperature of the tubing's outer surface is a few degrees higher than that of the casing's inner surface. Natural convection currents occur in the liquid trapped between the two surfaces. The liquid rises along the tubing and moves in the opposite direction near the casing. Near the pump suction level, a constant exchange of mass between the crude entering the pump and the chemical reservoir takes place.

  9. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    PubMed

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising.

  10. Non-cancer effects of chemical agents on children's health.

    PubMed

    Röösli, Martin

    2011-12-01

    This paper provides an overview about the non-cancer health effects for children from relevant chemical agents in our environment. In addition, a meta-analysis was conducted on the association between sudden infant death syndrome (SIDS) and maternal smoking during pregnancy as well as postnatal exposure to environmental tobacco smoke (ETS). In children, birth deformities, neurodevelopment, reproductive outcomes and respiratory system are mainly affected by chemical exposures. According to recent systematic reviews, evidence is sufficient for cognitive impairments caused by low lead exposure levels. Evidence for neurotoxicity from prenatal methylmercury exposure is sufficient for high exposure levels and limited for low levels. Prenatal exposure to polychlorinated biphenyls (PCB) and related toxicants results in cognitive and motor deficits. Maternal smoking during pregnancy is a risk factor for preterm birth, foetal growth deficit and SIDS. The meta-analytic pooled risk estimate for SIDS based on 15 studies is 2.94 (95% confidence interval: 2.43-3.57). Postnatal exposure to ETS was found to increase the SIDS risk by a factor of 1.72 (95% CI: 1.28-2.30) based on six studies which took into account maternal smoking during pregnancy. Additionally, postnatal ETS exposure causes acute respiratory infections, ear problems, respiratory symptoms, more severe asthma, and it slows lung growth. These health effects are also of concern for postnatal exposure to ambient and indoor air pollution. Children differ from adults with respect to several aspects which are relevant for assessing their health risk. Thus, independent evaluation of toxicity in childhood populations is essential. PMID:21906619

  11. Liquid precursor films spreading on chemically patterned substrates

    NASA Astrophysics Data System (ADS)

    Checco, Antonio

    2008-03-01

    We study the spreading of nonvolatile liquid squalane on chemically patterned nanostripes by using non-contact Atomic Force Microscopy (NC-AFM). The substrates are octadecylthrichlorosilane(OTS)-coated silicon wafers chemically patterned on multiple length-scales using a combination of UV and AFM oxidative lithographies. This process allows us to locally convert the terminal methyl groups of the OTS surface (non-wettable) into carboxylic acid groups (wettable) without affecting considerably the substrate roughness (< 0.3nm rms). The patterned regions are shaped as a network of large (mm-sized) wettable lines connected to smaller and smaller (nm-sized) lines. Liquid squalane spreads across this ``microfluidic network'' starting from the large lines eventually reaching the nanolines (50 to 500 nm-wide). NC-AFM is used to image the morphology of the liquid as it spreads across the nanolines. We find that the liquid thickness on the nanolines grows with time (up to ˜10 nm) according to a power-law with exponent ˜1. These preliminary results suggest that the spreading dynamics of laterally-confined liquids slightly differs, as expected, from the one of laterally homogeneous precursor films. We compare our findings to recent theoretical predictions of confined liquid flow and also discuss its relevance to nanofluidics.

  12. 14. VIEW OF THE LIQUID CHEMICAL STORAGE TANKS. THE FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF THE LIQUID CHEMICAL STORAGE TANKS. THE FLOOR IS SURFACED WITH STAINLESS STEEL TO CONTAIN SPILLS AND FACILITATE CLEANING. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  13. Studies on residue-free decontaminants for chemical warfare agents.

    PubMed

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination.

  14. Studies on residue-free decontaminants for chemical warfare agents.

    PubMed

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination. PMID:25710477

  15. TOXICITY-BASED CHEMICAL AGENT DETECTION SYSTEMS: CONTINUOUS MONITOR AND EXPOSURE HISTORY

    EPA Science Inventory

    This project will develop and characterize chemical agent detection systems that will provide broad toxicological screening information to first responders and building decontamination personnel. The primary goal for this technology is to detect the presence of airborne chemic...

  16. Chemical stress by different agents affects the melatonin content of barley roots.

    PubMed

    Arnao, Marino B; Hernández-Ruiz, Josefa

    2009-04-01

    The presence of melatonin (N-acetyl-5-methoxytryptamine) in plants has been clearly demonstrated. However, while this indoleamine has been intensively studied in animals, especially in mammals, the same is not true in the case of plants, where one of the most interesting aspects is its possible role as antioxidative molecule in physiological processes. Some data reflect the possible protective role that melatonin may exert in some stress situations such as ultraviolet (UV)-radiation, induced senescence and copper stress. The present work was designed to establish how the melatonin content changes in plants as a result of chemically induced stress. For this, barley plants were exposed in different treatments to the chemical-stress agents: sodium chloride, zinc sulphate or hydrogen peroxide. After different times, the content of melatonin in treated roots and control roots were determined using liquid chromatography (LC) with time-of-flight/mass spectrometry and LC with fluorescence detection for identification and quantification, respectively. The data show that the melatonin content in roots increased due to stress, reaching up to six times the melatonin content of control roots. Induction was time dependent, while hydrogen peroxide (10 mm) and zinc sulphate (1 mm) were the most effective inducers. The capacity of roots to absorb melatonin from soil was also studied. The data establish, for first time, that the chemical-stress agents assayed can induce the biosynthesis of melatonin in barley roots and produce a significant increase in their melatonin content. Such an increase in melatonin probably plays an important antioxidative role in the defense against chemically induced stress and other abiotic/biotic stresses. PMID:19196434

  17. Solid-Liquid and Liquid-Liquid Mixing Laboratory for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Pour, Sanaz Barar; Norca, Gregory Benoit; Fradette, Louis; Legros, Robert; Tanguy, Philippe A.

    2007-01-01

    Solid-liquid and liquid-liquid mixing experiments have been developed to provide students with a practical experience on suspension and emulsification processes. The laboratory focuses on the characterization of the process efficiency, specifically the influence of the main operating parameters and the effect of the impeller type. (Contains 2…

  18. Detection of warfare agents in liquid foods using the brine shrimp lethality assay.

    PubMed

    Lumor, Stephen E; Diez-Gonzalez, Francisco; Labuza, Theodore P

    2011-01-01

    The brine shrimp lethality assay (BSLA) was used for rapid and non-specific detection of biological and chemical warfare agents at concentrations considerably below that which will cause harm to humans. Warfare agents detected include T-2 toxin, trimethylsilyl cyanide, and commercially available pesticides such as dichlorvos, diazinon, dursban, malathion, and parathion. The assay was performed by introducing 50 μL of milk or orange juice contaminated with each analyte into vials containing 10 freshly hatched brine shrimp nauplii in seawater. This was incubated at 28 °C for 24 h, after which mortality was determined. Mortality was converted to probits and the LC(50) was determined for each analyte by plotting probits of mortality against analyte concentration (log(10)). Our findings were the following: (1) the lethal effects of toxins dissolved in milk were observed, with T-2 toxin being the most lethal and malathion being the least, (2) except for parathion, the dosage (based on LC(50)) of analyte in a cup of milk (200 mL) consumed by a 6-y-old (20 kg) was less than the respective published rat LD(50) values, and (3) the BSLA was only suitable for detecting toxins dissolved in orange juice if incubation time was reduced to 6 h. Our results support the application of the BSLA for routine, rapid, and non-specific prescreening of liquid foods for possible sabotage by an employee or an intentional bioterrorist act. Practical Application: The findings of this study strongly indicate that the brine shrimp lethality assay can be adapted for nonspecific detection of warfare agents or toxins in food at any point during food production and distribution.

  19. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.

    PubMed

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W

    2015-01-01

    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment. PMID:26389873

  20. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.

    PubMed

    Potdar, Mahesh K; Kelso, Geoffrey F; Schwarz, Lachlan; Zhang, Chunfang; Hearn, Milton T W

    2015-09-15

    Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  1. Advances in toxicology and medical treatment of chemical warfare nerve agents.

    PubMed

    Moshiri, Mohammd; Darchini-Maragheh, Emadodin; Balali-Mood, Mahdi

    2012-01-01

    Organophosphorous (OP) Nerve agents (NAs) are known as the deadliest chemical warfare agents. They are divided into two classes of G and V agents. Most of them are liquid at room temperature. NAs chemical structures and mechanisms of actions are similar to OP pesticides, but their toxicities are higher than these compounds. The main mechanism of action is irreversible inhibition of Acetyl Choline Esterase (AChE) resulting in accumulation of toxic levels of acetylcholine (ACh) at the synaptic junctions and thus induces muscarinic and nicotinic receptors stimulation. However, other mechanisms have recently been described. Central nervous system (CNS) depression particularly on respiratory and vasomotor centers may induce respiratory failure and cardiac arrest. Intermediate syndrome after NAs exposure is less common than OP pesticides poisoning. There are four approaches to detect exposure to NAs in biological samples: (I) AChE activity measurement, (II) Determination of hydrolysis products in plasma and urine, (III) Fluoride reactivation of phosphylated binding sites and (IV) Mass spectrometric determination of cholinesterase adducts. The clinical manifestations are similar to OP pesticides poisoning, but with more severity and fatalities. The management should be started as soon as possible. The victims should immediately be removed from the field and treatment is commenced with auto-injector antidotes (atropine and oximes) such as MARK I kit. A 0.5% hypochlorite solution as well as novel products like M291 Resin kit, G117H and Phosphotriesterase isolated from soil bacterias, are now available for decontamination of NAs. Atropine and oximes are the well known antidotes that should be infused as clinically indicated. However, some new adjuvant and additional treatment such as magnesium sulfate, sodium bicarbonate, gacyclidine, benactyzine, tezampanel, hemoperfusion, antioxidants and bioscavengers have recently been used for OP NAs poisoning. PMID:23351280

  2. Advances in toxicology and medical treatment of chemical warfare nerve agents

    PubMed Central

    2012-01-01

    Organophosphorous (OP) Nerve agents (NAs) are known as the deadliest chemical warfare agents. They are divided into two classes of G and V agents. Most of them are liquid at room temperature. NAs chemical structures and mechanisms of actions are similar to OP pesticides, but their toxicities are higher than these compounds. The main mechanism of action is irreversible inhibition of Acetyl Choline Esterase (AChE) resulting in accumulation of toxic levels of acetylcholine (ACh) at the synaptic junctions and thus induces muscarinic and nicotinic receptors stimulation. However, other mechanisms have recently been described. Central nervous system (CNS) depression particularly on respiratory and vasomotor centers may induce respiratory failure and cardiac arrest. Intermediate syndrome after NAs exposure is less common than OP pesticides poisoning. There are four approaches to detect exposure to NAs in biological samples: (I) AChE activity measurement, (II) Determination of hydrolysis products in plasma and urine, (III) Fluoride reactivation of phosphylated binding sites and (IV) Mass spectrometric determination of cholinesterase adducts. The clinical manifestations are similar to OP pesticides poisoning, but with more severity and fatalities. The management should be started as soon as possible. The victims should immediately be removed from the field and treatment is commenced with auto-injector antidotes (atropine and oximes) such as MARK I kit. A 0.5% hypochlorite solution as well as novel products like M291 Resin kit, G117H and Phosphotriesterase isolated from soil bacterias, are now available for decontamination of NAs. Atropine and oximes are the well known antidotes that should be infused as clinically indicated. However, some new adjuvant and additional treatment such as magnesium sulfate, sodium bicarbonate, gacyclidine, benactyzine, tezampanel, hemoperfusion, antioxidants and bioscavengers have recently been used for OP NAs poisoning. PMID:23351280

  3. Fluorescent discrimination between traces of chemical warfare agents and their mimics.

    PubMed

    Díaz de Greñu, Borja; Moreno, Daniel; Torroba, Tomás; Berg, Alexander; Gunnars, Johan; Nilsson, Tobias; Nyman, Rasmus; Persson, Milton; Pettersson, Johannes; Eklind, Ida; Wästerby, Pär

    2014-03-19

    An array of fluorogenic probes is able to discriminate between nerve agents, sarin, soman, tabun, VX and their mimics, in water or organic solvent, by qualitative fluorescence patterns and quantitative multivariate analysis, thus making the system suitable for the in-the-field detection of traces of chemical warfare agents as well as to differentiate between the real nerve agents and other related compounds.

  4. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  5. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  6. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  7. 28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is...

  8. Estimated Chemical Warfare Agent Surface Clearance Goals for Remediation Pre-Planning

    SciTech Connect

    Dolislager, Frederick; Bansleben, Dr. Donald; Watson, Annetta Paule

    2010-01-01

    Health-based surface clearance goals, in units of mg/cm2, have been developed for the persistent chemical warfare agents sulfur mustard (HD) and nerve agent VX as well as their principal degradation products. Selection of model parameters and critical receptor (toddler child) allow calculation of surface residue estimates protective for the toddler child, the general population and adult employees of a facilty that has undergone chemical warfare agent attack.

  9. Rapid Chemical Ordering in Supercooled Liquid Cu46Zr54

    SciTech Connect

    Wessels, Victor; Gangopadhyay, Anup; Sahu, K. K.; Hyers, R. W.; Canepari, S. M.; Rogers, J. R.; Kramer, Matthew J.; Goldman, Alan; Robinson, D.; Lee, Jae W; Morris, James R; Kelton, K. F.

    2011-01-01

    Evidence for abrupt chemical ordering in a supercooled Cu46Zr54 liquid, obtained from high energy x-ray diffraction in a containerless processing environment, is presented. Relatively sudden changes were observed in the topological and chemical short-range order near 850oC, a temperature significantly below the liquidus and above the glass transition temperatures. A peak in the specific heat was observed with supercooling, with an onset near 850oC, the same temperature as the onset of chemical ordering, and a maximum near 700oC, consistent with the prediction of a molecular dynamics calculation using embedded atom potentials. The dominant short-range order below 850oC is incompatible with that of the primary crystallizing phases. This, and the possible development of strongly bonded, chemically ordered clustersmay explain unlikely bulk metallic glass formation in Cu-Zr and other binary alloys.

  10. Molecular dynamics averaging of Xe chemical shifts in liquids

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Sears, Devin N.; Murad, Sohail

    2004-11-01

    The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.

  11. Can ionic liquids be used as templating agents for controlled design of uranium-containing nanomaterials?

    SciTech Connect

    Visser, Ann E. Bridges, Nicholas J.; Tosten, Michael H.

    2013-09-01

    Graphical abstract: - Highlights: • Uranium oxides nanoparticles prepared using ionic liquids. • IL cation alkyl length impacts oxide morphology. • Low temperature UO{sub 2} synthesis. - Abstract: Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  12. Mass spectrometric study of selected precursors and degradation products of chemical warfare agents.

    PubMed

    Papousková, Barbora; Bednár, Petr; Frysová, Iveta; Stýskala, Jakub; Hlavác, Jan; Barták, Petr; Ulrichová, Jitka; Jirkovský, Jaromír; Lemr, Karel

    2007-12-01

    Selected precursors and degradation products of chemical warfare agents namely N,N-dialkylaminoethane-2-ols, N,N-dialkylaminoethyl-2-chlorides and some of related N-quaternary salts were studied by means of electrospray ionization-multiple tandem mass spectrometry (ESI-MS(n)). Proposed structures were confirmed with accurate mass measurement. General fragmentation patterns of these compounds are discussed in detail and suggested processes are confirmed using deuterated standards. The typical processes are elimination of alkene, hydrogen chloride, or water, respectively. Besides, elimination of ethene from propyl chain under specific conditions was observed and unambiguously confirmed using exact mass measurement and labelled standard. The potential of mass spectrometry to distinguish the positional isomers occurring among the studied compounds is reviewed in detail using two different MS instruments (i.e. ion trap and hybrid quadrupole-time of flight (Q-TOF) analyzer). A new microcolumn liquid chromatography (microLC)/MS(n) method was designed for the cases where the resolution based solely on differences in fragmentation is not sufficient. Low retention of the derivatives on reversed phase (RP) was overcome by using addition of less typical ion pairing agent (1 mM/l, 3,5-dinitrobenzoic acid) to the mobile phase (mixture water : acetonitrile). PMID:18085550

  13. Paint for detection of radiological or chemical agents

    DOEpatents

    Farmer, Joseph C.; Brunk, James L.; Day, Sumner Daniel

    2010-08-24

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  14. Determination of preservatives in cosmetics, cleaning agents and pharmaceuticals using fast liquid chromatography.

    PubMed

    Baranowska, Irena; Wojciechowska, Iwona; Solarz, Natalia; Krutysza, Ewa

    2014-01-01

    This paper reports the development of a method for simultaneously determining five preservatives in cosmetics, cleaning agents and pharmaceuticals by fast liquid chromatography. Methylisothiazolinone, methylchloroisothiazolinone, benzyl alcohol, sodium benzoate and methylparaben were separated on a Chromolith Fast Gradient reversed-phase 18e column using gradient elution with acetonitrile and a 0.1% aqueous solution of formic acid, with a run time of 3 min. The preparation of solid and liquid samples included ultrasonic extraction with methanol with recoveries ranging from 69 to 119%. The developed method was used to analyze samples of cosmetics (66 samples), cleaning agents (five samples) and pharmaceutical industry products (17 samples).

  15. Chemical reactions in liquid induced by atmospheric-pressure dc glow discharge in contact with liquid

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi; Shimokawa, Yudai; Shirai, Naoki; Uchida, Satoshi

    2014-12-01

    We experimentally investigated some of the initial reactions in a liquid induced by electron or positive-ion irradiation from an atmospheric-pressure dc glow discharge in contact with the liquid. Aqueous solutions of NaCl, AgNO3, and HAuCl4 are used as the electrolyte. We measured the pH and conductivity in the liquid at approximately 1 cm below the solution surfaces. OH radical generation in the liquid was observed by a chemical probe method. Experimental results showed that electron irradiation of the liquid surface generates OH- in water and that positive-ion irradiation of the liquid surface generates H+ in water even without the dissolution of gas-phase nitrogen oxide. A possible reaction process is qualitatively discussed. In particular, the contribution of charge transfer collision between impinging low-energy positive ions and water molecules to the ionic species in the liquid is used to explain the overall tendency of the experimental results.

  16. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  17. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  18. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  19. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  20. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  1. Compensation for occupational diseases by chemical agents in Korea.

    PubMed

    Kwon, Soon-Chan; Roh, Soo-Yong; Lee, Ji-Hoon; Kim, Eun-A

    2014-06-01

    Investigation into the frequency of compensation for occupational diseases (ODs) caused by hazardous chemicals revealed an important opportunity for the improvement and further development of occupational health and safety systems in Korea. In response to concerns after outbreaks of disease due to chemical exposure, specific criteria for recognition of ODs were established and included in the Enforcement Decree of the Labor Standard Act (LSA) and the Industrial Accident Compensation Insurance Act (IACIA) on June 28, 2013. However, the original versions of the LSA and IACIA contain several limitations. First, the criteria was listed inconsistently according to the symptoms or signs of acute poisoning. Second, all newly recognized hazardous chemicals and chemicals recognized as hazardous by the International Labor Organization (ILO) were not included in the LSA and IACIA. Although recent amendments have addressed these shortcomings, future amendments should strive to include all chemicals listed by the ILO and continuously add newly discovered hazardous chemicals as they are introduced into the workplace. PMID:25006329

  2. Compensation for occupational diseases by chemical agents in Korea.

    PubMed

    Kwon, Soon-Chan; Roh, Soo-Yong; Lee, Ji-Hoon; Kim, Eun-A

    2014-06-01

    Investigation into the frequency of compensation for occupational diseases (ODs) caused by hazardous chemicals revealed an important opportunity for the improvement and further development of occupational health and safety systems in Korea. In response to concerns after outbreaks of disease due to chemical exposure, specific criteria for recognition of ODs were established and included in the Enforcement Decree of the Labor Standard Act (LSA) and the Industrial Accident Compensation Insurance Act (IACIA) on June 28, 2013. However, the original versions of the LSA and IACIA contain several limitations. First, the criteria was listed inconsistently according to the symptoms or signs of acute poisoning. Second, all newly recognized hazardous chemicals and chemicals recognized as hazardous by the International Labor Organization (ILO) were not included in the LSA and IACIA. Although recent amendments have addressed these shortcomings, future amendments should strive to include all chemicals listed by the ILO and continuously add newly discovered hazardous chemicals as they are introduced into the workplace.

  3. Plastic antibody for the recognition of chemical warfare agent sulphur mustard.

    PubMed

    Boopathi, M; Suryanarayana, M V S; Nigam, Anil Kumar; Pandey, Pratibha; Ganesan, K; Singh, Beer; Sekhar, K

    2006-06-15

    Molecularly imprinted polymers (MIPs) known as plastic antibodies (PAs) represent a new class of materials possessing high selectivity and affinity for the target molecule. Since their discovery, PAs have attracted considerable interest from bio- and chemical laboratories to pharmaceutical institutes. PAs are becoming an important class of synthetic materials mimicking molecular recognition by natural receptors. In addition, they have been utilized as catalysts, sorbents for solid-phase extraction, stationary phase for liquid chromatography and mimics of enzymes. In this paper, first time we report the preparation and characterization of a PA for the recognition of blistering chemical warfare agent sulphur mustard (SM). The SM imprinted PA exhibited more surface area when compared to the control non-imprinted polymer (NIP). In addition, SEM image showed an ordered nano-pattern for the PA of SM that is entirely different from the image of NIP. The imprinting also enhanced SM rebinding ability to the PA when compared to the NIP with an imprinting efficiency (alpha) of 1.3.

  4. Response of Rabbiteye Blueberries to Chemical Thinning Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thinning potential of various chemicals sprayed on 'Tifblue' rabbiteye blueberry was examined under field conditions for two years. Chemicals used were 7-benzylamino purine (BA), gibberellic acid (GA3), 2- naphaleneacetic acid (NAA), and 1-naphthyl N-methylcarbamate (carbaryl). BA at 75 mg/L and...

  5. Pyrazine-derived disulfide-reducing agent for chemical biology.

    PubMed

    Lukesh, John C; Wallin, Kelly K; Raines, Ronald T

    2014-08-28

    For fifty years, dithiothreitol (DTT) has been the preferred reagent for the reduction of disulfide bonds in proteins and other biomolecules. Herein we report on the synthesis and characterization of 2,3-bis(mercaptomethyl)pyrazine (BMMP), a readily accessible disulfide-reducing agent with reactivity under biological conditions that is markedly superior to DTT and other known reagents.

  6. Decontamination of chemical agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of chemical contamination on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some chemical contaminants, but important data gaps remain. In general, data on chemical persistence on drinking water infrastructure is available for inorganics such as arsenic and mercury, as well as select organics such as petroleum products, pesticides and rodenticides. Data specific to chemical warfare agents and pharmaceuticals was not found and data on toxins is scant. Future research suggestions focus on expanding the available chemical persistence data to other common drinking water infrastructure materials. Decontaminating agents that successfully removed persistent contamination from one infrastructure material should be used in further studies. Methods for sampling or extracting chemical agents from water infrastructure surfaces are needed.

  7. Decontamination of chemical agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of chemical contamination on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some chemical contaminants, but important data gaps remain. In general, data on chemical persistence on drinking water infrastructure is available for inorganics such as arsenic and mercury, as well as select organics such as petroleum products, pesticides and rodenticides. Data specific to chemical warfare agents and pharmaceuticals was not found and data on toxins is scant. Future research suggestions focus on expanding the available chemical persistence data to other common drinking water infrastructure materials. Decontaminating agents that successfully removed persistent contamination from one infrastructure material should be used in further studies. Methods for sampling or extracting chemical agents from water infrastructure surfaces are needed. PMID:24565672

  8. A convenient first aid kit for chemical and biological agents and for radiation exposure.

    PubMed

    Vijayaraghavan, R; Bhaskar, A S B; Gautam, Anshoo; Gopalan, N; Singh, A K; Singh, Beer; Flora, S J S

    2012-05-01

    The chemical and biological warfare agents are extremely toxic in nature. They act rapidly even in very small quantities and death may occur in minutes. Hence, physical and medical protection must be provided immediately to save life or avoid serious injury. A first aid kit has thus been developed for providing immediate relief from chemical and biological warfare agents (FAKCBW) with the objective of easy detection, personal decontamination, antidote for chemical warfare agents (like nerve agents, sulphur mustard, phosgene, cyanide, radiation exposure and bacterial agents), along with basic medication aid for pain, fever and inflammation. The kit box also includes a user friendly handbook with a simple standard operating procedure. In addition, the kit is rugged to withstand normal jerks, vibration and is water-proof. PMID:23029921

  9. Measuring indigenous photosynthetic organisms to detect chemical warefare agents in water

    DOEpatents

    Greenbaum, Elias; Sanders, Charlene A.

    2005-11-15

    A method of testing water to detect the presence of a chemical or biological warfare agent is disclosed. The method is carried out by establishing control data by providing control water containing indigenous organisms but substantially free of a chemical and a biological warfare agent. Then measuring photosynthetic activity of the control water with a fluorometer to obtain control data to compare with test data to detect the presence of the chemical or agent. The test data is gathered by providing test water comprising the same indigenous organisms as contained in the control water. Further, the test water is suspected of containing the chemical or agent to be tested for. Photosynthetic activity is also measured by fluorescence induction in the test water using a fluorometer.

  10. Long-term health effects of exposure to sarin and other anticholinesterase chemical warfare agents.

    PubMed

    Page, William F

    2003-03-01

    In a telephone survey of 4,022 military volunteers for a 1955-1975 program of experimental exposures to chemical agents at Edgewood, Maryland, the current health of those exposed to anticholinesterase agents was compared with that of men exposed to no active chemicals (no chemical test) and to two or more other types of chemical agents (other chemical tests). The survey posed questions about general health and about neurological and psychological deficits. There were only two statistically significant differences: volunteers in anticholinesterase agent tests reported fewer attention problems than those in other chemical tests and greater sleep disturbance than those in no chemical tests. In contrast, volunteers who reported exposure to civilian or military chemical agents outside of their participation in the Edgewood program reported many statistically significant adverse neurological and psychological effects, regardless of their experimental exposure. In this study, the health effects of self-reported, nonexperimental exposure, which are subject to recall bias, were greater than the health effects of experimental exposure. PMID:12685692

  11. Chemical characterization of some aerobic liquids in CELSS

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1993-01-01

    Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.

  12. Fluorescent discrimination between traces of chemical warfare agents and their mimics.

    PubMed

    Díaz de Greñu, Borja; Moreno, Daniel; Torroba, Tomás; Berg, Alexander; Gunnars, Johan; Nilsson, Tobias; Nyman, Rasmus; Persson, Milton; Pettersson, Johannes; Eklind, Ida; Wästerby, Pär

    2014-03-19

    An array of fluorogenic probes is able to discriminate between nerve agents, sarin, soman, tabun, VX and their mimics, in water or organic solvent, by qualitative fluorescence patterns and quantitative multivariate analysis, thus making the system suitable for the in-the-field detection of traces of chemical warfare agents as well as to differentiate between the real nerve agents and other related compounds. PMID:24597942

  13. Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry.

    PubMed

    Kobayashi, Morio; Tsutsui, Takeo W; Kobayashi, Tomoko; Ohno, Maki; Higo, Yukari; Inaba, Tomohiro; Tsutsui, Takeki

    2013-01-01

    To determine the adverse effects against human dental pulp tissue, the sensitivity of human dental pulp cells (D824 cells) to 18 chemical agents used for endodontic treatments in dentistry was examined. The cytotoxicity, as determined by a decrease in colony-forming ability of cells treated with the chemical agents, increased as the concentration increased. As a quantitative measure of the cytotoxic effect, LC(50), the concentration which induces a 50% lethality, was extrapolated from the concentration-response curves. The rank of the chemical agents according to their cytotoxic effect (LC(50)) was sodium arsenite > formaldehyde > hydrogen peroxide > zinc oxide > thymol ≈ iodoform ≈ eugenol > guaiacol > ethylenediaminetetraacetic acid ≈ iodine > procaine > lidocaine ≈ chloramphenicol ≈ m-cresol > calcium hydroxide ≈ sodium hypochlorite ≈ phenol ≈ p-phenolsulfonic acid. To compare the cytotoxicity and the levels of apoptosis and mRNA expression of five genes related to the function of dental pulp tissue, D824 cells treated with the LC(50) concentrations of chemical agents were assayed by the TUNEL method and quantitative reverse transcription polymerase chain reaction analysis, respectively. The inducibility of apoptotic cells and the level of mRNA expression of the genes varied with the chemical agents, indicating that both effects occurred independent of the rank of cytotoxic effect of the chemical agents. The results not only provide information concerning cytotoxicity of various chemical agents to human dental pulp cells, but also show an insight into the diversity of the pharmacodynamic action of the chemical agents.

  14. Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space

    SciTech Connect

    William S. Winters

    2002-02-01

    This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied.

  15. Molecular interactions of exogenous chemical agents with collagen—implications for tissue optical clearing

    NASA Astrophysics Data System (ADS)

    Yeh, Alvin T.; Hirshburg, Jason

    2006-01-01

    Reduction of optical scattering in turbid biological tissues using nonreactive chemical agents has potential applications for light-based diagnostics and therapeutics. Optical clearing effects by exogenous chemical agents, in particular sugars and sugar alcohols, have been found to be temporary with tissue rehydration. Applications with dermatologic laser therapies are now being investigated, but suffer from the inability of studied agents to penetrate the superficial layers of human skin. Selection, design, and refinement of topically effective chemical agents are hindered by a lack of fundamental understanding of tissue clearing mechanisms. We present recent work, particularly from the biochemistry community, detailing molecular interactions between chemical agents and collagen. This body of work demonstrates the perturbative effects of sugars and sugar alcohols on collagen high-order structures at micro- and nanometer length scales by screening noncovalent bonding forces. In addition, these studies emphasize the nonreactive nature of agent-collagen interactions and the ability of noncovalent bonding forces to recover with agent removal and drive reassembly of destabilized collagen structures. A mechanism of tissue optical clearing is proposed based on agent destabilization of high-order collagen structures.

  16. Modeling the transport of chemical warfare agents and simulants in polymeric substrates for reactive decontamination

    NASA Astrophysics Data System (ADS)

    Pearl, Thomas; Mantooth, Brent; Varady, Mark; Willis, Matthew

    2014-03-01

    Chemical warfare agent simulants are often used for environmental testing in place of highly toxic agents. This work sets the foundation for modeling decontamination of absorbing polymeric materials with the focus on determining relationships between agents and simulants. The correlations of agents to simulants must consider the three way interactions in the chemical-material-decontaminant system where transport and reaction occur in polymer materials. To this end, diffusion modeling of the subsurface transport of simulants and live chemical warfare agents was conducted for various polymer systems (e.g., paint coatings) with and without reaction pathways with applied decontamination. The models utilized 1D and 2D finite difference diffusion and reaction models to simulate absorption and reaction in the polymers, and subsequent flux of the chemicals out of the polymers. Experimental data including vapor flux measurements and dynamic contact angle measurements were used to determine model input parameters. Through modeling, an understanding of the relationship of simulant to live chemical warfare agent was established, focusing on vapor emission of agents and simulants from materials.

  17. Protocol for determination of chemical warfare agent simulant movement through porous media

    SciTech Connect

    Jenkins, R.A.; Buchanan, M.V.; Merriweather, R.; Ilgner, R.H.; Gayle, T.M.; Moneyhun, J.H.; Watson, A.P.

    1992-07-01

    In the event of an unplanned release of chemical warfare agent during any phase of the Chemical Stockpile Disposal Program (CSDP), a (small) potential exists for contamination of buildings and materials used in their construction. Guidelines for unrestricted access to potentially agent-contaminated private and public property are presently undefined due to uncertainties regarding the adequacy of decontaminating porous surfaces such as wood, masonry and gypsum wall board. Persistent agents such as VX or mustard are particularly problematic. The report which follows documents a measurement protocol developed in a scoping investigation characterizing the permeation of chemical warfare agent simulants [diisopropylmethyl phosphonate (DIMP) for warfare agent GB, dimethylmethyl phosphonate (DMMP) for warfare agent VX and chlorethylethyl sulfide (CEES) for warfare agent sulfur mustard] through several, common porous, construction materials. The ``porous media`` selected for examination were wood, brick, cinder block, and gypsum wall board. Simulants were tested rather than actual warfare agents because of their low toxicity, commercial availability, and the lack of surety capability at Oak Ridge National Laboratory (ORNL). The present work is considered a protocol for confirmation testing with ``live`` agents.

  18. Protocol for determination of chemical warfare agent simulant movement through porous media

    SciTech Connect

    Jenkins, R.A.; Buchanan, M.V.; Merriweather, R.; Ilgner, R.H.; Gayle, T.M.; Moneyhun, J.H.; Watson, A.P.

    1992-07-01

    In the event of an unplanned release of chemical warfare agent during any phase of the Chemical Stockpile Disposal Program (CSDP), a (small) potential exists for contamination of buildings and materials used in their construction. Guidelines for unrestricted access to potentially agent-contaminated private and public property are presently undefined due to uncertainties regarding the adequacy of decontaminating porous surfaces such as wood, masonry and gypsum wall board. Persistent agents such as VX or mustard are particularly problematic. The report which follows documents a measurement protocol developed in a scoping investigation characterizing the permeation of chemical warfare agent simulants (diisopropylmethyl phosphonate (DIMP) for warfare agent GB, dimethylmethyl phosphonate (DMMP) for warfare agent VX and chlorethylethyl sulfide (CEES) for warfare agent sulfur mustard) through several, common porous, construction materials. The porous media'' selected for examination were wood, brick, cinder block, and gypsum wall board. Simulants were tested rather than actual warfare agents because of their low toxicity, commercial availability, and the lack of surety capability at Oak Ridge National Laboratory (ORNL). The present work is considered a protocol for confirmation testing with live'' agents.

  19. Potentiometric responses of polymeric liquid membranes based on hydrophobic chelating agents to metal ions.

    PubMed

    Itoh, Y; Ueda, Y; Hirano, A; Sugawara, M; Tohda, K; Akaiwa, H; Umezawa, Y

    2001-05-01

    The effect of hydrophobicity of acidic chelating agents as sensing materials on the potentiometric responses of polymeric liquid membranes was investigated. The chelating agents tested were 8-quinolinol (HOx), dithizone (HDz), 1-(2-pyridylazo)-2-naphthol (PAN) and their alkylated analogues, 5-octyloxymethyl-8-quinolinol (HO8Q), di(phexylphenyl)thiocarbazone (C6HDz), 7-pentadecyloxy-1-(2-pyridylazo)-2-naphthol (C15PAN) and a series of N-alkylcarbonyl-N-phenylhydroxylamines (CnPHA, n = 3, 6, 9, 12). The distribution coefficients between membrane solvent and water were determined to evaluate the hydrophobicity of the agents. The potential-pH profiles of the membranes containing hydrophobic chelating agents demonstrated the generation of potentiometric responses, while less hydrophobic agents gave no response. A possible model for the generation of membrane potential is proposed. The charge separation is attained by the permselective uptake of metal cations by the chelating agent anion at membrane/solution interface, where the high hydrophobicity of the agent enables the anionic or deprotonated form of the agents to remain at the membrane/solution interface.

  20. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    PubMed

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  1. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    PubMed

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas. PMID:22352732

  2. Design criteria for extraction with chemical reaction and liquid membrane permeation

    NASA Technical Reports Server (NTRS)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.

    1988-01-01

    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  3. 46 CFR 194.05-13 - Corrosive liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquids are regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of... 46 Shipping 7 2013-10-01 2013-10-01 false Corrosive liquids as chemical stores-Detail requirements... and Marking § 194.05-13 Corrosive liquids as chemical stores—Detail requirements. (a)...

  4. 46 CFR 194.05-13 - Corrosive liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquids are regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of... 46 Shipping 7 2011-10-01 2011-10-01 false Corrosive liquids as chemical stores-Detail requirements... and Marking § 194.05-13 Corrosive liquids as chemical stores—Detail requirements. (a)...

  5. 46 CFR 194.05-19 - Combustible liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... combustible liquids shall be regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part... 46 Shipping 7 2012-10-01 2012-10-01 false Combustible liquids as chemical stores-Detail... and Marking § 194.05-19 Combustible liquids as chemical stores—Detail requirements. (a)...

  6. 46 CFR 194.05-19 - Combustible liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... combustible liquids shall be regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part... 46 Shipping 7 2014-10-01 2014-10-01 false Combustible liquids as chemical stores-Detail... and Marking § 194.05-19 Combustible liquids as chemical stores—Detail requirements. (a)...

  7. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2010-10-01 2010-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  8. 46 CFR 194.05-13 - Corrosive liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquids are regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of... 46 Shipping 7 2012-10-01 2012-10-01 false Corrosive liquids as chemical stores-Detail requirements... and Marking § 194.05-13 Corrosive liquids as chemical stores—Detail requirements. (a)...

  9. 46 CFR 194.05-13 - Corrosive liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquids are regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of... 46 Shipping 7 2010-10-01 2010-10-01 false Corrosive liquids as chemical stores-Detail requirements... and Marking § 194.05-13 Corrosive liquids as chemical stores—Detail requirements. (a)...

  10. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2014-10-01 2014-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  11. 46 CFR 194.05-13 - Corrosive liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... liquids are regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of... 46 Shipping 7 2014-10-01 2014-10-01 false Corrosive liquids as chemical stores-Detail requirements... and Marking § 194.05-13 Corrosive liquids as chemical stores—Detail requirements. (a)...

  12. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2013-10-01 2013-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  13. 46 CFR 194.05-19 - Combustible liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... combustible liquids shall be regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part... 46 Shipping 7 2011-10-01 2011-10-01 false Combustible liquids as chemical stores-Detail... and Marking § 194.05-19 Combustible liquids as chemical stores—Detail requirements. (a)...

  14. 46 CFR 194.05-19 - Combustible liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... combustible liquids shall be regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part... 46 Shipping 7 2013-10-01 2013-10-01 false Combustible liquids as chemical stores-Detail... and Marking § 194.05-19 Combustible liquids as chemical stores—Detail requirements. (a)...

  15. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  16. 46 CFR 194.05-9 - Flammable liquid chemical stores-Detail requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part 147 of Subchapter N... 46 Shipping 7 2012-10-01 2012-10-01 false Flammable liquid chemical stores-Detail requirements... and Marking § 194.05-9 Flammable liquid chemical stores—Detail requirements. (a) Flammable liquids...

  17. 46 CFR 194.05-19 - Combustible liquids as chemical stores-Detail requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... combustible liquids shall be regulated by the appropriate portions of 49 CFR parts 172, 173, and 176 or part... 46 Shipping 7 2010-10-01 2010-10-01 false Combustible liquids as chemical stores-Detail... and Marking § 194.05-19 Combustible liquids as chemical stores—Detail requirements. (a)...

  18. Ultrafast electronic spectroscopy for chemical analysis near liquid water interfaces: concepts and applications

    NASA Astrophysics Data System (ADS)

    Link, O.; Lugovoy, E.; Siefermann, K.; Liu, Y.; Faubel, M.; Abel, B.

    2009-07-01

    Electron spectroscopy for chemical analysis (ESCA) being conceptually a photoelectron spectroscopy is established as a chemically specific probe mostly for surface analysis. Liquid phase ESCA for volatile liquids has become possible through the development of the liquid microjet technique in vacuum enabling the measurement of liquid interface photoelectron emission at the high vapor pressure of volatile liquids. Recently we have been able to add the dimension of time to the liquid interface ESCA technique employing high-harmonics soft X-ray and UV/near IR femtosecond pulses in combination with liquid water micro beams in vacuum. The concepts as well as technical details are outlined and several characteristic applications are highlighted.

  19. Chemical-Stockpile Disposal Program. Chemical agent and munition disposal. Summary of the US Army's experience. Final report, July 1972-August 1987

    SciTech Connect

    Flamm, K.J.; Kwan, Q.; McNulty, W.B.

    1987-09-21

    This report was prepared in support of the U.S. Army's Chemical Stockpile Disposal Program (CSDP) Programmatic Environmental Impact Statement, and Discuss the Army's industrial-scale chemical agent and munitions disposal experience. Since 1969, when the National Academy of Science recommended that ocean dumping be discontinued as a method of chemical agent and munition disposal, the Army has destroyed nearly 15 million pounds of chemical agents by either chemical neutralization or incineration. This experience has been incorporated into the design of the Johnston Atoll Chemical Agent Disposal System, which is being constructed on a small island in the Pacific Ocean, and the proposed CSDP disposal plants.

  20. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    SciTech Connect

    Watson, A.P.

    2003-07-24

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  1. Measurements of Raman scattering in the middle ultraviolet band from persistent chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kullander, Fredrik; Landström, Lars; Lundén, Hampus; Mohammed, Abdesalam; Olofsson, Göran; Wästerby, Pär.

    2014-05-01

    The very low Raman scattering cross section and the fluorescence background limit the measuring range of Raman based instruments operating in the visible or infrared band. We are exploring if laser excitation in the middle ultraviolet (UV) band between 200 and 300 nm is useful and advantageous for detection of persistent chemical warfare agents (CWA) on various kinds of surfaces. The UV Raman scattering from tabun, mustard gas, VX and relevant simulants in the form of liquid surface contaminations has been measured using a laboratory experimental setup with a short standoff distance around 1 meter. Droplets having a volume of 1 μl were irradiated with a tunable pulsed laser swept within the middle UV band. A general trend is that the signal strength moves through an optimum when the laser excitation wavelength is swept between 240 and 300 nm. The signal from tabun reaches a maximum around 265 nm, the signal from mustard gas around 275 nm. The Raman signal from VX is comparably weak. Raman imaging by the use of a narrow bandpass UV filter is also demonstrated.

  2. PERMANENCE OF BIOLOGICAL AND CHEMICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILL LEACHATES

    EPA Science Inventory

    The objective of this work is to permit EPA/ORD's National Homeland Security Research Center (NHSRC) and Edgewood Chemical Biological Center to collaborate together to test the permanence of biological and chemical warfare agents in municipal solid waste landfills. Research into ...

  3. Use of hyperspectral remote sensing for detection and monitoring of chemical and biological agents: a survey

    NASA Astrophysics Data System (ADS)

    Gomez, Richard B.; Dasgupta, Swarvanu

    2004-12-01

    This paper surveys the potential use of hyperspectral imaging technology for standoff detection of chemical and biological agents in terrorism defense applications. In particular it focuses on the uses of hyperspectral imaging technology to detect and monitor chemical and biological attacks. In so doing it examines current technologies, their advantages and disadvantages, and investigates the possible role of hyperspectral imaging for homeland security applications. The study also addresses and provides applicable solutions for several of the potential challenges that currently create barriers to the full use of hyperspectral technology in the standoff detection of likely available chemical and biological agents.

  4. An overview of biological markers of exposure to chemical warfare agents.

    PubMed

    Black, Robin M

    2008-01-01

    An overview is given of biological markers of exposure to chemical warfare agents. Metabolites, protein, and/or DNA adducts have been identified for most nerve agents and vesicants and validated in experimental animals or in a small number of human exposures. For several agents, metabolites derived from hydrolysis are unsatisfactory biomarkers of exposure because of background levels in the human population. These are assumed to result from environmental exposure to commercial products that contain these hydrolysis products or chemicals that are metabolized to them. In these cases, metabolites derived from glutathione pathways, or covalent adducts with proteins or DNA, provide more definitive biomarkers. Biomarkers for cyanide and phosgene are unsatisfactory as indicators of chemical warfare exposure because of other sources of these chemicals or their metabolites.

  5. Absorbent pads for Containment, Neutralization, and Clean-Up of Environmental Spills Containing Chemically-Reactive Agents

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    1997-01-01

    A pad for cleaning up liquid spills is described which contains a porous surface covering, and an absorbent interior containing chemically reactive reagents for neutralizing noxious chemicals within the spilled liquid. The porous surface and the absorbent component would normally consist of chemically resistant materials allowing tentative spill to pass. The absorbent interior which contains the neutralizing reagents can but is not required to be chemically resilient and conducts the liquid chemical spill towards the absorbent interior containing the chemically reactive reagents where the dangerous and undesirable chemicals within the chemical spill are then neutralized as well as removed from the premises.

  6. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical Warfare Agent and explosives

    NASA Astrophysics Data System (ADS)

    Patel, C. K. N.

    2008-01-01

    Tunable laser photoacoustic spectroscopy is maturing rapidly in its applications to real world problems. One of the burning problems of the current turbulent times is the threat of terrorist acts against civilian population. This threat appears in two distinct forms. The first is the potential release of chemical warfare agents (CWA), such as the nerve agents, in a crowded environment. An example of this is the release of Sarin by Aum Shinrikyo sect in a crowded Tokyo subway in 1995. An example of the second terrorist threat is the ever-present possible suicide bomber in crowded environment such as airports, markets and large buildings. Minimizing the impact of both of these threats requires early detection of the presence of the CWAs and explosives. Photoacoustic spectroscopy is an exquisitely sensitive technique for the detection of trace gaseous species, a property that Pranalytica has extensively exploited in its CO2 laser based commercial instrumentation for the sub-ppb level detection of a number of industrially important gases including ammonia, ethylene, acrolein, sulfur hexafluoride, phosphine, arsine, boron trichloride and boron trifluoride. In this presentation, I will focus, however, on our recent use of broadly tunable single frequency high power room temperature quantum cascade lasers (QCL) for the detection of the CWAs and explosives. Using external grating cavity geometry, we have developed room temperature QCLs that produce continuously tunable single frequency CW power output in excess of 300 mW at wavelengths covering 5 μm to 12 μm. I will present data that show a CWA detection capability at ppb levels with false alarm rates below 1:108. I will also show the capability of detecting a variety of explosives at a ppb level, again with very low false alarm rates. Among the explosives, we have demonstrated the capability of detecting homemade explosives such as triacetone triperoxide and its liquid precursor, acetone which is a common household

  7. Two Microcatheter Technique for Embolization of Arteriovenous Fistula with Liquid Embolic Agent

    PubMed Central

    Zhao, Lin-Bo; Shim, Jae Ho; Lee, Dong-geun

    2014-01-01

    Problem with embolization of arteriovenous fistula (AVF) with liquid embolic agent is its over-penetration into the veins or regurgitation to the proximal feeder without reaching the shunt point. We present a technique that controls the flow of AVF during embolization. Two microcatheter technique consists of positioning one microcatheter close to the AVF for embolization, and with another microcatheter at the proximal feeding artery to control the AVF flow by coiling. Selective angiograms obtained using a distally positioned microcatheter before and after coiling, were compared how much stagnant effect was achieved. Using two microcatheter technique, AVF occlusion was achieved with good penetration of glue to the venous side of the AVF. Its advantage is the ability to push glue into the shunt without causing over-penetration of glue or its reflux along the feeder. Two microcatheter technique was safe and effective in glue embolization of AVF and also expected to be applied with other liquid embolic agent like Onyx. PMID:24642961

  8. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.

    PubMed

    Lebedev, Albert T

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10(-21)), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  9. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    SciTech Connect

    Lebedev, Albert T. . E-mail: lebedev@org.chem.msu.ru

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10{sup -21}), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  10. Airborne exposure limits for chemical and biological warfare agents: is everything set and clear?

    PubMed

    Sabelnikov, Alex; Zhukov, Vladimir; Kempf, C Ruth

    2006-08-01

    Emergency response strategies (guidelines) for biological, chemical, nuclear, or radiological terrorist events should be based on scientifically established exposure limits for all the agents or materials involved. In the case of a radiological terrorist event, emergency response guidelines (ERG) have been worked out. In the case of a terrorist event with the use of chemical warfare (CW) agents the situation is not that clear, though the new guidelines and clean-up values are being generated based on re-evaluation of toxicological and risk data. For biological warfare (BW) agents, such guidelines do not yet exist. In this paper the current status of airborne exposure limits (AELs) for chemical and biological warfare (CBW) agents are reviewed. Particular emphasis is put on BW agents that lack such data. An efficient, temporary solution to bridge the gap in experimental infectious data and to set provisional AELs for BW agents is suggested. It is based on mathematically generated risks of infection for BW agents grouped by their alleged ID50 values in three categories: with low, intermediate and high ID50 values.

  11. Mortality among chemical workers exposed to benzene and other agents

    SciTech Connect

    Decoufle, P.; Blattner, W.A.; Blair, A.

    1983-02-01

    A historical cohort mortality study was conducted of 259 male employees of a chemical plant where benzene has been used in large quantites. The study group included all persons who were employed by the Company any time between January 1, 1947 and December 31, 1960. The cohort was followed through December 31, 1977 at which time 58 known deaths were identified. The only unusual findings was four deaths from lymphoreticular cancers when 1.1 would have been expected on the basis of national mortality rates. Three of the deaths were due to leukemia and one was caused by multiple myeloma. In addition, one of the leukemia deaths had multiple myeloma listed on the death certificate. The findings are consistent with previous reports of leukemia following occupational exposure to benzene and raise the possibility that multiple myeloma could be linked to benzene, also.

  12. [Measurement of chemical agents in metallurgy field: electric steel plant].

    PubMed

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).

  13. Materials Problems in Chemical Liquid-Propellant Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, L. L.

    1959-01-01

    With the advent of the space age, new adjustments in technical thinking and engineering experience are necessary. There is an increasing and extensive interest in the utilization of materials for components to be used at temperatures ranging from -423 to over 3500 deg F. This paper presents a description of the materials problems associated with the various components of chemical liquid rocket systems. These components include cooled and uncooled thrust chambers, injectors, turbine drive systems, propellant tanks, and cryogenic propellant containers. In addition to materials limitations associated with these components, suggested research approaches for improving materials properties are made. Materials such as high-temperature alloys, cermets, carbides, nonferrous alloys, plastics, refractory metals, and porous materials are considered.

  14. Chemical potential of liquids and mixtures via adaptive resolution simulation

    SciTech Connect

    Agarwal, Animesh; Wang, Han Site, Luigi Delle; Schütte, Christof

    2014-07-21

    We employ the adaptive resolution approach AdResS, in its recently developed Grand Canonical-like version (GC-AdResS) [H. Wang, C. Hartmann, C. Schütte, and L. Delle Site, Phys. Rev. X 3, 011018 (2013)], to calculate the excess chemical potential, μ{sup ex}, of various liquids and mixtures. We compare our results with those obtained from full atomistic simulations using the technique of thermodynamic integration and show a satisfactory agreement. In GC-AdResS, the procedure to calculate μ{sup ex} corresponds to the process of standard initial equilibration of the system; this implies that, independently of the specific aim of the study, μ{sup ex}, for each molecular species, is automatically calculated every time a GC-AdResS simulation is performed.

  15. Evaluation of antiseptic antiviral activity of chemical agents.

    PubMed

    Geller, Chloé; Finance, Chantal; Duval, Raphaël Emmanuel

    2011-06-01

    Antiviral antisepsis and disinfection are crucial for preventing the environmental spread of viral infections. Emerging viruses and associated diseases, as well as nosocomial viral infections, have become a real issue in medical fields, and there are very few efficient and specific treatments available to fight most of these infections. Another issue is the potential environmental resistance and spread of viral particles. Therefore, it is essential to properly evaluate the efficacy of antiseptics-disinfectants (ATS-D) on viruses. ATS-D antiviral activity is evaluated by (1) combining viruses and test product for an appropriately defined and precise contact time, (2) neutralizing product activity, and (3) estimating the loss of viral infectivity. A germicide can be considered to have an efficient ATS-D antiviral activity if it induces a >3 or >4 log(10) reduction (American and European regulatory agency requirements, respectively) in viral titers in a defined contact time. This unit describes a global methodology for evaluating chemical ATS-D antiviral activity.

  16. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  17. Activation of Aluminum as an Effective Reducing Agent by Pitting Corrosion for Wet-chemical Synthesis

    PubMed Central

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F−, Cl−, and Br− in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu2Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  18. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    PubMed

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

  19. Absorbent Pads for Containment, neutralization, and clean-up of environmental spills containing chemically-reactive agents

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    1996-01-01

    A pad for cleaning up liquid spills is described which contains a porous surface covering, and an absorbent interior containing chemically reactive reagents for neutralizing noxious chemicals within the spilled liquid. The porous surface and the absorbent component would normally consist of chemically resistant materials allowing tentative spill to pass. The absorbent interior which contains the neutralizing reagents can but is not required to be chemically resilient and conducts the liquid chemically reactive reagents where the dangerous and undesirable chemicals within the chemical spill are then neutralized as well as removed from the premises.

  20. Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Stokes, David L.; Wabuyele, Musundi B.; Griffin, Guy D.; Vass, Arpad A.; Vo-Dinh, Tuan

    2004-07-01

    Surface-enhanced Raman scattering (SERS) spectra of chemical agent simulants such as dimethyl methylphonate (DMMP), pinacolyl methylphosphonate (PMP), diethyl phosphoramidate (DEPA), and 2-chloroethyl ethylsulfide (CEES), and biological agent simulants such as bacillus globigii (BG), erwinia herbicola (EH), and bacillus thuringiensis (BT) were obtained from silver oxide film-deposited substrates. Thin AgO films ranging in thickness from 50 nm to 250 nm were produced by chemical bath deposition onto glass slides. Further Raman intensity enhancements were noticed in UV irradiated surfaces due to photo-induced Ag nanocluster formation, which may provide a possible route to producing highly useful plasmonic sensors for the detection of chemical and biological agents upon visible light illumination.

  1. Three-phase hollow fiber liquid-phase microextraction of organophosphorous nerve agent degradation products from complex samples.

    PubMed

    Desoubries, Charlotte; Chapuis-Hugon, Florence; Bossée, Anne; Pichon, Valérie

    2012-07-01

    Degradation products of chemical warfare agents are considered as important environmental and biological markers of chemical attacks. Alkyl methylphosphonic acids (AMPAs), resulting from the fast hydrolysis of nerve agents, such as sarin and soman, and the methylphosphonic acid (MPA), final degradation product of AMPAs, were determined from complex matrices by using an emergent and miniaturized extraction technique, the hollow fiber liquid-phase microextraction (HF-LPME), before their analysis by liquid chromatography coupled to mass spectrometry (LC-MS). After studying different conditions of separation in the reversed phase LC-MS analysis, the sample treatment method was set up. The three-phase HF-LPME was carried out by using a porous polypropylene (PP) hollow fiber impregnated with 1-octanol that separates the donor and acceptor aqueous media. Various extraction parameters were evaluated such as the volume of the sample, the effect of the pH and the salt addition to the sample, the pH of the acceptor phase, the extraction temperature, the stirring speed of the sample, the immersion time in the organic solvent and the time of extraction. The optimum conditions were applied to the determination of MPA and five AMPAs in real samples, such as surface waters and urine. Compounds were extracted from a 3 mL acidified sample into only 6 μL of alkaline water without any other pretreatment of the complex matrices. Enrichment factors (EFs) higher than 170 were obtained for three less polar AMPAs. Limits of quantification (LOQs) in the 0.013-5.3 ng mL(-1) range were obtained after microextraction of AMPAs from river water and in the range of 0.056-4.8 ng mL(-1) from urine samples with RSD values between 1 and 9%. PMID:22705170

  2. Toxicity of the Organophosphate Chemical Warfare Agents GA, GB, and VX: Implications for Public Protection.

    PubMed Central

    Munro, N

    1994-01-01

    The nerve agents, GA, GB, and VX are organophosphorus esters that form a major portion of the total agent volume contained in the U.S. stockpile of unitary chemical munitions. Congress has mandated the destruction of these agents, which is currently slated for completion in 2004. The acute, chronic, and delayed toxicity of these agents is reviewed in this analysis. The largely negative results from studies of genotoxicity, carcinogenicity, developmental, and reproductive toxicity are also presented. Nerve agents show few or delayed effects. At supralethal doses, GB can cause delayed neuropathy in antidote-protected chickens, but there is no evidence that it causes this syndrome in humans at any dose. Agent VX shows no potential for inducing delayed neuropathy in any species. In view of their lack of genotoxcity, the nerve agents are not likely to be carcinogens. The overreaching concern with regard to nerve agent exposure is the extraordinarily high acute toxicity of these substances. Furthermore, acute effects of moderate exposure such as nausea, diarrhea, inability to perform simple mental tasks, and respiratory effects may render the public unable to respond adequately to emergency instructions in the unlikely event of agent releaase, making early warning and exposure avoidance important. Likewise, exposure or self-contamination of first responders and medical personnel must be avoided. Control limits for exposure via surface contact of drinking water are needed, as are detection methods for low levels in water or foodstuffs. Images Figure 2. PMID:9719666

  3. Oxidative decontamination of chemical and biological warfare agents using L-Gel.

    PubMed

    Raber, Ellen; McGuire, Raymond

    2002-08-01

    A decontamination method has been developed using a single reagent that is effective both against chemical warfare (CW) and biological warfare (BW) agents. The new reagent, "L-Gel", consists of an aqueous solution of a mild commercial oxidizer, Oxone, together with a commercial fumed silica gelling agent, Cab-O-Sil EH-5. L-Gel is non-toxic, environmentally friendly, relatively non-corrosive, maximizes contact time because of its thixotropic nature, clings to walls and ceilings, and does not harm carpets or painted surfaces. The new reagent also addresses the most demanding requirements for decontamination in the civilian sector, including availability, low maintenance, ease of application and deployment by a variety of dispersal mechanisms, minimal training and acceptable expense. Experiments to test the effectiveness of L-Gel were conducted at Lawrence Livermore National Laboratory and independently at four other locations. L-Gel was tested against all classes of chemical warfare agents and against various biological warfare agent surrogates, including spore-forming bacteria and non-virulent strains of real biological agents. Testing showed that L-Gel is as effective against chemical agents and biological materials, including spores, as the best military decontaminants.

  4. Reduced VOC chemical agent resistant coating (CARC). Progress report, October 1993-September 1994

    SciTech Connect

    Duncan, J.L.

    1994-09-01

    MIL-C-46168 is the basic camouflage topcoat required on all Army combat, combat support and essential ground support equipment, plus tactical wheeled vehicles and aircraft. Federal and local regulations resulting from the Clean Air Act and its amendments restrict the amount of Volatile Organic Compounds (VOCs) emitted during the application of surface coatings and there will be lower limits in the future. This report summarizes an effort to develop a lower-VOC CARC using recent technology advances in water-dispersable polyesters and polyisocyanates. While low-VOC, quality finishes have been developed, none has successfully passed live chemical agent resistance testing. Chemical Agent Resistant Coating, CARC, VOC.

  5. Tissue-based water quality biosensors for detecting chemical warfare agents

    DOEpatents

    Greenbaum, Elias; Sanders, Charlene A.

    2003-05-27

    A water quality sensor for detecting the presence of at least one chemical or biological warfare agent includes: a cell; apparatus for introducing water into the cell and discharging water from the cell adapted for analyzing photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms in water; a fluorometer for measuring photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms drawn into the cell; and an electronics package that analyzes raw data from the fluorometer and emits a signal indicating the presence of at least one chemical or biological warfare agent in the water.

  6. Method and apparatus for the gas phase decontamination of chemical and biological agents

    DOEpatents

    O'Neill, Hugh J.; Brubaker, Kenneth L.

    2003-10-07

    An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.

  7. Laboratory conditions and safety in a chemical warfare agent analysis and research laboratory.

    PubMed

    Kenar, Levent; Karayilanoğlu, Turan; Kose, Songul

    2002-08-01

    Toxic chemicals have been used as weapons of war and also as means of terrorist attacks on civilian populations. Research focusing on chemical warfare agents (CWAs) may be associated with an increased risk of exposure to and contamination by these agents. This article summarizes some of the regulations concerning designation and safety in a CWA analysis and research laboratory and medical countermeasures in case of an accidental exposure. The design of such a laboratory, coupled with a set of safety guidelines, provides for the safe conduct of research and studies involving CWAs. Thus, a discussion of decontamination and protection means against CWAs is also presented.

  8. Analysis of nerve agent metabolites from nail clippings by liquid chromatography tandem mass spectrometry.

    PubMed

    Appel, Amanda S; Logue, Brian A

    2016-09-15

    While several methods for the bioanalysis of nerve agents or their metabolites have been developed for the verification of nerve agent exposure, these methods are generally limited in the amount of time after an exposure that markers of exposure can be detected (due to rapid metabolism from biological matrices). In this study, a method for the analysis of nerve agent hydrolysis products from nail clippings was developed to allow evaluation of nails as a long-term repository of these markers. Pinacolyl methylphosphonic acid (PMPA) and isopropyl methylphosphonic acid (IMPA) were extracted from nail samples with N,N-dimethylformamide and subsequently analyzed by liquid chromatography-tandem mass spectrometry. Limits of detection for PMPA and IMPA were 0.3μg/kg and 7.5μg/kg and linear ranges were 0.75-300μg/kg and 30-1500μg/kg, respectively. Precision was within 10% and 8% for PMPA and IMPA, respectively, and accuracy was 100±12% for both analytes. The approach presented here is complementary to current methods for nerve agent exposure verification, and should allow for long-term determination of nerve agent poisoning. PMID:27474780

  9. Evaluation of neutralized chemical agent identification sets (CAIS) for skin injury with an overview of the vesicant potential of agent degradation products.

    PubMed

    Olajos, E J; Olson, C T; Salem, H; Singer, A W; Hayes, T L; Menton, R G; Miller, T L; Rosso, T; MacIver, B

    1998-01-01

    Vesication and skin irritation studies were conducted in hairless guinea-pigs to determine the vesicant and skin irritation potential of chemically-neutralized Chemical Agent Identification Sets (CAIS). The CAIS are training items that contain chemical warfare-related material--sulfur mustard (HD), nitrogen mustard (HN) or lewisite (L)--and were declared obsolete in 1971. Animals were dosed topically with 'test article'--neat HD, 10% agent/chloroform solutions or product solutions (waste-streams) from neutralized CAIS--and evaluated for skin-damaging effects (gross and microscopic). Product solutions from the chemical neutralization of neat sulfur mustard resulted in microvesicle formation. All agent-dosed (HD or agent/chloroform solutions) sites manifested microblisters as well as other histopathological lesions of the skin. Waste-streams from the neutralization of agent (agent/chloroform or agent/charcoal) were devoid of vesicant activity. Cutaneous effects (erythema and edema) were consistent with the skin-injurious activity associated with the neutralizing reagent 1,3-dichloro-5,5-dimethylhydantoin (DCDMH). Chemical neutralization of CAIS was effective in eliminating/reducing the vesicant property of CAIS containing agent in chloroform or agent on charcoal but was inefficient in reducing the vesicant potential of CAIS containing neat sulfur mustard.

  10. Continuum Model for Decontamination of Chemical Warfare Agent from a Rubbery Polymer using the Maxwell-Stefan Formulation

    NASA Astrophysics Data System (ADS)

    Varady, Mark; Bringuier, Stefan; Pearl, Thomas; Stevenson, Shawn; Mantooth, Brent

    Decontamination of polymers exposed to chemical warfare agents (CWA) often proceeds by application of a liquid solution. Absorption of some decontaminant components proceed concurrently with extraction of the CWA, resulting in multicomponent diffusion in the polymer. In this work, the Maxwell-Stefan equations were used with the Flory-Huggins model of species activity to mathematically describe the transport of two species within a polymer. This model was used to predict the extraction of the nerve agent O-ethyl S-[2(diisopropylamino)ethyl] methylphosphonothioate (VX) from a silicone elastomer into both water and methanol. Comparisons with experimental results show good agreement with minimal fitting of model parameters from pure component uptake data. Reaction of the extracted VX with sodium hydroxide in the liquid-phase was also modeled and used to predict the overall rate of destruction of VX. Although the reaction proceeds more slowly in the methanol-based solution compared to the aqueous solution, the extraction rate is faster due to increasing VX mobility as methanol absorbs into the silicone, resulting in an overall faster rate of VX destruction.

  11. Chemical warfare nerve agents. A review of cardiopulmonary pathophysiology and resuscitation. Technical report

    SciTech Connect

    Franz, D.R.

    1986-12-01

    The purpose of this document is to provide the medical research community with a digest of the open and internal literature related to cardiopulmonary pathophysiology, resuscitation, and animal modeling of chemical warfare nerve agent intoxication. Though not comprehensive, this review makes available to the reader a cross section of what research was done in this small but important part of the medical chemical defense research program between World War II and the early 1980's.

  12. Fate of sessile droplet chemical agents in environmental substrates in the presence of physiochemical processes

    NASA Astrophysics Data System (ADS)

    Navaz, H. K.; Dang, A. L.; Atkinson, T.; Zand, A.; Nowakowski, A.; Kamensky, K.

    2014-05-01

    A general-purpose multi-phase and multi-component computer model capable of solving the complex problems encountered in the agent substrate interaction is developed. The model solves the transient and time-accurate mass and momentum governing equations in a three dimensional space. The provisions for considering all the inter-phase activities (solidification, evaporation, condensation, etc.) are included in the model. The chemical reactions among all phases are allowed and the products of the existing chemical reactions in all three phases are possible. The impact of chemical reaction products on the transport properties in porous media such as porosity, capillary pressure, and permeability is considered. Numerous validations for simulants, agents, and pesticides with laboratory and open air data are presented. Results for chemical reactions in the presence of pre-existing water in porous materials such as moisture, or separated agent and water droplets on porous substrates are presented. The model will greatly enhance the capabilities in predicting the level of threat after any chemical such as Toxic Industrial Chemicals (TICs) and Toxic Industrial Materials (TIMs) release on environmental substrates. The model's generality makes it suitable for both defense and pharmaceutical applications.

  13. Compilation of existing chemical agent guidelines table as of September 1997

    SciTech Connect

    Foust, C.B.

    1998-08-01

    Public Law 99-145 requires the US Department of the Army to dispose of the lethal chemical agents and munitions stockpile stored at eight Army installations throughout the continental US and Johnston Atoll in the Pacific. Recognition by the US Army that a potential threat to the public from continued storage was greater than the threat from transportation and demilitarization of chemical agents gave rise to the Chemical Stockpile Emergency Preparedness Program (CSEPP). CSEPP is a community emergency preparedness program complementing the Department of Defense`s initiative to destroy domestic stockpiles of aged chemical warfare agent munitions. The Federal Emergency Management Agency (FEMA) and the US Army jointly coordinate and direct the CSEPP. The Compilation of Existing Chemical Agent Guidelines Table was developed under the direction of FEMA and the US Army Center for Health Promotion and Preventive Medicine (USACHPPM). The purpose of this Table is to identify established chemical warfare agent guidelines, standards, and interim standards as of September 1997, and place them in an explanatory context for ready use by the CSEPP community. This Table summarizes and organizes information from numerous agencies and review bodies responsible for recommending exposure guidelines [e.g., The Centers for Disease Control and Prevention (CDC), Committee on Toxicology (COT), Environmental Protection Agency (EPA), FEMA, Army and other federal agencies]. This Table provides references for the interested reader, but does not provide data and assumptions on which exposure guidelines were based, or comment on the rationale or appropriateness of the given values. To do so is beyond the scope of work for this task.

  14. 12 CFR 709.10 - Treatment by conservator or liquidating agent of financial assets transferred in connection with...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Treatment by conservator or liquidating agent of financial assets transferred in connection with a securitization or participation. 709.10 Section 709.10 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS INVOLUNTARY LIQUIDATION OF FEDERAL CREDIT UNIONS...

  15. Detection of chemical threat agents in drinking water by an early warning real-time biomonitor.

    PubMed

    Green, U; Kremer, J H; Zillmer, M; Moldaenke, C

    2003-12-01

    Having a safe water supply for civilian organizations and military personnel is an important objective to avoid toxic contamination of civilians and soldiers. Chemical warfare (CW) agents, especially organophosphorous nerve compounds, are the most toxic of known chemical agents. The Daphnia Toximeter system is a continuously working test system that uses Daphnia magna as a sensitive organism for monitoring drinking water. Both small doses (allowable for short-term water ingestion) and graduated higher concentrations induced toxic reactions in the Daphnia Toximeter system, leading to alarms sounding. The system is sensitive to a wide range of CW agents and their hydrolysis products. Concentrations below acute human toxicity can be discovered in a very short time, with the actual time depending on the concentrations applied. In every case alarms were triggered within 2 h at concentrations in water low enough for that water to be allowed for use as drinking water in exceptional conditions. PMID:14608606

  16. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents.

  17. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. PMID:27260452

  18. The application of single particle aerosol mass spectrometry for the detection and identification of high explosives and chemical warfare agents

    SciTech Connect

    Martin, Audrey Noreen

    2006-01-01

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  19. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2015-09-01

    Ionic liquids (ILs) have been efficiently used as a "designer sorbent" in sample preparation. A novel 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate IL monomer was synthesized and copolymerized with 1,6-di(3-vinylimidazolium) hexane bishexafluorophosphate IL as cross-linking agent to prepare a cross-linked polymeric ionic liquids (PILs) monolith. Coupled to high-performance liquid chromatography (HPLC), the PILs monolith was used as a solid-phase microextraction (SPME) sorbent to extract some polar endocrine disrupting chemical (EDCs) such as estrogens, bisphenol A, and phthalate esters in aqueous samples. Preparation and extraction conditions were investigated and optimized to obtain satisfactory extraction efficiency. Limits of detection (LODs) of the proposed method for three steroid estrogens and bisphenol A were 0.25 and 0.2 μg L(-1), respectively, which were lower than or comparable to some other sample preparation methods. Intra- and inter-day repeatability for all the analytes was 2.2-12%. The monolith-to-monolith repeatability was 7.4-15%. The extraction performance of the method for analysis of target estrogens in treated domestic wastewater was investigated and compared with a dispersive liquid-liquid microextraction (DLLME) method. The proposed SPME method provided better sensitivity and higher resistance to matrix interferences.

  20. Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography.

    PubMed

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2015-09-01

    Ionic liquids (ILs) have been efficiently used as a "designer sorbent" in sample preparation. A novel 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate IL monomer was synthesized and copolymerized with 1,6-di(3-vinylimidazolium) hexane bishexafluorophosphate IL as cross-linking agent to prepare a cross-linked polymeric ionic liquids (PILs) monolith. Coupled to high-performance liquid chromatography (HPLC), the PILs monolith was used as a solid-phase microextraction (SPME) sorbent to extract some polar endocrine disrupting chemical (EDCs) such as estrogens, bisphenol A, and phthalate esters in aqueous samples. Preparation and extraction conditions were investigated and optimized to obtain satisfactory extraction efficiency. Limits of detection (LODs) of the proposed method for three steroid estrogens and bisphenol A were 0.25 and 0.2 μg L(-1), respectively, which were lower than or comparable to some other sample preparation methods. Intra- and inter-day repeatability for all the analytes was 2.2-12%. The monolith-to-monolith repeatability was 7.4-15%. The extraction performance of the method for analysis of target estrogens in treated domestic wastewater was investigated and compared with a dispersive liquid-liquid microextraction (DLLME) method. The proposed SPME method provided better sensitivity and higher resistance to matrix interferences. PMID:26220716

  1. Catalytic conversion of cellulose to chemicals in ionic liquid.

    PubMed

    Tao, Furong; Song, Huanling; Chou, Lingjun

    2011-01-01

    A simple and effective route for the production of 5-hydroxymethyl furfural (HMF) and furfural from microcrystalline cellulose (MCC) has been developed. CoSO(4) in an ionic liquid, 1-(4-sulfonic acid) butyl-3-methylimidazolium hydrogen sulfate (IL-1), was found to be an efficient catalyst for the hydrolysis of cellulose at 150°C, which led to 84% conversion of MCC after 300min reaction time. In the presence of a catalytic amount of CoSO(4), the yields of HMF and furfural were up to 24% and 17%, respectively; a small amount of levulinic acid (LA) and reducing sugars (8% and 4%, respectively) were also generated. Dimers of furan compounds were detected as the main by-products through HPLC-MS, and with the help of mass spectrometric analysis, the components of gas products were methane, ethane, CO, CO(2,) and H(2). A mechanism for the CoSO(4)-IL-1 hydrolysis system was proposed and IL-1 was recycled for the first time, which exhibited favorable catalytic activity over five repeated runs. This catalytic system may be valuable to facilitate energy-efficient and cost-effective conversion of biomass into biofuels and platform chemicals. PMID:21092940

  2. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    ERIC Educational Resources Information Center

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  3. Chemical Agents

    MedlinePlus

    ... glycol Hydrazine Hydrofluoric acid Hydrogen chloride Lewisite Melamine Mercury Methyl bromide Methyl isocyanate Nicotine Nitrogen mustard Opioids ... L-3) Long-acting anticoagulant (super warfarin) M Mercury Methyl bromide Methyl isocyanate Mustard gas (H) (sulfur ...

  4. Viability of fibroblasts in cell culture after treatment with different chemical retraction agents.

    PubMed

    Kopac, I; Batista, U; Cvetko, E; Marion, L

    2002-01-01

    Prior to fixed prosthodontic impression procedures, temporary horizontal retraction of the free gingival tissue should be accomplished apically to the preparation finishing line. The mechanical-chemical method using cotton retraction cords of various sizes impregnated with various retraction chemicals is the most commonly employed retraction technique. Most retraction agents have pH values from 0.8 to 0.3, and are therefore hazardous to the cut dentine and periodontal tissues. Sympathomimetic vasoconstrictors introduced recently have a pH of 5.6, and are free of systemic side-effects. The present study using the dye exclusion test, colony forming ability test and colorimetric assay was undertaken to evaluate cytotoxic effects of four chemical retraction agents on cultured V-79 fibroblasts, and the dependence of cytotoxicity on the agent concentration and time of exposure. Original concentrations of retraction agents produced stronger cytotoxic effects than dilutions of 1:1 and 1:10. The most aggressive agent, 25% aluminium chloride, took only 1 min to damage all cell cultures. The proportion of cells damaged after 10 min of exposure to tetrahydrozoline was 60%, which was significantly less compared with other chemicals tested. With the colony forming ability test using retraction agents diluted to 1:10 the greatest number of colonies emerged in samples treated with tetrahydrozoline (statistical significance: P < 0.01). The colorimetric assay showed equal cytotoxic effects for 25% aluminium sulphate and tetrahydrozoline. The colorimetric test used in the study has proved an ergonomic, accurate and reliable test for cytotoxicity determination. PMID:11844038

  5. Viability of fibroblasts in cell culture after treatment with different chemical retraction agents.

    PubMed

    Kopac, I; Batista, U; Cvetko, E; Marion, L

    2002-01-01

    Prior to fixed prosthodontic impression procedures, temporary horizontal retraction of the free gingival tissue should be accomplished apically to the preparation finishing line. The mechanical-chemical method using cotton retraction cords of various sizes impregnated with various retraction chemicals is the most commonly employed retraction technique. Most retraction agents have pH values from 0.8 to 0.3, and are therefore hazardous to the cut dentine and periodontal tissues. Sympathomimetic vasoconstrictors introduced recently have a pH of 5.6, and are free of systemic side-effects. The present study using the dye exclusion test, colony forming ability test and colorimetric assay was undertaken to evaluate cytotoxic effects of four chemical retraction agents on cultured V-79 fibroblasts, and the dependence of cytotoxicity on the agent concentration and time of exposure. Original concentrations of retraction agents produced stronger cytotoxic effects than dilutions of 1:1 and 1:10. The most aggressive agent, 25% aluminium chloride, took only 1 min to damage all cell cultures. The proportion of cells damaged after 10 min of exposure to tetrahydrozoline was 60%, which was significantly less compared with other chemicals tested. With the colony forming ability test using retraction agents diluted to 1:10 the greatest number of colonies emerged in samples treated with tetrahydrozoline (statistical significance: P < 0.01). The colorimetric assay showed equal cytotoxic effects for 25% aluminium sulphate and tetrahydrozoline. The colorimetric test used in the study has proved an ergonomic, accurate and reliable test for cytotoxicity determination.

  6. Liquid-liquid-solid microextraction and detection of nerve agent simulants by on-membrane Fourier transform infrared spectroscopy.

    PubMed

    Garg, Prabhat; Purohit, Ajay; Tak, Vijay K; Kumar, Ajeet; Dubey, D K

    2012-11-01

    A coupling of novel liquid-liquid-solid microextraction (LLSME) technique based on porous hydrophobic membrane and Fourier-transform infrared spectroscopy has been presented for the detection, identification and quantification of markers and simulants of nerve agents. Two isomers O,O'-dihexyl methylphosphonate (DHMP) and O,O'-dipentyl isopropylphosphonate (DPIPP) were chosen as model analytes for the study. In the present technique, organic phase was immobilised within the pores of membrane after fixing it in an assembly, which was then immersed into aqueous sample of target analytes for extraction. The analytes were directly determined on the surface of membrane by FTIR spectroscopy without elution. On comparison with solid phase microextraction (SPME), LLSME was found to be much more efficient. The method was optimised and quantitative analyses were performed using calibration curves obtained via Beer's law and employing processing of spectra obtained, via a multivariate calibration technique partial least square (PLS). Relative standard deviations (RSDs) for intraday repeatability and interday reproducibility were found to be in the range of 0.20-0.50% and 0.20-0.60%, respectively. Limit of detection (LOD) was achieved up to 15 ng mL(-1). Applicability of the method was tested with an unknown real sample obtained in an international official proficiency test (OPT). PMID:23084054

  7. [Interference for Various Quench Agents of Chemical Disinfectants on Detection of Endotoxin Activities in Water].

    PubMed

    Zhang, Can; Liu, Wen-jun; Shi, Yun; An, Dai-zhi; Bai, Miao; Xu, Wen

    2015-05-01

    The quenching agents such as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite and sodium hyposulfite are commonly used for quenching the residual disinfectant in water. In this paper, in order to select the optimal type and concentration range of quenching agents prior to the Limulus assays, the interference effects of each quenching agent at different concentrations on endotoxin detection were investigated by the Limulus assays of kinetic-turbidity. Our results identified that, as for 0-1.0% concentration of histidine, ascorbic acid, Tween-80, sodium sulfite (pH unadjusted and pH neutral), interference on the Limulus assays was existed. Hence, these quenching agents could not be applied as neutralizers prior to Limulus assays. Although, there was no interference on endotoxin detection for the glycine, a yellow color, developed by the quenching products of glycine and glutaric dialdehyde, contributed to false positive results. Hence, glycine should not be used as quenching agents in Limulus assays for samples containing glutaric dialdehyde. Compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite, 0-1.0% concentration of sodium hyposulfite elicited no obvious interference, while 1.0%-5.0% concentration of sodium hyposulfite illustrated exhibition effect for endotoxin detection. All in all, compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80 and sodium sulfite, sodium hyposulfite is suitable for quenching chemicals prior to endotoxin detection and less than 0.5% of concentration is allowable. PMID:26314115

  8. [Interference for Various Quench Agents of Chemical Disinfectants on Detection of Endotoxin Activities in Water].

    PubMed

    Zhang, Can; Liu, Wen-jun; Shi, Yun; An, Dai-zhi; Bai, Miao; Xu, Wen

    2015-05-01

    The quenching agents such as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite and sodium hyposulfite are commonly used for quenching the residual disinfectant in water. In this paper, in order to select the optimal type and concentration range of quenching agents prior to the Limulus assays, the interference effects of each quenching agent at different concentrations on endotoxin detection were investigated by the Limulus assays of kinetic-turbidity. Our results identified that, as for 0-1.0% concentration of histidine, ascorbic acid, Tween-80, sodium sulfite (pH unadjusted and pH neutral), interference on the Limulus assays was existed. Hence, these quenching agents could not be applied as neutralizers prior to Limulus assays. Although, there was no interference on endotoxin detection for the glycine, a yellow color, developed by the quenching products of glycine and glutaric dialdehyde, contributed to false positive results. Hence, glycine should not be used as quenching agents in Limulus assays for samples containing glutaric dialdehyde. Compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite, 0-1.0% concentration of sodium hyposulfite elicited no obvious interference, while 1.0%-5.0% concentration of sodium hyposulfite illustrated exhibition effect for endotoxin detection. All in all, compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80 and sodium sulfite, sodium hyposulfite is suitable for quenching chemicals prior to endotoxin detection and less than 0.5% of concentration is allowable.

  9. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    PubMed

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material.

  10. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    SciTech Connect

    Watson, Annetta Paule; Dolislager, Fredrick G

    2007-05-01

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include the G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development are also

  11. [Exposure of ventilation system cleaning workers to harmful biological and chemical agents].

    PubMed

    Gołofit-Szymczak, Małgorzata; Jezewska, Anna; Ławniczek-Wałczyk, Anna; Górny, Rafał L

    2012-01-01

    Regular checking on the cleanliness of the ventilation systems, as well as their periodic cleaning and, if necessary, disinfection are for the proper maintenance of each system. During maintenance operations (repairs, cleaning, filter replacement), workers are at risks associated with exposure to hazardous chemicals and harmful biological agents. In ventilation systems there are usually favorable conditions for the development of microorganisms, mainly bacteria and fungi, due to surfaces contaminated with dust particles or increased humidity caused by ventilation ducts, air filters, thermal insulation, noise dampers, air coolers, etc. Workers who perform cleaning and disinfection operations on ventilation systems are exposed to chemical agents through contacts with contaminants released from sealing materials, adhesives, fireproof lining and insulating materials, volatile organic compounds present in air filters, noise dampers and insulating materials, as well as with cleaning agents and disinfectants. Exposure to harmful chemical and biological agents may induce adverse health effects ranging from allergic reactions and irritation through infections to toxic reactions and other non-specific symptoms. Due to lack of studies on the exposure of this group of workers, employers face great difficulties in identifying hazards, which prevent them from performing an occupational risk assessment.

  12. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    SciTech Connect

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  13. [Analytical and on-site detection methods for chemical warfare agents].

    PubMed

    Seto, Yasuo

    2006-12-01

    Chemical warfare agents (CWAs) are fast acting and sometimes lethal, even at low levels, and can be classified into nerve gases, blister agents, choking agents, blood agents, vomit agents, tear gases, and incapacitating agents. As countermeasures against CWA terrorism, detection and identification are important. In crisis management, monitoring of CWAs in public places and security checks at territorial borders, big event venues, and executive facilities are performed for protection against terrorism. In consequence management, on-site detection by first responders and laboratory analysis after on-site sampling and transfer are performed for minimization of terrorism damage, leading to personal protection, initial investigation, and emergency lifesaving. In incident management, laboratory analysis is performed to provide evidence at court trials for the prevention of future crimes. Laboratory analysis consists of pretreatment of on-site and casualty samples and instrumental analysis using GC-MS. However, CWAs are easily degraded, and thus are difficult to detect. Instead, it is useful to detect their metabolites and degradation products using tert-butyldimethylsilyl derivatization GC-MS or direct LC-MS. Commercially available chemical detection equipment such as gas detection tubes and ion mobility spectrometers are used for on-site detection. We have evaluated the detection performance of such equipment and found that no equipment fulfills the required perfect performance of CWA detection sensitivity, accuracy, response time, return time, and operation. To overcome the drawbacks, we have adopted the monitoring tape method and counterflow introduction atmospheric pressure chemical ionization mass spectrometry and recommend the combination of commercial detection equipment and these new technologies for simultaneous, rapid detection of all CWAs. PMID:17139154

  14. [Analytical and on-site detection methods for chemical warfare agents].

    PubMed

    Seto, Yasuo

    2006-12-01

    Chemical warfare agents (CWAs) are fast acting and sometimes lethal, even at low levels, and can be classified into nerve gases, blister agents, choking agents, blood agents, vomit agents, tear gases, and incapacitating agents. As countermeasures against CWA terrorism, detection and identification are important. In crisis management, monitoring of CWAs in public places and security checks at territorial borders, big event venues, and executive facilities are performed for protection against terrorism. In consequence management, on-site detection by first responders and laboratory analysis after on-site sampling and transfer are performed for minimization of terrorism damage, leading to personal protection, initial investigation, and emergency lifesaving. In incident management, laboratory analysis is performed to provide evidence at court trials for the prevention of future crimes. Laboratory analysis consists of pretreatment of on-site and casualty samples and instrumental analysis using GC-MS. However, CWAs are easily degraded, and thus are difficult to detect. Instead, it is useful to detect their metabolites and degradation products using tert-butyldimethylsilyl derivatization GC-MS or direct LC-MS. Commercially available chemical detection equipment such as gas detection tubes and ion mobility spectrometers are used for on-site detection. We have evaluated the detection performance of such equipment and found that no equipment fulfills the required perfect performance of CWA detection sensitivity, accuracy, response time, return time, and operation. To overcome the drawbacks, we have adopted the monitoring tape method and counterflow introduction atmospheric pressure chemical ionization mass spectrometry and recommend the combination of commercial detection equipment and these new technologies for simultaneous, rapid detection of all CWAs.

  15. Supercritical fluid extraction and organic solvent microextraction of chemical agent simulants from soil

    SciTech Connect

    Griest, W.H.; Ramsey, R.S.; Ho, C.h.; Caldwell, W.M.

    1991-12-31

    Experiments with chemical warfare agent simulants suggest that supercritical fluid extraction can achieve good extraction recoveries of agents in soil and produce less laboratory waste than current organic solvent extraction methods. Two-ppm spikes in 1 g of Rocky Mountain Arsenal Standard Soil were extracted using 5% methanol in carbon dioxide at 300 atm for 2 min at 60{degrees}C. Recoveries (n=3) were 79{plus_minus}23% for dimethylmethylphosphonate, 93{plus_minus}14% for 2-chlorethylethylsulfide, 92{plus_minus}13% for diisopropylfluorophosphate, and 95{plus_minus}17% for diisopropylmethylphosphonate. A 5 min ultrasonic micro-scale extraction using methanol is more reproducible but less efficient.

  16. Supercritical fluid extraction and organic solvent microextraction of chemical agent simulants from soil

    SciTech Connect

    Griest, W.H.; Ramsey, R.S.; Ho, C.h.; Caldwell, W.M.

    1991-01-01

    Experiments with chemical warfare agent simulants suggest that supercritical fluid extraction can achieve good extraction recoveries of agents in soil and produce less laboratory waste than current organic solvent extraction methods. Two-ppm spikes in 1 g of Rocky Mountain Arsenal Standard Soil were extracted using 5% methanol in carbon dioxide at 300 atm for 2 min at 60{degrees}C. Recoveries (n=3) were 79{plus minus}23% for dimethylmethylphosphonate, 93{plus minus}14% for 2-chlorethylethylsulfide, 92{plus minus}13% for diisopropylfluorophosphate, and 95{plus minus}17% for diisopropylmethylphosphonate. A 5 min ultrasonic micro-scale extraction using methanol is more reproducible but less efficient.

  17. Fate and control of blistering chemical warfare agents in Kuwait`s desalination industry

    SciTech Connect

    Khordagui, H.K.

    1997-01-01

    Kuwait, as most of the other states located along the Western shores of the Arabian Gulf, relies upon the Gulf as its main drinking water resource via desalination. In case of seawater contamination with blistering chemical warfare agents, traces of the agents and/or degradation products in the finished water might pose a serious health hazard. The objective of the present review is to study the potential contamination, transport, fate, effect and control of blistering chemical warfare agents (CWAs), in the Kuwaiti desalination industry. In general, all the environmental factors involved in the aquatic degradation of CWAs in Kuwait marine environment except for the high salinity in case of blistering agents such as sulphur mustard, and in favor of a fast degradation process. In case of massive releases of CWAs near the Kuwaiti shorelines, turbulence resulting from tidal cycles and high temperature will affect the dissolution process and extend the toxicity of the insoluble agent. Post- and pre-chlorination during the course of seawater desalination will catalyze and significantly accelerate the hydrolysis processes of the CWAs. The heat exerted on CWAs during the power generation-desalination processes is not expected to thermally decompose them. However, the steam heat will augment the agent`s rate of hydrolysis with subsequent acceleration in their rate of detoxification. Conventional pretreatment of feed seawater for reverse-osmosis desalination is theoretically capable of reducing the concentration of CWAs by coprecipitation and adsorption on flocs formed during coagulation. Prechlorination and prolonged detention in time in pretreatment units will simultaneously promote hydrolysis reactions. 50 refs.

  18. Remote Continuous Wave and Pulsed Laser Raman Detection of Chemical Warfare Agents Simulants and Toxic Industrial Compounds

    NASA Astrophysics Data System (ADS)

    Ortiz-Rivera, William; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

    2010-09-01

    This study describes the design, assembly, testing and comparison of two Remote Raman Spectroscopy (RRS) systems intended for standoff detection of hazardous chemical liquids. Raman spectra of Chemical Warfare Agents Simulants (CWAS) and Toxic Industrial Compounds (TIC) were measured in the laboratory at a 6.6 m source-target distance using continuous wave (CW) laser detection. Standoff distances for pulsed measurements were 35 m for dimethyl methylphosphonate (DMMP) detection and 60, 90 and 140 m for cyclohexane detection. The prototype systems consisted of a Raman spectrometer equipped with a CCD detector (for CW measurements) and an I-CCD camera with time-gated electronics (for pulsed laser measurements), a reflecting telescope, a fiber optic assembly, a single-line CW laser source (514.5, 488.0, 351.1 and 363.8 nm) and a frequency-doubled single frequency Nd:YAG 532 nm laser (5 ns pulses at 10 Hz). The telescope was coupled to the spectrograph using an optical fiber, and filters were used to reject laser radiation and Rayleigh scattering. Two quartz convex lenses were used to collimate the light from the telescope from which the telescope-focusing eyepiece was removed, and direct it to the fiber optic assembly. To test the standoff sensing system, the Raman Telescope was used in the detection of liquid TIC: benzene, chlorobenzene, toluene, carbon tetrachloride, cyclohexane and carbon disulfide. Other compounds studied were CWAS: dimethylmethyl phosphonate, 2-chloroethyl ethyl sulfide and 2-(butylamino)-ethanethiol. Relative Raman scattering cross sections of liquid CWAS were measured using single-line sources at 532.0, 488.0, 363.8 and 351.1 nm. Samples were placed in glass and quartz vials at the standoff distances from the telescope for the Remote Raman measurements. The mass of DMMP present in water solutions was also quantified as part of the system performance tests.

  19. Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics.

    PubMed

    Wang, Ai-juan; Zhang, Jiao; Li, Jun-ming; Ma, An-bo; Liu, Lin-tao

    2013-07-01

    The temperature variation, setting time, phase compositions and compressive strength of magnesium phosphate chemically bonded ceramics were important for its application in biomedical field. Different amounts of liquid were added into the premixed acid phosphate and oxide powders in order to study the effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics. The results indicated that the setting time increased and the maximum temperature decreased as the liquid-to-solid ratio increases. The hydrated product was mainly composed of magnesium potassium phosphate hexahydrate, which was not affected by the liquid-to-solid ratios. Besides, magnesia was also found because it was an obvious excess of the hydrated reaction. The compressive strength decreased as the liquid-to-solid ratios increase possibly because of the higher porosity caused by the superfluous liquid. According to the performed study, results indicated that the properties of MPCBC could be adjusted by changing the liquid-to-solid ratios.

  20. Development of land disposal restrictions for military chemical agent-associated waste

    SciTech Connect

    Kimmell, T.A.; Anderson, A.W.; Rosenblatt, D.H.

    1997-04-01

    In July 1988, the State of Utah, Department of Solid and Hazardous Waste (DSHW) listed certain military chemical agents as hazardous waste, as well as residues resulting from the demilitarization, treatment, and testing of these chemicals. These materials are listed as hazardous waste in Utah, but are not listed as hazardous wastes under the Federal Resource Conservation and Recovery Act (RCRA), the primary law governing management of hazardous waste in the United States. Pursuant to the 1984 Hazardous and Solid Waste Amendments (HSWA) to RCRA, the U.S. Environmental Protection Agency (EPA) has established Land Disposal Restriction (LDR) treatment standards for most categories of hazardous wastes. However, considering that EPA has not listed chemical agent-associated wastes as hazardous waste under RCRA, LDR treatment standards have not been established specifically for these wastes. In February 1995, the DSHW announced a regulatory initiative to develop LDRs for chemical agent-associated wastes and solicited data and information from the U.S. Army to support a rulemaking effort. The Army`s Chemical and Biological Defense Command (CBDCOM) was designated the lead agency for the Army to assist the DSHW in developing the rule. CBDCOM established the U.S. Army Land Disposal Restrictions Utah Group (LDRUG) and initiated a project with Argonne National Laboratory to support the LDRUG. The focus is on providing the state with accurate and up-to-date data and information to support the rulemaking and the establishment of LDRs. The purpose of this paper is to review the general direction of the proposed rule and to discuss overall progress. Potential impacts of the imposition of LDRs on the management of agent-associated wastes are also reviewed.

  1. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.

    PubMed

    Steiner, Wes E; Clowers, Brian H; Haigh, Paul E; Hill, Herbert H

    2003-11-15

    For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated. PMID:14615983

  2. Chemical agents for the control of plaque and plaque microflora: an overview.

    PubMed

    Gaffar, A; Afflitto, J; Nabi, N

    1997-10-01

    This presentation provides an overview of the technologies available for the chemical control of plaque. It is generally accepted that the formation of dental plaque at the interfaces of tooth/gingiva is one of the major causes of gingival inflammation and dental caries. Several therapeutic approaches have been used to control dental plaque and supragingival infections. These include fluoride preparations such as stannous fluoride, oxygenating agents, anti-attachment agents, and cationic and non-cationic antibacterial agents. Among the fluoride preparations, stable stannous fluoride pastes and gels have been shown to reduce supragingival plaque, gingivitis, hypersensitivity and caries. The effect of the oxygenating agents on the supragingival plaque has been equivocal, but recent data indicate that a stable agent which provides sustained active oxygen release is effective in controlling plaque. A polymer, PVPA, which reduced attachment of bacteria to teeth was shown to significantly reduce plaque formation in humans. A new generation of antibacterials includes non-ionics such as triclosan, which in combination with a special polymer delivery system, has been shown to reduce plaque, gingivitis, supragingival calculus and dental caries in long-term studies conducted around the world. Unlike the first generation of agents, the triclosan/copolymer/sodium fluoride system is effective in long-term clinicals and does not cause staining of teeth, increase in calculus, or disturbance in the oral microbial ecology. PMID:9395116

  3. Chemical agents for the control of plaque and plaque microflora: an overview.

    PubMed

    Gaffar, A; Afflitto, J; Nabi, N

    1997-10-01

    This presentation provides an overview of the technologies available for the chemical control of plaque. It is generally accepted that the formation of dental plaque at the interfaces of tooth/gingiva is one of the major causes of gingival inflammation and dental caries. Several therapeutic approaches have been used to control dental plaque and supragingival infections. These include fluoride preparations such as stannous fluoride, oxygenating agents, anti-attachment agents, and cationic and non-cationic antibacterial agents. Among the fluoride preparations, stable stannous fluoride pastes and gels have been shown to reduce supragingival plaque, gingivitis, hypersensitivity and caries. The effect of the oxygenating agents on the supragingival plaque has been equivocal, but recent data indicate that a stable agent which provides sustained active oxygen release is effective in controlling plaque. A polymer, PVPA, which reduced attachment of bacteria to teeth was shown to significantly reduce plaque formation in humans. A new generation of antibacterials includes non-ionics such as triclosan, which in combination with a special polymer delivery system, has been shown to reduce plaque, gingivitis, supragingival calculus and dental caries in long-term studies conducted around the world. Unlike the first generation of agents, the triclosan/copolymer/sodium fluoride system is effective in long-term clinicals and does not cause staining of teeth, increase in calculus, or disturbance in the oral microbial ecology.

  4. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review.

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Singh, Namrata; Acharya, J R; Musilek, Kamil; Kuca, Kamil; Ghosh, Kallol Kumar

    2015-01-01

    Organophosphate (OP) pesticides and nerve agents are responsible for suicidal and accidental poisonings. The acute toxicity of nerve agents leads to progressive inhibition of the enzyme acetylcholinesterase (AChE) by phosphylation of serine residue at the active site of gorge. The recent massive destruction of Syrian civilians by nerve gas sarin, has again renewed the research attention of global science fraternity towards nerve agents, their mode of action and most prominently their therapeutic treatment. This review is principally focused on nerve agent intoxication. The common approach to deal with OP-intoxication is, application of antimuscarinic drug (atropine), anticonvulsant drug (diazepam) and clinically used oximes (pralidoxime, trimedoxime, obidoxime and asoxime). However, the existing therapeutic approach is arguable and has several failings to cure all kinds of nerve agent poisonings. Considering this issue, numerous oximes have been synthesized and screened through various in-vitro and in-vivo studies in last decade to overcome the downsides. At present, only a few oximes (bis pyridinum-oximes) exhibit sound efficacy against selective OPs. In spite of extensive efforts, till date no oxime is available as a universal antidote against all the classes of OPs. This review is centered on the recent developments and structural modification of AChE reactivators against nerve agent toxicity. In particular, a deeper look has been taken into chemical modifications of the reactivators by incorporation of different structural moieties targeted towards the increased reactivation affinity and improved blood brain barrier (BBB) penetration.

  5. High-performance liquid chromatography method for analyzing the antiretroviral agent efavirenz in human plasma.

    PubMed

    Villani, P; Pregnolato, M; Banfo, S; Rettani, M; Burroni, D; Seminari, E; Maserati, R; Regazzi, M B

    1999-06-01

    Efavirenz (EFV, DMP-266) is a new antiretroviral agent belonging to the class of nonnucleoside reverse transcriptase inhibitors. It has recently been approved by the Food and Drug Administration in management of human immunodeficiency virus (HIV). Preliminary pharmacokinetic studies on EFV in healthy volunteers show that the drug may influence the metabolism of protease inhibitors. For the determination of EFV in human plasma, a validated and specific reverse-phase high-performance liquid chromatography (HPLC) method, with UV detection, was developed. We used 100 microL plasma sample for a liquid-liquid extraction with diethyl ether after basification. The mobile phase was a mixture of acetonitrile and water, pumped at a flow rate of 1.2 mL/min. Ultraviolet detection was carried out at a wavelength of 247 nm. Retention times for EFV and internal standard (IS) were 5.3 and 4.5 minutes, respectively, and there was no chromatographic interference from other commonly administered drugs. The limit of detection was 100 ng/mL. The described assay is a rapid and accurate method for measurement of EFV in plasma: the easy preparation and small sample size makes this assay highly suitable for pharmacokinetic studies and routine clinical analysis in patients with HIV. In addition, the reproducibility of the method is only moderately increased by including IS, so analyzing without IS may be an alternative.

  6. Optimizing the radiosensitive liquid-core microcapsules for the targeting of chemotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Harada, S.; Ehara, S.; Ishii, K.; Yamazaki, H.; Matsuyama, S.; Kamiya, T.; Sakai, T.; Arakawa, K.; Sato, T.; Oikawa, S.

    2007-07-01

    Microcapsules consisting of alginate and hyaluronic acid that can be decomposed by radiation are currently under development. In this study, the composition of the microcapsule material was optimized by changing the amounts of alginate and hyaluronic acid. Solutions of 0.025%, 0.05%, 0.1%, 0.2%, or 0.4% (wt./vol.) hyaluronic acid were mixed into a 0.2% alginate solution. To these mixtures, carboplatin (0.2 mmol) was added and the resulting material was used for the capsule preparation. The capsules were prepared by spraying the material into a CaCl 2 solution (0.34 mol/l) using a microatomizer. These capsules were irradiated by a single dose of 2, 5, or 10 Gy 60Co γ-ray radiation. Immediately after irradiation, the releasing of core content of microcapsule was determined, using a micro particle induced X-ray emission (PIXE) camera. The average diameter of the microcapsules was 22.3 ± 3.3 μm, and that of the liquid core was 10.2 ± 4.3 μm. The maximum radiation-induced content release was observed with liquid-core microcapsules containing 0.1% hyaluronic acid and 0.2% alginate. Our liquid-core microcapsules suggest a new potential use for radiation: the targeted delivery of the chemotherapeutic agents or radiosensitizers. This offers the prospect of increased combined effectiveness of radiation with chemotherapy or radiosensitization and decreased adverse side effects.

  7. Lessons Learned: Using Low Cost, Uncooled Infrared Cameras for the Rapid Liquid Level Assessment of Chemical UXO and Storage Vessels

    SciTech Connect

    Young, Kevin Larry

    2002-09-01

    During the fall of 2001, the U.S. Army used low-cost infrared cameras provided by the INEEL to image 3190 aging ton shipping containers to determine if any contained liquid, possibly trace amounts of hazardous mustard agent. The purpose of the scan was to provide quick, "hands-off" assessment of the water-heater-sized containers before moving them with a crane. If the thermal images indicated a possible liquid level, extra safety precautions would be taken prior to moving the container. The technique of using infrared cameras to determine liquid levels in large storage tanks is well documented, but the application of this technique to ton shipping containers (45 to 1036 liters) and even smaller individual chemical munitions (2 to 4 liters) is unique and presents some interesting challenges. This paper describes the lessons learned, problems encountered and success rates associated with using low-cost infrared cameras to look for liquid levels within ton shipping containers and individual chemical munitions.

  8. The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Bajracharya, Suman

    2015-11-01

    Near-well ultrasonic processing technology is characterized by high adaptability, simple operation, low cost and zero pollution. The main plugs of oil production include paraffin deposition plug, polymer plug, and drilling fluid plug etc. Although some good results have been obtained through laboratory experiments and field tests, systematic and intensive studies are absent for certain major aspects, such as: effects of ultrasonic treatment for different kinds of plugs and whether effect of ultrasound-chemicals combination deplugging is better than that of ultrasonic deplugging. In this paper, the experiments of removing drilling fluid plug, paraffin deposition plug and polymer plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging respectively are carried out. Results show that the effect of ultrasound-chemical combination deplugging is clearly better than that of using ultrasonic wave and chemical deplugging agent separately, which indicates that ultrasonic deplugging and chemical deplugging can produce synergetic effects. On the one hand, ultrasonic treatment can boost the activity of chemical deplugging agent and turn chemical deplugging into dynamic chemical process, promoting chemical agent reaction speed and enhancing deplugging effect; on the other hand, chemical agent can reduce the adhesion strength of plugs so that ultrasonic deplugging effect can be improved significantly. Experimental results provide important reference for near-well ultrasonic processing technology.

  9. The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Bajracharya, Suman

    2015-11-01

    Near-well ultrasonic processing technology is characterized by high adaptability, simple operation, low cost and zero pollution. The main plugs of oil production include paraffin deposition plug, polymer plug, and drilling fluid plug etc. Although some good results have been obtained through laboratory experiments and field tests, systematic and intensive studies are absent for certain major aspects, such as: effects of ultrasonic treatment for different kinds of plugs and whether effect of ultrasound-chemicals combination deplugging is better than that of ultrasonic deplugging. In this paper, the experiments of removing drilling fluid plug, paraffin deposition plug and polymer plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging respectively are carried out. Results show that the effect of ultrasound-chemical combination deplugging is clearly better than that of using ultrasonic wave and chemical deplugging agent separately, which indicates that ultrasonic deplugging and chemical deplugging can produce synergetic effects. On the one hand, ultrasonic treatment can boost the activity of chemical deplugging agent and turn chemical deplugging into dynamic chemical process, promoting chemical agent reaction speed and enhancing deplugging effect; on the other hand, chemical agent can reduce the adhesion strength of plugs so that ultrasonic deplugging effect can be improved significantly. Experimental results provide important reference for near-well ultrasonic processing technology. PMID:26186853

  10. Impurity Profiling to Match a Nerve Agent to Its Precursor Source for Chemical Forensics Applications

    SciTech Connect

    Fraga, Carlos G.; Perez Acosta, Gabriel A.; Crenshaw, Michael D.; Wallace, Krys; Mong, Gary M.; Colburn, Heather A.

    2011-10-31

    Chemical forensics is an emerging field in homeland security that aims to attribute a weaponized toxic chemical or related material to its source. Herein, for the first time, trace impurities originating from a chemical precursor were used to match a synthesized nerve agent to its precursor source. Specifically, multiple batches of sarin and its intermediate were synthesized from two commercial stocks of methylphosphonic dichloride (DC) and were then matched by impurity profiling to their DC stocks from out of five possible stocks. This was possible because each DC stock had a unique impurity profile that, for the tested stocks, persisted through synthesis, decontamination, and sample preparation. This work may form a basis for using impurity profiling to help find and prosecute perpetrators of chemical attacks.

  11. Technology assessment for the determination of chemical agent vapors in demilitarization facilities: Final report

    SciTech Connect

    Maskarinec, M.P.; Wise, M.B.; Buchanan, M.V.

    1987-01-01

    A survey of analytical methods for the determination of chemical agents GB, VX, and HD was made. HD, or mustard, is bis-2-chloroethyl sulfide, and is classified as a blishtering agent. GB, or Sarin, is isopropyl methyl phosphonofluoridate. VX is O-ethyl-S-(2-diisopropylaminoethyl)methylphosphonothioate. Both GB and VX are nerve agents. Included were methods capable of providing for monitoring requirements at the time weighted average (TWA) and allowable stack concentration (ASC) levels in near real time. A review of the currently used automatic continuous air monitoring system (ACAMS) was made as well as a review of the recently developed atmospheric pressure ionization mass spectrometry (APIMS). This report recommends a strategy for research and development for near term and medium term improvement of the overall monitoring program. 12 refs., 1 tab.

  12. Simulated experiment for elimination of air contaminated with odorous chemical agents by microwave plasma burner

    SciTech Connect

    Hong, Yong Cheol; Shin, Dong Hun; Uhm, Han Sup

    2007-10-15

    An experimental study on elimination of odorous chemical agent was carried out by making use of a microwave plasma burner, which consists of a microwave plasma torch and a reaction chamber with a fuel injector. Injection of hydrocarbon fuels into a high-temperature microwave torch plasma generates a plasma flame. The plasma flame can eliminate the odorous chemical agent diluted in air or purify the interior air of a large volume in isolated spaces. The specially designed reaction chamber eliminated H{sub 2}S and NH{sub 3} diluted in airflow rate of 5000 lpm (liters per minute), showing {beta} values of 46.52 and 39.69 J/l, respectively.

  13. Multivariate statistical classification of surface enhanced Raman spectra of chemical and biological warfare agent simulants

    NASA Astrophysics Data System (ADS)

    Fountain, Augustus W., III; Pearman, William F.

    2005-11-01

    Initial results which demonstrate the ability to classify surface enhanced Raman (SERS) spectra of chemical and biological warfare agent simulants are presented. The spectra of 2 endospores (B. subtilis, B. atrophaeus); 2 chemical agent simulants (Dimethyl methylphosphonate (DMMP), Diethyl methylphosphonate (DEMP)); and 2 toxin simulants (Ovalbumin, Horseradish peroxidase) were collected on multiple substrates fabricated from colloidal gold adsorbed onto a silanized quartz surface. The use of principle component analysis (PCA) and Hierarchical Clustering was used as a method of determining the reproducibility of the individual spectra collected from a single substrate. Additionally, the use of partial least squares-discriminate analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA) on a compilation of data from separate substrates, fabricated under identical conditions, demonstrates the feasibility of this technique for the identification of known but previously unclassified spectra.

  14. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    SciTech Connect

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-02-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

  15. Tooth bleaching using three laser systems, halogen-light unit, and chemical action agents

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Housova, Devana; Sulc, Jan; Nemec, Michal; Koranda, Petr; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji

    2004-09-01

    μThe study describes the preclinical experience with laser-activated bleaching agent for discolored teeth. Extracted human upper central incisors were selected, and in the bleaching experiment 35% hydrogen peroxide was used. Three various laser systems and halogen-light unit for activation of the bleaching agent were applied. They were Alexandrite laser (wavelength 750 nm and 375 nm - SHG), Nd:YAG laser (wavelength 1.064 m), and Er:YAG laser (wavelength 2.94 μm). The halogen-light unit was used in a standard regime. The enamel surface was analyzed in the scanning electron microscope. The method of chemical oxidation results in a 2-3 shade change in one treatment. The halogen-light units produced the same effect with shorter time of bleaching process (from 630 s to 300 s). The Alexandrite laser (750 nm) and bleaching agent helped to reach the desired color shade after a shorter time (400 s). Alexandrite laser (375 nm) and Nd:YAG laser had no effect on the longevity of the process of bleaching. Overheating of the chemical bleaching agent was visible after Er:YAG laser activation (195 s). Slight surface modification after bleaching process was detected in SEM.

  16. Characterization of chemical warfare G-agent hydrolysis products by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank E.; Gift, Alan D.; Maksymiuk, Paul; Farquharson, Stuart

    2004-12-01

    The United States and its allies have been increasingly challenged by terrorism, and since the September 11, 2001 attacks and the war in Afghanistan and Iraq, homeland security has become a national priority. The simplicity in manufacturing chemical warfare agents, the relatively low cost, and previous deployment raises public concern that they may also be used by terrorists or rogue nations. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect extremely low concentrations (e.g. part-per-billion) of chemical agents, as might be found in poisoned water. Since trace quantities of nerve agents can be hydrolyzed in the presence of water, we have expanded our studies to include such degradation products. Our SERS-active medium consists of silver or gold nanoparticles incorporated into a sol-gel matrix, which is immobilized in a glass capillary. The choice of sol-gel precursor allows controlling hydrophobicity, while the porous silica network offers a unique environment for stabilizing the SERS-active metals. Here we present the use of these metal-doped sol-gels to selectively enhance the Raman signal of the hydrolyzed products of the G-series nerve agents.

  17. Survey: Destruction of chemical agent simulants in supercritical water oxidation. Master's thesis

    SciTech Connect

    Blank, M.R.

    1992-07-01

    The supercritical water oxidation (SCWO) process exhibits distinct advantages for destruction of toxic wastes. Examples of these wastes are two chemical agent simulants, dimethyl methylphosphonate (DMMP) and thiodiglycol (2,2'-thiodiethanol). DMMP is similar to the nerve agent GB Sarin in structure, and thiodiglycol is a hydrolysis product of the blister agent HD Sulfur Mustard. Both simulants are miscible in water and relatively non-toxic in comparison to the actual chemical agents. Using a Laboratory-scale, batch three temperatures were investigated: 425 deg C, 450 deg C, and 500 deg C with an initial concentration of one percent by volume, 11,450 mg/L for DMMP and 12,220 mg/L for thiodiglycol. Residence times investigated were: 1, 2, 3, 6, and 8 minutes. Reactor beat-up (H.U.) was determined to be one minute. Both pyrolysis and oxidation tests were conducted. Oxygen levels were uniformly set at 200% of stoichiometric requirements for the parent compounds.

  18. Effect of ionic interaction between a hyperpolarized magnetic resonance chemical probe and a gadolinium contrast agent for the hyperpolarized lifetime after dissolution

    NASA Astrophysics Data System (ADS)

    Takakusagi, Yoichi; Inoue, Kaori; Naganuma, Tatsuya; Hyodo, Fuminori; Ichikawa, Kazuhiro

    2016-09-01

    In hyperpolarization of 13C-enriched magnetic resonance chemical probes in the solid-state, a trace amount of gadolinium (Gd) contrast agent can be used to maximize polarization of the 13C nuclear spins. Here, we report systematic measurement of the spin-lattice relaxation time (T1) and enhancement level of 13C-enriched chemical probes in the presence of various Gd contrast agents in the liquid-state after dissolution. Using two different 13C probes having opposite electric charges at neutral pH, we clearly show the T1 of hyperpolarized 13C was barely affected by the use of a Gd complex that displays repulsive interaction with the 13C probe in solution, whilst T1 was drastically shortened when there was ionic attraction between probe and complex.

  19. Decontamination of chemical agents in Freon-113. Final report, February 1984-August 1988

    SciTech Connect

    Johnson, W.C.; Collins, K.R.; Ward, J.R.; Richmond, J.A.

    1993-06-01

    Freon solubilizes hydrophobic chemical warfare agents, such as soman, without damaging sensitive electronic equipment, such as night-vision goggles or communication equipment. Freon is used in this manner in the Nonaqueous Equipment Decontamination System (NAEDS) under development at CRDEC. The contaminated Freon is returned to a still, after which it is distilled through an aqueous layer containing bleach to decontaminate the residual agent. This report describes the results of experiments to measure how effectively agent is destroyed in the NAEDS. These results show that residual agent is still left in the redistilled Freon, and there is little difference whether the active decontaminant is removed from the aqueous layer. A mixture was prepared consisting of a 1:1:1 mixture of ethanol, 8 m sodium hydroxide, and Freon. It was demonstrated that the use of this mixture in the NAEDS would destroy all agent and that the redistilled Freon was free of soman. Freon-113, Bleach, Decontamination, Distillation, Non-Aqueous equipment decontamination system, Ethanol blend.

  20. Laboratory test reactor for the investigation of liquid reducing agents in the selective catalytic reduction of NOx.

    PubMed

    Peitz, D; Bernhard, A; Elsener, M; Kröcher, O

    2011-08-01

    A test reactor was designed and built for investigating liquid reducing agents in the selective catalytic reduction (SCR) process in the laboratory. The design of the experimental setup is described in detail and its performance was evaluated. Using a glass nebulizer, liquid reducing agents were sprayed directly onto a catalyst positioned in a heated glass reactor with a length of 250 mm and an internal diameter of 20.4 mm or 40 mm. Model exhaust gases were mixed from individual gas components and were heated up to 450 °C in a heat exchanger before entering the reactor. The off-gas was analyzed using two complimentary techniques, a multi-component online FTIR gas analysis and a liquid quench gas absorption setup, to detect higher molecular compounds and aerosols. Due to the versatility of construction, processes not related to SCR, but involving three-phase reactions with gases, liquids and a catalyst, can also be investigated.

  1. Laboratory test reactor for the investigation of liquid reducing agents in the selective catalytic reduction of NOx

    NASA Astrophysics Data System (ADS)

    Peitz, D.; Bernhard, A.; Elsener, M.; Kröcher, O.

    2011-08-01

    A test reactor was designed and built for investigating liquid reducing agents in the selective catalytic reduction (SCR) process in the laboratory. The design of the experimental setup is described in detail and its performance was evaluated. Using a glass nebulizer, liquid reducing agents were sprayed directly onto a catalyst positioned in a heated glass reactor with a length of 250 mm and an internal diameter of 20.4 mm or 40 mm. Model exhaust gases were mixed from individual gas components and were heated up to 450 °C in a heat exchanger before entering the reactor. The off-gas was analyzed using two complimentary techniques, a multi-component online FTIR gas analysis and a liquid quench gas absorption setup, to detect higher molecular compounds and aerosols. Due to the versatility of construction, processes not related to SCR, but involving three-phase reactions with gases, liquids and a catalyst, can also be investigated.

  2. Evaluation of the vesicating properties of neutralized chemical agent identification sets. Final report, November 1995-August 1997

    SciTech Connect

    Olajos, E.J.; Salem, H.; Gieseking, J.K.

    1997-08-01

    Vesication and skin irritation studies were conducted in hairless guinea-pigs to determine the vesicant and skin irritation potential of Chemical Agent Identification Sets (CAIS). Guinea-pigs were topically dosed with `test article` NEAT HD, 10% agent/chloroform solutions, or product solutions (wastestreams) and evaluated for skin-damaging effects (gross and light microscopic). Product solutions from the chemical neutralization of neat sulfur mustard resulted in microvesicle formation (vesication). All agent-dosed (agent/chloroform solutions or HD) sites exhibited microblisters, as well as other histopathologic lesions of the skin. Wastestreams from the neutalization of agent (agent/chloroform; agent on charcoal) were devoid of microvesicant activity. Dermal irritant effects (erythema and edema) were consistent with the skin-injurious activity associated with the neutralizing reagent 1,3-dichloro-5,5-dimethylhydantoin (DCDMH).

  3. Effects of chemical and biological warfare remediation agents on the materials of museum objects

    NASA Astrophysics Data System (ADS)

    Solazzo, C.; Erhardt, D.; Marte, F.; von Endt, D.; Tumosa, C.

    In the fall of 2001, anthrax-contaminated letters were sent to public figures in the United States. Chemical and radiation treatments were employed to decontaminate exposed buildings, objects, and materials. These treatments are effective, but potentially damaging to exposed objects and materials. The recommended surface chemical treatments include solutions, gels, and foams of oxidizing agents such as peroxides or chlorine bleaching agents. Such oxidizing agents are effective against a wide range of hazardous chemical and biological agents. Knowing how these reagents affect various substrates would help to anticipate and to minimize any potential damage. We are examining the effects on typical museum materials of reagents likely to be used, including hydrogen peroxide, sodium hypochlorite, and potassium peroxymonosulfate. Results so far show significant changes in a number of materials. Surface corrosion was observed on metals such as copper, silver, iron, and brass. Color changes occurred with at least one reagent in about one-fourth of the dyed fabric swatches tested, and about half of the inks. Samples of aged yellowed paper are bleached. Effects varied with both the substrate and the tested reagent. The observed changes were generally less drastic than might have been expected. Enough materials were affected, though, to preclude the use of these reagents on museum objects unless no less drastic alternative is available. It appears that many objects of lesser intrinsic value can be treated without severe loss of properties or usefulness. For example, most documents should remain legible if the appropriate reagent is used. This work will provide a basis for determining which treatment is most appropriate for a specific situation and what consequences are to be expected from other treatments.

  4. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon

    SciTech Connect

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  5. Accelerating the degradation of green plant waste with chemical decomposition agents.

    PubMed

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  6. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    NASA Astrophysics Data System (ADS)

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2014-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques.

  7. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    SciTech Connect

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J.

    2010-08-23

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  8. [Determination of 12 sunscreen agents in cosmetics by high performance liquid chromatography].

    PubMed

    He, Qiaosang; Xu, Na; Li, Jing; Liao, Shangfu

    2011-08-01

    A comprehensive analytical method based on high performance liquid chromatography (HPLC) has been developed for the determination of 12 sunscreen agents in cosmetics. The cosmetic samples were extracted by methanol. The target compounds were separated on an SB-C8 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and 0.1% (v/v) formic acid aqueous solution as mobile phases. The detective wavelength was 311 nm. The linear plots were obtained between 1.0 and 500 mg/L with good correlation coefficients larger than 0.999 5. The limits of detection (LODs) for this method were in the range of 0.002 -0.1 mg/L. The spiked recoveries of commercial cosmetics were in the range of 97.4% - 107.5% with the relative standard deviations of 1.54% -4.98%. The results indicated that the developed method is simple, rapid, accurate and suitable for the determination of 12 sunscreen agents in cosmetics samples.

  9. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    SciTech Connect

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-06-14

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets [I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas [2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study [3] has been

  10. Combined effect of microbial and chemical control agents on subterranean termites.

    PubMed

    Wright, Maureen S; Lax, Alan R

    2013-10-01

    Termite mortality was measured when fungi were combined with bacteria or a chemical termiticide to determine whether a synergistic effect occurred. The fungus Beauveria bassiana was combined with the non-repellant chemical termiticide imidacloprid. Of the three B. bassiana strains tested one, B. bassiana ATCC 90519, was sufficiently pathogenic on its own that the advantage of a supplementary chemical treatment was marginal. The mortality caused by another fungal strain, B. bassiana ATCC 26037, was improved in combination with imidacloprid at both of the tested chemical concentrations over the first 14 days. The remaining fungal strain, B. bassiana ATCC 90518, demonstrated an overall mortality rate in combination with imidacloprid of 82.5%, versus a rate of 65.0% for the fungus alone. The fungus Isaria fumosorosea (Ifr) was combined with the bacterium Bacillus thuringiensis (Bt). On day 5, Ifr, Bt, and the combined treatment at a 10(6) spores or cells/ml dosage caused 8.8%, 22.5%, and 15.0% mortality, respectively. The Bt and combined mortality rates are not significantly different. Control mortality on day 5 was 5.0%. On day 13 the combined 10(6) treatment mortality rate was 91.3%, which was significantly higher than all other treatments: control at 17.5%, Ifr at 36.3% and Bt at 35.0%. When Ifr and Bt were applied at a 10(9) spores or cells/ml dosage, Ifr alone caused a mortality rate of 97.5% as early as day 5. The combination with Bt could not significantly increase the effectiveness of this dosage. These data demonstrate the potential for synergistic effects of fungal and chemical treatment methods, thereby broadening the use of microbial control agents and reducing the quantity of chemical agents necessary to effect control. PMID:24037651

  11. Limitations and challenges in treatment of acute chemical warfare agent poisoning.

    PubMed

    Thiermann, Horst; Worek, Franz; Kehe, Kai

    2013-12-01

    Recent news from Syria on a possible use of chemical warfare agents made the headlines. Furthermore, the motivation of terrorists to cause maximal harm shifts these agents into the public focus. For incidents with mass casualties appropriate medical countermeasures must be available. At present, the most important threats arise from nerve agents and sulfur mustard. At first, self-protection and protection of medical units from contamination is of utmost importance. Volatile nerve agent exposure, e.g. sarin, results in fast development of cholinergic crisis. Immediate clinical diagnosis can be confirmed on-site by assessment of acetylcholinesterase activity. Treatment with autoinjectors that are filled with 2mg atropine and an oxime (at present obidoxime, pralidoxime, TMB-4 or HI-6) are not effective against all nerve agents. A more aggressive atropinisation has to be considered and more effective oximes (if possible with a broad spectrum or a combination of different oximes) as well as alternative strategies to cope with high acetylcholine levels at synaptic sites should be developed. A further gap exists for the treatment of patients with sustained cholinergic crisis that has to be expected after exposure to persistent nerve agents, e.g. VX. The requirement for long-lasting artificial ventilation can be reduced with an oxime therapy that is optimized by using the cholinesterase status for guidance or by measures (e.g. scavengers) that are able to reduce the poison load substantially in the patients. For sulfur mustard poisoning no specific antidote is available until now. Symptomatic measures as used for treatment of burns are recommended together with surgical or laser debridement. Thus, huge amounts of resources are expected to be consumed as wound healing is impaired. Possible depots of sulfur mustard in tissues may aggravate the situation. More basic knowledge is necessary to improve substantially therapeutic options. The use of stem cells may provide a new

  12. Limitations and challenges in treatment of acute chemical warfare agent poisoning.

    PubMed

    Thiermann, Horst; Worek, Franz; Kehe, Kai

    2013-12-01

    Recent news from Syria on a possible use of chemical warfare agents made the headlines. Furthermore, the motivation of terrorists to cause maximal harm shifts these agents into the public focus. For incidents with mass casualties appropriate medical countermeasures must be available. At present, the most important threats arise from nerve agents and sulfur mustard. At first, self-protection and protection of medical units from contamination is of utmost importance. Volatile nerve agent exposure, e.g. sarin, results in fast development of cholinergic crisis. Immediate clinical diagnosis can be confirmed on-site by assessment of acetylcholinesterase activity. Treatment with autoinjectors that are filled with 2mg atropine and an oxime (at present obidoxime, pralidoxime, TMB-4 or HI-6) are not effective against all nerve agents. A more aggressive atropinisation has to be considered and more effective oximes (if possible with a broad spectrum or a combination of different oximes) as well as alternative strategies to cope with high acetylcholine levels at synaptic sites should be developed. A further gap exists for the treatment of patients with sustained cholinergic crisis that has to be expected after exposure to persistent nerve agents, e.g. VX. The requirement for long-lasting artificial ventilation can be reduced with an oxime therapy that is optimized by using the cholinesterase status for guidance or by measures (e.g. scavengers) that are able to reduce the poison load substantially in the patients. For sulfur mustard poisoning no specific antidote is available until now. Symptomatic measures as used for treatment of burns are recommended together with surgical or laser debridement. Thus, huge amounts of resources are expected to be consumed as wound healing is impaired. Possible depots of sulfur mustard in tissues may aggravate the situation. More basic knowledge is necessary to improve substantially therapeutic options. The use of stem cells may provide a new

  13. Phase I study of a topical skin protectant against chemical warfare agents.

    PubMed

    Eisenkraft, Arik; Krivoy, Amir; Vidan, Aviv; Robenshtok, Eyal; Hourvitz, Ariel; Dushnitsky, Tsvika; Markel, Gal

    2009-01-01

    Vesicants and some nerve agents penetrate exposed skin, mainly through the sensitive integration areas of the personal protective equipment. Therefore, improving dermal barrier with a topical agent should reduce the threat of exposure. A topical skin protectant lotion (IB1) was developed to improve protection against chemical warfare agents. Preclinical studies in several animal models have proven the protective efficacy of IB1. Here we present the results of a randomized placebo-controlled, double-blind phase I clinical study, performed with 34 healthy volunteers. The study tested the safety of repeated applications, including ruling out transdermal permeation of magnesium, which may lead to a dangerous blood magnesium level, since the lotion contains magnesium sulfate. Other objectives included detection of dermatological adverse effects, assessment of application convenience, and effect on daily activities. Importantly, no serious adverse effects were recorded and the lotion did not interfere with daily tasks. There were no significant differences in magnesium levels between the placebo and the study groups in any of the applications. No toxic levels of magnesium were found in either group. We conclude that IB1 is probably safe, easily self-applied, and does not cause any significant inconvenience. Therefore, IB1 can be considered as an adjunctive chemical, biological, and radio-nuclear (CBRN) protective aid to field soldiers.

  14. Cooperative biological effects between ionizing radiation and other physical and chemical agents.

    PubMed

    Manti, Lorenzo; D'Arco, Annalisa

    2010-01-01

    Exposure to ionizing radiation (IR), at environmentally and therapeutically relevant doses or as a result of diagnostics or accidents, causes cyto- and genotoxic damage. However, exposure to IR alone is a rare event as it occurs in spatial and temporal combination with several physico-chemical agents. Some of these are of known noxiousness, as is the case with chemical compounds at high dose, hence additive/synergistic effects can be expected or have been demonstrated. Conversely, the cellular toxicity of other agents, such as non-ionizing electromagnetic fields (EMFs), is only presumed and their short- and long-term cooperation on IR-induced damage remains undetermined. In this review, we shall examine evidence in support of the interplay between spatially and/or temporally related environmentally relevant stressors. In vitro or animal-based studies as well as epidemiological surveys have generally examined the combined action of no more than a couple of known or potentially DNA-damaging agents. Moreover, most existing research mainly focused on short-term effects of combined exposures. Hence, it is important that quantitative research addresses the issue of the possible cooperation between chronic exposure to environmental trace contaminants and exposure to EMFs, examining not only the modulation of damage acutely induced by IR but also long-term genome stability.

  15. Technical support for recovery phase decision-making in the event of a chemical warfare agent release

    SciTech Connect

    Watson, A.; Shugart, L.; Buchanan, M.; Jenkins, R.; Kistner, S.; Halbrook, R.

    1995-12-31

    Persistent chemical warfare agents such as the nerve agent VX and sulfur mustard were originally designed as terrain denial materials on the chemical battlefield. As a consequence, they do not rapidly degrade. In the course of preparedness planning for disposal of the US unitary stockpile of chemical warfare agents, communities have raised the issue of determining environmental concentrations and the potential health consequences of persistent agents following any agent event. This issue is common to several chemical warfare munition and materiel disposal activities in the United States, as well as for developing verification and compliance monitoring programs integral to the international Chemical Weapons Convention. Experimental research supporting the development of environmental monitoring protocols are summarized. They include the development of blood cholinesterase activity as a biomonitor of nerve agent exposure in domestic beef and dairy cattle, horses and sheep; measuring the permeation rates of construction materials such as unpainted wood and gypsum wall board to agent simulants; and developing an experimental monitoring protocol for agents in meat and grain.

  16. Effervescence-assisted dispersive liquid-liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice.

    PubMed

    Jiang, Wenqing; Chen, Xiaochu; Liu, Fengmao; You, Xiangwei; Xue, Jiaying

    2014-11-01

    A novel effervescence-assisted dispersive liquid-liquid microextraction method has been developed for the determination of four fungicides in apple juice samples. In this method, a solid effervescent agent is added into samples to assist the dispersion of extraction solvent. The effervescent agent is environmentally friendly and only produces an increase in the ionic strength and a negligible variation in the pH value of the aqueous sample, which does not interfere with the extraction of the analytes. The parameters affecting the extraction efficiency were investigated including the composition of effervescent agent, effervescent agent amount, formulation of effervescent agent, adding mode of effervescent agent, type and volume of extraction solvent, and pH. Under optimized conditions, the method showed a good linearity within the range of 0.05-2 mg/L for pyrimethanil, fludioxonil, and cyprodinil, and 0.1-4 mg/L for kresoxim-methyl, with the correlation coefficients >0.998. The limits of detection for the method ranged between 0.005 and 0.01 mg/L. The recoveries of the target fungicides in apple juice samples were in the range of 72.4-110.8% with the relative standard deviations ranging from 1.2 to 6.8%.

  17. Ability of fourteen chemical agents used in dental practice to induce chromosome aberrations in Syrian hamster embryo cells.

    PubMed

    Hikiba, Hirohito; Watanabe, Eiko; Barrett, J Carl; Tsutsui, Takeki

    2005-01-01

    To assess the genotoxicity of 14 chemical agents used in dental practice, the ability of these agents to induce chromosome aberrations was examined using Syrian hamster embryo (SHE) cells. Statistically significant increases in the frequencies of chromosome aberrations were induced in SHE cells treated with 7 of 10 chemical agents used as endodontic medicaments, that is, carbol camphor, m-cresol, eugenol, guaiacol, zinc oxide, hydrogen peroxide, and formaldehyde. The other 3 chemical agents, that is, thymol, glutaraldehyde, and iodoform, did not increase the levels of chromosome aberrations. Of the 4 chemical agents that are used as an antiseptic on the oral mucosa, chromosome aberrations were induced by iodine, but not by the other 3 antiseptics, benzalkonium chloride, benzethonium chloride, and chlorhexidine. Among the 6 chemical agents exhibiting a negative response in the assay, only thymol induced chromosome aberrations in the presence of exogenous metabolic activation. Our results indicate that chemical agents having a positive response in the present study are potentially genotoxic to mammalian cells and need to be studied further in detail. PMID:15665446

  18. Impact of chemical warfare with agent orange on women's reproductive lives in Vietnam: a pilot study.

    PubMed

    Le, T N; Johansson, A

    2001-11-01

    During the American war in Vietnam, huge quantities of the highly toxic herbicide dioxin ('Agent Orange'), were sprayed over large areas of central and south Vietnam. In addition to polluting the environment and causing cancers and other diseases in those directly exposed to it, dioxin has caused high rates of pregnancy loss, congenital birth defects and other health problems in their children. This paper reports the findings of a pilot study in the year 2000 among 30 Vietnamese women whose husbands and/or who themselves were exposed to Agent Orange. The aim was to develop research in order to explore the impact of chemical warfare on people's lives. Using the reproductive lifeline and semi-structured interviews, information was gathered on both partners' periods of exposure to Agent Orange, pregnancy outcomes, perceived health problems of children and experiences of living with handicapped children. The women had had a high number of miscarriages and premature births. About two-thirds of their children had congenital malformations or developed disabilities within the first years of life. Most of the families were poor, aggravated by impaired health in the men, the burden of caring for disabled children, and feelings of guilt and inferiority. The plight of 'Agent Orange families' is special and should be placed in its historical and political context.

  19. Bioluminescent bioreporter assays for targeted detection of chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Ripp, Steven; Jegier, Pat; Johnson, Courtney; Moser, Scott; Islam, Syed; Sayler, Gary

    2008-04-01

    Bioluminescent bioreporters carrying the bacterial lux gene cassette have been well established for the sensing and monitoring of select chemical agents. Their ability to generate target specific visible light signals with no requirement for extraneous additions of substrate or other hands-on manipulations affords a real-time, repetitive assaying technique that is remarkable in its simplicity and accuracy. Although the predominant application of lux-based bioluminescent bioreporters has been towards chemical compound detection, novel genetic engineering schemes are yielding a variety of new bioreporter systems that extend the lux sensing mechanism beyond mere analyte discrimination. For example, the unique specificity of bacteriophage (bacterial viruses) has been exploited in lux bioluminescent assays for specific identification of foodborne bacterial pathogens such as Escherichia coli O157:H7. With the concurrent ability to interface bioluminescent bioreporter assays onto integrated circuit microluminometers (BBICs; bioluminescent bioreporter integrated circuits), the potential exists for the development of sentinel microchips that can function as environmental monitors for multiplexed recognition of chemical and biological agents in air, food, and water. The size and portability of BBIC biosensors may ultimately provide a deployable, interactive network sensing technology adaptable towards chem/bio defense.

  20. Toxicity induced by chemical warfare agents: insights on the protective role of melatonin.

    PubMed

    Pita, René; Marco-Contelles, José; Ramos, Eva; Del Pino, Javier; Romero, Alejandro

    2013-11-25

    Chemical Warfare Agents (CWAs) are substances that can be used to kill, injure or incapacitate an enemy in warfare, but also against civilian population in terrorist attacks. Many chemical agents are able to generate free radicals and derived reactants, excitotoxicity process, or inflammation, and as consequence they can cause neurological symptoms and damage in different organs. Nowadays, taking into account that total immediate decontamination after exposure is difficult to achieve and there are not completely effective antidotes and treatments against all CWAs, we advance and propose that medical countermeasures against CWAs poisoning would benefit from a broad-spectrum multipotent molecule. Melatonin, a versatile and ubiquitous antioxidant molecule, originally discovered as a hormone synthesized mainly in the pineal gland, has low toxicity and high efficacy in reducing oxidative damage, anti-inflammatory effects by regulation of multiple cellular pathways and properties to prevent excitotoxicity, among others. The purpose of this review is to show the multiple and diverse properties of melatonin, as a pleiotropic indole derivative, and its marked potential for improving human health against the most widely used chemical weapons.

  1. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials.

    PubMed

    Fraga, Carlos G; Bronk, Krys; Dockendorff, Brian P; Heredia-Langner, Alejandro

    2016-05-17

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities from the synthesis of tris(2-chloroethyl)amine (HN3) that point to the reagent and the specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. All the reagent stocks had impurity profiles that differentiated them from one another. This was demonstrated by building classification models with partial least-squares discriminant analysis (PLSDA) and obtaining average stock classification errors of 2.4, 2.8, 2.8, and 11% by cross-validation for chloroform (7 stocks), thionyl chloride (3 stocks), acetone (7 stocks), and TEA (3 stocks), respectively, and 0% for a validation set of chloroform samples. In addition, some reagent impurities indicative of reagent type were found in the HN3 batches that were originally present in the reagent stocks and presumably not altered during synthesis. More intriguing, impurities in HN3 batches that were apparently produced by side reactions of impurities unique to specific TEA and chloroform stocks, and thus indicative of their use, were observed. PMID:27116337

  2. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kavosh Tehrani, M.; Mohammad, M. Malek; Jaafari, E.; Mobashery, A.

    2015-03-01

    The mobile light detection and ranging DIAL system of Malek Ashtar University of Technology has been developed for the detection of chemical warfare agents whose absorption wavelengths are in the range of 9.2-10.8 μm tunable CO2 lasers of the system. In this paper, this system is first described and then ammonia detection is analyzed experimentally. Also, experimental results of detecting a sarin agent simulant, dimethyl-methyl phosphonate (DMMP), are presented. The power levels received from different ranges to detect specific concentrations of NH3 and DMMP have been measured and debated. The primary test results with a 150 ns clipped pulse width by passive pinhole plasma shutter indicate that the system is capable of monitoring several species of pollutants in the range of about 1 km, with a 20 m spatial and 2 min temporal resolution.

  3. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology.

    PubMed

    Cheung-Ong, Kahlin; Giaever, Guri; Nislow, Corey

    2013-05-23

    DNA-damaging agents have a long history of use in cancer chemotherapy. The full extent of their cellular mechanisms, which is essential to balance efficacy and toxicity, is often unclear. In addition, the use of many anticancer drugs is limited by dose-limiting toxicities as well as the development of drug resistance. Novel anticancer compounds are continually being developed in the hopes of addressing these limitations; however, it is essential to be able to evaluate these compounds for their mechanisms of action. This review covers the current DNA-damaging agents used in the clinic, discusses their limitations, and describes the use of chemical genomics to uncover new information about the DNA damage response network and to evaluate novel DNA-damaging compounds. PMID:23706631

  4. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents

    SciTech Connect

    Arulmozhi, K. T.; Mythili, N.

    2013-12-15

    Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.

  5. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  6. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators. PMID:25133545

  7. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and

  8. Embolization of a giant pediatric, posttraumatic, skull base internal carotid artery aneurysm with a liquid embolic agent.

    PubMed

    Reig, Adam S; Simon, Scott; Mericle, Robert A

    2009-11-01

    Many treatments for posttraumatic, skull base aneurysms have been described. Eight months after an all-terrain-vehicle accident, this 12-year-old girl presented with right-side Horner syndrome caused by a 33 x 19-mm internal carotid artery aneurysm at the C-1 level. We chose to treat the aneurysm with a new liquid embolic agent for wide-necked, side-wall aneurysms (Onyx HD 500). We felt this treatment would result in less morbidity than surgery and was less likely to occlude the parent artery than placement of a covered stent, especially in a smaller artery in a pediatric patient. Liquid embolic agents also appear to be associated with a lower chance of recanalization and lower cost compared with stent-assisted coil embolization. After the patient was treated with loading doses of aspirin, clopidogrel bisulfate, and heparin, 99% of the aneurysm was embolized with 9 cc of the liquid embolic agent. There were no complications, and the patient remained neurologically stable. Follow-up angiography revealed durable aneurysm occlusion after 1 year. The cost of Onyx was less than the cost of coils required for coil embolization of similarly sized intracranial aneurysms at our institution. Liquid embolic agents can provide a safe, efficacious, and cost-effective approach to treatment of select giant, posttraumatic, skull base aneurysms in pediatric patients.

  9. LANL organic analysis detection capabilities for chemical and biological warfare agents

    SciTech Connect

    Ansell, G.B.; Cournoyer, M.E.; Hollis, K.W.; Monagle, M.

    1996-12-31

    Organic analysis is the analytical arm for several Los Alamos National Laboratory (LANL) research programs and nuclear materials processes, including characterization and certification of nuclear and nonnuclear materials used in weapons, radioactive waste treatment and waste certification programs. Organic Analysis has an extensive repertoire of analytical technique within the group including headspace gas, PCBs/pesticides, volatile organics and semivolatile organic analysis. In addition organic analysis has mobile labs with analytic capabilities that include volatile organics, total petroleum hydrocarbon, PCBs, pesticides, polyaromatic hydrocarbons and high explosive screening. A natural extension of these capabilities can be applied to the detection of chemical and biological agents,

  10. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.

    PubMed

    Carniato, Fabio; Bisio, Chiara; Psaro, Rinaldo; Marchese, Leonardo; Guidotti, Matteo

    2014-09-15

    A Nb(V)-containing saponite clay was designed to selectively transform toxic organosulfur chemical warfare agents (CWAs) under extremely mild conditions into nontoxic products with reduced environmental impact. Thanks to the insertion of Nb(V) sites within the saponite framework, a bifunctional catalyst with strong oxidizing and acid properties was obtained. Remarkable activity and high selectivity were observed for the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, at room temperature with aqueous hydrogen peroxide. This performance was significantly better compared to a conventional commercial decontamination powder.

  11. Surface-immobilization of molecules for detection of chemical warfare agents.

    PubMed

    Bhowmick, Indrani; Neelam

    2014-09-01

    Fabrication of nanoscale molecular assemblies with advanced functionalities is an emerging field. These systems provide new perspectives for the detection and degradation of chemical warfare agents (CWAs). The main concern in this context is the design and fabrication of "smart surfaces" able to immobilize functional molecules which can perform a certain function or under the input of external stimuli. This review addresses the above points dealing with immobilization of various molecules on different substrates and describes their adequacy as sensors for the detection of CWAs.

  12. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.

    PubMed

    Sambrook, M R; Notman, S

    2013-12-21

    Supramolecular chemistry presents many possible avenues for the mitigation of the effects of chemical warfare agents (CWAs), including sensing, catalysis and sequestration. To-date, efforts in this field both to study fundamental interactions between CWAs and to design and exploit host systems remain sporadic. In this tutorial review the non-covalent recognition of CWAs is considered from first principles, including taking inspiration from enzymatic systems, and gaps in fundamental knowledge are indicated. Examples of synthetic systems developed for the recognition of CWAs are discussed with a focus on the supramolecular complexation behaviour and non-covalent approaches rather than on the proposed applications.

  13. Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment (External Review Draft)

    EPA Science Inventory

    This draft report provides an overview of the types of mechanisms underlying the lymphohematopoietic cancers induced by chemical agents and radiation in humans, with a primary emphasis on leukemia and leukemia-inducing agents. It focuses on how mechanistic information on human l...

  14. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  15. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  16. Chemical potential calculations in dense liquids using metadynamics

    NASA Astrophysics Data System (ADS)

    Perego, C.; Giberti, F.; Parrinello, M.

    2016-07-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  17. Grafting of a functionalized side-chain liquid crystal polymer on carbon fiber surfaces: Novel coupling agents for fiber/polymer matrix composites

    SciTech Connect

    Le Bonheur, V.; Stupp, S.I. )

    1993-09-01

    The authors studied covalent grafting to functionalized carbon fibers of a specially designed liquid crystalline monomer and its corresponding side-chain liquid crystalline polymer containing pendant chemical functions on their mesogenic groups. From a materials point of view these liquid crystalline compounds could act as coupling agents at fiber/polymer matrix interfaces, offering a mechanism to control composite properties not only through bonding but also through their [open quotes]spontaneous[close quotes] molecular orientation in interfacial regions. The grafting methodology for both monomer and polymer to fiber surfaces involved esterification through carbodiimide chemistry in solution. Carboxylic acid groups found on functionalized carbon fiber surfaces were esterified to phenolic functions in the side chains of the experimental polymer. Following grafting procedures the fibers were analyzed by scanning electron microscopy (SEM) and by contact angle measurements. SEM micrographs of fibers grafted with polymer revealed the presence of strongly attached polymeric material on the graphitic surface after rigorous extraction with polymer solvent. Contact angle measurements and polar/dispersive free energy analysis indicated also a smaller polar component of the surface free energy of fibers possibly due to the hydrophobic polymer backbone grafted on the carbon surfaces. On the basis of results, it is concluded that the esterification reaction grafted the polyphenolic liquid-crystal polymer on graphite fiber surfaces. 24 refs., 8 figs., 4 tabs.

  18. New adaptive methods for sensing of chemical components and biological agents

    NASA Astrophysics Data System (ADS)

    Yatsenko, Vitaliy A.; Chiarini, Bruno H.; Pardalos, Panos M.

    2004-02-01

    It is known that leaf reflectance spectra can be used to estimate the contents of chemical components in vegetation. Recent novel applications include the detection of harmful biological agents that can originate from agricultural bioterrorism attacks. Such attacks have been identified as a major threat to the United States" agriculture. Nevertheless, the usefulness of such approach is currently limited by distorting factors, in particular soil reflectance. The quantitative analysis of the spectral curves from the reflection of plant leaves may be the basis for the development of new methods for interpreting the data obtained by the remote measurement of plants. We consider the problem of characterizing the chemical composition from noisy spectral data using an experimental optical method. Using our experience in signal processing and optimization of complex systems we propose a new mathematical model for sensing of chemical components in vegetation. Estimates are defined as minimizers of penalized cost functionals with sequential quadratic programming (SQR) methods. A deviation measure used in risk analysis is also considered. This framework is demonstrated for different agricultural plants using adaptive filtration, principal components analysis, and optimization techniques for classification of spectral curves of chemical components. Various estimation problems will be considered to illustrate the computational aspects of the proposed method.

  19. Decontamination of chemical and biological warfare agents with a single multi-functional material.

    PubMed

    Amitai, Gabi; Murata, Hironobu; Andersen, Jill D; Koepsel, Richard R; Russell, Alan J

    2010-05-01

    We report the synthesis of new polymers based on a dimethylacrylamide-methacrylate (DMAA-MA) co-polymer backbone that support both chemical and biological agent decontamination. Polyurethanes containing the redox enzymes glucose oxidase and horseradish peroxidase can convert halide ions into active halogens and exert striking bactericidal activity against gram positive and gram negative bacteria. New materials combining those biopolymers with a family of N-alkyl 4-pyridinium aldoxime (4-PAM) halide-acrylate co-polymers offer both nucleophilic activity for the detoxification of organophosphorus nerve agents and internal sources of halide ions for generation of biocidal activity. Generation of free bromine and iodine was observed in the combined material resulting in bactericidal activity of the enzymatically formed free halogens that caused complete kill of E. coli (>6 log units reduction) within 1 h at 37 degrees C. Detoxification of diisopropylfluorophosphate (DFP) by the polyDMAA MA-4-PAM iodide component was dose-dependent reaching 85% within 30 min. A subset of 4-PAM-halide co-polymers was designed to serve as a controlled release reservoir for N-hydroxyethyl 4-PAM (HE 4-PAM) molecules that reactivate nerve agent-inhibited acetylcholinesterase (AChE). Release rates for HE 4-PAM were consistent with hydrolysis of the HE 4-PAM from the polymer backbone. The HE 4-PAM that was released from the polymer reactivated DFP-inhibited AChE at a similar rate to the oxime antidote 4-PAM.

  20. Treating exposure to chemical warfare agents: Implications for health care providers and community emergency planning

    SciTech Connect

    Munro, N.B.; Watson, A.P.; Ambrose, K.R.; Griffin, G.D. )

    1990-11-01

    Current treatment protocols for exposure to nerve and vesicant agents found in the US stockpile of unitary chemical weapons are summarized, and the toxicities of available antidotes are evaluated. The status of the most promising of the new nerve agent antidotes is reviewed. In the US, atropine and pralidoxime compose the only approved antidote regimen for organophosphate nerve agent poisoning. Diazepam may also be used if necessary to control convulsions. To avoid death, administration must occur within minutes of substantial exposure together with immediate decontamination. Continuous observation and repeated administration of antidotes are necessary as symptoms warrant. Available antidotes do not necessarily prevent respiratory failure or incapacitation. The toxicity of the antidotes themselves and the individualized nature of medical care preclude recommending that autoinjectors be distributed to the general public. In addition, precautionary administration of protective drugs to the general population would not be feasible or desirable. No antidote exists for poisoning by the vesicant sulfur mustard (H, HD, HT); effective intervention can only be accomplished by rapid decontamination followed by palliative treatment of symptoms. British anti-Lewisite (BAL) (2,3-dimercapto-1-propanol) is the antidote of choice for treatment of exposure to Lewisite, another potent vesicant. Experimental water-soluble BAL analogues have been developed that are less toxic than BAL. Treatment protocols for each antidote are summarized in tabular form for use by health care providers.

  1. Treating exposure to chemical warfare agents: implications for health care providers and community emergency planning.

    PubMed Central

    Munro, N B; Watson, A P; Ambrose, K R; Griffin, G D

    1990-01-01

    Current treatment protocols for exposure to nerve and vesicant agents found in the U.S. stockpile of unitary chemical weapons are summarized, and the toxicities of available antidotes are evaluated. The status of the most promising of the new nerve agent antidotes is reviewed. In the U.S. atropine and pralidoxime compose the only approved antidote regimen for organophosphate nerve agent poisoning. Diazepam may also be used if necessary to control convulsions. To avoid death, administration must occur within minutes of substantial exposure together with immediate decontamination. Continuous observation and repeated administration of antidotes are necessary as symptoms warrant. Available antidotes do not necessarily prevent respiratory failure or incapacitation. The toxicity of the antidotes themselves and the individualized nature of medical care preclude recommending that autoinjectors be distributed to the general public. In addition, precautionary administration of protective drugs to the general population would not be feasible or desirable. No antidote exists for poisoning by the vesicant sulfur mustard (H, HD, HT); effective intervention can only be accomplished by rapid decontamination followed by palliative treatment of symptoms. British anti-Lewisite (BAL) (2,3-dimercapto-1-propanolol) is the antidote of choice for treatment of exposure to Lewisite, another potent vesicant. Experimental water-soluble BAL analogues have been developed that are less toxic than BAL. Treatment protocols for each antidote are summarized in tabular form for use by health care providers. PMID:2088748

  2. [A hygienic study of new raw materials for cosmetic agents and household chemical preparations].

    PubMed

    Iordanov, I; Baĭnova, A; Chipilska, L

    1990-01-01

    Studies are performed on the new Bulgarian raw materials "Aminookis" (AO) and "Dezodorirashch agent" (DA) the plants "Alen Mak"--Plovdiv and "Hyaluron"--Sofia. Chemical, toxicological and microbiological studies are carried out. Thin-layer chromatographic and spectrophotometric methods for determination of AO, hyaluronic acid and DA are developed and chemical studies on cosmetics, prepared with them, are carried out. During the repetition of a 21-day experiment on guinea pigs the threshold irritative concentrations--10% for AO and DA (as trade products) are determined. This shows that they are moderate contact irritants. The hyaluron has no irritative effect. By maximizing test with guinea pigs is established the absence of contact allergy for DA and AO. At index of sensibilization 10% the hyaluron falls in the group of weak allergens. The spectra of action are studied and the minimum suppressing concentrations of AO and DA are defined. It is established that the most resistant to effect with these cosmetics are the representatives of the families: Pseudomonas, Klebsiella, Escherichia, Salmonella. Recommendations are made to use "Aminookis" (AO) in shampoos to 8%, deodorizing agent in deodorants to 2% and "Hyaluron" in creams to 20% (as trade products).

  3. Remote chemical biological and explosive agent detection using a robot-based Raman detector

    NASA Astrophysics Data System (ADS)

    Gardner, Charles W.; Wentworth, Rachel; Treado, Patrick J.; Batavia, Parag; Gilbert, Gary

    2008-04-01

    Current practice for the detection of chemical, biological and explosive (CBE) agent contamination on environmental surfaces requires a human to don protective gear, manually take a sample and then package it for subsequent laboratory analysis. Ground robotics now provides an operator-safe way to make these critical measurements. We describe the development of a robot-deployed surface detection system for CBE agents that does not require the use of antibodies or DNA primers. The detector is based on Raman spectroscopy, a reagentless technique that has the ability to simultaneously identify multiple chemical and biological hazards. Preliminary testing showed the ability to identify CBE simulants in 10 minutes or less. In an operator-blind study, this detector was able to correctly identify the presence of trace explosive on weathered automobile body panels. This detector was successfully integrated on a highly agile robot platform capable of both high speed and rough terrain operation. The detector is mounted to the end of five-axis arm that allows precise interrogation of the environmental surfaces. The robot, arm and Raman detector are JAUS compliant, and are controlled via a radio link from a single operator control unit. Results from the integration testing and from limited field trials are presented.

  4. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  5. Stress, chemical defense agents, and cholinergic receptors. Midterm report, 1 November 1987-31 July 1989

    SciTech Connect

    Lane, J.D.

    1989-11-30

    This project is assessing the affects of exposure to a chemical defense agent on anxiety and stress, by using rat models of anxiety (conditioned emotional response (CER); conditioned suppression) and unconditioned non-specific stres (exposure to footshock). The specific experiments determined the plasticity of muscarinic cholinergic binding sites in the central nervous system. The neuroanatomical locus and neuropharmacological profile of changes in binding sites were assessed in brain areas enriched in cholinergic markers. Acetylcholine turnover was measured to determine if the receptor response is compensatory or independent. The effects of acute exposure to doses of a chemical defense agent (soman--XGD) on lethality and behaviors were examined. The experiments involved training and conditioning adult rats to CER using standard operant/respondent techniques. The binding of radiolabelled ligand was studied in vitro using brain membranes and tissue sections (autoradiography). The major findings are that CER produces increases in acetylcholine turnover in brain areas involved in anxiety, and that primarily post-synaptic M1 receptors compensatorly decrease in response. These neurochemical phenomena are directly correlated with several behaviors, including onset and extinction of CER and non-specific stress. Followup experiments have been designed to test the interaction of CER, XGD and neurochemistry.

  6. Water security: continuous monitoring of water distribution systems for chemical agents by SERS

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Shende, Chetan; Sengupta, Atanu; Farquharson, Stuart

    2007-04-01

    Ensuring safe water supplies requires continuous monitoring for potential poisons and portable analyzers to map distribution in the event of an attack. In the case of chemical warfare agents (CWAs) analyzers are needed that have sufficient sensitivity (part-per-billion), selectivity (differentiate the CWA from its hydrolysis products), and speed (less than 10 minutes) to be of value. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to meet these requirements by detecting CWAs and their hydrolysis products in water. The expected success of SERS is based on reported detection of single molecules, the one-to-one relationship between a chemical and its Raman spectrum, and the minimal sample preparation requirements. Recently, we have developed a simple sampling device designed to optimize the interaction of the target molecules with the SERS-active material with the goal of increasing sensitivity and decreasing sampling times. This sampling device employs a syringe to draw the water sample containing the analyte into a capillary filled with the SERS-active material. Recently we used such SERS-active capillaries to measure 1 ppb cyanide in water. Here we extend these measurements to nerve agent hydrolysis products using a portable Raman analyzer.

  7. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment.

    PubMed

    Peleteiro, Susana; Rivas, Sandra; Alonso, José L; Santos, Valentín; Parajó, Juan C

    2015-09-23

    Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.

  8. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents

    PubMed Central

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W.; Battelli, Lori A.; Kashon, Michael L.

    2016-01-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genomewide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  9. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    SciTech Connect

    Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi; Yagihashi, Makoto

    2014-05-01

    A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  10. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    SciTech Connect

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  11. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    PubMed Central

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  12. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  13. Chemical and biological stability of solvent refined coal liquids

    SciTech Connect

    Wright, C.W.; Weimer, W.C.

    1984-01-01

    Stability studies performed on seventeen SRC samples in boiling point from ambient to 850/sup 0/F showed that the major chemical composition of the materials as monitored by high resolution gas chromatography did not change under the storage conditions of the repository, which were 4/sup 0/C, in inert containers, under a nitrogen atmosphere, in the dark. Samples were monitored after two years of storage. It was also found from microbial mutagenicity studies that after four years in the repository there was no significant change in the biological activity of any of the SRC materials. Samples stored under various parameters of air versus nitrogen atmosphere and ambient light versus darkness at room temperature and -20/sup 0/C for one year showed there was no significant differences in the chemical composition of any of the samples. There was evidence, however, that trace components such as amino-PAH degraded at room temperature, in the light, under an air atmosphere since the microbial mutagenicity of samples stored under these conditions for one year decreased significantly. Both the chemical composition and mutagenicity of FOB samples changed when stored diluted in methylene chloride, in the light, under an air atmosphere at room temperature. After one year of storage under these conditions, the microbial mutagenicity was eliminated. Storage of SRC-II FOB at increased temperatures of 60/sup 0/C and 100/sup 0/C showed significant changes in chemical composition due to volatility effects. The microbial mutagenicity of the FOB samples was completely eliminated after storage at 60/sup 0/C for 32 weeks and 100/sup 0/C for 26 weeks. It appears that the amino-PAH and phenolic materials are the most susceptible components to degradation in the complex SRC materials. 23 references, 29 figures, 50 tables.

  14. Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase.

    PubMed

    Jung, In-Pil; Ha, Na-Reum; Lee, Sang-Choon; Ryoo, Sung-Weon; Yoon, Moon-Young

    2016-09-01

    Mycobacterium tuberculosis acetohydroxyacid synthase (MTB-AHAS) has been suggested as a crucial target for antibacterial agents. High-throughput screening of a chemical library was performed to identify potent new inhibitors of MTB-AHAS. Among the 6800 tested compounds, 15 were identified as potent inhibitors, exhibiting >80-90% inhibition of in vitro MTB-AHAS activity at a fixed concentration of 20 µM. Five compounds belonging to the triazolopyrimidine structural class showed greater inhibition potency, with a half-maximum inhibition concentration (IC50 value) in the low micromolar range (0.4-1.24 µM). Furthermore, potent inhibitors demonstrated non-competitive, uncompetitive or mixed-competitive inhibition. Molecular docking experiments with these potent chemicals using a homology model of MTB-AHAS indicated hydrophobic and hydrogen bond interactions with some key herbicide binding site residues with binding energies (ΔG) of -8.04 to -10.68 Kcal/mol, respectively. The binding modes were consistent with inhibition mechanisms, as the chemicals were oriented outside the active site. Importantly, these potent inhibitors demonstrated significant growth inhibition of various clinically isolated multidrug-resistant and extensively drug-resistant M. tuberculosis strains, with 50% minimum inhibitory concentrations (MIC50 values) ranging from 0.2 µg/mL to 0.8 µg/mL, which resemble the MICs of conventional drugs for tuberculosis (isoniazid, 0.1 µg/mL; rifampicin, 0.4 µg/mL). Thus, the identified potent inhibitors show potential as scaffolds for further in vivo studies and might provide an impetus for the development of strong antituberculosis agents targeting MTB-AHAS. PMID:27451857

  15. Long-term pulmonary complications of chemical warfare agent exposure in Iraqi Kurdish civilians.

    PubMed

    Ghanei, Mostafa; Naderi, Mostafa; Kosar, Ali Morad; Harandi, Ali Amini; Hopkinson, Nicholas S; Poursaleh, Zohreh

    2010-08-01

    The Iraqi government used a range of chemical weapons, including blistering and nerve agents, against Iraqi Kurdish civilians in the 1980s. Few data exist about the long-term respiratory consequences of this exposure. In this study, Kurdish subjects with a history of exposure to chemical weapons were invited to attend a clinical assessment, including a review of their history, physical examination, and a high-resolution computed tomography (CT) of the thorax. Blistering at the time of exposure was used to define significant exposure to mustard gas. Results were compared between two groups of blistering and nonblistering. Four hundred seventy-nine subjects were studied; 45.7% male and 54.3% female. The mean age and standard deviation (mean +/- SD) of the cases was 43.1 +/- 13.7. Spirometry was abnormal in 15.2% of subjects and air trapping was present on CT scan in 46.6% and did not differ between patients with (n = 278) or without a history of blistering. Respiratory symptoms, including dyspnea, cough, and sputum production, were more common in subjects with a history of blistering (all p < .005) and blistering was also associated with a lower forced expiratory volume in one second (FEV(1)) (p < .0001). Severe complications were most common in subjects from Halabja who also made up the majority of participants. These results show that objective abnormalities are common in people with symptoms attributed to prior exposure to chemical agent. Blistering at the time of exposure was associated with more respiratory symptoms and worse lung function, but not with CT appearances. The high proportion of severe cases in comparison to reports from Iran may reflect the historical absence of effective early treatment, including strategies to reduce prolonged early exposure in this population. PMID:20560732

  16. Chemical studies of elements with Z ≥ 104 in liquid phase

    NASA Astrophysics Data System (ADS)

    Nagame, Yuichiro; Kratz, Jens Volker; Schädel, Matthias

    2015-12-01

    Recent studies of the chemical separation and characterization experiments of the first three transactinide elements, rutherfordium (Rf), dubnium (Db), and seaborgium (Sg), conducted atom-at-a-time in liquid phases, are reviewed. A short description on experimental techniques based on partition methods, specifically automated rapid chemical separation systems, is also given. A newly developed experimental approach to investigate single atoms of the heaviest elements with an electrochemical method is introduced. Perspectives for liquid-phase chemistry experiments on heavier elements are briefly discussed.

  17. Analysis of degradation products of chemical warfare agents using capillary electrophoresis.

    PubMed

    Aleksenko, Svetlana S; Gareil, Pierre; Timerbaev, Andrei R

    2011-10-21

    Analysis of chemical warfare agents (CWAs), their precursors and degradation products (DPs) is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. Considering a growing number of papers presented in the last years in the field of capillary electrophoresis (CE) of DPs, this review article gives an overview on CE techniques which are feasible for the determination of DPs with the advantages of using relatively simple and inexpensive research instrumentation, reduced consumption of potentially toxic samples, shorter sample preparation times, etc. A brief introduction is provided into the chemical background of CWAs followed by a documented appraisal that the CE method is well suited to deal with polar, acidic DPs mostly occurring in aqueous samples or extracts. Applications of CE to the separation of DPs are described, complemented by a critical discussion of the detection techniques, including mostly conductivity, laser-induced fluorescence, UV absorption and mass spectrometry. This review also includes actual development regarding the challenges of CE in analyses of different DPs from real samples, often avoided by in- and off-line pre-concentration techniques or the coupling of CE to selective detection methods. Special emphasis is placed on the miniaturised CE systems that have the potential of being before long developed into a field deployable and potentially disposable platform for routine DP monitoring in environmental samples. PMID:21858300

  18. Analysis of degradation products of chemical warfare agents using capillary electrophoresis.

    PubMed

    Aleksenko, Svetlana S; Gareil, Pierre; Timerbaev, Andrei R

    2011-10-21

    Analysis of chemical warfare agents (CWAs), their precursors and degradation products (DPs) is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. Considering a growing number of papers presented in the last years in the field of capillary electrophoresis (CE) of DPs, this review article gives an overview on CE techniques which are feasible for the determination of DPs with the advantages of using relatively simple and inexpensive research instrumentation, reduced consumption of potentially toxic samples, shorter sample preparation times, etc. A brief introduction is provided into the chemical background of CWAs followed by a documented appraisal that the CE method is well suited to deal with polar, acidic DPs mostly occurring in aqueous samples or extracts. Applications of CE to the separation of DPs are described, complemented by a critical discussion of the detection techniques, including mostly conductivity, laser-induced fluorescence, UV absorption and mass spectrometry. This review also includes actual development regarding the challenges of CE in analyses of different DPs from real samples, often avoided by in- and off-line pre-concentration techniques or the coupling of CE to selective detection methods. Special emphasis is placed on the miniaturised CE systems that have the potential of being before long developed into a field deployable and potentially disposable platform for routine DP monitoring in environmental samples.

  19. Ultrasonic Synergistic Effects in Liquid-Phase Chemical Sterilization

    PubMed Central

    Sierra, Gonzalo; Boucher, Raymond M. G.

    1971-01-01

    New methods of sterilization employing a chemical with moderate heat and ultrasonic energy have been devised. Inactivation of high-density bacterial spore suspensions is achieved by treatment with low concentration aqueous acid glutaraldehyde solutions at temperatures above or about 54 C. Low (20 kHz) or high (250 kHz) frequency ultrasonic energy is synergistic with glutaraldehyde. Rapid inactivation may also be achieved by using ultrasonic energy and aqueous alkalinized glutaraldehyde solutions at low (25 C) or moderate (55 C) temperatures. If compared to present room temperature techniques, “surface sterilization” time for contaminated objects can be reduced from hours to minutes. PMID:4999521

  20. A guide to the selection of personal protective equipment for use in responding to a release of chemical warfare agents

    SciTech Connect

    Foust, C.B.

    1997-10-01

    Recognition by the US Army that a potential threat to the public from continued storage was potentially as great a threat as from transportation and the final demilitarization of chemical agents gave rise to the Chemical Stockpile Emergency Preparedness Program (CSEPP). CSEPP is a civilian community emergency preparedness program complementing the Department of Defense`s initiative to destroy domestic stockpiles of aged chemical warface munitions. An incident involving chemical warfare agents requires a unique hazardous materials (HAZMAT) response. As with any HAZMAT event, federal regulations prescribe that responders must be protected from exposure to the chemical agents. But unlike other HAZMAT events, special considerations govern the selection of personal protective equipment (PPE). PPE includes all clothing, respirators and detection equipment used to respond to a chemical release. PPE can differ depending on whether responders are military or civilian personnel. FEMA requested that ORNL create training materials for CSEPP participants. These training materials were to provide information on a variety of topics and answer questions that a typical CSEPP participant might ask, including the following: how did the Army select the CSEPP recommended ensemble (i.e., protective clothing, respiratory equipment, and detection equipment); how does the CSEPP participant know this ensemble is the right PPE for chemical warfare agents and will actually protect him; what are the concept of operations and work rules? Does one need to know what the CSEPP concept of operations and work rules include? This report describes the training document ORNL created.

  1. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    DOEpatents

    Zhao, Haibo; Holladay, Johnathan E.

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  2. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  3. Determination of anabolic agents in dietary supplements by liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Odoardi, Sara; Castrignanò, Erika; Martello, Simona; Chiarotti, Marcello; Strano-Rossi, Sabina

    2015-01-01

    A sensitive method for the identification and quantification of anabolic steroids and clenbuterol at trace levels in dietary supplements by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) in atmospheric pressure ionisation (APCI) mode using a single-stage Orbitrap analyser operating at a resolution power of 100 000 full width at half maximum (FWHM) was developed and validated. A total of 1 g of dietary supplement was added with testosterone-d3 as internal standard, dissolved in methanol, evaporated to dryness, diluted in sodium hydroxide solution and extracted with a mixture of pentane/ethyl ether 9:1. The extract was directly injected into the LC-HRMS system. The method was fully validated. Limits of detection (LODs) obtained for anabolic androgenic steroids (AASs) varied from 1 to 25 ng g(-1) and the limit of quantitation (LOQ) was 50 ng g(-1) for all analytes. The calibration was linear for all compounds in the range from the LOQ to 2000 ng g(-1), with correlation coefficients always higher than 0.99. Accuracy (intended as %E) and repeatability (%CV) were always lower than 15%. Good values of matrix effect and recovery were achieved. The ease of the sample preparation together with a fast run time of only 16 min permitted rapid identification of the analytes. The method was applied to the analysis of 30 dietary supplements in order to check for the presence of anabolic agents not labelled as being present in these supplements. Many AASs were often detected in the same sample: indeed, androstenedione was detected in nine supplements, 5-androsten-3β-ol-17-one (DHEA) in 12, methandienone in three, stanozolol in one, testosterone in seven and testosterone esters in four of them. A retrospective analysis of suspected compounds not included at the beginning of the method development was also possible by means of the full acquisition spectra obtained with the HRMS technique. PMID:25719897

  4. Determination of anabolic agents in dietary supplements by liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Odoardi, Sara; Castrignanò, Erika; Martello, Simona; Chiarotti, Marcello; Strano-Rossi, Sabina

    2015-01-01

    A sensitive method for the identification and quantification of anabolic steroids and clenbuterol at trace levels in dietary supplements by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) in atmospheric pressure ionisation (APCI) mode using a single-stage Orbitrap analyser operating at a resolution power of 100 000 full width at half maximum (FWHM) was developed and validated. A total of 1 g of dietary supplement was added with testosterone-d3 as internal standard, dissolved in methanol, evaporated to dryness, diluted in sodium hydroxide solution and extracted with a mixture of pentane/ethyl ether 9:1. The extract was directly injected into the LC-HRMS system. The method was fully validated. Limits of detection (LODs) obtained for anabolic androgenic steroids (AASs) varied from 1 to 25 ng g(-1) and the limit of quantitation (LOQ) was 50 ng g(-1) for all analytes. The calibration was linear for all compounds in the range from the LOQ to 2000 ng g(-1), with correlation coefficients always higher than 0.99. Accuracy (intended as %E) and repeatability (%CV) were always lower than 15%. Good values of matrix effect and recovery were achieved. The ease of the sample preparation together with a fast run time of only 16 min permitted rapid identification of the analytes. The method was applied to the analysis of 30 dietary supplements in order to check for the presence of anabolic agents not labelled as being present in these supplements. Many AASs were often detected in the same sample: indeed, androstenedione was detected in nine supplements, 5-androsten-3β-ol-17-one (DHEA) in 12, methandienone in three, stanozolol in one, testosterone in seven and testosterone esters in four of them. A retrospective analysis of suspected compounds not included at the beginning of the method development was also possible by means of the full acquisition spectra obtained with the HRMS technique.

  5. Preserving ignitable liquid residues on soil using Triclosan as an anti-microbial agent.

    PubMed

    Turner, Dee A; Goodpaster, John V

    2014-06-01

    When a fire is suspected to be intentionally set, fire debris samples can be collected and analyzed for ignitable liquid residues (ILRs). In some cases, samples will contain highly organic substrates such as soil or rotting wood. These substrates will contain a high bacterial load, which can result in systematic and irreversible damage to the ILR due to microbial degradation. This paper explores ways to preserve ILR by sterilizing fire debris samples without interfering with their subsequent analysis. There are many methods reported in the literature for sterilizing soil, such as freezing, irradiation, autoclaving, and various chemical fumigation techniques. However, these methods either do not kill all bacterial species, cannot be easily applied in the field or would interfere with the analysis of the ILRs. For this work, various anti-microbial compounds including triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) were tested for their efficacy at killing bacteria present in the soil. Triclosan was highly effective in qualitative growth studies and was therefore used to measure bacterial growth (or lack thereof) by spectroscopic analysis as well as passive headspace analysis. These experiments showed that triclosan was able to sterilize soil samples in less than 60s, maintain their sterility for at least 77h and preserve gasoline residues on a soil matrix for at least 30 days. PMID:24769222

  6. Preserving ignitable liquid residues on soil using Triclosan as an anti-microbial agent.

    PubMed

    Turner, Dee A; Goodpaster, John V

    2014-06-01

    When a fire is suspected to be intentionally set, fire debris samples can be collected and analyzed for ignitable liquid residues (ILRs). In some cases, samples will contain highly organic substrates such as soil or rotting wood. These substrates will contain a high bacterial load, which can result in systematic and irreversible damage to the ILR due to microbial degradation. This paper explores ways to preserve ILR by sterilizing fire debris samples without interfering with their subsequent analysis. There are many methods reported in the literature for sterilizing soil, such as freezing, irradiation, autoclaving, and various chemical fumigation techniques. However, these methods either do not kill all bacterial species, cannot be easily applied in the field or would interfere with the analysis of the ILRs. For this work, various anti-microbial compounds including triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) were tested for their efficacy at killing bacteria present in the soil. Triclosan was highly effective in qualitative growth studies and was therefore used to measure bacterial growth (or lack thereof) by spectroscopic analysis as well as passive headspace analysis. These experiments showed that triclosan was able to sterilize soil samples in less than 60s, maintain their sterility for at least 77h and preserve gasoline residues on a soil matrix for at least 30 days.

  7. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.

    PubMed

    Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa

    2012-05-30

    Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems. PMID:22608458

  8. Triage, monitoring, and treatment of mass casualty events involving chemical, biological, radiological, or nuclear agents

    PubMed Central

    Ramesh, Aruna C.; Kumar, S.

    2010-01-01

    In a mass casualty situation due to chemical, biological, radiological, or nuclear (CBRN) event, triage is absolutely required for categorizing the casualties in accordance with medical care priorities. Dealing with a CBRN event always starts at the local level. Even before the detection and analysis of agents can be undertaken, zoning, triage, decontamination, and treatment should be initiated promptly. While applying the triage system, the available medical resources and maximal utilization of medical assets should be taken into consideration by experienced triage officers who are most familiar with the natural course of the injury presented and have detailed information on medical assets. There are several triage systems that can be applied to CBRN casualties. With no one standardized system globally or nationally available, it is important for deploying a triage and decontamination system which is easy to follow and flexible to the available medical resources, casualty number, and severity of injury. PMID:21829319

  9. Trapping of organophosphorus chemical nerve agents in water with amino acid functionalized baskets.

    PubMed

    Ruan, Yian; Dalkiliç, Erdin; Peterson, Paul W; Pandit, Aroh; Dastan, Arif; Brown, Jason D; Polen, Shane M; Hadad, Christopher M; Badjić, Jovica D

    2014-04-01

    We prepared eleven amino-acid functionalized baskets and used (1) H NMR spectroscopy to quantify their affinity for entrapping dimethyl methylphosphonate (DMMP, 118 Å(3) ) in aqueous phosphate buffer at pH=7.0±0.1; note that DMMP guest is akin in size to chemical nerve agent sarin (132 Å(3) ). The binding interaction (Ka ) was found to vary with the size of substituent groups at the basket's rim. In particular, the degree of branching at the first carbon of each substituent had the greatest effect on the host-guest interaction, as described with the Verloop's B1 steric parameter. The branching at the remote carbons, however, did not perturb the encapsulation, which is important for guiding the design of more effective hosts and catalysts in future. PMID:24616086

  10. Triage, monitoring, and treatment of mass casualty events involving chemical, biological, radiological, or nuclear agents.

    PubMed

    Ramesh, Aruna C; Kumar, S

    2010-07-01

    In a mass casualty situation due to chemical, biological, radiological, or nuclear (CBRN) event, triage is absolutely required for categorizing the casualties in accordance with medical care priorities. Dealing with a CBRN event always starts at the local level. Even before the detection and analysis of agents can be undertaken, zoning, triage, decontamination, and treatment should be initiated promptly. While applying the triage system, the available medical resources and maximal utilization of medical assets should be taken into consideration by experienced triage officers who are most familiar with the natural course of the injury presented and have detailed information on medical assets. There are several triage systems that can be applied to CBRN casualties. With no one standardized system globally or nationally available, it is important for deploying a triage and decontamination system which is easy to follow and flexible to the available medical resources, casualty number, and severity of injury.

  11. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    One of the major deleterious late effects of ionizing radiation is related to the induction of neoplasms. In the present report recent experimental results on neoplastic cell transformation by heavy ions are presented, and possible means to circumvent the carcinogenic effect of space radiation are discussed. Biological effects observed in experiments involving the use of energetic heavy ions accelerated at the Bevalac suggest that many of the biological effects observed in earlier space flight experiments may be due to space radiation, particularly cosmic rays. It is found that the effect of radiation on cell transformation is dose-rate dependent. The frequency of neoplastic transformation for a given dose decreases with a decrease of dose rate of Co-60 gamma rays. It is found that various chemical agents give radiation protection, including DMSO.

  12. Chemical warfare agent detection: a review of current trends and future perspective.

    PubMed

    Pacsial-Ong, Eden Joy; Aguilar, Zoraida P

    2013-01-01

    The World Health Organization recommends countries to create a public health system that can respond to the deliberate release of chemical warfare agents (CWAs). Procedures for preparedness, response, decontamination protocols and medical countermeasures against CWA attacks are described. Known CWAs, including their properties and pharmacological consequences upon exposure, are tabulated and discussed. Requirements imposed on detection systems by various applications and environmental needs are presented in order to assess the devices for detection and identification of specific CWAs. The review surveys current and near-term detection technologies and equipments, as well as devices that are currently available to the military and civilian first responders. Brief technical discussions of several detection technologies are presented, with emphasis placed in the principles of detection. Finally, enabling technologies that form the basis for advanced sensing systems and devices are described.

  13. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.

    PubMed

    Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa

    2012-05-30

    Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems.

  14. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    PubMed

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  15. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages.

    PubMed

    Wright, Linnzi K M; Lee, Robyn B; Vincelli, Nicole M; Whalley, Christopher E; Lumley, Lucille A

    2016-01-22

    Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX.

  16. Method for producing chemically bonded phosphate ceramics and for stabilizing contaminants encapsulated therein utilizing reducing agents

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young

    2000-01-01

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  17. Further studies on the detection of chemical agents using an alkaline energy cell

    NASA Astrophysics Data System (ADS)

    Shewchun, John

    2008-04-01

    The detection, classification and tracking of chemical agents (explosives) being surreptitiously smuggled into public areas, such as airports, for destructive purposes is difficult to solve by unobtrusive means. We propose the use of a novel Alkaline Energy Cell (AEC) with gas/vapor sniffing capability as a potential solution. Variants of such devices are routinely used by police to detect alcohol emanating from the breath of suspected impaired vehicle drivers. We reported previously at the SPIE Symposium in 2007 the details of our technology and results. We have continued to advanced this capability with the development of an AEC which is capable of detecting gaseous emissions ultimately in the parts per billion range. Our work is described in terms of detecting TATP (acetone peroxide). Other explosive materials have also been investigated and will be reported on.

  18. Method for Producing Chemically Bonded Phosphate Ceramics and for Stabilizing Contaminants Encapsulated therein Utilizing Reducing Agents

    SciTech Connect

    Singh, Dileep; Wagh, Arun S.; Jeong, Seung-Young

    1999-05-05

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions is stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  19. Design and evaluation of hyperspectral algorithms for chemical warfare agent detection

    NASA Astrophysics Data System (ADS)

    Manolakis, Dimitris; D'Amico, Francis M.

    2005-11-01

    Remote sensing of chemical warfare agents (CWA) with stand-off hyperspectral imaging sensors has a wide range of civilian and military applications. These sensors exploit the spectral changes in the ambient photon flux produced by either sunlight or the thermal emission of the earth after passage through a region containing the CWA cloud. The purpose of this paper is threefold. First, to discuss a simple phenomenological model for the radiance measured by the sensor in the case of optically thin clouds. This model provides the mathematical framework for the development of optimum algorithms and their analytical evaluation. Second, we identify the fundamental aspects of the data exploitation problem and we develop detection algorithms that can be used by different sensors as long as they can provide the required measurements. Finally, we discuss performance metrics for detection, identification, and quantification and we investigate their dependance on CWA spectral signatures, sensor noise, and background spectral variability.

  20. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages.

    PubMed

    Wright, Linnzi K M; Lee, Robyn B; Vincelli, Nicole M; Whalley, Christopher E; Lumley, Lucille A

    2016-01-22

    Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX. PMID:26621540

  1. Using Mode of Action to Assess Health Risks from Mixtures of Chemical/Physical Agents

    SciTech Connect

    Bull, Richard J.; Lei, Xingye C.; Sasser, Lyle B.

    2003-01-20

    a low, but effective, dose of one agent was superimposed on a high dose of another. When given at high doses, the effects were generally no greater than observed with either agent alone. A low dose of TCA was clearly antagonistic to a high dose of DCA. This antagonism carried throughout the dose response curve for TCA. Apparently, these interactions involve some subtle modification of effects by one chemical in cells responsive to the other chemical. Consequently, our findings do not argue that interactions will extend below the effective doses of either chemical.

  2. Specificity enhancement by electrospray ionization multistage mass spectrometry--a valuable tool for differentiation and identification of 'V'-type chemical warfare agents.

    PubMed

    Weissberg, Avi; Tzanani, Nitzan; Dagan, Shai

    2013-12-01

    The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic 'V'-type chemical weapons [O-alkyl S-(2-dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine-containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization-MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five 'V'-type agents, including O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothiolate (VX), O-isobutyl S-(2-diethylamino)ethyl methylphosphonothiolate (RVX) and O-ethyl S-(2-diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS(3) experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of 'V'-type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information-rich spectra, although many of the product ions obtained were at low abundance. Employing MS(3) experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group-specific ions elucidated in this work are also useful for screening unknown 'V'-type agents and related

  3. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling.

    PubMed

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-10-15

    The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity and the predicted environmental concentrations based on the conditions of use are lower than the NOAEC for soils but higher than the NOAEC for water, posing a potential risk to the waters due to the levels of foaming agents in the muck.

  4. Toothpastes containing abrasive and chemical whitening agents: efficacy in reducing extrinsic dental staining.

    PubMed

    Soares, Cristina Neves Girao Salgado; Amaral, Flavia Lucisano Botelho do; Mesquita, Marcelo Ferraz; Franca, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso

    2015-01-01

    This in vitro study evaluated the efficacy of toothpastes containing abrasive and chemical whitening agents in reducing the extrinsic discoloration of dental enamel. Sixty slabs of dentin from human teeth were sealed so that only the enamel surface was exposed. The enamel surfaces were photographed for initial color assessment. Staining was performed by immersing the dental slabs in 0.2% chlorhexidine solution for 2 minutes and then in black tea for 60 minutes. This process was repeated 15 times. Photographs were taken at the end of the staining process, and the slabs were divided into 5 groups (n = 12), 3 to be brushed with toothpastes containing chemical whitening agents (2 containing phosphate salts and 1 containing phosphate salts plus hydrogen peroxide) and 2 to represent control groups (ordinary/nonwhitening toothpaste and distilled water). The dental slabs were subjected to mechanical toothbrushing with toothpaste slurry or distilled water, according to each group's specifications. After brushing, more photographs were taken for color analysis. The results showed a significant reduction in luminosity after the staining process in addition to an increase in the colors red and yellow (P < 0.001). After brushing, there was a significant increase in luminosity and a reduction in both red and yellow (P < 0.001). However, there was no observed difference between the changes in color values in dental enamel slabs brushed with whitening toothpastes and the changes found in slabs brushed with ordinary toothpaste. The whitening toothpastes did not outperform an ordinary toothpaste in the removal of extrinsic staining. PMID:26545284

  5. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents.

    PubMed

    Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph

    2014-11-25

    Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications.

  6. Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor.

    PubMed

    Veriansyah, Bambang; Kim, Jae-Duck; Lee, Jong-Chol

    2007-08-17

    A new design of supercritical water oxidation (SCWO) bench-scale reactor has been developed to handle high-risk wastes resulting from munitions demilitarization. The reactor consists of a concentric vertical double wall in which SCWO reaction takes place inside an inner tube (titanium grade 2, non-porous) whereas pressure resistance is ensured by a Hastelloy C-276 external vessel. The performances of this reactor were investigated with two different kinds of chemical warfare agent simulants: OPA (a mixture of isopropyl amine and isopropyl alcohol) as the binary precursor for nerve agent of sarin and thiodiglycol [TDG, (HOC(2)H(4))2S] as the model organic sulfur heteroatom. High destruction rates based on total organic carbon (TOC) were achieved (>99.99%) without production of chars or undesired gases such as carbon monoxide and methane. The carbon-containing product was carbon dioxide whereas the nitrogen-containing products were nitrogen and nitrous oxide. Sulfur was totally recovered in the aqueous effluent as sulfuric acid. No corrosion was noticed in the reactor after a cumulative operation time of more than 250 h. The titanium tube shielded successfully the pressure vessel from corrosion.

  7. Fusion of chemical, biological, and meteorological observations for agent source term estimation and hazard refinement

    NASA Astrophysics Data System (ADS)

    Bieringer, Paul E.; Rodriguez, Luna M.; Sykes, Ian; Hurst, Jonathan; Vandenberghe, Francois; Weil, Jeffrey; Bieberbach, George, Jr.; Parker, Steve; Cabell, Ryan

    2011-05-01

    Chemical and biological (CB) agent detection and effective use of these observations in hazard assessment models are key elements of our nation's CB defense program that seeks to ensure that Department of Defense (DoD) operations are minimally affected by a CB attack. Accurate hazard assessments rely heavily on the source term parameters necessary to characterize the release in the transport and dispersion (T&D) simulation. Unfortunately, these source parameters are often not known and based on rudimentary assumptions. In this presentation we describe an algorithm that utilizes variational data assimilation techniques to fuse CB and meteorological observations to characterize agent release source parameters and provide a refined hazard assessment. The underlying algorithm consists of a combination of modeling systems, including the Second order Closure Integrated PUFF model (SCIPUFF), its corresponding Source Term Estimation (STE) model, a hybrid Lagrangian-Eulerian Plume Model (LEPM), its formal adjoint, and the software infrastructure necessary to link them. SCIPUFF and its STE model are used to calculate a "first guess" source estimate. The LEPM and corresponding adjoint are then used to iteratively refine this release source estimate using variational data assimilation techniques. This algorithm has undergone preliminary testing using virtual "single realization" plume release data sets from the Virtual THreat Response Emulation and Analysis Testbed (VTHREAT) and data from the FUSION Field Trials 2007 (FFT07). The end-to-end prototype of this system that has been developed to illustrate its use within the United States (US) Joint Effects Model (JEM) will be demonstrated.

  8. Chiral separation of G-type chemical warfare nerve agents via analytical supercritical fluid chromatography.

    PubMed

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-12-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(-) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(-) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents.

  9. Separation of thiol and cyanide hydrolysis products of chemical warfare agents by capillary electrophoresis.

    PubMed

    Copper, Christine L; Collins, Greg E

    2004-03-01

    The fluorescence derivatizing agent, o-phthalaldehyde (OPA), has been applied to the separation and detection of cyanide and several structurally similar thiols by capillary electrophoresis (CE)-laser induced fluorescence (LIF). Of particular interest to this investigation was the separation of 2-dimethylaminoethanethiol, 2-diethylaminoethanethiol, and cyanide, each of which are hydrolysis products or hydrolysis product simulants of the chemical warfare (CW) agents O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (R-VX), and tabun (GA). Other structurally similar thiols simultaneously resolved by this method include 1-pentanethiol and 2-mercaptoethanol. Instrumental parameters were probed and optimum values for capillary length (50 cm) and inner diameter (75 microm), injection time (30 s) and field strength (15 kV) were determined. Sample stacking methods enabled detection limits of 9.3 microg/L for cyanide, 1.8 microg/L for 2-diethylaminoethanethiol, 35 microg/L for 2-dimethylaminoethanethiol, 15 microg/L for 2-mercaptoethanol, and 89 microg/L for 1-pentanethiol. The linearity of the method was verified over an order of magnitude and the reproducibility was found to be 3.0%.

  10. Genomics and proteomics in chemical warfare agent research: recent studies and future applications.

    PubMed

    Everley, Patrick A; Dillman, James F

    2010-10-20

    Medical research on the effects of chemical warfare agents (CWAs) has been ongoing for nearly 100 years, yet these agents continue to pose a serious threat to deployed military forces and civilian populations. CWAs are extremely toxic, relatively inexpensive, and easy to produce, making them a legitimate weapon of choice for terrorist organizations. While the mechanisms of action for many CWAs have been known for years, questions about their molecular effects following acute and chronic exposure remain largely unanswered. Global approaches that can pinpoint which cellular pathways are altered in response to CWAs and characterize long-term toxicity have not been widely used. Fortunately, innovations in genomics and proteomics technologies now allow for thousands of genes and proteins to be identified and subsequently quantified in a single experiment. Advanced bioinformatics software can also help decipher large-scale changes observed, leading to mapping of signaling pathways, functional characterization, and identification of potential therapeutic targets. Here we present an overview of how genomics and proteomics technologies have been applied to CWA research and also provide a series of questions focused on how these techniques could further our understanding of CWA toxicity.

  11. Separation of thiol and cyanide hydrolysis products of chemical warfare agents by capillary electrophoresis.

    PubMed

    Copper, Christine L; Collins, Greg E

    2004-03-01

    The fluorescence derivatizing agent, o-phthalaldehyde (OPA), has been applied to the separation and detection of cyanide and several structurally similar thiols by capillary electrophoresis (CE)-laser induced fluorescence (LIF). Of particular interest to this investigation was the separation of 2-dimethylaminoethanethiol, 2-diethylaminoethanethiol, and cyanide, each of which are hydrolysis products or hydrolysis product simulants of the chemical warfare (CW) agents O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (R-VX), and tabun (GA). Other structurally similar thiols simultaneously resolved by this method include 1-pentanethiol and 2-mercaptoethanol. Instrumental parameters were probed and optimum values for capillary length (50 cm) and inner diameter (75 microm), injection time (30 s) and field strength (15 kV) were determined. Sample stacking methods enabled detection limits of 9.3 microg/L for cyanide, 1.8 microg/L for 2-diethylaminoethanethiol, 35 microg/L for 2-dimethylaminoethanethiol, 15 microg/L for 2-mercaptoethanol, and 89 microg/L for 1-pentanethiol. The linearity of the method was verified over an order of magnitude and the reproducibility was found to be 3.0%. PMID:15004852

  12. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents.

    PubMed

    Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph

    2014-11-25

    Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications. PMID:25289459

  13. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    ERIC Educational Resources Information Center

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  14. Effects of complexometric compounds found in liquid and solid oil shale waste products on release of chemical elements from retorted shale

    SciTech Connect

    Esmaili, E.; Carroll, R.B.; Jackson, L.P.

    1985-05-01

    Complexometric compounds found in oil shale wastes may have the ability to increase the release of trace elements from retorted oil shale when the solid and liquid wastes are codisposed. A laboratory investigation was conducted on the effects of various complexing agents found in liquid and solid oil shale wastes on the leachability of retorted shales. In batch experiments retorted shale samples were contacted with deionized-distilled water (DDW) and 10 different aqueous solutions of complexing agents. These agents included sodium-oxalate, ammonium-carbonate, sodium-thiosulfate, 2-pyridone, 2-hydroxy-6-methylpyridine, potassium-thiocyanate, acetonitrile, sodium-acetate, acetamide, and nicotinic acid. DDW leachate results were used as a baseline to compare with the results for aqueous complexometric leachates. Some of these agents aided in higher release of arsenic, boron, selenium, lead, and vanadium from the solids. The same complexing agents had different effects on different retorted shales, indicating that the results for one retorted shale may or may not be representative of other retorted shales. This is due to differences in mineralogical residence of elements in various retorted shales and differences in leachate chemical systems of various retorted shales. Concentration of cadium and cobalt did not exceed the quantitation limits of these elements in any of the leachates in this study. 10 refs., 15 tabs.

  15. Calculation of chemical quantities for the radioactive liquid waste treatment facility

    SciTech Connect

    Del Signore, John C.; McClenahan, Robert L.

    2007-03-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives, stores, and treats both low-level and transuranic radioactive liquid wastes (RLW). Treatment of RLW requires the use of different chemicals. Examples include the use of calcium oxide to precipitate metals and radioactive elements from the radioactive liquid waste, and the use of hydrochloric acid to clean membrane filters that are used in the treatment process. The RL WTF is a Hazard Category 2 nuclear facility, as set forth in the LANL Final Safety Analysis Report of October 1995, and a DOE letter of March 11, 1999. A revised safety basis is being prepared for the RLWTF, and will be submitted to the NNSA in early 2007. This set of calculations establishes maximum chemical quantities that will be used in the 2007 safety basis.

  16. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  17. EVALUATION OF WETTING AGENTS TO MITIGATE DUSTING WHEN TRANSFERRING DRY GLASS FORMER CHEMICALS

    SciTech Connect

    TIMOTHY, JONES

    2005-02-07

    Plant design support for the US Department of Energy (DOE) River Protection Project (RPP) - Waste Treatment Plant (WTP) required pilot scale testing of the High Level Waste (HLW) glass former chemical (GFC) delivery system. A pilot facility was assembled at the Clemson Environmental Technology Laboratory (CETL) under the direction of the Savannah River National Laboratory (SRNL). Tests were performed using a representative HLW GFC blend to determine the behavior of the dry chemicals when transported through a chute and discharged into the enclosed head space of an agitated tank. The use of chute purge air, injected upstream of the point where the GFCs were added to the chute, was investigated. The pilot scale testing showed purge air was effective in reducing GFC holdup in the chute and that when the GFCs were discharged into the tank head space, dusting was evident during all transport conditions. This dusting lead to additional bench scale and laboratory scale tests that showed the addition of wetting agents to HLW and Low Activity Waste (LAW) GFC blends effectively mitigated dusting at the bench and pilot scales.

  18. Saffron as an antidote or a protective agent against natural or chemical toxicities.

    PubMed

    Razavi, Bibi Marjan; Hosseinzadeh, Hossein

    2015-01-01

    Saffron (Crocus sativus) is an extensively used food additive for its color and taste. Since ancient times this plant has been introduced as a marvelous medicine throughout the world. The wide spectrum of saffron pharmacological activities is related to its major constituents including crocin, crocetin and safranal. Based on several studies, saffron and its active ingredients have been used as an antioxidant, antiinflammatory and antinociceptive, antidepressant, antitussive, anticonvulsant, memory enhancer, hypotensive and anticancer. According to the literatures, saffron has remarkable therapeutic effects. The protective effects of saffron and its main constituents in different tissues including brain, heart, liver, kidney and lung have been reported against some toxic materials either natural or chemical toxins in animal studies.In this review article, we have summarized different in vitro and animal studies in scientific databases which investigate the antidotal and protective effects of saffron and its major components against natural toxins and chemical-induced toxicities. Due to the lake of human studies, further investigations are required to ascertain the efficacy of saffron as an antidote or a protective agent in human intoxication.

  19. [Hygienic standards of the occupational air quality established by the Experts on Chemical Agents, 2002].

    PubMed

    Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir

    2004-01-01

    In 2002, it was necessary to harmonize Polish law on admissible limits of occupational exposure with EU requirements. To this end, the Expert Group on Chemical Agents proposed maximum admissible concentration values for 29 chemicals: acrylaldehyde (107-02-8); cresols, mix of isomers (95-48-7), 108-39-4, 106-44-5, 1319-77-3); tetraphosphorus decaoxide (1314-56-3); ethylamine (75-04-7); naphtalene (91-20-3); nitrobenzene (98-95-3); nitrogen oxide (110-54-5); nitrogen dioxide (10102-44-0); pyridine (110-86-1); butan-2-one (78-93-3); carbon oxide (630-08-0); 1,4-dichlorobenzene (106-46-7); 1,2-dichlorobenzene (95-50-1); hexane (110-54-5); aluminum hydroxide (21645-51-2); aluminum (fumes and dusts) (7429-90-5); amitrole (61-82-5); 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) (80-05-7); 3a,4,7,7a-terahydro-4,7-metanoindene (dicyclopentadiene) (77-73-6); trimethoxyphosphane (121-45-9); methyl chloroacetate (96-34-4); 4-methoxyphenol (150-76-5); methyl formate (107-31-3); 2-phenoxyethanol (122-99-6); divinylbenzene (1321-74-0); Diesel exhausts (-); hexane-6-lactam (dusts and fumes) (105-60-2); 2-isopropoxyethanol (109-59-1); and methyl 2-cyanoacrylate (137-05-3).

  20. A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, T.; Jacobi, H.-W.; Kahan, T. F.; Thomas, J. L.; Thomson, E. S.; Abbatt, J. P. D.; Ammann, M.; Blackford, J. R.; Bluhm, H.; Boxe, C.; Domine, F.; Frey, M. M.; Gladich, I.; Guzmán, M. I.; Heger, D.; Huthwelker, Th.; Klán, P.; Kuhs, W. F.; Kuo, M. H.; Maus, S.; Moussa, S. G.; McNeill, V. F.; Newberg, J. T.; Pettersson, J. B. C.; Roeselová, M.; Sodeau, J. R.

    2014-02-01

    Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air-ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental

  1. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review.

    PubMed

    Upadhyayula, Venkata K K

    2012-02-17

    There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously.

  2. Influence of chemical liquids on the fatigue crack growth of the AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Zhang-Zhong; He, Xian-Cong; Bai, Yun-Qiang; Ba, Zhi-Xin; Dai, Yu-Ming; Zhou, Heng-Zhi

    2012-03-01

    The fatigue crack growth behavior of an AZ31 magnesium alloy was investigated by comparing the effect of zirconate and phosphate chemical liquids. The morphology, components, and phase compositions of the chemical depositions at the fatigue crack tip were analyzed by employing scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), respectively. For samples with and without the chemical liquids, their stress-intensity factor values at the fatigue crack tip were compared by using a stress-strain gauge. The results demonstrated that a zirconate film (Zr x O y ·Zn x O y ) and a phosphate film (Zn3(PO4)2·4H2O and MgZnP2O7) could be formed on the fatigue crack-surface at the fatigue crack tip. The stress distribution was changed because of the chemical depositions and the causticity of the chemical liquids. This could decrease the stress-intensity factor value and thus effectively cause fatigue crack closure, which reduces the fatigue crack growth rate. Moreover, it was found that the fatigue crack closure effect of zirconates was more positive than that of phosphates.

  3. Project swiftsure final report: Destruction of chemical agent waste at Defence Research Establishment Suffield. Suffield special publication No. 170

    SciTech Connect

    McAndless, J.M.

    1995-12-31

    Swiftsure was a project to destroy old chemical warfare agent waste at the Defence Research Establishment Suffield Experimental Proving Ground. This report begins with an overview of the project and the consultation process, and describes the project planning and development process, the methods used to destroy the nerve agents, the contracting of a waste incinerator, the environmental protection plan, incinerator installation and testing, waste preparation and incineration operations, final waste product disposal and the environmental monitoring program. Appendices include details on the properties of the agents destroyed, sampling and analysis methods, and air quality monitoring specifications.

  4. Chemical comparisons of liquid fuel produced by thermochemical liquefaction of various biomass materials

    SciTech Connect

    Russell, J.A.; Molton, P.M.; Landsman, S.D.

    1980-12-01

    Liquefaction of biomass in aqueous alkali at temperatures up to 350/sup 0/C is an effective way to convert solid wastes into liquid fuels. The liqefaction oils of several forms of biomass differing in proportions of cellulose, hemi-cellulose, lignin, protein, and minerals were studied and their chemical composition compared. It was that the proportions of chemical components varied considerably depending on the type of biomass liquefied. However, all the oils, even those produced from cellulose, had similar chemical characteristics due to the presence of significant quantities of phenols. These phenols are at least partially responsible for the corrosivity and viscosity commonly associated with biomass oils. The differences in chemical component distribution in the various biomass oils might successfully be exploited if the oil is to be used as a chemical feedstock. If the oil is to be used as a fuel, however, then reaction conditions will be a more important consideration than the source of biomass.

  5. Modeling the effects of oxidizer, complexing agent and inhibitor on material removal for copper chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Wang, Yongguang; Zhao, Yongwu

    2007-12-01

    The paper presents a novel mathematical model that systematically describes the role of oxidizer, complexing agent and inhibitor on the material removal in chemical mechanical polishing (CMP) of copper. The physical basis of the model is the steady-state oxidation reaction and etched removal in additional to mechanical removal. It is shown that the complexing agent concentration-removal relation follows a trend similar to that observed from the effects of oxidizer on Cu removal in CMP. In addition, the removal rate and the coupled effects of the chemical additives are determined from a close-form equation, making use of the concepts of chemical-mechanical equilibrium and chemical kinetics. The model prediction trends show qualitatively good agreement with the published experimental data. The governing equation of copper removal reveals some insights into the polishing process in addition to its underlying theoretical foundation.

  6. Direct Measurement and Chemical Speciation of Top Ring Zone Liquid During Engine Operation

    SciTech Connect

    Splitter, Derek A; Burrows, Barry Clay; Lewis Sr, Samuel Arthur

    2015-01-01

    The present manuscript consists of proof of concept experiments involving direct measurements and detailed chemical speciation from the top ring zone of a running engine. The work uses a naturally aspirated single cylinder utility engine that has been modified to allow direct liquid sample acquisition from behind the top ring. Samples were analyzed and spectated using gas chromatographic techniques. Results show that the liquid mixture in the top ring zone is neither neat lubricant nor fuel but a combination of the two with unique chemical properties. At the tested steady state no-load operating condition, the chemical species of the top ring zone liquid were found to be highly dependent on boiling point, where both low reactivity higher boiling point fuel species and lubricant are observed to be the dominant constituents. The results show that at least for the tested condition, approximately 25% of the top ring zone is comprised of gasoline fuel like molecules, which are dominated by high octane number aromatic species, while the remainder of the liquid is comprised of lubricant like species.

  7. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection.

    PubMed

    Dorandeu, F; Taysse, L; Boudry, I; Foquin, A; Hérodin, F; Mathieu, J; Daulon, S; Cruz, C; Lallement, G

    2011-06-01

    Exposure to lethal chemical warfare agents (CWAs) is no longer only a military issue due to the terrorist threat. Among the CWAs of concern are the organophosphorus nerve agent O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX) and the vesicant sulfur mustard (SM). Although efficient means of decontamination are available, most of them lose their efficacy when decontamination is delayed after exposure of the bare skin. Alternatively, CWA skin penetration can be prevented by topical skin protectants. Active research in skin protection and decontamination is thus paramount. In vivo screening of decontaminants or skin protectants is usually time consuming and may be expensive depending on the animal species used. We were thus looking for a suitable, scientifically sound and cost-effective model, which is easy to handle. The euthymic hairless mouse Crl: SKH-1 (hr/hr) BR is widely used in some skin studies and has previously been described to be suitable for some experiments involving SM or SM analogs. To evaluate the response of this species, we studied the consequences of exposing male anaesthetized SKH-1 mice to either liquid VX or to SM, the latter being used in liquid form or as saturated vapours. Long-term effects of SM burn were also evaluated. The model was then used in the companion paper (Taysse et al.(1)).

  8. Biomedical effects of chemical-threat-agent antidote and pretreatment drugs. An abstracted bibliography. Volume 1. Interim report

    SciTech Connect

    Lentz, J.M.; Reams, G.G.; DeJohn, C.A.

    1986-04-01

    The bibliographic abstracts in this report are part of a project to assess biomedical effects of chemical-warfare antidote agents and related pre-treatment drugs. Specific attention is focused on the biomedical effects in the following general areas: vision, auditory, spatial orientation, musculoskeletal, cardipulmonary, cognitive performance, pharmacology, cutaneous stimuli, and cortical effects. In some cases, the bibliography addresses other therapeutic drugs that may be used simultaneously with chemical-warfare antidotes.

  9. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents.

    PubMed

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-10-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted.

  10. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    EPA Science Inventory

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  11. REPORT ON THE HOMELAND SECURITY WORKSHOP ON TRANSPORT AND DISPOSAL OF WASTES FROM FACILITIES CONTAMINATED WITH CHEMICAL AND BIOLOGICAL AGENTS

    EPA Science Inventory

    This report summarizes discussions from the "Homeland Security Workshop on Transport and Disposal of Wastes From Facilities Contaminated With Chemical or Biological Agents." The workshop was held on May 28-30, 2003, in Cincinnati, Ohio, and its objectives were to:

    .Documen...

  12. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    SciTech Connect

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  13. Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques.

    PubMed

    Pearman, William F; Fountain, Augustus W

    2006-04-01

    Initial results demonstrating the ability to classify surface-enhanced Raman (SERS) spectra of chemical and biological warfare agent simulants are presented. The spectra of two endospores (B. subtilis and B. atrophaeus), two chemical agent simulants (dimethyl methylphosphonate (DMMP) and diethyl methylphosphonate (DEMP)), and two toxin simulants (ovalbumin and horseradish peroxidase) were studied on multiple substrates fabricated from colloidal gold adsorbed onto a silanized quartz surface. The use of principal component analysis (PCA) and hierarchical clustering were used to evaluate the efficacy of identifying potential threat agents from their spectra collected on a single substrate. The use of partial least squares-discriminate analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA) on a compilation of data from separate substrates, fabricated under identical conditions, demonstrates both the feasibility and the limitations of this technique for the identification of known but previously unclassified spectra.

  14. Used tire recycling to produce granulates: evaluation of occupational exposure to chemical agents.

    PubMed

    Savary, Barbara; Vincent, Raymond

    2011-10-01

    Exposure was assessed in four facilities where used tires are turned into rubber granulates. Particulate exposure levels were measured using filter samples and gravimetric analysis. In parallel, volatile organic compounds (VOCs) screening was carried out using samples taken on activated carbon supports, followed by an analysis using a gas chromatograph coupled to a spectrometric detector. The exposure level medians are between 0.58 and 3.95 mg m(-3). Clogging of the textile fiber separation systems can lead to worker exposure; in this case, the measured concentrations can reach 41 mg m(-3). However, in contrast to the data in the literature, VOC levels >1 p.p.m. were not detected. The particulate mixtures deposited on the installation surfaces are complex; some of the chemical agents are toxic to humans. The results of this study indicate significant exposure to complex mixtures of rubber dust. Optimizing exhaust ventilation systems inside the shredders, with a cyclone for example, is essential for reducing the exposure of workers in this rapidly developing sector.

  15. Abnormal Development of Tapetum and Microspores Induced by Chemical Hybridization Agent SQ-1 in Wheat

    PubMed Central

    Wang, Shuping; Zhang, Gaisheng; Song, Qilu; Zhang, Yingxin; Li, Zheng; Guo, Jialin; Niu, Na; Ma, Shoucai; Wang, Junwei

    2015-01-01

    Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility. PMID:25803723

  16. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat.

    PubMed

    Wang, Shuping; Zhang, Gaisheng; Song, Qilu; Zhang, Yingxin; Li, Zheng; Guo, Jialin; Niu, Na; Ma, Shoucai; Wang, Junwei

    2015-01-01

    Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.

  17. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    SciTech Connect

    Herrmann, H.W.; Henins, I.; Park, J.; Selwyn, G.S.

    1999-05-01

    The atmospheric pressure plasma jet (APPJ) [A. Sch{umlt u}tze {ital et al.}, IEEE Trans. Plasma Sci. {bold 26}, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O{sub 2}/H{sub 2}O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O{sub 2}{sup {asterisk}}, He{sup {asterisk}}) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products. {copyright} {ital 1999 American Institute of Physics.}

  18. Structural, energetic and electrical properties of boron nitride nanotubes interacting with DMMP chemical agent

    NASA Astrophysics Data System (ADS)

    Ganji, M. Darvish; Gholian, M.; Mohammadzadeh, S.

    2014-09-01

    The adsorption of DMMP as an intoxicating chemical warfare agent onto the boron nitride nanotube has been investigated by using density functional theory calculations. Several active sites were considered for both interacting systems and full structural optimization was performed to accurately find the energetically favorable state. It is found that DMMP molecule prefers to be adsorbed strongly on the top site above the B atom of a (5, 0) BNNT with a binding energy of about -103.24 kJ mol-1 and an O-B binding distance of 1.641 Å. We have performed a comparative investigation of BNNTs with different diameters and the results indicate that the DMMP adsorption ability for the side wall of the tubes significantly decreases for higher diameters BNNTs. Furthermore, the adsorption properties of DMMP molecule onto the BNNT have been investigated using the ab initio MD simulation at room temperature. Our result showed that BNNTs facilitates the DMMP detection at ambient conditions for practical applications.

  19. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    PubMed

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples.

  20. Screening level fish community risk assessment of chemical warfare agents in the Baltic Sea.

    PubMed

    Sanderson, Hans; Fauser, Patrik; Thomsen, Marianne; Sørensen, Peter B

    2008-06-15

    Chemical warfare agents (CWAs) have been disposed of in various fashions over the past decades. Significant amounts (approximately 11,000 tonnes) have been dumped in the Baltic Sea east of the island Bornholm following the disarmament of Germany after World War II, causing concerns over potential environmental risks. Absence of risk based on assumptions of extremely low solubility of CWAs cannot alone dismiss these concerns. Existing and modelled fate and effects data were used in the analysis to assess the fish community risk level. The most realistic and also conservative assessment result is the scenario describing 70 m water depth for the most realistic dump-site area with a focus on chronic toxicity, at 0-20 cm above the sediment, yielding a total mixture toxic unit (TU) of 0.62. Triphenylarsine is the CWA with the highest realistic risk profile at 0.2 TU for the fish community followed by Adamsite (0.17), Clark I (0.086) and Yperite (0.083) TU. Adamsite is more persistent and constitutes a potential risk for a longer period than triphenylarsine. The seawater volume potentially at risk is <4 m above sediment and <58 km down current of dump sites. Further risk assessment of dumped CWAs in the Baltic Sea is warranted.

  1. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    PubMed

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples. PMID:26814366

  2. Review of the U.S. Army's health risk assessments for oral exposure to six chemical-warfare agents. Introduction.

    PubMed

    2000-03-01

    The U.S. Army is under a congressional mandate and the Chemical Weapons Convention of January 1993 to destroy its entire stockpile of chemical munitions. In addition to stockpiled munitions, nonstockpile chemical materiel (NSCM) has been identified for destruction. NSCM includes a host of lethal wastes from past disposal efforts, unserviceable munitions, chemically contaminated containers, chemical-production facilities, newly located chemical munitions, known sites containing substantial quantities of buried chemical weapons and wastes, and binary weapons and components. There are eight stockpile sites located in the continental United States and one on an island in the Pacific Ocean, and 82 NSCM locations have been identified. There are concerns, based on storage and past disposal practices, about soil and groundwater contamination at those sites. Six of the most commonly found chemical-warfare agents at stockpile and NSCM sites are the nerve agents GA, GB, GD, and VX and the vesicating (blistering) agents sulfur mustard and lewisite. To ensure that chemical contamination is reduced to safe concentrations at stockpile and NSCM sites before they are used for residential, occupational, or wildlife purposes, the U.S. Army requested that health-based exposure limits for GA, GB, GD, VX, sulfur mustard, and lewisite be developed to protect the public and the environment. Oak Ridge National Laboratory (ORNL) was asked to conduct the health risk assessments and propose chronic oral reference doses (RfDs) and, where appropriate, oral slope factors (SFs) for the six agents. RfDs are toxicological values developed for noncancer effects and used as reference points to limit human oral exposure to potentially hazardous concentrations of chemicals thought to have thresholds for their effects. RfDs are estimates (with uncertainty spanning an order of magnitude or greater) of daily oral chemical exposures that are unlikely to have deleterious effects during a human lifetime. For

  3. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    PubMed

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation. PMID:18093731

  4. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    PubMed

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  5. Simultaneous determination of four anti-dandruff agents including octopirox in shampoo products by reversed-phase liquid chromatography.

    PubMed

    Chao, L

    2001-06-01

    A method based on reversed-phase liquid chromatography (HPLC) has been developed for the simultaneous identification and quantitative determination of four anti-dandruff agents such as salicylic acid, ketoconazole, climbazole, octopirox in commercial anti-dandruff shampoo products. A symmetry C18 column (5 microm, 250 mm x 4.6 mm i.d.) was used at temperature of 35 degrees C, mobile phase with flow rate of 0.8 mL min(-1) was acetonitrile: water (containing 10 mm potassium dihydrogen phosphate, pH 4.0, adjusted with orthophosphoric acid) = 60 : 40 (V/V) and UV detection at 224 nm and 305 nm. Samples were extracted with mobile phase by stirring and ultrasonic method. The average recoveries of four anti-dandruff agents were 98.0-104.1%. The relative standard deviations for samples were 0.11-0.90%. The method is simple, rapid and reproducible. PMID:18498472

  6. Technical support for recovery phase decision-making in the event of a chemical warfare agent release

    SciTech Connect

    Watson, A.; Kistner, S.; Halbrook, R.

    1995-12-31

    In late 1985, Congress mandated that the U.S. stockpile of lethal unitary chemical agents and munitions be destroyed by the Department of the Army in a manner that provides maximum protection to the environment, the general public and personnel involved in the disposal program (Public Law 99-1, Section 1412, Title 14, Part b). These unitary munitions were last manufactured in the late 1960`s. The stockpiled inventory is estimated to approximate 25,000-30,000 tons, an includes organophosphate ({open_quotes}nerves{close_quotes}) agents such as VX [O-ethylester of S-(diisopropyl aminoethyl) methyl phosphonothiolate, C{sub 11}H{sub 26}NO{sub 2}PS] and vesicant ({open_quotes}blister{close_quotes}) agents such as Hd [sulfur mustard; bis (2-chloroethyl sulfide), C{sub 4}H{sub 8}Cl{sub 2}S]. The method of agent destruction selected by the Department of the Army is combined high-temperature and high-residence time incineration at secured military installations where munitions are currently stockpiled. This program supports the research program to address: the biomonitoring of nerve agent exposure; agent detection limits in foods and milk; and permeation of agents through porous construction materials.

  7. Triggering the Chemical Instability of an Ionic Liquid under High Pressure.

    PubMed

    Faria, Luiz F O; Nobrega, Marcelo M; Temperini, Marcia L A; Bini, Roberto; Ribeiro, Mauro C C

    2016-09-01

    Ionic liquids are an interesting class of materials due to their distinguished properties, allowing their use in an impressive range of applications, from catalysis to hypergolic fuels. However, the reactivity triggered by the application of high pressure can give rise to a new class of materials, which is not achieved under normal conditions. Here, we report on the high-pressure chemical instability of the ionic liquid 1-allyl-3-methylimidazolium dicyanamide, [allylC1im][N(CN)2], probed by both Raman and IR techniques and supported by quantum chemical calculations. Our results show a reaction occurring above 8 GPa, involving the terminal double bond of the allyl group, giving rise to an oligomeric product. The results presented herein contribute to our understanding of the stability of ionic liquids, which is of paramount interest for engineering applications. Moreover, gaining insight into this peculiar kind of reactivity could lead to the development of new or alternative synthetic routes to achieve, for example, poly(ionic liquids).

  8. Triggering the Chemical Instability of an Ionic Liquid under High Pressure.

    PubMed

    Faria, Luiz F O; Nobrega, Marcelo M; Temperini, Marcia L A; Bini, Roberto; Ribeiro, Mauro C C

    2016-09-01

    Ionic liquids are an interesting class of materials due to their distinguished properties, allowing their use in an impressive range of applications, from catalysis to hypergolic fuels. However, the reactivity triggered by the application of high pressure can give rise to a new class of materials, which is not achieved under normal conditions. Here, we report on the high-pressure chemical instability of the ionic liquid 1-allyl-3-methylimidazolium dicyanamide, [allylC1im][N(CN)2], probed by both Raman and IR techniques and supported by quantum chemical calculations. Our results show a reaction occurring above 8 GPa, involving the terminal double bond of the allyl group, giving rise to an oligomeric product. The results presented herein contribute to our understanding of the stability of ionic liquids, which is of paramount interest for engineering applications. Moreover, gaining insight into this peculiar kind of reactivity could lead to the development of new or alternative synthetic routes to achieve, for example, poly(ionic liquids). PMID:27470147

  9. Chemical Reactivity and Liquid/Nonliquid States of Secondary Organic Material.

    PubMed

    Li, Yong Jie; Liu, Pengfei; Gong, Zhaoheng; Wang, Yan; Bateman, Adam P; Bergoend, Clara; Bertram, Allan K; Martin, Scot T

    2015-11-17

    The reactivity of secondary organic material (SOM) of variable viscosity, ranging from nonliquid to liquid physical states, was studied. The SOM, produced in aerosol form from terpenoid and aromatic precursor species, was reacted with ammonia at variable relative humidity (RH). The ammonium-to-organic mass ratio (MNH4+/MOrg) increased monotonically from <5% RH to a limiting value at a threshold RH, implicating a transition from particle reactivity limited by diffusion at low RH to one limited by other factors at higher RH. For the studied size distributions and reaction times, the transition corresponded to a diffusivity above 10-17.5 ± 0.5 m2 s-1. The threshold RH values for the transition were <5% RH for isoprene-derived SOM, 35-45% RH for SOM derived from α-pinene, toluene, m-xylene, and 1,3,5-trimethylbenzene, and >90% for β-caryophyllene-derived SOM. The transition RH for reactivity differed in all cases from the transition RH of a nonliquid to a liquid state. For instance, for α-pinene-derived SOM the transition for chemical reactivity of 35-45% RH can be compared to the nonliquid to liquid transition of 65-90% RH. These differences imply that chemical transport models of atmospheric chemistry should not use the SOM liquid to nonliquid phase transition as one-to-one surrogates of SOM reactivity. PMID:26465059

  10. The antimicrobial potential of ionic liquids: A source of chemical diversity for infection and biofilm control.

    PubMed

    Pendleton, Jack Norman; Gilmore, Brendan F

    2015-08-01

    Although described almost a century ago, interest in ionic liquids has flourished in the last two decades, with significant advances in the understanding of their chemical, physical and biological property sets driving their widespread application across multiple and diverse research areas. Significant progress has been made through the contributions of numerous research groups detailing novel libraries of ionic liquids, often 'task-specific' designer solvents for application in areas as diverse as separation technology, catalysis and bioremediation. Basic antimicrobial screening has often been included as a surrogate indication of the environmental impact of these compounds widely regarded as 'green' solvents. Obviating the biological properties, specifically toxicity, of these compounds has obstructed their potential application as sophisticated designer biocides. A recent tangent in ionic liquids research now aims to harness tuneable biological properties of these compounds in the design of novel potent antimicrobials, recognising their unparalleled flexibility for chemical diversity in a severely depleted antimicrobial arsenal. This review concentrates primarily on the antimicrobial potential of ionic liquids and aims to consolidate contemporary microbiological background information, assessment protocols and future considerations necessary to advance the field in light of the urgent need for antimicrobial innovation.

  11. Guidelines for chemical warfare agents in military field drinking water. Final report

    SciTech Connect

    1995-10-01

    CW agents are generally designed to be used on opposing military forces to produce death or incapacitation. When they are used in military attacks, they are potential contaminants of field drinking-water supplies. CW agents that could appear in military field water and that are of particular concern to the Army are 3-quinuclidinyl benzilate (BZ), organophosphorus nerve agents (GA, GB, GD, and VX), sulfur mustard agents (HD, THD, and HT), T-2 toxin (a fungal metabolite), lewisite (an arsenical vesicant), and cyanide. The Army requested that the National Research Council (NRC) review the toxicity of selected CW agents and assess the adequacy of its proposed field drinking-water standards. The report presents the subcommittee`s evaluations of the Army`s proposed standards. The report also presents the subcommittee`s recommendations for preventing adverse health effects in military personnel exposed to CW agents in field drinking water and for improving the toxicity data base for these CW agents.

  12. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    PubMed

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.

  13. Impact of chemical manipulation of tarsal liquids on attachment in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Geiselhardt, Stefanie F; Federle, Walter; Prüm, Bettina; Geiselhardt, Sven; Lamm, Stefan; Peschke, Klaus

    2010-04-01

    Insect tarsal attachment forces are thought to be influenced by the viscosity and surface tension of a thin film of adhesive liquid (wet adhesion). In beetles, this fluid has been shown to be composed mainly of lipophilic substances that are similar to the cuticular lipids. In this study we investigate whether and how the chemical composition of footprint lipids affects attachment forces in the Colorado potato beetle, Leptinotarsa decemlineata. After application of standardised mixtures of synthetic n-alkanes or alkenes, or a concentrated hydrocarbon extract to the surface of the elytra, we tested the beetles' attachment performance using a beam force transducer. The results show that only the unsaturated components, but not the straight-chained alkanes reduced friction forces, confirming that attachment performance is influenced by the chemical composition of the adhesive secretion. We estimated the volume of footprint droplets and calculated a mean thickness of the liquid layer of 0.04 microm. The measured friction exceeded the viscous and capillary force expected for a film of this thickness. Therefore, alternative mechanisms (i.e. shear-thinning and solid-like behaviour) for the generation of attachment forces and their dependence on the chemical composition of the liquid are discussed.

  14. An Electrochemical Investigation of the Chemical Diffusivity in Liquid Metal Alloys

    NASA Astrophysics Data System (ADS)

    Barriga, Salvador A.

    The liquid metal battery has been shown to be a viable candidate for grid-scale energy storage, due to its fast kinetics and ability to be constructed from economically feasible materials. Various of the liquid metal couples that form high stable voltages, such as the calcium chemistries, are rate limited because they tend to form solid intermetallic compounds with high melting points. In order to understand and better engineer these batteries, the kinetic properties of these liquid alloys, in particular the chemical diffusivity, must be known accurately so that it can be used as input in computational simulations to avoid the nucleation of any solids. Unfortunately, the dominant experimental methods for measuring diffusion in liquid metals today are unreliable because the measurement timescales are on the order of days, require long capillaries susceptible to buoyancy-driven flow from temperature fluctuations, and composition analysis must be done ex-situ as a solid. To counter all these problems, a new and novel method for measuring the chemical diffusivity of metals in liquid alloys derived from electrochemical principles is presented in this thesis. This new method has the advantage of operating in shorter times scales of minutes rather than days, and requires the use of small capillaries which collectively minimize the effect of convectively-driven flow caused from temperature gradients. This new method was derived by solving the same boundary conditions required by the galvanostatic intermittent titration technique for solid-state electrodes. To verify the validity of the new theoretical derivation, the method was used to measure the chemical diffusivity of calcium in liquid bismuth within the temperature range of 550 - 700 °C using a three-electrode setup with a ternary molten salt electrolyte. Three compositions where studied (5% Ca-Bi, 10% Ca-Bi, and 15% Ca-Bi) for comparison. The chemical diffusion coefficient was found to range between (6.77 +/- 0.21)x

  15. Effect of the Titanium Nanoparticle on the Quantum Chemical Characterization of the Liquid Sodium Nanofluid.

    PubMed

    Suzuki, Ai; Bonnaud, Patrick; Williams, Mark C; Selvam, Parasuraman; Aoki, Nobutoshi; Miyano, Masayuki; Miyamoto, Akira; Saito, Jun-ichi; Ara, Kuniaki

    2016-04-14

    Suspension state of a titanium nanoparticle in the liquid sodium was quantum chemically characterized by comparing physical characteristics, viz., electronic state, viscosity, and surface tension, with those of liquid sodium. The exterior titanium atoms on the topmost facet of the nanoparticle were found to constitute a stable Na-Ti layer, and the Brownian motion of a titanium nanoparticle could be seen in tandem with the surrounding sodium atoms. An electrochemical gradient due to the differences in electronegativity of both titanium and sodium causes electron flow from liquid sodium atoms to a titanium nanoparticle, Ti + Na → Ti(δ-) + Na(δ+), making the exothermic reaction possible. In other words, the titanium nanoparticle takes a role as electron-reservoir by withdrawing free electrons from sodium atoms and makes liquid sodium electropositive. The remaining electrons in the liquid sodium still make Na-Na bonds and become more stabilized. With increasing size of the titanium nanoparticle, the deeper electrostatic potential, the steeper electric field, and the larger Debye atmosphere are created in the electric double layer shell. Owing to electropositive sodium-to-sodium electrostatic repulsion between the external shells, naked titanium nanoparticles cannot approach each other, thus preventing the agglomeration. PMID:27008416

  16. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    SciTech Connect

    Wilmsmeyer, Amanda R.; Morris, John R.; Gordon, Wesley O.; Mantooth, Brent A.; Lalain, Teri A.; Davis, Erin Durke

    2014-01-15

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  17. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces.

    PubMed

    Wilmsmeyer, Amanda R; Gordon, Wesley O; Davis, Erin Durke; Mantooth, Brent A; Lalain, Teri A; Morris, John R

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  18. [Measurement of mutagenesis to study the effects of chemical agents]. Final report, August 1, 1993--July 31, 1994

    SciTech Connect

    Puck, T.T.

    1994-12-31

    This is the final report of a study conducted at the Eleanor Roosevelt Institute for Cancer Research, Inc. This study looked at mutagenesis as a measurement of the effects of chemical agents. Topics discussed in this report include: development of a new theory for the role of lipids and lipoproteins in the interactions of macromolecules; the action of caffeine in synergizing mutagenesis of agents like ionizing radiation by inhibition of cellular repair processes which was incorporated into a rapid procedure for detection of mutagenicity with high sensitivity; quantitative theoretical analysis of the mutagenesis process in cells exposed to physical and chemical mutagenic agents; theoretical analysis was developed leading to the conclusion that the visible chromosomal lesions described will also include a significant proportion of point mutations; application of this methodology for meaningful measurement of mutagenesis to study the effects of chemical agents was begun; and investigation of the cell cytoskeleton`s effect of genome exposure operating in the course of the differentiation process.

  19. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    NASA Astrophysics Data System (ADS)

    Wilmsmeyer, Amanda R.; Gordon, Wesley O.; Davis, Erin Durke; Mantooth, Brent A.; Lalain, Teri A.; Morris, John R.

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  20. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    SciTech Connect

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  1. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    SciTech Connect

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  2. Ultrafast magnetic-resonance-imaging velocimetry of liquid-liquid systems: overcoming chemical-shift artifacts using compressed sensing.

    PubMed

    Tayler, Alexander B; Benning, Martin; Sederman, Andrew J; Holland, Daniel J; Gladden, Lynn F

    2014-06-01

    We present simultaneous measurement of dispersed and continuous phase flow fields for liquid-liquid systems obtained using ultrafast magnetic resonance imaging. Chemical-shift artifacts, which are otherwise highly problematic for this type of measurement, are overcome using a compressed sensing based image reconstruction algorithm that accounts for off-resonant signal components. This scheme is combined with high-temporal-resolution spiral imaging (188 frames per second), which is noted for its robustness to flow. It is demonstrated that both quantitative signal intensity and phase preconditioning are preserved throughout the image reconstruction algorithm. Measurements are acquired of oil droplets of varying viscosity rising through stagnant water. From these data it is apparent that the internal droplet flow fields are heavily influenced by the droplet shape oscillations, and that the accurate modeling of droplet shape is of critical importance in the modeling of droplet-side hydrodynamics. The application of the technique to three-component systems is also demonstrated, as is the measurement of local concentration maps of a mutually soluble species (acetone in polydimethylsiloxane-water). PMID:25019881

  3. Ultrafast magnetic-resonance-imaging velocimetry of liquid-liquid systems: overcoming chemical-shift artifacts using compressed sensing.

    PubMed

    Tayler, Alexander B; Benning, Martin; Sederman, Andrew J; Holland, Daniel J; Gladden, Lynn F

    2014-06-01

    We present simultaneous measurement of dispersed and continuous phase flow fields for liquid-liquid systems obtained using ultrafast magnetic resonance imaging. Chemical-shift artifacts, which are otherwise highly problematic for this type of measurement, are overcome using a compressed sensing based image reconstruction algorithm that accounts for off-resonant signal components. This scheme is combined with high-temporal-resolution spiral imaging (188 frames per second), which is noted for its robustness to flow. It is demonstrated that both quantitative signal intensity and phase preconditioning are preserved throughout the image reconstruction algorithm. Measurements are acquired of oil droplets of varying viscosity rising through stagnant water. From these data it is apparent that the internal droplet flow fields are heavily influenced by the droplet shape oscillations, and that the accurate modeling of droplet shape is of critical importance in the modeling of droplet-side hydrodynamics. The application of the technique to three-component systems is also demonstrated, as is the measurement of local concentration maps of a mutually soluble species (acetone in polydimethylsiloxane-water).

  4. A Chemically Modified Tetracycline (CMT-3) Is a New Antifungal Agent

    PubMed Central

    Liu, Yu; Ryan, Maria E.; Lee, Hsi-Ming; Simon, Sanford; Tortora, George; Lauzon, Carol; Leung, Michael K.; Golub, Lorne M.

    2002-01-01

    Several chemically modified tetracycline analogs (CMTs), which were chemically modified to eliminate their antibacterial efficacy, were unexpectedly found to have antifungal properties. Of 10 CMTs screened in vitro, all exhibited antifungal activities, although their efficacies varied. Among these compounds, CMT-315, -3, and -308 were found to be the most potent as antifungal agents. The MICs of CMT-3 against 47 strains of fungi in vitro were determined by using amphotericin B (AMB) and doxycycline as positive and negative controls, respectively. The MICs of CMT-3 were generally found to be between 0.25 and 8.00 μg/ml, a range that approximates the blood levels of this drug when administrated orally to humans. Of all the yeast species tested to date, Candida albicans showed the greatest sensitivity to CMT-3. The filamentous species most susceptible to CMT-3 were found to be Epidermophyton floccosum, Microsporum gypseum, Pseudallescheria boydii, a Penicillium sp., Scedosporium apiospermum, a Tricothecium sp., and Trichophyton rubrum. Growth inhibition of C. albicans by CMT-3, determined by a turbidity assay, indicated a 50% inhibitory concentration of 1 μg/ml. Thirty-nine strains, including 20 yeasts and 19 molds, were used to measure viability (the ability to grow after treatment with a drug) inhibition by CMT-3 and AMB. CMT-3 exhibited fungicidal activity against most of these fungi, especially the filamentous fungi. Eighty-four percent (16 of 19) of the filamentous fungi tested showed more than 90% inhibition of viability by CMT-3. In contrast, AMB showed fungicidal activity against all yeasts tested. However, most of the filamentous fungi (16 of 19) showed less than 50% inhibition of viability by AMB, indicating that AMB is fungistatic against most of these filamentous fungi. To begin to identify the sites in fungal cells affected by CMT-3, C. albicans and a Penicillium sp. were incubated with the compound at 35°C, and then the fluorescence of CMT-3 was

  5. Effect of complexing agent on transport of lanthanoid elements across versatic acid liquid membrane

    SciTech Connect

    Nakamura, Shigeto; Ohashi, Sinichi; Akiba, Kenichi )

    1992-06-01

    Transport of several trivalent lanthanoids (La, Nd, Sm, Eu, Tb, Tm, and Lu) was examined across a supported liquid membrane (SLM) containing Versatic 10 (VA10) in kerosene. Lanthanoids in the feed solution can be effectively transported and concentrated into the product solution. Separation factors obtained from the transport rates for lighter lanthanoids were larger than those for heavier lanthanoids, in agreement with the result on the distribution ratios in liquid-liquid extraction. The separation factors for heavier lanthanoids were enhanced by the addition of citrate to the feed solution. The transport rate was controlled by the extraction process from the feed solution to the SLM and the diffusion process of lanthanoid VA10 complexes in SLM.

  6. Static SIMS and MS2 Characterization of the Chemical Warfare Agent HD on Soil Particle Surfaces

    SciTech Connect

    Gresham, Garold Linn; Groenewold, Gary Steven; Appelhans, Anthony David; Olson, John Eric; Benson, Michael Timothy; Jeffery, M. T.; Rowland, B.; Weibe, M. A.

    2001-07-01

    Detection of the blister agent HD [bis(2-chloroethyl)sulfide] or distilled mustard directly on the surface of soil particles using ion trap secondary ion mass spectrometry in the static mode is demonstrated. HD by its very nature is adsorptive; this attribute makes detection of surface adsorbed HD by gas-phase approaches difficult, but renders the compound amenable to surface detection. Two different ion trap (IT) mass spectrometers, modified to perform secondary ionization mass spectrometry using a ReO4- primary ion beam, were employed in the present study. Sputtered ions were trapped in the gas phase in the IT, where they could be scanned out (MS1), or isolated and fragmented (MS2). The intact HD molecular ion was not observed, however an abundant ion corresponding to [HD - Cl]+ was formed, as were lower mass fragment ions, and ions derived from the chemical background. Ab initio calculations were used to propose structures of the fragment ions. At 0.5 monolayers surface coverage, [HD - Cl]+ and lower mass HD fragment ions were significantly more abundant than the background. At lower concentrations, however, the HD secondary ion signal became masked by the background. Sensitivity and selectivity were significantly improved in the MS2 mode of operation. MS2 of [HD - Cl]+ resulted in production of analytically diagnostic C2H4SH+ and other S- and Cl-bearing fragment ions. HD was detected at 0.07 monolayers using the MS2 approach, which corresponds to 108 ppm on a mass/mass basis.

  7. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs.

    PubMed

    Wang, Ying; Oguntayo, Samuel; Wei, Yanling; Wood, Elisa; Brown, Ammon; Jensen, Neil; Auta, James; Guiodotti, Alessandro; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2012-03-01

    The chemical warfare nerve agent, soman irreversibly inhibits acetylcholinesterase (AChE) leading to hypercholinergy and seizures which trigger glutamate toxicity and status epilepticus ultimately resulting in neuropathology and neurobehavioral deficits. The standard emergency treatment comprising of anticholinergic, AChE reactivator and anticonvulsant does not completely protect against soman toxicity. We have evaluated imidazenil, a new anticonvulsant imidazo benzodiazepine with high affinity and intrinsic efficacy at α5-, α2-, and α3- but low intrinsic efficacy at α1-containing GABA(A) receptors and is devoid of cardiorespiratory depression, sedative/hypnoitc and amnestic actions and does not elicit tolerance and dependence liabilities unlike diazepam, for protection against soman toxicity. Guinea pigs implanted with bipotential radiotelemetry probes for recording EEG and ECG were administered with 26 μg/kg pyridostigmine bromide 30 min prior to 2× LD(50) soman exposure and 1 min later treated with a combination of 2mg/kg atropine sulfate and 25mg/kg 2-pralidoxime and various doses of imidazenil. Intramuscular administration of imidazenil, dose-dependently protected against 2× LD(50) of soman toxicity up to 1mg/kg. Further increase in the dose of imidazenil to 2.5mg/kg was less effective than 1mg/kg probably due to non-specific actions at sites other than GABA(A) receptors. Compared to vehicle group, 1mg/kg imidazenil treatment showed optimal increase in survival rate, reduction in behavioral manifestations and high power of EEG spectrum as well as neuronal necrosis. These data suggest that imidazenil is an effective anticonvulsant for medical countermeasure against soman-induced toxicity.

  8. Chemical Agent Monitor (CAM) follow-on operational test and evaluation simulant test strategy. Final report, May 1988-April 1989

    SciTech Connect

    Seitzinger, A.T.; Grasso, P.S.; Guelta, M.A.

    1990-06-01

    This report was intended to provide technical guidance to the U.S. Army Armor and Engineering (A E) Board in the area of simulant use for the Chemical Agent Monitor (CAM) Follow-on Operational Test and Evaluation (FOT E). The Operational Science Branch (Op Sci Br) was requested to support the A E Board in their effort to design an FOT E for the CAM using methyl salicylate (MS) as the H mode (mustard agent) simulant. Personnel from Op Sci Br were asked to design contamination technology and monitoring methods to test the machine/man interface and use doctrine, and analyze how well data is collected and evaluated.

  9. Preliminary screening of alternative technologies to incineration for treatment of chemical-agent-contaminated soil, Rocky Mountain Arsenal

    SciTech Connect

    Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.; Wilkey, P.L.; Ballou, S.W.

    1995-12-01

    In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.

  10. Arteriovenous malformation in the brain: a theoretical study explaining the behavior of liquid embolic agents during endovascular treatment.

    PubMed

    Lv, Xianli; Wu, Zhongxue; Li, Youxiang

    2013-12-01

    There is no theoretical study on blood flow in brain arteriovenous malformation (AVM). We present a numerical theory on AVM and liquid embolic agent AVM embolization. Darcy's law was used to compute flow relations for brain AVMs. Maag's formula was used to explain the diffuse patterns of N-butyl-2-cyanoacrylate (NBCA) and ethylene-vinyl alcohol copolymer (EVOH) in brain AVMs. According to Darcy's law, the instantaneous blood flow rate through an AVM is directly proportional to the pressure drop between two places in the AVM and indirectly proportional to the distance between them. The greater the pressure gradient (through the AVM), the greater the discharge rate, and the discharge rate of blood will often differ through different AVM (or even through the same AVM, in a different direction) even if the same pressure gradient exists in both cases. Subsequent to Darcy's initial discovery, Maag found that the radius of NBCA or EVOH diffusion is inversely proportional to their viscosity. Darcy's Law and Maag's formula could be used to analyze flow patterns of brain AVM and liquid embolic agent behavior in AVM near ideal. PMID:24355185

  11. Determination of seven sunscreen agents and two ultraviolet stabilizers in skin care products using ultra-performance liquid chromatography.

    PubMed

    Gowell, Aimee; Habel, John; Weiss, Caryn; Parkanzky, Paul

    2015-01-01

    Ultraviolet radiation (UVR) is a well-known environmental carcinogen. Protection against UVR exposure has resulted in an increasing number of sunscreen agents being incorporated into a greater variety of cosmetic formulations including moisturizing lotions, color cosmetics, and skin care creams. Meanwhile, global regulation of sun care products is changing. New guidelines for sunscreen efficacy have resulted in a shift in product formulation that requires sunscreen products to provide broad spectrum UV protection. Since not all sunscreen ingredients protect against both UVA and UVB radiation, most sun care products require a combination of sunscreen agents. This article describes a new method for simultaneous separation and quantitation of seven organic sunscreens and two UV stabilizers using ultra-performance liquid chromatography. This method is capable of resolving all nine analytes, and has been validated for selectivity, precision, and accuracy. Because of the use of core-shell column technology, the separation is also achieved at back pressures compatible with conventional high-performance liquid chromatography instrumentation.

  12. Liquid Phase Chemical-Enhanced Oxidation for GaAs Operated Near Room Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Hwei-Heng; Huang, Chien-Jung; Wang, Yeong-Her; Houng, Mau-Phon

    1998-01-01

    A new chemical enhanced oxidation method for gallium arsenide (GaAs) in liquid phase near room temperature (40°C 70°C) is proposed and investigated. Featureless oxide layers with good uniformity and reliability can be grown efficiently on GaAs without any extra energy source. A relatively high oxidation rate (≃1000 Å/h), about 50 times higher than that obtained during oxidation in boiling water has been realized. Based on the results of X-ray photoelectron spectroscopy (XPS), excellent chemical stability after thermal annealing as well as good chemical stoichiometry have been realized. The oxide was determined to be composed of Ga2O3 and As2O3.

  13. [Preparation and in vitro embolic efficiency evaluation of hydroxycamptothecine-loaded liquid embolic agent].

    PubMed

    Qin, Ling-Zhen; Zhang, Xuan; Wu, Lin-Na; Zhang, Jin; Pan, Xin; Li, Ge; Wu, Chuan-Bin

    2014-07-01

    The purpose of this study is to investigate the preparation of hydroxycamptothecine (HCPT)-loaded cubic crystal liquid embolic precursor solution, and evaluate its in vitro embolic efficiency. Phytantriol was used as cubic crystal liquid embolic material, and the optimal formulation was selected according to ternary phase diagram. Polarized light microscopy, differential scanning calorimetry, and small angle X-ray scattering (SAXS) were used to characterize the cubic crystal structure. High performance liquid chromatography and X-ray diffraction analysis were used to investigate the lactone ring of HCPT. In vitro dissolution was preliminary evaluated, and the simulation embolic model was constructed to evaluate the embolic efficiency of precursor solution. Meanwhile, the gelation time and adhesion force were investigated. The results showed that HCPT-loaded precursor solution for embolization had been successfully prepared with low viscosity which was injectable. The precursor solution could transform into Pn3m structure liquid crystal phase gel rapidly when contracting with excess water. The formed HPCT gel remained its lactone form as the same in precursor solution, and expressed the good ability to block the saline flow, and HCPT could keep sustained releasing drug over 30 days. The prepared drug-loaded embolic precursor solution showed a promising potential for vascular embolization and application in clinical treatment of tumor. PMID:25233642

  14. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    DOEpatents

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  15. Fine chemical manipulations of microscopic liquid samples. 2. Consuming and nonconsuming schemes.

    PubMed

    Lu, H; Matsumoto, T; Gratzl, M

    1999-11-01

    Microscopic liquid particles can be manipulated chemically using a suitable diffusional microburet (DMB), whose tiny tip plugged with a diffusion membrane acts as a well-defined diffusional transfer channel. In part 1 of this work (Gratzl et al. Anal. Chem. 1999, 71, 2751-2756), we discussed the simplest DMB-based operation: addition, i.e., loading a droplet with a chemical that accumulates there without any chemical reaction occurring. Since in this process no consumption of the delivered molecules in the target droplet takes place, addition is a nonconsuming scheme. In this work, another type of nonconsuming scheme is explored, which is the subtraction of a substance from droplets via a DMB. This process has no analogy among macroscopic chemical operations. Both addition and subtraction occur according to an exponential asymptotic process when diffusion is at quasisteady state inside the DMB tip. These nonconsuming operations were characterized using the transport of microscopic quantities of Lucifer Yellow CH, a fluorescent dye, under a fluorescent microscope. The third basic type of chemical manipulation is when the substance delivered by a DMB is consumed in the target droplet instantaneously by a fast chemical reaction. This consuming scheme was studied by delivering EDTA into droplets containing Pb2+ ions and a color indicator. These microscopic titrations were monitored using gray scale transmittance images of the droplets as recorded versus time. A unified theory of the three basic DMB operations is also presented. PMID:10565280

  16. Chemical interaction processes at the interface between mild steel and liquid magnesium of technical grade

    SciTech Connect

    Viala, J.C.; Pierre, D.; Bosselet, F.; Peronnet, M.; Bouix, J.

    1999-04-23

    Under the constraints of reducing both motor-fuel consumption and air pollution, weight saving is becoming a major requirement in the automotive industry. A way presently under investigation to meet this requirement consists in replacing, whenever possible, the aluminum alloys commonly used for the manufacture of many cast pieces ({rho} = 2.7--2.9 g.cm{sup {minus}3}) by magnesium alloys of lower specific weight ({rho} = 1.7--1.9 g.cm{sup {minus}3}). In the liquid state, magnesium and its alloys are almost universally processed using iron or steel crucibles, pipes, pumps and molds. This is justified by the fact that no intermetallic compound exists in the Fe-Mg binary system and that the mutual solubilities between the two metals are very low: according to Massalski, the solubility at 1,000 K of Mg in solid Fe is negligible and that of Fe in liquid Mg is of about 0.04 wt.% (0.018 at.%). This excellent chemical compatibility may however be altered by the presence of impurities or addition elements in the two base metals and the authors have undertaken a general study to evaluate the nature and extent of the changes thus induced. The present work reports the results of a first approach aimed to investigate the chemical behavior of mild steel substrates when exposed for a long time to liquid magnesium of technical grade.

  17. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy.

    PubMed

    Hass, Roland; Munzke, Dorit; Ruiz, Salomé Vargas; Tippmann, Johannes; Reich, Oliver

    2015-04-01

    In turbid biogenic liquid material, like blood or milk, quantitative optical analysis is often strongly hindered by multiple light scattering resulting from cells, particles, or droplets. Here, optical attenuation is caused by losses due to absorption as well as scattering of light. Fiber-based Photon Density Wave (PDW) spectroscopy is a very promising method for the precise measurement of the optical properties of such materials. They are expressed as absorption and reduced scattering coefficients (μ a and μ s', respectively) and are linked to the chemical composition and physical properties of the sample. As a process analytical technology, PDW spectroscopy can sense chemical and/or physical processes within such turbid biogenic liquids, providing new scientific insight and process understanding. Here, for the first time, several bioprocesses are analyzed by PDW spectroscopy and the resulting optical coefficients are discussed with respect to established mechanistic models of the chosen processes. As model systems, enzymatic casein coagulation in milk, temperature-induced starch hydrolysis in beer mash, and oxy- as well as deoxygenation of human donor blood were investigated by PDW spectroscopy. The findings indicate that also for very complex biomaterials (i.e., not well-defined model materials like monodisperse polymer dispersions), obtained optical coefficients allow for the assessment of a structure/process relationship and thus for a new analytical access to biogenic liquid material. This is of special relevance as PDW spectroscopy data are obtained without any dilution or calibration, as often found in conventional spectroscopic approaches.

  18. Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode.

    PubMed

    D'Antuono, A; Dall'Orto, V C; Lo Balbo, A; Sobral, S; Rezzano, I

    2001-03-01

    Liquid chromatography with electrochemical detector (LC-ED), using a chemically modified electrode coated with a metalloporphyrin film, is reported for determination of bisphenol A (BPA) migration from polycarbonate baby bottles. The extraction process of the samples was performed according to regulations of the Southern Common Market (MERCOSUR), where certain food-simulating liquids [(A) distilled water, (B) acetic acid 3% V/V in distilled water, and (C) ethanol 15% V/V in distilled water] are defined along with controlled time and temperature conditions. The baseline obtained using the naked electrode showed a considerable drift which increased the detection limit. This effect was suppressed with the chemically modified electrode. A linear range up to 450 ppb along with a detection limit of 20 ppb for the amperometric detection technique was observed. The procedure described herein allowed lowering the detection limit of the method to 0.2 ppb. The value found for BPA in the food-simulating liquid is 1.2 ppb, which is below the tolerance limit for specific migration (4.8 ppm).

  19. The sources, fate, and toxicity of chemical warfare agent degradation products.

    PubMed Central

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  20. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    PubMed

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone. PMID:23688030

  1. Phase transition and chemical decomposition of liquid carbon dioxide and nitrogen mixture under extreme conditions

    NASA Astrophysics Data System (ADS)

    Xiao-Xu, Jiang; Guan-Yu, Chen; Yu-Tong, Li; Xin-Lu, Cheng; Cui-Ming, Tang

    2016-02-01

    Thermodynamic and chemical properties of liquid carbon dioxide and nitrogen (CO2-N2) mixture under the conditions of extremely high densities and temperatures are studied by using quantum molecular dynamic (QMD) simulations based on density functional theory including dispersion corrections (DFT-D). We present equilibrium properties of liquid mixture for 112 separate density and temperature points, by selecting densities ranging from ρ = 1.80 g/cm3 to 3.40 g/cm3 and temperatures from T = 500 K to 8000 K. In the range of our study, the liquid CO2-N2 mixture undergoes a continuous transition from molecular to atomic fluid state and liquid polymerization inferred from pair correlation functions (PCFs) and the distribution of various molecular components. The insulator-metal transition is demonstrated by means of the electronic density of states (DOS). Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217, 11135012, and 11375262) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11176020).

  2. Xanthan Gum-a lyotropic, liquid crystalline polymer and its properties as a suspending agent

    SciTech Connect

    Salamone, J.C.; Clough, S.B.; Jamison, D.E.; Reid, K.I.G.; Salamone, A.B.

    1982-08-01

    Studies a variety of xanthan solutions of various polymer concentrations in the presence and absence of various salts under a polarized light microscope (100X) in order to test xanthan gum for liquid crystalline order. Xanthan gum, a polysaccharide used in drilling fluids and in tertiary recovery, has relatively stable viscosity properties as a function of salt concentration, pH, temperature, and shear degradation. With solutions from 2 to 10% (wt/vol) xanthan gum in distilled water at room temperature, birefringent, ordered domains were observed at 10% concentration, with a decrease in birefringence as the polymer concentration decreased. When the xanthan solution is sheared between a glass slide and a cover slip, the optic axis (chain direction) aligns using the shear direction (as determined by the colors displayed using a first-order red plate). Examines liquid crystalline behavior of other naturally occurring polymers.

  3. An analysis of molecular packing and chemical association in liquid water using quasichemical theory.

    PubMed

    Paliwal, A; Asthagiri, D; Pratt, L R; Ashbaugh, H S; Paulaitis, M E

    2006-06-14

    We calculate the hydration free energy of liquid TIP3P water at 298 K and 1 bar using a quasi-chemical theory framework in which interactions between a distinguished water molecule and the surrounding water molecules are partitioned into chemical associations with proximal (inner-shell) waters and classical electrostatic-dispersion interactions with the remaining (outer-shell) waters. The calculated free energy is found to be independent of this partitioning, as expected, and in excellent agreement with values derived from the literature. An analysis of the spatial distribution of inner-shell water molecules as a function of the inner-shell volume reveals that water molecules are preferentially excluded from the interior of large volumes as the occupancy number decreases. The driving force for water exclusion is formulated in terms of a free energy for rearranging inner-shell water molecules under the influence of the field exerted by outer-shell waters in order to accommodate one water molecule at the center. The results indicate a balance between chemical association and molecular packing in liquid water that becomes increasingly important as the inner-shell volume grows in size. PMID:16784293

  4. Surface with two paint strips for detection and warning of chemical warfare and radiological agents

    SciTech Connect

    Farmer, Joseph C.

    2013-04-02

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  5. Atmospheric Pressure Chemical Vapor Deposition of Graphene Using a Liquid Benzene Precursor.

    PubMed

    Kang, Cheong; Jung, Da Hee; Lee, Jin Seok

    2015-11-01

    Graphene has attracted great attention owing to its unique structural and electrical properties. Among various synthetic approaches of the graphene, metal assisted chemical vapor deposition (CVD) is the most reasonable and proper method to produce large-scale and low-defect graphene films. Until now, CVD from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth, but high growth temperature is required for such growth. A recent work by using liquid benzene precursor has shown that monolayer graphene could be obtained at 300 degrees C by low pressure, required for high vacuum equipment. Here, we report the first successful attempt of atmospheric pressure CVD graphene growth on Cu foil using liquid benzene as a precursor. We investigated the effect of hydrogen partial pressure, growth time, and precursor temperature on the domain size of as-grown graphene. Also, micro-Raman analysis confirmed that these reaction parameters influenced the number of layer and uniformity of the graphene.

  6. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment

    PubMed Central

    2013-01-01

    Background Lignin is often overlooked in the valorization of lignocellulosic biomass, but lignin-based materials and chemicals represent potential value-added products for biorefineries that could significantly improve the economics of a biorefinery. Fluctuating crude oil prices and changing fuel specifications are some of the driving factors to develop new technologies that could be used to convert polymeric lignin into low molecular weight lignin and or monomeric aromatic feedstocks to assist in the displacement of the current products associated with the conversion of a whole barrel of oil. We present an approach to produce these chemicals based on the selective breakdown of lignin during ionic liquid pretreatment. Results The lignin breakdown products generated are found to be dependent on the starting biomass, and significant levels were generated on dissolution at 160°C for 6 hrs. Guaiacol was produced on dissolution of biomass and technical lignins. Vanillin was produced on dissolution of kraft lignin and eucalytpus. Syringol and allyl guaiacol were the major products observed on dissolution of switchgrass and pine, respectively, whereas syringol and allyl syringol were obtained by dissolution of eucalyptus. Furthermore, it was observed that different lignin-derived products could be generated by tuning the process conditions. Conclusions We have developed an ionic liquid based process that depolymerizes lignin and converts the low molecular weight lignin fractions into a variety of renewable chemicals from biomass. The generated chemicals (phenols, guaiacols, syringols, eugenol, catechols), their oxidized products (vanillin, vanillic acid, syringaldehyde) and their easily derivatized hydrocarbons (benzene, toluene, xylene, styrene, biphenyls and cyclohexane) already have relatively high market value as commodity and specialty chemicals, green building materials, nylons, and resins. PMID:23356589

  7. Nucleophilic Polymers and Gels in Hydrolytic Degradation of Chemical Warfare Agents.

    PubMed

    Bromberg, Lev; Creasy, William R; McGarvey, David J; Wilusz, Eugene; Hatton, T Alan

    2015-10-01

    Water- and solvent-soluble polymeric materials based on polyalkylamines modified with nucleophilic groups are introduced as catalysts of chemical warfare agent (CWA) hydrolysis. A comparative study conducted at constant pH and based on the criteria of the synthetic route simplicity, aqueous solubility, and rate of hydrolysis of CWA mimic, diisopropylfluorophosphate (DFP), indicated that 4-aminopyridine-substituted polyallylamine (PAAm-APy) and polyvinylamine substituted with 4-aminopyridine (PVAm-APy) were advantageous over 4-pyridinealdoxime-modified PVAm and PAAm, poly(butadiene-co-pyrrolidinopyridine), and PAAm modified with bipyridine and its complex with Cu(II). The synthesis of PVAm-APy and PAAm-APy involved generation of a betaine derivative of acrylamide and its covalent attachment onto the polyalkylamine chain followed by basic hydrolysis. Hydrogel particles of PAAm-APy and PVAm-APy cross-linked by epichlorohydrin exhibited pH-dependent swelling and ionization patterns that affected the rate constants of DFP nucleophilic hydrolysis. Deprotonation of the aminopyridine and amine groups increased the rates of the nucleophilic hydrolysis. The second-order rate of nucleophilic hydrolysis was 5.5- to 10-fold higher with the nucleophile-modified gels compared to those obtained by cross-linking of unmodified PAAm, throughout the pH range. Testing of VX and soman (GD) was conducted in 2.5-3.7 wt % PVAm-APy suspensions or gels swollen in water or DMSO/water mixtures. The half-lives of GD in aqueous PVAm-APy were 12 and 770 min at pH 8.5 and 5, respectively. Addition of VX into 3.5-3.7 wt % suspensions of PVAm-APy in DMSO-d6 and D2O at initial VX concentration of 0.2 vol % resulted in 100% VX degradation in less than 20 min. The unmodified PVAm and PAAm were 2 orders of magnitude less active than PVAm-APy and PAAm-APy, with VX half-lives in the range of 24 h. Furthermore, the PVAm-APy and PAAm-APy gels facilitated the dehydrochlorination reaction of sulfur mustard

  8. Nucleophilic Polymers and Gels in Hydrolytic Degradation of Chemical Warfare Agents.

    PubMed

    Bromberg, Lev; Creasy, William R; McGarvey, David J; Wilusz, Eugene; Hatton, T Alan

    2015-10-01

    Water- and solvent-soluble polymeric materials based on polyalkylamines modified with nucleophilic groups are introduced as catalysts of chemical warfare agent (CWA) hydrolysis. A comparative study conducted at constant pH and based on the criteria of the synthetic route simplicity, aqueous solubility, and rate of hydrolysis of CWA mimic, diisopropylfluorophosphate (DFP), indicated that 4-aminopyridine-substituted polyallylamine (PAAm-APy) and polyvinylamine substituted with 4-aminopyridine (PVAm-APy) were advantageous over 4-pyridinealdoxime-modified PVAm and PAAm, poly(butadiene-co-pyrrolidinopyridine), and PAAm modified with bipyridine and its complex with Cu(II). The synthesis of PVAm-APy and PAAm-APy involved generation of a betaine derivative of acrylamide and its covalent attachment onto the polyalkylamine chain followed by basic hydrolysis. Hydrogel particles of PAAm-APy and PVAm-APy cross-linked by epichlorohydrin exhibited pH-dependent swelling and ionization patterns that affected the rate constants of DFP nucleophilic hydrolysis. Deprotonation of the aminopyridine and amine groups increased the rates of the nucleophilic hydrolysis. The second-order rate of nucleophilic hydrolysis was 5.5- to 10-fold higher with the nucleophile-modified gels compared to those obtained by cross-linking of unmodified PAAm, throughout the pH range. Testing of VX and soman (GD) was conducted in 2.5-3.7 wt % PVAm-APy suspensions or gels swollen in water or DMSO/water mixtures. The half-lives of GD in aqueous PVAm-APy were 12 and 770 min at pH 8.5 and 5, respectively. Addition of VX into 3.5-3.7 wt % suspensions of PVAm-APy in DMSO-d6 and D2O at initial VX concentration of 0.2 vol % resulted in 100% VX degradation in less than 20 min. The unmodified PVAm and PAAm were 2 orders of magnitude less active than PVAm-APy and PAAm-APy, with VX half-lives in the range of 24 h. Furthermore, the PVAm-APy and PAAm-APy gels facilitated the dehydrochlorination reaction of sulfur mustard

  9. A QUANTUM MECHANICAL STUDY OF STRUCTURAL AND ELECTRONIC DILUTION EFFECTS IN PARAMAGNETIC CHEMICAL EXCHANGE SATURATION TRANSFER AGENTS

    PubMed Central

    Miller, Whelton A.; Moore, Preston B.

    2014-01-01

    We present a computational study of the effect of chemical modifications of the meta and para substituents in the coordinating pendant arm of a modified 1,4,7,10-tetraazacyclododecane-N, N’, N″, N‴-tetraamide (DOTAM) ligand on the Chemical Exchange Saturation Transfer (CEST) signal. Magnetic Resonance Imaging (MRI) is currently one of the most widely used techniques available. MRI has led to a new class of pharmaceuticals termed “imagining” or “contrast” agents. These agents usually work by incorporating lanthanide metals such as Gadolinium (Gd) and Europium (Eu). This allows the contrast agents to take advantage of the paramagnetic properties of the metals, which in turn enhances the signal detectable by MRI. The effect of simple electron-withdrawing (e.g., nitro) and electron-donating (e.g., methyl) substituents chemically attached to a modified chelate arm (pendant arm) is quantified by charge transfer interactions in the coordinated water-chelate system computed from quantum mechanics. This study attempts to reveal the origin of the substituent effect on the CEST signal and the electronic structure of the complex. We find that the extent of Charge Transfer (CT) depends on orbital orientations and overlaps. However, CT interactions occur simultaneously from all arms, which causes a dilution effect with respect to the pendant arm. PMID:25485283

  10. A QUANTUM MECHANICAL STUDY OF STRUCTURAL AND ELECTRONIC DILUTION EFFECTS IN PARAMAGNETIC CHEMICAL EXCHANGE SATURATION TRANSFER AGENTS.

    PubMed

    Miller, Whelton A; Moore, Preston B

    2014-01-01

    We present a computational study of the effect of chemical modifications of the meta and para substituents in the coordinating pendant arm of a modified 1,4,7,10-tetraazacyclododecane-N, N', N″, N‴-tetraamide (DOTAM) ligand on the Chemical Exchange Saturation Transfer (CEST) signal. Magnetic Resonance Imaging (MRI) is currently one of the most widely used techniques available. MRI has led to a new class of pharmaceuticals termed "imagining" or "contrast" agents. These agents usually work by incorporating lanthanide metals such as Gadolinium (Gd) and Europium (Eu). This allows the contrast agents to take advantage of the paramagnetic properties of the metals, which in turn enhances the signal detectable by MRI. The effect of simple electron-withdrawing (e.g., nitro) and electron-donating (e.g., methyl) substituents chemically attached to a modified chelate arm (pendant arm) is quantified by charge transfer interactions in the coordinated water-chelate system computed from quantum mechanics. This study attempts to reveal the origin of the substituent effect on the CEST signal and the electronic structure of the complex. We find that the extent of Charge Transfer (CT) depends on orbital orientations and overlaps. However, CT interactions occur simultaneously from all arms, which causes a dilution effect with respect to the pendant arm. PMID:25485283

  11. Effect of various chemical agents used in gingival retraction systems on smear layer: Scanning electron microscope study

    PubMed Central

    Lahoti, Krishna Shivraj

    2016-01-01

    Background: Chemical agents used for gingival retraction affects the smear layer. Aim: To determine the effect of three different chemical agents used for gingival retraction systems on smear layer. Materials and Methods: Four human premolars were prepared using air-rotor with air-water spray to receive full crown restoration. Three of them were treated with 21.3% aluminum chloride for 10 min, 0.05% oxymetazoline hydrochloride for 10 min, and expasyl for 2 min, respectively. One sample was left untreated. Then, the tooth specimens were rinsed with tap water to remove any residue of test materials. All the samples (treated and untreated) were processed by scanning electron microscope (SEM). Processed samples were examined under SEM at ×2400 to evaluate the effect of chemical agents on smear layer. Results: SEM examination revealed that 0.05% oxymetazoline hydrochloride for 10 min produced no alteration to smear layer followed by minimum alteration by expasyl for 2 min and complete removal of smear layer with etching of dentin with 21.3% aluminum chloride for 10 min. Conclusion: 0.05% oxymetazoline hydrochloride and expasyl are kind to smear layer. PMID:27041896

  12. UV-vis spectrophotometric determination of trinitrotoluene (TNT) with trioctylmethylammonium chloride as ion pair assisted and disperser agent after dispersive liquid-liquid microextraction.

    PubMed

    Larki, Arash; Nasrabadi, Mehdi Rahimi; Pourreza, Nahid

    2015-06-01

    In the present study, a simple, fast and inexpensive method based on dispersive liquid-liquid microextraction (DLLME) prior to microvolume UV-vis spectrophotometry was developed for the preconcentration and determination of trinitrotoluene (TNT). The procedure is based on the color reaction of TNT in alkaline medium and extraction into CCl4 as an ion pair assisted by trioctylmethylammonium chloride, which also acts as a disperser agent. Experimental parameters affecting the DLLME method such as pH, concentration of sodium hydroxide, amount of trioctylmethylammonium chloride, type and volume of extraction solvent were investigated and optimized. Under the optimum conditions, the limit of detection (LOD) was 0.9ng/mL and the calibration curve was linear in the range of 3-200ng/mL. The relative standard deviation for 25 and 100ng/mL of TNT were 3.7% and 1.5% (n=6), respectively. The developed DLLME method was applied for the determination of TNT in different water and soil samples.

  13. How Do I Know? A Guide to the Selection of Personal Protective Equipment for Use in Responding to A Release of Chemical Warfare Agents

    SciTech Connect

    Foust, C.B.

    1999-05-01

    An incident involving chemical warfare agents requires a unique hazardous materials (HAZMAT) response. As with an HAZMAT event, federal regulations prescribe that responders must be protected from exposure to the chemical agents. But unlike other HAZMAT events, special considerations govern selection of personal protective equipment (PPE). PPE includes all clothing, respirators and monitoring devices used to respond to a chemical release. PPE can differ depending on whether responders are military or civilian personnel.

  14. 'Dilute-and-shoot' RSLC-MS-MS method for fast detection of nerve and vesicant chemical warfare agent metabolites in urine.

    PubMed

    Rodin, Igor; Braun, Arcady; Stavrianidi, Andrey; Baygildiev, Timur; Shpigun, Oleg; Oreshkin, Dmitry; Rybalchenko, Igor

    2015-01-01

    A sensitive screening method based on fast liquid chromatography tandem mass-spectrometry (RSLC-MS-MS) has shown the feasibility of separation and detection of low concentration β-lyase metabolites of sulfur mustard and of nerve agent phosphonic acids in urine. The analysis of these compounds is of interest because they are specific metabolites of the chemical warfare agents (CWAs), sulfur mustard (HD), sarin (GB), soman (GD), VX and Russian VX (RVX). The 'dilute-and-shoot' RSLC-MS-MS method provides a sensitive and direct approach for determining CWA exposure in non-extracted non-derivatized samples from urine. Chromatographic separation of the metabolites was achieved using a reverse phase column with gradient mobile phases consisting of 0.5% formic acid in water and acetonitrile. Identification and quantification of species were achieved using electrospray ionization-tandem mass-spectrometry monitoring two precursor-to-product ion transitions for each compound. The method demonstrates linearity over at least two orders of magnitude and had detection limits of 0.5 ng/mL in urine.

  15. 'Dilute-and-shoot' RSLC-MS-MS method for fast detection of nerve and vesicant chemical warfare agent metabolites in urine.

    PubMed

    Rodin, Igor; Braun, Arcady; Stavrianidi, Andrey; Baygildiev, Timur; Shpigun, Oleg; Oreshkin, Dmitry; Rybalchenko, Igor

    2015-01-01

    A sensitive screening method based on fast liquid chromatography tandem mass-spectrometry (RSLC-MS-MS) has shown the feasibility of separation and detection of low concentration β-lyase metabolites of sulfur mustard and of nerve agent phosphonic acids in urine. The analysis of these compounds is of interest because they are specific metabolites of the chemical warfare agents (CWAs), sulfur mustard (HD), sarin (GB), soman (GD), VX and Russian VX (RVX). The 'dilute-and-shoot' RSLC-MS-MS method provides a sensitive and direct approach for determining CWA exposure in non-extracted non-derivatized samples from urine. Chromatographic separation of the metabolites was achieved using a reverse phase column with gradient mobile phases consisting of 0.5% formic acid in water and acetonitrile. Identification and quantification of species were achieved using electrospray ionization-tandem mass-spectrometry monitoring two precursor-to-product ion transitions for each compound. The method demonstrates linearity over at least two orders of magnitude and had detection limits of 0.5 ng/mL in urine. PMID:25326204

  16. Crystal Structures of Human Carboxylesterase 1 in Covalent Complexes with the Chemical Warfare Agents Soman and Tabun†,‡

    PubMed Central

    Fleming, Christopher D.; Edwards, Carol C.; Kirby, Stephen D.; Maxwell, Donald M.; Potter, Philip M.; Cerasoli, Douglas M.; Redinbo, Matthew R.

    2008-01-01

    The organophosphorus nerve agents sarin, soman, tabun, and VX exert their toxic effects by inhibiting the action of human acetylcholinesterase, a member of the serine hydrolase superfamily of enzymes. The current treatments for nerve agent exposure must be administered quickly to be effective and they often do not eliminate long-term toxic side effects associated with organophosphate poisoning. Thus, there is significant need for effective prophylactic methods to protect at-risk personnel from nerve agent exposure, and protein-based approaches have emerged as promising candidates. We present the 2.7 Å resolution crystal structures of the serine hydrolase human carboxylesterase 1 (hCE1), a broad-spectrum drug metabolism enzyme, in covalent acyl-enzyme intermediate complexes with the chemical weapons soman and tabun. The structures reveal that hCE1 binds stereoselectively to these nerve agents; for example, hCE1 appears to react preferentially with the 104-fold more lethal PS stereoisomer of soman relative to the PR form. In addition, structural features of the hCE1 active site indicate that the enzyme may be resistant to dead-end organophosphate aging reactions that permanently inactivate other serine hydrolases. Taken together, these data provide important structural details toward the goal of engineering hCE1 into an organophosphate hydrolase and protein-based therapeutic for nerve agent exposure. PMID:17407327

  17. Aerial vehicle with paint for detection of radiological and chemical warfare agents

    DOEpatents

    Farmer, Joseph C.; Brunk, James L.; Day, S. Daniel

    2013-04-02

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  18. Method for warning of radiological and chemical agents using detection paints on a vehicle surface

    DOEpatents

    Farmer, Joseph C.; Brunk, James L.; Day, S. Daniel

    2012-03-27

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  19. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    SciTech Connect

    Sugama, Toshifumi; Petrakis, L.

    1998-06-09

    A composition and methods are disclosed for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid. 2 figs.

  20. Chemical agents for conversion of chrysotile asbestos into non-hazardous materials

    DOEpatents

    Sugama, Toshifumi; Petrakis, Leon

    1998-06-09

    A composition and methods for converting a chrysotile asbestos-containing material to a non-regulated environmentally benign solid which comprises a fluoro acid decomposing agent capable of dissociating the chrysotile asbestos to non-regulated components, wherein non-regulated components are non-reactive with the environment, and a binding agent which binds the non-regulated components to form an environmentally benign solid.

  1. Enhanced conversion of carbohydrates to the platform chemical 5-hydroxymethylfurfural using designer ionic liquids.

    PubMed

    Siankevich, Sviatlana; Fei, Zhaofu; Scopelliti, Rosario; Laurenczy, Gabor; Katsyuba, Sergey; Yan, Ning; Dyson, Paul J

    2014-06-01

    5-Hydroxymethylfurfural (HMF) is a key platform chemical that may be obtained from various cellulosic (biomass) derivatives. Previously, it has been shown that ionic liquids (ILs) facilitate the catalytic conversion of glucose into HMF. Herein, we demonstrate that the careful design of the IL cation leads to new ionic solvents that enhance the transformation of glucose and more complex carbohydrates into HMF significantly. In Situ NMR spectroscopy and computational modeling pinpoint the key interactions between the IL, catalyst, and substrate that account for the enhanced reactivities observed. PMID:24700762

  2. Conversion of light hydrocarbon gases to metal carbides for production of liquid fuels and chemicals

    SciTech Connect

    Diaz, A.F.; Modestino, A.J.; Howard, J.B.; Peters, W.A.

    1993-02-01

    Light hydrocarbon gases could be reacted with low cost alkaline earth metal oxide (CaO, MgO) in high-temperature plasma reactor to achieve very high ([le]100%) gas conversion to H[sub 2], CO, and the corresponding metal carbides. These carbides could be stored, transported, and hydrolyzed to acetylene or methyl acetylene, which in turn could be upgraded to a wide range of chemicals and premium liquid hydrocarbon fuels. An electric arc discharge reactor was built for converting methane. Literature reviews were made.

  3. Titania Coated Mica via Chemical Vapour Deposition, Post N-doped by Liquid Ammonia Treatment

    NASA Astrophysics Data System (ADS)

    Powell, Michael J.; Parkin, Ivan P.

    TiO2 films were successfully grown on synthetic mica powders via Chemical Vapor Deposition (CVD). The CVD rig is a cold-walled design that allows surface coverage of a powder to be successfully achieved. The TiO2 was produced by the reaction between TiCl4 and Ethyl Acetate. The powder produced could be successfully N-doped using post liquid ammonia treatment. The TiO2 powder produced could have potential applications in self-cleaning surfaces or antimicrobial paints.

  4. Chemical Warfare Agent Surface Adsorption: Hydrogen Bonding of Sarin and Soman to Amorphous Silica.

    PubMed

    Davis, Erin Durke; Gordon, Wesley O; Wilmsmeyer, Amanda R; Troya, Diego; Morris, John R

    2014-04-17

    Sarin and soman are warfare nerve agents that represent some of the most toxic compounds ever synthesized. The extreme risk in handling such molecules has, until now, precluded detailed research into the surface chemistry of agents. We have developed a surface science approach to explore the fundamental nature of hydrogen bonding forces between these agents and a hydroxylated surface. Infrared spectroscopy revealed that both agents adsorb to amorphous silica through the formation of surprisingly strong hydrogen-bonding interactions with primarily isolated silanol groups (SiOH). Comparisons with previous theoretical results reveal that this bonding occurs almost exclusively through the phosphoryl oxygen (P═O) of the agent. Temperature-programmed desorption experiments determined that the activation energy for hydrogen bond rupture and desorption of sarin and soman was 50 ± 2 and 52 ± 2 kJ/mol, respectively. Together with results from previous studies involving other phosphoryl-containing molecules, we have constructed a detailed understanding of the structure-function relationship for nerve agent hydrogen bonding at the gas-surface interface.

  5. Chemical modification of cellulose by in situ reactive extrusion in ionic liquid.

    PubMed

    Zhang, Yue; Li, Haifeng; Li, Xinda; Gibril, Magdi E; Yu, Muhuo

    2014-01-01

    In order to prepare the spinning solution of cellulose with high concentration in environmentally friendly solvent, cellulose was chemically modified by in situ reactive extrusion with several chemicals, such as urea, phthalic anhydride (PA), maleic anhydride (MA) and butyl glycidyl ether (BGE) and with ionic liquid namely 1-N-butyl-3-methylimidazolium chloride (BMIMCl) as reaction medium. These four modifiers all in situ grafted onto cellulose and the modification effectiveness was found to decrease in the sequence, MA>PA>BGE>urea. The formation of side chain on cellulose backbone destroyed the regularity of cellulose chains and the hydrogen bond network efficiently. The concentration of modified cellulose in spinning solution can be up to 14-25%, comparing with 9% for unmodified cellulose in BMIMCl. The high solid content results in high efficiency and less energy consumption of fiber production and solvent recycle. PMID:24274488

  6. Liquid Crystal-Based Emulsions for Synthesis and Non-Spherical Particles with Chemical Patches

    PubMed Central

    Mondiot, Frédéric; Wang, Xiaoguang; de Pablo, Juan J.; Abbott, Nicholas L.

    2013-01-01

    We report the use of liquid crystal (LC)-in-water emulsions for the synthesis of either spherical or non-spherical particles with chemically-distinct domains located at the poles of the particles. The approach involves the localization of solid colloids at topological defects that form predictably at surfaces of water-dispersed LC droplets. By polymerizing the LC droplets displaying the colloids at their surface defects, we demonstrate formation of both spherical and, upon extraction of the mesogen, anisotropic composite particles with colloids located at either one or both of the poles. Because the colloids protrude from the surfaces of the particles, they also define organized, chemical patches with functionality controlled by the colloid surface. PMID:23600692

  7. Ab initio study of electron-ion structure factors in binary liquids with different types of chemical bonding

    SciTech Connect

    Klevets, Ivan; Bryk, Taras

    2014-12-07

    Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed.

  8. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    DOEpatents

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  9. [Determination of antidangdruff agent salicylic acid, zinc pyrithione, octopirox, climbazole and ketoconazole in shampoo by high performance liquid chromatography].

    PubMed

    Yang, Yan-Wei; Zhu, Ying; Su, Xiao-Qing

    2005-09-01

    A high performance liquid chromatography method was established for determination of antidangdruff agent salicylic acid,zinc pyrithione, octopirox, climbazole and ketoconazole in shampoo on a C18 column using acetonitrile-metholaqueous solution (10 mmol/L KH2 PO4 and 5 mmol/L EDTANa2, pH is adjusted to 4.0 with H3 PO4) (50:10:40) as mobile phase at a flow rate of 1.0 ml/min, with the column temperature 25 degrees C and detection wave 230nm. The precision was less than 3.8% and recovery varied from 92.7% to 104.9%. The experimental results showed that the method was simple, precise and accurate. PMID:16329615

  10. Amino acids as chiral auxiliaries in cyanuric chloride-based chiral derivatizing agents for enantioseparation by liquid chromatography.

    PubMed

    Batra, Sonika; Bhushan, Ravi

    2014-11-01

    This review summarizes and critically evaluates the recent research on application of amino acids and amino acid amides as chiral auxiliaries in cyanuric chloride (CC) based chiral derivatizing agents (CDRs), used in the indirect approach for enantiomeric resolution. Methods of synthesis of such CDRs, methods for synthesis of diastereomers of a variety of racemic compounds and parameters of liquid chromatographic separation, along with their prospects and their limitations in indirect enantioresolution, are discussed. Application of the said CDR(s) and the technical approach to be used that are discussed should be beneficial for control of enantiomeric purity in pharmaceutical industry, verification of enantiomeric ratio of commercial formulations and the development of methods for indirect resolution of a variety of chiral compounds. Derivatization methods are particularly required when a chromophore is to be introduced in low UV absorbing molecules, for their detection.

  11. A Multiplex PCR-coupled Liquid Bead Array for the Simultaneous Detection of Four Biothreat Agents

    SciTech Connect

    Wilson, W J; Erler, A M; Nasarabadi, S L; Skowronski, E W; McCready, P M

    2004-02-04

    We have developed a 10-plexed PCR assay coupled to a 12-plexed liquid bead array to rapidly screen environmental samples for B. anthracis, Y. pestis, F. tularensis, and B. melitensis. Highly validated species -specific primer sets were used to simultaneously amplify multiple diagnostic regions unique to each individual pathogen. Resolution of the mix of amplified products was achieved by PCR product hybridization to corresponding probe sequences, attached to unique sets of fluorescent beads. The hybridized beads were processed through a flow cytometer, which detected presence and quantity of each PCR product. The assay was optimized to allow for maximum sensitivity in a multiplexed format. A high- throughput demonstration was performed where 384 simulated environmental samples were spiked with different amounts of B. thuringensis spores and pathogen DNA. The samples were robotically processed to extract DNA and arrayed for multiplexed PCR-liquid bead detection. The assay correctly identified the presence or absence of each pathogen and collected over 3,000 individual data points within a single 8-hour shift for approximately $1.20 per sample in a 10-plexed assay.

  12. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon. Final Phase 1 environmental report

    SciTech Connect

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  13. Toxins as weapons of mass destruction. A comparison and contrast with biological-warfare and chemical-warfare agents.

    PubMed

    Madsen, J M

    2001-09-01

    Toxins are toxic chemical compounds synthesized in nature by living organisms. Classifiable by molecular weight, source, preferred targets in the body, and mechanism of action, they include the most potent poisons on the planet, although considerations of production, weaponization, delivery, environmental stability, and host factors place practical limits on their use as WMD. The two most important toxin threats on the battlefield or in bioterrorism are probably botulinum toxin (a series of seven serotypes, of which botulinum toxin A is the most toxic for humans) and SEB, an incapacitating toxin. Ricin and the trichothecene mycotoxins, including T-2 mycotoxin, are of lesser concern but are still potential threats. Botulinum toxin is a neurotoxin, ricin and trichothecene mycotoxins are membrane-damaging proteins, and SEB is a superantigen capable of massive nonspecific activation of the immune system. The clinical intoxications resulting from exposure to and absorption (usually by inhalation) of these agents reflect their underlying pathophysiology. Because of the hybrid nature of toxins, they have sometimes been considered CW agents and sometimes BW agents. The current trend seems to be to emphasize their similarities to living organisms and their differences from CW agents, but examination of all three groups relative to a number of factors reveals both similarities and differences between toxins and each of the other two categories of non-nuclear unconventional WMD. The perspective that groups toxins with BW agents is logical and very useful for research and development and for administrative and treaty applications, but for medical education and casualty assessment, there are real advantages in clinician use of assessment techniques that emphasize the physicochemical behavior of these nonliving, nonreplicating, intransmissible chemical poisons. PMID:11577702

  14. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    SciTech Connect

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  15. Photo-vibrational spectroscopy of solid and liquid chemicals using laser Doppler vibrometer.

    PubMed

    Hu, Qi; Lim, Jacob Song Kiat; Liu, Huan; Fu, Yu

    2016-08-22

    Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity microphone or a piezo sensor coupled with a lock-in amplifier, limiting the technique to applications in a laboratory environment. Due to the aforementioned requirements, traditionally this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms (membrane, powder and liquid) were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) based on the Mach-Zehnder interferometer was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment demonstrated that the LDV is a capable sensor for applications in photoacoustic/photothermal spectroscopy, with potential to enable the detection of chemicals in open environment at safe standoff distance. PMID:27557194

  16. Photo-vibrational spectroscopy of solid and liquid chemicals using laser Doppler vibrometer.

    PubMed

    Hu, Qi; Lim, Jacob Song Kiat; Liu, Huan; Fu, Yu

    2016-08-22

    Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity microphone or a piezo sensor coupled with a lock-in amplifier, limiting the technique to applications in a laboratory environment. Due to the aforementioned requirements, traditionally this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms (membrane, powder and liquid) were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) based on the Mach-Zehnder interferometer was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment demonstrated that the LDV is a capable sensor for applications in photoacoustic/photothermal spectroscopy, with potential to enable the detection of chemicals in open environment at safe standoff distance.

  17. Method for analyzing the chemical composition of liquid effluent from a direct contact condenser

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    2001-01-01

    A computational modeling method for predicting the chemical, physical, and thermodynamic performance of a condenser using calculations based on equations of physics for heat, momentum and mass transfer and equations of equilibrium thermodynamics to determine steady state profiles of parameters throughout the condenser. The method includes providing a set of input values relating to a condenser including liquid loading, vapor loading, and geometric characteristics of the contact medium in the condenser. The geometric and packing characteristics of the contact medium include the dimensions and orientation of a channel in the contact medium. The method further includes simulating performance of the condenser using the set of input values to determine a related set of output values such as outlet liquid temperature, outlet flow rates, pressures, and the concentration(s) of one or more dissolved noncondensable gas species in the outlet liquid. The method may also include iteratively performing the above computation steps using a plurality of sets of input values and then determining whether each of the resulting output values and performance profiles satisfies acceptance criteria.

  18. Research on the interaction of hydrogen-bond acidic polymer sensitive sensor materials with chemical warfare agents simulants by inverse gas chromatography.

    PubMed

    Yang, Liu; Han, Qiang; Cao, Shuya; Huang, Feng; Qin, Molin; Guo, Chenghai; Ding, Mingyu

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical and physical parameters such as heats of absorption and Henry constants of the polymers to DMMP and 2-CEES were determined by inverse gas chromatography. Details concerning absorption performance are also discussed in this paper.

  19. Research on the Interaction of Hydrogen-Bond Acidic Polymer Sensitive Sensor Materials with Chemical Warfare Agents Simulants by Inverse Gas Chromatography

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Huang, Feng; Qin, Molin; Guo, Chenghai; Ding, Mingyu

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical and physical parameters such as heats of absorption and Henry constants of the polymers to DMMP and 2-CEES were determined by inverse gas chromatography. Details concerning absorption performance are also discussed in this paper. PMID:26043177

  20. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  1. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    PubMed Central

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-01-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks. PMID:25408295

  2. An analysis of molecular packing and chemical association in liquid water using quasichemical theory

    NASA Astrophysics Data System (ADS)

    Paliwal, A.; Asthagiri, D.; Pratt, L. R.; Ashbaugh, H. S.; Paulaitis, M. E.

    2006-06-01

    We calculate the hydration free energy of liquid TIP3P water at 298K and 1bar using a quasichemical theory framework in which interactions between a distinguished water molecule and the surrounding water molecules are partitioned into chemical associations with proximal (inner-shell) waters and classical electrostatic/dispersion interactions with the remaining (outer-shell) waters. The calculated free energy is found to be independent of this partitioning, as expected, and in excellent agreement with values derived from the literature. An analysis of the spatial distribution of inner-shell water molecules as a function of the inner-shell volume reveals that water molecules are preferentially excluded from the interior of large volumes as the occupancy number decreases. The driving force for water exclusion is formulated in terms of a free energy for rearranging inner-shell water molecules under the influence of the field exerted by outer-shell waters in order to accommodate one water molecule at the center. The results indicate a balance between chemical association and molecular packing in liquid water that becomes increasingly important as the inner-shell volume grows in size.

  3. Photo-stimulated electro-optic response of liquid-crystalline system with trans-cis photo-isomerizable agent

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Marinov, Y. G.; Yelamaggad, C. V.

    2014-12-01

    A rather strong photo-stimulated enhancement of photo-induced bend flexoelectric effect based on trans-cis photoisomerization of azo bond was found in a guest-host system formed from the nematic liquid crystal (LC) N-(4-methoxybenzylidene)-4-butylaniline (MBBA) as a host, and the azobenzene LC 4-hexyloxybenzoloxy-4'-cyanoazobenzene, as a guest photoactive agent at 1 wt.% concentration. Upon application of electric field, thin homeotropic layers of thickness 100 pm containing this photo-sensitized LC mixture were investigated as subjected to a relatively weak illumination with UV light (λ = 375 nm, from narrow-band light-emitting diode, LED). The stimulation of the photoactive electro-optic response of azobenzene-doped MBBA (owing to enhanced photo-induced bend flexoelectric effect driven by the photo-isomerizable dopants) was achieved by pre-resonant excitation of the photoactive agent. The degree of the effect measured is of potential interest for thin-film photoactive electro-optic applications. The UV light-induced effect in azobenzene-doped MBBA was reversible; the back (relaxation) process was stimulated by light in the blue from a LED with broadband spectrum centered at 455 nm.

  4. Sulfur mustard as a carcinogen: application of relative potency analysis to the chemical warfare agents H, HD, and HT.

    PubMed

    Watson, A P; Jones, T D; Griffin, G D

    1989-08-01

    A relative potency method for assessing potential human health effects from exposures to relatively untested chemicals is presented and documented. The need for such a method in evaluating the carcinogenic potential of the chemical warfare agent sulfur mustard (agent HD) from a limited data base is specifically addressed. The best-estimate potency factor for sulfur mustard relative to benzo[a]pyrene is 1.3, with an interquartile range of 0.6 to 2.9. The method is applied to (1) the estimated fence-boundary air concentrations of mustard during operation of a proposed agent incinerator at Aberdeen Proving Ground (APG), Maryland, and (2) the current approved general population exposure level of 1 X 10(-4) mg HD/m3 and the occupational exposure level of 3 X 10(-3) mg HD/m3. Maximum estimates of excess lifetime cancer risk for individuals at sites along the APG boundary range between 3 X 10(-8) and 1 X 10(-7). Lifetime cancer risk estimates less than or equal to 10(-6) are not now regulated by the U.S. Environmental Protection Agency or the Food and Drug Administration. Maximum estimates of excess lifetime cancer risk assuming daily exposure to the approved standards during the proposed 5 years of incinerator operation are on the order of 10(-5) for the general public and 10(-4) for the worker population. These values are considered upper limit estimates.

  5. Examples of doping control analysis by liquid chromatography-tandem mass spectrometry: ephedrines, beta-receptor blocking agents, diuretics, sympathomimetics, and cross-linked hemoglobins.

    PubMed

    Thevis, Mario; Schänzer, Wilhelm

    2005-01-01

    The application of modern and powerful analytical instruments consisting of liquid chromatographs (LCs), sophisticated atmospheric pressure ion sources, and sensitive mass analyzers has improved quality as well as speed of doping control analyses markedly during the last 5 years. Numerous compounds such as beta-receptor blocking agents or diuretics require derivatization prior to gas chromatographic (GC) and mass spectrometric (MS) measurement, which is the reason for extended sample preparation periods. In addition, several substances demonstrate poor GC-MS properties even after chemical modification, and peptide hormones such as cross-linked hemoglobins cannot be analyzed at all by means of GC-MS. With the availability of electrospray ionization and robust tandem MSs (e.g., triple-stage quadrupole or ion trap instruments) many new or complementary screening and confirmation assays have been developed, providing detailed qualitative and quantitative information on prohibited drugs. With selected categories of compounds (ephedrines, beta-blockers, b2-agonists, diuretics, and bovine hemoglobin-based oxygen therapeutics) that are banned according to the rules of the World Anti-Doping Agency and International Olympic Committee, the advantages of LC-MS-MS procedures over conventional GC-MS assays are demonstrated, such as enhanced separation of analytes, shorter sample pretreatment, and identification of substances that are not identified by GC-MS. PMID:15808003

  6. Ferrocenoyl piperazide as derivatizing agent for the analysis of isocyanates and related compounds using liquid chromatography/electrochemistry/mass spectrometry (LC/EC/MS).

    PubMed

    Seiwert, Bettina; Henneken, Hartmut; Karst, Uwe

    2004-12-01

    Ferrocenoyl piperazide is introduced as a new pre-column derivatizing agent for the analysis of various isocyanates in air samples using reversed-phase liquid chromatographic separation, electrochemical oxidation/ionization, and mass spectrometry. The nonpolar derivatives can be separated well using a phenyl-modified stationary phase and a formic acid/ammonium formate buffer of pH 3, which yields excellent separations, especially for one problematic group of isocyanates consisting of 2,4- and 2,6-toluylenediisocyanate (2,4- and 2,6-TDI) and hexamethylenediisocyanate (HDI). Electrochemical oxidation at low potentials (0.5 V versus Pd/H(2)) leads to formation of charged products, which are nebulized in a commercial atmospheric pressure chemical ionization (APCI) source, with the corona discharge operated only at low voltage. Limits of detection between 6 and 20 nmol/L are obtained for the isocyanate derivatives, and calibration is linear over at least two decades of concentration. The method is applied for the analysis of air after thermal degradation of a polyurethane foam, and it is demonstrated that it is suitable as well for the analysis of carboxylic acid chlorides and of isothiocyanates.

  7. Signature-Discovery Approach for Sample Matching of a Nerve-Agent Precursor using Liquid Chromatography–Mass Spectrometry, XCMS, and Chemometrics

    SciTech Connect

    Fraga, Carlos G.; Clowers, Brian H.; Moore, Ronald J.; Zink, Erika M.

    2010-05-15

    This report demonstrates the use of bioinformatic and chemometric tools on liquid chromatography mass spectrometry (LC-MS) data for the discovery of ultra-trace forensic signatures for sample matching of various stocks of the nerve-agent precursor known as methylphosphonic dichloride (dichlor). The use of the bioinformatic tool known as XCMS was used to comprehensively search and find candidate LC-MS peaks in a known set of dichlor samples. These candidate peaks were down selected to a group of 34 impurity peaks. Hierarchal cluster analysis and factor analysis demonstrated the potential of these 34 impurities peaks for matching samples based on their stock source. Only one pair of dichlor stocks was not differentiated from one another. An acceptable chemometric approach for sample matching was determined to be variance scaling and signal averaging of normalized duplicate impurity profiles prior to classification by k-nearest neighbors. Using this approach, a test set of dichlor samples were all correctly matched to their source stock. The sample preparation and LC-MS method permitted the detection of dichlor impurities presumably in the parts-per-trillion (w/w). The detection of a common impurity in all dichlor stocks that were synthesized over a 14-year period and by different manufacturers was an unexpected discovery. Our described signature-discovery approach should be useful in the development of a forensic capability to help in criminal investigations following chemical attacks.

  8. Standoff detection of explosives and chemical agents using broadly tuned external-cavity quantum cascade lasers (EC-QCLs)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Rayner, Timothy; Weida, Miles; Crivello, Salvatore; Day, Timothy

    2007-10-01

    Civilian soft targets such as transportation systems are being targeted by terrorists using IEDs and suicide bombers. Having the capability to remotely detect explosives, precursors and other chemicals would enable these assets to be protected with minimal interruption of the flow of commerce. Mid-IR laser technology offers the potential to detect explosives and other chemicals in real-time and from a safe standoff distance. While many of these agents possess "fingerprint" signatures in the mid-IR (i.e. in the 3-20 micron regime), their effective interrogation by a practical, field-deployable system has been limited by size, complexity, reliability and cost constraints of the base laser technology. Daylight Solutions has addressed these shortcomings by developing compact, portable, broadly tunable mid-IR laser sources based upon external-cavity quantum cascade technology. This technology is now being applied by Daylight in system level architectures for standoff and remote detection of explosives, precursors and chemical agents. Several of these architectures and predicted levels of performance will be presented.

  9. Expedient Respiratory and Physical Protection: Does a Wet Towel Work to Prevent Chemical Warfare Agent Vapor Infiltration?

    SciTech Connect

    Sorensen, J.H.

    2002-08-30

    The purpose of this paper is to examine the effectiveness of expedient protection strategies to reduce exposure to vapors from chemical warfare agents. This includes an examination of the physical and the psychological effectiveness of measures such as using a wet towel to seal a door jam against the infiltration of chemicals while sheltering in place or to provide expedient respiratory protection. Respiratory protection for civilians has never been considered a viable option for population protection in the CSEPP. Problems of storage, ability to effectively don respirators, and questionable fit have been primary factors in rejecting this option. Expedient respiratory protection seems to offer little benefits for population protection for chemical agent vapors. Furthermore, using wet towels as a vapor barrier at the bottom of a door should be discouraged. The wetted towel provides no vapor filtration and its effectiveness in infiltration reduction is unknown. Taping the bottom of the door will still likely provide greater infiltration reduction and is recommended as the current method for use in sheltering.

  10. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals.

  11. Understanding evaporation characteristics of a drop of distilled sulfur mustard (HD) chemical agent from stainless steel and aluminum substrates.

    PubMed

    Jung, H; Lee, H W

    2014-05-30

    We report herein the evaporation rates and mechanism of a drop of distilled sulfur mustard (HD) agent from stainless steel and aluminum substrates. For systematic analysis, we used a laboratory-sized wind tunnel, thermal desorption (TD) connected to gas chromatograph/mass spectrometry (GC/MS) and drop shape analysis (DSA). We found that the evaporation rates of HD from stainless steel and aluminum increased with temperature. The rates were also linearly proportional to drop size. The time-dependent contact angle measurement showed that the evaporation of the drop of HD proceeded only by constant contact area mechanism from stainless steel surface. On the other hand, the evaporation of HD from aluminum proceeded by a combined mechanism of constant contact area mode and constant contact angle mode. Our experimental data sets and analysis could be used to predict vapor and contact hazard persistence of chemical warfare agents (CWAs) in the air and on exterior surfaces with chemical releases, which assists the military decision influencing personnel safety and decontamination of the site upon a chemical attack event.

  12. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. PMID:25828545

  13. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    PubMed

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis.

  14. Comparative antibacterial activity of silver nanoparticles synthesised by biological and chemical routes with pluronic F68 as a stabilising agent.

    PubMed

    Santos, Carolina Alves Dos; Seckler, Marcelo Martins; Ingle, Avinash P; Rai, Mahendra

    2016-08-01

    The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV-visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X-ray diffraction pattern confirmed the presence of face-centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5-40 and 10-70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential. PMID:27463790

  15. Measurement of nitrophenols in rain and air by two-dimensional liquid chromatography-chemically active liquid core waveguide spectrometry.

    PubMed

    Ganranoo, Lucksagoon; Mishra, Santosh K; Azad, Abul K; Shigihara, Ado; Dasgupta, Purnendu K; Breitbach, Zachary S; Armstrong, Daniel W; Grudpan, Kate; Rappenglueck, Bernhard

    2010-07-01

    We report a novel system to analyze atmospheric nitrophenols (NPs). Rain or air sample extracts (1 mL) are preconcentrated on a narrow bore (2 mm) aliphatic anion exchanger. In the absence of strong retention of NPs exhibited by aromatic ion exchangers, retained NPs are eluted as a plug by injection of 100 microL of 0.1 M Na(2)SO(4) on to a short (2 x 50 mm) reverse phase C-18 column packed with 2.2 mum particles. The salt plug passes through the C-18 column unretained while the NPs are separated by an ammonium acetate buffered methanol-water eluent, compatible with mass spectrometry (MS). The eluted NPs are measured with a long path Teflon AF-based liquid core waveguide (0.15 x 1420 mm) illuminated by a 403 nm light emitting diode and detected by a monolithic photodiode-operational amplifier. The waveguide is rendered chemically active by suspending it over concentrated ammonia that permeates into the lumen. The NPs ionize to the yellow anion form (lambda(max) approximately 400 nm). The separation of 4-nitrophenol, 2,4-dinitrophenol, 2-methyl-4-nitrophenol, 3-methyl-4-nitrophenol, and 2-nitrophenol (these are the dominant NPs, typically in that order, in both rain and air of Houston and Arlington, TX, confirmed by tandem MS) takes just over 5 min with respective S/N = 3 limits of detection (LODs) of 60, 12, 30, 67, and 23 pg/mL compared to MS/MS LODs of 20, 49, 11, 20, and 210 pg/mL. Illustrative air and rain data are presented.

  16. Effect of some chemical agents on the viability of Cysticercus bovis.

    PubMed

    Mohamoud, Lily H; El Alfy, Nadia M

    2003-08-01

    The effect of eight chemicals; vinegar, Allium sativum (crude garlic), Acacia auriculiformis, lemon juice, praziquantel, pumpkin, perosan and yomesan on the viability of cysticerci of Taenia saginata in vitro was investigated. The minimum exposure time required for cysticerci to be non-evaginable for the eight chemicals were 5, 10, 25, 40, 55, 75, 90 and 105 minutes respectively. The best one was vinegar and the least effective was yomesan. PMID:14964654

  17. Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response.

    PubMed

    Taylor, Christopher G P; Piper, Jerico R; Ward, Michael D

    2016-05-01

    Cubic coordination cages act as competent hosts for several alkyl phosphonates used as chemical warfare agent simulants; a range of cage/guest structures have been determined, contributions to guest binding analysed, and a fluorescent response to guest binding demonstrated.

  18. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  19. Using chemically patterns with different anchoring behavior to control the orientation of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Armas Perez, Julio; Martinez-Gonzalez, Jose Adrian; Xie, Helou; de Pablo, Juan; Nealey, Paul

    2015-03-01

    We present experimental and theoretical study of nematic liquid crystal (5CB) confined to a thin cell between homeotropic anchoring top surface and chemically patterned planar/homeotropic anchoring bottom substrates. The chemically patterned substrate with different dimensions and ~ 4 nm depth topography induce the 5CB to align as the pattern direction as non-degenerate behavior, until the width of the straight line pattern is too wide to confine the 5CB to one direction and back to degenerate behavior. By changing the width of the straight line pattern, a brightness change of the intensity is shown by their corresponding crossed polarizer images. This change is mainly due to a discontinuity of the average angle between the molecules and the surface in function of line width, which is in excellent agreement with the Landan-de Gennes theory when the balance between the elastic deformation in the bulk and orientation of molecules close to the surface is simulated for different pattern dimensions. An elastic free energy transition is also observed from the numerical analysis when the strong planar anchoring for presented experiments is changed to weak. This 3D confinement by chemically patterns and small depth topography offers a new way to generate any geometry pattern controllable non-degenerate orientation, achieving switchable optical properties.

  20. Mortality follow-up of veterans who participated in military chemical and biological warfare agent testing between 1962 and 1972.

    PubMed

    Kang, Han K; Bullman, Tim

    2009-01-01

    Between 1962 and 1972, several thousand U.S. Navy personnel participated in Project SHAD (Shipboard Hazard and Defense). These tests potentially exposed participants to either active chemical or biological warfare agents or their simulants. This study examined mortality risk associated with participating in SHAD tests by comparing the cause-specific mortality of 4927 SHAD veterans to that of 10,927 other Navy veterans. Compared to other Navy veterans, SHAD veterans had an increased risk of overall mortality, which was due primarily to heart disease deaths.