Sample records for liquid chromatography columns

  1. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others


    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  2. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.


    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  3. Analysis of Cordyceps by multi-column liquid chromatography.


    Qian, Zhengming; Li, Shaoping


    Cordyceps is a famous traditional Chinese medicine (TCM) that has been used in China for hundreds of years. In the present study a multi-column liquid chromatography (MC-LC) system was developed for the qualitative analysis of macromolecules and micromolecules in Cordyceps. The MC-LC system includes a size exclusion pre-column, a size exclusion column (SEC) and a reversed phase column (RP) which were controlled by column-switching valves. The sample was separated by the size exclusion pre-column into two fractions (macromolecules and micromolecules). These fractions were further separated on SEC and RP columns, respectively. A diode array detector (DAD) and a mass spectrometer (MS) were used to detect the components. This MC-LC method was utilized for analysis of Cordyceps samples. Two macromolecular peaks and 15 micromolecular peaks were found in Cordyceps, and 11 of the micromolecular peaks were identified as adenosine-5'-monophosphate (AMP), phenylalanine, uridine, hypoxanthine, inosine, guanine, guanosine, deoxyadenosine-5'-monophosphate (dAMP), adenosine, adenine and cordycepin (or its isomer). This method is useful for quality control of Cordyceps.

  4. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography.


    Wu, Naijun; Bradley, Ashley C


    The effect of extra-column volume on observed linear velocity was investigated for columns of various internal diameters in very high pressure liquid chromatography. The results showed that the observed linear velocities were approximately 4.5, 9.5, 16.8, and 39.5% lower than the linear velocities corrected for the extra-column volume contribution for 4.6, 3.0, 2.1, and 1.0mm internal diameter columns, respectively. An empirical relationship between extra-column band broadening and extra-column volume was obtained using 50 cm long tubings of various internal diameters. The peak variance from the extra-column volume is near linearly proportional to the square of the extra-column volume for tubings with 0.0635-0.178 mm (0.025-0.07 in.) i.d. using a 50/50 acetonitrile/water mobile phase at flow rates greater than 0.3 mL/min. The effect of column internal diameter and column length on observed efficiency was studied using 50mm columns with four different column internal diameters and 2.1mm i.d columns with three different lengths. The results showed that the observed column efficiencies for 3.0, 2.1, and 1.0mm internal diameter columns were 18, 33, and 73% lower than that for a 4.6mm internal diameter column for benzophenone (k=5.5), respectively. An approximate 20% decrease in theoretical plate number was observed for propiophenone (k=3.3) using a 50 mm × 2.1 mm column packed with 1.7 μm particles compared to a 150 mm × 2.1 mm column packed with 5.0 μm particles, while the former column provided 9 fold faster separation. It is the column to extra column volume ratio instead of absolute extra-column volume that determines the degree of extra-column band-broadening in VHPLC.

  5. Group type analysis of asphalt by column liquid chromatography

    SciTech Connect

    Zhang, C.; Yang, J.; Xue, Y.; Li, Y.


    An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The model compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.

  6. Comparison of the kinetic performance of different columns for fast liquid chromatography, emphasizing the contributions of column end structure.


    Lambert, Nándor; Miyazaki, Shota; Ohira, Masayoshi; Tanaka, Nobuo; Felinger, Attila


    The kinetic performance of five chromatographic columns designed for fast liquid chromatography with different column packing materials - including fully porous (2.0 and 1.9μm particles), core-shell (2.6μm particles) or monolithic packings - with identical column dimensions (2.1×50mm) was tested. Since the tested monolithic column showed systematically better efficiency for early eluting compounds than the packed columns, an additional band broadening effect was suspected for the packed columns. The effects of the presence of the frits and the bed heterogeneity of the columns near the frits were characterized by a column-reversal method. It has been shown that significant differences - even 20-25% difference in efficiency - can exist between the two ends of the packed columns, while the monolithic column shows rather similar performance at either column end.

  7. Column selectivity in reversed-phase liquid chromatography. VI. Columns with embedded or end-capping polar groups.


    Wilson, N S; Gilroy, J; Dolan, J W; Snyder, L R


    A previous model of column selectivity for reversed-phase liquid chromatography (RP-LC) has been applied to an additional 21 columns with embedded or end-capping polar groups (EPGs). Embedded-polar-group columns exhibit a significantly different selectivity vs. non-EPG, type-B columns, generally showing preferential retention of hydrogen-bond donors, as well as decreased retention for hydrogen-bond acceptors or ionized bases. EPG-columns are also generally less hydrophobic (more polar) than are non-EPG-columns. Interestingly, columns with polar end-capping tend to more closely resemble non-EPG columns, suggesting that the polar group has less effect on column selectivity when used to end-cap the column versus the case of an embedded polar group. Column selectivity data reported here for EPG-columns can be combined with previously reported values for non-EPG columns to provide a database of 154 different columns. This enables a comparison of any two of these columns in terms of selectivity. However, comparisons that involve EPG columns are more approximate.

  8. Control of column temperature in reversed-phase liquid chromatography.


    Wolcott, R G; Dolan, J W; Snyder, L R; Bakalyar, S R; Arnold, M A; Nichols, J A


    When separations by reversed-phase liquid chromatography (RP-LC) are carried out at temperatures other than ambient, resulting retention times and bandwidths can depend on the equipment used. As a result, an RP-LC separation that is adequate when carried out on one LC system may prove inadequate when the separation is repeated on a second system. In the present study, various temperature-related problems which can result in a failure of method transfer for non-ambient RP-LC methods were examined. Means for correcting for such effects and thereby ensuring method transferability are described.

  9. Evaluation of a silicon oxynitride hydrophilic interaction liquid chromatography column in saccharide and glycoside separations.


    Wan, Huihui; Sheng, Qianying; Zhong, Hongmin; Guo, Xiujie; Fu, Qing; Liu, Yanfang; Xue, Xingya; Liang, Xinmiao


    The retention characteristics of a silicon oxynitride stationary phase for carbohydrate separation were studied in hydrophilic interaction chromatography mode. Four saccharides including mono-, di-, and trisaccharides were employed to investigate the effects of water content and buffer concentration in the mobile phase on hydrophilic interaction liquid chromatography retention. For the tested saccharides, the silicon oxynitride column demonstrated excellent performance in terms of separation efficiency, hydrophilicity, and interesting separation selectivity for carbohydrates compared to the bare silica stationary phase. Finally, the silicon oxynitride hydrophilic interaction liquid chromatography column was employed in the separation of complex samples of fructooligosaccharides, saponins, and steviol glycoside from natural products. The resulting chromatograms demonstrated good separation efficiency and longer retention compared with silica, which further confirmed the advantages and potential application of silicon oxynitride stationary phase for hydrophilic interaction liquid chromatography separation.

  10. Stationary phase modulation in liquid chromatography through the serial coupling of columns: A review.


    Alvarez-Segura, T; Torres-Lapasió, J R; Ortiz-Bolsico, C; García-Alvarez-Coque, M C


    Liquid chromatography with single columns often does not succeed in the analysis of complex samples, in terms of resolution and analysis time. A relatively simple solution to enhance chromatographic resolution is the modulation of the stationary phase through the serial coupling of columns. This can be implemented with any type of column using compatible elution conditions and conventional instruments. This review describes the key features of column coupling and published procedures, where two or more columns were coupled in series to solve separation problems. In all reports, the authors could not resolve their samples with single columns, whereas significant enhancement in chromatographic performance was obtained when the columns were combined. Particularly interesting is the reduction in the analysis time in the isocratic mode, which alleviates the "general elution problem" of liquid chromatography, and may represent a stimulus for the proposal of new procedures, especially in combination with mass spectrometric, electrochemical and refractometric detection. Developments proposed to make the serial coupling of columns useful in routine and research laboratories are outlined, including optimisation strategies that facilitate the selection of the appropriate column combination and elution conditions (solvent content, flow rate or temperature) in both isocratic and gradient modes. The availability of zero dead volume couplers, able to connect standard columns, and the commercialisation of short columns with multiple lengths, have expanded the possibilities of success.

  11. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis.


    Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C


    The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography.

  12. Halo columns: new generation technology for high speed liquid chromatography.


    Ali, Imran; Gaitonde, Vinay D; Grahn, Anders


    Fast speed and high sample loading and the pressing demands of industries and researchers are compelling scientists and manufacturers to explore the new horizons in column technology. Recently, superficially porous silica particle columns are manufactured with some salient features such as super fast speed, sharp peaks, good sample loading, and low backpressure. The commercially available columns are Halo (Advanced Material Technology, Wilmington, DE), Express (Supelco, Bellefonte, PA), and Proshell 120 (Agilent, Santa Clara, CA). Halo columns are of C(8), C(18), RP Amide, and HILIC types with 2.7 microm over all diameters, 0.5 microm porous thick layers containing 90 A as pore diameter, and 150 m(2)/g surface area. These columns have been used for fast separation of low molecular weight compounds with some exception for large molecules such as protein, peptides, and DNA. The present article describes the importance of these state-of-the-art superficially porous silica particles based columns with special emphasis on Halo columns. The different aspects of these columns such as structures, mechanism of separations, applications, and comparison, with conventional columns have been discussed.

  13. Preparation and Characterization of a Polymeric Monolithic Column for Use in High-Performance Liquid Chromatography (HPLC)

    ERIC Educational Resources Information Center

    Bindis, Michael P.; Bretz, Stacey Lowery; Danielson, Neil D.


    The high-performance liquid chromatography (HPLC) experiment, most often done in the undergraduate analytical instrumentation laboratory course, generally illustrates reversed-phase chromatography using a commercial C[subscript]18 silica column. To avoid the expense of periodic column replacement and introduce a choice of columns with different…

  14. Orthogonal separation on one beta-cyclodextrin column by switching reversed-phase liquid chromatography and hydrophilic interaction chromatography.


    Feng, Jia-tao; Guo, Zhi-mou; Shi, Hui; Gu, Jiang-ping; Jin, Yu; Liang, Xin-miao


    A dual retention combined with reversed-phase liquid chromatography (RP-LC) and hydrophilic interaction chromatography (HILIC) has been observed on beta-cyclodextrin (beta-CD) bonded stationary phase. A typical U-shaped retention curve was achieved owing to dual retention mechanism. Based on this observation, a beta-CD column can be operated under reversed-phase liquid chromatography (RP-LC) and hydrophilic interaction chromatography (HILIC) modes. Two-dimensional liquid chromatography (2D-LC) analysis can be realized on just a beta-CD column by switching these two different separation modes. In this study, off-line 2D-LC analysis for a natural product was carried out to prove the orthogonal separation between RP-LC and HILIC modes on a Click beta-CD column. Herba Hedyotis Diffusae, the whole grass of Hedyotis Diffusae wild was extracted with water, pretreated with macroporous resin and then first separated at RP-LC mode on the Click beta-CD column to obtain successive fractions, which were then reanalyzed at HILIC mode on the same Click beta-CD column. The result proved that both separation modes on the Click beta-CD column have good retention and peak shape, and these two separation modes have good orthogonality. 2D-LC analysis revealed abundant information in the natural product. Especially numerous minor components were enriched and separated. The mobile phase used in RP-LC and HILIC modes can be same and the switch between these two separation modes is easily realized by changing the ratio of the acetonitrile and water. Hence the mobile phase in this 2D-LC system is completely compatible. This advantage makes this combination is an appropriate 2D-LC method for the solutes having retention at both separation modes.

  15. Robust naphthyl methacrylate monolithic column for high performance liquid chromatography of a wide range of solutes.


    Jonnada, Murthy; El Rassi, Ziad


    An organic monolithic column based on the co-polymerization of 2-naphthyl methacrylate (NAPM) as the functional monomer and trimethylolpropane trimethacrylate (TRIM) as the crosslinker was introduced for high performance reversed-phase liquid chromatography (RPC). The co-polymerization was performed in situ in a stainless steel column of 4.6mm i.d. in the presence of a ternary porogen consisting of 1-dodecanol and cyclohexanol. This monolithic column (referred to as naphthyl methacrylate monolithic column or NMM column) showed high mechanical stability at relatively high mobile phase flow velocity indicating that the column has excellent hydrodynamic characteristics. To characterize the NMM column, different probe molecules including alkyl benzenes, and aniline, benzene, toluene and phenol derivatives were chromatographed on the column and the results in terms of k, selectivity and plate counts were compared to those obtained on an octadecyl silica (ODS) column in order to assess the presence of π-π and hydrophobic interactions on the NMM column under otherwise the same elution conditions. The NMM column offered additional π-π interactions with aromatic molecules in addition to hydrophobic interactions under RPC elution conditions. Run-to-run and column-to-column reproducibility of solute k values were evaluated, and percent relative standard deviation of <1% and ∼2-3.5%, respectively, were obtained. Six standard proteins were readily separated on the NMM column using shallow (30min at 1.0mL/min), steep (10min at 1.0mL/min) and ultra steep (1min at 3.0mL/min) linear gradient elution at increasing ACN concentration in the mobile phase using a 10cm×4.6mm i.d. column in case of shallow and steep linear gradients and a 3cm×4.6mm i.d. column for ultra steep linear gradient.

  16. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.


    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping


    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences.

  17. Quantification of PSP toxins in toxic shellfish matrices using post-column oxidation liquid chromatography and pre-column oxidation liquid chromatography methods suggests post-column oxidation liquid chromatography as a good monitoring method of choice.


    Rey, Verónica; Botana, Ana M; Botana, Luis M


    Different shellfish samples were analyzed by Pre- and Post-Column Oxidation Liquid Chromatography to compare the toxins profiles and get information about the degree of accomplishment of both methods. Comparison of the results obtained, the linear correlation coefficient (r(2) = 0.94) and the paired t test (two tails, α = 0.05), indicated that there were not significant differences between both sets of data. Nevertheless, important differences related to toxins profiles were found: it was remarkable the difference in results for both Gonyautoxins 1 and 4 and Decarbamoylgonyautoxins 2 and 3, depending on the method of choice, due to an overestimation in the Pre-Column method. It was necessary to modify the elution conditions in the Post-Column method to avoid the interference of matrix peaks at retention times closer to the retention times of the calibrants, mostly when working with oyster and scallop matrices, although it is a good method to use routinely.

  18. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.


    Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C


    The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed.

  19. High-performance liquid chromatography of histamine and 1-methylhistamine with on-column fluorescence derivatization.


    Saito, K; Horie, M; Nose, N; Nakagomi, K; Nakazawa, H


    An on-column fluorometric derivatization method was developed for the determination of histamine and 1-methylhistamine (HMs) by high-performance liquid chromatography. The system for the derivatization consisted only of a commercially available single-plunger pump and a reversed-phase C18 column supported on synthetic polymer with a mobile phase of acetonitrile and alkaline borate buffer solution containing o-phthalaldehyde as a derivatization reagent. It required no additional reaction system as for a post-column derivatization method. Injected HMs might be derivatized to a fluorophore on the inlet site of the high-performance liquid chromatographic column, followed by chromatography on the same column. Optimization of the on-column reaction conditions resulted in a simple and sensitive analytical method for the determination of HMs with excellent reproducibility and linearity of 0.05-5 micrograms/ml of both HMs. Application of this method to the determination of HMs in food samples resulted in a limit of quantification of 0.05 mg/100 g and in a greater than 95% overall mean recovery at a fortification of 0.1 mg/g of both HMs. This method was furthermore applicable to the determination of histamine released from rat peritoneal mast cells.

  20. Evaluation of column hardware on liquid chromatography-mass spectrometry of phosphorylated compounds.


    Sakamaki, Hiroshi; Uchida, Takeharu; Lim, Lee Wah; Takeuchi, Toyohide


    The influences of column hardware, such as chromatographic tubes and frits, on liquid chromatography-mass spectrometry (LC-MS) analysis of phosphorylated compounds were evaluated. The signal to noise ratio (S/N) and the intensity of flavin adenine dinucleotide (FAD) using a glass lined tube and polyethylene frit (GL-PE) column was approximately 170 and 90 times higher, respectively, than those using conventional stainless steel tube and stainless steel frit (S-S) column. In addition, the retention time of FAD using GL-PE column was the shortest compared to other columns. Interaction between phosphorylated compounds and metal ions in the flow path in the S-S column was stronger than that between them and the GL-PE column. Thus, the metal ions in the flow path in GL-PE column were low. Since the specific surface area of a pair of frits was 70 times larger than that of a chromatographic tube (150 mm×2.1 mm), the frits were found to have more effective improvement of the S/N as well as the intensity than the chromatographic tubes, when phosphorylated compounds were analyzed by LC-MS. When the evaluated phosphorylated compounds were analyzed by LC-MS(/MS) using a GL-PE column, the intensity and S/N were increased.

  1. Post-column labeling techniques in amino acid analysis by liquid chromatography.


    Rigas, Pantelis G


    Amino acid analysis (AAA) has always presented an analytical challenge in terms of sample preparation, separation, and detection. Because of the vast number of amino acids, various separation methods have been applied taking into consideration the large differences in their chemical structures, which span from nonpolar to highly polar side chains. Numerous separation methods have been developed in the past 60 years, and impressive achievements have been made in the fields of separation, derivatization, and detection of amino acids (AAs). Among the separation methods, liquid chromatography (LC) prevailed in the AAA field using either pre-column or post-column labeling techniques in order to improve either separation of AAs or selectivity and sensitivity of AAA. Of the two approaches, the post-column technique is a more rugged and reproducible method and provides excellent AAs separation relatively free from interferences. This review considers current separations combined with post-column labeling techniques for AAA, comparison with the pre-column methods, and the strategies used to develop effective post-column methodology. The focus of the article is on LC methods coupled with post-column labeling techniques and studying the reactions to achieve optimum post-column derivatization (PCD) conditions in order to increase sensitivity and selectivity using various types of detectors (UV-Vis, fluorescence, electrochemical etc.) and illustrating the versatility of the PCD methods for practical analysis.

  2. Column switching liquid chromatography and post-column photochemically fluorescence detection to determine imidacloprid and 6-chloronicotinic acid in honeybees.


    García, M D Gil; Galera, M Martínez; Valverde, R Santiago; Galanti, A; Girotti, S


    The determination of imidacloprid and its main metabolite (6-chloronicotinic acid) in honeybees was performed by liquid chromatography with post-column photochemical derivatisation in alkaline medium and fluorescence detection. The compounds were extracted from honeybees with acetone under ultrasound conditions prior to liquid-liquid partition with dichloromethane. The separation of extract components was performed using a 50 mm x 4.6 mm i.d. short column packed with 5 microm Aquasil C(18) using an acetonitrile:water gradient program as mobile phase. Injection of samples in 0.1 mol L(-1) H(3)PO(4)/KH(2)PO(4) buffer solution (pH 3) improved the chromatographic separation between the most polar components of matrix and the 6-chloronicotinic acid. Matrix components were removed to waste using an on-line clean-up method previously to post-column reaction. Limits of quantification were 0.3 and 5.0 microg L(-1) (corresponding to 1.2 and 20.0 microg kg(-1) in the honeybee sample) for imidacloprid and 6-chloronicotinic acid, respectively. The recovery was ranged from 80.2 to 91.7% with a relative standard deviation lower than 9.0%.

  3. Core-Shell Columns in High-Performance Liquid Chromatography: Food Analysis Applications

    PubMed Central

    Preti, Raffaella


    The increased separation efficiency provided by the new technology of column packed with core-shell particles in high-performance liquid chromatography (HPLC) has resulted in their widespread diffusion in several analytical fields: from pharmaceutical, biological, environmental, and toxicological. The present paper presents their most recent applications in food analysis. Their use has proved to be particularly advantageous for the determination of compounds at trace levels or when a large amount of samples must be analyzed fast using reliable and solvent-saving apparatus. The literature hereby described shows how the outstanding performances provided by core-shell particles column on a traditional HPLC instruments are comparable to those obtained with a costly UHPLC instrumentation, making this novel column a promising key tool in food analysis. PMID:27143972

  4. Flow rate dependent extra-column variance from injection in capillary liquid chromatography.


    Aggarwal, Pankaj; Liu, Kun; Sharma, Sonika; Lawson, John S; Dennis Tolley, H; Lee, Milton L


    Efficiency and resolution in capillary liquid chromatography (LC) can be significantly affected by extra-column band broadening, especially for isocratic separations. This is particularly a concern in evaluating column bed structure using non-retained test compounds. The band broadening due to an injector supplied with a commercially available capillary LC system was characterized from experimental measurements. The extra-column variance from the injection valve was found to have an extra-column contribution independent of the injection volume, showing an exponential dependence on flow rate. The overall extra-column variance from the injection valve was found to vary from 34 to 23 nL. A new mathematical model was derived that explains this exponential contribution of extra-column variance on chromatographic performance. The chromatographic efficiency was compromised by ∼130% for a non-retained analyte because of injection valve dead volume. The measured chromatographic efficiency was greatly improved when a new nano-flow pumping system with integrated injection valve was used.

  5. Column selectivity in reversed-phase liquid chromatography. IV. Type-B alkyl-silica columns.


    Gilroy, Jonathan J; Dolan, John W; Snyder, Lloyd R


    Columns for reversed-phase HPLC (RP-LC) can be characterized by five, retention-related parameters: H (hydrophobicity), S (steric selectivity), A (hydrogen-bond acidity), B (hydrogen-bond basicity), and C (cation-exchange behavior). In the present study, values of the latter parameters have been measured for 92 type-B (low metals content)alkyl-silica columns and compared to column properties such as ligand length,ligand concentration, pore diameter, and the presence or absence of end-capping. With the exception of five columns of unusual design, retention factors, k, for 16 representative test compounds were correlated with values of H, S, etc., within an average +/- 1.2% (1 standard deviation, SD), suggesting that all significant solute-column interactions are recognized by these five column parameters. A single-valued function F(s) is proposed to measure differences in selectivity for any two RP-LC columns whose values of H, S, etc., are known. This allows the easy selection of columns whose selectivity is desired to be either similar to or different from a starting column, for application in either routine analysis or method development.

  6. Stationary phase optimized selectivity liquid chromatography: Basic possibilities of serially connected columns using the "PRISMA" principle.


    Nyiredy, Sz; Szucs, Zoltán; Szepesy, L


    A new procedure (stationary phase optimized selectivity liquid chromatography: SOS-LC) is described for the optimization of the HPLC stationary phase, using serially connected columns and the principle of the "PRISMA" model. The retention factors (k) of the analytes were determined on three different stationary phases. By use of these data the k values were predicted applying theoretically combined stationary phases. These predictions resulted in numerous intermediate theoretical separations from among which only the optimal one was assembled and tested. The overall selectivity of this separation was better than that of any individual base stationary phase. SOS-LC is independent of the mechanism and the scale of separation.

  7. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography.


    Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li


    Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved.

  8. How to select equivalent and complimentary reversed phase liquid chromatography columns from column characterization databases.


    Borges, Endler M


    Three RP-LC column characterization protocols [Tanaka et al. (1989), Snyder et al. (PQRI, 2002), and NIST SRM 870 (2000)] were evaluated using both Euclidian distance and Principal Components Analysis to evaluate effectiveness at identifying equivalent columns. These databases utilize specific chromatographic properties such as hydrophobicity, hydrogen bonding, shape/steric selectivity, and ion exchange capacity of stationary phases. The chromatographic parameters of each test were shown to be uncorrelated. Despite this, the three protocols were equally successful in identifying similar and/or dissimilar stationary phases. The veracity of the results has been supported by some real life pharmaceutical separations. The use of Principal Component Analysis to identify similar/dissimilar phases appears to have some limitations in terms of loss of information. In contrast, the use of Euclidian distances is a much more convenient and reliable approach. The use of auto scaled data is favoured over the use of weighted factors as the former data transformation is less affected by the addition or removal of columns from the database. The use of these free databases and their corresponding software tools shown to be valid for identifying similar columns with equivalent chromatographic selectivity and retention as a "backup column". In addition, dissimilar columns with complimentary chromatographic selectivity can be identified for method development screening strategies.

  9. Capillary monolithic titania column for miniaturized liquid chromatography and extraction of organo-phosphorous compounds.


    Abi Jaoudé, Maguy; Randon, Jérôme


    A new sol-gel protocol was designed and optimized to produce titanium-dioxide-based columns within confined geometries such as monolithic capillary columns and porous-layer open-tubular columns. A surface pre-treatment of the capillary enabled an efficient anchorage of the monolith to the silica capillary wall during the synthesis. The monolith was further synthesized from a solution containing titanium n-propoxide, hydrochloric acid, N-methylformamide, water, and poly(ethylene oxide) as pore template. The chromatographic application of capillary titania-based columns was demonstrated with the separation of a set of phosphorylated nucleotides as probe molecules using aqueous normal-phase liquid chromatography conditions. Capillary titania monoliths offered a compromise between the high permeability and the important loading capacity needed to potentially achieve miniaturized sample preparations. The specificity of the miniaturized titania monolithic support is illustrated with the specific enrichment of 5'-adenosine mono-phosphate. The monolithic column offered a ten times higher loading capacity of 5'-adenosine mono-phosphate compared with that of the capillary titania porous-layer open-tubular geometry.

  10. Application of Pre-Column Labeling Liquid Chromatography for Canine Plasma-Free Amino Acid Analysis

    PubMed Central

    Azuma, Kazuo; Hirao, Yoshiko; Hayakawa, Yoshihiro; Murahata, Yusuke; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Ito, Norihiko


    Plasma-free amino acid (PFAA) levels are a useful metric for diagnosing cancer and providing a prognosis. However, the use of analysis of PFAA levels has been limited in the veterinary medicine field. We addressed the application of liquid chromatography (LC) using a pre-column labeling technique for analysis of canine PFAA levels. This method significantly shortened the analysis time relative to conventional methods. No diurnal fluctuations were detected at 9:00 AM in most PFAA levels, and food intake increased the levels of some PFAAs, including valine, leucine, tyrosine, phenylalanine, and proline. These results indicate that LC with pre-column labeling is useful for measuring canine PFAA levels, for which time of day and interval after food intake must be taken into consideration. PMID:26771650

  11. Electrochemically-modulated liquid chromatography (EMLC): Column design, retention processes, and applications

    SciTech Connect

    Ting, En -Yi


    This work describes the continued development of a new separation technique, electrochemically-modulated liquid chromatography (EMLC), from column design, retention mechanisms to pharmaceutical applications. The introduction section provides a literature review of the technique as well as a brief overview of the research in each of the chapters. This section is followed by four chapters which investigate the issues of EMLC column design, the retention mechanism of monosubstituted aromatic compounds, and the EMLC-based applications to two important classes of pharmaceutical compounds (i.e., corticosteroids and benzodiazepines). These four sections have been removed to process separately for inclusion on the database. The dissertation concludes with a general summary, a prospectus, and a list of references cited in the General Introduction. 32 refs.

  12. Determination of fungicide residues in fruits by coupled-column liquid chromatography.


    Zamora, Tatiana; Hidalgo, Carmen; López, Francisco J; Hernández, Félix


    Coupled-column liquid chromatography with fluorescence detection was applied to the determination of o-phenylphenol and bitertanol residues in orange and banana fruits. After extraction with a mixture of acetone, dichloromethane-petroleum ether, and ethyl acetate, an extract aliquot of 100 microL was injected directly without any additional clean-up into the chromatographic system using two reversed phase C18 coupled columns. The LC-LC approach allowed automated sample clean up of the vegetal extracts, leading to a simple and rapid analytical procedure, with limits of quantification between 0.01 and 0.05 mg kg(-1). Recovery experiments performed on orange and banana samples fortified at different concentrations (0.01 - 4 mg kg(-1)) gave average recoveries between 70 and 113% with relative standard deviations lower than 15%. The procedure developed was finally applied to orange and banana samples from different geographical locations and the results were confirmed by GC-MS.

  13. Comprehensive two-dimensional high performance liquid chromatography system with immobilized liposome chromatography column and monolithic column for separation of the traditional Chinese medicine Schisandra chinensis.


    Wang, Shuowen; Wang, Chen; Zhao, Xin; Mao, Shilong; Wu, Yutian; Fan, Guorong


    A comprehensive two-dimensional (2D) separation is one that employs two separation dimensions (columns) and draws on all of the available resolving power from each of the dimensions of separate the components in a sample. In this study, a comprehensive 2D chromatography approach was developed for the separation and identification of membrane permeable compounds in a famous traditional Chinese medicine of Schisandra chinensis. The first dimensional column was the immobilized liposome chromatography (ILC) column, which mimics the biological membranes and can be used to study drug-membrane interactions in liquid chromatography. Using an automatic ten-port switching valve equipped with two sample loops, the section of the first-dimension was introduced in the second-dimension consist of a silica monolithic column. More than 40 components in Schisandra chinensis were resolved by using the developed separation system and among them 14 compounds were identified interacting with the ILC column based on their retention action, UV and mass data. With this comprehensive 2D-HPLC system, the three-dimensional chromatographic fingerprints of Schisandra chinensis were preliminarily established and processed by using principal component analysis and hierarchical clustering analysis. The obtained information can distinguish the unacceptable samples of the quality control. The result demonstrated that the 2D biochromatography system has been demonstrated to have more advantages of finding strong binding bioactive components, providing an enhanced peak capacity, good sensitivity and powerful resolution biological fingerprinting analysis of complex TCMs, which was a useful means to control the quality of and to clarify the membrane permeability of the compounds in Schisandra chinensis.

  14. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.


    Gritti, Fabrice; Guiochon, Georges


    The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in

  15. Impact of reversed phase column pairs in comprehensive two-dimensional liquid chromatography.


    Allen, Robert C; Barnes, Brian B; Haidar Ahmad, Imad A; Filgueira, Marcelo R; Carr, Peter W


    A major issue in optimizing the resolving power of two-dimensional chromatographic separations is the choice of the two phases so as to maximize the distribution of the analytes over the separation space. In this work, we studied the choice of appropriate reversed phases to use in on-line comprehensive two-dimensional liquid chromatography (LC×LC). A set of four chemically different conventional bonded reversed phases was used in the first dimension. The second dimension column was either a conventional bonded C18 phase or a carbon-clad phase (CCP). The LC×LC chromatograms and contour plots were all rather similar indicating that the selectivities of the two phases were also similar regardless of the reverse phase column used in the first dimension. Further, the spatial coverage seen with all four first dimension stationary phases when paired with a second dimension C18 phase were low and the retention times were strongly correlated. However, when the C18 column was replaced with the CCP column much improved separations were observed with higher spatial coverages, greater orthogonalities and significant increases in the number of observed peaks.

  16. Ionic liquid-based zwitterionic organic polymer monolithic column for capillary hydrophilic interaction chromatography.


    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Zhang, Xiaodan; Zhang, Lihua; Zhang, Yukui


    In the current study, a novel ionic liquid-based zwitterionic organic polymer monolithic column was developed by copolymerizing 1-vinyl-3-(butyl-4-sulfonate) imidazolium, acrylamide and N,N'-methylenebisacrylamide in a quaternary porogenic solvent consisting of formamide, dimethyl sulphoxide, polyethylene glycol 8000 and polyethylene glycol 10,000 for capillary hydrophilic interaction chromatography. The monolithic stationary phase was optimized by adjusting the amount of monomer in the polymerization solution along with the composition of porogenic solvent. The optimized monolith exhibited excellent selectivity and favorable retention for nucleosides and benzoic acid derivatives. The primary factors affecting the separation efficiency of the monolithic column (including acetonitrile content, pH, and buffer salt concentration in the mobile phase) have been thoroughly evaluated. Excellent reproducibility of the retention times for five nucleosides was achieved, with relative standard deviations of run-to-run (n = 3), column-to-column (n = 3) and batch-to-batch (n = 3) in the range of 0.18-0.48%, 2.33-4.20% and 3.07-6.50%, respectively.

  17. Blind column selection protocol for two-dimensional high performance liquid chromatography.


    Burns, Niki K; Andrighetto, Luke M; Conlan, Xavier A; Purcell, Stuart D; Barnett, Neil W; Denning, Jacquie; Francis, Paul S; Stevenson, Paul G


    The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material.

  18. Resolution of diacylglycerol moieties of natural glycerophospholipids by gas-liquid chromatography on polar capillary columns.


    Myher, J J; Kuksis, A


    A rapid and practical method has been developed for the gas-liquid chromatographic determination of the sn-1,2-diacylglycerol moieties of natural glycerophospholipids using polar wall-coated open tubular columns. The method gives complete resolution and quantitative estimates for all species according to molecular weight and degree of unsaturation, including stearoyl docosahexaenoylglycerol and related polyunsaturates. For this purpose the sn-1,2-diacylglycerols are obtained from the glycerophospholipids by hydrolysis with phospholipase C and are converted into the trimethylsilyl or tertiary-butyldimethylsilyl ethers. The silyl ethers are separated by gas-liquid chromatography on the capillary glass columns coated with a polar cyanopropylsiloxane polymer, in the temperature range 175-250 degrees C, using hydrogen as the carrier gas. Practical applications of the method are illustrated by analyses of the sn-1,2-diacylglycerol moieties of the phosphatidylcholines of soybean phosphatides, egg yolk, and rat liver. The method of analysis is applicable to other classes of glycerophospholipids and the total time requirements for the analysis of any one phospholipid class are comparable to those for a fatty acid analysis.

  19. Determination of S-carboxymethylcysteine in serum by reversed-phase ion-pair liquid chromatography with column switching following pre-column derivatization with o-phthalaldehyde.


    De Schutter, J A; Van der Weken, G; Van den Bossche, W; de Moerloose, P


    A method is described for the determination of S-(carboxymethyl)-L-cysteine in serum. After addition of S-(carboxyethyl)-L-cysteine as internal standard, both compounds are extracted into methanol, converted into fluorescent derivatives with o-phthalaldehyde and quantitatively determined by reversed-phase high-performance liquid chromatography. Chromatography of unwanted amino acid derivatives is avoided by column switching, thereby shortening analysis time and increasing column lifetime. The technique was applied in a study of the bioavailability of S-(carboxymethyl)-L-cysteine after oral administration to humans. The concentration-response curve was linear from 2 to 16 micrograms/ml; mean serum concentrations are reported.

  20. Chromatographic performance of large-pore versus small-pore columns in micellar liquid chromatography.


    McCormick, Timothy J; Foley, Joe P; Lloyd, David K


    Micellar liquid chromatography (MLC) is useful in bioanalysis because proteinaceous biofluids can be directly injected onto the column. The technique has been limited in part because of the apparently weak eluting power of micellar mobile phases. It has recently been shown [Anal. Chem. 72 (2000) 294] that this may be overcome by the use of large pore size stationary phases. In this work, large-pore (1000 A) C(18) stationary phases were evaluated relative to conventional small-pore (100 A) C(18) stationary phases for the direct sample injection of drugs in plasma. Furthermore, the difference between the large and small pore phases in gradient elution separations of mixtures of widely varying hydrophobicities was investigated. Large-pore stationary phases were found to be very effective for eluting moderately to highly hydrophobic compounds such as ibuprofen, crotamiton, propranolol, and dodecanophenone, which were highly retained on the small-pore stationary phases typically used in MLC. The advantages of direct introduction of biological samples (drugs in plasma) and rapid column re-equilibration after gradient elution in MLC were maintained with large-pore phases. Finally, recoveries, precision, linearity, and detection limits for the determination of quinidine and DPC 961 in spiked bovine plasma were somewhat better using MLC with wide pore phases.

  1. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.


    Zhu, Yang; Morisato, Kei; Hasegawa, George; Moitra, Nirmalya; Kiyomura, Tsutomu; Kurata, Hiroki; Kanamori, Kazuyoshi; Nakanishi, Kazuki


    The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes.

  2. Determination of biogenic amines in beer with pre-column derivatization by high performance liquid chromatography.


    Tang, Tao; Shi, Tianyu; Qian, Kun; Li, Pingliang; Li, Jianqiang; Cao, Yongsong


    Eighteen samples of commercially available Chinese beer were analyzed in order to determine the content of biogenic amines. The method involves pre-column derivatization of the amines with 4-chloro-3,5-dinitrobenzotrifluoride (CNBF) and subsequent analysis by RP-HPLC (reversed phase-high performance liquid chromatography) with diode array detection. The labeled biogenic amines were separated on a Kromasil C18 column (250mmx4.6mm, 5microm) at room temperature and UV detection was applied at 254nm. The separation of seven labeled biogenic amines was achieved within 22min by elution acetonitrile and HAc-NaAc buffers. The method linearity, calculated for each biogenic amine, has a correlation coefficient higher than 0.9925, in concentrations ranging from 2.9micromolL(-1) to 565micromolL(-1). Detection limits of biogenic amines were 0.056-0.87micromolL(-1), at a signal-to-noise ratio of 3. The proposed method has been applied to the quantitative determination of spermine, phenethylamine, spermidine, histamine, tyramine, tryptamine and putrescine in beer with recoveries of 91.9-103.1% and R.S.D. of 2.86-5.63%. Quantitation is relative to external standards. The results showed that each kind of beer examined contained at least three biogenic amines. Putrescine, histamine and tyramine were detected in all samples. Spermidine was detected in 89% of the beers. Spermine, tryptamine and phenylethylamine occurred in 78%, 61% and 44% of the beers examined, respectively. These levels were below the level that may elicit direct adverse reactions for most consumers.

  3. Novel approach to determine ghrelin analogs by liquid chromatography with mass spectrometry using a monolithic column.


    Zemenova, Jana; Sykora, David; Adamkova, Hana; Maletinska, Lenka; Elbert, Tomas; Marek, Ales; Blechova, Miroslava


    In our project, ghrelin analogs possessing enhanced stability and potential to significantly increase food intake were used. Three newly synthesized ghrelin analogs with fatty acid residues consisting of 8, 10, and 14 carbon atoms were studied. The main goal of this work was to develop a suitable analytical method for the determination of the stability of the novel ghrelin analogs in plasma. An appropriate liquid chromatography-mass spectrometry method was developed and optimized. The results obtained were compared with the data measured by using a commercial enzyme-linked immunosorbent assay kit, and a good correlation was found. A preparation strategy for plasma samples was optimized and consisted of simple dilution of the plasma samples followed by direct injection onto a very short monolithic column in combination with mass spectrometric detection. The developed analytical method was utilized for the determination of the stability of the prepared lipopeptides in plasma and for the quantification of the lipopeptides in a preliminary pharmacokinetic study. The feasibility of the developed separation method was clearly demonstrated. Accuracy and precision were within 80-120% and ±20% limits, respectively. Calibration curves were constructed in the range of 1-250 μg/mL.

  4. Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns.


    Biba, Mirlinda; Jiang, Eileen; Mao, Bing; Zewge, Daniel; Foley, Joe P; Welch, Christopher J


    New mixed-mode columns consisting of reversed-phase and ion-exchange separation modes were evaluated for the analysis of short RNA oligonucleotides (∼20mers). Conventional analysis for these samples typically involves using two complementary methods: strong anion-exchange liquid chromatography (SAX-LC) for separation based on charge, and ion-pair reversed-phase liquid chromatography (IP-RPLC) for separation based on hydrophobicity. Recently introduced mixed-mode high performance liquid chromatography (HPLC) columns combine both reversed-phase and ion-exchange modes, potentially offering a simpler analysis by combining the benefits of both separation modes into a single method. Analysis of a variety of RNA oligonucleotide samples using three different mixed-mode stationary phases showed some distinct benefits for oligonucleotide separation and analysis. When using these mixed-mode columns with typical IP-RPLC mobile phase conditions, such as ammonium acetate or triethylammonium acetate as the primary ion-pair reagent, the separation was mainly based on the IP-RPLC mode. However, when changing the mobile phase conditions to those more typical for SAX-LC, such as salt gradients with NaCl or NaBr, very different separation patterns were observed due to mixed-mode interactions. In addition, the Scherzo SW-C18 and SM-C18 columns with sodium chloride or sodium bromide salt gradients also showed significant improvements in peak shape.

  5. Applications of monolithic columns in liquid chromatography-based clinical chemistry assays.


    Bunch, Dustin R; Wang, Sihe


    Monolithic columns have slowly been applied to HPLC methods for clinical chemistry testing in the last 10 years. The application areas include therapeutic drug monitoring, drugs of abuse, vitamins, porphyrins, and steroids. In comparison with conventional particulate columns, the monolithic columns may offer shorter chromatography time, more robustness, and better resolution for certain analytes. The potential drawback of large mobile phase consumption may be improved with smaller id columns, which are currently on the market. Methods covered in this review are those searchable in PubMed up to December 2010. This review highlights the emergence of monolithic column technology in HPLC methods used for clinical chemistry testing. The goals of this review are threefold: (i) To identify the areas of clinical chemistry that analytical monolithic columns have been used in HPLC methods. (ii) To demonstrate the application of analytical monolithic columns in HPLC methods using different detection systems. (iii) To discuss the advantages and limitations of the monolithic columns compared with particulate columns in the clinical chemistry applications.

  6. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography.


    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin


    250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC.

  7. Hydrothermal preparation of hybrid carbon/silica monolithic capillary column for liquid chromatography.


    Yang, Peiling; Wang, Wentao; Xiao, Xing; Jia, Li


    A simple, easy and economical approach for the preparation of a hybrid carbon/silica monolithic capillary column was described for the first time by using silica monolith as framework in combination with hydrothermal carbonization at 180°C. During the preparation process, formamide was introduced to the reaction solutions to reduce the dissolution rate of monolithic silica skeleton and its optimal concentration was 1.5 M. Fourier transform infrared spectrometry, scanning electron microscopy, energy dispersive X-ray spectrometry, and inverse size exclusion chromatography were carried out to characterize the as-prepared column. The results demonstrated that carbon spheres ranging from 150 to 1000 nm were successfully attached to the surface of silica skeleton. The prepared hybrid carbon/silica column had a permeability of 4.4 × 10(-14) m(2). Chromatographic performance of the column was evaluated by separation of various compounds including alkylbenzenes, nucleosides and bases, and aromatic acids. The column exhibited an efficiency of 75,000 plates/m for butylbenzene at the optimal linear velocity of 0.23 mm/s. The successful separation of these compounds and the study on mechanism indicated that the column can be applied in mixed-mode chromatography.

  8. Characterization by the solvation parameter model of the retention properties of commercial ionic liquid columns for gas chromatography.


    Rodríguez-Sánchez, S; Galindo-Iranzo, P; Soria, A C; Sanz, M L; Quintanilla-López, J E; Lebrón-Aguilar, R


    For the first time, four commercial ionic liquid columns (SLB-IL59, SLB-IL76, SLB-IL82 and SLB-IL100) for gas chromatography have been comprehensively evaluated in terms of efficiency, polarity and solvation properties. Grob tests and McReynolds constants showed that they were all high-efficiency columns of high polarity, but with low inertness to compounds with hydrogen bonding capabilities. The solvation parameter model was used to characterize the solvation interactions of the four columns in the 80-160°C temperature range. Results revealed that all the ionic liquids studied can be considered moderately hydrogen-bond acid and highly cohesive stationary phases, on which the dominant contributions to retention were the dipolar-type and hydrogen-bond base interactions, while π-π and n-π interactions were barely significant. The SLB-IL59 column provided the best separation of homologs, while the SLB-IL76 and SLB-IL100 columns had the most basic and the most acidic phases, respectively. A principal component analysis for the commonly used stationary phases in capillary GC showed that these commercial ionic liquid columns fill an empty area of the available selectivity space, which clearly enhances the separation capacity of this technique.

  9. Refolding and simultaneous purification of recombinant human proinsulin from inclusion bodies on protein-folding liquid-chromatography columns.


    Yuan, Jie; Zhou, Huifang; Yang, Yicong; Li, Weimin; Wan, Yi; Wang, Lili


    Protein-folding liquid chromatography (PFLC) is an effective and scalable method for protein renaturation with simultaneous purification. However, it has been a challenge to fully refold inclusion bodies in a PFLC column. In this work, refolding with simultaneous purification of recombinant human proinsulin (rhPI) from inclusion bodies from Escherichia coli were investigated using the surface of stationary phases in immobilized metal ion affinity chromatography (IMAC) and high-performance size-exclusion chromatography (HPSEC). The results indicated that both the ligand structure on the surface of the stationary phase and the composition of the mobile phase (elution buffer) influenced refolding of rhPI. Under optimized chromatographic conditions, the mass recoveries of IMAC column and HPSEC column were 77.8 and 56.8% with purifies of 97.6 and 93.7%, respectively. These results also indicated that the IMAC column fails to refold rhPI, and the HPSEC column enables efficient refolding of rhPI with a low-urea gradient-elution method. The refolded rhPI was characterized by circular dichroism spectroscopy. The molecular weight of the converted human insulin was further confirmed with SDS-18% PAGE, Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) and the biological activity assay by HP-RPLC.

  10. Greener liquid chromatography using a guard column with micellar mobile phase for separation of some pharmaceuticals and determination of parabens.


    Youngvises, Napaporn; Chaida, Thanatcha; Khonyoung, Supada; Kuppithayanant, Nattawan; Tiyapongpattana, Warawut; Itharat, Arunporn; Jakmunee, Jaroon


    In this research, a greener chromatography employing a short column, Zorbax SB C18 cartridge (12.5 × 4.6 mm, 5 μm) commonly used as a guard column in a reverse phase high performance liquid chromatography (RP-HPLC), was utilized as the analytical column in conjunction with a more eco-friendly micellar mobile phase of sodium dodecyl sulfate (SDS) for separation tertiary mixtures of local anesthetics and antihistamines; and binary mixture of colds drugs; and quaternary mixture of some parabens with different separation conditions. The chromatographic behavior of these analytes was studied to demonstrate separation efficiency of this guard column in a micellar mobile phase. Moreover, this column and SDS mobile phase was exploited for determination of parabens in 64 samples of cosmetic product, both those that were produced locally in the community and those that were commercially manufactured. Linear calibration graphs of the parabens as detected at 254 nm were obtained in the range of 1-100 μmol L(-1) with R(2)>0.9990. Percentage recoveries were 92.4-109.2 with %RSD<3, and the limit of detection and quantitation were 0.04-0.10 and 0.20-0.80 μmol L(-1), respectively. This analytical system is not only greener but also faster and employing simpler sample preparation than a conventional liquid chromatographic system.

  11. Direct determination of benzamides in serum by column-switching high-performance liquid chromatography.


    Chiba, Ryoko; Ogasawara, Ayako; Kubo, Teppei; Yamazaki, Hiroyuki; Umino, Masuo; Ishizuka, Yoichi


    A column-switching high-performance liquid chromatographic method with fluorescence detection was developed for the simultaneous determination of four benzamide-type anti-psychotic drugs: sulpiride, tiapride, sultopride and metoclopramide in human serum. In this method, a TSKgel Super-ODS column was used as an analytical column, and a TSKgel G 2000SW was prepared as a pretreatment column. Under the optimized analytical conditions, four benzamide-type anti-psychotic drugs were eluted within 18 min. The detection limits (S/N = 3) for sulpiride, tiapride, sultopride and metoclopramide are 1 ng/ml, 4 ng/ml, 2 ng/ml and 0.5 ng/ml, respectively. Finally, the method was applied to the determination of sulpiride in human serum samples obtained after a single oral dose of sulpiride.

  12. Sugar Determination in Foods with a Radially Compressed High Performance Liquid Chromatography Column.

    ERIC Educational Resources Information Center

    Ondrus, Martin G.; And Others


    Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…

  13. [Online enrichment ability of restricted-access column coupled with high performance liquid chromatography by column switching technique for benazepril hydrochloride].


    Zhang, Xiaohui; Wang, Rong; Xie, Hua; Yin, Qiang; Li, Xiaoyun; Jia, Zhengping; Wu, Xiaoyu; Zhang, Juanhong; Li, Wenbin


    The online enrichment ability of the restricted-access media (RAM) column coupled with high performance liquid chromatography by column switching technique for benazepril hydrochloride in plasma was studied. The RAM-HPLC system consisted of an RAM column as enrichment column and a C18 column as analytical column coupled via the column switching technique. The effects of the injection volume on the peak area and the systematic pressure were studied. When the injection volume was less than 100 microL, the peak area increased with the increase of the injection volume. However, when the injection volume was more than 80 microL, the pressure of whole system increased obviously. In order to protect the whole system, 80 microL was chosen as the maximum injection volume. The peak areas of ordinary injection and the large volume injection showed a good linear relationship. The enrichment ability of RAM-HPLC system was satisfactory. The system was successfully used for the separation and detection of the trace benazepril hydrochloride in rat plasma after its administration. The sensitivity of HPLC can be improved by RAM pre-enrichment. It is a simple and economic measurement method.

  14. Separation of hexabromocyclododecane diastereomers: Application of C18 and phenyl-hexyl ultra-performance liquid chromatography columns.


    Baek, Song-Yee; Lee, Sunyoung; Kim, Byungjoo


    This study was performed to establish the proper liquid chromatographic conditions for the separation of hexabromocyclododecane (HBCD) diastereomers. Column selectivity towards HBCD diastereomers was evaluated for C18 and phenyl-hexyl stationary phases. First, the baseline separation of the primary HBCDs (α-, β-, and γ-HBCD) was obtained using the ultra-performance liquid chromatography (UPLC) column with C18 stationary phase chosen in most previous studies for HBCD analysis; however, co-elution of δ- and ε-HBCD with the primary HBCD diastereomers was observed. To prevent the interference from δ- and ε-HBCD, we adopted a phenyl-hexyl UPLC column to resolve the HBCD diastereomers. The phenyl-hexyl UPLC column showed significantly different selectivity for the HBCD diastereomers compared with the C18 column, which allowed the clear isolation of δ-HBCD and ε-HBCD from the primary HBCD diastereomers. In addition, by checking the retention times of all HBCD diastereomers using both C18 and phenyl-hexyl columns, we confirmed the presence of δ-, ε-, η-, and θ-HBCDs in two technical HBCD mixtures.

  15. Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers

    PubMed Central

    Balamurugan, Krishnamoorthy; Gokulakrishnan, Kannan; Prakasam, Tangirala


    In this study molecular imprinting technology was employed to prepare a specific affinity sorbent for the resolution of Cathine, a chiral drug product. The molecularly imprinted polymer (MIP) was prepared by non-covalent molecular imprinting with either (+) or (−)-Cathine (threo-2-amino-1-hydroxy-1-phenyl propane; norpseudoephedrine) as the template. Methacrylic acid and ethylene glycol di-methacrylate were copolymerized in the presence of the template molecule. The bulk polymerization was carried out in chloroform with 2,2′-azobisisobutyronitrile as the initiator, at 5 °C and under UV radiation. The resulting MIP was ground into powders, which were slurry packed into analytical columns. After removal of template molecules, the MIP-packed columns were found to be effective for the resolution of (±)-Cathine racemates. The separation factor for the enantiomers ranged between 1.5 and 2.4 when the column was packed with MIP prepared with (+)-Cathine as the template. A separation factor ranging from 1.6 to 2.9 could be achieved from the column packed with MIP, prepared with (−)-Cathine as the template. Although the separation factor was higher with that previously obtained from reversed-phase column chromatography following derivatization with a chiral agent, elution peaks were broader due to the heterogeneity of binding sites on MIP particles and the possible non-specific interaction. PMID:23960776

  16. Temperature-assisted On-column Solute Focusing: A General Method to Reduce Pre-column Dispersion in Capillary High Performance Liquid Chromatography

    PubMed Central

    Groskreutz, Stephen R.; Weber, Stephen G.


    Solvent-based on-column focusing is a powerful and well known approach for reducingthe impact of pre-column dispersion in liquid chromatography. Here we describe an orthogonal temperature-based approach to focusing called temperature-assisted on-column solute focusing (TASF). TASF is founded on the same principles as the more commonly used solvent-based method wherein transient conditions are created thatlead to high solute retention at the column inlet. Combining the low thermal mass of capillary columns and the temperature dependence of solute retentionTASF is used effectivelyto compress injection bands at the head of the column through the transient reduction in column temperature to 5 °C for a defined 7 mm segment of a 6 cm long 150 μm I.D. column. Following the 30 second focusing time, the column temperature is increased rapidly to the separation temperature of 60 °C releasing the focused band of analytes. We developed a model tosimulate TASF separations based on solute retention enthalpies, focusing temperature, focusing time, and column parameters. This model guides the systematic study of the influence of sample injection volume on column performance.All samples have solvent compositions matching the mobile phase. Over the 45 to 1050 nL injection volume range evaluated, TASF reducesthe peak width for all soluteswith k’ greater than or equal to 2.5, relative to controls. Peak widths resulting from injection volumes up to 1.3 times the column fluid volume with TASF are less than 5% larger than peak widths from a 45 nL injection without TASF (0.07 times the column liquid volume). The TASF approach reduced concentration detection limits by a factor of 12.5 relative to a small volume injection for low concentration samples. TASF is orthogonal to the solvent focusing method. Thus, it canbe used where on-column focusing is required, but where implementation of solvent-based focusing is difficult. PMID:24973805

  17. Temperature-assisted on-column solute focusing: a general method to reduce pre-column dispersion in capillary high performance liquid chromatography.


    Groskreutz, Stephen R; Weber, Stephen G


    Solvent-based on-column focusing is a powerful and well known approach for reducing the impact of pre-column dispersion in liquid chromatography. Here we describe an orthogonal temperature-based approach to focusing called temperature-assisted on-column solute focusing (TASF). TASF is founded on the same principles as the more commonly used solvent-based method wherein transient conditions are created that lead to high solute retention at the column inlet. Combining the low thermal mass of capillary columns and the temperature dependence of solute retention TASF is used effectively to compress injection bands at the head of the column through the transient reduction in column temperature to 5°C for a defined 7mm segment of a 6cm long 150μm I.D. column. Following the 30s focusing time, the column temperature is increased rapidly to the separation temperature of 60°C releasing the focused band of analytes. We developed a model to simulate TASF separations based on solute retention enthalpies, focusing temperature, focusing time, and column parameters. This model guides the systematic study of the influence of sample injection volume on column performance. All samples have solvent compositions matching the mobile phase. Over the 45-1050nL injection volume range evaluated, TASF reduces the peak width for all solutes with k' greater than or equal to 2.5, relative to controls. Peak widths resulting from injection volumes up to 1.3 times the column fluid volume with TASF are less than 5% larger than peak widths from a 45nL injection without TASF (0.07 times the column liquid volume). The TASF approach reduced concentration detection limits by a factor of 12.5 relative to a small volume injection for low concentration samples. TASF is orthogonal to the solvent focusing method. Thus, it can be used where on-column focusing is required, but where implementation of solvent-based focusing is difficult.

  18. [High-performance liquid chromatography determination of histamine in nasal mucosa of guinea pig after post-column derivatization].


    Huang, X H; Chen, B M; Liang, S X; Deng, F L


    A rapid and simple method for determining histamine by post-column derivatization liquid chromatography with fluorescent detection was described. SCX weakly acidic cation exchange column was used as an analytical column. Histamine was eluted at 13 min 12 s by 40 mmol.L-1 of trisodium citrate (pH5.50) at flow rate of 1.0 ml.min-1. The recoveries of histamine ranged from 1.0 mumol.L-1 to 100 mumol.L-1 were above 92%. The detection limit for histamine was 50 nmol.L-1 and the linear range for histamine was 50 nmol.L(-1)-500 mumol.L-1.

  19. Determination of citrulline and homocitrulline by high-performance liquid chromatography with post-column derivatization.


    Koshiishi, I; Kobori, Y; Imanari, T


    A high-performance liquid chromatographic method was developed for the determination of citrulline and homocitrulline using a post-column colorimetric reaction with o-phthaladehyde and N-(1-naphthyl)-ethylenediamine. Citrulline and homocitrulline were determined with no interferences from protein amino acids. The results show that the level of citrulline in the plasma of patients with uremia on intermittent hemodialysis is higher than that in healthy human plasma, and that homocitrulline is excreted into the urine of healthy adults.

  20. Simultaneous determination of methamphetamine and its metabolite, amphetamine, in urine using a high performance liquid chromatography column-switching method.


    Kumihashi, Mitsuru; Ameno, Kiyoshi; Shibayama, Takayuki; Suga, Keisuke; Miyauchi, Hiroshi; Jamal, Mostofa; Wang, Weihuan; Uekita, Ikuo; Ijiri, Iwao


    We describe here a simple, precise, and highly sensitive method for the simultaneous determination of methamphetamine (MA) and amphetamine (AM) in urine using a high performance liquid chromatography (HPLC) column-switching method. A PK-2A (Shodex) column was used for extraction and deproteinization, and a CAPCELL PAK SCX semi-micro, polymer-coated cation-exchange column was employed for separation. The urine sample was mixed with an equal volume of borate buffer (0.1M, pH 9.4), and then 100 microl of the mixture was injected into the HPLC column. The column was switched for 6 min, and then 10 min later detection was performed at 210 nm. Recovery yields of the MA and AM spiked in the urine were 93.0-100.4% with a coefficient of variation of less than 1%. The calibration curves of MA and AM were in the range of 0.1-10 microg/ml with good linearity (r(2)=0.999), with the limit of qualification being 0.005 microg/ml. This method of using HPLC with column-switching can be used for both qualification and quantification of MA and its metabolite, AM, in urine, especially in forensic cases.

  1. Isolation and purification of diastereoisomeric flavonolignans from silymarin by binary-column recycling preparative high-performance liquid chromatography.


    Zhao, Weiquan; Yang, Guang; Zhong, Fanyi; Yang, Nan; Zhao, Xin; Qi, Yunpeng; Fan, Guorong


    Silymarin extracted from Silybum marianum (L.) Gaertn consists of a large number of flavonolignans, of which diastereoisomeric flavonolignans including silybin A and silybin B, and isosilybin A and isosilybin B are the main bioactive components, whose preparation from the crude extracts is still a difficult task. In this work, binary-column recycling preparative high-performance liquid chromatography systems without sample loop trapping, where two columns were switched alternately via one or two six-port switching valves, were established and successfully applied to the isolation and purification of the four diastereoisomeric flavonolignans from silymarin. The proposed system showed significant advantages over conventional preparative high-performance liquid chromatography with a single column in increasing efficiency and reducing the cost. To obtain the same amounts of products, the proposed system spends only one tenth of the time that the conventional system spends, and needs only one eleventh of the solvent that the conventional system consumes. Using the proposed system, the four diastereoisomers were successfully isolated from silymarin with purities over 98%.

  2. A simple procedure for the preparation of fritless columns by entrapping conventional high performance liquid chromatography sorbents.


    Chirica, G S; Remcho, V T


    A rapid and direct method for immobilizing conventional high performance liquid chromatography (HPLC) packing material inside fritless capillaries has been developed. Due to the simple composition of the entrapment matrix (tetraethoxysilane, alkyltriethoxysilane, ethanol and water), straightforward manufacturing procedure and modest equipment requirement, the method can readily be transferred to any laboratory and easily automated. The entrapment procedure has minimal influence on the structure and chromatographic properties of the original reverse-phase sorbent. Various immobilization solutions have been tested, and a comparison between columns entrapped with different immobilization mixtures and conventional packed capillaries is presented. High efficiency separations were obtained using tert-butyl-triethoxysilane entrapped columns in both capillary electrochromatography (reduced plate heights of 1.1-1.4 were measured) and microliquid chromatography (reduced plate heights of 2.2-2.6 were observed) formats. Elimination of frits, stabilization of the packed bed and on-the-fly customization of column length render mechanically robust columns that are remarkably stable over time, from which manufacturing imperfections can be removed easily.

  3. Selection of column dimensions and gradient conditions to maximize the peak-production rate in comprehensive off-line two-dimensional liquid chromatography using monolithic columns.


    Eeltink, Sebastiaan; Dolman, Sebastiaan; Vivo-Truyols, Gabriel; Schoenmakers, Peter; Swart, Remco; Ursem, Mario; Desmet, Gert


    The peak-production rate (peak capacity per unit time) in comprehensive off-line two-dimensional liquid chromatography (LC/x/LC) was optimized for the separation of peptides using poly(styrene-co-divinylbenzene) monolithic columns in the reversed-phase (RP) mode. A first-dimension ((1)D) separation was performed on a monolithic column operating at a pH of 8, followed by sequential analysis of all the (1)D fractions on a monolithic column operating at a pH of 2. To obtain the highest peak-production rate, effects of column length, gradient duration, and sampling time were examined. RP/x/RP was performed at undersampling conditions using a short 10 min (1)D gradient. The peak-production rate was highest using a 50 mm long (2)D column applying an 8-10 min (2)D gradient time and was almost a factor of two higher than when a 250 mm monolithic column was used. The best way to obtain a higher peak-production rate in off-line LC/x/LC proved to be an increase in the number of (1)D fractions collected. Increasing the (2)D gradient time was less effective. The potential of the optimized RP/x/RP method is demonstrated by analyzing proteomics samples of various complexities. Finally, the trade-off between peak capacity and analysis time is discussed in quantitative terms for both one-dimensional RP gradient-elution chromatography and the off-line two-dimensional (RP/x/RP) approach. At the conditions applied, the RP/x/RP approach provided a higher peak-production rate than the (1)D-LC approach when collecting three (1)D fractions, which corresponds to a total analysis time of 60 min.

  4. Analysis of drugs in plasma samples from schizophrenic patients by column-switching liquid chromatography-tandem mass spectrometry with organic-inorganic hybrid cyanopropyl monolithic column.


    Domingues, Diego Soares; Souza, Israel Donizeti de; Queiroz, Maria Eugênia Costa


    This study reports on the development of a rapid, selective, and sensitive column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze sixteen drugs (antidepressants, anticonvulsants, anxiolytics, and antipsychotics) in plasma samples from schizophrenic patients. The developed organic-inorganic hybrid monolithic column with cyanopropyl groups was used for the first dimension of the column-switching arrangement. This arrangement enabled online pre-concentration of the drugs (monolithic column) and their subsequent analytical separation on an XSelect SCH C18 column. The drugs were detected on a triple quadrupole tandem mass spectrometer (multiple reactions monitoring mode) with an electrospray ionization source in the positive ion mode. The developed method afforded adequate linearity for the sixteen target drugs; the coefficients of determination (R(2)) lay above 0.9932, the interassay precision had coefficients of variation lower than 6.5%, and the relative standard error values of the accuracy ranged from -14.0 to 11.8%. The lower limits of quantification in plasma samples ranged from 63 to 1250pgmL(-1). The developed method successfully analyzed the target drugs in plasma samples from schizophrenic patients for therapeutic drug monitoring (TDM).

  5. Rapid analysis of benzodiazepines in whole blood by high-performance liquid chromatography: use of a monolithic column.


    Bugey, Aurélie; Staub, Christian


    In a previous work [J. Pharm. Biomed. Anal. 23 (2000) 447] a rapid high-performance liquid chromatography (HPLC) method, using a monolithic column in HPLC coupled with a diode-array detector, was developed for the quantitative determination of benzodiazepines in whole blood. The present method has been applied to the assay of eight benzodiazepines amongst the most frequently encountered in forensic toxicology: clonazepam, desalkylflurazepam, diazepam, flunitrazepam, lorazepam, midazolam, nordiazepam and oxazepam. The sample pre-treatment involved a liquid-liquid extraction of blood samples by n-butyl chloride. The separation was carried out in reversed-phase conditions using a Chromolith Performance (RP-18e 100 x 4.6 mm) column. The mobile phase was composed of a phosphate buffer (35 mM, pH 2.1) and acetonitrile (70:30, v/v) and the flow-rate was 2 ml/min. The duration of the analysis was less than 4 min and the results of validation, including linearity, precision, recovery, limit of quantification, were satisfactory. The therapeutic and toxic concentrations usually encountered for these substances could be measured. The compounds were separated by a monolithic column which, on account of its particular structure, could bear higher flow-rates than usually found for this kind of analysis. The present method has been applied to two real cases and was tested with about 30 compounds.

  6. Multidimensional high-performance liquid chromatography on Pinkerton ISRP and RP18 columns: direct serum injection to quantify creatinine.


    Puhlmann, A; Dülffer, T; Kobold, U


    A two-dimensional high-performance liquid chromatographic method for the determination of creatinine with direct serum injection without sample pretreatment has been developed. The column-switching technique allowed a switch from columns packed with internal surface reversed-phase (ISRP) material to columns of almost any other material, even if the eluents necessary in a particular case do not appear to be directly compatible. A Pinkerton ISRP column, which stands out because of its very good stability when loaded with undiluted serum samples, was used as precolumn. The creatinine-containing fraction was switched to a reversed-phase Shandon RP18 column and was focused there by alteration of the eluent from pH 6.5 to phosphoric acid-ion-pair reagent. The separation occurs via a pH gradient, with ultraviolet detection at 234 nm. This method stands out particularly for its good long-term stability, simple sample handling without pretreatment, high selectivity, a broad linearity (0.3-30 mg/dl creatinine), good reproducibility (inter-assay coefficient of variation less than 3%) and high recovery (97-100%) relative to values obtained with gas chromatography-mass spectrometry.

  7. Rapid determination of Papaver somniferum alkaloids in process streams using monolithic column high-performance liquid chromatography with chemiluminescence detection.


    Costin, Jason W; Lewis, Simon W; Purcell, Stuart D; Waddell, Lucy R; Francis, Paul S; Barnett, Neil W


    We have combined high-performance liquid chromatography (HPLC) separations using a monolithic column with acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection in a rapid and highly sensitive method to monitor the process of extracting opiate alkaloids from Papaver somniferum. Due to the high flow rates allowed with the monolithic column and the inherent selectivity of the chemiluminescence reactions, the four predominant alkaloids--morphine, codeine, oripavine and thebaine--were determined in less than 2 min. The results obtained with numerous process samples compared favourable with those of the standard HPLC methodology. Limits of detection were 1x10(-10) M, 5x10(-10) M, 5x10(-10) M and 1x10(-9) M, for morphine, codeine, oripavine and thebaine, respectively.

  8. High-Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Reuhs, Bradley L.; Rounds, Mary Ann

    High-performance liquid chromatography (HPLC) developed during the 1960s as a direct offshoot of classic column liquid chromatography through improvements in the technology of columns and instrumental components (pumps, injection valves, and detectors). Originally, HPLC was the acronym for high-pressure liquid chromatography, reflecting the high operating pressures generated by early columns. By the late 1970s, however, high-performance liquid chromatography had become the preferred term, emphasizing the effective separations achieved. In fact, newer columns and packing materials offer high performance at moderate pressure (although still high pressure relative to gravity-flow liquid chromatography). HPLC can be applied to the analysis of any compound with solubility in a liquid that can be used as the mobile phase. Although most frequently employed as an analytical technique, HPLC also may be used in the preparative mode.

  9. Tuning preparation conditions towards optimized separation performance of thermally polymerized organo-silica monolithic columns in capillary liquid chromatography.


    Gharbharan, Deepa; Britsch, Denae; Soto, Gabriela; Weed, Anna-Marie Karen; Svec, Frantisek; Zajickova, Zuzana


    Tuning of preparation conditions, such as variations in the amount of a porogen, concentration of an aqueous acid catalyst, and adjustment in polymerization temperature and time, towards optimized chromatographic performance of thermally polymerized monolithic capillaries prepared from 3-(methacryloyloxy)propyltrimethoxysilane has been carried out. Performance of capillary columns in reversed-phase liquid chromatography was assessed utilizing various sets of solutes. Results describing hydrophobicity, steric selectivity, and extent of hydrogen bonding enabled comparison of performance of hybrid monolithic columns prepared under thermal (TSG) and photopolymerized (PSG) conditions. Reduced amounts of porogen in the polymerization mixture, and prolonged reaction times were necessary for the preparation of monolithic columns with enhanced retention and column efficiency that reached to 111,000 plates/m for alkylbenzenes with shorter alkyl chains. Both increased concentration of catalyst and higher temperature resulted in faster polymerization but inevitably in insufficient time for pore formation. Thermally polymerized monoliths produced surfaces, which were slightly more hydrophobic (a methylene selectivity of 1.28±0.002 TSG vs 1.20±0.002 PSG), with reduced number of residual silanols (a caffeine/phenol selectivity of 0.13±0.001 TSG vs 0.17±0.003 PSG). However, steric selectivity of 1.70±0.01 was the same for both types of columns. The batch-to-batch repeatability was better using thermal initiation compared to monolithic columns prepared under photopolymerized conditions. RSD for retention factor of benzene was 3.7% for TSG capillaries (n=42) vs. 6.6% for PSG capillaries (n=18). A similar trend was observed for columns prepared within the same batch.

  10. Application of coupled-column liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection to the determination of pyrethroid insecticides in vegetable samples.


    Parrilla Vázquez, P; Gil García, M D; Barranco Martínez, D; Martínez Galera, M


    This study reports the first application of coupled-column liquid chromatography-photochemically induced fluorimetry-fluorescence detection (LC-LC-PIF-FD), demonstrating its potential for the quantitative and selective detection of seven pyrethroids in vegetable samples such as cucumber, green bean, tomato and aubergine. An internal surface reversed-phase (ISRP) column coupled to a C18 column for analyte clean-up and determination were used, respectively. In comparison with a C18 column, the ISRP substantially improved the separation between analytes and interferences from the vegetable matrix. The limits of detection ranged from 0.01 to 0.22 microg kg(-1) in the vegetable samples (equivalent to 0.01 and 0.13 microg L(-1) in the extract injected), and limits of determination ranged from 0.56 to 8.33 microg kg(-1) in the vegetable samples (equivalent to 0.34 and 5.00 microg L(-1) in the extract injected). Samples were extracted into dichloromethane to yield mean recoveries at two levels of concentration between 72.8 and 110.0% in all cases. Relative standard deviations were lower than 11%.

  11. An Undergraduate Column Chromatography Experiment.

    ERIC Educational Resources Information Center

    Danot, M.; And Others


    Background information, list of materials needed, and procedures used are provided for an experiment designed to introduce undergraduate students to the theoretical and technical aspects of column chromatography. The experiment can also be shortened to serve as a demonstration of the column chromatography technique. (JN)

  12. [Determination of histamine in canned fish by high performance liquid chromatography with pre-column derivatization].


    Jin, Gaowa; Cai, Youqiong; Yu, Huijuan; Qian, Beilei


    A pre-column derivatization-high performance liquid chromatographic (HPLC) method has been developed for the determination of histamine in canned fish. The homogenated samples were ultrasonically extracted with perchloric acid aqueous solution, derivatized with dansyl chloride and diluted with acetonitrile to a desired volume. The samples were determined by HPLC with ultraviolet detector and quantified by external standard method. Adopting a C18 column with 1.8 microm stationary phase particles, the analysis time for each sample was smaller than 5 min with the flow rate of 0.3 mL/min. It can decrease the consumption of the mobile phase and save the cost. The linear range was 0.08-8.00 mg/L for histamine. The correlation coefficient was 0.999 98. The average recoveries of histamine at different concentration levels in spiked samples were greater than 96% and the relative standard deviations (RSDs) were smaller than 2.5%. The quantitation limit was 5.00 mg/kg for histamine in canned fish by HPLC. The results indicated that this HPLC method is fast, sensitive, reproducible and practical for the routine analysis of histamine in canned fish.



    Thornton, J.D.


    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  14. Fingerprinting of traditional Chinese medicines on the C18-Diol mixed-mode column in online or offline two-dimensional liquid chromatography on the single column modes.


    Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li


    In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines.

  15. Determination of chlorophylls in Taraxacum formosanum by high-performance liquid chromatography-diode array detection-mass spectrometry and preparation by column chromatography.


    Loh, Chin Hoe; Inbaraj, Baskaran Stephen; Liu, Man Hai; Chen, Bing Huei


    Taraxacum formosanum, a well-known Chinese herb shown to be protective against hepatic cancer as well as liver and lung damage, may be attributed to the presence of abundant carotenoids and chlorophylls. However, the variety and content of chlorophylls remain uncertain. The objectives of this study were to develop an high-performance liquid chromatography-diode array detection-mass spectrometry method for determination of chlorophylls in T. formosanum and preparation by column chromatography. An HyPURITY C18 column and a gradient mobile phase of water (A), methanol (B), acetonitrile (C), and acetone (D) could resolve 10 chlorophylls and an internal standard Fast Green FCF within 30 min with a flow rate at 1 mL/min and detection at 660 nm. Both chlorophylls a and a' were present in the largest amount (1389.6 μg/g), followed by chlorophylls b and b' (561.2 μg/g), pheophytins a and a' (31.7 μg/g), hydroxychlorophyll b (26.5 μg/g), hydroxychlorophylls a and a' (9.8 μg/g), and chlorophyllides a and a' (0.35 μg/g). A glass column containing 52 g of magnesium oxide-diatomaceous earth (1:3, w/w) could elute chlorophylls with 800 mL of acetone containing 50% ethanol at a flow rate of 10 mL/min. Some new chlorophyll derivatives including chlorophyllide b, pyropheophorbide b, hydroxypheophytin a, and hydroxypheophytin a' were generated during column chromatography but accompanied by a 63% loss in total chlorophylls. Thus, the possibility of chlorophyll fraction prepared from T. formosanum as a raw material for future production of functional food needs further investigation.

  16. Comparison of chromatographic band profiles obtained under microwave irradiated and non-irradiated reversed-phase liquid chromatography column

    SciTech Connect

    Galinada, Wilmer; Guiochon, Georges A


    The possible influence of the application of microwave energy to a reversed-phase liquid chromatography column on the mass transfer kinetics and the thermodynamics of equilibrium between mobile and stationary phases was examined. Chromatograms of propylbenzene and phenol were recorded under the same experimental conditions, on the same column, successively irradiated and not. The effect of microwave irradiation on the mass transfer kinetics was determined by measuring the second moment of small pulses of propylbenzene in a 70:30 (v/v) solution of methanol in water and microwave outputs of 15 and 30 W. The effect of microwave irradiation on the equilibrium thermodynamics was determined by measuring the elution time of breakthrough curves of phenol at high concentrations in a 20:80 (v/v) solution of methanol and water and microwave outputs of 15, 50, and 150 W. A qualitative comparison of the profiles of the propylbenzene peaks obtained with and without irradiation suggests that this irradiation affects significantly the peak shapes. However, a qualitative comparison of the profiles of the breakthrough curves of phenol obtained with and without irradiation suggests that this irradiation has no significant effect on their shapes. The peak sharpening observed may be due to an increase in the diffusivity, resulting from the dielectric polarization under microwave irradiation. This effect is directly related to an increase of the rate of mass transfers in the column. In contrast, the similarity of the overloaded band profiles at high concentrations suggests that the equilibrium thermodynamics is unaffected by microwave irradiation. This may be explained by the transparence of the stationary phase to microwaves at 2.45 GHz. The column temperature was measured at the column outlet under irradiation powers of 15, 30, 50, and 150 W. It increases with increasing power, the corresponding effluent temperatures being 25 {+-} 1, 30 {+-} 1, 35 {+-} 1, and 45 {+-} 1 C, respectively.

  17. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography

    SciTech Connect

    Mriziq, Khaled S; Guiochon, Georges A


    An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6 mm C18 bonded silica-based monolithic column, a 150 mm x 4.6 mm column packed with 2.7 {micro}m porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6 mm column packed with 3 {micro}m fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns.

  18. Investigation of a new core-shell particle column for ion-pair reversed-phase liquid chromatography analysis of oligonucleotides.


    Biba, Mirlinda; Welch, Christopher J; Foley, Joe P


    A new core-shell particle column showed excellent performance and durability for separation of short (∼21-mer) ribonucleic acid (RNA) oligonucleotides by ion-pair reversed-phase liquid chromatography (IP-RPLC). Previously investigated core-shell C18 columns showed excellent peak shapes and separations of closely eluting impurities by IP-RPLC. However, these columns showed only modest long-term stability at the neutral pH and elevated column temperatures of ≥60°C, typically used for IP-RPLC analysis of oligonucleotides. The newly introduced SunShell C18 column provided separations comparable to the previously evaluated core-shell columns, but with significantly improved long-term column stability when operated at neutral pH and elevated column temperature.

  19. Exogenous factors contributing to column bed heterogeneity: Part 1: Consequences of 'air' injections in liquid chromatography.


    Samuelsson, Jörgen; Fornstedt, Torgny; Shalliker, Andrew


    It has been shown that not only the packing homogeneity, but also factors external to the column bed, such as, frits and distributors can have important effects on the column performance. This current communication is the first in a series focusing on the impact of exogenous factors on the column bed heterogeneity. This study is based on several observations by us and others that chromatographic runs often, for technical reasons, include more or less portions of air in the injections. It is therefore extremely important to find out the impact of air on the column performance, the reliability of the results derived from analyses where air was injected, and the effect on the column homogeneity. We used a photographic approach for visualising the air transport phenomena, and found that the air transport through the column is comprised of many different types of transport phenomena, such as laminal flow, viscous fingering like flows, channels and bulbs, and pulsations. More particularly, the air clouds within the column definitely interact in the adsorption, i.e. mobile phase adsorbed to the column surface is displaced. In addition, irrespective of the type of air transport phenomena, the air does not penetrate the column homogeneously. This process is strongly flow dependent. In this work we study air transport both in an analytical scale and a semi-prep column.

  20. Monolithic columns with organic sorbent based on poly-1-vinylimidazole for high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Patrushev, Y. V.; Sidelnikov, V. N.; Yudina, Y. S.


    Monolithic chromatographic columns for HPLC with sorbent based on 1-vinylimidazole are prepared. It is shown that changing the 1-vinylimidazole content in the initial solution allows us to change the polarity of columns. An example of aromatic hydrocarbons separation is presented.

  1. Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography.


    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A


    A prototype vacuum-based (10(-6)Torr) column housing was built to thermally isolate the chromatographic column from the external air environment. The heat transfer mechanism is solely controlled by surface radiation, which was minimized by wrapping the column with low-emissivity aluminum tape. The adiabaticity of the column housing was quantitatively assessed from the measurement of the operational pressure and fluid temperature at the outlet of a 2.1mm×100mm column (sub-2 μm particles). The pressure drop along the column was raised up to 1kbar. The enthalpy balance of the eluent (water, acetonitrile, and one water/acetonitrile mixture, 70/30, v/v) showed that less than 1% of the viscous heat generated by friction of the fluid against the packed bed was lost to the external air environment. Such a vacuum-based column oven minimizes the amplitude of the radial temperature gradients across the column diameter and maximizes its resolving power.

  2. "Dry-column" chromatography of plant pigments

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Lehwalt, M. F.; Oyama, V. I.


    Separation of plant pigments which can be accomplished on thin-layer silica plates with mixture of petroleum ether, halocarbon, acetone, and polar solvent can be readily translated into dry-column technique that yields reproducible chromatograms after elution in fashion of liquid chromatography with fluorimeter as detector. Best solvent system was found to be mixture of petroleum ether, dichloromethane, acetone, and ethyl acetate.

  3. Overloading study of basic compounds with a positively charged C18 column in liquid chromatography.


    Wang, Chaoran; Guo, Zhimou; Long, Zhen; Zhang, Xiuli; Liang, Xinmiao


    While tailing and overloading of basic compounds remain problematic on most RP columns, a new kind of positively charged RP column named XCharge C18 was found to be superior good for the separation of alkaloids in our practical use. In this work, the surface charge property of the XCharge C18 column was evaluated by the retention of NO(3)(-) under different pH values and buffer concentrations. A considerable and pH-dependent positive charge was confirmed on the column. Then overloading behaviors of bases were systematically studied using amitriptyline as a basic probe. Good peak shapes (Tf<1.5) and extra high loadability with a C(0.5) of about 30,000 mg/L were observed on the column, with commonly used 0.1% formic acid as mobile phase additive. However, increasing the ionic strength of buffer with phosphates led to tailing peaks at high sample amount and sharp decline in loadability (C(0.5) of 2000-3000 mg/L), although it brought higher column efficiency at low sample amount. Higher pH also induced worse performance and lower loadability. The overall results demonstrated the importance of an appropriate level of ionic repulsion for the XCharge C18 column to achieve the good performance for bases, which could be explained by the multiple-site adsorption theory as ionic repulsion would shield the solute from occupying high-energy sites deeper in C18 layer.

  4. The Trace Analysis of DEET in Water using an On-line Preconcentration Column and Liquid Chromatography with UV Photodiode Array Detection

    EPA Science Inventory

    A method for the detection of trace levels of N,N-diethyl-m-toluamide (DEET) in water is discussed. The method utilizes an on-line preconcentration column in series with high performance liquid chromatography (HPLC) and UV photodiode array detection. DEET, a common insect repel...

  5. Determination of citrus limonoid glucosides by high performance liquid chromatography coupled to post-column reaction with Ehrlich’s Reagent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...

  6. Aflatoxin evaluation in ready-to-eat brazil nuts using reversed-phase liquid chromatography and post-column derivatisation.


    Iamanaka, Beatriz Thie; Nakano, Felipe; Lemes, Daniel Ponciano; Ferranti, Larissa Souza; Taniwaki, Marta Hiromi


    A high-performance liquid chromatography-fluorescence (HPLC-FD) method for aflatoxin quantification in brazil nuts was developed. Samples of brazil nuts collected in Brazilian markets were extracted with methanol:water and cleaned using an immunoaffinity column. Aflatoxins were eluted with methanol and a post-column derivatisation was performed with bromine, using a Kobra Cell system. The optimised method for total aflatoxins was sensitive, with detection and quantification limits of 0.05 and 0.25 µg kg⁻¹, respectively. The method was accurate, with recovery values of 87.6%; 85.3% and 85.0% for 0.5, 5.0 and 14.6 µg kg⁻¹ spiked levels, respectively. It was shown that the method was applicable to brazil nuts. From a total of 95 brazil nut samples analysed from 21 São Paulo supermarket samples and 51 Manaus and 23 Belém street markets samples, 37.9% showed detectable levels of aflatoxins and three exceeded the recommended Codex Alimentarius limit of 10 µg kg⁻¹ for ready-to-eat brazil nuts.

  7. Complete temperature profiles in ultra-high-pressure liquid chromatography columns.


    Gritti, Fabrice; Guiochon, Georges


    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  8. [Determination of 14 sulfonamide residues in shrimps by high performance liquid chromatography coupled with post-column derivatization].


    Huang, Dongmei; Huang, Xuanyun; Gu, Runrun; Hui, Yunhua; Tian, Liangliang; Feng, Bing; Zhang, Xuan; Yu, Huijuan


    A method for the determination of 14 sulfonamide residues in shrimps by high performance liquid chromatography coupled with post-column derivatization was established. The sulfonamide residues were extracted with ethyl acetate after adding sulfapyridine as internal standard. The extracts were vacuum-concentrated and reverse-extracted by 2 mol/L hydrochloric acid solution for clean-up, and then the hydrochloric acid solution was defatted with n-hex- ane. The solution after filtration was blended with a mixed solution of methanol, acetonitrile and 3. 5 mol/L sodium acetate solution (5:5:20, v/v/v). The sulfonamides were separated on a C18 column by RP-HPLC and on-line derivatized with a fluorescamine and detected with a fluorescence detector. The standard addition method was used for quantitative analysis. The parameters of post-column derivatization system, such as concentration of fluorescamine solution, velocity of reagent solution and reaction temperature, were optimized. The calibration curves of the method showed good linearity in the range of 5 - 200 μg/L. The limits of quantification (LOQ, S/N= 10) were 1.0-5.0 μg/kg for the 14 sulfonamides. The recoveries were 77.8%- 103. 6% in the spiked range of 1. 0-100.0 μg/kg in shrimps with the relative standard deviations of 2.9%-9.1% (n= 6). The results indicated that the method is sensitive, efficient and more accurate. It is suitable for the simultaneous determination of the 14 sulfonamide residues in shrimps.

  9. Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography.


    Attallah, M F; Borai, E H; Hilal, M A; Shehata, F A; Abo-Aly, M M


    The main goal of this study was to find a novel impregnated resin as an alternative for the conventional resin (KY-2 and AN-31) used for low and intermediate level liquid radioactive waste treatment. Novel impregnated ion exchangers namely, poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenedi-acrylamide-4,4'(5')di-t-butylbenzo 18 crown 6 [P(AM-AA-AN)-DAM/DtBB18C6], poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenediacrylamide-dibenzo 18 crown 6 [P(AM-AA-AN)-DAM/DB18C6], and poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenediacrylamide-18 crown 6 [P(AM-AA-AN)-DAM/18C6] were prepared and their removal efficiency of some radionuclides was investigated. Preliminary batch experiments were performed in order to study the influence of the different derivatives of 18 crown 6 on the characteristic removal performance. Separation of (134)Cs, (60)Co, (65)Zn and ((152+154))Eu radionuclides from low level liquid radioactive waste was investigated by using column chromatography with P(AM-AA-AN)-DAM/DtBB18C6 and metal salt solutions traced with the corresponding radionuclides. Breakthrough data was obtained in a fixed bed column at room temperature (298K) using different bed heights and flow rates. The breakthrough capacities were found to be 94.7, 83.3, 58.7, 43.1 (mg/g) for (60)Co, (65)Zn, (134)Cs, and ((152+154))Eu, respectively. Pre-concentration and separation of all radionuclides under study have been carried out using different concentration of nitric and/or oxalic acids.

  10. Polymer-based monolithic column with incorporated chiral metal-organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography.


    Wang, Xin; Lamprou, Alexandros; Svec, Frantisek; Bai, Yu; Liu, Huwei


    A new approach to the preparation of enantioselective porous polymer monolithic columns with incorporated chiral metal-organic framework for nano-liquid chromatography has been developed. While no enantioseparation was achieved with monolithic poly(4-vinylpyridine-co-ethylene dimethacrylate) column, excellent separations of both enantiomers of (±)-methyl phenyl sulfoxide were achieved with its counterpart prepared after admixing metal-organic framework [Zn2 (benzene dicarboxylate)(l-lactic acid)(dmf)], which is synthesized from zinc nitrate, l-lactic acid, and benzene dicarboxylic acid in the polymerization mixture. These novel monolithic columns combined selectivity of the chiral framework with the excellent hydrodynamic properties of polymer monoliths, may provide a great impact on future studies in the field of chiral analysis by liquid chromatography.

  11. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.


    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong


    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  12. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview.


    Nazario, Carlos E D; Silva, Meire R; Franco, Maraíssa S; Lanças, Fernando M


    The purpose of this article is to underline the miniaturized LC instrumental system and describe the evolution of commercially available systems by discussing their advantages and drawbacks. Nowadays, there are already many miniaturized LC systems available with a great variety of pump design, interface and detectors as well as efficient columns technologies and reduced connections devices. The solvent delivery systems are able to drive the mobile phase without flow splitters and promote gradient elution using either dual piston reciprocating or syringe-type pumps. The mass spectrometry as detection system is the most widely used detection system; among many alternative ionization sources direct-EI LC-MS is a promising alternative to APCI. In addition, capillary columns are now available showing many possibilities of stationary phases, inner diameters and hardware materials. This review provides a discussion about miniaturized LC demonstrating fundamentals and instrumentals' aspects of the commercially available miniaturized LC instrumental system mainly nano and micro LC formats. This review also covers the recent developments and trends in instrumentation, capillary and nano columns, and several applications of this very important and promising field.

  13. Enantiomeric separation of asymmetric triacylglycerol by recycle high-performance liquid chromatography with chiral column.


    Nagai, Toshiharu; Mizobe, Hoyo; Otake, Ikuko; Ichioka, Kenji; Kojima, Koichi; Matsumoto, Yumiko; Gotoh, Naohiro; Kuroda, Ikuma; Wada, Shun


    In our previous studies, we employed recycle HPLC for the separation of triacylglycerol (TAG)-positional isomers (PIs). In this study, a recycle HPLC system equipped with a polysaccharide-based chiral column was applied to the enantiomeric separation of some asymmetric TAGs having straight-chain C16-C18 acyl residues. As a result, 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (rac-PPO), 1,2-dioleoyl-3-palmitoyl-rac-glycerol (rac-OOP), and 1,2-dipalmitoyl-3-linoleoyl-rac-glycerol (rac-PPL) were resolved into their respective enantiomers. However, neither 1,2-dioleoyl-3-linoleoyl-rac-glycerol (rac-OOL), consisting of only unsaturated fatty acids, nor 1,2-dipalmitoyl-3-stearoyl-rac-glycerol (rac-PPS), consisting of only saturated fatty acids, was resolved. These results suggest that the asymmetric TAGs, used in this study, having both a palmitic acid moiety and an oleic acid (or a linoleic acid) moiety at the sn-1 or sn-3 positions are resolved by the chiral column. This new chiral separation method can be used in combination with atmospheric pressure chemical ionization mass spectrometry to determine the sn-OOP/sn-POO ratio in palm oil. This method is applicable for the chiral separation of asymmetric TAGs in palm oil.

  14. [Determination of free formaldehyde in cosmetics by pre-column derivatization, extraction inhibition and high performance liquid chromatography].


    Lü, Chunhua; Huang, Chaoqun; Chen, Mei; Xie, Wen; Chen, Xiaomei


    Pre-column derivatization and inhibition by solvent extraction were applied to determine free formaldehyde in cosmetics by high performance liquid chromatography (HPLC). Due to the rapid decomposition of formaldehyde donors in the derivatization, it is hard to detect the amount of the free formaldehyde in cosmetics. The formaldehyde directly reacted with 2,4-dinitrophenylhydrazine in acetonitrile-phosphate buffer (pH 2) (1:1, v/v) solution for 2 min, then dichloromethane extraction was used to induce the decomposition of formaldehyde donors. The extract was diluted with acetonitrile and then determined by HPLC. The formaldehyde derivative was separated on an Agilent C18 column (250 mm x 4.6 mm, 5 microm) at 30 degrees C with acetonitrile-water (60:40, v/v) as mobile phase at a flow rate of 1.0 mL/min, and detected at the wavelength of 355 nm. The recoveries were from 81% to 106% at the spiked levels of 50, 100, 500, 1 000 microg/g of formaldehyde in shampoo, milk, cream, hand cleaner, toothpaste, nail polish, powder separately, and the relative standard deviations (n = 6) were less than 5.0%. The limit of quantification of the formaldehyde in cosmetics was 50 microg/g. The method has been applied to the determination of free formaldehyde in real samples and the results showed that the release by formaldehyde donors was inhibited. The method has the advantages of simple operation, good accuracy and meets the requirement of determination of free formaldehyde in cosmetics.

  15. Direct determination of acylcarnitines in amniotic fluid by column-switching liquid chromatography with electrospray tandem mass spectrometry.


    Cho, Sung-Hee; Lee, Jeongae; Lee, Won-Yong; Chung, Bong Chul


    A direct, simple, and simultaneous determination of acylcarnitines in amniotic fluid was developed using column-switching liquid chromatography/tandem mass spectrometry (LC/MS/MS). The analytes can be assayed within 20 min without any sample preparation process, and we monitored separated acylcarnitines with positive electrospray ionization (ESI)-MS/MS. The calibration ranges of acylcarnitines were 1 to 100 nmol/L. The linearity of the method was 0.992 to 0.999, and the limits of detection at a signal-to-noise ratio of 3 were 1 nmol/L. The coefficients of variation were in the range of 5.2 to 13.3% for within-day variation and 6.7 to 11.9% for day-to-day, respectively. We detected acylcarnitines in the amniotic fluid of 22 women in the early stages of their pregnancies in the range of 2.2 to 17.2 nmol/L. The proposed method could be applied to diagnosis, monitoring, and biomedical investigations of inborn errors of the organic acid and fatty acid metabolism of the embryo.

  16. Quantitative Evaluation of Models for Solvent-based, On-column Focusing in Liquid Chromatography

    PubMed Central

    Groskreutz, Stephen R.; Weber, Stephen G.


    On-column focusing or preconcentration is a well-known approach to increase concentration sensitivity by generating transient conditions during the injection that result in high solute retention. Preconcentration results from two phenomena: 1) solutes are retained as they enter the column. Their velocities are k′-dependent and lower than the mobile phase velocity and 2) zones are compressed due to the step-gradient resulting from the higher elution strength mobile phase passing through the solute zones. Several workers have derived the result that the ratio of the eluted zone width (in time) to the injected time width is the ratio k2/k1 where k1 is the retention factor of a solute in the sample solvent and k2 is the retention factor in the mobile phase (isocratic). Mills et al. proposed a different factor. To date, neither of the models has been adequately tested. The goal of this work was to evaluate quantitatively these two models. We used n-alkyl esters of p-hydroxybenzoic acid (parabens) as solutes. By making large injections to create obvious volume overload, we could measure accurately the ratio of widths (eluted/injected) over a range of values of k1 and k2. The Mills et al. model does not fit the data. The data are in general agreement with the factor k2/k1, but focusing is about 10% better than the prediction. We attribute the extra focusing to the fact that the second, compression, phenomenon provides a narrower zone than that expected for the passage of a step gradient through the zone. PMID:26210110

  17. A column switching ultrahigh-performance liquid chromatography-tandem mass spectrometry method to determine anandamide and 2-arachidonoylglycerol in plasma samples.


    Marchioni, Camila; de Souza, Israel Donizeti; Grecco, Caroline Fernandes; Crippa, José Alexandre; Tumas, Vitor; Queiroz, Maria Eugênia Costa


    This study reports a fast, sensitive, and selective column switching ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to determine the endocannabinoids (eCBs), anandamide (AEA), and 2-arachidonoylglycerol (2-AG) in plasma samples. This bidimensional system used a restricted access media column (RP-8 ADS, 25 mm × 4 mm × 25 μM) in the first dimension and a core-shell Kinetex C18 (100 mm × 2, 1.7 mm × 1 μM) column in the second dimension, followed by detection in a mass spectrometer triple quadrupole (multiple reactions monitoring mode) operating in the positive mode. RP-8 ADS was used for trace enrichment of eCBs (reverse phase partitioning) and macromolecular matrix size exclusion; the core-shell column was used for the chromatographic separation. The column switching UHPLC-MS/MS method presented a linear range spanning from 0.1 ng mL(-1) (LOQ) to 6 ng mL(-1) for AEA and from 0.04 ng mL(-1) (LOQ) to 10 ng mL(-1) for 2-AG. Excluding the LLOQ values, the precision assays provided coefficients of variation lower than 8% and accuracy with relative standard error values lower than 14%. Neither carryover nor matrix effects were detected. This high-throughput column switching method compared to conventional methods is time saving as it involves fewer steps, consumes less solvent, and presents lower LLOQ. The column switching UHPLC-MS/MS method was successfully applied to determine AEA and 2-AG in plasma samples obtained from Alzheimer's disease patients. Graphical abstract A column switching ultra high-performance liquid chromatography-tandem mass spectrometry method using RP-8 ADS column and core shell column to determine endocannabinoids in plasma samples.

  18. The use of a temperature-responsive column for the direct analysis of drugs in serum by two-dimensional heart-cutting liquid chromatography.


    Mikuma, Toshiyasu; Uchida, Ryo; Kajiya, Mizuki; Hiruta, Yuki; Kanazawa, Hideko


    A novel pretreatment method, which was performed using a two-dimensional high-performance liquid chromatography (2D-HPLC) system, was proposed for the direct analysis of drugs in human serum. A temperature-responsive column was used as a pretreatment column. The stationary phase of the temperature-responsive column exhibits temperature-regulated hydrophilic/hydrophobic characteristics. Controlling the ionic strength of the eluent enables human serum albumin (HSA) to pass through the column without retention. When serum samples containing barbiturates or benzodiazepines were injected into the temperature-responsive column using 10 mM of ammonium acetate (pH 6.5) as the mobile phase and in the temperature range of 10-40 °C, HSA was eluted from the column near the dead time, followed by the individual drugs. When the column temperature was changed, the retention times of the drugs were altered owing to surface property changes within the pretreatment column. These closely eluted compounds were subsequently introduced into the analytical column using a column-switching valve, with a minimal gap time to avoid foreign substance contamination. This new 2D-HPLC method afforded high-quality chromatograms of multiple drugs without unwanted peaks from foreign substances. The present technique could be an attractive choice in selecting the analytical method for drug analysis.

  19. Characterization of warfarin unusual peak profiles on oligoproline chiral high performance liquid chromatography columns.


    Lao, Wenjian; Gan, Jay


    Unusual peak profiles of warfarin were characterized on two oligoproline chiral stationary phases (CSPs). The pattern of 1st peak (S(-)) broadening and the 2nd peak (R(+)) compression was observed under mobile phase of hexane (0.1% TFA)/2-propanol (IPA) on a triproline CSP 1, and with other alcohol modifier such as ethanol, 1-propanol, 1-butanol, 2-butanol, and tert-butanol as well. Through analyzing system peak of additives, the unusual peak profile was interpreted by perturbation of TFA additive system peak. The unusual peak profile was also found in enantioseparation of coumachlor and on a covalently bonded doubly tethered diproline CSP 2. The pattern of 1st peak (S(-)) broadening and the 2nd peak (R(+)) compression can change to pattern of 1st peak compression and the 2nd peak broadening from 15 to 50°C. Chiral separation of warfarin created nonlinear van't Hoff plots on CSP. No peak broadening/compression were observed with methyl tertiary butyl ether or ethyl acetate as the modifier. The peak shapes of the two warfarin enantiomers can thus be tuned by varying alcohol concentration and column temperature. High separation factor and resolution may be carried out to tune the peak profiles into Langmuir/anti-Langmuir band-shape composition. Using none hydrogen donor modifier may avoid interference of the TFA system peak.

  20. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography.


    Moravcová, Dana; Planeta, Josef; Wiedmer, Susanne K


    This study introduces a silica-based monolith in a capillary format (0.1 mm × 100 mm) as a support for immobilization of liposomes and its characterization in immobilized liposome chromatography. Silica-based monolithic capillary columns prepared by acidic hydrolysis of tetramethoxysilane in the presence of polyethylene glycol and urea were modified by (3-aminopropyl)trimethoxysilane, whereby amino groups were introduced to the monolithic surface. These groups undergo reaction with glutaraldehyde to form an iminoaldehyde, allowing covalent binding of pre-formed liposomes containing primary amino groups. Two types of phospholipid vesicles were used for column modification; these were 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidyl choline with and without 1,2-diacyl-sn-glycero-3-phospho-L-serine. The prepared columns were evaluated under isocratic separation conditions employing 20mM phosphate buffer at pH 7.4 as a mobile phase and a set of unrelated drugs as model analytes. The liposome layer on the synthesized columns significantly changed the column selectivity compared to the aminopropylsilylated monolithic stationary phase. Monolithic columns modified by liposomes were stable under the separation conditions, which proved the applicability of the suggested preparation procedure for the synthesis of capillary columns dedicated to study analyte-liposome interactions. The column efficiency originating from the silica monolith was preserved and reached, e.g., more than 120,000 theoretical plates/m for caffeine as a solute.

  1. Self-regenerating column chromatography


    Park, W.K.


    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  2. Rapid bioanalysis of vancomycin in serum and urine by high-performance liquid chromatography tandem mass spectrometry using on-line sample extraction and parallel analytical columns.


    Cass, R T; Villa, J S; Karr, D E; Schmidt, D E


    A novel high-performance liquid chromatography tandem mass spectrometry (LC/MS/MS) method is described for the determination of vancomycin in serum and urine. After the addition of internal standard (teicoplanin), serum and urine samples were directly injected onto an HPLC system consisting of an extraction column and dual analytical columns. The columns are plumbed through two switching valves. A six-port valve directs extraction column effluent either to waste or to an analytical column. A ten-port valve simultaneously permits equilibration of one analytical column while the other is used for sample analysis. Thus, off-line analytical column equilibration time does not require mass spectrometer time, freeing the detector for increased sample throughput. The on-line sample extraction step takes 15 seconds followed by gradient chromatography taking another 90 seconds. Having minimal sample pretreatment the method is both simple and fast. This system has been used to successfully develop a validated positive-ion electrospray bioanalytical method for the quantitation of vancomycin. Detection of vancomycin was accurate and precise, with a limit of detection of 1 ng/mL in serum and urine. The calibration curves for vancomycin in rat, dog and primate were linear in a concentration range of 0.001-10 microg/mL for serum and urine. This method has been successfully applied to determine the concentration of vancomycin in rat, dog and primate serum and urine samples from pharmacokinetic and urinary excretion studies.

  3. Performance limits and kinetic optimization of parallel and serially connected multi-column systems spanning a wide range of efficiencies for liquid chromatography.


    Cabooter, Deirdre; Desmet, Gert


    Using a set of experimentally determined liquid chromatography column performance data, it has been investigated how a range of efficiencies can best be covered when using a multi-column system. Two main variants are considered: a serially-connected variant (realizing different column lengths by connecting a different number of column segments in series) and a parallel-connected variant (realizing different column lengths by simply switching between columns with a different length arranged in parallel). Both variants are compared for their ability to keep the average analysis time along a given range of efficiencies as close as possible to the intrinsic Knox & Saleem-speed limit. It was found that the serial connection mode offers a better compromise between average speed and amount of required silica (total required column length) than the parallel connection mode for all efficiency ranges running from 5000-10,000 plates up to 75,000-150,000 plates. Considering an ultra-high performance liquid chromatography (UHPLC) operation at 1200 bar, the best possible serial connection system can get within about within 15-25% of the Knox & Saleem-speed limit, whereas a three-column parallel system can only get to within 40-50% of the speed limit, while needing 50-100% more total column length. In absolute terms, the serially-connected system with individually optimized segment lengths should be able to cover a range of 5000-75,000 theoretical plates (dynamic range of 25) in an average analysis time of 14.3 min when using a 1200 bar instrument. At 400 bar, this would be 37.9 min, showing that the construction of wide-efficiency range systems would be one of the application areas where the advantages of UHPLC-conditions would be most fully realized.

  4. Determination of trans-10-hydroxy-2-decenoic acid content in pure royal jelly and royal jelly products by column liquid chromatography.


    Genç, M; Aslan, A


    In this research, several royal jellies and commercial products containing royal jelly were analysed for their trans-10-hydroxy-2-decenoic acid (10-HDA) content by using a column liquid chromatography technique. Ten samples claimed to be pure royal jelly, containing 10-HDA between 0.75 and 2.54%. Seven samples claimed to contain royal jelly as an ingredient which ranged from non-detectable to 0.054%. The technique was found to be rapid with high recovery.

  5. Dry-Column Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Shusterman, Alan J.; McDougal, Patrick G.; Glasfeld, Arthur


    Dry-column flash chromatography is a safe, powerful, yet easily learned preparative chromatography technique. It has proven useful in research, and an adaptation of the technique for use in large teaching laboratories (general chemistry, organic chemistry) is described here. The student version is similar to vacuum filtration, uses the same compact, readily available glassware, and inexpensive and safe solvents (ethyl acetate and hexane) and adsorbent (Merck grade 60 silica gel). The technique is sufficiently simple and powerful that a beginning student can successfully resolve diastereomers on sample scales ranging from 100 mg to >1 g.

  6. Versatile, sensitive liquid chromatography mass spectrometry – Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins

    PubMed Central

    Vehus, T.; Roberg-Larsen, H.; Waaler, J.; Aslaksen, S.; Krauss, S.; Wilson, S. R.; Lundanes, E.


    We have designed a versatile and sensitive liquid chromatographic (LC) system, featuring a monolithic trap column and a very narrow (10 μm ID) fused silica open tubular liquid chromatography (OTLC) separation column functionalized with C18-groups, for separating a wide range of molecules (from small metabolites to intact proteins). Compared to today’s capillary/nanoLC approaches, our system provides significantly enhanced sensitivity (up to several orders) with matching or improved separation efficiency, and highly repeatable chromatographic performance. The chemical properties of the trap column and the analytical column were fine-tuned to obtain practical sample loading capacities (above 2 μg), an earlier bottleneck of OTLC. Using the OTLC system (combined with Orbitrap mass spectrometry), we could perform targeted metabolomics of sub-μg amounts of exosomes with 25 attogram detection limit of a breast cancer-related hydroxylated cholesterol. With the same set-up, sensitive bottom-up proteomics (targeted and untargeted) was possible, and high-resolving intact protein analysis. In contrast to state-of-the-art packed columns, our platform performs chromatography with very little dilution and is “fit-for-all”, well suited for comprehensive analysis of limited samples, and has potential as a tool for challenges in diagnostics. PMID:27897190

  7. Liquid chromatography coupled to on-line post column derivatization for the determination of organic compounds: a review on instrumentation and chemistries.


    Zacharis, Constantinos K; Tzanavaras, Paraskevas D


    Analytical derivatization either in pre or post column modes is one of the most widely used sample pretreatment techniques coupled to liquid chromatography. In the present review article we selected to discuss the post column derivatization mode for the analysis of organic compounds. The first part of the review focuses to the instrumentation of post-column setups including not only fundamental components such as pumps and reactors but also less common parts such as static mixers and back-pressure regulators; the second part of the article discusses the most popular "chemistries" that are involved in post column applications, including reagent-less approaches and new sensing platforms such as the popular gold nanoparticles. Some representative recent applications are also presented as tables.

  8. Proteomic analysis with integrated multiple dimensional liquid chromatography/mass spectrometry based on elution of ion exchange column using pH steps.


    Dai, Jie; Shieh, Chia Hui; Sheng, Quan-Hu; Zhou, Hu; Zeng, Rong


    A novel integrated multidimensional liquid chromatography (IMDL) method is demonstrated for the separation of peptide mixtures by two-dimensional HPLC coupled with ion trap mass spectrometry. The method uses an integrated column, containing both strong cation exchange and reversed-phase sections for two-dimensional liquid chromatography. The peptide mixture was fractionated by a pH step using a series of pH buffers, followed by reversed-phase chromatography. Since no salt was used during separation, the integrated multidimensional liquid chromatography can be directly connected to mass spectrometry for peptide analysis. The pH buffers were injected from an autosampler, and the entire process can be carried out on a one-dimensional liquid chromatography system. In a single analysis, the IMDL system, coupled with linear ion trap mass spectrometry, identified more than 2000 proteins in mouse liver. The peptides were eluted according to their pI distribution. The resolution of the pH fractionation is approximately 0.5 pH unit. The method has low overlapping across pH fractions, good resolution of peptide mixture, and good correlation of peptide pIs with pH steps. This method provides a technique for large-scale protein identification using existing one-dimensional HPLC systems.

  9. Determination of ricin by nano liquid chromatography/mass spectrometry after extraction using lactose-immobilized monolithic silica spin column.


    Kanamori-Kataoka, Mieko; Kato, Haruhito; Uzawa, Hirotaka; Ohta, Shigenori; Takei, Yoshiyuki; Furuno, Masahiro; Seto, Yasuo


    Ricin is a glycosylated proteinous toxin that is registered as toxic substance by Chemical Weapons convention. Current detection methods can result in false negatives and/or positives, and their criteria are not based on the identification of the protein amino acid sequences. In this study, lactose-immobilized monolithic silica extraction followed by tryptic digestion and liquid chromatography/mass spectrometry (LC/MS) was developed as a method for rapid and accurate determination of ricin. Lactose, which was immobilized on monolithic silica, was used as a capture ligand for ricin extraction from the sample solution, and the silica was supported in a disk-packed spin column. Recovery of ricin was more than 40%. After extraction, the extract was digested with trypsin and analyzed by LC/MS. The accurate masses of molecular ions and MS/MS spectra of the separated peptide peaks were measured by Fourier transform-MS and linear iontrap-MS, respectively. Six peptides, which were derived from the ricin A-(m/z 537.8, 448.8 and 586.8) and B-chains (m/z 701.3, 647.8 and 616.8), were chosen as marker peptides for the identification of ricin. Among these marker peptides, two peptides were ricin-specific. This method was applied to the determination of ricin from crude samples. The monolithic silica extraction removed most contaminant peaks from the total ion chromatogram of the sample, and the six marker peptides were clearly detected by LC/MS. It takes about 5 h for detection and identification of more than 8 ng/ml of ricin through the whole handling, and this procedure will be able to deal with the terrorism using chemical weapon.

  10. Determination of methandrostenolone and its metabolites in equine plasma and urine by coupled-column liquid chromatography with ultraviolet detection and confirmation by tandem mass spectrometry.


    Edlund, P O; Bowers, L; Henion, J


    Monitoring steroid use requires an understanding of the metabolism in the species in question and development of sensitive methods for screening of the steroid or its metabolites in urine. Qualitative information for confirmation of methandrostenolone and identification of its metabolites was primarily obtained by coupled-column high-performance liquid chromatography-tandem mass spectrometry. The steroids and a sulphuric acid conjugate were isolated and identified by their daughter ion mass spectra in the urine of both man and the horse following administration of methandrostenolone. Spontaneous hydrolysis of methandrostenolone sulphate gave 17-epimethandrostenolone and several dehydration products. This reaction had a half-life of 16 min in equine urine at 27 degrees C. Mono- and dihydroxylated metabolites were also identified. Several screening methods were evaluated for detection and confirmation of methandrostenolone use including thin-layer chromatography and high-performance liquid chromatography. Coupled-column liquid chromatography was used for automated clean-up of analytes difficult to isolate by manual methods. The recovery of methandrostenolone was 101 +/- 3.3% (mean +/- S.D.) at 6.5 ng/ml and both methandrostenolone and 17-epimethandrostenolone were quantified in urine by ultraviolet detection up to six days after a 250-mg intramuscular dose to a horse. The utility of on-line tandem mass spectrometry for confirmation of suspected metabolites is also shown.


    EPA Science Inventory

    An innovative approach is presented for reducing analysis times of cyanuric acid in swimming pool waters by high performance liquid chromatography (HPLC). The HPLC method exploits the unique selectivity of porous graphitic carbon (PGC) to fully resolve cyanuric acid from other p...

  12. Effect of pressure pulses at the interface valve on the stability of second dimension columns in online comprehensive two-dimensional liquid chromatography.


    Talus, Eric S; Witt, Klaus E; Stoll, Dwight R


    Users of online comprehensive two-dimensional liquid chromatography (LCxLC) frequently acknowledge that the mechanical instability of HPLC columns installed in these systems, particularly in the second dimension, is a significant impediment to its use. Such instability is not surprising given the strenuous operating environment to which these columns are subjected, including the large number (thousands per day) of fast and large pressure pulses resulting from interface valve switches (on the timescale of tens of milliseconds) associated with very fast second dimension separations. There appear to be no published reports of systematic studies of the relationship between second dimension column lifetime and any of these variables. In this study we focused on the relationship between the lifetimes of commercially available columns and the pressure pulses observed at the inlet of the second dimension column that occur during the switching of the valve that interfaces the two dimensions of a LCxLC system. We find that the magnitude of the pressure drop at the inlet of the second dimension column during the valve switch, which may vary between 10 and 95% of the column inlet pressure, is dependent on valve switching speed and design, and has a dramatic impact on column lifetime. In the worst case, columns fail within the first few hours of use in an LCxLC system. In the best case, using a valve that exhibits much smaller pressure pulses, the same columns exhibit much improved lifetimes and have been used continuously under LCxLC conditions for several days with no degradation in performance. This result represents a first step in understanding the factors that affect second dimension column lifetime, and will significantly improve the usability of the LCxLC technique in general.

  13. Profiling of triacylglycerols in plant oils by high-performance liquid chromatography-atmosphere pressure chemical ionization mass spectrometry using a novel mixed-mode column.


    Hu, Na; Wei, Fang; Lv, Xin; Wu, Lin; Dong, Xu-Yan; Chen, Hong


    In this investigation, a rapid and high-throughput method for profiling of TAGs in plant oils by liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this separation system. The phenyl-hexyl column could provide hydrophobic interactions as well as π-π interactions. Compared with two traditionally columns used in TAG separation - the C18 column and silver-ion column, this column exhibited much higher selectivity for the separation of TAGs with great efficiency and rapid speed. By comparison with a novel mix-mode column (Ag-HiSep OTS column), which can also provide both hydrophobic interactions as well as π-π interactions for the separation of TAGs, phenyl-hexyl column exhibited excellent stability. LC method using phenyl-hexyl column coupled with APCI-MS was successfully applied for the profiling of TAGs in soybean oils, peanut oils, corn oils, and sesame oils. 29 TAGs in peanut oils, 22 TAGs in soybean oils, 19 TAGs in corn oils, and 19 TAGs in sesame oils were determined and quantified. The LC-MS data was analyzed by barcodes and principal component analysis (PCA). The resulting barcodes constitute a simple tool to display differences between different plant oils. Results of PCA also enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs in plant oils at high selectivity. It has great potential as a routine analytical method for analysis of edible oil quality and authenticity control.

  14. Determination of Wastewater Compounds in Whole Water by Continuous Liquid-Liquid Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.


    A method for the determination of 69 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals on aquatic organisms in wastewater. This method also is useful for evaluating the effects of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are indicators of wastewater or have endocrine-disrupting potential. These compounds include the alkylphenol ethoxylate nonionic surfactants, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Wastewater compounds in whole-water samples were extracted using continuous liquid-liquid extractors and methylene chloride solvent, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 0.5 microgram per liter averaged 72 percent ? 8 percent relative standard deviation. The concentration of 21 compounds is always reported as estimated because method recovery was less than 60 percent, variability was greater than 25 percent relative standard deviation, or standard reference compounds were prepared from technical mixtures. Initial method detection limits averaged 0.18 microgram per liter. Samples were preserved by adding 60 grams of sodium chloride and stored at 4 degrees Celsius. The laboratory established a sample holding-time limit prior to sample extraction of 14 days from the date of collection.

  15. Half-width plots, a simple tool to predict peak shape, reveal column kinetics and characterise chromatographic columns in liquid chromatography: state of the art and new results.


    Baeza-Baeza, J J; Ruiz-Ángel, M J; García-Álvarez-Coque, M C; Carda-Broch, S


    Peak profiles in chromatography are characterised by their height, position, width and asymmetry; the two latter depend on the values of the left and right peak half-widths. Simple correlations have been found between the peak half-widths and the retention times. The representation of such correlations has been called half-width plots. For isocratic elution, the plots are parabolic, although often, the parabolas can be approximated to straight-lines. The plots can be obtained with the half-widths/retention time data for a set of solutes experiencing the same kinetics, eluted with a mobile phase at fixed or varying composition. When the analysed solutes experience different resistance to mass transfer, the plots will be solute dependent, and should be obtained with the data for each solute eluted with mobile phases at varying composition. The half-width plots approach is a simple tool that facilitates the prediction of peak shape (width and asymmetry) with optimisation purposes, reveal the interaction kinetics of solutes in different columns, and characterise chromatographic columns. This work shows half-width plots for different situations in isocratic elution, including the use of different flows, the effect of temperature, the modification of the stationary phase surface by an additive, the existence of specific interactions within the column, and the comparison of columns. The adaptation to gradient elution is also described. Previous knowledge on half-width plots is structured and analysed, to which new results are added.

  16. The synthesis of surface-glycosylated porous monolithic column via aqueous two-phase graft copolymerization and its application in capillary-liquid chromatography.


    Xiong, Xiyue; He, Haiqin; Shu, Yan; Li, Yuxin; Yang, Zihui; Chen, Yingzhuang; Ma, Ming; Chen, Bo


    A facile, flexible process was developed for the preparation of surface-glycosylated porous monolithic columns via aqueous two-phase graft copolymerization of polyethylene glycol diacrylate (PEGDA) and water-soluble dextran (dextran sulfate). The formation of poly(PEGDA) porous skeletons and surface glycosylation were achieved via a one-step process without pre-modification of the dextran. The synthesis conditions were thoroughly optimized. The optimal monolithic column exhibited a large dry state surface area (greater than 400m(2)/g), and it was evaluated as a hydrophilic liquid chromatography (HILIC) stationary phase. A typical HILIC mechanism was observed at high organic solvent content (≥65% acetonitrile). In addition, the resulting monolithic column demonstrated the potential use in analysis of complex biological sample and enviroment water.

  17. Extraction of amphetamines and methylenedioxyamphetamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-diode array detection.


    Namera, Akira; Nakamoto, Akihiro; Nishida, Manami; Saito, Takeshi; Kishiyama, Izumi; Miyazaki, Shota; Yahata, Midori; Yashiki, Mikio; Nagao, Masataka


    To overcome the limitations of solid-phase extraction, we developed a device comprising a spin column packed with octadecyl silane-bonded monolithic silica for extracting amphetamines and methylenedioxyamphetamines from urine. Urine (0.5mL), buffer (0.4mL), and methoxyphenamine (internal standard) were directly put into the preactivated column. The column was centrifuged (3000rpm, 5min) for sample loading and washed. The adsorbed analytes were eluted and analyzed by high-performance liquid chromatography, without evaporation. The results were as follows: linear curves (drug concentrations of 0.2-20microg/mL); correlation coefficients >0.99; detection limit, 0.1microg/mL. The proposed method is not only useful for drugs from biological materials but also highly reproducible for the analysis of these drugs in urine.

  18. Parallel extraction columns and parallel analytical columns coupled with liquid chromatography/tandem mass spectrometry for on-line simultaneous quantification of a drug candidate and its six metabolites in dog plasma.


    Xia, Y Q; Hop, C E; Liu, D Q; Vincent, S H; Chiu, S H


    A method with parallel extraction columns and parallel analytical columns (PEC-PAC) for on-line high-flow liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and validated for simultaneous quantification of a drug candidate and its six metabolites in dog plasma. Two on-line extraction columns were used in parallel for sample extraction and two analytical columns were used in parallel for separation and analysis. The plasma samples, after addition of an internal standard solution, were directly injected onto the PEC-PAC system for purification and analysis. This method allowed the use of one of the extraction columns for analyte purification while the other was being equilibrated. Similarly, one of the analytical columns was employed to separate the analytes while the other was undergoing equilibration. Therefore, the time needed for re-conditioning both extraction and analytical columns was not added to the total analysis time, which resulted in a shorter run time and higher throughput. Moreover, the on-line column extraction LC/MS/MS method made it possible to extract and analyze all seven analytes simultaneously with good precision and accuracy despite their chemical class diversity that included primary, secondary and tertiary amines, an alcohol, an aldehyde and a carboxylic acid. The method was validated with the standard curve ranging from 5.00 to 5000 ng/mL. The intra- and inter-day precision was no more than 8% CV and the assay accuracy was between 95 and 107%.

  19. Rapid and direct analysis of statins in human plasma by column-switching liquid chromatography with restricted-access material.


    Fagundes, Vinicius Freire; Leite, Camila Prado; Pianetti, Gerson Antonio; Fernandes, Christian


    This study presents the development of a column-switching liquid chromatographic method with direct injection of human plasma for simultaneous determination of four statins (lovastatin, pravastatin, rosuvastatin and simvastatin), the main class of drugs used in the treatment of hyperlipidemia. By using a C18 (30 mm × 4.6 mm, 15 μm) a lab made bovine serum albumin restricted access material (RAM) column was prepared and compared with a commercial alquil-diol silica RAM column (C18, 25 mm × 4.0 mm, 25 μm) in terms of their protein exclusion capacity and micromolecules retention. Foreflush and backflush modes were compared for both RAM columns to the number of theoretical plates, asymmetry, resolution and chromatographic run time. The developed method was validated in the range from 125 to 876 ng mL(-1) for lovastatin, rosuvastatin and simvastatin, and from 500 to 2000 ng mL(-1) for pravastatin, presenting selectivity, precision and accuracy intra and inter-run. Total analysis time (sample preparation and chromatographic separation) was only 16 min when the backflush mode was employed in the column-switching system.

  20. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.


    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  1. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.


    Yang, Xiaoting; Hu, Yufei; Li, Gongke


    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample.

  2. Development of molecular imprinted column-on line-two dimensional liquid chromatography for selective determination of clenbuterol residues in biological samples.


    Guo, Pengqi; Luo, Zhimin; Xu, Xinya; Zhou, Yulan; Zhang, Bilin; Chang, Ruimiao; Du, Wei; Chang, Chun; Fu, Qiang


    A novel method coupling molecular imprinted monolithic column with two-dimensional liquid chromatography was developed and validated for the analysis of clenbuterol in pork liver and swine urine samples. The polymers were characterized by using Fourier transform infrared spectroscopy, nitrogen adsorption desorption analyses, frontal analysis and the adsorption of selectivity. The results indicated that the imprinted columns were well prepared and possessed high selectivity adsorption capacity. Subsequently, the MIMC-2D-LC (molecular imprinted monolithic column-two dimensional liquid chromatography) method was developed for the selective analysis of clenbuterol in practical samples. The accuracy ranged from 94.3% to 99.7% and from 93.7% to 99.6% for liver and urine, respectively. The relative standard deviation (RSD) of repeatability was lower than 8.6% for both analyses. The limit of detections was 16ng·mL(-1) for liver and 25ng·mL(-1) for urine, respectively. Compared with the reported methods, the disturbance of endogenous impurity could be avoided by the 2D-LC method.

  3. Determination of Sudan dyes in chili pepper powder by online solid-phase extraction with a butyl methacrylate monolithic column coupled to liquid chromatography with tandem mass spectrometry.


    Liu, Yao; Wang, Man-Man; Ai, Lian-Feng; Zhang, Chang-Kun; Li, Xin; Wang, Xue-Sheng


    A poly(butyl methacrylate-co-ethylene dimethacrylate) monolithic column was fabricated and used as a novel sorbent for online solid-phase extraction coupled to liquid chromatography with tandem mass spectrometry for the simultaneous determination of Sudan I-IV in chili pepper powder. The prepared columns were characterized by scanning electron microscopy, nitrogen adsorption-desorption, and pressure drop measurements. Online solid-phase extraction was performed on the synthesized monolithic column using 10 mM ammonium acetate solution as the loading solution with the aid of an online cleanup chromatography system. The desorption of Sudan I-IV was achieved with acetonitrile as the eluting solution at the flow rate of 0.5 mL/min. The extracted analytes were subsequently eluted into a C18 analytical column for chromatographic separation using a mixture of 10% acetonitrile/90% formic acid (0.5%) solution as the mobile phase. Under the optimized conditions, the developed method had linear range of 1.0-50 μg/kg, a detection limit of 0.3 μg/kg, and a quantification limit of 1.0 μg/kg for each analyte. The intraday and interday recoveries of Sudan I-IV in chili pepper powder samples ranged from 94.8 to 100.9% and 94.9 to 99.4%, respectively. The intraday and interday precision were between 3.37-7.01% and 5.01-7.68%, respectively.

  4. Determination of lansoprazole enantiomers in dog plasma by column-switching liquid chromatography with tandem mass spectrometry and its application to a preclinical pharmacokinetic study.


    Wang, Hao; Sun, Yantong; Meng, Xiangjun; Yang, Bo; Wang, Jian; Yang, Yan; Gu, Jingkai


    Lansoprazole, a selective proton pump inhibitor, has a chiral benzimidazole sulfoxide structure and is used for the treatment of gastric acid hypersecretory related diseases. To investigate its stereoselective pharmacokinetics, a column-switching liquid chromatography with tandem mass spectrometry method was developed for the determination of lansoprazole enantiomers in dog plasma using (+)-pantoprazole as an internal standard. After a simple protein precipitation procedure with acetonitrile, matrix components left behind after sample preparation were further eliminated from the sample by reversed-phase chromatography on a C18 column. The fluent was fed to a chiral column for the separation of lansoprazole enantiomers. Baseline separation of lansoprazole enantiomers was achieved on a Chiralcel OZ-RH column using acetonitrile/0.1% formic acid in water (35:65, v/v) as the mobile phase at 40°C. The linearity of the calibration curves ranged from 3 to 800 ng/mL for each enantiomer. Intra- and inter-day precisions ranged from 2.1 to 7.3% with an accuracy of ±1.7% for (+)-lansoprazole, and from 1.6 to 6.9% with an accuracy of ±3.5% for (-)-lansoprazole, respectively. The validated method was successfully applied for the stereoselective pharmacokinetic study of lansoprazole in beagle dog after intravenous infusion.



    Bradley, J.G.


    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  6. Accelerated quantification of amphetamine enantiomers in human urine using chiral liquid chromatography and on-line column-switching coupled with tandem mass spectrometry.


    Hädener, Marianne; Bruni, Pia S; Weinmann, Wolfgang; Frübis, Matthias; König, Stefan


    Amphetamine (AM) is a powerful psychostimulant existing in two enantiomeric forms. Stereoselective analysis of AM in biosamples can assist clinicians and forensic experts in differentiating between abuse of illicitly synthesized racemic AM and ingestion of pharmaceutical AM formulations containing either S-AM or different proportions of the S- and R-enantiomers. Therefore, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying AM enantiomers in urine was newly developed. The method comprised dilution with water, followed by injection of the diluted sample onto an achiral C18 trapping column for purification and subsequent backflush elution to a chiral Lux 3 μm AMP LC column by means of a switching valve. An isocratic mobile phase of 25 % acetonitrile in 0.1 M aqueous ammonia was used for enantiomeric separation. Injection, cleanup, and backflush of the next sample were performed before the previous sample had eluted from the analytical column, thus enabling simultaneous enantioseparation of up to three samples within the analytical column. This novel chromatographic concept allowed for increased sample throughput by accelerating both the sample preparation and the LC analysis. Analyte detection was accomplished by electrospray ionization in positive ion mode and selected reaction monitoring using a triple-stage quadrupole mass spectrometer. The method was successfully validated through assessment of its linearity, lower limit of quantification, accuracy and precision, selectivity, matrix effect, carry-over, dilution integrity, and re-injection reproducibility. Linearity ranged from 0.05 to 25 mg/L for both enantiomers. Proof of the method included analysis of urine samples obtained from drug abusers and patients receiving an S-AM prodrug. Graphical Abstract Enantioselective determination of amphetamine in human urine using liquid chromatography with achiral-chiral column-switching and tandem mass spectrometry.

  7. Advantages of monolithic over particulate columns for multiresidue analysis of organic pollutants by in-tube solid-phase microextraction coupled to capillary liquid chromatography.


    Moliner-Martínez, Y; Molins-Legua, C; Verdú-Andrés, J; Herráez-Hernández, R; Campíns-Falcó, P


    The performance of a monolithic C(18) column (150 mm×0.2 mm i.d.) for multiresidue organic pollutants analysis by in-tube solid-phase microextraction (IT-SPME)-capillary liquid chromatography has been studied, and the results have been compared with those obtained using a particulate C(18) column (150 mm×0.5 mm i.d., 5 μm). Chromatographic separation has been carried out under isocratic elution conditions, and for detection and identification of the analytes a UV-diode array detector has been employed. Several compounds of different chemical structure and hydrophobicity have been used as model compounds: simazine, atrazine and terbutylazine (triazines), chlorfenvinphos and chlorpyrifos (organophosphorous), diuron and isoproturon (phenylureas), trifluralin (dinitroaniline) and di(2-ethylhexyl)phthalate. The results obtained revealed that the monolithic column was clearly advantageous in the context of multiresidue organic pollutants analysis for a number of reasons: (i) the selectivity was considerably improved, which is of particular interest for the most polar compounds triazines and phenyl ureas that could not be resolved in the particulate column, (ii) the sensitivity was enhanced, and (iii) the time required for the chromatographic separation was substantially shortened. In this study it is also proved that the mobile-phase flow rates used for separation in the capillary monolithic column are compatible with the in-valve IT-SPME methodology using extractive capillaries of dimensions similar to those used in conventional scale liquid chromatography (LC). On the basis of these results a new method is presented for the assessment of pollutants in waters, which permits the characterization of whole samples (4 mL) in less than 30 min, with limits of detection in the range of 5-50 ng/L.

  8. Direct extraction of tetracyclines from bovine milk using restricted access carbon nanotubes in a column switching liquid chromatography system.


    de Faria, Henrique Dipe; Rosa, Mariana Azevedo; Silveira, Alberto Thalison; Figueiredo, Eduardo Costa


    This paper describes, for the first time, the use of restricted access carbon nanotubes (RACNTs) in the analysis of tetracyclines from milk samples, in a multidimensional liquid chromatographic system. Milk samples were initially acidified and centrifuged, and then the supernatant was directly analyzed in a column switching system in backflush configuration employing an extraction column of RACNTs. The sorbent was able to exclude all the remained proteins in less than 2.0min. The method was linear from 50 to 200μgL(-1) and the coefficients of determination (r(2)) were 0.997, 0.992, 0.994 and 0.998 for oxytetracycline (OXI), tetracycline (TC), chlortetracycline (CTC) and doxycycline (DOX), respectively. The analytical range included the maximum residue limits established by the regulatory agency.

  9. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry.


    Wang, Lu; Liu, Shu; Zhang, Xueju; Xing, Junpeng; Liu, Zhiqiang; Song, Fengrui


    In this paper, an analysis strategy integrating macroporous resin (AB-8) column chromatography and high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) combined with ion mobility spectrometry (IMS) was proposed and applied for identification and structural characterization of compounds from the fruits of Gardenia jasminoides. The extracts of G. jasminoides were separated by AB-8 resin column chromatography combined with reversed phase liquid chromatography (C18 column) and detected by electrospray ionization tandem mass spectrometry. Additionally, ion mobility spectrometry (IMS) was employed as a supplementary separation technique to discover previously undetected isomers from the fruits of G. jasminoides. A total of 71 compounds, including iridoids, flavonoids, triterpenes, monoterpenoids, carotenoids and phenolic acids were identified by the characteristic high resolution mass spectrometry and the ESI-MS/MS fragmentations. In conclusion, the IMS-MS technique achieved the separation of isomers in crocin-3 and crocin-4 according to their acquired mobility drift times differing from classical analysis by mass spectrometry. The proposed strategy can be used as a highly sensitive and efficient procedure for identification and separation isomeric components in extracts of herbal medicines.

  10. Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global (13)C-labeled internal standards improve performance for quantitative metabolomics in bacteria.


    Yang, Song; Sadilek, Martin; Lidstrom, Mary E


    Streamlined quantitative metabolomics in central metabolism of bacteria would be greatly facilitated by a high-efficiency liquid chromatography (LC) method in conjunction with accurate quantitation. To achieve this goal, a methodology for LC-tandem quadrupole mass spectrometry (LC-MS/MS) involving a pentafluorophenylpropyl (PFPP) column and culture-derived global (13)C-labeled internal standards (I.Ss.) has been developed and compared to hydrophilic interaction liquid chromatography (HILIC)-MS/MS and published combined two-dimensional gas chromatography and LC methods. All 50 tested metabolite standards from 5 classes (amino acids, carboxylic acids, nucleotides, acyl-CoAs and sugar phosphates) displayed good chromatographic separation and sensitivity on the PFPP column. In addition, many important critical pairs such as isomers/isobars (e.g. isoleucine/leucine, methylsuccinic acid/ethylmalonic acid and malonyl-CoA/3-hydroxybutyryl-CoA) and metabolites of similar structure (e.g. malate/fumarate) were resolved better on the PFPP than on the HILIC column. Compared to only one (13)C-labeled I.S., the addition of global (13)C-labeled I.Ss. improved quantitative linearity and accuracy. PFPP-MS/MS with global (13)C-labeled I.Ss. allowed the absolute quantitation of 42 metabolite pool sizes in Methylobacterium extorquens AM1. A comparison of metabolite level changes published previously for ethylamine (C2) versus succinate (C4) cultures of M. extorquens AM1 indicated a good consistency with the data obtained by PFPP-MS/MS, suggesting this single approach has the capability of providing comprehensive metabolite profiling similar to the combination of methods. The more accurate quantification obtained by this method forms a fundamental basis for flux measurements and can be used for metabolism modeling in bacteria in future studies.

  11. Determination of pegfilgrastim aggregates by size-exclusion high-performance liquid chromatography on a methacrylate-based column.


    Shahbazi, Majid; Tamaskany Zahedy, Elnaz; Kiumarsi, Shiva; Hadi Soltanabad, Mojtaba; Shahbazi Azar, Saleh; Amini, Hossein


    A size-exclusion high-performance liquid chromatographic method using a methacrylate-based column was developed, validated and implemented for the determination of pegfilgrastim aggregates. The samples were directly injected into a TSKgel G4000PWXL column (7.5 mm × 300 mm, 10 μm, <500 A°) with a mobile phase of 100 mM phosphate, pH 2.5. Detection was made at 215 nm and analyses were run at a flow-rate of 0.6 ml/min at 10 °C. Vortex-mixing of samples produced oligomers, however, very high molecular weight aggregates were formed at high temperatures. The method exhibited linearity over the concentration range of 0.1-14 mg/ml for pegfilgrastim monomer and high molecular weight aggregates with a correlation coefficient of greater than 0.99. The method was specific and sensitive, with a lower quantification limit of 0.1 mg/ml and a detection limit of 0.02 mg/ml. Over 1200 samples were analyzed by the present method without significant change in the column performance.

  12. Simultaneous multi-mycotoxin determination in nutmeg by ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection.


    Kong, Wei-Jun; Liu, Shu-Yu; Qiu, Feng; Xiao, Xiao-He; Yang, Mei-Hua


    A simple and sensitive analytical method based on ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with high performance liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection (USLE-IAC-HPLC-PCD-FLD) has been developed for simultaneous multi-mycotoxin determination of aflatoxins B1, B2, G1, G2 (AFB1, AFB2, AFG1, AFG2) and ochratoxin A (OTA) in 13 edible and medicinal nutmeg samples marketed in China. AFs and OTA were extracted from nutmeg samples by ultrasonication using a methanol : water (80 : 20, v/v) solution, followed by an IAC clean-up step. Different USL extraction conditions, pre-processing ways for nutmeg sample and clean-up columns for mycotoxins, as well as HPLC-PCD-FLD parameters (mobile phase, column temperature, elution procedure, excitation and emission wavelengths) were optimized. This method, which was appraised for analyzing nutmeg samples, showed satisfactory results with reference to limits of detection (LODs) (from 0.02 to 0.25 μg kg(-1)), limits of quantification (LOQs) (from 0.06 to 0.8 μg kg(-1)), linear ranges (up to 30 ng mL(-1) for AFB1, AFG1 and OTA and 9 ng mL(-1) for AFB2 and AFG2), intra- and inter-day variability (all <2%) and average recoveries (from 79.6 to 90.8% for AFs and from 93.6 to 97.3% for OTA, respectively). The results of the application of developed method in nutmeg samples have elucidated that four samples were detected with contamination of AFs and one with OTA. AFB1 was the most frequently found mycotoxin in 30.8% of nutmeg samples at contamination levels of 0.73-16.31 μg kg(-1). At least two different mycotoxins were co-occurred in three samples, and three AFs were simultaneously detected in one sample.

  13. Quantification of malachite green in fish feed utilising liquid chromatography-tandem mass spectrometry with a monolithic column.


    Abro, Kamran; Mahesar, Sarfaraz Ahmed; Iqbal, Seema; Perveen, Shahnaz


    The purpose of this study was to develop a rapid and sensitive method for the quantification of malachite green (MG) in fish feed using LC-ESI-MS/MS with a monolithic column as stationary phase. Fish feed was cleaned using ultrasonic assisted liquid-liquid extraction. The separation was achieved on a Chromolith® Performance RP-18e column (100 × 4.6 mm) using gradient mobile phase composition of methanol and 0.1% formic acid at the flow rate of 1.0 ml min⁻¹. The analyte was ionised using electrospray ionisation in positive mode. Mass spectral transitions were recorded in selected reaction monitoring (SRM) mode at m/z 329.78 → m/z 314.75 with a collision energy (CE) of 52% for MG. The system suitability responses were calculated for reproducibility tests of the retention time, number of theoretical plates and capacity factor. System validation was evaluated for precision, specificity and linearity of MG. The linearity and calibration graph was plotted in the range of 15.0-250 ng ml⁻¹ with the regression coefficient of >0.997. The lower limits of detection and quantification for MG were 0.55 and 1.44 ng ml⁻¹, respectively, allowing easy determination in fish feed with accuracy evaluated as a percentage recovery of 92.1% and precision determined as % CV of < 5. The method was also extended to the determination of MG in an actual fish feed. The sensitivity and selectivity of LC-ESI-MS/MS using monolithic column offers a valuable alternative to the methodologies currently employed for the quantification of MG in fish feeds.

  14. Sensitive and simple determination of bromate in foods disinfected with hypochlorite reagents using high performance liquid chromatography with post-column derivatization.


    Yokota, Azusa; Kubota, Hiroki; Komiya, Satomi; Sato, Kyoko; Akiyama, Hiroshi; Koshiishi, Ichiro


    A novel analytical method for the quantification of bromate in fresh foods using high performance liquid chromatography (HPLC) with a post-column reaction has been developed. The fresh food sample solutions were pretreated with homogenization, centrifugal ultrafiltration and subsequent solid phase extraction using a strong anion-exchange resin. After separation on a strong anion-exchange chromatography column using a highly concentrated NaCl solution (0.3M) as the eluent, the bromate was quantified by detection using a post-column reaction with a non-carcinogenic reagent (tetramethylbenzidine). The developed HPLC technique made it possible to quantify bromate in salt-rich fresh foods. The recoveries from fresh foods spiked with bromate at low levels (2 or 10 ng/g) satisfactorily ranged from 75.3 to 90.7%. The lowest quantification limit in fresh foods was estimated to be 0.6 ng/g as bromic acid. The method should be helpful for the quantification of bromate in fresh foods disinfected with hypochlorite solutions.

  15. Determination of Gonyautoxin-4 in Echinoderms and Gastropod Matrices by Conversion to Neosaxitoxin Using 2-Mercaptoethanol and Post-Column Oxidation Liquid Chromatography with Fluorescence Detection.


    Silva, Marisa; Rey, Verónica; Botana, Ana; Vasconcelos, Vitor; Botana, Luis


    Paralytic Shellfish Toxin blooms are common worldwide, which makes their monitoring crucial in the prevention of poisoning incidents. These toxins can be monitored by a variety of techniques, including mouse bioassay, receptor binding assay, and liquid chromatography with either mass spectrometric or pre- or post-column fluorescence detection. The post-column oxidation liquid chromatography with fluorescence detection method, used routinely in our laboratory, has been shown to be a reliable method for monitoring paralytic shellfish toxins in mussel, scallop, oyster and clam species. However, due to its high sensitivity to naturally fluorescent matrix interferences, when working with unconventional matrices, there may be problems in identifying toxins because of naturally fluorescent interferences that co-elute with the toxin peaks. This can lead to erroneous identification. In this study, in order to overcome this challenge in echinoderm and gastropod matrices, we optimized the conversion of Gonyautoxins 1 and 4 to Neosaxitoxin with 2-mercaptoethanol. We present a new and less time-consuming method with a good recovery (82.2%, RSD 1.1%, n = 3), requiring only a single reaction step.

  16. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.


    Aydoğan, Cemil; El Rassi, Ziad


    Fumed silica nanoparticles (FSNPs), were incorporated for the first time into a polymethacrylate monolithic column containing glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in order to develop a new monolithic column for hydrophilic interaction high performance liquid chromatography (HILIC). When compared to poly(GMM-EDMA) monolithic column without FSNPs, the same monolithic column with incorporated FSNPs yielded important effects on HILIC separations. The effects of monomers and FSNPs content of the polymerization mixture on the performance of the monolithic column were examined in details, and the optimized stationary phase was investigated over a wide range of mobile phase composition with polar acidic, weakly basic and neutral analytes including hydroxy benzoic acids, nucleotides, nucleosides, dimethylformamide, formamide and thiourea. The retention of these analytes was mainly controlled by hydrophilic interactions with the FSNPs and electrostatic repulsion from the negatively charged silica surface in the case of hydroxy benzoic acids and nucleotides. The electrostatic repulsion was minimized by decreasing the pH of the aqueous component of the mobile phase, which in turn enhanced the retention of acidic solutes. Nucleotides were best separated using step gradient elution at decreasing pH as well as ACN concentration in the mobile phase. Improved peak shape and faster analysis of nucleosides were attained by a fast linear gradient elution with a shallow decrease in the ACN content of the ACN-rich mobile phase. The run-to-run and column-to-column reproducibility were satisfactory. The percent relative standard deviations (%RSDs) for the retention times of tested solutes were lower than 2.5% under isocratic conditions and lower than 3.5 under gradient conditions.

  17. Chemometrics-assisted high performance liquid chromatography-diode array detection strategy to solve varying interfering patterns from different chromatographic columns and sample matrices for beverage analysis.


    Yin, Xiao-Li; Wu, Hai-Long; Gu, Hui-Wen; Hu, Yong; Wang, Li; Xia, Hui; Xiang, Shou-Xia; Yu, Ru-Qin


    This work reports a chemometrics-assisted high performance liquid chromatography-diode array detection (HPLC-DAD) strategy to solve varying interfering patterns from different chromatographic columns and sample matrices for the rapid simultaneous determination of six synthetic colorants in five kinds of beverages with little sample pretreatment. The investigation was performed using two types of LC columns under the same elution conditions. Although analytes using different columns have different co-elution patterns that appear more seriously in complex backgrounds, all colorants were properly resolved by alternating trilinear decomposition (ATLD) method and accurate chromatographic elution profiles, spectral profiles as well as relative concentrations were obtained. The results were confirmed by those obtained from traditional HPLC-UV method at a particular wavelength and the results of both methods were consistent with each other. All results demonstrated that the proposed chemometrics-assisted HPLC-DAD method is accurate, economical and universal, and can be promisingly applied to solve varying interfering patterns from different chromatographic columns and sample matrices for the analysis of complex food samples.

  18. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by isocratic high-pressure liquid chromatography with post-column hydrolysis and fluorescence detection.


    Hobl, Eva-Luise; Jilma, Bernd; Ebner, Josef; Schmid, Rainer W


    A selective, sensitive and rapid high-performance liquid chromatography method with post-column hydrolysis and fluorescence detection was developed for the simultaneous quantification of acetylsalicylic acid and its metabolite salicylic acid in human plasma. Following the addition of 2-hydroxy-3-methoxybenzoic acid as internal standard and simple protein precipitation with acetonitrile, the analytes were separated on a ProntoSIL 120 C18 ace-EPS column (150 × 2 mm, 3 µm) protected by a C8 guard column (5 µm). The mobile phase, 10 mm formic acid in water (pH 2.9) and acetonitrile (70:30, v/v), was used at a flow rate of 0.35 mL/min. After on-line post-column hydrolysis of acetylsalicylic acid (ASA) to salicylic acid (SA) by addition of alkaline solution, the analytes were measured at 290 nm (λex ) and 400 nm (λem ). The method was linear in the concentration ranges between 0.05 and 20 ng/μL for both ASA and SA with a lower limit of quantification of 25 pg/μL for SA and 50 pg/μL for ASA. The limit of detection was 15 pg/μL for SA and 32.5 pg/μL for ASA. The analysis of ASA and SA can be carried out within 8 min; therefore this method is suitable for measuring plasma concentrations of salicylates in clinical routine.

  19. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. I. Injection procedure and column stability.


    Mengerink, Y; Peters, R; Kerkhoff, M; Hellenbrand, J; Omloo, H; Andrien, J; Vestjens, M; van der Wal, S


    We report a method for reliable routine polymer sample introduction with minimal bias, a separation method of the first six linear and cyclic oligomers by liquid chromatography, quantification using group equivalents and long term method performance. Injecting a polymer sample in a mobile phase containing an aqueous non-solvent often results in blocked systems as the polymer precipitates in the connecting capillaries. In this first part we focus on a new injection technique, in which the dissolved polyamide is placed between two zones of formic acid, preventing the polymer to precipitate before it reaches the column. Development of this sandwich injection method makes direct injection of the polymer into an aqueous acetonitrile gradient feasible. The oligomeric polyamide recovery of this technique, extraction, dissolution/precipitation and direct injection on a hexafluoro-isopropanol (HFIP) gradient were compared. With the sandwich injection method the polymer remains on the column, slowly changing the stationary phase. The influence of this on resolution and retention was studied. Column stability allows sixty injections before cleaning or replacing the column is necessary.

  20. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.


    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J


    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids.

  1. Determination of benzalkonium chloride in eye care products by high-performance liquid chromatography and solid-phase extraction or on-line column switching.


    Elrod, L; Golich, T G; Morley, J A


    Benzalkonium chloride (BAK) is a mixture of alkylbenzyldimethylammonium chlorides, which is commonly used as a bacteriostat. In this work, the three major homologues of BAK are quantitated in the over-the-counter eye care products Murine and Murine Plus using high-performance liquid chromatography (HPLC). The analytes are separated from various product excipients and concentrated by either solid-phase extraction onto Sep-Pak C18 cartridges or by an on-line column-switching technique using 1-cm reversed-phase precolumns. Absolute recoveries of BAK homologues by the solid-phase extraction technique ranged from 97.2 to 98.7% for standards and from 98.0 to 98.4% for samples. Absolute recovery of the BAK homologues by the column-switching technique was 101.3% for standards and ranged from 99.9 to 103.7% for samples. Relative recoveries were quantitative by both techniques. Assay precision (R.S.D. values) were +/- 2.2% to +/- 2.6% and +/- 0.4% to +/- 0.8% by solid-phase extraction and column-switching techniques, respectively. The method provides advantages of high sample throughput, excellent column life and automation.

  2. Identification of l-carnitine and its impurities in food supplement formulations by online column-switching liquid chromatography coupled with linear ion trap mass spectrometry.


    Wang, Hang; Xie, Sijun


    The identification of impurities in l-carnitine by mass spectrometry is difficult because derivative reagents or ion pair reagents are usually used to separate and increase the retention of l-carnitine on the reversed-phase column. In this study, four impurities including 3-chloro-2-hydroxy-N,N,N-trimethylpropan-1-aminium, 3-cyano-2-hydroxy-N,N,N-trimethylpropan-1-aminium, 3-carboxy-N,N,N-trimethylprop-2-en-1-aminium, and 4-chloro-2,3,4-trihydroxy-N,N,N-trimethylbutan-1-aminium were identified in l-carnitine and its tablets by using two-dimensional column-switching high-performance liquid chromatography coupled with linear ion trap mass spectrometry. The first column was a C8 column at a flow rate of 0.15 mL/min; the detection wavelength was 220 nm. The second column was an Acclaim Q1 column using a gradient elution program with aqueous 30 mM ammonium acetate (pH 5.0) and acetonitrile as the mobile phase at a flow rate of 0.5 mL/min. The mass fragmentation patterns and structural assignments of impurities were studied, and the quantitative validation of three impurities was further investigated. The linearity (r(2) ) was found to be >0.99, with ranges from 0.2 to 50 ng/mL and 0.1 to 10 ng/mL. The method was used successfully for determination of impurities in five samples of l-carnitine and tablets.

  3. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases.


    Ruiz-Angel, M J; Pous-Torres, S; Carda-Broch, S; García-Alvarez-Coque, M C


    Column selection in reversed-phase liquid chromatography (RPLC) can become a challenge if the target compounds interact with the silica-based packing. One of such interactions is the attraction of cationic solutes to the free silanols in silica-based columns, which is a slow sorption-desorption interaction process that gives rise to tailed and broad peaks. The effect of silanols is minimised by the addition of a competing agent in the mobile phase, such as the anionic surfactant sodium dodecyl sulphate (SDS). In micellar-organic RPLC, the adsorption of an approximately fixed amount of SDS monomers gives rise to a stable modified stationary phase, with properties remarkably different from those of the underlying bonded phase. The chromatographic behaviour (in terms of selectivity, analysis time and peak shape) of eight C18 columns in the analysis of weakly acidic phenols and basic β-blockers was examined with hydro-organic and micellar-organic mobile phases. The behaviour of the columns differed significantly when the cationic basic drugs were eluted with hydro-organic mobile phases. With micellar-organic mobile phases, the adsorption of surfactant, instead of making the columns similar, gave rise to a greater diversity of behaviours (especially in terms of selectivity and analysis time), for both groups of phenols and β-blockers, which should be explained by the residual effect of the underlying bonded stationary phase and the different amount of surfactant covering the packing. Therefore, the implementation of a micellar-organic procedure in RPLC will depend significantly on the selected type of C18 column.

  4. Liquid Chromatography in 1982.

    ERIC Educational Resources Information Center

    Freeman, David H.


    Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)

  5. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng


    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  6. Coupled-column liquid chromatography applied to the trace-level determination of triazine herbicides and some of their metabolites in water samples.


    Hernández, F; Hidalgo, C; Sancho, J V; López, F J


    In the present work, a study is reported of the potential of coupled-column liquid chromatography (LC) applied to the determination of triazine residues in environmental water samples. For this purpose, two different techniques have been compared: on-line trace enrichment followed by LC (SPE-LC) and coupled-column liquid chromatography (LC-LC). First, a completely automated liquid chromatographic method based on on-line trace enrichment in a prepacked precolumn and using diode array detection has been developed for the simultaneous trace-level determination of six triazine herbicides (simazine, cyanazine, atrazine, terbumeton, terbuthylazine, and terbutryn) and the main atrazine metabolites (desisopropylatrazine, desethylatrazine, and hydroxyatrazine). After preconcentration parameters were optimized by testing two different sorbents (C18 and PRP-1) in three cartridges with different dimensions, a sample volume of 100 mL was selected in order to achieve maximal solute preconcentration. Detection limits lower than 0.1 microgram.L-1 were obtained even for the most polar analyte (desisopropylatrazine), which presented recoveries of around 30%. The method was validated by means of recovery experiments in groundwater and surface water samples spiked with the analytes at different levels (0.2-2 micrograms.L-1). Afterward, the procedure was successfully applied in a program for monitoring of triazine residues in surface water carried out in a wet area of Castellón, Spain. Different triazine herbicides such as simazine, terbumeton, terbuthylazine, and terbutryn were identified and quantified. The identity of these compounds was confirmed by their absorption UV spectra and by GC/MS analysis. Finally, two rapid, sensitive, and selective procedures, previously developed in our laboratory for the trace-level determination of triazine compounds, both based on LC-LC, were compared with the former procedure. The SPE-LC approach showed a considerable improvement in the global

  7. Temperature programmable microfabricated gas chromatography column


    Manginell, Ronald P.; Frye-Mason, Gregory C.


    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  8. Stationary phases for packed-column supercritical fluid chromatography.


    Poole, Colin F


    The properties of silica-based, chemically bonded, packed column stationary phases used in supercritical fluid chromatography are described with a focus on column design and retention mechanisms. Supercritical fluid chromatography has benefited substantially from innovations in column design for liquid chromatography even if the separation conditions employed are generally quite different. The mobile phase composition and column operating conditions play an interactive role in modifying selectivity in supercritical fluid chromatography by altering analyte solubility in the mobile phase and through selective solvation of the stationary phase resulting in a wider range and intensity of intermolecular interactions with the analyte. The solvation parameter model is used to identify the main parameters that affect retention in supercritical fluid chromatography using carbon dioxide-methanol as a mobile phase and as a basis for column characterization to facilitate the identification of stationary phases with different separation characteristics for method development. As a caution it is pointed out that these column characterization methods are possibly a product of both the stationary phase chemistry and the column operating conditions and are suitable for use only when columns of similar design and with similar operating conditions are used.

  9. Luminescent determination of quinolones in milk samples by liquid chromatography/post-column derivatization with terbium oxide nanoparticles.


    Yánez-Jácome, G S; Aguilar-Caballos, M P; Gómez-Hens, A


    The usefulness of terbium oxide nanoparticles (Tb4O7NPs) as post-column derivatizing reagent for the liquid chromatographic determination of residues of quinolone antibiotics in milk samples has been studied. Seven quinolones of veterinary use have been chosen as model analytes to develop this method. The derivatization step is based on the formation of luminescent chelates of quinolones with Tb4O7NPs, which are monitored at λex=340nm and λem=545nm. Another relevant feature of the method is that the use of a 10-cm column and a ternary mixture of methanol, acetonitrile and acetic acid as mobile phase in gradient elution mode allow the chromatographic separation of the quinolones in about 13min, whereas previously described chromatographic methods require about 20min. The dynamic ranges of the calibration graphs and limits of detection are, respectively: 65-900ngmL(-1) and 35ngmL(-1) for marbofloxacin, 7.2-900ngmL(-1) and 2.5ngmL(-1) for ciprofloxacin, 6-900ngmL(-1) and 2ngmL(-1) for danofloxacin, 50-900ngmL(-1) and 20ngmL(-1) for enrofloxacin, 35-900ngmL(-1) and 12ngmL(-1) for sarafloxacin, 5-900ngmL(-1) and 2ngmL(-1) for oxolinic acid, and 7-900ngmL(-1) and 2.5ngmL(-1) for flumequine. The precision, established at two concentration levels of each analyte and expressed as the percentage of the relative standard deviation is in the range of 1.9-8.1% using standards, and of 3.4-10.7% in the presence of milk samples. The method has been satisfactorily applied to the analysis of skimmed, semi-skimmed and whole milk samples, with recoveries ranging from 89.0 to 106.5%.

  10. Programmed temperature vaporizing injector to filter off disturbing high boiling and involatile material for on-line high performance liquid chromatography gas chromatography with on-column transfer.


    Biedermann, Maurus; Grob, Koni


    Insertion of a programmed temperature vaporizing (PTV) injector under conditions of concurrent solvent recondensation (CSR) into the on-line HPLC-GC interface for on-column transfer (such as the retention gap technique with partially concurrent eluent evaporation) enables filtering off high boiling or involatile sample constituents by a desorption temperature adjusted to the required cut-off. Details of this technique were investigated and optimized. Memory effects, observed when transferred liquid was sucked backwards between the transfer line and the wall of the injector liner, can be kept low by a small purge flow rate through the transfer line at the end of the transfer and the release of the liquid through a narrow bore capillary kept away from the liner wall. The column entrance should be within the well heated zone of the injector to prevent losses of solute material retained on the liner wall during the splitless period. The desorption temperature must be maintained until an elevated oven temperature is reached to prevent peak broadening resulting of a cool inlet section in the bottom part of the injector.

  11. Pre-column dilution large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of multi-class pesticides in cabbages.


    Zhong, Qisheng; Shen, Lingling; Liu, Jiaqi; Yu, Dianbao; Li, Siming; Yao, Jinting; Zhan, Song; Huang, Taohong; Hashi, Yuki; Kawano, Shin-ichi; Liu, Zhaofeng; Zhou, Ting


    Pre-column dilution large volume injection (PD-LVI), a novel sample injection technique for reverse phase ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), was developed in this study. The PD-LVI UHPLC-MS/MS system was designed by slightly modifying the commercial UHPLC-MS/MS equipment with a mixer chamber. During the procedure of PD-LVI, sample solution of 200μL was directly carried by the organic mobile phase to the mixer and diluted with the aqueous mobile phase. After the mixture was introduced to the UHPLC column in a mobile phase of acetonitrile-water (15/85, v/v), the target analytes were stacked on the head of the column until following separation. Using QuEChERS extraction, no additional steps such as solvent evaporation or residue redissolution were needed before injection. The features of PD-LVI UHPLC-MS/MS system were systematically investigated, including the injection volume, the mixer volume, the precondition time and the gradient elution. The efficiency of this approach was demonstrated by direct analysis of 24 pesticides in cabbages. Under the optimized conditions, low limits of detection (0.00074-0.8 ng/kg) were obtained. The recoveries were in the range of 63.3-109% with relative standard deviations less than 8.1%. Compared with common UHPLC-MS/MS technique, PD-LVI UHPLC-MS/MS showed significant advantages such as excellent sensitivity and reliability. The mechanism of PD-LVI was demonstrated to be based on the column-head stacking effect with pre-column dilution. Based on the results, PD-LVI as a simple and effective sample injection technique of reverse phase UHPLC-MS/MS for the analysis of trace analytes in complex samples showed a great promising prospect.

  12. Segmented post-column analyte addition; a concept for continuous response control of liquid chromatography/mass spectrometry peaks affected by signal suppression/enhancement.


    Kaufmann, Anton; Butcher, Patrick


    A novel technique, "segmented post-column analyte addition", is proposed to visualize and compensate signal suppression/enhancement effects in electrospray ionization tandem mass spectrometry (ESI-MS/MS). Instead of delivering a constant flow of analyte solution between the liquid chromatography (LC) column exit and the ESI interface into the eluent resulting from LC separation of analyte-free matrix in order to determine retention time widows in which suppression/enhancement is unimportant (King et al., J. Am. Soc. Mass Spectrom. 2000; 11: 942), segmented packets of analyte-containing solvent and analyte-free solvent were infused into an LC eluent resulting from separation of an analyte-containing sample. The obtained, superimposed, periodic spikes are much narrower than the analyte peak eluting from the column. The height of the spikes is affected by signal suppression phenomena to the same extent as the analyte signal, and hence variations of the spike height can be used to correct the peak area of analyte peaks affected by signal suppression/enhancement.

  13. Determination of propylthiouracil in pharmaceutical formulation by high-performance liquid-chromatography with a post-column iodine-azide reaction as a detection system.


    Zakrzewski, Robert


    A high-performance liquid chromatographic method with a post-column iodine-azide reaction has been chosen and tested for validity in quantitative determination of propylthiouracil in tablets. A mobile phase with a flow rate of 1.4 ml/min was conducted in the form of isocratic chromatography on a C18 column with acetonitrile-water-sodium azide solution (2.5%; pH 5.5) 24:26:50 (v/v/v). Unreacted iodine from post-column iodine-azide induced by reaction was monitored with visible detection at lambda=350 nm. The method proved both its linearity within the range of 8-100 nM (r2>0.9988) and satisfactory results of inter-day precision (RSD<4.2%) and accuracy (recovery>91%). The limits of detection (DDL) and quantification (DQL) reached the levels of 5 and 8 nM, respectively. The validation of the method comprised also its specificity. The results obtained proved the suitability and appropriateness of the suggested method for intended use.

  14. Single column comprehensive analysis of pharmaceutical preparations using dual-injection mixed-mode (ion-exchange and reversed-phase) and hydrophilic interaction liquid chromatography.


    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett


    The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample.

  15. The use of phospholipid modified column for the determination of lipophilic properties in high performance liquid chromatography.


    Godard, Tal; Grushka, Eli


    A new chromatographic stationary phase obtained by coating a reversed phase amide column with phosphatidylcholine based liposomes solution to yield a phospholipid modified column (PLM). The modification is achieved by the dynamic coating method which recycles the coating solution through the column in a closed loop for a period of 24 h. The chromatographic properties of the new column have changed significantly as compared to the original amide column due to the phospholipid coating. A good correlation was observed between n-octanol/water logP values and the logarithm of the retention factor obtained on the PLM column for a large number of solutes. In addition the PLM column was characterized using the linear solvation energy relationship (LSER). The values of the LSER system constants for the PLM column were calculated and were found to be very close to those of the n-octanol/water extraction system thus suggesting that the PLM column can be used for the estimation of n-octanol/water partition coefficient and serve as a possible alternative to the shake-flask method for lipophilicity determination. In addition, the results suggest that the PLM column can provide an alternative to other phospholipid-based column such as the IAM and the DPC columns.

  16. Analysis of oil-biodiesel samples by high performance liquid chromatography using the normal phase column of new generation and the evaporative light scattering detector.


    Fedosov, Sergey N; Fernandes, Natalia A; Firdaus, Mohd Y


    Conversion of vegetable oil to biodiesel is usually monitored by gas chromatography. This is not always convenient because of (i) an elaborate derivatization of the samples; (ii) inhibition of this process by methanol and water; (iii) low stability of the derivatives under storage. HPLC methods are apparently more convenient, but none of the described variants had won a wide recognition so far. This can be ascribed to the problems of reproducibility (in the case of normal phase chromatography) and limited separation of some analytes (in the case of reverse phase chromatography). Here we report an HPLC procedure suitable for separation of biodiesel, free fatty acids, glycerides, glycerol and lecithin. The normal phase column of new generation (Poroshell 120 HILIC) and the novel gradient were used. The method was tested on both the artificial mixtures and the crude reaction samples. Elution of the analytes was monitored by an evaporative light scattering detector. This method is usually confined to a very limited range of masses, where only a part of the complex calibration curve is used. We have analyzed the light scattering signal within a very broad range of masses, whereupon the calibration curves were produced. The data were approximated by the appropriate equations used afterward to recalculate the signal to the mass in a convenient way. An experimental conversion of rapeseed oil to biodiesel was performed by a liquid lipase formulation. This process was monitored by HPLC to illustrate advantages of the suggested registration method.

  17. Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry.


    Wei, Fang; Ji, Shu-Xian; Hu, Na; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong


    The complexity of natural triacylglycerols (TAGs) in various edible oils is high because of the hundreds of TAG compositions, which makes the profiling of TAGs quite difficult. In this investigation, a rapid and high-throughput method for online profiling of TAGs in plant oils by two-dimensional (2D) liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode 2D chromatographic column packed with silver-ion-modified octyl and sulfonic co-bonded silica was employed in this online 2D separation system. This novel 2D column combined the features of C8 column and silver-ion. In comparison with the traditional C18 column and silver-ion column, which are the two main columns used for the separation of complex TAGs in natural oil samples, this novel 2D column, could provide hydrophobic interactions as well as π-complexation interactions. It exhibited much higher selectivity for the separation of TAGs, and the separation was rapid. This online 2D separation system was successful in the separation of a large number of TAG solutes, and the TAG structures were evaluated by analyzing their APCI mass spectra information. This system was applied for the profiling of TAGs in peanut oils, corn oils, and soybean oils. 30 TAGs in peanut oils, 18 TAGs in corn oils, and 21 TAGs in soybean oils were determined and quantified. The highest relative content of TAGs was LLL, which was found in corn oil with the relative content up to 45.43 (%, w/w), and the lowest relative content of TAGs was LLS and OSS, which was found in soybean oil and corn oil respectively, with the relative content only 0.01 (%, w/w). In addition, the TAG data were analyzed by principal component analysis (PCA). Results of PCA enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs

  18. High-throughput sample preparation and simultaneous column regeneration liquid chromatography-tandem mass spectrometry method for determination of nitrogen mustard metabolites in human urine.


    Reddy, Muntha K; Mills, Grier; Nixon, Christopher; Wyatt, Shane A; Croley, Timothy R


    Nitrogen mustards (NMs) are known to have DNA alkylation and strong vesicant properties. Their availability to terrorist organizations makes them a potential choice for chemical attacks on civilian populations. After an exposure, it is difficult to measure NMs directly because of their rapid metabolism in the human body. Therefore to determine an individual's level of exposure to NMs, it is necessary to analyze for NM metabolites being excreted by the body. The metabolites of NMs are generated by a hydrolysis reaction, and are easily detectable by liquid chromatography tandem mass spectrometry (LC-MS/MS). This work is focused on the development of a high-throughput assay for the quantitation of N-ethyldiethanolamine (EDEA) and N-methyldiethanolamine (MDEA) metabolites of bis (2-chloroethyl) ethylethanamine (HN1) and bis (2-chloroethyl) methylethanamine (HN2), respectively. The method uses automated 96-well plate sample preparation of human urine samples and a 2-position 10-port switching valve to allow for simultaneous regeneration of the liquid chromatography (LC) columns. Using this method, over 18 h was saved through the reduction of sample preparation and analysis time when compared to a conventional method for 96 samples. The validated method provided excellent accuracy for both EDEA (100.9%) and MDEA (100.6%) with precision better than 5.27% for each analyte.

  19. Adsorption of the anionic surfactant sodium dodecyl sulfate on a C18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography.


    Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C


    Micellar liquid chromatography makes use of aqueous solutions or aqueous-organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl-bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase.

  20. Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography.


    Havugimana, Pierre C; Wong, Peter; Emili, Andrew


    Clinically relevant biomarkers are urgently needed for improving patient diagnosis, risk stratification, prognosis and therapeutic treatments. There is a particularly compelling motivation for identifying protein-based indicators of early-stage disease for more effective interventions. Despite recent progress, the proteomic discovery process remains a daunting challenge due to the sheer heterogeneity and skewed protein abundances in biofluids. Even the most advanced mass spectrometry systems exhibit limiting overall dynamic ranges and sensitivities relative to the needs of modern biomedical applications. To this end, we report the development of a robust, rapid, and reproducible high performance ion-exchange liquid chromatography pre-fractionation method that allows for improved proteomic detection coverage of complex biological specimens using basic tandem mass spectrometry screening procedures. This form of sample simplification prior to global proteomic profiling, which we refer to collectively as 'fractionomics', increases the number and diversity of proteins that can be confidently identified in tissue and cell lysates as compared to the straight analysis of unfractionated crude extracts.

  1. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.


    Li, D Q; Zhao, J; Li, S P


    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures.

  2. Chromatography column comparison and rapid pretreatment for the simultaneous analysis of amantadine, rimantadine, acyclovir, ribavirin, and moroxydine in chicken muscle by ultra high performance liquid chromatography and tandem mass spectrometry.


    Zhang, Qiaoyan; Xiao, Chaogeng; Wang, Wei; Qian, Mingrong; Xu, Jie; Yang, Hua


    In this work, a chromatography column comparison and rapid pretreatment development were carried out. A multi-class method was built based on the quick, easy, cheap, effective, rugged, and safe pretreatment method with hydrophilic interaction ultra high performance liquid chromatography and tandem mass spectrometry for the high-throughput analysis of five antivirals in chicken muscle. The HSS T3 column, BEH HILIC column and BEH Amide column were studied, and their chemical functionalities and chromatographic separation effectiveness were compared. The BEH Amide column was selected to perform the mass spectrometry analysis under the hydrophilic interaction chromatography mode. First, a different strategy without adding MgSO4 and NaCl into the muscle samples was considered. Then, different concentrations of formic acid, acetic acid, and ammonia in acetonitrile were compared for better extraction efficiency. Nine sorbents (C18 , PSA, NH2 , Florisil, Alumina-B, Alumina-N, PestiCarb, NANO, and NANO-NH2 ) were studied. The optimized procedure consisted of the use of 10% acetic acid in acetonitrile for the extraction solvent and NANO-NH2 for clean-up. NANO-NH2 had not been applied in other matrix and pollutants so far. The developed method provided favorable trueness, precision, and acceptable matrix effect. Meanwhile, the method was sensitive, the limits of detection of amantadine, rimantadine, acyclovir, ribavirin, and moroxydine achieved were 0.56, 0.50, 0.30, 2.22, and 0.51 μg/kg, respectively, and were successfully applied for the routine detection of antivirals in the chicken samples.

  3. Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography.


    Jandera, Pavel; Urban, Jirí; Skeríková, Veronika; Langmaier, Pavel; Kubícková, Romana; Planeta, Josef


    We prepared hybrid particle-monolithic polymethacrylate columns for micro-HPLC by in situ polymerization in fused silica capillaries pre-packed with 3-5microm C(18) and aminopropyl silica bonded particles, using polymerization mixtures based on laurylmethacrylate-ethylene dimethacrylate (co)polymers for the reversed-phase (RP) mode and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) zwitterionic (co)polymers for the hydrophilic interaction (HILIC) mode. The hybrid particle-monolithic columns showed reduced porosity and hold-up volumes, approximately 2-2.5 times lower in comparison to the pure monolithic columns prepared in the whole volume of empty capillaries. The elution volumes of sample compounds are also generally lower in comparison to packed or pure monolithic columns. The efficiency and permeability of the hybrid columns are intermediate in between the properties of the reference pure monolithic and particle-packed columns. The chemistries of the embedded solid particles and of the interparticle monolithic moiety in the hybrid capillary columns contribute to the retention to various degrees, affecting the selectivity of separation. Some hybrid columns provided improved separations of proteins in comparison to the reference particle-packed columns in the reversed-phase mode. Zwitterionic hybrid particle-monolithic columns show dual mode retention HILIC/RP behaviour depending on the composition of the mobile phase and allow separations of polar compounds such as phenolic acids in the HILIC mode at lower concentrations of acetonitrile and, often in shorter analysis time in comparison to particle-packed and full-volume monolithic columns.

  4. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter.


    Xu, Hongjuan; Weber, Stephen G


    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (N(obs)) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte's retention factor, k', is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (a(r)) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of a(r) become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 microm radius is suitable for all columns smaller than 150 microm (radius) packed with 2-5 microm particles. For 1 microm packing particles, only columns smaller than 42.5 microm (radius) can be used and the reactor radius needs to be 5 microm.

  5. Determination of the polar drug dimiracetam in human plasma and serum by column-switching high-performance liquid chromatography.


    Torchio, L; Lombardi, F; Visconti, M; Doyle, E


    A sensitive and fully automated column-switching HPLC method was developed for the determination of a novel cognition enhancer, dimiracetam, in human plasma and serum. A sample of plasma was ultrafiltered and then directly injected onto a first mu Bondapak C18 column. The sample was eluted with water. The portion of the eluate (heart-cut) from this column containing the drug was selected and loaded on a second mu Bondapak C18 column and eluted with water. During the elution of the second column, the first column was automatically rinsed with water-acetonitrile (50:50, v/v) and then equilibrated for a new injection. The total analysis time for each sample was 35 min. This corresponded to a 30% decrease in analysis time compared with the time that would have been needed with a simple run with two mu Bondapak C18 columns assembled in series. Ultraviolet detection at 200 nm was used to monitor the eluate. The method was fully validated over the quantitation range 27 ng/ml-15 micrograms/ml. The applicability of the method was demonstrated by analysis of serum samples from a study performed in human healthy volunteers.

  6. 1.1 μm superficially porous particles for liquid chromatography: part II: column packing and chromatographic performance.


    Blue, Laura E; Jorgenson, James W


    The predicted advantages of superficially porous particles over totally porous particles are decreased eddy dispersion, longitudinal diffusion, and resistance to mass transfer contributions to the theoretical plate height. While sub-2 micron superficially porous particles are commercially available, further improvements in performance are predicted by decreasing the particle diameter and decreasing the porous layer thickness. 1.1 μm superficially porous particles with 187Å pores have been synthesized using a layer-by-layer method tuned for production of smaller diameter particles. Following synthesis, these particles were packed into 30 μm i.d. capillary columns and their chromatographic performance evaluated using electrochemical detection. Based on the initial studies, the column efficiency did not meet theory, but was similar to the commercially available products tested. It is believed that the column packing process plays a critical role in the sub-par column performance. To determine if column efficiency could be predicted by solvent-particle interactions, in-solution optical microscopy and sedimentation velocity of particles in various slurry solvents were investigated and compared to column performance. Aggregating slurry solvents, such as methanol were found to produce columns with increased efficiency. The hmin for a column packed with an acetone slurry and a methanol slurry at 3mg/mL were found to be 6.3 and 3.5, respectively. Increasing the slurry concentration to 25mg/mL further improved the efficiency, producing a column with an hmin of 2.6. These efficiency results were accurately predicted by in-solution optical microscopy.

  7. New silica gel-based monolithic column for nano-liquid chromatography, used in the HILIC mode.


    Silva, Raquel G C; Bottoli, Carla B G; Collins, Carol H


    This paper describes the synthesis and chromatographic and morphologic characterization of two monolithic silica nano-columns (50 µm i.d.) prepared by sol-gel processes, using hydrophilic interaction (HILIC) mode separations to evaluate their performance. Two types of monoliths were prepared by varying the precursors (tetraethoxysilane or a tetraethoxysilane-methyltrimethoxysilane mixture) and by changing the type of catalyst (urea and acetic acid or ammonium hydroxide). The monoliths were characterized by scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy and nitrogen adsorption-desorption isotherms. The columns were tested for the separation of several mixtures, with the organically modified silica (ormosil) column successfully separating two challenging mixtures using HILIC conditions.

  8. Determination of ortho-phenylphenol residues in lemon rind by high-performance liquid chromatography with electrochemical detection using a microbore column.


    Yang, Lan; Kotani, Akira; Hakamata, Hideki; Kusu, Fumiyo


    A simple and highly sensitive method has been developed for determining ortho-phenylphenol (OPP) in lemon rind by high-performance liquid chromatography with electrochemical detection using a microbore column (microHPLC-ECD). Based on the voltammetric behavior of OPP, microHPLC-ECD was established using a CAPCELL PAK C-18 UG 120 microbore ODS column, 17 mM acetic acid-sodium acetate buffer (pH 4.0)/acetonitrile (60/40, v/v) as a mobile phase and an applied potential at +0.9 V vs. Ag/AgCl. The current peak height was found to be linearly related to the amount of OPP injected from 3.4 pg to 1.7 ng (r > 0.999). The detection limit (S/N = 3) was 3.4 pg (20 fmol), which was 100 times greater in terms of sensitivity when compared to conventional HPLC with UV detection. Standard OPP at 0.425 ng was detected with a relative standard deviation (RSD) of 1.9% (n = 10). The OPP contents in several lemon samples were determined by the present method. The recoveries of OPP from lemon rind exceeded 98% with an RSD (n = 5) of less than 3.01%.

  9. Enhancing capillary liquid chromatography/tandem mass spectrometry of biogenic amines by pre-column derivatization with 7-fluoro-4-nitrobenzoxadiazole.


    Song, Yaru; Quan, Zhe; Evans, Joseph L; Byrd, Edward A; Liu, Yi-Ming


    This paper describes a capillary liquid chromatography/tandem mass spectrometry (LC/MS/MS) determination of biogenic amines enhanced by pre-column derivatization with 7-fluoro-4-nitrobenzoxadiazole (NBD-F). Biogenic amines including tryptamine, N-methylsalsolinol, histamine, and agmatine were studied. The biogenic NBD-amine derivatives could be quantitatively enriched in-line on 20 x 0.25 mm capillary columns packed in-house with 5 microm C(8) silica particles. In an electrospray ionization (ESI) source these derivatives were ionized effectively, and collision-induced dissociation (CID) produced predominant characteristic ions allowing sensitive MS/MS detection. Agmatine, a potential neurotransmitter/modulator, was taken as a reference compound to study the analytical figures of merit of the procedure. The detection limit of agmatine was estimated to be 0.6 ng/mL (signal-to-noise (S/N) = 3). A linear calibration curve in the range 15-1000 ng/mL agmatine with an r value of 0.9997 was obtained. Tissue samples of rat brain, stomach, and intestine were analyzed. Minimum sample pre-treatment was needed. Each analysis was accomplished within ca. 12 min. The concentration of agmatine was found to be 0.246, 3.31, and 0.058 microg/g wet tissue in the brain, stomach, and intestine, respectively.

  10. Direct aqueous injection-liquid chromatography with post-column derivatization for determination of N-methylcarbamoyloximes and N-methylcarbamates in finished drinking water: collaborative study.


    Edgell, K W; Biederman, L A; Longbottom, J E


    An interlaboratory method validation study was conducted on EPA Method 531.1, Measurement of N-Methylcarbamoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post Column Derivatization, to determine the precision and mean recovery for determination of 10 carbamate pesticide compounds in reagent water and in finished drinking waters. The study design was based on Youden's nonreplicate plan for collaborative tests of analytical methods. The waters were spiked with 10 carbamate pesticides at 6 concentration levels, as 3 Youden pairs. Eight laboratories analyzed the samples by direct aqueous injection, with separation by reverse-phase liquid chromatography and post-column hydrolysis of the carbamates and carbamoyloximes to methylamine, followed by reaction of the methylamine with o-phthalaldehyde and 2-mercaptoethanol using fluorescence detection. Results were analyzed using an EPA computer program, which measured precision and recovery for each of the 10 compounds and compared the performance of the method between water types. The method was acceptable for all analytes tested. After removal of a nonrepresentative data set for aldicarb sulfoxide, no matrix effects were observed; the statistics for the pooled drinking waters were not significantly different from the statistics for the reagent waters. The method has been adopted official first action by AOAC.

  11. Fluorescence determination of N-acetylaspartic acid in the rat cerebrum homogenate using high-performance liquid chromatography with pre-column fluorescence derivatization.


    Fukushima, Takeshi; Arai, Kotaro; Tomiya, Masayuki; Mitsuhashi, Shogo; Sasaki, Tsukasa; Santa, Tomofumi; Imai, Kazuhiro; Toyo'oka, Toshimasa


    N-acetyl-L-aspartic acid (NAA) is an endogenous compound, and its brain concentration is suggested to be altered in neurological disorders. In the present study, a fluorescence determination method for NAA was developed by employing reversed-phase high-performance liquid chromatography (HPLC) with pre-column fluorescence derivatization using 4-N,N-dimethylaminosulfonyl-7-N-(2-aminoethyl)amino-2,1,3-benzoxadiazole (DBD-ED). Using methylsuccinic acid as the internal standard, a linear calibration curve for NAA was constructed in the range 125-1000 microM (n=3). The detection limit on the column was approximately 5.0 fmol (signal-to-noise ratio 3). The proposed HPLC method was applied to determine NAA in the rat cerebrum homogenate. Cerebrum NAA was successfully determined using 10 microL of the homogenate, and the validation data for the proposed HPLC method demonstrated satisfactory results. Intra- and inter-day precision and accuracy were within 1.1-7.0 and -8.1-6.3%, respectively. The concentration of NAA in the male rat cerebrum (13 weeks old) was 84 +/-4.6 nmol/mg protein (n = 3) [corrected].

  12. [Determination of netilmicin in rat plasma by reversed-phase high performance liquid chromatography with fluorescence detection and pre-column derivatization].


    Chang, Xiaojuan; Peng, Jingdong; Liu, Shaopu; Liu, Limin; Dai, Yongkuang


    A new, simple and sensitive method based on pre-column derivatization by reversed-phase high performance liquid chromatography (HPLC) is described for the separation and quantification of netilmicin in plasma, using 9-fluorenylmethyl chloroformate (FMOC-Cl) as the derivatization reagent. Its pharmacokinetics is also presented. The derivatization modes and chromatographic conditions were optimized. The separation was performed on an Agilent ZORBAX Eclipse XDB-C8 column (150 mm x 4.6 mm, 5 microm) with a mixture of water-acetonitrile (15:85, v/v) as mobile phase and the flow rate was 1.0 mL/min. The excitation wavelength was 265 nm and the emission wavelength was 315 nm. The linear range was 0.045-8.88 mg/L and the correlation coefficient (r) was 0.9993. The limit of detection (LOD) (S/N = 3) was about 0.01 mg/L, and the limit of quantification was 0.03 mg/L (3LOD) for netilmicin. The relative standard deviation was less than 3% for intra-day assay (n = 5) and 3.5% for inter-day assay (n = 5) and the relative recovery was in the range of 96.62%-100.84% (n = 3). The plasma volume of 30 microL was sufficient for the determination of netilmicin. The method provides a reliable bioanalytical methodology to carry out netilmicin pharmacokinetics in rat plasma.

  13. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].


    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun


    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes.

  14. Enhancing detection sensitivity in gradient liquid chromatography via post-column refocusing and strong-solvent remobilization.


    De Vos, Jelle; Desmet, Gert; Eeltink, Sebastiaan


    We developed earlier the post-column refocusing strategy for isocratic separations, which employs trapping target analytes after an analytical separation and additionally focusing them using a strong remobilization solvent prior to detection, and have now extended it to high-speed gradient LC. A gradient separation of antibiotics and its metabolites, applying a linear aqueous acetonitrile gradient from 2 to 65% (v/v) ACN containing 0.1% FA in 10min, performed on an analytical column was selected as an application. Eluted heart-cut fractions were directed from the analytical silica C18 column to a trap column packed with Hypercarb particles. The remobilization of the target analytes was performed in back-flush mode using solvent mixtures tuned to maximize the solvent strength by mixing isopropanol into the remobilization solvent containing acetonitrile. Additionally, a viscosity-calibration experiment showed that the viscosity difference between trapping and remobilization solvents should be smaller than 0.15mPa·s to prevent viscous fingering. To keep the viscosity difference below this limit, during the gradient separation performed on the analytical column, the composition of the remobilization solvent was changed in time. An empirical equation is provided that allows for the selection of the optimal remobilization-solvent composition. To maximize the signal enhancement, the loading time of target analytes on the trap column should be optimized. Peak dispersion was further minimized by applying a flow rate that corresponded to the optimal van-Deemter flow rate of the trap column (20μL/min). Finally, decreasing the diameter of the trap column from 1mm to 0.3mm led to a significant enhancement of the detection sensitivity with more than one order of magnitude. Using an optimized trap configuration and elution/remobilization conditions, a signal enhancement of a factor of 14 was achieved for sulfaguanidine (early-eluting compound in the gradient separation) and 7

  15. Preparation and evaluation of 3 m open tubular capillary columns with a zwitterionic polymeric porous layer for liquid chromatography.


    Peng, Li; Zhu, Manman; Zhang, Lingyi; Liu, Haiyan; Zhang, Weibing


    A 3 m zwitterionic polymeric porous layer open tubular column (3 m × 25 μm id × 375 μm od) with a polymeric porous layer thickness of 4 μm was fabricated by the copolymerization of [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide and N,N'-methylenebis(acrylamide). The effects of the diameter of the capillary, reaction temperature, and polymerization time on the preparation of the open tubular column were investigated. Characterized by scanning electron microscopy, the zwitterionic layer was observed to be rough and throughout the fused-silica capillary homogenously, which increased the phase ratio. The separation of neutral, basic, and acidic compounds demonstrates the strong hydrophilicity of the poly[2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide coating. In addition, the poly[2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide porous layer open tubular column was applied for the analysis of flavonoids from the rootstalk of licorice, revealing the potential in separating complex samples. The relative standard deviation of retention time for run-to-run (n = 5), day-to-day (n = 3), and column-to-column (n = 3) of toluene, N,N-dimethylformamide, formamide, and thiourea were below 1.2%, exhibiting good repeatability.

  16. [Determination of 11 sulfonamide residues in aquaculture water and sediments by high performance liquid chromatography coupled with post-column derivatization].


    Liu, Jinghua; Sun, Zhenzhong; Huang, Xueling; Guo, Xia; Sun, Jianhua


    An analytical method was developed for the determination of 11 sulfonamide compounds in aquaculture water and sediments by high performance liquid chromatography (HPLC) coupled with post-column derivatization. The filtered water sample was purified and concentrated with HLB cartridge, while the sediment sample was extracted with a mixture of methanol and EDTA-McIlvaine buffer (1:1, v/v), and then purified and enriched through HLB solid-phase extraction. The sulfonamides were separated on a C18 column by HPLC and on-line derivatized with a fluorescamine and detected with a fluorescence detector. The parameters of post-column derivatization system were optimized, and the fluorescamine solution concentration, velocity of reagent solution and reaction temperature were 0.2 g/L, 0.15 mL/min and 50 °C, respectively. The calibration curves of the method showed good linearity in the range of 0.01-1.0 mg/L, with the correlation coefficients (r2) all above 0.99995. The recoveries were 79.3%-100.7% and 74.6%-95.3% with RSD values of 2.2%-11.0% and 2.6%-10.3% for the 11 sulfonamides in aquaculture water and sediments, respectively. The respective limits of detection (LODs, S/N = 3) were 0.9-5.5 ng/L and 0.3-1.3 µg/kg and the limits of quantification (LOQs, S/N = 10) were 3.0-18.1 ng/L and 1.0-4.4 µg/kg. The method can be applied to the determination of sulfonamides in the aquaculture environment, and it has a good practicability.

  17. Coupled-column liquid chromatography combined with postcolumn photochemical derivatization and fluorescence detection for the determination of herbicides in groundwater.


    Mughari, Ahmed R; Galera, María Martínez; Vázquez, Piedad Parrilla; Valverde, Rosario Santiago


    This study examines the application of coupled-column LC-photochemically induced fluorimetry-fluorescence detection (LC-LC-PIF-FD), demonstrating its potential for the quantitative and selective detection of six herbicides, including propanil and the phenylureas monuron, monolinuron, chlorotoluron, diuron and neburon in groundwater samples. An AQUASIL C18 50 x 4.6 mm(2) id column coupled to an AQUASIL C18 150 x 4.6 mm(2) id column for analyte clean-up and determination were used, respectively. A simple SPE with Cl8 cartridges was carried out, yielding average recoveries between 80 and 112% (n = 6) with RSDs between 0.5 and 9%. The LODs ranged from 0.0083 to 0.0833 microg/L in the groundwater samples.

  18. Impact of the column hardware volume on resolution in very high pressure liquid chromatography non-invasive investigations.


    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin


    The impact of the column hardware volume (≃ 1.7 μL) on the optimum reduced plate heights of a series of short 2.1 mm × 50 mm columns (hold-up volume ≃ 80-90 μL) packed with 1.8 μm HSS-T3, 1.7 μm BEH-C18, 1.7 μm CSH-C18, 1.6 μm CORTECS-C18+, and 1.7 μm BEH-C4 particles was investigated. A rapid and non-invasive method based on the reduction of the system dispersion (to only 0.15 μL(2)) of an I-class Acquity system and on the corrected plate heights (for system dispersion) of five weakly retained n-alkanophenones in RPLC was proposed. Evidence for sample dispersion through the column hardware volume was also revealed from the experimental plot of the peak capacities for smooth linear gradients versus the corrected efficiency of a weakly retained alkanophenone (isocratic runs). The plot is built for a constant gradient steepness irrespective of the applied flow rates (0.01-0.30 mL/min) and column lengths (2, 3, 5, and 10 cm). The volume variance caused by column endfittings and frits was estimated in between 0.1 and 0.7 μL(2) depending on the applied flow rate. After correction for system and hardware dispersion, the minimum reduced plate heights of short (5 cm) and narrow-bore (2.1mm i.d.) beds packed with sub-2 μm fully and superficially porous particles were found close to 1.5 and 0.7, respectively, instead of the classical h values of 2.0 and 1.4 for the whole column assembly.

  19. Simultaneous identification and quantification of tetrodotoxin in fresh pufferfish and pufferfish-based products using immunoaffinity columns and liquid chromatography/quadrupole-linear ion trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Mengmeng; Wu, Haiyan; Jiang, Tao; Tan, Zhijun; Zhao, Chunxia; Zheng, Guanchao; Li, Zhaoxin; Zhai, Yuxiu


    In this study, we established a comprehensive method for simultaneous identification and quantification of tetrodotoxin (TTX) in fresh pufferfish tissues and pufferfish-based products using liquid chromatography/quadrupole-linear ion trap mass spectrometry (LC-QqLIT-MS). TTX was extracted by 1% acetic acid-methanol, and most of the lipids were then removed by freezing lipid precipitation, followed by purification and concentration using immunoaffinity columns (IACs). Matrix effects were substantially reduced due to the high specificity of the IACs, and thus, background interference was avoided. Quantitation analysis was therefore performed using an external calibration curve with standards prepared in mobile phase. The method was evaluated by fortifying samples at 1, 10, and 100 ng/g, respectively, and the recoveries ranged from 75.8%-107%, with a relative standard deviation of less than 15%. The TTX calibration curves were linear over the range of 1-1 000 μg/L, with a detection limit of 0.3 ng/g and a quantification limit of 1 ng/g. Using this method, samples can be further analyzed using an information-dependent acquisition (IDA) experiment, in the positive mode, from a single liquid chromatography-tandem mass spectrometry injection, which can provide an extra level of confirmation by matching the full product ion spectra acquired for a standard sample with those from an enhanced product ion (EPI) library. The scheduled multiple reaction monitoring method enabled TTX to be screened for, and TTX was positively identified using the IDA and EPI spectra. This method was successfully applied to analyze a total of 206 samples of fresh pufferfish tissues and pufferfish-based products. The results from this study show that the proposed method can be used to quantify and identify TTX in a single run with excellent sensitivity and reproducibility, and is suitable for the analysis of complex matrix pufferfish samples.

  20. Integration of uniform porous shell layers in very long pillar array columns using electrochemical anodization for liquid chromatography.


    Callewaert, Manly; Op De Beeck, Jeff; Maeno, Katsuyuki; Sukas, Sertan; Thienpont, Hugo; Ottevaere, Heidi; Gardeniers, Han; Desmet, Gert; De Malsche, Wim


    Electrochemical anodization has been applied to grow porous shell layers of 300 nm (30 nm pores) in 5 μm diameter pillar array columns (PACs) with a spacing of 2.5 μm. Using turn structures preceded and followed by the flow distributor structures recently introduced by our group and filled with radially elongated pillars, columns with quasi unlimited channel lengths could be conceived. The uniformity of the porous PAC was assessed by determining local plate heights along the channel, which appeared to be constant. Minimal (absolute) plate heights (H) between 4 and 6 μm were obtained at optimal flow rates when imposing increasing retention factors. Upon measuring the surface area involved in chromatographic retention as an indicator of the available surface area, an increase in the surface area by a factor of about 30 compared to that of non-anodized pillars was found. On reconfiguring a commercial HPLC instrument to enable on-chip injections, 90% of the performance (expressed in theoretical plates) could be maintained for a 1 m column, while for a 25 cm column severe losses were still observed. As the corresponding pressure drop for optimal operation of retained components is on the order of 10 bar per m only, portable and cheaper HPLC devices with high efficiencies become realistically conceivable.

  1. System maps for retention of small neutral compounds on a superficially porous particle column in reversed-phase liquid chromatography.


    Atapattu, Sanka N; Poole, Colin F; Praseuth, Mike B


    The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral molecules on the ocadecylsiloxane-bonded silica superficially porous particle stationary phase (Kinetex C18) for aqueous-organic solvent mobile phases containing 10-70% (v/v) methanol or acetonitrile. A comparison of the system constants with eight commercially available octadecylsiloxane-bonded silica columns for the same separation conditions confirms that the general retention properties of Kinetex C-18 are similar to totally porous octadecylsiloxane-bonded silica stationary phases and that method transfer should be no more difficult than that usually observed when substituting one octadecylsiloxane-bonded silica column for another.

  2. Stage-frit: A straightforward sub-2 μm nano-liquid chromatography column fabrication for proteomic analysis.


    Hsieh, Ming-Yueh; Hsiao, He-Hsuan


    In this work we demonstrated a facile method for the fabrication of C18 coordination polymer gel in a capillary, called stage-frit, which was efficiently applied to pack sub-2 μm C18 beads into the capillary by a high pressure bomb for the online separation of proteolytic peptides. The back pressure of the column with 10 cm × 75 μm i.d. is regularly lower than 170 bar at a flow rate of 300 nl/min, which could be operated on a common nanoLC system instead of nanoUPLC system due to the good permeability, low back pressure and high mechanical stress of the frit that will totally reduce the cost for the purchase of instrument. The stage-frit allows long-term continuous flow of the solvent and no significant beads loss or pressure instability was observed during the period. The repeatability of retention time for fifteen BSA tryptic peaks was found to be less than 1.08% (RSD) in six time nanoLC-ESI-MS/MS experiments. The average full width at half maximum (FWHM) of peptide peaks is 5.87 s. The sub-2 μm stage-frit nanoLC column showed better sensitivity than the commercial available for large scale proteomic analysis of total tissue proteins from human spleen. The number of identified peptides is approximately 0.4-fold and 0.2-fold higher than that obtained by utilizing commercial columns packed with 3 μm and 1.8 μm C18 materials, respectively. In the field of analytical chemistry, particularly the use of nanoLC systems, stage-frit nanoLC column offers a great potential for the separation of complex mixtures.

  3. Liquid chromatography post-column oxidation (PCOX) method for the determination of paralytic shellfish toxins in mussels, clams, oysters, and scallops: collaborative study.


    van de Riet, Jeffrey; Gibbs, Ryan S; Muggah, Patricia M; Rourke, Wade A; MacNeil, James D; Quilliam, Michael A


    Sixteen laboratories participated in a collaborative study to evaluate method performance parameters of a liquid chromatographic method of analysis for paralytic shellfish toxins (PST) in blue mussels (Mytilus edulis), soft shell clams (Mya arenaria), sea scallops (Placopectin magellanicus), and American oysters (Crassostrea virginicus). The specific analogs tested included saxitoxin, neosaxitoxin, gonyautoxins-1 to -5, decarbamoyl-gonyautoxins-2 and -3, decarbamoyl-saxitoxin, and N-sulfocarbamoyl-gonyautoxin-2 and -3. This instrumental technique has been developed as a replacement for the current AOAC biological method (AOAC Official Method 959.08) and an alternative to the pre-column oxidation LC method (AOAC Official Method 2005.06). The method is based on reversed-phase liquid chromatography with post-column oxidation and fluorescence detection (excitation 330 nm and emission 390 nm). The shellfish samples used in the study were prepared from the edible tissues of clams, mussels, oysters, and scallops to contain concentrations of PST representative of low, medium, and high toxicities and with varying profiles of individual toxins. These concentrations are approximately equivalent to 1/2 maximum level (ML), ML, or 2xML established by regulatory authorities (0.40, 0.80, and 1.60 mg STX diHCl eq/kg, respectively). Recovery for the individual toxins ranged from 104 to 127%, and recovery of total toxin averaged 116%. Horwitz Ratio (HorRat) values for individual toxins in the materials included in the study were generally within the desired range of 0.3 to 2.0. For the estimation of total toxicity in the test materials, the reproducibility relative standard deviation ranged from 4.6 to 20%. A bridging study comparing the results from the study participants using the post-column oxidation (PCOX) method with the results obtained in the study director's laboratory on the same test materials using the accepted reference method, the mouse bioassay (MBA; AOAC Official

  4. An ultra-sensitive method for the analysis of perfluorinated alkyl acids in drinking water using a column switching high-performance liquid chromatography tandem mass spectrometry.


    Dasu, Kavitha; Nakayama, Shoji F; Yoshikane, Mitsuha; Mills, Marc A; Wright, J Michael; Ehrlich, Shelley


    In epidemiological research, it has become increasingly important to assess subjects' exposure to different classes of chemicals in multiple environmental media. It is a common practice to aliquot limited volumes of samples into smaller quantities for specific trace level chemical analyses. A novel method was developed for the determination of 14 perfluorinated alkyl acids (PFAAs) in small volumes (10mL) of drinking water using off-line solid phase extraction (SPE) pre-treatment followed by on-line pre-concentration on a WAX column before analysis on column-switching high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In general, large volumes (100-1000mL) have been used for the analysis of PFAAs in drinking water. The current method requires approximately 10mL of drinking water concentrated by using an SPE cartridge and eluted with methanol. A large volume injection of the extract was introduced on to a column-switching HPLC-MS/MS using a mix-mode SPE column for the trace level analysis of PFAAs in water. The recoveries for most of the analytes in the fortified laboratory blanks ranged from 73±14% to 128±5%. The lowest concentration minimum reporting levels (LCMRL) for the 14 PFAAs ranged from 0.59 to 3.4ng/L. The optimized method was applied to a pilot-scale analysis of a subset of drinking water samples from an epidemiological study. These samples were collected directly from the taps in the households of Ohio and Northern Kentucky, United States and the sources of drinking water samples are both surface water and ground water, and supplied by different water distribution facilities. Only five PFAAs, perfluoro-1-butanesulfonic acid (PFBS), perfluoro-1- -hexanesulfonic acid (PFHxS), perfluoro-1-octanesulfonic acid (PFOS), perfluoro-n-heptanoic acid (PFHpA) and perfluoro-n-octanoic acid (PFOA) are detected above the LCMRL values. The median concentrations of these five PFAAs detected in the samples was ≤4.1ng/L with PFOS at 7.6ng

  5. High-resolution ultrahigh-pressure long column reversed-phase liquid chromatography for top-down proteomics


    Shen, Yufeng; Tolić, Nikola; Piehowski, Paul D.; ...


    Separation of proteoforms for global intact protein analysis (i.e. top-down proteomics) has lagged well behind what is achievable for peptides in traditional bottom-up proteomic approach and is becoming a true bottle neck for top-down proteomics. We report use of long (≥1 M) columns containing short alkyl (C1-C4) bonded phases to achieve high-resolution RPLC for separation of proteoforms. At a specific operation pressure limit (i.e., 96.5 MPa or 14 K psi used in this work), column length was found to be the most important factor for achieving maximal resolution separation of proteins when 1.5–5 μm particles were used as packings andmore » long columns provided peak capacities greater than 400 for proteoforms derived from a global cell lysate with molecular weights below 50 kDa. Furthermore, we chromatographed larger proteoforms (50–110 kDa) on long RPLC columns and detected by MS; however, they cannot be identified yet by tandem mass spectrometry. Our experimental data further demonstrated that long alkyl (e.g., C8 and C18) bonded particles provided high-resolution RPLC for <10 kDa proteoforms, not efficient for separation of global proteoforms. Reversed-phase particles with porous, nonporous, and superficially porous surfaces were systematically investigated for high-resolution RPLC. Pore size (200–400 Å) and the surface structure (porous and superficially porous) of particles was found to have minor influences on high-resolution RPLC of proteoforms. RPLC presented herein enabled confident identification of ~900 proteoforms (1% FDR) for a low-microgram quantity of proteomic samples using a single RPLC–MS/MS analysis. The level of RPLC performance attained in this work is close to that typically realized in bottom-up proteomics, and broadly useful when applying e.g., the single-stage MS accurate mass tag approach, but less effective when combined with current tandem MS. Finally, our initial data indicate that MS detection and fragmentation

  6. Measuring Ochratoxin A Concentrations in Coffee Beverages with Immunoaffinity Columns and Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry.


    Chen, Wen-Ling; Chang, Chiung-Wen; Chen, Chia-Yang


    This study developed and validated a method for measuring concentrations of ochratoxin A (OTA) in coffee beverages, not coffee beans. The new method involved extraction using immunoaffinity columns and ultra-performance LC (UPLC)-MS/MS using isotope-dilution techniques. The combination of a fused-core column and UPLC significantly shortened chromatographic time to 3 min compared to reported UPLC methods. The method was sensitive, with an LOD and LOQ of 0.52 and 1.73 pg/mL, respectively. Quantitative intraday (n = 4) and interday (n = 4) biases and RSD were both below 15%. The OTA levels in 40 samples of freshly brewed coffee from chain stores, 24 samples of canned ready-to-drink coffee, and 6 beverages made from instant coffee granules ranged from 1.60 to 93.2 pg/mL (90% positive), 6.00 to 131 pg/mL (100% positive), and 21.8 to 59.0 pg/mL (100% positive), respectively. Based on published tolerable daily intake, men and women in Taiwan should consume no more than 6.3 and 5.1 fifteen gram packages of instant coffee per day, respectively. Specific suggestions were not made for brewed coffee and canned coffee because of their large variation in OTA concentrations. This study should be more relevant to actual human exposure than those studying OTA in green, roasted, and ground coffee beans alone.

  7. Determination of organic peroxides by liquid chromatography with on-line post-column ultraviolet irradiation and peroxyoxalate chemiluminescence detection.


    Wada, Mitsuhiro; Inoue, Keiyu; Thara, Ayuko; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka


    A HPLC method was developed for the simultaneous determination of organic peroxides and hydrogen peroxide with peroxyoxalate chemiluminescence (PO-CL) detection following on-line UV irradiation. Organic peroxides [i.e., benzoyl peroxide (BP), tert.-butyl hydroperoxide (BHP), tert.-butyl perbenzoate (BPB), cumene hydroperoxide (CHP)] were UV irradiated (254 nm, 15 W) to generate hydrogen peroxide, which was determined by PO-CL detection. The conditions for UV irradiation and PO-CL detection were optimized by a flow injection analysis (FIA) system. Generation of hydrogen peroxide from peroxides with on-line UV irradiation also was confirmed by the FIA system by incorporating an enzyme column reactor immobilized with catalase. The separation of four organic peroxides and hydrogen peroxide by HPLC was accomplished isocratically on an ODS column within 30 min. The detection limits (signal-to-noise ratio=3) were 1.1 microM for hydrogen peroxide, 6.8 microM for BP, 31.3 microM for BHP, 7.5 microM for BPB and 1.3 microM for CHP. The proposed method was applied to the determination of BP in wheat flour.

  8. Development of an automated on-line pre-column derivatization procedure for sensitive determination of histamine in food with high-performance liquid chromatography-fluorescence detection.


    Peng, Jin-Feng; Fang, Ke-Teng; Xie, Dong-Hua; Ding, Bin; Yin, Ju-Yi; Cui, Xiao-Mei; Zhang, Ying; Liu, Jing-Fu


    An improved sensitive method was developed and validated for the determination of histamine in food samples by using automated on-line pre-column derivatization coupled with high performance liquid chromatography and fluorescence detection (HPLC-FLD). o-Phthaldialdehyde (OPA) was adopted as derivatization reagent, and a "sandwich" (OPA+histamine+OPA) aspiration mode for the automated on-line pre-column derivatization was found to efficiently enhance the method sensitivity and precision. Histamine in food samples was efficiently extracted with a methanol-phosphate buffer solution (50:50, v/v) at 60 degrees C for 30 min, and purified with Waters Oasis MCX solid-phase extraction (SPE) cartridge. The limit of quantification for this method is 0.2 mg/kg, which is very sensitive for histamine determination. With the "sandwich" injection program, 3.7% of relative standard deviation (RSD) was achieved by five replicative determinations of a sample blank spiked with 0.25 mg/kg histamine standard. Histamine in food samples such as fumitory skipjack and mackerel was analyzed with relative recoveries over 95% at spiking level of 150 mg/kg, as well as canned tuna fish and cheese with relative recoveries up to 98% at spiking levels of 0.50 and 5.0 mg/kg, respectively. The proposed method was validated with a sample from the Food Analysis Performance Assessment Scheme (FAPAS) as a standard certified material; and the results (140+/-6 mg/kg) agreed well with the assigned value (139 mg/kg).

  9. [Simultaneous determination of erdosteine and its active metabolite in human plasma by liquid chromatography-tandem mass spectrometry with pre-column derivatization].


    Jin, Jing; Chen, Xiao-Yan; Zhang, Yi-Fan; Ma, Zhi-Yu; Zhong, Da-Fang


    A sensitive, rapid and accurate liquid chromatography-tandem mass spectrometric (LC-MS/MS) method with pre-column derivatization was developed for the simultaneous determination of erdosteine and its thiol-containing active metabolite in human plasma. Paracetamol and captopril were chosen as the internal standard of erdosteine and its active metabolite, respectively. Aliquots of 100 microL plasma sample were derivatized by 2-bromine-3'-methoxy acetophenone, then separated on an Agilent XDB-C18 (50 mm x 4.6 mm ID, 1.8 microm) column using 0.1% formic acid methanol--0.1% formic acid 5 mmol x L(-1) ammonium acetate as mobile phase, in a gradient mode. Detection of erdosteine and its active metabolite were achieved by ESI MS/MS in the positive ion mode. The linear calibration curves for erdosteine and its active metabolite were obtained in the concentration ranges of 5-3 000 ng x mL(-1) and 5-10 000 ng x mL(-1), respectively. The lower limit of quantification of erdosteine and its active metabolite were both 5.00 ng x mL(-1). The pharmacokinetic results of erdosteine and its thiol-containing active metabolite showed that the area under curve (AUC) of the thiol-containing active metabolite was 6.2 times of that of erdosteine after a single oral dose of 600 mg erdosteine tables in 32 healthy volunteers, The mean residence time (MRT) of the thiol-containing active metabolite was (7.51 +/- 0.788) h, which provided a pharmacokinetic basis for the rational dosage regimen.

  10. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique

    PubMed Central

    Chen, Hung-Ju; Inbaraj, Baskaran Stephen; Chen, Bing-Huei


    A liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed for the determination of phenolic acids and flavonoids in a medicinal Chinese herb Taraxacum formosanum Kitam. Initially, both phenolic acids and flavonoids were extracted with 50% ethanol in a water-bath at 60 °C for 3 h and eventually separated into acidic fraction and neutral fraction by using a C18 cartridge. A total of 29 compounds were separated within 68 min by employing a Gemini C18 column and a gradient solvent system of 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Based on the retention behavior as well as absorption and mass spectra, 19 phenolic acids and 10 flavonoids were identified and quantified in T. formosanum, with the former ranging from 14.1 μg/g to 10,870.4 μg/g, and the latter from 9.9 μg/g to 325.8 μg/g. For further identification of flavonoids, a post-column derivatization method involving shift reagents such as sodium acetate or aluminum chloride was used and the absorption spectral characteristics without or with shift reagents were compared. An internal standard syringic acid was used for quantitation of phenolic acids, whereas (±) naringenin was found suitable for quantitation of flavonoids. The developed LC-MS/MS method showed high reproducibility, as evident from the relative standard deviation (RSD) values for intra-day and inter-day variability being 1.0–6.8% and 2.0–7.7% for phenolic acids and 3.7–7.4% and 1.5–8.1% for flavonoids, respectively, and thus may be applied for simultaneous determination of phenolic acids and flavonoids in Chinese herb and nutraceuticals. PMID:22312251

  11. High Performance Liquid Chromatography Coupled with Pre-column Derivatization for Determination of Oxidized Glutathione Level in Rats Exposed to Paraquat.


    Hami, Zahra; Amini, Mohsen; Kiani, Amir; Ghazi-Khansari, Mahmoud


    Glutathione (GSH) is one of the most important antioxidants that plays an essential role in detoxification of reactive oxygen species (ROS) which oxidizes to glutathione disulfide (GSSG). Paraquat (PQ), awidely used herbicide, causes pulmonary injury with the productionof ROS. Excessive ROS accumulation as a consequence of PQ exposure are frequently targeted by GSH thereby oxidative stress leads to depletion of cellular GSH by transforming of GSH to glutathione disulfide (GSSG). A precise method of measuring of GSSG concentration in plasma as indicator of oxidative stress is needed. Some analytical techniques such as high-performance liquid chromatography (HPLC), gas chromatography and capillary electrophoresis have been used for determination of GSSG concentration. In the present study, a new HPLC method with fluorescence detection based on derivatization of the amine group of glutathione with 9-fluorenylmethyl chloroformate (FMOC-Cl) was developed. Male Wistar albino rats exposed to different doses of PQ (20-60 mg/kg) and control group were used and after protein precipitation, their plasma was subjected to derivatization with FMOC in the presence of borate buffer. The derivatized samples were injected to HPLC system with C18 column, mobile phase consisting of methanol and phosphate buffer, λem= 315 nm, λex= 260 nm. Among all experimental groups, the rats which received 60 mg/kg PQ, showed a significant increase in the amount of oxidized glutathione (GSSG) compared to the control group. In this study, the applied derivatization and HPLC method made it possible to measure small amounts of glutathione in plasma using a precise and sensitive technique.

  12. High Performance Liquid Chromatography Coupled with Pre-column Derivatization for Determination of Oxidized Glutathione Level in Rats Exposed to Paraquat

    PubMed Central

    Hami, Zahra; Amini, Mohsen; Kiani, Amir; Ghazi-Khansari, Mahmoud


    Glutathione (GSH) is one of the most important antioxidants that plays an essential role in detoxification of reactive oxygen species (ROS) which oxidizes to glutathione disulfide (GSSG). Paraquat (PQ), awidely used herbicide, causes pulmonary injury with the productionof ROS. Excessive ROS accumulation as a consequence of PQ exposure are frequently targeted by GSH thereby oxidative stress leads to depletion of cellular GSH by transforming of GSH to glutathione disulfide (GSSG). A precise method of measuring of GSSG concentration in plasma as indicator of oxidative stress is needed. Some analytical techniques such as high-performance liquid chromatography (HPLC), gas chromatography and capillary electrophoresis have been used for determination of GSSG concentration. In the present study, a new HPLC method with fluorescence detection based on derivatization of the amine group of glutathione with 9-fluorenylmethyl chloroformate (FMOC-Cl) was developed. Male Wistar albino rats exposed to different doses of PQ (20-60 mg/kg) and control group were used and after protein precipitation, their plasma was subjected to derivatization with FMOC in the presence of borate buffer. The derivatized samples were injected to HPLC system with C18 column, mobile phase consisting of methanol and phosphate buffer, λem= 315 nm, λex= 260 nm. Among all experimental groups, the rats which received 60 mg/kg PQ, showed a significant increase in the amount of oxidized glutathione (GSSG) compared to the control group. In this study, the applied derivatization and HPLC method made it possible to measure small amounts of glutathione in plasma using a precise and sensitive technique. PMID:24523771

  13. Determination of hemocoagulase agkistrodon in a pharmaceutical preparation by high-performance liquid chromatography with pre-column derivatization and fluorescence detection.


    Cheng, Suyuan; Wang, Chaozhong; Li, Jing; Liang, Chenggang; Wang, Fengshan


    Currently, there is no analytical method for the quantification of hemocoagulase agkistrodon (HCA) in pharmaceutical preparations. This study presents a pre-column derivatization method for the quantification of HCA, a compound extracted from the venom of Agkistrodon acutus, in a pharmaceutical preparation (trade name Suling). In the proposed method, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate was used to tag the HCA substrate, and the derivatives were analyzed by high-performance liquid chromatography with fluorescence detection. Complete and homogeneous derivatization of HCA was confirmed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis. The specificity of the method was validated by forced degradation, and interference was assessed using a placebo. Under the optimum chromatographic conditions, the calibration curve was linear over a range of 10 to 500 ng/mL, featuring a correlation coefficient of 0.9999. The limits of detection and quantification of the method were 0.57 and 1.6 ng/mL, respectively. The percentage recovery of HCA in quality control samples ranged from 97.49 to 99.15%. Overall, this novel method can be applied to the quantitative determination of HCA in pharmaceutical preparations.

  14. A column-switching liquid chromatography-tandem mass spectrometry method for quantitation of 2-cyanoethylmercapturic acid and 2-hydroxyethylmercapturic acid in Chinese smokers.


    Hou, Hongwei; Xiong, Wei; Gao, Na; Zhang, Xiaotao; Tang, Gangling; Hu, Qingyuan


    The acrylonitrile metabolites 2-cyanoethylmercapturic acid (CEMA) and 2-hydroxyethylmercapturic acid (HEMA) have been determined in human urine using an automated column-switching procedure. A diluted sample was centrifuged just prior to being injected into a reusable precolumn packed with a restricted access material and coupled to a liquid chromatography-tandem mass spectrometry system. This method achieved satisfactory reproducibility and accuracy. Average intra- and interday variations (% relative standard deviations) ranged from 2.4 to 3.8% for CEMA and from 2.7 to 10.5% for HEMA. The limits of quantification were 0.003 and 0.099ng/ml for CEMA and HEMA, respectively. It was used to study the uptake of acrylonitrile from smoke constituents by both nonsmokers and smokers of different tar yield cigarettes under ISO 3308 smoking condition. Metabolite concentrations in smoker urine samples were approximately 12 times higher compared with those in nonsmokers for CEMA and 3 times higher for HEMA. Urinary CEMA levels show a clear dose-response relationship with daily cigarette consumption and urinary cotinine. CEMA can also discriminate between smokers of different ISO cigarettes. Because HEMA is not specific, it is only slightly related to smoking and acrylonitrile exposure. The validated biomarker CEMA will continue to be useful for studies of acrylonitrile uptake by smokers.

  15. Determination of histamine in wines with an on-line pre-column flow derivatization system coupled to high performance liquid chromatography.


    García-Villar, Natividad; Saurina, Javier; Hernández-Cassou, Santiago


    A new rapid and sensitive high performance liquid chromatography (HPLC) method for determining histamine in red wine samples, based on continuous flow derivatization with 1,2-naphthoquinone-4-sulfonate (NQS), is proposed. In this system, samples are derivatized on-line in a three-channel flow manifold for reagent, buffer and sample. The reaction takes place in a PTFE coil heated at 80 degrees C and with a residence time of 2.9 min. The reaction mixture is injected directly into the chromatographic system, where the histamine derivative is separated from other aminated compounds present in the wine matrix in less than ten minutes. The HPLC procedure involves a C18 column, a binary gradient of 2% acetic acid-methanol as a mobile phase, and UV detection at 305 nm. Analytical parameters of the method are evaluated using red wine samples. The linear range is up to 66.7 mg L(-1) (r = 0.9999), the precision (RSD) is 3%, the detection limit is 0.22 mg L(-1), and the average histamine recovery is 101.5% +/- 6.7%. Commercial red wines from different Spanish regions are analyzed with the proposed method.

  16. [Determination of twenty free amino acids in flue-cured tobacco leaves using ultra performance liquid chromatography-single quadruple mass spectrometry and pre-column derivatization].


    Li, Haoli; Zhao, Chunxia; Zhang, Junjie; Fu, Jiajun; Wang, Ying; Lu, Xin; Xu, Guowang


    Free amino acids in flue-cured tobacco leaves were investigated using the ultra performance liquid chromatography-single quadruple mass spectrometry detection and pre-column derivatization method. The validation results showed that the method could meet the analytical requirements. A total of 138 tobacco leaf samples were collected from 14 provinces in China in 2011 in which the free amino acids were determined. The relative standard deviations (RSDs) of the contents of free amino acids in different growing regions ranged from 28.50%-94.20%, and those of asparagine and glutamine were over 80%. The RSDs of the contents of free amino acids in full aroma tobacco leaves were larger than those in fresh aroma and medium aroma tobacco leaves. The principal component analysis (PCA) and non-parameter Mann-Whitney U test were used for data analysis. The free amino acids of the same aroma type grown in different regions or different aroma types in the same province showed great variation. The contents of free amino acids of full aroma tobacco grown in Southeast region were much lower than those in Huanghuai region. The contents of free amino acids in Hunan province were much lower than the average contents. The results showed that free amino acids in flue-cured tobacco leaves were affected by the growing region.

  17. C18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode: usefulness in nano-liquid chromatography and capillary electrochromatography.


    D'Orazio, Giovanni; Fanali, Salvatore


    In this paper the potential of fused silica capillaries packed with RP18 silica particles entrapped with monolithic frits using both nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) was investigated. Frits were prepared after removing a short part of the polyimide layer on the capillary wall and irradiating the polymerization mixture with an UV-light emitter diode (LED) at 370 nm. The capillary, was rotated during the polymerization procedure in order to obtain a homogeneous monolith. The distance of the LED from the capillary and the exposure time to UV light were studied in order to obtain frits with good porosity and high robustness. A mixture containing five alkylbenzenes was selected as sample and analyzed by both nano-LC and CEC. The standard mixture was baseline separated with good efficiency in the range 78,000-93,000 and 99,000-113,000 plates/m in nano-LC and CEC, respectively. The columns resulted to be very robust and the prepared monolithic frits allowed working with backpressure as high as 400 bar (nano-LC). In addition high voltages were applied in CEC (25-30 kV) without bubbles formation in absence of pressure assistance during runs.

  18. Fast simultaneous determination of prominent polyphenols in vegetables and fruits by reversed phase liquid chromatography using a fused-core column.


    Martí, Raúl; Valcárcel, Mercedes; Herrero-Martínez, José Manuel; Cebolla-Cornejo, Jaime; Roselló, Salvador


    A reversed-phase high-performance liquid chromatography method with photodiode array detection has been developed enabling the joint determination of 17 prominent flavonoids and phenolic acids in vegetables and fruits. A multi-segmented gradient program using a fused-core column for the separation of several phenolic classes (phenolic acids and flavonoids) has been optimised. The influence of extraction conditions (sample freeze-drying, ultrasound extraction, solvent composition and extraction time) has been also optimised using response surface methodology with tomato samples as a model. Complete recoveries (76-108%) were obtained for the phenolic compounds present in tomato. The developed method provided satisfactory repeatability in terms of peak area (RSD<2.9%) and retention time (RSD<0.2%) both for standards and real samples. Detection limits ranged between 3 and 44μgkg(-1) for the detected polyphenols. This method is recommended for routine analysis of large number of samples typical of production quality systems or plant breeding programs.

  19. Ultra-trace-level determination of polar pesticides and their transformation products in surface and estuarine water samples using column liquid chromatography-electrospray tandem mass spectrometry.


    Steen, R J; Hogenboom, A C; Leonards, P E; Peerboom, R A; Cofino, W P; Brinkman, U A


    A method is developed for the determination of polar pesticides and their transformation products [atrazine, deethylatrazine, deisopropylatrazine, hydroxyatrazine, diuron, 3,4-dichlorophenylmethylurea, 3,4-dichlorophenylurea (DPU), monuron, bentazone, anthranil-isopropylamide, chloridazon, metolachlor] in surface, estuarine and sea water samples at the low ng/l level. Solid-phase extraction is combined off-line with column liquid chromatography-electrospray ionization tandem mass spectrometric detection (LC-ESI-MS-MS). The applicability of two solid-phase materials, i.e., LiChrolut EN cartridges and graphitized carbon black extraction disks, is evaluated. The influence of the organic solvent used in gradient LC, as well as the amount of co-extracted humic material on the ESI process is studied. The eluotropic strength of the organic solvent was found to have a distinct effect on the sensitivity of ESI-MS if coupled with LC gradient separations. Methanol gave much better results than acetonitrile and phenylurea compounds are more susceptible to solvent changes than triazines. Co-extracted humic material causes signal suppression in ESI-MS-MS detection. The degree of suppression depends upon the sample pH and the nature of the samples, i.e., surface or estuarine water. Detection limits in LC-ESI-MS-MS ranged from 0.2 to 2 ng/l, with the exception of DPU (8 ng/l). The applicability of the procedure was demonstrated by analyzing surface and estuarine water.

  20. Simultaneous determination of anionic and nonionic surfactants in commercial laundry wastewater and anaerobic fluidized bed reactor effluent by online column-switching liquid chromatography/tandem mass spectrometry.


    Motteran, Fabrício; Lima Gomes, Paulo C F; Silva, Edson L; Varesche, Maria Bernadete A


    This study presents a new method developed for the simultaneous determination of anionic surfactant (linear alkylbenzene sulfonate - LAS, 4 homologs) and nonionic surfactant (linear alcohol ethoxylate - LAE) in commercial laundry wastewater. The surfactants were identified and quantified using online column-switching solid-phase extraction (SPE) coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS). Ten and three transitions (m/z) were identified for LAS and LAE, respectively. The detection and quantification limits were 75 and 200μg/L for LAS, respectively, and 75μg/L for LAE. This method was applied to the determination of the surfactants in the influent and effluent of an anaerobic fluidized bed reactor that was used for the treatment of commercial laundry wastewater. After 480days of operation with a hydraulic retention time (HRT) of 18h, the removal of 45.9±5.6% LAS and 99.2±4.3% LAE from an influent with surfactant concentrations of 26.1±12.9mg/L and 23.8±6.8mg/L, respectively, was obtained. Under these conditions, the breakage of longer-chain LAS homologs with the release of carbon units was observed with an increase in the number of shorter homolog chains. This SPE online sample treatment method is simple, fast and effective for the analysis of both surfactants. This technique is pioneering in its simultaneous measurement of two surfactant categories in anaerobic fluidized bed reactors.

  1. Fused-core silica column ultra performance liquid chromatography – ion trap tandem mass spectrometry for determination of global DNA methylation status1

    PubMed Central

    Yang, Ill; Fortin, Marie C.; Richardson, Jason R.; Buckley, Brian


    Epigenetic modifications, such as DNA methylation, play key roles in transcriptional regulation of gene expression. More recently, global DNA methylation levels have been documented to be altered in several diseases, including cancer, and as the result of exposure to environmental toxicants. Based on the potential use of global DNA methylation status as a biomarker of disease status and exposure to environmental toxicants, we sought to develop a rapid, sensitive, and precise analytical method for the quantitative measurement of global DNA methylation status using ultra performance liquid chromatography with detection by ion trap tandem mass spectrometry. Using a fused-core silica column, 2′-deoxyguanosine (2dG) and 5-methyl-2′-deoxycytidine (5mdC) were resolved in less than 1 minute, with detection limits of 0.54 and 1.47 fmol for 5mdC and 2dG respectively. The accuracy of detection was 95% or above and the day-to-day coefficient of variations was found to be 3.8%. The method was validated by quantification of global DNA methylation status following treatment of cells with the DNA methyltransferase inhibitor 5-aza-2′deoxycytidine, which reduced DNA methylation from 3.1% in control cells to 1.1% in treated cells. The sensitivity and high throughput of this method rend it suitable for large scale analysis of epidemiological or clinical DNA samples. PMID:20950581

  2. Analysis of amphetamine-type stimulants and their metabolites in plasma, urine and bile by liquid chromatography with a strong cation-exchange column-tandem mass spectrometry.


    Kuwayama, Kenji; Inoue, Hiroyuki; Kanamori, Tatsuyuki; Tsujikawa, Kenji; Miyaguchi, Hajime; Iwata, Yuko T; Miyauchi, Seiji; Kamo, Naoki


    The aim of this work was to develop and validate a method for analysing amphetamine-type stimulants (ATSs) and their metabolites in plasma, urine and bile by liquid chromatography with a strong cation-exchange column-tandem mass spectrometry, and to apply it to the pharmacokinetic study of ATSs. 3,4-Methylenedioxymethamphetamine, methamphetamine, ketamine and their main metabolites, 4-hydroxy-3-methoxymethamphetamine, 3,4-methylenedioxyamphetamine, p-hydroxymethamphetamine, amphetamine and norketamine, were simultaneously quantified by the new method (50-5000 ng/ml). The coefficients of variation and the percent deviations for the eight compounds were in the range of 0.2 to 5.3% and -9.4 to +12.8%, respectively. The recoveries were over 90% in all biological samples tested. This method was effective for the separation and the identification of ATSs and their main metabolites having amine moieties in plasma, urine and bile, and was applicable to pharmacokinetic analysis of methamphetamine, ketamine and their main metabolites in biological samples. This analytical method should be useful for the pharmacokinetic analysis of ATSs.

  3. Application of solid-phase microextraction for determination of pyrethroids in groundwater using liquid chromatography with post-column photochemically induced fluorimetry derivatization and fluorescence detection.


    Vázquez, P Parrilla; Mughari, Ahmed R; Galera, M Martínez


    Solid-phase microextraction (SPME) is a rapid and simple analytical technique which uses coated fused-silica fibers to extract analytes from aqueous samples. This study develops a method of SPME analysis for seven pyrethroids, including fenpropathrin, lambda-cyhalothrin, deltamethrin, fenvalerate, permethrin, tau-fluvalinate and bifenthrin in groundwater samples using high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-LC-PIF-FD). To perform the SPME, a 60 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used for the extraction of the pesticides from groundwater samples. The main factors affecting the SPME process, such as extraction time, stirring rate, extraction temperature, pH and the desorption process were studied. The use of photochemically induced fluorescence for detection improved sensitivity and selectivity. The limits of quantification (LOQs) obtained in the matrix, with respect to EURACHEM Guidance, varied between 0.03 and 0.075 microgL(-1). Relative recoveries ranged from 92 to 109% and relative standard deviations values ranged from 2 to 9%.

  4. Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column-switching liquid chromatography/tandem mass spectrometry.


    Lima Gomes, Paulo C F; Tomita, Inês N; Santos-Neto, Álvaro J; Zaiat, Marcelo


    This study presents a column-switching solid-phase extraction online-coupled to a liquid chromatography/tandem mass spectrometry (SPE-LC-MS/MS) method for simultaneous analysis of 12 antibiotics (7 sulfonamides and 5 fluoroquinolones) and caffeine detected in the sewage and effluent of a pilot anaerobic reactor used in sewage treatment. After acidification and filtration, the samples were directly injected into a simple and conventional LC system. Backflush and foreflush modes were compared based on the theoretical plates and peak asymmetry observed. The method was tested in terms of detection (MDL) and quantification limit (MQL), linearity, relative recovery, and precision intra- and inter-day in lab-made sewage samples. The method presented suitable figures of merit in terms of detection, varying from 8.00 × 10(-5) to 6.00 × 10(-2) ng (0.800 up to 600 ng L(-1); caffeine) with direct injection volume of only 100 μL and 13 min of total analysis time (sample preparation and chromatographic run). When the method was applied in the analysis of sewage and effluent of the anaerobic reactor (n = 15), six antibiotics and caffeine were detected in concentrations ranging from 0.018 to 1097 μg L(-1). To guarantee a reliable quantification, standard addition was used to overcome the matrix effect.

  5. Non-planar microfabricated gas chromatography column


    Lewis, Patrick R.; Wheeler, David R.


    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  6. A liquid chromatography method using a monolithic column for the determination of corticoids in animal feed and animal feeding water.


    Muñiz-Valencia, R; Ceballos-Magaña, S G; Gonzalo-Lumbreras, R; Santos-Montes, A; Izquierdo-Hornillos, R


    An HPLC-DAD method for determining corticoids in calf feed and in animal feeding water samples using a monolithic column has been developed and validated. The method optimization included the study of binary mobile phases of water and acetonitrile. The optimum separation was achieved at 40 degrees C, with acetonitrile:H(2)O 29:71 v/v used as mobile phase and a 3 ml/min flow-rate, which resulted in their separation in about 5 min. Two reported sample procedures were applied to feed and for animal feeding water samples prior to HPLC. Method validation was carried out according to the EU criteria established for quantitative screening methods. The results indicate that this method is highly specific, reproducible and accurate. The proposed method was found to be robust and unaffected by small variations in the extraction procedure and in HPLC conditions. The developed method for the determination of corticoids in feed and water samples was also found to be suitable for different kinds of feeds and waters.

  7. Determination of sulphonamides in animal tissues by high performance liquid chromatography with pre-column derivatization of 9-fluorenylmethyl chloroformate.


    Zou, Qiong-Hui; Xie, Meng-Xia; Wang, Xiang-Feng; Liu, Yuan; Wang, Jin; Song, Jia; Gao, Hui; Han, Jie


    A novel approach for simultaneous determination of 12 sulphonamides (sulphadiazine, sulphamethazine, sulphathiazole, sulphadimethoxine, sulphamerazine, sulphapyridine, sulphamethoxazole, suphamethizole, sulphaquinoxaline, sulphameter, sulphamonomethoxine, and sulphachloropyridazine) in animal tissues (swine muscle and liver, chicken muscle, beef muscle) by HPLC with UV detection has been developed. A pre-column derivatization of the sulphonamide compounds with 9-fluorenylmethyl chloroformate (FMOC-Cl) has been proposed and the reaction conditions have been optimized. The FMOC-sulphonamide derivatives were purified by SPE with silica gel as solid support prior to HPLC separation. The limits of detection for the sulphonamide compounds were greatly improved after the derivatization and purification step for the derivatives. Sulphonamide residues in animal tissues were extracted by acetonitrile and purified by solid phase extraction with C(18) as the solid support. The method developed has high sensitivity and good repeatability, and the average recoveries for most of the sulphonamides at various spiking levels were above 70% with relative standard deviations below 13.7%. The limits of detection for most sulphonamides can reach 3-5 microg/kg.

  8. Determination of ochratoxin A in Capsicum spp. (paprika and chili) by immunoaffinity column cleanup and liquid chromatography: collaborative study.


    Kunsagi, Zoltan; Stroka, Joerg


    A method validation study for the determination of ochratoxin A in Capsicum spp. (paprika and chili) was conducted according to the International Union of Pure and Applied Chemistry harmonized protocol. The method is based on the extraction of samples with aqueous methanol, followed by an immunoaffinity column cleanup. The determination is carried out by RP-HPLC coupled with a fluorescence detector. The study involved 21 participants representing a cross-section of research, private, and official control laboratories from 14 European Union (EU) Member States and Singapore. Mean recoveries reported ranged from 83.7 to 87.5%. The RSD for repeatability (RSDr) ranged from 1.7 to 14.3%. The RSD for reproducibility (RSDR) ranged from 9.1 to 27.5%, reflecting HorRat values from 0.4 to 1.3 according to the Horwitz function modified by Thompson. The correction for recovery of results from naturally contaminated samples further improved the reproducibility of the method. The method showed acceptable within-laboratory and between-laboratory precision for each matrix, and it conforms to requirements set by current EU legislation.

  9. Liquid Chromatography with a Fluorimetric Detection Method for Analysis of Paralytic Shellfish Toxins and Tetrodotoxin Based on a Porous Graphitic Carbon Column

    PubMed Central

    Rey, Veronica; Botana, Ana M.; Alvarez, Mercedes; Antelo, Alvaro; Botana, Luis M.


    Paralytic shellfish toxins (PST) traditionally have been analyzed by liquid chromatography with either pre- or post-column derivatization and always with a silica-based stationary phase. This technique resulted in different methods that need more than one run to analyze the toxins. Furthermore, tetrodotoxin (TTX) was recently found in bivalves of northward locations in Europe due to climate change, so it is important to analyze it along with PST because their signs of toxicity are similar in the bioassay. The methods described here detail a new approach to eliminate different runs, by using a new porous graphitic carbon stationary phase. Firstly we describe the separation of 13 PST that belong to different groups, taking into account the side-chains of substituents, in one single run of less than 30 min with good reproducibility. The method was assayed in four shellfish matrices: mussel (Mytillus galloprovincialis), clam (Pecten maximus), scallop (Ruditapes decussatus) and oyster (Ostrea edulis). The results for all of the parameters studied are provided, and the detection limits for the majority of toxins were improved with regard to previous liquid chromatography methods: the lowest values were those for decarbamoyl-gonyautoxin 2 (dcGTX2) and gonyautoxin 2 (GTX2) in mussel (0.0001 mg saxitoxin (STX)·diHCl kg−1 for each toxin), decarbamoyl-saxitoxin (dcSTX) in clam (0.0003 mg STX·diHCl kg−1), N-sulfocarbamoyl-gonyautoxins 2 and 3 (C1 and C2) in scallop (0.0001 mg STX·diHCl kg−1 for each toxin) and dcSTX (0.0003 mg STX·diHCl kg−1 ) in oyster; gonyautoxin 2 (GTX2) showed the highest limit of detection in oyster (0.0366 mg STX·diHCl kg−1). Secondly, we propose a modification of the method for the simultaneous analysis of PST and TTX, with some minor changes in the solvent gradient, although the detection limit for TTX does not allow its use nowadays for regulatory purposes. PMID:27367728

  10. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  11. Micellar liquid chromatography

    NASA Astrophysics Data System (ADS)

    Basova, Elena M.; Ivanov, Vadim M.; Shpigun, Oleg A.


    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  12. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides.


    Yang, Wen-zhi; Ye, Min; Qiao, Xue; Liu, Chun-fang; Miao, Wen-juan; Bo, Tao; Tao, Hai-yan; Guo, De-an


    To discover new natural compounds from herbal medicines tends to be more and more difficult. In this paper, a strategy integrating orthogonal column chromatography and liquid chromatography/mass spectrometry (LC/MS) analysis was proposed, and was applied for rapid discovery of new ginsenosides from Panax ginseng (PG), Panax quinquefolium (PQ), and Panax notoginseng (PN). The ginsenosides extracts were fractionated by MCI gel×silica gel orthogonal column chromatography. The fractions were then separated on a C(18) HPLC column, eluted with a three-component mobile phase (CH(3)CN/CH(3)OH/3mM CH(3)COONH(4)H(2)O), and detected by electrospray ionization tandem mass spectrometry. The structures of unknown ginsenosides were elucidated by analyzing negative and positive ion mass spectra, which provided complementary information on the sapogenins and oligosaccharide chains, respectively. A total of 623 comprising 437 potential new ginsenosides were characterized from the ethanol extracts of PG, PQ and PN. New acylations, diversified saccharide chains and C-17 side chains constituted novelty of the newly identified ginsenosides. An interpretation guideline was proposed for structural characterization of unknown ginsenosides by LC/MS. To confirm reliability of this strategy, two targeted unknown trace ginsenosides were obtained in pure form by LC/MS-guided isolation. Based on extensive NMR spectroscopic analysis and other techniques, they were identified as 3-O-[6-O-(E)-butenoyl-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl]-20(S)-protopanaxadiol-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (named ginsenoside IV) and 3-O-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl-3β,12β,20(S),24(R)-tetra hydroxy-dammar-25-ene-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (ginsenoside V), respectively. The fully established structures were consistent with the MS-oriented structural elucidation. This study expanded our understanding on ginsenosides of Panax species, and the

  13. [Simultaneous determination of glyphosate and glufosinate-ammonium residues in tea by ultra performance liquid chromatography-tandem mass spectrometry coupled with pre-column derivatization].


    Wu, Xiaogang; Chen, Xiaoquan; Xiao, Haijun; Liu, Binqiu


    A method was developed for the determination of glyphosate (GLY) and glufosinate-ammonium (GLUF) in tea using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample was extracted with ultrapure water and dichloromethane for 30 min under ultrasonication, followed by a simple cleanup with a C18 solid phase extraction (SPE) cartridge, and then GLY and GLUF were derivatized using 9-fluorenylmethoxycarbonyl (FMOC-Cl) in borate buffer for 2 h. The derivatives of GLY and GLUF were separated on a Waters C18 column (50 mm x 2.1 mm, 1.7 μm) in a gradient elution mode, and finally detected with positive electrospray ionization-mass spectrometry (ESI-MS/MS ) in multiple reaction monitoring (MRM) mode. The quantification analysis was performed by external standard method. The method showed a good linearity (r > 0. 990) in the range of 0.003 125-0.1 mg/L. The limits of detection (LODs) of GLY and GLUF were 0.03 mg/kg. At the spiked levels of 0.375, 1.5 and 4.5 mg/kg, the recoveries of GLY and GLUF were 87.37%-99.11% and 81.44% -86.17% respectively, and the relative standard deviations (RSDs) (n = 6) of GLY and GLUF were 0.68%-1.35% and 1.01%-2.33%, respectively. This method is simple, rapid and characterized with acceptable sensitivity and accuracy to meet the requirements for the analysis of GLY and GLUF simultaneously in tea.

  14. High-throughput method for the analysis of ethylenethiourea with direct injection of hydrolysed urine using online on-column extraction liquid chromatography and triple quadrupole mass spectrometry.


    Ekman, Eva; Maxe, Margaretha; Littorin, Margareta; Jönsson, Bo A G; Lindh, Christian H


    Ethylenethiourea (ETU) is of major toxicological concern, since in experimental animal studies, ETU has shown a large spectrum of adverse effects. High occupational exposure can be found among agricultural workers or during manufacturing of ethylenbisdithiocarbamates (EBDC). For the general public, sources of environmental exposure may be residues of ETU in commercial products, food and beverages. For the determination of ETU in human urine we present a high-throughput online on-column extraction liquid chromatography triple quadrupole mass spectrometry method using direct injection of hydrolysed urine samples. This method is simple, user- and environmentally friendly and all sample preparation is performed in 96-well plates. A labelled ETU internal standard was used for quantification. The method showed a good sensitivity with a limit of quantification (LOQ) of 0.5ng ETU/mL urine and the calibration curve was linear in the range 0.25-200ng ETU/mL urine. The within-run, between-run and between-batch precision was between 6% and 13%. Alkaline hydrolysis considerably increased the levels of ETU indicating a potential conjugate. The method was applied in an experimental dermal exposure study in humans, with sample concentrations ranging from 0.4 to 5.0ng ETU/mL urine. The excretion in urine was 10% of the applied dose. The elimination profile seemed to differ between the two individuals. The results show an estimated half-life of ETU between 34 and 72h. Although the experiment is limited to two individuals, the data provide valuable and new information regarding the toxicokinetics of ETU after dermal exposure.

  15. Hair analysis of histamine after fluorescence labeling by column-switching reversed-phase liquid chromatography with electrospray ionization mass spectrometry and application to human hair.


    Toyo'oka, Toshimasa; Suzuki, Ayako; Fukushima, Takeshi; Kato, Masaru


    Sensitive determination of histamine (HA) in hair was carried out by column-switching reversed-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS). HA was labeled with excess amounts of 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) at 60 degrees C for 30 min in a mixture of 0.1 M borax (pH 9.3) and acetonitrile (CH(3)CN). The resulting DBD-HA derivative was roughly separated by a Mightysil RP-18 GP (100 x 2mm i.d., 3 microm) with an acidic mobile phase containing 0.1% trifluoroacetic acid. DBD-HA in the fraction flowing due to a position change in the six-port column-switching valve was then completely separated by a Wakopak Navi C30 (150 x 2mm i.d., 5 microm) with 20 mM AcONH(4)-CH(3)CN (8:2). The mass spectrometer was operated in the selected reaction monitoring (SRM) mode for the product ion (m/z 292) obtained from MS-MS measurement using the protonated molecular ion [M+H](+) (m/z 337) as the precursor ion. Good linearity was achieved from the calibration curve obtained by plotting peak area ratios of the internal standard (HA-d(4)) against the injected amounts of HA (1.66-16.6 pmol, r(2)=0.999). The coefficients of variation, at 1.66- and 16.6-pmol injections, were 5.6 and 3.7%, respectively (n=6). Furthermore, the detection limit was 0.167 pmol. The efficiency of the recommended procedure was identified from the determination in the rat hair root after intraperitoneal administration of HA. The proposed method was applied to HA determination in the hair shaft of Dark Agouti rats and healthy volunteers. The variations in the concentrations in 1mg of hair shaft were 0.80-1.84 pmol (mean+/-SD=1.33+/-0.33, n=12) in rats and 0.94-72.3 pmol (17.2+/-21.5, n=16) in humans. The determination of HA in the plasma of rats and humans was also performed successfully by this method. Because the proposed method provides good precision and trace detection of HA in hair, the analytical technique

  16. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing.


    Groskreutz, Stephen R; Horner, Anthony R; Weber, Stephen G


    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of pre-column dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis.

  17. Direct probing of chromatography columns by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    McGuffin, V. L.


    This report summarizes the progress and accomplishments of this research project from 1 Sep. 1989 to 28 Feb. 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe in supercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  18. Ultra-fast liquid chromatography with tandem mass spectrometry determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up.


    Yang, Xihui; Hu, Yichen; Kong, Weijun; Chu, Xianfeng; Yang, Meihua; Zhao, Ming; Ouyang, Zhen


    A rapid, selective, and sensitive ultra-fast liquid chromatography with tandem mass spectrometry method was developed for the determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up. Through optimizing the sample pretreatment procedures and chromatographic conditions, good linearity (r(2) ≥ 0.9993), low limit of detection (0.5-0.8 μg/kg), and satisfactory recovery (83.54-94.44%) expressed the good reliability and applicability of the established method in various traditional Chinese medicines. Moreover, the aptamer-affinity column, prepared in-house, showed an excellent feasibility owing to its specific identification of ochratoxin A in various kinds of selected traditional Chinese medicines. The maximum adsorption amount and applicability value were 188.96 ± 10.56 ng and 72.3%, respectively. The matrix effects were effectively eliminated, especially for m/z 404.2→358.0 of ochratoxin A. The application of the developed method for screening the natural contamination levels of ochratoxin A in 25 random traditional Chinese medicines on the market in China indicated that only eight samples were contaminated with low levels below the legal limit (5.0 μg/kg) set by the European Union. This study provided a preferred choice for the rapid and accurate monitoring of ochratoxin A in complex matrices.

  19. Silica-based monolithic columns with mixed-mode reversed-phase/weak anion-exchange selectivity principle for high-performance liquid chromatography.


    Nogueira, Raquel; Lubda, Dieter; Leitner, Alexander; Bicker, Wolfgang; Maier, Norbert M; Lämmerhofer, Michael; Lindner, Wolfgang


    This article describes the synthesis, chromatographic characterization, and performance evaluation of analytical (100 x 4.6 mm id) and semipreparative (100 x 10 mm id) monolithic silica columns with mixed-mode RP/weak anion-exchange (RP/WAX) surface modification. The monolithic RP/WAX columns were obtained by immobilization of N-(10-undecenoyl)-3-aminoquinuclidine onto thiol-modified monolithic silica columns (Chromolith) by a radical addition reaction. Their chromatographic characterization by Engelhardt and Tanaka tests revealed slightly lower hydrophobic selectivities than C-8 phases, as well as higher polarity and also improved shape selectivity than RP-18e silica rods. The surface modification enabled separation by both RP and anion-exchange chromatography principles, and thus showed complementary selectivities to the RP-18e monoliths. The mixed-mode monoliths have been tested for the separation of peptides and turned out to be particularly useful for hydrophilic acidic peptides, which are usually insufficiently retained on RP-18e monolithic columns. Compared to a corresponding particulate RP/WAX column (5 microm, 10 nm pore diameter), the analytical RP/WAX monolith caused lower system pressure drops and showed, as expected, higher efficiency (e.g. by a factor of about 2.5 lower C-term for a tetrapeptide). The upscaling from the analytical to semipreparative column dimension was also successful.

  20. Separation of intact proteins on γ-ray-induced polymethacrylate monolithic columns: A highly permeable stationary phase with high peak capacity for capillary high-performance liquid chromatography with high-resolution mass spectrometry.


    Simone, Patrizia; Pierri, Giuseppe; Foglia, Patrizia; Gasparrini, Francesca; Mazzoccanti, Giulia; Capriotti, Anna Laura; Ursini, Ornella; Ciogli, Alessia; Laganà, Aldo


    Polymethacrylate-based monolithic capillary columns, prepared by γ-radiation-induced polymerization, were used to optimize the experimental conditions (nature of the organic modifiers, the content of trifluoroacetic acid and the column temperature) in the separation of nine standard proteins with different hydrophobicities and a wide range of molecular weights. Because of the excellent permeability of the monolithic columns, an ion-pair reversed-phase capillary liquid chromatography with high-resolution mass spectrometry method has been developed by coupling the column directly to the mass spectrometer without a flow-split and using a standard electrospray interface. Additionally, the high working flow and concomitant high efficiency of these columns allowed us to employ a longer column (up to 50 cm) and achieve a peak capacity value superior to 1000. This work is motivated by the need to develop new materials for high-resolution chromatographic separation that combine chemical stability at elevated temperatures (up to 75°C) and a broad pH range, with a high peak capacity value. The advantage of the γ-ray-induced monolithic column lies in the batch-to-batch reproducibility and long-term high-temperature stability. Their proven high loading capacity, recovery, good selectivity and high permeability, moreover, compared well with that of a commercially available poly(styrene-divinylbenzene) monolithic column, which confirms that such monolithic supports might facilitate analysis in proteomics.

  1. Normal-Phase Open Column versus Reversed-Phase High Performance Liquid Chromatography: Separation of Chlorophyll a and Chlorophyll b from their Diastereomers.

    ERIC Educational Resources Information Center

    Schaber, Peter M.


    Background information, procedures used, and typical results obtained are provided for an experiment involving the separation of chlorophyll a and chlorophyll b from their diastereomers. Reasons why the experiment can be easily integrated into most laboratory curricula where high-performance liquid chromatography capabilities exist are given. (JN)

  2. Ultra-Trace Analysis of Nine Macrolides, including Tulathromycin A (Draxxin), in Edible Animal Tissues with Mini-Column Liquid Chromatography Tandem Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of 9 macrolides is presented, including tulathromycin A (Draxxin), in beef, poultry and pork muscle with a simple multi-residue extraction and analysis method using high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The extraction method inv...

  3. Low thermal mass liquid chromatography.


    Gu, Binghe; Cortes, Hernan; Luong, Jim; Pursch, Matthias; Eckerle, Patric; Mustacich, Robert


    A novel technique, low thermal mass liquid chromatography (LTMLC), is introduced in this study. The use of an LTM assembly that utilizes the principle of resistive wire heating and a temperature sensor to accurately deliver unprecedented heating (up to 1800 degrees C/min) or cooling (100 to approximately 200 degrees C/min) rates is reported. With the use of packed microcolumns (<0.5 mm i.d.), essentially instantaneous heat transfer from the assembly to the mobile phase was obtained. A systematic investigation was conducted to study the performance of the LTMLC technique. Both isocratic and gradient mobile phase conditions were used. For temperature control, isothermal, temperature-increasing, and temperature-decreasing gradients were applied. Three model mixtures, two of which containing neutral and acidic analytes and the other containing neutral, acidic, and basic analytes, were used to study the effect of temperature on elution time, resolution, column efficiency, and selectivity. It was found that the LTMLC experimental setup delivered reliable temperature control, as evidenced by linear van't Hoff plots for neutral and acidic compounds. The effect of temperature on the elution of basic analytes yielded nonlinear van't Hoff plots, explaining the dramatic selectivity changes observed for bases with changes in column temperature. Column efficiency generally increased with the increase in column temperature in the range of 25 to approximately 75 degrees C and decreased in the range of 75 to approximately 150 degrees C at a fixed column flow rate (3 microL/min), when extra column band broadening was taken into account. The increase in efficiency upon the increase in column temperature in the low temperature range was mainly due to the decreased mass transfer term resulting from increased analyte diffusivity. However, under even higher temperatures, the longitudinal diffusion dominated band broadening, explaining the decrease in column efficiency upon a further

  4. Spectrofluorometry, thin layer chromatography, and column high-performance liquid chromatography determination of rabeprazole sodium in the presence of its acidic and oxidized degradation products.


    Osman, Afaf Osman; Osman, Afaf; Osman, Mohamed


    The objective of this study is to develop validated stability-indicating spectrofluorometric, TLC-densitometric, and HPLC methods for the determination of rabeprazole sodium and its degradation products. The first method was based on measuring the fluorescence intensity of the drug at 416 and 311 nm for the emission and at 320 and 274 nm for the excitation for acid and oxidized solutions, respectively. The second method was based on the separation of the drug from its acidic and oxidized degradation products followed by densitometric measurement of the intact drug spot at 284 nm. The separation was carried out on Fluka TLC sheets of silica gel 60 F254 using isopropyl alcohol--30% ammonia (80 + 2, v/v) mobile phase. The third method was based on HPLC separation of rabeprazole sodium from its acidic and oxidized degradation products on a reversed-phase Waters Nova-Pak C18 column using 0.05 M potassium dihydrogen phosphate-methanol-acetonitrile (5 + 3 + 2, v/v/v) pH 7 +/- 0.2 mobile phase. The proposed procedures were successfully applied for the determination of rabeprazole sodium in pure form, laboratory-prepared mixtures, tablet, and expired batch. The obtained results were statistically compared with those of a reported method and validated according to United States Pharmacopeia guidelines. Two main acidic degradation products of the drug were separated and subjected to IR spectrometry and MS to confirm their structures, and the schemes for their formation were elucidated.

  5. Purification of matrix metalloproteinases by column chromatography.


    Imai, Kazushi; Okada, Yasunori


    Matrix metalloproteinases (MMPs) are zinc endopeptidases composed of 23 members in humans, which belong to a subfamily of the metzincin superfamily. They play important roles in many pathophysiological events including development, organogenesis, angiogenesis, tissue remodeling and destruction, and cancer cell proliferation and progression by degradation of extracellular matrix (ECM) and non-ECM proteins and interaction with various molecules. Here, we present standard protocols for purification of native proMMPs (proMMP-1, -2, -3, -7, -9 and -10) and recombinant MT1-MMP (MMP-14) using conventional column chromatography. Purification steps comprise the initial common step [diethylaminoethyl (DEAE)-cellulose, Green A Dyematrex gel and gelatin-Sepharose columns], the second step for removal of nontarget proMMPs by immunoaffinity columns (anti-MMP-1 and/or anti-MMP-3 IgG-Sepharose columns) and the final step for further purification (IgG-Sepharose, DEAE-cellulose, Zn2+-chelate-Sepharose and/or gel filtration columns). Purified proMMPs and MMP are functionally active and suitable for biochemical analyses. The basic protocol for the purification from culture media takes approximately 7-10 d.

  6. Analytical approach to determining human biogenic amines and their metabolites using eVol microextraction in packed syringe coupled to liquid chromatography mass spectrometry method with hydrophilic interaction chromatography column.


    Konieczna, Lucyna; Roszkowska, Anna; Synakiewicz, Anna; Stachowicz-Stencel, Teresa; Adamkiewicz-Drożyńska, Elżbieta; Bączek, Tomasz


    Analysis of biogenic amines (BAs) in different human samples provides insight into the mechanisms of various biological processes, including pathological conditions, and thus may be very important in diagnosing and monitoring several neurological disorders and cancerous tumors. In this work, we developed a simple and fast procedure using a digitally controlled microextraction in packed syringe (MEPS) coupled to liquid chromatography mass spectrometry (LC-MS) method for simultaneous determination of biogenic amines, their precursors and metabolites in human plasma and urine samples. The separation of 12 low molecular weight and hydrophilic molecules with a wide range of polarities was achieved with hydrophilic interaction chromatography (HILIC) column without derivatization step in 12 min. MEPS was implemented using the APS sorbent in semi-automated analytical syringe (eVol(®)) and small volume of urine and plasma samples, 5 0µL and 100 μL, respectively. We evaluated important parameters influencing MEPS efficiency, including stationary phase selection, sample pH and volume, number of extraction cycles, and washing and elution volumes. In optimized MEPS conditions, the analytes were eluted by 3 × 50 μL of methanol with 0.1% formic acid. The chromatographic separation of analytes was performed on XBridge Amide™ BEH analytical column (3.0mm × 100 mm, 3.5 µm) using gradient elution with mobile phase consisting of phase A: 10mM ammonium formate buffer in water pH 3.0 and phase B: 10mM ammonium formate buffer in acetonitrile pH 3.0. The LC-HILIC-MS method was validated and, in optimum conditions, presented good linearity in concentration range within 10-2000 ng/mL for all the analytes with a determination coefficient (r(2)) higher than 0.999 for plasma and urine samples. Method recovery ranged within 87.6-104.3% for plasma samples and 84.2-98.6% for urine samples. The developed method utilizing polar APS sorbent along with polar HILIC column was applied for

  7. The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography.


    Niu, Wenjing; Wang, Lijuan; Bai, Ligai; Yang, Gengliang


    A new polymeric monolith was synthesized in fused-silica capillary by in situ polymerization technique. In the polymerization, bisphenol A epoxy vinyl ester resin (VER) was used as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the crosslinking monomer, 1,4-butanediol, 1-propanol and water as the co-porogens, and azobisisobutyronitrile (AIBN) as the initiator. The conditions of polymerization have been optimized. Morphology of the prepared poly (VER-co-EDMA) monolith was investigated by the scanning electron microscopy (SEM); pore properties were assayed by mercury porosimetry and nitrogen adsorption. The optimized poly (VER-co-EDMA) monolith showed a uniform structure, good permeability and mechanical stability. Then, the column was used as the stationary phase of high performance liquid chromatography (HPLC) to separate the mixture of benzene derivatives. The best column efficiency achieved for phenol was 235790 theoretical plates per meter. Baseline separations of benzene derivatives and halogenated benzene compounds under optimized isocratic mode conditions were achieved with high column efficiency. The column showed good reproducibility: the relative standard deviation (RSD) values based on the retention times (n=3) for run-to-run, column-to-column and batch-to-batch were less than 0.98, 1.68, 5.48%, respectively. Compared with poly (BMA-co-EDMA) monolithic column, the proposed monolith exhibited more efficiency in the separation of small molecules.

  8. Principles of Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Bakalyar, Stephen R.

    This article reviews the basic principles of high performance liquid chromatography (HPLC). The introductory section provides an overview of the HPLC technique, placing it in historical context and discussing the elementary facts of the separation mechanism. The next section discusses the nature of resolution, describing the two principal aspects, zone center separation and zone spreading. The third section takes a detailed look at how HPLC is used in practice to achieve a separation. It discusses the three key variables that need to be adjusted: retention, efficiency, and selectivity. A fourth section is concerned with various relationships of practical importance: flow rate, temperature, and pressure. A final section discusses future trends in HPLC.

  9. Pre-column incubation followed by fast liquid chromatography analysis for rapid screening of natural methylglyoxal scavengers directly from herbal medicines: case study of Polygonum cuspidatum.


    Tang, Dan; Zhu, Jia-Xiao; Wu, An-Guo; Xu, You-Hua; Duan, Ting-Ting; Zheng, Zhao-Guang; Wang, Ru-Shang; Li, Dan; Zhu, Quan


    Methylglyoxal (MGO), a very reactive metabolite of glucose, plays a pivotal role in the pathogenesis of several chronic diseases associated with diabetes, and it has been validated as an attractive target for them. In the present study, a simple and effective method, namely pre-column incubation followed by fast high performance liquid chromatography based on superficially porous particles (shell), coupled with diode array detection and tandem mass spectrometry (UHPLC-DAD-MS(n)), was proposed for rapid and high-throughput screening of natural MGO scavengers directly from the crude extract of Polygonum cuspidatum Sieb. et Zucc, a well-known traditional Chinese medicine which was used for treatment of diabetic complications. The hypothesis is that upon reaction with MGO, the peak areas of components with MGO scavenging potency in the chromatogram will be significantly reduced or disappear, and the structural characterization could be achieved by UHPLC-DAD-MS(n) hyphenated technique. First of all, 12 compounds in P. cuspidatum were well separated within shorter time (~12 min) than previous methods and identified, and two of them, i.e. 3,5,4'-trihydroxystilbene-3-O-(6″-galloyl)-glucoside (3) and emodin-8-O-(6'-malonyl)-glucoside (8) were firstly reported ingredients. After incubation with MGO, four stilbene derivatives were demonstrated to possess potential MGO trapping activities. Furthermore, it was proved that both polydatin (piceid) and resveratrol exhibited effective MGO-trapping capacity by UHPLC analysis, and they could significantly inhibit the formation of advanced glycation end products (AGEs) in the human serum albumin (HSA)-MGO assay, indicating that they were potential candidate agents for delaying and preventing diabetic complications. Additionally, MGO trapping mechanism exploration by UHPLC-MS(n) showed that the positions 2 and 4 of the A ring of stilbene were major active sites for trapping MGO to form both mono- and di-MGO adducts, however, the

  10. Determination of co-administrated opioids and benzodiazepines in urine using column-switching solid-phase extraction and liquid chromatography-tandem mass spectrometry.


    Xiong, Lingjuan; Wang, Rong; Liang, Chen; Teng, Xiaomei; Jiang, Fengli; Zeng, Libo; Ye, Haiying; Ni, Chunfang; Yuan, Xiaoliang; Rao, Yulan; Zhang, Yurong


    Co-administration of opioids with benzodiazepines is very common around the world. A semi-automated method was developed for the determination of four opioids and two benzodiazepines as well as their metabolites (including glucuronide metabolites) in human urine, based on on-line column-switching-solid-phase extraction (CS-SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CS-SPE was performed by loading 200μL of urine sample to an Oasis HLB cartridge. Detection was achieved using a LC-MS/MS system equipped with an electrospray ionization source (ESI). For unequivocal identification and confirmation, two selected reaction monitoring transitions were registered for each compound, and no co-elution of interferences was observed at the expected retention time. Significant ion suppressions were observed for most analytes during chromatographic runs, but isotope-labeled internal standards (ISs) were used and found to be useful to compensate for the determination error caused by the matrix effect. The assay's linearity ranged from 1-20ng/mL to 800-1000ng/mL for 23 compounds, except for lorazepam (LOR), whose linearity was in the range of 1-100ng/mL. This method showed to be precise and accurate. The relative standard deviation (RSD) % values of within-run precision, between-run precision and total precision were not greater than 10.4% (n=3), 12.9% (n=5) and 15.1% (n=15), respectively. Accuracy values were in the range of 87.5-110%. Limits of detection (LODs) ranged from 0.2ng/mL to 5ng/mL, and limits of quantification (LOQs) ranged from 1ng/mL to 20ng/mL. The method was applied to the assay of 12 samples from forensic cases, which exemplified the co-administration of benzodiazepines (BZDs) by some heroin abusers. This method was of high sensitivity, selectivity and reliability, minimum sample manipulation, semi-automation, and fairly high throughput (analysis time per sample was 20min). The method developed will be useful for the detection of co

  11. Determination of clarithromycin in human serum by high-performance liquid chromatography after pre-column derivatization with 9-fluorenylmethyl chloroformate: application to a bioequivalence study.


    Bahrami, Gholamreza; Mohammadi, Bahareh


    A sensitive liquid chromatographic method for the analysis of clarithromycin, a macrolide antibiotic, in human serum using pre-column derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) is described. The method involved liquid-liquid extraction of the drug and an internal standard (amantadine) followed by pre-column derivatization of the analytes with FMOC-Cl. A mixture of 0.05 M phosphate buffer containing triethylamine (2 mL L(-1); pH 3.8) and methanol (17:83, v/v) was used as mobile phase and chromatographic separation was achieved on a Shimpack CLC-ODS column. The eluate was monitored by a fluorescence detector with respective excitation and emission wavelengths of 265 and 315 nm. The analytical method was linear over the concentration range of 0.025-10 microg mL(-1) of clarithromycin in human serum with a limit of quantification of 0.025 microg mL(-1). The assay is sensitive enough to measure drug levels obtained in human single dose studies. In the present method, sensitivity and run time of analysis have been improved, and successfully applied in a bioequivalence study of three different clarithromycin preparations in 12 healthy volunteers.

  12. Selective extraction and analysis of catecholamines in rat blood microdialysate by polymeric ionic liquid-diphenylboric acid-packed capillary column and fast separation in high-performance liquid chromatography-electrochemical detector.


    Zhou, Xinguang; Zhu, Anwei; Shi, Guoyue


    Concentration of blood catecholamines (CAs) is linked to a host of cardiovascular diseases, including hypertension and stenocardia. The matrix interferences and low concentration require tedious sample pretreatment methods before quantitative analysis by the gold standard method of high-performance liquid chromatography-electrochemical detector (HPLC-ECD). Solid phase extraction (SPE) has been widely used as the pretreatment technique. Here, a facile polymeric ionic liquid (PIL)-diphenylboric acid (DPBA)-packed capillary column was prepared to selectively extract dopamine (DA), noradrenaline (NE) and epinephrine (E) prior to their quantitative analysis by a fast separation in HPLC-ECD method, while microdialysis sampling method was applied to get the analysis sample. Parameters that influenced desorption efficiency, such as pH, salt concentration, acetonitrile content and wash time, were examined and optimized. The proposed method, combining microdialysis sampling technique, SPE and HPLC-ECD system, was successfully applied to detect CAs in rat blood microdialysate with high sensitivity and selectivity in small sample volumes (5-40μl) and a short analysis time (8min), yielding good reproducibility (RSD 6.5-7.7%) and spiked recovery (91-104.4%).

  13. Liquid chromatography detection unit, system, and method


    Derenzo, Stephen E.; Moses, William W.


    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method of liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.

  14. Simultaneous determination of ampicillin and sulbactam by liquid chromatography: post-column reaction with sodium hydroxide and sodium hypochlorite using an active hollow-fibre membrane reactor.


    Haginaka, J; Nishimura, Y


    A high-performance liquid chromatographic method has been developed for the simultaneous determination of ampicillin (ABPC) and sulbactam (SBT) in serum and urine. The method involves separation of ABPC and SBT from the background components of serum and urine on a C18 column, post-column reaction with sodium hydroxide and sodium hypochlorite using an active hollow-fibre membrane reactor, and detection at 270 nm. At ABPC and SBT concentrations of 10 and 5 micrograms/ml in urine and serum samples, the precisions (relative standard deviations) were 0.9-2.5% (n = 8). The detection limits were 20 and 5 ng for ABPC and SBT, respectively, at a signal-to-noise ratio of 3.

  15. Post-column reaction for simultaneous analysis of chromatic and leuco forms of malachite green and crystal violet by high-performance liquid chromatography with photometric detection

    USGS Publications Warehouse

    Allen, J.L.; Meinertz, J.R.


    The chromatic and leuco forms of malachite green and crystal violet were readily separated and detected by a sensitive and selective high-performance liquid chromatographic procedure. The chromatic and leuco forms of the dyes were separated within 11 min on a C18 column with a mobile phase of 0.05 M sodium acetate and 0.05 M acetic acid in water (19%) and methanol (81%). A reaction chamber, containing 10% PbO2 in Celite 545, was placed between the column and the spectrophotometric detector to oxidize the leuco forms of the dyes to their chromatic forms. Chromatic and leuco malachite green were quantified by their absorbance at 618 nm; and chromatic and leuco Crystal Violet by their absorbance at 588 nm. Detection limits for chromatic and leuco forms of both dyes ranged from 0.12 to 0.28 ng. A linear range of 1 to 100 ng was established for both forms of the dyes.

  16. Instrument platforms for nano liquid chromatography.


    Šesták, Jozef; Moravcová, Dana; Kahle, Vladislav


    The history of liquid chromatography started more than a century ago and miniaturization and automation are two leading trends in this field. Nanocolumn liquid chromatography (nano LC) and largely synonymous capillary liquid chromatography (capillary LC) are the most recent results of this process where miniaturization of column dimensions and sorbent particle size play crucial role. Very interesting results achieved in the research of extremely miniaturized LC columns at the end of the last century lacked distinctive raison d'être and only advances in mass spectrometry brought a real breakthrough. Configuration of nano LC-electrospray ionization mass spectrometry (LC-ESI-MS) has become a basic tool in bioanalytical chemistry, especially in proteomics. This review discusses and summarizes past and current trends in the realization of nano liquid chromatography (nano LC) platforms. Special attention is given to the mobile phase delivery under nanoflow rates (isocratic, gradient) and sample injection to the nanocolumn. Available detection techniques applied in nano LC separations are also briefly discussed. We followed up the key themes from the original scientific reports over gradual improvements up to the contemporary commercial solutions.

  17. Methodology for optimally sized centrifugal partition chromatography columns.


    Chollet, Sébastien; Marchal, Luc; Jérémy Meucci; Renault, Jean-Hugues; Legrand, Jack; Foucault, Alain


    Centrifugal Partition Chromatography (CPC) is a separation process based on the partitioning of solutes between two partially miscible liquid phases. There is no solid support for the stationary phase. The centrifugal acceleration is responsible for both stationary phase retention and mobile phase dispersion. CPC is thus a process based on liquid-liquid mass transfer. The separation efficiency is mainly influenced by the hydrodynamics of the phases in each cell of the column. Thanks to a visualization system, called "Visual CPC", it was observed that the mobile phase can flow through the stationary phase as a sheet, or a spray. Hydrodynamics, which directly governs the instrument efficiency, is directly affected during scale changes, and non-linear phenomena prevent the successful achievement of mastered geometrical scale changes. In this work, a methodology for CPC column sizing is proposed, based on the characterization of the efficiency of advanced cell shapes, taking into account the hydrodynamics. Knowledge about relationship between stationary phase volume, cell efficiency and separation resolution in CPC allowed calculating the optimum cell number for laboratory and industrial scale CPC application. The methodology is highlighted with results on five different geometries from 25 to 5000 mL, for two applications: the separation of alkylbenzene by partitioning with heptane/methanol/water biphasic system; and the separation of peptides by partitioning with n-butanol/acetic acid/water (4/1/5) biphasic system. With this approach, it is possible to predict the optimal CPC column length leading to highest productivity.

  18. Simultaneous determination of neutral and acidic pharmaceuticals in wastewater by high-performance liquid chromatography-post-column photochemically induced fluorimetry.


    González-Barreiro, C; Lores, M; Casais, M C; Cela, R


    An analytical method for the simultaneous determination of acidic and neutral pharmaceutical active compound (PhACs) residues in wastewater has been developed based on the combination of high-performance liquid chromatography (HPLC) and photochemically induced fluorimetry. The photoderivatization conditions for each particular PhAC have been assessed. Off-line optimization of the HPLC separation for both neutral and acidic compounds has been utilised and evaluated. Detection limits in the low ng/ml range have been achieved without sample pretreatment. By applying the developed analytical method combined with solid-phase extraction to real wastewater samples an enrichment factor of approximately two orders of magnitude can be obtained.

  19. Novel on-line column extraction apparatus coupled with binary peak focusing for high-performance liquid chromatography determination of rifampicin in human plasma: a strategy for therapeutic drug monitoring.


    Li, Wei; Peng, Min; Long, Minghui; Qiu, Ximin; Yang, Liping


    In order to develop a method that is completely suitable for the routine therapeutic drug monitoring, a sensitive and fully automated on-line column extraction apparatus in combination with high-performance liquid chromatography allowing binary peak focusing was developed and validated for the determination of rifampicin in human plasma. Rifapentine was used as an internal standard. The analytical cycle started with the injection of 100 μL of the sample pretreated by protein precipitation in a Venusil SCX extraction column. After the elution, the analytes were transferred and concentrated in an Xtimate C18 trap column. Finally, the trapped analytes were separated by an Xtimate C18 analytical column and were analyzed by an ultraviolet detector at 336 nm. With this new strategy, continuous on-line analysis of the compounds was successfully performed. The method showed excellent performance for the analysis of rifampicin in plasma samples, including calibration curve linearity (All r were larger than 0.9996), sensitivity (lowest limit of quantification was 0.12 μg/mL), method accuracy (within 6.6% in terms of relative error), and precision (relative standard deviations of intra- and interday precision were less than 7.8%). These results demonstrated that the simple, reliable, and automatic method based on on-line column extraction and binary peak focusing is a promising approach for therapeutic drug monitoring in complex biomatrix samples.

  20. Application of a beta-cyclodextrin sulfate-immobilized precolumn to selective on-line enrichment and separation of heparin-binding proteins by column-switching high-performance liquid chromatography.


    Ishimura, K; Fukunaga, K; Irie, T; Uekama, K; Ohta, T; Nakamura, H


    A column-switching high-performance liquid chromatography (HPLC) system which consisted of a beta-cyclodextrin (beta-CD) sulfate-immobilized hydrophilic vinyl-polymer gel precolumn and a reversed-phase analytical column was developed for the selective on-line enrichment and separation of heparin-binding proteins. Of 15 proteins investigated, 10 proteins having heparin-binding activity were retained on the beta-CD sulfate precolumn almost quantitatively, in contrast 5 proteins having no heparin-binding activity were not retained. Calibration graphs for basic fibroblast growth factor constructed at various sample volumes were nearly identical, indicating that the protein could be enriched by this system. The system was successfully used for the selective separation of lysozyme in egg white. The beta-CD sulfate-immobilized precolumn showed no loss of analytical performance over 2 years during which about 400 samples were analysed.

  1. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.


    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong


    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city.

  2. Ionic liquids monolithic columns for protein separation in capillary electrochromatography.


    Liu, Cui-Cui; Deng, Qi-Liang; Fang, Guo-Zhen; Liu, Hui-Lin; Wu, Jian-Hua; Pan, Ming-Fei; Wang, Shuo


    A series of ionic liquids (ILs) monolithic capillary columns based on 1-vinyl-3-octylimidazolium (ViOcIm(+)) were prepared by two approaches ("one-pot" approach and "anion-exchange" approach). The effects of different anions (bromide, Br(-); tetrafluoroborate, BF4(-); hexafluorophosphate, PF6(-); and bis-trifluoromethanesulfonylimide, NTf2(-)) on chromatography performance of all the resulting columns were investigated systematically under capillary electrochromatography (CEC) mode. The results indicated that all these columns could generate a stable reversed electroosmotic flow (EOF) over a wide pH range from 2.0 to 12.0. For the columns prepared by "one-pot" approach, the EOF decreased in the order of ViOcIm(+)Br(-)>ViOcIm(+)BF4(-)>ViOcIm(+)PF6(-)>ViOcIm(+)NTf2(-) under the same CEC conditions; the ViOcIm(+)Br(-) based column exhibited highest column efficiencies for the test small molecules; the ViOcIm(+)NTf2(-) based column possessed the strongest retention for aromatic hydrocarbons; and baseline separation of four standard proteins was achieved on ViOcIm(+)NTf2(-) based column corresponding to the highest column efficiency of 479,000 N m(-1) for cytochrome c (Cyt c). These results indicated that the property of ILs based columns could be tuned successfully by changing anions, which gave these columns potential to separate both small molecules and macro biomolecules.

  3. Development of a method for the direct analysis of peptide AM336 in monkey cerebrospinal fluid using liquid chromatography/electrospray ionization mass spectrometry with a mixed-function column.


    Bu, Wei; Freer, Scott D; Hollar, Shelly M; Stetson, Philip L; Boyd, Robert A; Kurek, John B; Sved, Daniel W


    A liquid chromatography/mass spectrometry (LC/MS) analytical procedure, using a single column for sample clean-up, enrichment and separation, has been developed for the determination of the peptide AM336 in monkey cerebrospinal fluid (CSF). CSF samples were injected and analyzed using a polymer-coated mixed-function high-performance liquid chromatography (HPLC) column with gradient elution and application of a timed valve-switching event. The mass spectrometer was operated in the positive electrospray ionization (ESI(+)) mode with single ion recording (SIR) at m/z 920. The method was validated, yielding calibration curves with correlation coefficients greater than 0.9892. Assay precision and accuracy were evaluated by direct injection of AM336-fortified CSF samples at three concentration levels. Analyzed concentrations ranged from 99.93 to 113.1% of their respective theoretical concentrations with coefficients of variation below 9.0%. An evaluation of the signal-to-noise (S/N) ratio for a 200 ng/mL calibration standard, considered to be the lower limit of quantitation (LLOQ), resulted in an estimated limit of detection (LOD) of 31.2 ng/mL. Preliminary data suggest the possibility of using this method to analyze AM336 also in plasma samples, pending the successful outcome of additional investigations.

  4. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of organophosphate pesticides in whole water by continuous liquid-liquid extraction and capillary-column gas chromatography with flame photometric detection

    USGS Publications Warehouse

    Jha, Virendra K.; Wydoski, Duane S.


    A method for the isolation of 20 parent organophosphate pesticides and 5 organophosphate pesticide degradates from natural-water samples is described. Compounds are extracted from water samples with methylene chloride using a continuous liquid-liquid extractor for 6 hours. The solvent is evaporated using heat and a flow of nitrogen to a volume of 1 milliliter and solvent exchanged to ethyl acetate. Extracted compounds are determined by capillary-column gas chromatography with flame photometric detection. Single-operator derived method detection limits in three water-matrix samples ranged from 0.003 to 0.009 microgram per liter. Method performance was validated by spiking all compounds in three different matrices at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of most method compounds spiked in surface-water samples ranged from 54 to 137 percent and those in ground-water samples ranged from 40 to 109 percent for all pesticides. Recoveries in reagent-water samples ranged from 42 to 104 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had variable recovery in all three matrices ranging from 27 to 79 percent. As a result, the detected concentration of O-ethyl-O-methyl-S-propylphosphorothioate in samples is reported in this method with an estimated remark code. Based on the performance issue, two more compounds, disulfoton and ethion monoxon, also will be reported in this method with an estimated remark code. Estimated-value compounds, which are ?E-coded? in the data base, do not meet the performance criteria for unqualified quantification, but are retained in the method because the compounds are important owing to high use or potential environmental effects and because analytical performance has been consistent and reproducible.

  5. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis.


    Zhang, Qian; Yang, Feng-Qing; Ge, Liya; Hu, Yuan-Jia; Xia, Zhi-Ning


    Hydrophilic interaction liquid chromatography, an alternative liquid chromatography mode, is of particular interest in separating hydrophilic and polar ionic compounds. Compared with traditional liquid chromatography techniques, hydrophilic interaction liquid chromatography offers specific advantages mainly including: (1) relatively green and water-soluble mobile phase composition, which enhances the solubility of hydrophilic and polar ionic compounds; (2) no need for ion-pairing reagents and high content of organic solvent, which benefits mass spectrometry detection; (3) high orthogonality to reverse-phase liquid chromatography, well adapted to two-dimensional liquid chromatography for complicated samples. Therefore, hydrophilic interaction liquid chromatography has been rapidly developed in many areas over the past decades. This review summarizes the recent progress (from 2012 to July 2016) of hydrophilic interaction liquid chromatography in pharmaceutical analysis, with the focus on detecting chemical drugs in various matrices, charactering active compounds of natural products and assessing biotherapeutics through typical structure unit. Moreover, the retention mechanism and behavior of analytes in hydrophilic interaction liquid chromatography as well as some novel hydrophilic interaction liquid chromatography columns used for pharmaceutical analysis are also described.

  6. Simultaneous determination of fat-soluble vitamins and provitamins in dairy products by liquid chromatography with a narrow-bore column.


    Blanco, D; Fernández, M P; Gutiérrez, M D


    A reversed-phase high-performance liquid chromatographic method is described for the simultaneous determination of vitamins A, D2, D3, E and K1, retinyl acetate, retinyl palmitate, tocopherol acetate, ergosterol and 7-dehydrocholesterol in milk and butter. Narrow-bore columns are recommended because this alternative provides a good separation and efficiency, plus greater economy and sensitivity. Detection limits for individual vitamins range from 0.14 to 6.9 ng. All vitamins are separated in less than 33 min. For the simultaneous determination of these vitamins and provitamins we use two sample pre-treatment methods, a liquid-liquid extraction with hexane or a solid-phase extraction with a C18 cartridge. Recovery studies show good results for all solutes (84-108% and 85-108% for milk and butter, respectively) and the intra-day coefficients of variations range from 1.6 to 4.5%. These methods permit the simple determination of fat-soluble vitamins using a small sample volume.

  7. Monitoring of ethanol during fermentation of a lignocellulose hydrolysate by on-line microdialysis sampling, column liquid chromatography, and an alcohol biosensor

    SciTech Connect

    Buttler, T.; Gorton, L.; Jarskog, H.; Marko-Varga, G. . Dept. of Analytical Chemistry); Hahn-Haegerdal, B.; Meinander, N.; Olsson, L. . Dept. of Applied Microbiology)


    During a 70-h fermentation of a lignocellulose hydrolysate, the ethanol produced was monitored on-line using a microdialysis probe as an in situ sampling device. The dialysate components were then separated in a column liquid chromatographic system and the ethanol was selectively detected by an amperometric alcohol biosensor. The result was compared with two off-line analysis methods: one chromatographic method with refractive index (RI) detection and one enzymatic method based on spectrophotometric detection. The two methods based on enzymes were shown to give lower values than the chromatographic method based on RI detection, which is discussed in terms of selectivity. The investigated on-line setup was found to be a flexible system for monitoring of fermentations, allowing a sampling frequency of at least 12 h[sup [minus]1] and with a delay between sampling and detection of less than 5 min.

  8. Monitoring of ethanol during fermentation of a lignocellulose hydrolysate by on-line microdialysis sampling, column liquid chromatography, and an alcohol biosensor.


    Buttler, T; Gorton, L; Jarskog, H; Marko-Varga, G; Hahn-Hägerdal, B; Meinander, N; Olsson, L


    During a 70-h fermentation of a lignocellulose hydrolysate, the ethanol produced was monitored on-line using a microdialysis probe as an in situ sampling device. The dialysate components were then separated in a column liquid chromatographic system and the ethanol was selectively detected by an amperometric alcohol biosensor. The result was compared with two off-line analysis methods: one chromatographic method with refractive index (RI) detection and one enzymatic method based on spectrophotometric detection. The two methods base on enzymes were shown to give lower values than the chromatographic method based on RI detection, which is discussed n terms of selectivity. The investigated on-line setup was found to be a flexible system for monitoring of fermentations, allowing a sampling frequency of at least 12 h(-1) and with a delay between sampling and detection of less than 5 min.

  9. An Inexpensive Liquid Chromatography Apparatus for Undergraduate Teaching.

    ERIC Educational Resources Information Center

    McCamish, Malcolm; And Others


    Describes an inexpensive, low-pressure liquid chromatography pump, slurry filler, stainless steel columns, and injector system suitable for the undergraduate laboratory or routine analysis. Includes sectional diagram of the pump and construction diagram of the preparative columns. (Author/SK)

  10. Multi-residue analytical method for the determination of endocrine disruptors and related compounds in river and waste water using dual column liquid chromatography switching system coupled to mass spectrometry.


    Gorga, Marina; Petrovic, Mira; Barceló, Damià


    The present study describes a novel, fully automated method, based on column switching using EQuan™ columns for an integrated sample preconcentration and liquid chromatography coupled to tandem mass spectrometry (LC-LC-MS/MS). The method allows the unequivocal identification and quantification of the most relevant environmental endocrine disruptors compounds (EDCs) and compounds suspected to be EDCs, such as natural and synthetic estrogens and their conjugates, antimicrobials, parabens, bisphenol A, alkylphenolic compounds, benzotriazoles, and organophosphorus flame retardants, in surface river water and wastewater samples. Applying this technique, water samples were directly injected into the chromatographic system and the target compounds were concentrated into the loading column. Thereafter, the analytes were transferred into the analytical column for subsequent detection by MS-MS (QqQ). A comparative study employing three types of columns, with different chemical modifications, was performed in order to determine the optimal column that allowed maximum retention and subsequent elution of the analytes. Using this new optimized methodology a fast and easy online methodology for the analysis of EDCs in surface river water and wastewater with low limits of quantification (LOQ) was obtained. LOQs ranged from 0.008 to 1.54 ng/L for surface river water and from 0.178/0.364 to 12.5/25.0 ng/L (except for alkylphenol monoethoxylates) for effluent/influent waste water. Moreover, employing approximately 1h, a complete analysis was performed which was significant improvement in comparison to other methods reported previously. This method was used to track the presence and fate of target compounds in the Ebro River which is the most important river in Spain whose intensive agricultural and industrial activities concentrate mainly close to the main cities in the basin, deteriorating soil and water quality.

  11. Using a box instead of a column for process chromatography.


    Ghosh, Raja


    Columns with relatively short bed-height to diameter ratios are frequently used for process-scale chromatography applications such as biopharmaceutical purification. Non-uniform flow distribution within such columns could result in broad and poorly resolved eluted peaks, which could in turn affect purity, recovery and productivity of the process. Different strategies centered on improved column header design have been proposed for addressing this problem. This paper describes a radically different approach, i.e. the use of a chromatography box (or chromato-box) instead of a column, for addressing the challenges posed by flow mal-distribution in process-scale, packed-bed chromatography devices. The design of the chromatography box devices used in this study is based on a laterally-fed membrane chromatography (or LFMC) device, that has been described and discussed in several recent papers. The performances of two chromatography box devices were compared with their equivalent columns in terms of sharpness and asymmetry of flow-through and eluted peaks, number of theoretical plates per metre, and peak resolution in binary and ternary protein separations. In each of the above comparisons, the chromatography box devices performed better than their equivalent columns, clearly indicating their potential as an alternative in process-scale chromatography applications.

  12. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites.


    Zhang, Rong; Watson, David G; Wang, Lijie; Westrop, Gareth D; Coombs, Graham H; Zhang, Tong


    It has been reported that HILIC column chemistry has a great effect on the number of detected metabolites in LC-HRMS-based untargeted metabolite profiling studies. However, no systematic investigation has been carried out with regard to the optimisation of mobile phase characteristics. In this study using 223 metabolite standards, we explored the retention mechanisms on three zwitterionic columns with varied mobile phase composition, demonstrated the interference from poor chromatographic peak shapes on the output of data extraction, and assessed the quality of chromatographic signals and the separation of isomers under each LC condition. As expected, on the ZIC-cHILIC column the acidic metabolites showed improved chromatographic performance at low pH which can be attributed to the opposite arrangement of the permanently charged groups on this column in comparison with the ZIC-HILIC column. Using extracts from the protozoan parasite Leishmania, we compared the numbers of repeatedly detected LC-HRMS features under different LC conditions with putative identification of metabolites not amongst the standards being based on accurate mass (±3ppm). Besides column chemistry, the pH of the mobile phase plays a key role in not only determining the retention mechanisms of solutes but also the output of the LC-HRMS data processing. Fast evaporation of ammonium carbonate produced less ion suppression in ESI source and consequently improved the detectability of the metabolites in low abundance in comparison with other ammonium salts. Our results show that the combination of a ZIC-pHILIC column with an ammonium carbonate mobile phase, pH 9.2, at 20mM in the aqueous phase or 10mM in both aqueous and organic mobile phase components, provided the most suitable LC conditions for LC-HRMS-based untargeted metabolite profiling of Leishmania parasite extracts. The signal reliability of the mass spectrometer used in this study (Exactive Orbitrap) was also investigated.

  13. A hybrid fluorous monolithic capillary column with integrated nanoelectrospray ionization emitter for determination of perfluoroalkyl acids by nano-liquid chromatography-nanoelectrospray ionization-mass spectrometry/mass spectrometry.


    Zhang, Haiyang; Ou, Junjie; Wei, Yinmao; Wang, Hongwei; Liu, Zhongshan; Zou, Hanfa


    A hybrid fluorous monolithic column was simply prepared via photo-initiated free radical polymerization of an acrylopropyl polyhedral oligomeric silsesquioxane (acryl-POSS) and a perfluorous monomer (2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate) in UV-transparent fused-silica capillaries within 5min. The physical characterization of hybrid fluorous monolith, including scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and nitrogen adsorption/desorption measurement was performed. Chromatographic performance was also evaluated by capillary liquid chromatography (cLC). Due to the fluorous-fluorous interaction between fluorous monolith and analytes, fluorobenzenes could well be separated, and the column efficiencies reached 86,600-92,500plates/m at the velocity of 0.87mm/s for alkylbenzenes and 51,900-76,000plates/m at the velocity of 1.10mm/s for fluorobenzenes. Meanwhile, an approach to integrate nanoelectrospray ionization (ESI) emitter with hybrid fluorous monolithic column was developed for quantitative determination of perfluoroalkyl acids by nanoHPLC-ESI-MS/MS. The integration design could minimize extracolumn volume, thus excluding undesirable peak broadening and improving separation performance.

  14. Validation of a method based on triglycerides for the detection of low percentages of hazelnut oil in olive oil by column liquid chromatography.


    García-González, Diego L; Viera-Macías, María; Aparicio-Ruiz, Ramón; Morales, Maria T; Aparicio, Ramón


    The difference between theoretical and empirical triglyceride content is a powerful tool to detect the presence of any vegetable oil in olive oil. The current drawback of the method is the separation between equivalent carbon number ECN42 compounds, which affects the reliability of the method and, hence, its cutoff limit. The determination of the triglyceride profile by liquid chromatography using propionitrile as the mobile phase has recently been proposed to improve their quantification, together with a mathematical algorithm whose binary response determines the presence or absence of hazelnut oil. Twenty-one laboratories from 9 countries participated in an interlaboratory study to evaluate the performance characteristics of the whole analytical method. Participants analyzed 12 samples in duplicate, split into 3 intercomparison studies. Statistically significant differences due to the experimental conditions were found in some laboratories, which were detected as outliers by use of Cochran's and Grubbs' tests. The relative standard deviations (RSD) for repeatability and reproducibility were determined following the AOAC Guidelines for Collaborative Studies. The analytical properties of the method were determined by means of the sensitivity (0.86), selectivity (0.94), and reliability (72%) for a cutoff limit of 8% (probability 94%).

  15. Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating Haematococcus pluvialis.


    Jin, Hui; Lao, Yong Min; Zhou, Jin; Zhang, Huai Jin; Cai, Zhong Hua


    A simple ultra-high-pressure liquid chromatography (UHPLC) method for rapidly and simultaneously identifying thirteen carotenoids in Haematococcus pluvialis was developed in this study. The method is capable of effectively separating two astaxanthin isomers, two ζ-carotene isomers, and three phytoene isomers on two simple C18 columns within 9 and 12min only by using methanol and acetonitrile, respectively. To our best knowledge, this is the rapidest method for these carotenoid isomers, currently. Using this method, carotenoid profiling in the astaxanthin-accumulating H. pluvialis under environmental stresses was successfully carried out. Results indicated that carotenoid biosynthesis was differentially perturbed by environmental stresses, indicating that this simple and rapid method is suitable to not only bacterial but also algal samples, with potential applications for a wide range of samples from plant to animal. Finally, possible reasons for the elution order of carotenoids were studied.

  16. Sensitive fluorimetric determination of gentamicin sulfate in biological matrices using solid-phase extraction, pre-column derivatization with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography.


    Stead, D A; Richards, R M


    A high-performance liquid chromatographic method is described for the determination of gentamicin in bacterial culture medium or plasma with increased sensitivity and improved separation of the C1 component. Gentamicin was extracted from the biological matrix with high efficiency using carboxypropyl (CBA)-bonded silica. Derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) followed by C18 reversed-phase chromatography allowed the fluorimetric detection of gentamicins C1, C1a and C2. A fourth component, considered to be gentamicin C2a, was partially resolved from the C2 peak. Optimal conditions for the extraction and derivatization of gentamicin are described. The detection limit was below 50 micrograms/l, the assay was linear to 5 mg/l and showed good reproducibility. It is concluded that pre-column derivatization with FMOC-Cl substantially improves the analysis of gentamicin compared with present methods based on reaction with o-phthaldialdehyde.

  17. Analysis of benzalkonium chloride in the effluent from European hospitals by solid-phase extraction and high-performance liquid chromatography with post-column ion-pairing and fluorescence detection.


    Kümmerer, K; Eitel, A; Braun, U; Hubner, P; Daschner, F; Mascart, G; Milandri, M; Reinthaler, F; Verhoef, J


    A highly reproducible and specific method for the analysis of the quaternary ammonium compound, benzalkonium chloride, in effluents from European hospitals is presented. Benzalkonium chloride was extracted with end-capped RP-18 solid-phase cartridges and was selectively eluted. The resulting solution was analyzed by high-performance liquid chromatography (HPLC). After elution from the analytical column of the HPLC system, 9,10-dimethoxyanthracene-2-sulfonate was added continuously as a fluorescence marker, forming a hydrophobic ion-pair with benzalkonium chloride. The ion-pair was analyzed by fluorescence detection. The method was applied to highly complex effluent samples from different sized European hospitals. The measured concentrations were between 0.05 and 6.03 mg/l. The amounts emitted per bed and year were 4.5-362 g and did not correlate with the size of the hospital. The total amounts were 2.6-909 kg/year.

  18. Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: Typical reversed-phase behavior?


    Matarashvili, Iza; Ghughunishvili, Darejan; Chankvetadze, Lali; Takaishvili, Nino; Khatiashvili, Tamar; Tsintsadze, Maia; Farkas, Tivadar; Chankvetadze, Bezhan


    When polysaccharide-based chiral columns are used in combination with aqueous-organic mobile phases for the separation of enantiomers in high-performance liquid chromatography the separation mode is commonly called "reversed-phase" in analogy to achiral separations. In several earlier and recent studies on neutral and basic chiral analytes it was shown by our and other groups that due to multiple type of interactions involved in selector-selectand binding and enantioselective recognition with polysaccharide derivatives, the above mentioned separation system may not always behave like a reversed-phase system. In the present study additional examples of non-reversed-phase behavior are described for the first time for weak acidic chiral analytes. In addition, the reversal of enantiomer elution order was observed again for the first time for several analytes based on water-content in the mobile phase.

  19. Determination of histamine in microdialysis samples from rat brain by microbore column liquid chromatography following intramolecular excimer-forming derivatization with pyrene-labeling reagent.


    Yoshitake, Takashi; Yamaguchi, Masatoshi; Nohta, Hitoshi; Ichinose, Fumio; Yoshida, Hideyuki; Yoshitake, Shimako; Fuxe, Kjell; Kehr, Jan


    This paper describes a sensitive and selective liquid chromatographic method with fluorescence detection for determination of histamine in brain microdialysis samples from awake rats. Samples containing histamine (10 microl) were derivatized with 20 microl of the reagent consisting of 3 mM 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), 3 mM potassium carbonate and acetonitrile (1:1:18, v/v), thereafter 20 microl volume was injected onto the microbore column packed with C18 silica gel. The histamine derivative contained two pyrene moieties, which generated intramolecular excimer fluorescence (450-540 nm) and allowed clear discrimination from the monomer fluorescence (360-420 nm) emitted by PSE itself. The separation of histamine-pyrene derivative was achieved within 25 min, the detection limit (S/N=3) was 0.3 fmol histamine in 20 microl injected. The basal extracellular levels of histamine collected in 10-min fractions (fmol per 10 microl, mean+/-S.D., not corrected for recovery, n=10 rats) were 35.45+/-4.56 (hypothalamus), 9.05+/-1.56 (prefrontal cortex), 7.83+/-0.86 (hippocampus) and 6.54+/-0.66 (striatum). The voltage-sensitive release of histamine was evaluated by perfusing the probes with high (100 mM) concentration of potassium ions or with sodium channel blocker tetrodotoxin (1 microM), and the calcium-dependent release was tested by perfusion with calcium-free Ringer solution. These data, together with physiologically induced increase of extracellular histamine in four examined brain regions during forced swimming demonstrate that this method is suitable for high-sensitive determination of neuronally released histamine under various pharmacological and physiological conditions.

  20. Capillary action liquid chromatography.


    Zhang, Bo; Bergström, Edmund T; Goodall, David M; Myers, Peter


    Capillary action LC (caLC) is introduced as a technique using capillary action as the driving force to perform LC in capillary columns packed with HPLC type microparticulate materials. A dry packing method with centrifugal force was developed to prepare capillary columns in parallel (10 columns per 3 min) to support their disposable use in caLC. Using a digital microscope for real-time imaging and recording separations of components in a dye mixture, caLC was found to have flow characteristics similar to TLC. Based on the investigation of microparticulate HPLC silica gels of different size (1.5-10 microm) and a typical TLC grade irregular medium, Merck 60G silica, the van Deemter curves suggested molecular diffusion as the major contribution to band broadening in caLC. With Waters Xbridge 2.6 microm silica, plate heights down to 8.8 microm were obtained, comparable to those achievable in HPLC. Assisted by an image-processing method, the visual caLC separation was converted to a classical chromatogram for further data analysis and such a facility confirmed the observation of highly efficient bands.

  1. Quantification of endogenous brassinosteroids in plant by on-line two-dimensional microscale solid phase extraction-on column derivatization coupled with high performance liquid chromatography-tandem mass spectrometry.


    Wu, Qian; Wu, Dapeng; Shen, Zheng; Duan, Chunfeng; Guan, Yafeng


    An on-line two-dimensional microscale solid phase extraction (2DμSPE)-on column derivatization (OCD)-high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed for quantification of brassinosteroids (BRs) in plant tissues. Five BRs with widest distribution in plant species and high bioactivity (24-epibrassinolide, 24-epicastasterone, 6-deoxo-24-epicastasterone, teasterone and typhastero) were selected as target analytes. 2DμSPE column packed sequentially with phenyl boronic acid silica sorbent (the first dimension) and C18 silica sorbent (the second dimension) was used to selectively extract and enrich BRs by 110-146 times. OCD was carried out on the second dimension of 2DμSPE column with m-aminophenylboronic acid (m-APBA) as a derivatization reagent, enhancing the sensitivity of MS/MS to BRs by 13-8437 times. It was also found that pre-trap of derivatization reagent on the C18 section of 2DμSPE column could increase reaction efficiency by 3-10 times. The whole process time of the on-line system was less than 30min. The detection limits of the method for five BRs were between 1.4 and 6.6pg with RSDs less than 10%. Endogeneous BRs in tomato leaves were analyzed by using this method. Owing to the high selectivity of this on-line 2DμSPE system, BRs in plant extracts could be quantified using matrix-free standard calibration method with relative recoveries in the range of 80-124%.

  2. A Better Method for Filling Pasteur Pipet Chromatography Columns

    ERIC Educational Resources Information Center

    Ruekberg, Ben


    An alternative method for the preparation of Pasteur pipet chromatography columns is presented that allows the column to be filled with solvent without bubbles and allows greater control of fluid flow while the materials to be separated are added. Students are required to wear gloves and goggles and caution should be used while handling glass…

  3. Combining micro dry column chromatography and mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.


    Dry column chromatography principles applied in microscale produce technique to minimize time in preparing and analyzing colorless constituents of soluble mixtures. Glass pipette microcolumns filled with finely sieved adsorbents permit capillary attraction and separation in 3 to 15 minutes. Technique is adaptable to gas chromatography.

  4. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography.


    Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren


    In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16-1.20%, RSD; n = 3) and column-to-column (0.26-2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns.

  5. Using active flow technology columns for high through-put and efficient analyses: The drive towards ultra-high through-put high-performance liquid chromatography with mass spectral detection.


    Kocic, Danijela; Shalliker, R Andrew


    The performance of active flow technology chromatography columns in parallel segmented flow mode packed with 5 μm Hypersil GOLD particles was compared to conventional UHPLC columns packed with 1.9 μm Hypersil GOLD particles. While the conventional UHPLC columns produced more theoretical plates at the optimum flow rate, when separations were performed at maximum through-put the larger particle size AFT column out-performed the UHPLC column. When both the AFT column and the UHPLC column were operated such that they yielded the same number of theoretical plates per separation, the separation on the AFT column was twice as fast as that on the UHPLC column, with the same level of sensitivity and at just 70% of the back pressure. Furthermore, as the flow velocity further increased the performance gain on the AFT column compared to the UHPLC column improved. An additional advantage of the AFT column was that the flow stream at the exit of the column was split in the radial cross section of the peak profile. This enables the AFT column to be coupled to a flow limiting detector, such as a mass spectrometer. When operated under high through-put conditions separations as fast as six seconds, using mobile phase flow rates in the order of 5-6 mL/min have been recorded.

  6. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography.


    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren


    In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate-MAA ratios were investigated to prepare a series of 30% alkyl methacrylate-MAA-EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  7. Comparison of monolithic and microparticulate columns for reversed-phase liquid chromatography of tryptic digests of industrial enzymes in cleaning products.


    Beneito-Cambra, M; Herrero-Martínez, J M; Ramis-Ramos, G; Lindner, W; Lämmerhofer, M


    Enzymes of several classes used in the formulations of cleaning products were characterized by trypsin digestion followed by HPLC with UV detection. A polymeric monolithic column (ProSwift) was used to optimize the separation of both the intact enzymes and their tryptic digests. This column was adequate for the quality control of raw industrial enzyme concentrates. Then, monolithic and microparticulate columns were compared for peptide analysis. Under optimized conditions, the analysis of tryptic digests of enzymes of different classes commonly used in the formulation of cleaning products was carried out. Number of peaks, peak capacity and global resolution were obtained in order to evaluate the chromatographic performance of each column. Particulate shell-core C18 columns (Kinetex, 2.6 μm) showed the best performance, followed by a silica monolithic column (Chromolith RP-18e) and the conventional C18 packings (Gemini, 5 μm or 3 μm). A polymeric monolithic column (ProSwift) gave the worst performances. The proposed method was satisfactorily applied to the characterization of the enzymes present in spiked detergent bases and commercial cleaners.

  8. Instrument contributions to resolution and sensitivity in ultra high performance liquid chromatography using small bore columns: comparison of diode array and triple quadrupole mass spectrometry detection.


    Buckenmaier, Stephan; Miller, Christine A; van de Goor, Tom; Dittmann, Monika M


    UHPLC with DAD-UV detection or in combination with mass spectrometry (MS) has proven to be a robust and widely applicable platform for high sensitivity analyses of many types of chemical compounds. The majority of users employ narrow bore columns with 2.1mm internal diameter (ID) typically exhibiting very high efficiencies (>200,000 plates/m). This ultimately sets stringent demands upon the chromatographic system as the separation efficiency can be compromised by external contributions to dispersion caused by connection capillaries, auto-sampler and/or the detection device. Sample limited applications often use reduced column diameters down to capillary- or even nano-column format. Capillary (ID≤0.5mm) or small-bore columns (ID≤1mm) can be a good compromise between system robustness and enhanced sensitivity. Yet in this case, extra-column dispersion gains additional importance due to reduced peak volumes. To design an optimized system configuration for specific column dimensions and applications it is crucial to understand the dispersion contributions of individual extra-column components. This was subject to many studies done within our group and by others. Here, we employed a fully optimized UHPLC/UV system to investigate the contribution to peak dispersion obtained from columns ranging from capillary to narrow bore (0.3, 0.5, 1, 2.1mm) using a set of small molecules that were analyzed in gradient mode. Further UV detection was replaced by a triple quadrupole (QQQ) MS in order to evaluate its contribution to band broadening. In this context the impact of column-ID upon MS sensitivity when interfaced with an Agilent Jet Stream source was investigated. Data obtained from our test suite of compounds shows mostly mass-sensitive behavior of this advanced electrospray technology.

  9. Analysis of bovine milk caseins on organic monolithic columns: an integrated capillary liquid chromatography-high resolution mass spectrometry approach for the study of time-dependent casein degradation.


    Pierri, Giuseppe; Kotoni, Dorina; Simone, Patrizia; Villani, Claudio; Pepe, Giacomo; Campiglia, Pietro; Dugo, Paola; Gasparrini, Francesco


    Casein proteins constitute approximately 80% of the proteins present in bovine milk and account for many of its nutritional and technological properties. The analysis of the casein fraction in commercially available pasteurized milk and the study of its time-dependent degradation is of considerable interest in the agro-food industry. Here we present new analytical methods for the study of caseins in fresh and expired bovine milk, based on the use of lab-made capillary organic monolithic columns. An integrated capillary high performance liquid chromatography and high-resolution mass spectrometry (Cap-LC-HRMS) approach was developed, exploiting the excellent resolution, permeability and biocompatibility of organic monoliths, which is easily adaptable to the analysis of intact proteins. The resolution obtained on the lab-made Protein-Cap-RP-Lauryl-γ-Monolithic column (270 mm × 0.250 mm length × internal diameter, L × I.D.) in the analysis of commercial standard caseins (αS-CN, β-CN and κ-CN) through Cap-HPLC-UV was compared to the one observe using two packed capillary C4 columns, the ACE C4 (3 μm, 150 mm × 0.300 mm, L × I.D.) and the Jupiter C4 column (5 μm, 150 mm × 0.300 mm, L × I.D.). Thanks to the higher resolution observed, the monolithic capillary column was chosen for the successive degradation studies of casein fractions extracted from bovine milk 1-4 weeks after expiry date. The comparison of the UV chromatographic profiles of skim, semi-skim and whole milk showed a major stability of whole milk towards time-dependent degradation of caseins, which was further sustained by high-resolution analysis on a 50-cm long monolithic column using a 120-min time gradient. Contemporarily, the exact monoisotopic and average molecular masses of intact αS-CN and β-CN protein standards were obtained through high resolution mass spectrometry and used for casein identification in Cap-LC-HRMS analysis. Finally, the proteolytic degradation of β-CN in skim milk

  10. Simple determination of o-phenylphenol in skin lotion by high-performance liquid chromatography coupled with fluorescence detection after pre-column derivatization with 4-(N-chloroformylmethyl-N-methylamino)-7-nitro-2,1,3-benzoxadiazole.


    Higashi, Yasuhiko; Konno, Kazunori


    o-Phenylphenol (OPP) in skin lotion was quantitated by high-performance liquid chromatography coupled with fluorescence detection after pre-column derivatization with 4-(N-chloroformylmethyl-N-methylamino)-7-nitro-2,1,3-benzoxadiazole (NBD-COCl) in borate buffer (pH 8.5) at room temperature for 2 min. The column [150 mm x 3.0 mm internal diameter (i.d.)], which contained 5 μm particles of C18 packing material, was eluted at room temperature (flow rate: 0.5 ml/min) with mobile phase prepared by addition of acetonitrile (550 ml) to 450 ml of Milli-Q water containing trifluoroacetic acid (0.1 v/v%). 2-Hydroxyfluorene was used as an internal standard. The retention times of NBD-CO-OPP and NBD-CO-IS derivatives were 16.2 and 22.2 min, respectively. The calibration plot was linear in the range of 0.01-0.2 μg/ml with an r2 value of 0.9960, and the lower limit of detection was 0.003 μg/ml (at a signal-to-noise ratio of 3:1; absolute amount of 12 pg/20 μl injection). The coefficient of variation was less than 8.8%. Contents of OPP in three skin lotions were determined with the present system, and the recovery from spiked samples was satisfactory.

  11. Evaluation of the chiral recognition properties and the column performances of three chiral stationary phases based on cellulose for the enantioseparation of six dihydropyridines by high-performance liquid chromatography.


    Yu, Jia; Tang, Jing; Yuan, Xiaowei; Guo, Xingjie; Zhao, Longshan


    Separations of six dihydropyridine enantiomers on three commercially available cellulose-based chiral stationary phases (Chiralcel OD-RH, Chiralpak IB, and Chiralpak IC) were evaluated with high-performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol-modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n-hexane/isopropanol (85:15, v/v) for nimodipine (R = 5.80) and cinildilpine (R = 5.65); n-hexane/isopropanol (92:8, v/v) for nicardipine (R = 1.76) and nisoldipine (R = 1.92); and n-hexane/isopropanol/ethanol (97:2:1, v/v/v) for felodipine (R = 1.84) and lercanidipine (R = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column.

  12. Characterization of sulfur and nitrogen compounds in Brazilian petroleum derivatives using ionic liquid capillary columns in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection.


    Cappelli Fontanive, Fernando; Souza-Silva, Érica Aparecida; Macedo da Silva, Juliana; Bastos Caramão, Elina; Alcaraz Zini, Claudia


    Diesel and naphtha samples were analyzed using ionic liquid (IL) columns to evaluate the best column set for the investigation of organic sulfur compounds (OSC) and nitrogen(N)-containing compounds analyses with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry detector (GC×GC/TOFMS). Employing a series of stationary phase sets, namely DB-5MS/DB-17, DB-17/DB-5MS, DB-5MS/IL-59, and IL-59/DB-5MS, the following parameters were systematically evaluated: number of tentatively identified OSC, 2D chromatographic space occupation, number of polyaromatic hydrocarbons (PAH) and OSC co-elutions, and percentage of asymmetric peaks. DB-5MS/IL-59 was chosen for OSC analysis, while IL59/DB-5MS was chosen for nitrogen compounds, as each stationary phase set provided the best chromatographic efficiency for these two classes of compounds, respectively. Most compounds were tentatively identified by Lee and Van den Dool and Kratz retention indexes, and spectra-matching to library. Whenever available, compounds were also positively identified via injection of authentic standards.

  13. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.


    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M


    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions.

  14. Determination of individual homologues and total content of benzalkonium chloride by reversed-phase high-performance liquid chromatography using a short butyl column.


    Liu, Fangzhu; Xiao, Kang Ping; Rustum, Abu M


    Benzalkonium chloride (a mixture of alkylbenzyldimethylammonium chlorides that usually contains C-10, C-12, C-14, and C-16 homologues), commonly known as BKC, is used as a bacteriostatic agent in many household, food, and drug products. In this paper, we report a simple, rapid, robust, and stability-indicating reversed-phase HPLC method using a short butyl (C4) column for the simultaneous determination of each individual homologue content, as well as the total concentration of individual homologues in commercial bulk raw material batches of BKC samples. The chromatographic separation was performed on a 5 cm ACE C4 column with mobile phase consisting of water, acetonitrile, and potassium chloride. Even though using a short column can potentially cause some challenges to resolving certain critical pairs of peaks, we have successfully separated all of the analyte peaks (including those from stressed, degraded products) on a short column using an optimal mobile phase.

  15. Relative importance of column and adsorption parameters on the productivity in preparative liquid chromatography II: Investigation of separation systems with competitive Langmuir adsorption isotherms.


    Forssén, Patrik; Samuelsson, Jörgen; Fornstedt, Torgny


    In this study we investigated how the maximum productivity for commonly used, realistic separation system with a competitive Langmuir adsorption isotherm is affected by changes in column length, packing particle size, mobile phase viscosity, maximum allowed column pressure, column efficiency, sample concentration/solubility, selectivity, monolayer saturation capacity and retention factor of the first eluting compound. The study was performed by generating 1000 random separation systems whose optimal injection volume was determined, i.e., the injection volume that gives the largest achievable productivity. The relative changes in largest achievable productivity when one of the parameters above changes was then studied for each system and the productivity changes for all systems were presented as distributions. We found that it is almost always beneficial to use shorter columns with high pressure drops over the column and that the selectivity should be greater than 2. However, the sample concentration and column efficiency have very limited effect on the maximum productivity. The effect of packing particle size depends on the flow rate limiting factor. If the pumps maximum flow rate is the limiting factor use smaller packing, but if the pressure of the system is the limiting factor use larger packing up to about 40μm.

  16. Surface modification of polytetrafluoroethylene column for two-stationary phase separations by counter-current chromatography.


    Quan, Kai-jun; Huang, Xin-yi; Li, Xiao-ting; Wang, Gao-hong; Liu, Yan-juan; Duan, Wen-da; Di, Duo-long


    To improve the separation capability of CCC, a novel solid-liquid two-stationary phases CCC (ASP-CCC) column was prepared employing graphene oxide (GO) conjugated poly-dopamine (PD) coating (GO/PD) as auxiliary stationary phase (ASP). The results of Scanning electron microscopy (SEM), contact angle and X-ray photoelectron spectroscopy (XPS) indicated that nanostructured GO and PD were successfully grafted on the inner wall of the PTFE column. Three alkaloid compounds were selected as the target analytes to evaluate the performance of the novel column. Because of the intermolecular force (hydrogen bond, electrostatic interaction and π-π interaction) between the ASP and model compounds, three analytes were well separated with this novel ASP-CCC column. Additionally, the novel column exhibited higher stationary phase retention ratio, about 8%, than original column without changing the chromatographic condition. Furthermore, the eluotropic sequence of analytes on novel column was in accordance with that in the original column. This suggested that the novel column is a CCC column with auxiliary stationary phase (ASP) in its own right, and the present separation mode is the combination of partition chromatography and adsorption chromatography.

  17. Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography.


    West, Caroline; Khalikova, Maria A; Lesellier, Eric; Héberger, Károly


    The identification of a suitable stationary phase in supercritical fluid chromatography (SFC) is a major source of difficulty for those with little experience in this technique. Several protocols have been suggested for column classification in high-performance liquid chromatography (HPLC), gas chromatography (GC), and SFC. However, none of the proposed classification schemes received general acceptance. A fair way to compare columns was proposed with the sum of ranking differences (SRD). In this project, we used the retention data obtained for 86 test compounds with varied polarity and structure, analyzed on 71 different stationary phases encompassing the full range in polarity of commercial packed columns currently available to the SFC chromatographer, with a single set of mobile phase and operating conditions (carbon dioxide-methanol mobile phase, 25°C, 150bar outlet pressure, 3ml/min). First, a reference column was selected and the 70 remaining columns were ranked based on this reference column and the retention data obtained on the 86 analytes. As these analytes previously served for the calculation of linear solvation energy relationships (LSER) on the 71 columns, SRD ranks were compared to LSER methodology. Finally, an external comparison based on the analysis of 10 other analytes (UV filters) related the observed selectivity to SRD ranking. Comparison of elution orders of the UV filters to the SRD rankings is highly supportive of the adequacy of SRD methodology to select similar and dissimilar columns.

  18. High-performance liquid chromatography separation of small molecules on a porous poly (trimethylol propane triacrylate-co-N-isopropylacrylamide-co-ethylene dimethacrylate) monolithic column.


    Liu, Haiyan; Bai, Xiaomei; Wei, Dan; Yang, Gengliang


    A porous monolith was prepared by in situ free-radical polymerization using N-isopropylacrylamide (NIPAAm) and trimethylol propane triacrylate (TMPTA) as functional monomers, ethylene dimethacrylate (EDMA) as crosslinking agent. The chemical group of the monolith was assayed by a Fourier transform infrared spectroscopy (FT-IR) method and the morphology of optimized monolithic column was characterized by scanning electron microscopy (SEM). The mechanical strength and permeability have been studied in detail as well. The run-to-run and column-to-column reproducibility of the retention times were less than 0.9% and 3.0%, respectively. Furthermore, the influence of temperature and mobile phase composition on the separation of aromatic compounds was investigated. The results indicated that poly (trimethylol propane triacrylate-co-N-isopropylacrylamide-co-ethylenedimethacrylate) (TMPTA-co-NIPAAm-co-EDMA) monolithic column not only had high porosity and strong rigidity, but also was a promising tool for analyzing small molecule compounds with a short analysis time by controlling the column temperature.

  19. Differential coulometric oxidation following post column-switching high pressure liquid chromatography for fluorescence measurement of unmetabolized folic acid in human plasma.


    Bailey, Steven W; Ayling, June E


    Although many countries have fortified their grain supplies with folic acid (FA) to decrease the incidence of neural tube defects, others have not due to concerns that this synthetic folate might have some adverse effects. Persistent unmetabolized FA has been found even in plasma from fasted subjects. To facilitate measurement of low levels of folic acid in human plasma, post-column coulometric oxidative cleavage was used to convert poorly fluorescent FA into a highly fluorescent compound determined to be 6-formyl-pterin. To minimize sample work-up and maximize recovery, column-switching HPLC transferred a window of eluate containing the FA from the first column (C8) onto a second column (phenyl-hexyl). The pH of two mobile phases were adjusted to be above and then below a pK of the FA α-carboxyl group, thus promoting separation from compounds coeluting from the C8-column. This permitted sample preparation using only a simple high recovery protein precipitation. Definitive identification of FA in human plasma was accomplished by duplicate injections of sample with the electrochemical voltage set above and below its half-potential. The LOD (S/N=3) was 0.10 nM. The intra- and inter-assay CV's were 2.3% and 5%, respectively. Comparison of these results with those obtained by HPLC/MS/MS with stable isotope internal standard showed a slope of 1.00 ± 0.019. This simple, sensitive, and repeatable assay facilitates a more thorough investigation of the response of various human populations to folic acid intake. Post-column differential coulometric electrochemistry can expand the variety of compounds amenable to fluorescence detection.

  20. High perfomance liquid chromatography in pharmaceutical analyses.


    Nikolin, Branko; Imamović, Belma; Medanhodzić-Vuk, Saira; Sober, Miroslav


    compounds often present in concentrations much greater than those of analyte. Analiyte concentrations are often low, and in the case of drugs, the endogenous compounds are sometimes structurally very similar to the drug to be measured. The binding of drugs to the plasma protein also may occur which decreases the amount of free compound that is measured. To undertake the analyses of drugs and metabolites in body fluids the analyst is facet with several problems. The first problem is due to the complex nature of the body fluid, the drugs must be isolated by an extraction technique, which ideally should provide a relatively clean extract, and the separation system must be capable of resolving the drugs of interest from co extractives. All mentioned when we are using high performance liquid chromatography require good selections of detectors, good stationary phase, eluents and adequate program during separation. UV/VIS detector is the most versatile detector used in high performance liquid chromatography it is not always ideal since it is lack of specificity means high resolution of the analyte that may be required. UV detection is preferred since it offers excellent linearity and rapid quantitative analyses can be performed against a single standard of the drug being determined. Diode array and rapid scanning detector are useful for peak identification and monitoring peak purity but they are somewhat less sensitive then single wavelength detectors. In liquid chromatography some components may have a poor UV chromophores if UV detection is being used or be completely retained on the liquid chromatography column. Fluorescence and electrochemical detector are not only considerably more sensitive towed appropriate analytes but also more selective than UV detectors for many compounds. If at all possible fluorescence detectors are sensitive, stable, selective and easy to operate. It is selectivity shows itself in the lack of frontal components observed in plasma extract whereas

  1. Development of an in vitro liquid chromatography-mass spectrometry method to evaluate stereo and chemical stability of new drug candidates employing immobilized artificial membrane column.


    Cannazza, Giuseppe; Battisti, Umberto M; Carrozzo, Marina M; Cazzato, Addolorata S; Braghiroli, Daniela; Parenti, Carlo; Troisi, Luigino


    A stopped-flow HPLC method was developed to evaluate configurational and chemical stability of pharmaceutical compounds employing immobilized artificial membranes (IAM) column to simulate conditions that pharmaceutical compounds will meet in vivo. The method was applied to recent developed chiral 5-arylbenzothiadiazine derivatives possessing high positive allosteric modulatory (PAM) activity on AMPA receptor. In particular the stopped-flow HPLC method developed used a chiral column to separate single enantiomer of the compounds that are forced into an IAM column where configurational and chemical stability was evaluated in simulated gastrointestinal fluids (pH 1.2 and 6.8 at 37.5 °C) to simulate in vivo conditions. The results were compared to those obtained by dynamic and off-column methods to evaluate the effects of stationary phases on kinetic constant of enantiomerization and hydrolysis. The results suggested that the phospholipids environment of IAM stationary phases, which mimes biological membrane, greatly influence the hydrolysis process increasing the chemical stability of tested compounds while no influence on enantiomerization kinetic was observed. Therefore it is possible to suppose that 5-arylbenzothiadiazine derivatives should not hydrolysed in vivo while they should rapidly racemized in aqueous solvents. The method could represents a rapid and value tool to predict chemical and configurational stability of new chemical entities to decrease the number of animal studies.

  2. Enantioseparation of N-derivatized amino acids by micro-liquid chromatography/laser induced fluorescence detection using quinidine-based monolithic columns.


    Wu, Huihui; Wang, Qiqin; Ruan, Meng; Peng, Kun; Zhu, Peijie; Crommen, Jacques; Han, Hai; Jiang, Zhengjin


    A novel carbamoylated quinidine based monolith, namely poly(O-9-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine-co-ethylene dimethacrylate (poly(MQD-co-EDMA)), was prepared for the micro-LC enantioseparation of N-derivatized amino acids. The influence of the mobile phase composition, including the organic modifier proportion, the apparent pH and the buffer concentration, on the enantioresolution of N-derivatized amino acids was systematically investigated. Satisfactory column performance in terms of permeability, efficiency and reproducibility was obtained in most cases. The majority of the enantiomers of the tested N-protected amino acids, including 3,5-DNB, 3,5-DClB, FMOC, 3,5-DMB, p-NB, m-ClB, p-ClB and B derivatives, could be baseline separated on the poly(MQD-co-EDMA) monolithic column within 25min. A self-assembled laser induced fluorescence (LIF) detector was employed to improve sensitivity when analyzing 7-nitro-2,1,3-benzoxadiazole (NBD) derivatives of amino acids. Ten NBD-derivatized amino acids, including arginine and histidine whose enantioseparation on quinidine carbamate based CSPs has not been reported so far, were enantioresolved on the poly(MQD-co-EDMA) monolith column. It is worth noting that the d-enantiomers of NBD-derivatized amino acids eluted first, except in the case of glutamic acid. The LOD values obtained with the LIF detector were comparable to those reported using conventional LC-FL methods. The prepared poly(MQD-co-EDMA) monolithic column coupled with the LIF detector opens up interesting perspectives to the determination of trace D-amino acids in biological samples.

  3. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    NASA Technical Reports Server (NTRS)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)


    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  4. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates.


    Rounds, M A; Nielsen, S S


    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  5. Column temperature as an active variable in the isocratic, normal-phase high-performance liquid chromatography separation of lipophilic metabolites of nonylphenol ethoxylates.


    Babay, Paola A; Gettar, Raquel T; Magallanes, Jorge F; Becquart, Elena T; Thiele, Björn; Batistoni, Daniel A


    Normal-phase separation of technical grade nonylphenol (t-NP, about 90% 4-nonylphenol), 4-nonylphenol mono-ethoxylate (4-NP1EO) and 4-nonylphenol di-ethoxylate (4-NP2EO) was assessed, with the inclusion of column temperature as an active variable. The compound 2,4,6-trimethylphenol was evaluated for use as internal standard. Isocratic elution with 2-propanol/hexanes mixtures from an amino-silica column and spectrometric UV detection at 277 nm were employed. Technical nonylphenol presented a significant contribution from unknown substances that eluted with retention times similar to that of 4-NP1EO. GC-MS analysis of the unknowns allowed to identify them as isomers of 2-NP. The response of the system to joint variations in flow rate, eluent composition and column temperature was investigated by means of Doehlert statistical experimental design. A model for retention of the analytes as a function of the experimental variables was proposed, and separation selectivity was studied. Selection of the optimal working zone was made through desirability function (D) calculations. Potential co-elution of 2-NP isomers with 4-NP1EO was considered when optimizing the separation. The occurrence of a restricted region of the experimental space where baseline resolution of analytes, associated impurities and internal standard results feasible (D not equal to 0) is apparent.

  6. Development and Characterization of a Novel Plug and Play Liquid Chromatography-Mass Spectrometry (LC-MS) Source That Automates Connections between the Capillary Trap, Column, and Emitter*

    PubMed Central

    Bereman, Michael S.; Hsieh, Edward J.; Corso, Thomas N.; Van Pelt, Colleen K.; MacCoss, Michael J.


    We report the development and characterization of a novel, vendor-neutral ultra-high pressure-compatible (∼10,000 p.s.i.) LC-MS source. This device is the first to make automated connections with user-packed capillary traps, columns, and capillary emitters. The source uses plastic rectangular inserts (referred to here as cartridges) where individual components (i.e. trap, column, or emitter) can be exchanged independent of one another in a plug and play manner. Automated robotic connections are made between the three cartridges using linear translation powered by stepper motors to axially compress each cartridge by applying a well controlled constant compression force to each commercial LC fitting. The user has the versatility to tailor the separation (e.g. the length of the column, type of stationary phase, and mode of separation) to the experimental design of interest in a cost-effective manner. The source is described in detail, and several experiments are performed to evaluate the robustness of both the system and the exchange of the individual trap and emitter cartridges. The standard deviation in the retention time of four targeted peptides from a standard digest interlaced with a soluble Caenorhabditis elegans lysate ranged between 3.1 and 5.3 s over 3 days of analyses. Exchange of the emitter cartridge was found to have an insignificant effect on the abundance of various peptides. In addition, the trap cartridge can be replaced with minimal effects on retention time (<20 s). PMID:23422586

  7. Rapid determination of caffeoylquinic acid derivatives in Cynara scolymus L. by ultra-fast liquid chromatography/tandem mass spectrometry based on a fused core C18 column.


    Shen, Qing; Dai, Zhiyuan; Lu, Yanbin


    An ultra-fast high-performance LC-ESI-MS/MS method was developed for the analysis and quantification of caffeoylquinic acid derivatives, including chlorogenic acid, 1,3-di-O-caffeoylquinic acid (cynarin) and 1,5-di-O-caffeoylquinic acid, in artichoke (Cynara scolymus L.) heads and leaves. The rapid separation (less than 4  min) was achieved based on a Halo fused core C18-silica column (50  mm × 2.1  mm id, 2.7  μm). The target compounds were detected and quantified by a triple-quadrupole mass spectrometer in multiple-reaction monitoring mode. The calibration function is linear from 0.06 to 2800  ng/mL for chlorogenic acid, 0.3-3000  ng/mL for cynarin and 0.24-4800  ng/mL for 1,5-di-O-caffeoylquinic acid, respectively. The average recoveries ranged from 92.1 to 113.2% with RSDs ≤6.5%. Moreover, four batches of artichoke head and leaf extracts were analyzed using the established method. The results indicated that the Halo fused core column provided much faster separations and higher sample throughput without sacrificing column ruggedness and reliability, and triple-quadrupole MS provided extraordinarily lower LOQs for most of the target analytes. Comparing to conventional quantitative approaches, the established method was fast, sensitive and reliable for the determination of caffeoylquinic acid derivatives in artichoke.

  8. High-performance liquid chromatography analysis of polyacetylenes and polyenes in Echinacea pallida by using a monolithic reversed-phase silica column.


    Pellati, Federica; Calò, Samuele; Benvenuti, Stefania


    In this study, a RP-HPLC method for the analysis of polyacetylenes and polyenes in Echinacea pallida roots and phytopharmaceuticals was developed. The reference compounds used for quantification were isolated from the plant material and their structures were determined on the basis of the analysis of UV, IR, NMR and MS data. The complete structure elucidation of three compounds, namely 8-hydroxy-tetradec-(9E)-ene-11,13-diyn-2-one (1), tetradec-(8Z)-ene-11,13-diyn-2-one (6) and pentadec-(8Z)-en-2-one (9) is described. In the analysis of the n-hexane extracts of E. pallida roots, the comparison between conventional and monolithic columns showed that the elution order in both cases is identical and the selectivity is equivalent. However, the retention times achieved by the monolithic column are shorter, resulting in a faster separation (20 min). Therefore, the analyses were carried out on a Chromolith Performance RP-18e (100 mm x 4.6 mm i.d.), with a gradient mobile phase composed by H(2)O and ACN at the flow rate of 2 mL/min. The column was thermostatted at 20 degrees C. The photodiode array detector monitored the eluent at 210 nm. The validation procedure confirmed that this technique affords reliable analysis of these components and is appropriate for the quality control of complex matrices, such as E. pallida roots and phytopharmaceuticals.

  9. High Speed Gradient Elution Reversed-Phase Liquid Chromatography of Bases in Buffered Eluents Part I: Retention Repeatability and Column Reequilibration

    PubMed Central

    Schellinger, Adam P.; Stoll, Dwight R.; Carr, Peter W.


    We studied the run-to-run repeatability of the retention times of both non-ionizable and basic compounds chromatographed using buffered eluents. The effect of flow rate, organic modifier and other additives, buffer type/concentration, stationary phase type, batch-to-batch preparation of the initial eluent, gradient time, sample type and intra-day changes on retention repeatability were examined. We also assessed the effect of column storage solvent conditions on the inter-day repeatability. Although retention repeatability is strongly influenced by many parameters (flow rate, solvent compressibility compensation, precision of temperature control, and buffer/stationary phase type), our primary finding is that with a reasonable size column (15 cm by 4.6 mm (i.d.)) two column volumes of reequilibration with initial eluent suffices to provide acceptable repeatability (no worse than 0.004 min) for both non-ionizable and basic analytes under a wide variety of conditions. Under ideal conditions (e.g. the right buffer, flow rate, etc.) it is possible to obtain truly extraordinary repeatability often as good as 0.0004 minutes. These absolute fluctuations in retention translate to worst case changes in resolution of 0.2 units and average changes of only 0.02 units. PMID:18294643

  10. Column precipitation chromatography: an approach to quantitative analysis of eigencolloids.


    Breynaert, E; Maes, A


    A new column precipitation chromatography (CPC) technique, capable of quantitatively measuring technetium eigencolloids in aqueous solutions, is presented. The CPC technique is based on the destabilization and precipitation of eigencolloids by polycations in a confined matrix. Tc(IV) colloids can be quantitatively determined from their precipitation onto the CPC column (separation step) and their subsequent elution upon oxidation to pertechnetate by peroxide (elution step). A clean-bed particle removal model was used to explain the experimental results.

  11. Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column.


    Osorio-Tobón, J Felipe; Carvalho, Pedro I N; Barbero, Gerardo Fernández; Nogueira, Gislaine Chrystina; Rostagno, Mauricio Ariel; Meireles, Maria Angela de Almeida


    The recent development of fused-core technology in HPLC columns is enabling faster and highly efficient separations. This technology was evaluated for the development of a fast method for the analysis of main curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) present in extracts of turmeric (Curcuma longa L.). A step-by-step strategy was used to optimize temperature (40-55 °C), flow rate (1.0-2.5 mL min(-1)), mobile phase composition and equilibration time (1-5 min). A gradient method was developed using acidified water and acetonitrile combined with high column temperature (55 °C) and flow rate (2.5 mL min(-1)). Optimized conditions provided a method for the separation of these three curcuminoids in approximately 1.3 min with a total analysis time (sample-to-sample) of 7 min, including the clean-up and the re-equilibration of the column. Evaluation of chromatographic performance revealed excellent intraday and interday reproducibility (>99%), resolution (>2.23), selectivity (>1.12), peak symmetry (1.24-1.42) while presenting low limits of detection (<0.40 mg L(-1)) and quantification (<1.34 mg L(-1)). The robustness of the method was calculated according to the concentration/dilution of the sample and the injection volume. Several combinations of methanol and ethanol with water as sample solvents were evaluated and the best chromatographic results and extraction rate were obtained using 100% methanol. Finally, the developed method was validated with different extracts of turmeric rhizome and products that use turmeric in their formulation.

  12. Determination of biogenic amines in wines by pre-column derivatization and high-performance liquid chromatography coupled to mass spectrometry.


    García-Villar, Natividad; Hernández-Cassou, Santiago; Saurina, Javier


    A new HPLC method for determining biogenic amines in wines is developed. This method is based on pre-column amine derivatization, further separation of derivatives and on-line hyphenation of HPLC to atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Biogenic amines have been derivatized with 1,2-naphthoquinone-4-sulfonate at 65 degrees C and pH 9.2 for 5 min. The separation of derivatives has been accomplished in a C(18) analytical column using an elution gradient based on increasing the percentage of methanol. Derivatives have been ionized in positive mode and detected by selected ion monitoring. The operating conditions of the APCI-MS system (voltages, temperatures and gases) have been thoroughly optimized to obtain the maximum sensitivity for all analytes. In the selected conditions, APCI-MS spectra display little fragmentation and good signal-to-noise ratio. Depending on the amine characteristics, the main spectral peaks are due to mono- and di-derivative products. Figures of merit of the method have been established under the selected conditions using red wine samples. Recoveries ranging from 94% to 106% have been obtained which prove excellent accuracy of the method in the determination of histamine, putrescine, cadaverine, tryptamine, phenylethylamine, tyramine and serotonin in red wines. The proposed method has been applied to the analysis of commercial wines from different Spanish regions.

  13. Determination of coenzyme Q10, alpha-tocopherol and cholesterol in biological samples by coupled-column liquid chromatography with coulometric and ultraviolet detection.


    Edlund, P O


    Coenzyme (Co) Q10, Co Q10H2, alpha-tocopherol and cholesterol were dissociated from lipoproteins in plasma by treatment with 1-propanol. The supernatant obtained was injected directly for determination of Co Q10 and Co Q10H2. Precolumn reduction with borohydride was used for determination of total Co Q10 simultaneously with alpha-tocopherol and cholesterol. Total Co Q10 in freeze-dried myocardial biopsies was determined after extraction with 1-propanol and oxidation of Co Q10H2 with ferric chloride. The chromatographic system comprised two reversed-phase columns and a three-electrode coulometric detector and a UV detector coupled in series. A pre-fractionation on the first column protected the coulometric detector from contamination and reduced the time for analysis by eliminating strongly retained solutes. The coulometric electrodes were operated in the oxidation-reduction-oxidation mode, and the last electrode was used for detection of alpha-tocopherol, Co Q10 and Co Q10H2, while cholesterol was detected by UV at 215 nm. The fast isolation procedure made it possible to determine the reduced and oxidized forms of Co Q10 in plasma. Quantitative recoveries were obtained for all the analytes studied and normal levels were determined with a coefficient of variation of 2-3%.

  14. Design, testing, and simulation of microscale gas chromatography columns

    SciTech Connect

    Hudson, M.L.; Kottenstette, R.; Matzke, C.M.; Frye-Mason, G.C.; Shollenberger, K.A.; Adkins, D.R.; Wong, C.C.


    A microscale gas chromatography column is one component in a microscale chemistry laboratory for detecting chemical agents. Several columns were fabricated using the Bosch etch process which allows deep, high aspect ratio channels of rectangular cross-section. A design tool, based on analytical models, was developed to evaluate the effects of operating conditions and column specifications on separation resolution and time. The effects of slip flow, channel configuration, and cross-sectional shape were included to evaluate the differences between conventional round, straight columns and the microscale rectangular, spiral columns. Experimental data were obtained and compared with the predicted flowrates and theoretical number of plates. The design tool was then employed to select more optimum channel dimensions and operating conditions for high resolution separations.

  15. Comparison of microbial communities in Lake Tahoe surface sample with Tonga Trench water column samples using High Pressure Liquid Chromatography - Electrospray Ionization - Mass Spectroscopy (HPLC - ESI - MS) and Global Natural Products Social Molecular Network (GNPS)

    NASA Astrophysics Data System (ADS)

    Belmonte, M. A.


    Intact polar lipids (IPLs) are lipids composed of a head group, a glycerol, and a fatty acid chain that make up the lipid bilayer of cell membranes in living cells; and the varying head groups can be indicative of the type of microbes present in the environment (Van Mooy 2010). So by distinguishing and identifying the IPL distribution in an environment one can make inferences about the microbial communities in the said environment. In this study, we used High Pressure Liquid Chromatography-Electrospray Ionization- Mass Spectroscopy (HPLC-ESI-MS) and Global Natural Products Social Molecular Networking (GNPS) to compare the IPL distributions of two oligotrophic environments: surface waters of Lake Tahoe in the Sierra Nevada Mountains, and the water column of the Tonga Trench in the South Pacific. We hypothesized that the similar nutrient dynamics of the two oligotrophic environments would result in similar eukaryotic and prokaryotic communities, which would be reflected in the IPL composition of suspended particulate organic matter (POM). For simplicity we focused on the classes of IPLs most commonly observed in the marine environment: phosphotidylglycerol (PG), phosphotidylethanolamine (PE), diacylglyceryl-trimethyl-homoserine (DGTS), diacylglyceryl-hydroxymethyl-trimethylalanine (DGTA), sulfoquinovosyldiacylglycerol (SQDG), monoglycosyldiacylglycerol (MGDG) and diglycosyldiacylglycerol (DGDG). Our results showed that all of the marine IPLs of interest were present in Lake Tahoe which confirms that there are many of the same microbial communities in the fresh waters of Lake Tahoe and the salt waters Tonga Trench.

  16. Discovery of xanthine oxidase inhibitors from a complex mixture using an online, restricted-access material coupled with column-switching liquid chromatography with a diode-array detection system.


    Li, De-qiang; Zhao, Jing; Li, Shao-ping; Zhang, Qing-wen


    To find potential lead compounds for antigout drug discovery, an automated online, restricted-access material coupled with column-switching liquid chromatography with a diode-array detection (RAM-LC-DAD) system was developed for screening of xanthine oxidase (XO) inhibitors and their affinity rankings in complex mixtures. The system was first evaluated by analyzing a mixture of six compounds with known inhibition of XO. Nonspecific binding to the denatured XO was investigated and used as the control for screening. Subsequently, the newly developed system was applied to screening of a natural product, Oroxylum indicum extract, and four compounds which could specifically interact with XO were found and identified as oroxin B, oroxin A, baicalin, and baicalein. The results were verified by a competitive binding test using the known competitive inhibitor allopurinol and were further validated by an inhibition assay in vitro. The online RAM-LC-DAD system developed was shown to be a simple and effective strategy for the rapid screening of bioactive compounds from a complex mixture.

  17. Column Chromatography To Obtain Organic Cation Sorption Isotherms.


    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A


    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  18. Solid-phase microextraction for the determination of benzoylureas in orange juice using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection.


    Parrilla Vázquez, Piedad; Mughari, Ahmed R; Martínez Galera, María


    A solid-phase microextraction (SPME) method has been developed for the determination of six benzoylureas (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, lufenuron, and flufenoxuron) in natural orange juice based on the direct immersion mode of a 60 microm polydimethylsiloxane/divinylbenzene fiber. An orange juice was obtained from blended, homogenized, and diluted ecological natural orange juice samples. An aliquot of 3 mL of a spiked sample was extracted under optimum SPME conditions. The determination of benzoylureas was carried out using HPLC combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection. The limits of quantification obtained in matrix were within the range of 0.02 to 0.04 mg/kg and these limits are lower than the maximum residue levels established in Spanish regulations for all pesticides in this study. Recoveries in juice samples ranged between 85 and 110% and relative standard deviations between 1.8 and 7.4%.

  19. Determination of alkylphenols in water samples using liquid chromatography-tandem mass spectrometry after pre-column derivatization with dansyl chloride.


    Pernica, Marek; Poloucká, Petra; Seifertová, Marta; Šimek, Zdeněk


    The present study describes an effect of reaction condition of pre-column derivatization of alkylphenols (APs): bisphenol A (BPA), 4-tert-octylphenol (4-t-OP), 4-octylphenol (4-OP), 4-n-nonylphenol (4-n-NP), and isomers of 4-nonylphenol (iso-NP) with 5-(dimethylamino) naphthalene-1-sulfonyl chloride (dansyl chloride, DNSC) on their LC-ESI-MS/MS determination in water samples. Chemical derivatization improves the sensitivity and selectivity of LC-MS/MS analysis. In principle, alkylphenols can be analyzed by LC-MS/MS without derivatization. However, pre-column derivatization of APs increases the sensitivity up to 1000 times in comparison with the analysis of underivatized alkylphenols. Reaction conditions affecting formation of the DNSC-derivatives, such as various solvent, reaction temperature, reaction time, DNSC concentration and pH values were tested. The most suitable conditions, in terms of achieving a high sensitivity, resulting from this study are: acetonitrile as reaction solvent, 60 min as reaction time, 60 °C as reaction temperature, pH values 10.5, 0.5 mg mL(-1) as DNSC concentration. Calibration curves are linear at least in the range of 1-1000 ng mL(-1), limits of detection (LOD) and limits of quantification (LOQ) ranging from 0.02 to 0.25 pg/injection and from 0.08 to 0.83 pg/injection, respectively. The improved procedure was successfully applied for the analysis of APs and BPA in real water samples. The median concentration of BPA and iso-NP obtained in bottled waters was 4.7 ng L(-1) and 33.5 ng L(-1), respectively. The median concentration of 4-t-OP was 1.3 ng L(-1.)

  20. Determination of bradykinin and arg-bradykinin in rat muscle tissue by microdialysis and capillary column-switching liquid chromatography with mass spectrometric detection.


    Wilson, Steven Ray; Boix, Fernando; Holm, Anders; Molander, Pål; Lundanes, Elsa; Greibrokk, Tyge


    Quantification of bradykinin peptides in limited amounts of rat muscle tissue dialysate has been performed using a packed capillary LC-ESI-TOF-MS method. The micro dialysate samples (450 microL) with added internal standard were loaded onto a 1 mm x 5 mm loading column packed with 5 microm Kromasil C18 particles by a carrier solution of 0.1% formic acid in ACN/water (5:95, v/v) at a flow rate of 250 microL/min for online preconcentration of the analytes. Back-flushed elution onto a 150 mm x 0.5 mm Zorbax C18 column packed with 5 microm particles was conducted using a linear solvent ACN/H2O gradient containing 0.1% formic acid. (Tyr8)-bradykinin was used as an internal standard and was added to the dialysis sample prior to injection. Baseline separation of bradykinin, arg-bradykinin and (tyr8)-bradykinin was achieved within 10 min. Positive ESI was performed in the m/z range of 200-1300. The method was validated in the range 0.2-1.0 ng/mL dialysate, yielding correlation coefficients of 0.995 and 0.990 for bradykinin and arg-bradykinin, respectively. The within-assay and between-assay precisions were between 4.3-9.6% and 6.2-10.6%, respectively. Both arg-bradykinin and bradykinin were detected in dialysate from rat muscle tissue, at concentrations of 0.1 and 0.4 ng/mL for bradykinin and arg-bradykinin, respectively, confirming the presence of arg-bradykinin in rat muscles.

  1. Determination of risedronate in human urine by column-switching ion-pair high-performance liquid chromatography with ultraviolet detection.


    Vallano, P T; Shugarts, S B; Kline, W F; Woolf, E J; Matuszewski, B K


    An HPLC assay for the determination of risedronate in human urine was developed and validated. Risedronate and the internal standard were isolated from 5-ml urine samples in a two-part procedure. First, the analytes were precipitated from urine along with endogenous phosphates as calcium salts by the addition of CaCl(2) at alkaline pH. The precipitate was then dissolved in 0.05 M ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and subjected to ion-pair solid-phase extraction using a Waters HLB cartridge (1 ml, 30 mg) with 1-octyltriethylammonium phosphate as the ion-pair reagent. Following extraction, the analytes were initially separated from the majority of co-extracted endogenous components on a Waters X-Terra RP18 (4.6 x 50 mm, 3.5 microm) column. The effluent from the X-Terra was "heart-cut" onto a Phenomenex Synergi Polar RP (4.6 x 150 mm, 4 microm) column for final separation. UV detection (lambda=262 nm) was used to quantitate risedronate in the concentration range of 7.5-250 ng/ml. Mean recovery was 83.3% for risedronate and 86.5% for the internal standard. The intra-day precision of the assay, as assessed by replicate (n=5) standard curves, was better than 6% RSD for all points on the standard curve. Within-day accuracy for the standards ranged from 96.3 to 106.1% of nominal. Inter-day precision for quality controls assayed over a 3-week period was better than 5%, while inter-day accuracy was within 90% of nominal. The assay was employed to analyze samples collected during a clinical pharmacokinetics study.

  2. Liquid-phase chromatography detector


    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.


    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  3. Liquid-phase chromatography detector


    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.


    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  4. Estimation of alkane-water logP for neutral, acidic, and basic compounds using an alkylated polystyrene-divinylbenzene high-performance liquid chromatography column.


    Jensen, Derek A; Gary, Ronald K


    Reliable HPLC methods are available to estimate octanol-water partition coefficients, but there is no comparable method for alkane-water partition coefficients that is accurate and applicable across a broad span of logP(alk). This study describes a high-throughput method for determining HPLC-logP(alk), a chromatographic parameter closely related to logP(alk), using an alkylated polystyrene-divinylbenzene column and fast acetonitrile gradient. A structurally diverse set of neutral, acidic, and basic compounds was analyzed under ionization-suppressing pH conditions. In this chromatographic system, the relationship between gradient retention time and isocratic logk was essentially linear. Thus, gradient retention time could be used as the sole input needed to determine an apparent logP(alk)by HPLC. HPLC-logP(alk) showed linear correlation (R(2)>0.96, n=59) with reference logP(alk) values from shake-flask measurements over 8 orders of magnitude, ranging from -2.3 to +5.7. Linear solvation energy relationship (LSER) analysis revealed that the relative contributions of intermolecular forces effecting retention in the fast gradient system or its corresponding isocratic variant were highly similar to those governing partition in bulk alkane-water.

  5. Analysis of benidipine enantiomers in human plasma by liquid chromatography-mass spectrometry using a macrocyclic antibiotic (Vancomycin) chiral stationary phase column.


    Kang, Wonku; Lee, Dong-Jun; Liu, Kwang-Hyeon; Sunwoo, Yu Eun; Kwon, Kwang-il; Cha, In-June; Shin, Jae-Gook


    We used a novel chromatographic method to rapidly and simply characterize the pharmacokinetics of benidipine enantiomers in human plasma. The stereoisomers of benidipine were extracted from plasma using diethylether under alkaline conditions. After evaporating the organic layer, the residue was reconstituted in the mobile phase (methanol:acetic acid:triethylamine, 100:0.01:0.0001, v/v/v). The enantiomers in the extract were separated on a macrocyclic antibiotic (Vancomycin) chiral stationary phase column. The mobile phase was eluted at 1 ml/min and was split by an interface. One-fifth of the eluent was used to quantify both isomers in a tandem mass spectrometer in multiple reaction-monitoring mode. The coefficient of variation of the precision of the assay was less than 8%, the assay accuracy was between 93.4 and 113.3%, and the limit of detection was 0.05 ng/ml for 1 ml of plasma. The method described above was used to measure the concentration of both benidipine enantiomers in plasma from healthy subjects who received a single oral dose of a racemate of 8 mg benidipine. The C(max) and AUC(inf) values of (+)-alpha benidipine were higher than those of (-)-alpha benidipine by 1.96- and 1.85-fold, respectively (p<0.001), whereas, the T(max) and t(1/2) for each of the benidipine stereoisomers were not significantly different.

  6. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from precolumn dispersion and volume overload when used alone or with solvent-based focusing

    PubMed Central

    Groskreutz, Stephen R.; Horner, Anthony R.; Weber, Stephen G.


    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30 nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of precolumn dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis. PMID:26091787

  7. Evaluating two process scale chromatography column header designs using CFD.


    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris


    Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs.

  8. Novel Design for Centrifugal Countercurrent Chromatography: I. Zigzag Toroidal Column

    PubMed Central

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro


    The toroidal coil using an equilateral triangular core has improved both retention of the stationary phase and peak resolution of the conventional toroidal coil in centrifugal countercurrent chromatography. To further improve the retention of stationary phase and peak resolution, a novel zigzag toroidal coil was designed and the performance of the system was evaluated at various flow rates. The results indicated that both retention of stationary phase and peak resolution were improved as the flow rate was decreased. Modification of the tubing by pressing at given intervals with a pair of pliers improved the peak resolution without increasing the column pressure. All these separations were performed under low column pressure indicating the separation can be further improved by increasing the column length and/or revolution speed without damaging the separation column. PMID:20046954

  9. A simple parallel gas chromatography column screening system.


    Schafer, Wes; Hamilton, Simon E; Pirzada, Zainab; Welch, Christopher J


    A simple approach to the automated screening of four different columns on a single gas chromatography (GC) instrument is used for rapid chiral GC method development. Configuration of a conventional GC instrument with a second autosampler and several inexpensive Y-splitters enables simultaneous evaluation of two different columns, allowing a total of four different columns to be evaluated in two automated back to back runs. The resulting system affords a simple and effective approach to chiral GC method development that speeds analysis while eliminating the need for slow and tedious manual interchange of columns. An example of developing a rapid isothermal GC method from the screening results obtained by the instrument is also shown.

  10. Impact of the limitations of state-of-the-art micro-fabrication processes on the performance of pillar array columns for liquid chromatography.


    Op de Beeck, Jeff; De Malsche, Wim; Tezcan, Deniz S; De Moor, Piet; Desmet, Gert


    We report on the practical limitations of the current state-of-the-art in micro-fabrication technology to produce the small pillar sizes that are needed to obtain high efficiency pillar array columns. For this purpose, nine channels with a different pillar diameter, ranging from 5 to 0.5 μm were fabricated using state-of the-art deep-UV lithography and deep reactive ion etching (DRIE) etching technology. The obtained results strongly deviated from the theoretically expected trend, wherein the minimal plate height (H(min)) would reduce linearly with the pillar diameter. The minimal plate height decreases from 1.7 to 1.2 μm when going from 4.80 to 3.81 μm diameter pillars, but as the dimensions are further reduced, the minimal plate heights rise again to values around 2 μm. The smallest pillar diameter even produced the worst minimal plate height (4 μm). An in-depth scanning electron microscopy (SEM) inspection of the different channels clearly reveals that these findings can be attributed to the micro-fabrication limitations that are inevitably encountered when exploring the limits of deep-UV lithography and DRIE etching processes. When the target dimensions of the design approach the etching resolution limits, the band broadening increases in a strongly non-linear way with the decreased pillar dimensions. This highly non-linear relationship can be understood from first principles: when the machining error is of the order of 100-200 nm and when the target design size for the inter-pillar distance is of the order of 250 nm, this inevitably leads to pores that will range in size between 50 and 450 nm that we want to highlight with our paper highly non-linear relationship. This highly non-linear relationship can be understood from first principles: when the machining error is of the order of 100-200 nm and when the target design size for the inter-pillar distance is of the order of 250 nm, this inevitably leads to pores that will range in size between 50 and 450

  11. Determination of zuclopenthixol and its main N-dealkylated metabolite in biological fluids using high-performance liquid chromatography with post-column photochemical derivatization and fluorescence detection.


    Hansen, B B; Hansen, S H


    A highly sensitive high-performance liquid chromatographic (HPLC) method for the assay of cis-(Z)-clopenthixol (zuclopenthixol) in urine and plasma has been developed. Following solid-phase extraction, the samples are chromatographed using reversed-phase ion-pairing HPLC. After separation, the solutes, having a thioxanthene structure, are transformed on-line into thioxanthones in a photochemical reactor. The thioxanthones are highly fluorescent compounds, and therefore, low detection limits are obtained when using fluorescence detection. Detection limits for zuclopenthixol and its N-dealkylated metabolite, in plasma as well as in urine, using fluorescence detection with excitation at 260 nm and emission at 435 nm, were found to be 0.05 ng/ml and 0.2 ng/ml, respectively. The chromatographic system separates the cis-(Z)- and trans-(E)-isomers of clopenthixol from its main dealkylated metabolite. Furthermore, the chromatographic system is very suitable for study of the photochemical reaction, since the chloro-thioxanthone and thioxanthone are well separated from the isomers of clopenthixol.

  12. Micro-column plasma emission liquid chromatograph


    Gay, Don D.


    In a direct current plasma emission spectrometer for use in combination with a micro-column liquid chromatograph, an improved plasma source unit. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  13. Rapid column heating method for subcritical water chromatography.


    Fogwill, Michael O; Thurbide, Kevin B


    A novel resistive heating method is presented for subcritical water chromatography (SWC) that provides higher column heating rates than those conventionally obtained from temperature-programmed gas chromatography (GC) convection ovens. Since the polarity of water reduces dramatically with increasing temperature, SWC employs column heating to achieve gradient elution. As such, the rate at which the mobile phase is heated directly impacts the magnitude of such gradients applied in SWC. Data from the current study demonstrate that the maximum column heating rate attainable in a typical SWC apparatus (i.e. using a GC convection oven) is around 10 degrees C/min, even at instrument oven settings of over three times this value. Conversely, by wrapping the separation column with ceramic insulation and a resistively heated wire, the column heating rates are increased five-fold. As a result, elution times can be greatly decreased in SWC employing gradients. Separations of standard alcohol test mixtures demonstrate that the retention time of the latest eluting component decreases by 35 to 50% using the prototype method. Additionally, solute retention times in this mode deviate by less than 1% RSD over several trials, which compares very well to those obtained using a conventional GC convection oven. Results suggest that the developed method can be a useful alternative heating technique in SWC.

  14. In-tube solid-phase microextraction based on NH2-MIL-53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine.


    Luo, Xialin; Li, Gongke; Hu, Yufei


    In this work, a novel NH2-MIL-53(Al) incorporated poly(styrene-divinylbenzene-methacrylic acid) (poly(St-DVB-MAA)) monolith was prepared via chemical fabrication. Moreover, it has been efficiently applied to the in-tube solid-phase microextraction (SPME) for online coupling with high-performance liquid chromatography (HPLC) to the direct determination of five estrogens in human urine samples. The NH2-MIL-53(Al)-polymer monolith was suitable for in-tube SPME owing to its good permeability, high extraction efficiency, chemical stability, good reproducibility and long lifetime. The extraction conditions including extraction solvent, pH of sample solution, flow rate of extraction and desorption, and desorption volume were investigated. Under the optimum conditions, the enrichment factors were 180-304 and saturated amounts of extraction were 2326-21393 pmol for estriol, 17β-estradiol, estrone, ethinyl estradiol and progesterone, respectively. The adsorption mechanism was also explored which contributed to its strong extraction to target compounds. The proposed method had low limit of detection (2.0-40ng/L) and good linearity (with R(2) between 0.9908 and 0.9978). Four endogenous estrogens were detected in urine samples and the recoveries of all five analytes were ranged from 75.1-120% with relative standard deviations (RSDs) less than 8.7%. The results showed that the proposed online SPME-HPLC method based on NH2-MIL-53(Al)-polymer monolithic column was highly sensitive for directly monitoring trace amount of estrogens in human urine sample.

  15. Ion-pair in-tube solid-phase microextraction and capillary liquid chromatography using a titania-based column: application to the specific lauralkonium chloride determination in water.


    Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P


    A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples.

  16. Preliminary evaluation of monolithic column high-performance liquid chromatography with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection for the determination of quetiapine in human body fluids.


    Bellomarino, Sara A; Brown, Allyson J; Conlan, Xavier A; Barnett, Neil W


    High-performance liquid chromatography (HPLC) with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection methodology is reported for the determination of the atypical antipsychotic drug quetiapine and the observation of its major active and inactive metabolites in human urine and serum. The method uses a monolithic chromatographic column allowing high flow rates of 3 mLmin(-1) enabling rapid quantification. Flow injection analysis (FIA) with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection and HPLC time of flight mass spectrometry (TOF-MS) were used for the determination of quetiapine in a pharmaceutical preparation to establish its suitability as a calibration standard. The limit of detection achieved with FIA was 2 x 10(-11) molL(-1) in simple aqueous solution. The limits of detection achieved with HPLC were 7 x 10(-8) and 2 x 10(-10) molL(-1) in urine and serum, respectively. The calibration range for FIA was between 5 x 10(-9) and 1 x 10(-6) molL(-1). The calibration ranges for HPLC were between 1 x 10(-7)-1 x 10(-4) and 1 x 10(-8)-1 x 10(-4) molL(-1) in urine and serum, respectively. The quetiapine concentrations in patient samples were found to be 3 x 10(-6) molL(-1) in urine and 7 x 10(-7) molL(-1) in serum. Without the need for preconcentration, the HPLC detection limits compared favourably with those in previously published methodologies. The metabolites were identified using HPLC-TOF-MS.

  17. Solid-phase microextraction (SPME) for the determination of pyrethroids in cucumber and watermelon using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection.


    Vázquez, P Parrilla; Mughari, Ahmed R; Galera, M Martínez


    A sensitive and efficient solid-phase microextraction (SPME) method for the determination of seven pyrethroid insecticides including fenpropathrin, lambda-cyhalothrin, deltamethrin, fenvalerate, permethrin, tau-fluvalinate and bifenthrin in cucumber and watermelon samples using high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) was developed and validated. The optimum SPME conditions were used for the extraction of samples of both matrices (extraction time 30 min, stirring rate 1100 rpm, extraction temperature 65 degrees C, sample pH 3, soaking time 7 min, desorption time 5 min, ACN content 25%, desorption and soaking solvent was the mobile phase and in static mode). The method was validated in terms of limits of detection (LODs) and the limits of quantification (LOQs) in both IUPAC and EURACHEM criteria. LODs and LOQs were achieved in values lower than the maximum residue levels (MRLs) established in the Spanish regulations for all pesticides in this study (MRLs range between 0.01 and 0.1 mg kg(-1) for all pyrethroid insecticides in both matrices). LOQs according to the second criterion were between 1.5 and 5 microg kg(-1) for cucumber; and between 1.3 and 5 microg kg(-1) for watermelon samples. Precision and recovery studies were evaluated at two concentration levels for each matrix. Good precision was obtained and relative standard deviation values were less than 10% in all cases. Recovery values were calculated at 0.05 and 0.5 mg kg(-1) levels (n=6) and they ranged between 93% and 108% for cucumber and between 91% and 110% for watermelon samples. Applicability of the method to pyrethroids in cucumber and watermelon of commercial samples was demonstrated.

  18. Liquid phase chromatography on microchips.


    Kutter, Jörg P


    Over the past twenty years, the field of microfluidics has emerged providing one of the main enabling technologies to realize miniaturized chemical analysis systems, often referred to as micro-Total Analysis Systems (uTAS), or, more generally, Lab-on-a-Chip Systems (LOC) [1,2]. While microfluidics was driven forward a lot from the engineering side, especially with respect to ink jet and dispensing technology, the initial push and interest from the analytical chemistry community was through the desire to develop miniaturized sensors, detectors, and, very early on, separation systems. The initial almost explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important to keep in mind when developing or working with separations in a miniaturized format, and what challenges and pitfalls remain.

  19. Glycolipid class profiling by packed-column subcritical fluid chromatography.


    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre


    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  20. Instrumentation for hand-portable liquid chromatography.


    Sharma, Sonika; Plistil, Alex; Simpson, Robert S; Liu, Kun; Farnsworth, Paul B; Stearns, Stanley D; Lee, Milton L


    Liquid chromatography (LC) has lagged behind gas chromatography (GC) in developments related to hand-portable instrumentation. In this work, a new battery-operated (24V DC) nano-flow pumping system with a stop-flow injector was developed and integrated with an on-column UV-absorption detector (254nm) that was reduced in size to an acceptable weight and power usage for field operation. The pumping system, which includes nano-flow pump, stepper motor and high-pressure valve weighs only 1.372kg (3lbs) and can generate up to 110.32MPa (16,000psi) pressure. A major advantage of this pump is that it does not employ a splitter, since it was specifically designed for capillary column use. The volume capacity of the pump is 24μL, and a sample volume as low as 10nL can be injected. Flow rate calibration (300nL to 6.12μL per min) was performed, and an accuracy >99.94% was obtained. The percent injection carry-over was found to be low (RSD 0.31%), which makes it practical for quantitative analysis. The detector linear range and limit of detection (LOD) were determined using sodium anthraquinone-2-sulfonate. A linear regression coefficient (R) of 0.9996 was obtained for a plot of log peak area versus log concentration over the range of 3.2μM to 6.5mM, and the LOD (S/N=3) was found to be 7.8fmol (0.13μM). The short term noise of the detector is comparable to commercially available detectors (∼10(-5)AU). In this work, the system was tested in the laboratory using regular line power (120V AC) with an AC to DC adapter. Reversed-phase isocratic separations were performed using a 15.5cm×75μm i.d. fused silica capillary column containing a monolithic stationary phase synthesized from 1,6-hexanediol dimethacrylate. Good retention time repeatability (RSD 0.09-0.74%) was obtained for a mixture containing an unretained marker (i.e., uracil) and a homologous series of alkyl benzenes.

  1. If You Were a Molecule in a Chromatography Column, What Would You See?

    ERIC Educational Resources Information Center

    Mattice, John


    To visualize what takes place in a chromatography column, enlarge the molecules to human size and expand the columns to keep the ratio of size of molecule to size of column the same. If we were molecules, what would the columns be like? A typical gas chromatography (GC) capillary column would be 50 x 10 [superscript 6] 6 km (31 million mi) long,…

  2. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.


    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru


    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  3. Comprehensive two-dimensional liquid chromatography: ion chromatography × reversed-phase liquid chromatography for separation of low-molar-mass organic acids.


    Brudin, Stella S; Shellie, Robert A; Haddad, Paul R; Schoenmakers, Peter J


    In the work presented here a novel approach to comprehensive two-dimensional liquid chromatography is evaluated. Ion chromatography is chosen for the first-dimension separation and reversed-phase liquid chromatography is chosen for the second-dimension separation mode. The coupling of these modes is made possible by neutralising the first-dimension effluent, containing KOH, prior to transfer to the second-dimension reversed-phase column. A test mixture of 24 low-molar-mass organic acids is used for optimisation of the system. Three food and beverage samples were analysed in order to evaluate the developed methodology, the resulting two-dimensional separation is near-orthogonal, the set-up is simple and all instrumental components are available commercially. The method proved to be robust and suitable for the analysis of wine, orange juice and yogurt.

  4. [Applications of fast and ultra performance liquid chromatography in the analysis of Chinese herbal medicines].


    Liu, Ying; Zhou, Jianliang; Li, Ping


    The analysis of chemical components of Chinese herbal medicines (CHMs) is one of the most critical issues not only for screening and analyzing the bioactive components but also for controlling their quality. However, due to the complexity of the chemical constituents of CHMs, it is difficult to separate them on column within a short time. In the recent, the fast and ultra performance liquid chromatography, including ultra high pressure liquid chromatography, high performance liquid chromatography based on the monolithic columns and high temperature liquid chromatography, are of particular interest because of the high resolution and fast analytical speed provided by these techniques. This overview covers the principle and separation characteristics of these techniques, as well as their applications in Chinese herbal medicines.

  5. Simultaneous analysis of steviol and steviol glycosides by liquid chromatography with ultraviolet detection on a mixed-mode column: application to Stevia plant material and Stevia-containing dietary supplements.


    Jaworska, Karolina; Krynitsky, Alexander J; Rader, Jeanne I


    Simultaneous separation of steviol and steviol glycosides is challenging because of differences in their polarity and chemical structure. In this study, simultaneous analysis of steviol and steviol glycosides was achieved by LC with UV detection using a mixed-mode RP weak anion exchange chromatography column. Steviol and seven steviol glycosides were analyzed on an Acclaim Mixed-Mode Wax-1 (Dionex) column with a linear gradient of deionized water adjusted to pH 3.00 with phosphoric acid and acetonitrile. The extraction was performed by sonicating dry plant material at 40 degreesC in acetonitrile-water (30 + 70, v/v). LOQ values (mg/g dry weight of plant material) were rebaudioside B, 0.50; steviol, 0.70, dulcoside A, 1.0; steviolbioside, 1.2; stevioside and rebaudioside C, 2.0; rebaudioside D, 3.3; and rebaudioside A, 5.0. The method demonstrated suitable performance for all analytes tested with respect to accuracy (mean recoveries 95-99%), intraday and interday precision for retention times (0.070-0.28% and 0.33-1.0% RSD, respectively), and linearity. The method was used to authenticate steviol glycosides in several samples of Stevia plant material as well as to quantitate steviol glycosides in dietary supplements containing Stevia.

  6. Isolation of Three Components from Spearmint Oil: An Exercise in Column and Thin-Layer Chromatography

    ERIC Educational Resources Information Center

    Davies, Don R.; Johnson, Todd M.


    A simple experiment for undergraduate organic chemistry students to separate a colorless mixture using column chromatography and then monitor the outcome of the separation using thin-layer chromatography (TLC) and infrared spectroscopy(IR) is described. The experiment teaches students the principle and techniques of column and thin-layer…

  7. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.


    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  8. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.


    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime


    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns.

  9. Hydrophilic interaction chromatography using a meter-scale monolithic silica capillary column for proteomics LC-MS.


    Horie, Kanta; Kamakura, Takeo; Ikegami, Tohru; Wakabayashi, Masaki; Kato, Takashi; Tanaka, Nobuo; Ishihama, Yasushi


    A meter-scale monolithic silica capillary column modified with urea-functional groups for hydrophilic interaction liquid chromatography (HILIC) was developed for highly efficient separation of biological compounds. We prepared a ureidopropylsilylated monolithic silica capillary column with a minimum plate height of 12 μm for nucleosides and a permeability of 2.1 × 10(-13) m(2), which is comparable with the parameters of monolithic silica-C18 capillary columns. Over 300,000 theoretical plates were experimentally obtained in HILIC with a 4 m long column at 8 MPa; this is the best result yet reported for HILIC. A 2 m long ureidopropylsilylated monolithic silica capillary column was utilized to develop a HILIC mode LC-MS system for proteomics applications. Using tryptic peptides from human HeLa cell lysate proteins, we identified the comparable numbers of peptides and proteins in HILIC with those in reversed-phase liquid chromatography (RPLC) using a C18-modified monolithic silica column when shallow gradients were applied. In addition, approximately 5-fold increase in the peak response on average was observed in HILIC for commonly identified tryptic peptides due to the high acetonitrile concentration in the HILIC mobile phase. Since HILIC mode LC-MS shows orthogonal selectivity to RPLC mode LC-MS, it is useful as a complementary tool to increase proteome coverage in proteomics studies.

  10. Training software for high-performance liquid chromatography.


    Reijenga, J C


    A computer simulation program of reversed-phase high-performance liquid chromatography was developed for training purposes. Experimental retention values of 75 organic compounds on a reversed-phase column at four different percentages of organic modifiers were reduced to a two-parameter retention model with the modifier content as variable. Modifiers used were acetonitrile, methanol and tetrahydrofuran. Isocratic and programmed solvent composition were included together with the usual experimental parameters available in modern HPLC equipment, such as UV diode array and refractive index detection. Instrument specifications were made variable within wide ranges. Detailed dispersion data were made available as tabulated output.

  11. Separation of the Components of a Commercial Analgesic Tablet: A Two-Week Sequence Comparing Purification by Two-Base Extraction and Column Chromatography

    ERIC Educational Resources Information Center

    Revell, Kevin D.


    A new laboratory experiment is described in which students compare two benchtop separation methods to isolate the three active components of the commercial analgesic Excedrin. In the two-week sequence, aspirin, acetaminophen, and caffeine are separated using either a two-base liquid-liquid extraction or silica column chromatography. Students then…

  12. General methodology for the estimation of common neutral urinary steroids by multi-columin liquid chromatography.


    Vestergaard, P; Sayegh, J F


    A method is described for the estimation of common neutral urinary steroids by multi-column liquid chromatography. Hydrolysis is performed in two steps: enzymatically, using beta-glucuronidase, followed by solvolysis. Initial short column chromatography separates the neutral steroids into three fractions according to polarity: 17-oxosteroids, corticosteriods less polar than cortolones, and cortolones and cortols. The cortolone, cortol fraction is oxidized and the different steroid groups are chromatographed on capillary aluminum oxide and silica gel columns. A computerized, spectrophotometric system is used for the quantitation procedure.

  13. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Kissinger, Peter T.; And Others


    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  14. Column performance study of different variants of liquid chromatographic technique: an application on pharmaceutical ternary mixtures containing tetryzoline.


    Salem, Hesham; Hassan, Nagiba Y; Lotfy, Hayam M; Saleh, Sarah S


    High-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (UPLC) and rapid resolution liquid chromatographic (RRLC) methods have been developed and validated for the separation and quantitation of both or either of two ternary mixtures present in ophthalmic solutions. The first mixture contains chloramphenicol, dexamethasone sodium phosphate and tetryzoline HCl (TZH); while the second one contains ofloxacin, prednisolone acetate and TZH. Both preparations contain benzalkonium chloride as a preservative. The columns used were a HPLC column (C18 5 µm particle size), a RRLC column (C18 2.6 µm particle size) and a UPLC column (C18 1.7 µm particle size). A comparative study was conducted to illustrate the effect of the change in column particle size and dimensions on the other chromatographic conditions, backpressure and the separation of both ternary mixtures. The methods were validated as per ICH guidelines where accuracy, repeatability, interday precision and robustness were found to be within the acceptable limits. The RRLC column provided shorter run time and better resolution than HPLC, while the UPLC column gave the shortest run time for all columns. The RRLC column resulted in minimum backpressure, so it could be used with any HPLC instrument, which makes the method more practical and economic. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed.

  15. Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases - a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE.


    Naidong, Weng; Shou, Wilson Z; Addison, Thomas; Maleki, Saber; Jiang, Xiangyu


    Bioanalytical methods using automated 96-well solid-phase extraction (SPE) and liquid chromatography with electrospray tandem mass spectrometry (LC/MS/MS) are widely used in the pharmaceutical industry. SPE methods typically require manual steps of drying of the eluates and reconstituting of the analytes with a suitable injection solvent possessing elution strength weaker than the mobile phase. In this study, we demonstrated a novel approach of eliminating these two steps in 96-well SPE by using normal-phase LC/MS/MS methods with low aqueous/high organic mobile phases, which consisted of 70-95% organic solvent, 5-30% water, and small amount of volatile acid or buffer. While the commonly used SPE elution solvents (i.e. acetonitrile and methanol) have stronger elution strength than a mobile phase on reversed-phase chromatography, they are weaker elution solvents than a mobile phase for normal-phase LC/MS/MS and therefore can be injected directly. Analytical methods for a range of polar pharmaceutical compounds, namely, omeprazole, metoprolol, fexofenadine, pseudoephedrine as well as rifampin and its metabolite 25-desacetyl-rifampin, in biological fluids, were developed and optimized based on the foregoing principles. As a result of the time saving, a batch of 96 samples could be processed in one hour. These bioanalytical LC/MS/MS methods were validated according to "Guidance for Industry - Bioanalytical Method Validation" recommended by the Food and Drug Administration (FDA) of the United States.

  16. Automated hydrophobic interaction chromatography column selection for use in protein purification.


    Murphy, Patrick J M; Stone, Orrin J; Anderson, Michelle E


    which HIC media should be employed for future, more exhaustive optimization experiments and protein purification runs (4). The specific protein being purified here is recombinant green fluorescent protein (GFP); however, the approach may be adapted for purifying other proteins with one or more hydrophobic surface regions. GFP serves as a useful model protein, due to its stability, unique light absorbance peak at 397 nm, and fluorescence when exposed to UV light (5). Bacterial lysate containing wild type GFP was prepared in a high-salt buffer, loaded into a Bio-Rad DuoFlow medium pressure liquid chromatography system, and adsorbed to HiTrap HIC columns containing different HIC media. The protein was eluted from the columns and analyzed by in-line and post-run detection methods. Buffer blending, dynamic sample loop injection, sequential column selection, multi-wavelength analysis, and split fraction eluate collection increased the functionality of the system and reproducibility of the experimental approach.

  17. Carbon nanotubes-A resin for electrochemically modulated liquid chromatography.


    Brammen, Markus; Fraga-García, Paula; Berensmeier, Sonja


    Electrochemically modulated liquid chromatography is a special form of ion exchange chromatography in which the separation process is controlled by applying an electric potential to the stationary phase. This form of chromatography has so far only been applied in research studies. The present study shows that multiwalled carbon nanotubes are an effective resin material for an electrochemically modulated chromatography process. The experiments are carried out in a newly designed column that enables the packing of nanomaterials. We investigate the influence of the applied potential on the retention and elution of maleic acid, determine the dynamic binding capacity, and calculate the utilization degree of the electrical charge in the adsorption process. Moreover, the stability of the resin and the membrane over more than 200 working hours are presented. In addition to the stability, their sturdiness and inexpensive price are important qualities that make multiwalled carbon nanotubes interesting for application as the stationary phase in an electrochemically driven process. The investigated chromatography technique represents a promising separation process for future applications as a preparative step in biotechnology as well as other life science fields.

  18. How to separate ionic liquids: use of hydrophilic interaction liquid chromatography and mixed mode phases.


    Lamouroux, C; Foglia, G; Le Rouzo, G


    This chromatographic study deals with the development of a convenient and versatile method to separate Room Temperature Ionic Liquids. Different modes of chromatography were studied. The study attempts to answer the following question: "what were the most important interactions for the separation of ionic liquids?". The results show that the essential interactions to assure a good retention of RTILs are the ionic ones and that hydrophobic interactions play a role in the selectivity of the separation. The separation of five imidazolium salt with a traditional diol columns in Hydrophilic Interaction Chromatography (HILIC) was demonstrated. It shows that neutral diol grafted column allows an important retention that we assume is due to the capability of diol to develop a thick layer of water. Furthermore, stationary phase based on mixed interaction associating ion exchange and hydrophobic properties were studied. Firstly, it will be argued that it is possible to separate RTILs with a convenient retention and resolution according to a reverse phase elution with the Primesep columns made of a brush type long alkyl chain with an embedded negatively charged functional group. Secondly, a sucessful separation of RTILs in HILIC mode with a mixed phase column containing a cationic exchanger and a hydrophobic octyl chain length will be demonstrated.

  19. High Performance Liquid Chromatography/Video Fluorometry. Part I. Instrumentation.

    DTIC Science & Technology


    High Performance Liquid Chromatography /Video...PERIOD COVERED High Performance Liquid Chromatography /Video .. / Fluorometry. Part I. Instrumentation. . Interim/ echnicaliepart,. 6. PERFORMING ORG...34Entered SECURITY CLASSIFICATION OF THIS OlAGE (When Data Entered) II1| III I I I I E I II ... .. High Performance Liquid Chromatography

  20. Temperature selectivity in reversed-phase high performance liquid chromatography.


    Dolan, John W


    Column temperature plays two important roles in reversed-phase high-performance liquid chromatography (RP-HPLC): control of retention (k) and control of selectivity (a). While changes in retention as a function of temperature are ubiquitous, selectivity changes for any given solute pair are more pronounced for ionized samples and samples with more polar substituents. With many samples, column temperature can be selected in a manner that optimizes resolution. The selectivity effects observed for temperature changes in RP-HPLC generally are complementary to those observed for mobile phase strength changes, so it is often possible to improve resolution by simultaneous optimization of temperature and mobile phase percent organic or gradient steepness. Computer simulation is a powerful tool for such optimization experiments. This paper reviews the influence of temperature on chromatographic selectivity for RP-HPLC.

  1. Ultra high pressure liquid chromatography for crude plant extract profiling.


    Eugster, Philippe J; Guillarme, Davy; Rudaz, Serge; Veuthey, Jean-Luc; Carrupt, Pierre-Alain; Wolfender, Jean-Luc


    Ultra high pressure liquid chromatography (UHPLC) systems operating at very high pressures and using sub-2 microm packing columns have allowed a remarkable decrease in analysis time and increase in peak capacity, sensitivity, and reproducibility compared to conventional HPLC. This technology has rapidly been widely accepted by the analytical community and is being gradually applied to various fields of plant analysis such as QC, profiling and fingerprinting, dereplication, and metabolomics. For many applications, an important improvement of the overall performances has been reported. In this review, the basic principles of UHPLC are summarized, and practical information on the type of columns used and phase chemistry available is provided. An overview of the latest applications to natural product analysis in complex mixtures is given, and the potential and limitations as well as some new trends in the development of UHPLC are discussed.

  2. Reliability of the retention factor estimations in liquid chromatography.


    Escuder-Gilabert, L; Bermúdez-Saldaña, J M; Villanueva-Camañas, R M; Medina-Hernández, M J; Sagrado, S


    The retention factor is one of the most universally used parameters in chromatography. However, large differences in the experimental retention factor values are observed when the same compound is injected in a given stationary/mobile phase system under intermediate precision conditions. Conventional protocols for estimating retention factors have problems that mainly arise from difficulties in the hold-up time measurements and the omission of the existence of extra-column times by practicing chromatographers. In the present paper, three different approaches for estimating retention factors are tested: (i) classical retention factor estimations based on the gross hold-up time, (ii) based on the real hold-up time (taking into account the extra-column time), and (iii) a new approach that uses 'relative' retention factors based on the use of an external standard. Assays are performed in micellar liquid chromatography (MLC) under intermediate precision conditions (different days, equipments, columns lengths, and mobile phase flow rates). The reliability of the three approaches tested is evaluated by means of precision studies, analysis of factors affecting retention factors, and uncertainty calculations. The approach based on 'relative' retention factors was found to be the most precise, reliable, and robust strategy for estimating retention factors.

  3. Recent development of ionic liquid stationary phases for liquid chromatography.


    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang


    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years.

  4. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.


    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang


    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples.

  5. Sample injector for high pressure liquid chromatography


    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.


    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  6. Thermal expansion pump for capillary high-performance liquid chromatography.


    Tao, Qian; Wu, Qian; Zhang, Xiangmin


    A thermal expansion pump (TEP) based on a principle of liquid thermal expansion for capillary high-performance liquid chromatography has been developed. The novel pump is capable of generating a continuous flow at high pressure for constant and stable delivery of binary solvents from nanoliters to microliters per minute without splitting. Theoretical equations for controlling fluidic output of this pump have been established and validated by a series of experiments. Factors affecting flow rate, such as density discrepancy, liquid compressibility, and mass loss in output, were taken into account. An assembly of the pump system employing two groups of thermal expansion pumps (TEPs) working in turns were fabricated, and a controlling strategy for the pump system to maintain a continuous delivery without pressure fluctuation even at switching points was also developed. Both isocratic and gradients of binary solvent delivery by the TEPs were performed. Reproducibility and standard deviation at different flow rates were determined. A capillary high-performance liquid chromatography (micro-HPLC) system consisting of the TEPs, an injection valve, a homemade packed capillary column (20 cm x 100 microm i.d. with 5 microm C18), and a laser-induced fluorescence detector was set up, and sample separations were carried out. Results of RSD = 4% for flow and RSD = 2% for retention times at 500 nL/min were achieved. Such a pump system has almost no moving parts except for the solvent switches. Its overall costs of manufacture and running are very low. It is proven that the TEPs system has great potential and competitive capabilities in capillary liquid chromatography.

  7. Active damping of capillary oscillations on liquid columns

    NASA Astrophysics Data System (ADS)

    Thiessen, David B.; Wei, Wei; Marston, Philip L.


    Active control of acoustic radiation pressure and of electrostatic stresses on liquid columns has been demonstrated to overcome the Rayleigh-Plateau instability that normally causes long liquid columns to break [M. J. Marr-Lyon et al., J. Fluid Mech. 351, 345 (1997); Phys. Fluids 12, 986-995 (2000)]. Though originally demonstrated for liquid-liquid systems in plateau tanks, the electrostatic method also works on columns in air in reduced gravity [D. B. Thiessen, M. J. Marr-Lyon, and P. L. Marston, ``Active electrostatic stabilization of liquid bridges in low gravity,'' J. Fluid Mech. (in press)]. In new research, the electrostatic stresses are applied in proportion to the velocity of the surface of the column so as to actively dampen capillary oscillations of the surface. The mode amplitude is optically sensed and the rate-of-change is electronically determined. Plateau tank measurements and theory both show that the change in damping rate is proportional to the feedback gain. The results suggest that either active control of electrostatic stresses or of acoustic radiation stresses can be used to suppress the response of interfaces to vibration. [Work supported by NASA.

  8. Hydrazine Determination in Sludge Samples by High Performance Liquid Chromatography

    SciTech Connect

    G. Elias; G. A. Park


    A high-performance liquid chromatographic method using ultraviolet (UV) detection was developed to detect and quantify hydrazine in a variety of environmental matrices. The method was developed primarily for sludge samples, but it is also applicable to soil and water samples. The hydrazine in the matrices was derivatized to their hydrazones with benzaldehyde. The derivatized hydrazones were separated using high performance liquid chromatography (HPLC) with a reversed-phase C-18 column in an isocratic mode with methanol-water (95:5, v/v), and detected with UV detection at 313 nm. The detection limit (25 ml) for the new analytical method is 0.0067 mg ml-1of hydrazine. Hydrazine showed low recovery in soil samples because components in soil oxidized hydrazine. Sludge samples that contained relatively high soil content also showed lower recovery. The technique is relatively simple and cost-effective, and is applicable for hydrazine analysis in different environmental matrices.

  9. At-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography for bioassay-guided separation of antioxidants from vine tea (Ampelopsis grossedentata).


    Ma, Ruyi; Zhou, Rongrong; Tong, Runna; Shi, Shuyun; Chen, Xiaoqing


    Vine tea (Ampelopsis grossedentata), a widely used healthy tea, beverage and herbal medicine, exhibited strong antioxidant activity. However, systematic purification of antioxidants, especially for those with similar structures or polarities, is a challenging work. Here, we present a novel at-line hyphenation of high-speed countercurrent chromatography with Sephadex LH-20 column chromatography (HSCCC-Sephadex LH-20 CC) for rapid and efficient separation of antioxidants from vine tea target-guided by 1,1-diphenyl-2-picryl-hydrazyl radical-high performance liquid chromatography (DPPH-HPLC) experiment. A makeup pump, a six-port switching valve and a trapping column were served as interface. The configuration had no operational time and mobile phase limitations between two dimensional chromatography and showed great flexibility without tedious sample-handling procedure. Seven targeted antioxidants were firstly separated by stepwise HSCCC using petroleum ether-ethyl acetate-methanol-water (4:9:4:9, v/v/v/v) and (4:9:5:8, v/v/v/v) as solvent systems, and then co-eluted antioxidants were on-line trapped, concentrated and desorbed to Sephadex LH-20 column for further off-line purification by methanol. It is noted that six elucidated antioxidants with purity over 95% exhibited stronger activity than ascorbic acid (VC). More importantly, this at-line hyphenated strategy could sever as a rapid and efficient pathway for systematic purification of bioactive components from complex matrix.

  10. Comprehensive characterization of Stevia rebaudiana using two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography.


    Fu, Qing; Guo, Zhimou; Zhang, Xiuli; Liu, Yanfang; Liang, Xinmiao


    Two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography (2D-RPLC/HILIC) system was successfully applied for comprehensive characterization of steviol glycosides from Stevia rebaudiana. The experiments were performed in offline mode using an XCharge C18 column in first dimension and an XAmide column in second dimension. In first dimension, preliminary separation of Stevia aqueous extract was accomplished and 30 fractions were collected. Then fractions 1-20 were selected for further purification and 13 compounds with high purity were obtained in second dimension. Comprehensive characterization of these compounds was completed by determination of their retention time, accurate molecular weight, diagnostic fragmentation ions, and nuclear magnetic resonance spectroscopy. As a result, all nine known steviol glycosides, as well as other four steviol glycosides were fully purified. The result demonstrated that this procedure is an effective approach for the preparative separation and comprehensive characterization of steviol glycosides in Stevia. This 2D-RPLC/HILIC method will be a promising tool for the purification of low-abundance compounds from natural products.

  11. Liquid membrane coated ion-exchange column solids


    Barkey, Dale P.


    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  12. Liquid membrane coated ion-exchange column solids


    Barkey, Dale P.


    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  13. Determination of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine in human plasma by high-performance liquid chromatography after pre-column derivatization with 1-aminoanthracene.


    Longo, A; Bruno, G; Curti, S; Mancinelli, A; Miotto, G


    A new sensitive high-performance liquid chromatographic procedure for the determination of L-carnitine (LC), acetyl-L-carnitine (ALC) and propionyl-L-carnitine (PLC) in human plasma has been developed. Precolumn derivatization with 1-aminoanthracene (1AA), performed in phosphate buffer in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as catalyst, is involved. The fluorescent derivatives were isocratically separated on a reversed-phase column (C18). The eluate was monitored with a fluorimetric detector set at 248 nm (excitation wavelength) and 418 nm (emission wavelength). Because of the presence of endogenous carnitines, the validation was performed using dialyzed plasma. The identity of the derivatized compounds was assessed by mass spectrometry and the purity of the chromatographic peaks was confirmed by HPLC-tandem mass spectrometry. The limits of quantitation were 5 nmol/ml for LC, 1 nmol/ml for ALC and 0.25 nmol/ml for PLC. The recovery of the extraction procedure was in the range 82.6%-95.4% for all 3 compounds. Good linearity (R approximately 0.99) was observed within the calibration ranges studied: 5-160 nmol/ml for LC, 1-32 nmol/ml for ALC and 0.25-8 nmol/ml for PLC. Precision was in the range 0.3-16.8% and accuracy was always lower than 10.6%.

  14. Quantitative determination of the macrolide antibiotics erythromycin, roxithromycin, azithromycin and clarithromycin in human serum by high-performance liquid chromatography using pre-column derivatization with 9-fluorenylmethyloxycarbonyl chloride and fluorescence detection.


    Sastre Toraño, J; Guchelaar, H J


    A validated, highly sensitive and precise high-performance liquid chromatographic (HPLC) method for the determination of the macrolides erythromycin, azithromycin, clarithromycin and roxithromycin in human serum is described. A diethyl ether extract, obtained from serum using a saturated sodium carbonate solution, was treated with 9-fluorenylmethyl-oxycarbonyl chloride (FMOC-Cl) for 40 min at 40 degrees C and chromatographed on a base-deactivated octadecyl column, maintained at 50 degrees C during elution, using an eluent composed of acetonitrile-hydrogenphosphate buffer, pH 7.5, with 0.125% triethylamine (3:2, v/v). Fluorescence detection was used at an excitation wavelength of 255 nm and an emission wavelength of 315 nm. Erythromycin, clarithromycin, roxithromycin and azithromycin were found to have retention times of 8.8, 15.7, 17.1 and 20.7 min, respectively. Recoveries ranging from 93 to 104% were found with reproducibility coefficients of variation of 1.1-5%. Mean correlation coefficients of 0.9997, 0.9998, 0.9996 and 0.9994 were found for the linear calibration curves (n = 2) of erythromycin (0.320-16.1 mg/l), roxithromycin (3.24-19.4 mg/l), clarithromycin (0.190-19.4 mg/l) and azithromycin (0.0988-4.94 mg/l), respectively.

  15. Determination of food preservatives and saccharin by high-performance liquid chromatography.


    Leuenberger, U; Gauch, R; Baumgartner, E


    The quantitative analysis of benzoic and sorbic acid, methyl, ethyl and propyl esters of p-hydroxybenzoic acid and saccharin in foodstuffs is described. These compounds are quantitatively extracted with disposable clean-up columns packed with Extrelut and simultaneously determined by high-performance liquid chromatography on reversed-phase columns. Complicated matrices such as cheese, cake, ketchup and chocolate were tested and recoveries were generally better than 95% in the concentration ranges normally used in the food industry.

  16. Separation of microcystins and nodularins by ultra performance liquid chromatography.


    Spoof, Lisa; Neffling, Milla-Riina; Meriluoto, Jussi


    Four ultra performance liquid chromatography (UPLC) columns with different reversed-phase characteristics were tested in the chromatographic separation of 10 microcystins and three nodularins, cyanobacterial peptide toxins. The columns had been designed by the manufacturer to withstand the ultra-high pressure generated by sub-2microm stationary phase particles and the Waters ACQUITY UPLC system in ultra-fast separations. The gradient mobile phase consisted of water and acetonitrile, both acidified with trifluoroacetic acid, with three gradient rise times: 1, 1.5 and 2min. The UV detection of the toxins was performed by a photodiode array detector. The chromatographic performance was evaluated both visually and by calculating chromatographic parameters such as capacity factor, resolution, peak width at half height, selectivity and peak asymmetry. The best chromatographic performance as judged by visual inspection was given by the ACQUITY BEH Shield RP18 and ACQUITY BEH Phenyl columns. The BEH Shield RP18 column showed excellent selectivity and resolution of chosen peak pairs considered as critical. A further advantage of the UPLC system was the high sample throughput with a total analysis time of 3.12min (injection-to-injection) equalling to 461 separations per 24h.

  17. Purification of saponins from leaves of Panax notoginseng using preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography.


    Guo, Xiujie; Zhang, Xiuli; Feng, Jiatao; Guo, Zhimou; Xiao, Yuansheng; Liang, Xinmiao


    Saponins are widely distributed in the plant kingdom and have been shown to be active components of many medicinal herbs. In this study, a two-dimensional purification method based on reversed-phase liquid chromatography coupled with hydrophilic interaction liquid chromatography was successfully applied to purify saponins from leaves of Panax notoginseng. Nine saponin reference standards were used to test the separation modes and columns. The standards could not be resolved using C18 columns owing to their limited polar selectivity. However, they were completely separated on a XAmide column in hydrophilic interaction liquid chromatography mode, including two pairs of standards that were coeluted on a C18 column. The elution order of the standards on the two columns was sufficiently different, with a correlation coefficient between retention times on the C18 and XAmide columns of 0.0126, indicating good column orthogonality. Therefore, the first-dimension preparation was performed on a C18 column, followed by a XAmide column that was used to separate the fractions in the second dimension. Fifty-four fractions were prepared in the first dimension, with 25 fractions rich in saponins. Eight saponins, including two pairs of isomeric saponins and one new saponin, were isolated and identified from three representative fractions. This procedure was shown to be an effective approach for the preparative isolation and purification of saponins from leaves of P. notoginseng. Moreover, this method could possibly be employed in the purification of low-content and novel active saponins from natural products.

  18. Sensitive determination of midazolam and identification of its two metabolites in human body fluids by column-switching capillary high-performance liquid chromatography/fast atom bombardment-mass spectrometry.


    Sano, T; Sato, K; Kurihara, R; Mizuno, Y; Kojima, T; Yamakawa, Y; Yamada, T; Ishii, A; Katsumata, Y


    Midazolam is a benzodiazepine and is widely prescribed for preanesthesia or general anesthesia. Overdose or intoxication cases of midazolam have been reported. In Japan, smuggled midazolam tablets could be involved in some criminal cases. Midazolam and its two metabolites were extracted by the solid-phase extraction method using Bond Elut SCX cartridges. The compounds were analyzed by on-line capillary high-performance liquid chromatography/fast atom bombardment-mass spectrometry. Midazolam and its two metabolites were well separated on the chromatogram, and each mass spectra gave [M+H](+) ion as a base peak. Deuterium-labeled midazolam was synthesized as an internal standard; it has enabled precise and reproducible quantitation of midazolam in blood samples. The calibration curve showed excellent linearity in the range of 2-200 ng/ml in spiked serum. The detection limit was 300 pg/ml (signal-to-noise ratio=3). The whole blood and urine samples from the victim of a homicide case were analyzed, and the midazolam concentration in the whole blood was estimated to be 163 ng/ml. The present method should be useful in clinical and forensic toxicology, because of its high sensitivity and specificity.

  19. Practical assessment of frictional heating effects and thermostat design on the performance of conventional (3 microm and 5 microm) columns in reversed-phase high-performance liquid chromatography.


    Fallas, Morgane M; Hadley, Mark R; McCalley, David V


    A practical investigation of frictional heating effects in conventional C18 columns was undertaken, to investigate whether problems found for sub-2 microm columns were also present for those of particle size 3 microm and 5 microm and different internal diameter. The influence of a water bath, a still air heater, and a forced air heater on performance was investigated. Heating effects were substantial, with a decrease in k of almost 15% for toluene over the flow rate range approximately 0.4-2.3 mL/min with a 15 cm x 0.46 cm ID column packed with 3 microm particles. Heating effects on retention increased with increasing solute k, with increase in the column ID, with decrease in the column particle size, and with decrease in the set column oven temperature. While the water bath minimised axial temperature gradients and thus its effect on k, radial temperature gradients were potentially serious with this system, especially at high mobile phase velocity, even with columns containing 5 microm particles. In contrast to the effects of axial temperature gradients in 4.6 mm columns, very little difference in Van Deemter plots was noted between the three different thermostats with 2 mm ID columns, even when 3 microm particles were used. However, the efficiency of 2 mm columns for peaks of low or moderate k (k<4) can be compromised by the extra dead volume introduced by the heating systems, even with conventional HPLC systems with otherwise minimised extra column volume.

  20. Quantitative separation of tetralin hydroperoxide from its decomposition products by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Worstell, J. H.; Daniel, S. R.


    A method for the separation and analysis of tetralin hydroperoxide and its decomposition products by high pressure liquid chromatography has been developed. Elution with a single, mixed solvent from a micron-Porasil column was employed. Constant response factors (internal standard method) over large concentration ranges and reproducible retention parameters are reported.

  1. High Performance Liquid Chromatography of Some Analgesic Compounds: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Haddad, Paul; And Others


    Background information, procedures, and results are provided for an experiment demonstrating techniques of solvent selection, gradient elution, pH control, and ion-pairing in the analysis of an analgesic mixture using reversed-phase liquid chromatography on an octadecylsilane column. Although developed using sophisticated/expensive equipment, less…

  2. Electrochemically modulated liquid chromatography: Theoretical investigations and applications from the perspectives of chromatography and interfacial electrochemistry

    SciTech Connect

    Keller, David W.


    Electrochemically modulated liquid chromatography (EMLC) employs a conductive material as both a stationary phase for chromatographic separations and as a working electrode for performing electrochemistry experiments. This dual functionality gives EMLC the capacity to manipulate chromatographic separations by changing the potential applied (Eapp) to the stationary phase with respect to an external reference. The ability to monitor retention as a function of Eapp provides a means to chromatographically monitor electrosorption processes at solid-liquid interfaces. In this dissertation, the retention mechanism for EMLC is examined from the perspective of electrical double layer theory and interfacial thermodynamics. From the chromatographic data, it is possible to determine the interfacial excess (Λ) of a solute and changes in interfacial tension (dγ) as a function of both Eapp and the supporting electrolyte concentration. Taken together, these two experimentally manipulated parameters can be examined within the context of the Gibbs adsorption equation to delineate the contribution of a variety of interfacial properties, including the charge of solute on the stationary phase and the potential of zero charge (PZC), to the mechanism behind EMLC-based retention. The chromatographic probing of interfacial phenomena is complemented by electroanalytical experiments that exploit the ability to monitor the electronic current flowing through an EMLC column. Cyclic voltammetry and chronoamperometry of an EMLC column are used to determine the electronic performance characteristics of an EMLC column. An electrochemical flow injection analysis of a column is provided in which the current required to maintain a constant Eapp is monitored and provides a way to examine the influence that acetonitrile and supporting electrolyte composition, flow rate, column backpressure, and ionic strength have on the structure of electrified interfaces.

  3. Method of recovering adsorbed liquid compounds from molecular sieve columns


    Burkholder, Harvey R.; Fanslow, Glenn E.


    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  4. Method of recovering adsorbed liquid compounds from molecular sieve columns


    Burkholder, H.R.; Fanslow, G.E.


    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  5. Fabrication and evaluation of an organic monolithic column based upon the polymerisation of hexyl methacrylate with 1,6-hexanediol ethoxylate diacrylate for the separation of small molecules by capillary liquid chromatography.


    Alshitari, Wael; Quigley, Cristina Legido; Smith, Norman


    This paper describes the fabrication of a new porous monolith, prepared in 100μm i.d. capillaries by the co-polymerisation of hexyl methacrylate with 1,6-hexanediol ethoxylate diacrylate, poly (HMA-co-1,6 HEDA), in the presence of azobisisobutyronitrile, 1, 4-butanediol and 1-propanol were used as porogens for the monoliths; the monoliths were then used as a stationary phase for capillary liquid chromatography. Two cross linkers namely 1,6 HEDA and EDMA were utilised in order to investigate the effects of cross linker length on the separation efficiency of small molecules, and it was found that the efficiency of the separation improved tenfold when using the longer cross linker, 1,6 HEDA. This improvement is associated with the increase in number of methylene groups which resulted in an increased number of mesopores, less than 50nm. The 1,6 HEDA based monolith showed a high porosity (90%) and no evidence of swelling or shrinking with the use of organic solvents. Moreover, the 1,6 HEDA monolith demonstrated high reproducibility for the separation of the retained compounds anisole and naphthalene; these showed retention time RSDs of 1.79% and 2.74% respectively. The fabricated monolith also demonstrated high selectivity for neutral non-polar molecules, weak acids, and basic molecules. The asymmetry factors for basic molecules (nortriptyline and amitriptyline) were 1.5 and 1.3 respectively, indicating slight tailing, which is often noticeable on silica based phases due to secondary interactions between basic moieties and the hydroxyl groups of the silica.

  6. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.


    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  7. Colorful Column Chromatography: A Classroom Demonstration of a Three-Component Separation

    ERIC Educational Resources Information Center

    Heumann, Lars V.


    A classroom demonstration detailing the procedure for the separation of a ternary mixture consisting of intensely colored compounds using silica gel column chromatography is described. The audience can follow the compounds during their passage through the column as individual, colored bands while learning about different tools and techniques used…

  8. Csaba Horvath and preparative liquid chromatography

    SciTech Connect

    Guiochon, Georges A


    Few chromatographers have been interested in furthering preparative liquid chromatography. The pioneers, Tswett, Kuhn and Lederer, A.J.P. Martin, Tiselius, isolated fractions but as an intermediate step in the analysis of their samples. The progress in electronics and sensors, and in their miniaturization has lead to the paradoxical situation that the analysts never see the transient pure fractions that their detector quantitates. Yet, over the last 25 years, preparative liquid chromatography has become an important industrial process for the separation, the extraction, and/or the purification of many pharmaceuticals or pharmaceutical intermediates, including pure enantiomers, purified peptides and proteins, compounds that are manufactured at the relatively large industrial scale of a few kilograms to several hundred tons per year. This development that has strongly affected the modern pharmaceutical industry is mainly due to the pioneering work of Csaba Horvath. His work in preparative HPLC was critical at both the practical and the theoretical levels. He was the first scientist in modern times to pay serious attention to the relationships between the curvature of the equilibrium isotherms, the competitive nature of nonlinear isotherms, and the chromatographic band profiles of complex mixtures. The thermodynamics of multi-component phase equilibria and mass transfer kinetics in chromatography attracted his interest and were the focus of ground-breaking contributions. He investigated displacement chromatography, an old method invented by Tiselius that Csaba was first to implement in HPLC. This choice was explained by the essential characteristic of displacement chromatography, in that it delivers fractions that can be far more concentrated than the feed. Remarkably, once the basics of nonlinear chromatography had been mastered in his group, most of the applications that were studied by his coworkers dealt with peptides of various sizes and with proteins. Thus, all

  9. Stroboscopic sampling in comprehensive high-performance liquid chromatography-capillary electrophoresis via a pneumatic sampler.


    Ehala, Sille; Kaljurand, Mihkel; Kudrjashova, Marina; Vaher, Merike


    A new approach is presented to solve the problem of a long separation time in the second dimension of comprehensive two-dimensional chromatography. The need for a rapid separation in the second column is overcome by repeating analysis of a sample many times. In each of these individual analysis cases the sample is injected into the first dimension column and after a delay a low amount of the effluent at the end of the first column is sampled to the second-dimensional column. The time interval between the samplings from the first column to the second column is constantly increased. Thus, the system enables a comprehensive analysis of the effluent emerging from the first into the second column. This approach, which we call stroboscopic sampling, is tested for coupling high-performance liquid chromatography (HPLC) to capillary electrophoresis (CE) by an interface which operates on the principle of transporting the effluent from the HPLC column to the capillary inlet by small pressure pulses (0.5 MPa). The performance of the interface for accomplishing the comprehensive HPLC-CE analysis was demonstrated for an on-line connection of a short ion-exchange column and an ion-exclusion column to the CE capillary.

  10. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.


    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny


    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study.

  11. Modern Aspects Of Fluorometric Detection In Liquid-Phase Chromatography

    NASA Astrophysics Data System (ADS)

    Bousquet, Bernard; Garnier, Jean P.; Dreux, Claude


    Recent advances are described in the combined use of fluorometric derivatization and high performance liquid chromatography (HPLC) for clinical chemistry determinations. Derivatives (especially dansyl derivatives) can be formed prior to chromatography in the case of estrogens, amino acids, and catecholamines. In post-column reactions, we preferred to use air-segmented reactions as they conform better to all the optimized chromatographic and spectrofluorometric parameters. Fluorescent derivatives produced from cate-cholamines, tryptophan and its metabolites, hydroxyindoles, tryptamine, amino acids, sugars, polyamines, and other substances are often sufficiently sensitive to be detected in picogram quantities by HPLC. Their reaction principle and some of their applications to samples are described. Recently, chemical excitation of fluorophore-like dansyl amino acid was proposed as a detection system for HPLC. By a post-column reaction, a fluorophore can be made to emit light by its reaction with trichlorophenyl oxalate (TCPO) and hydrogen peroxide. The detection limit of this system is about 10 fmol for each dansyl amino acid. Application of this new reaction to catecholamines opens up new prospects for fluorometric detection.

  12. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.


    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre


    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective.

  13. Ultrafast Chiral Chromatography as the Second Dimension in Two-Dimensional Liquid Chromatography Experiments.


    Barhate, Chandan L; Regalado, Erik L; Contrella, Nathan D; Lee, Joon; Jo, Junyong; Makarov, Alexey A; Armstrong, Daniel W; Welch, Christopher J


    Chromatographic separation and analysis of complex mixtures of closely related species is one of the most challenging tasks in modern pharmaceutical analysis. In recent years, two-dimensional liquid chromatography (2D-LC) has become a valuable tool for improving peak capacity and selectivity. However, the relatively slow speed of chiral separations has limited the use of chiral stationary phases (CSPs) as the second dimension in 2D-LC, especially in the comprehensive mode. Realizing that the recent revolution in the field of ultrafast enantioselective chromatography could now provide significantly faster separations, we herein report an investigation into the use of ultrafast chiral chromatography as a second dimension for 2D chromatographic separations. In this study, excellent selectivity, peak shape, and repeatability were achieved by combining achiral and chiral narrow-bore columns (2.1 mm × 100 mm and 2.1 mm × 150 mm, sub-2 and 3 μm) in the first dimension with 4.6 mm × 30 mm and 4.6 mm × 50 mm columns packed with highly efficient chiral selectors (sub-2 μm fully porous and 2.7 μm fused-core particles) in the second dimension, together with the use of 0.1% phosphoric acid/acetonitrile eluents in both dimensions. Multiple achiral × chiral and chiral × chiral 2D-LC examples (single and multiple heart-cutting, high-resolution sampling, and comprehensive) using ultrafast chiral chromatography in the second dimension are successfully applied to the separation and analysis of complex mixtures of closely related pharmaceuticals and synthetic intermediates, including chiral and achiral drugs and metabolites, constitutional isomers, stereoisomers, and organohalogenated species.

  14. Spillage detector for liquid chromatography systems

    NASA Technical Reports Server (NTRS)

    Jarvis, M. J.; Fulton, D. S. (Inventor)


    A spillage detector device for use in conjunction with fractionation of liquid chromatography systems which includes a spillage recieving enclosure beneath the fractionation area is described. A sensing device having a plurality of electrodes of alternating polarity is mounted within the spillage recieving enclosure. Detection circuitry, responsive to conductivity between electrodes, is operatively connected to the sensing device. The detection circuitry feeds into the output circuitry. The output circuit has relaying and switching circuitry directed to a solenoid, an alarm system and a pump. The solenoid is connected to the pliable conduit of the chromatography system. The alarm system comprises an audio alarm and a visual signal. A 115-volt power system interconnected with the pump, the solenoid, the sensing device, and the detection and output circuitry.

  15. Separation of donor and recipient bacteria by column chromatography.


    Zsigray, R M; Fulk, G E; Lawton, W D


    When donor and recipient strains of Escherichia coli were added to columns containing Cellex-P (a cation-exchange cellulose), more than 80% of the female cells passed through the column but only 11% or less of the male cells were eluted. However, when donor strains were blended before their addition to the column, the majority of these cells were eluted. These results indicated that the filamentous appendages termed F pili (which are removed by blending) were the structures responsible for the adherence of donor cells to the cellulose.

  16. Adenovirus purification by two-column, size-exclusion, simulated countercurrent chromatography.


    Nestola, Piergiuseppe; Silva, Ricardo J S; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T; Mota, José P B


    Adenovirus serotype 5 (Ad5) was successfully separated by size-exclusion chromatography (SEC) using a simple, yet efficient, two-column, quasi-continuous, simulated moving-bed process operated in an open-loop configuration. The operating cycle is divided into two identical half-cycles, each of them consisting of the following sequence of sub-steps: (i) elution of the upstream column and direction of the effluent of the downstream column to waste; (ii) elution of the upstream column and redirection of its effluent to waste while the downstream column is fed with the clarified bioreaction bulk and its effluent collected as purified product; (iii) operation of the system as in step (i) but collecting the effluent of the downstream column as product; (iv) elution of the upstream column and direction of its effluent to waste while the flow through the downstream column is temporarily halted. Clearance of impurities, namely DNA and host cell protein (HCP), were experimentally assessed. The pilot-scale run yielded a virus recovery of 86%, and a clearance of 90% and 89% for DNA and HCP, respectively, without any fine tunning of the predetermined operating parameters. These figures compare very favorably against single-column batch chromatography for the same volume of size-exclusion resin. However, and most importantly, the virus yield was increased from 57% for the batch system to 86% for the two-column SEC process because of internal recycling of the mixed fractions of contaminated Ad5, even though the two-column process was operated strictly in an open-loop configuration. And last, but not least, the productivity was increased by 6-fold with the two-column process. In conclusion, the main drawbacks of size-exclusion chromatography, namely low productivity and low product titer, were overcome to a considerable extent by an innovative two-column configuration that keeps the mixed fractions inside the system at all times.

  17. Evaluation of a liquid chromatography method for quality control of methylated cyclodextrins.


    Fougère, L; Elfakir, C; Lafosse, M


    Halo C18 column (fused core particles) and Chromolith RP18 column (monolith) were evaluated in liquid chromatography in order to analyze methylated-β-cyclodextrins (Me-β-CD) with various degrees of substitution, DS such as the number of methyl groups per cyclodextrin ring. Chromolith RP18 enables a performing analysis of Me-β-CD with low DS but is not suitable for dimethyl-β-cyclodextrins (DM-β-CD). On the other hand, Halo C18 column allows an improved fingerprint of CDs having a DS from 4.9 up to a value major than 14 and avoiding the use of various chromatographic systems. Thus, liquid chromatography performed with this column and an evaporative light scattering detector can be used as a generic system for methylated CD analysis. Moreover, fused core particles of Halo C18 column enables a rapid analysis and liquid chromatography coupled with electrospray-mass spectrometry appears as a powerful tool to determine co-elution and to characterize various isomers of complex methylated-β-cyclodextrin mixtures.

  18. Generator for ionic gallium-68 based on column chromatography


    Neirinckx, Rudi D.; Davis, Michael A.


    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  19. High Performance Liquid Chromatography/Video Fluorometry. Part II. Applications.

    DTIC Science & Technology


    HIGH PERFORMANCE LIQUID CHROMATOGRAPHY /VIDEO FLUOROMETRY. PART...REP«T_N&:-ŗ/ High Performance Liquid Chromatography /Video Fluorometry» Part II. Applications« by | Dennis C./Shelly* Michael P./Vogarty and...Data EnlirtdJ REPORT DOCUMENTATION PAGE t. REPORT NUMBER 2 GOVT ACCESSION NO 4. T1TI.F (and Submit) lP-^fffsyva High Performance Liquid Chromatography

  20. Liquid chromatography/Fourier transform IR spectrometry interface flow cell


    Johnson, C.C.; Taylor, L.T.


    A zero dead volume (ZDV) microbore high performance liquid chromatography ( HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a HPLC column end fitting to minimize the transfer volume of the effluents exiting the HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  1. Liquid chromatography/Fourier transform IR spectrometry interface flow cell


    Johnson, Charles C.; Taylor, Larry T.


    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  2. Correlation of retention times on liquid crystal capillary column with reported vapor pressures and half-lives of compounds used in pheromone formulations.


    Heath, R R; Tumlinson, J H


    A method has been developed to determine by capillary gas chromatography on liquid crystal stationary phases the relative vapor pressures and half-lives of many compounds used as insect pheromones. This study demonstrated that the retention time of seven acetates on a liquid crystal column (cholesteryl-p-chlorocinnamate) could be correlated closely to the reported vapor pressures of the compounds. For 13 additional pheromonal acetates and alcohols, reported half-lives showed a high degree of correlation with their retention times on the liquid crystal column. Thus chromatography on capillary liquid crystal gas Chromatographie columns appears to be a useful method for determining the relative volatilities of many pheromones to facilitate the development of more precise formulations.

  3. General theory of peak compression in liquid chromatography.


    Gritti, Fabrice


    A new and general expression of the peak compression factor in liquid chromatography is derived. It applies to any type of gradients induced by non-uniform columns (stationary) or by temporal variations (dynamic) of the elution strength related to changes in solvent composition, temperature, or in any external field. The new equation is validated in two ideal cases for which the exact solutions are already known. From a practical viewpoint, it is used to predict the achievable degree of peak compression for curved retention models, retained solvent gradients, and for temperature-programmed liquid chromatography. The results reveal that: (1) curved retention models affect little the compression factor with respect to the best linear strength retention models, (2) gradient peaks can be indefinitely compressed with respect to isocratic peaks if the propagation speed of the gradient (solvent or temperature) becomes smaller than the chromatographic velocity, (3) limitations are inherent to the maximum intensity of the experimental intrinsic gradient steepness, and (4) dynamic temperature gradients can be advantageously combined to solvent gradients in order to improve peak capacities of microfluidic separation devices.

  4. Fluorimetric assay for ornithine decarboxylase by high-performance liquid chromatography.


    Haraguchi, K; Kai, M; Kohashi, K; Ohkura, Y


    A highly sensitive method for the assay of ornithine decarboxylase in sample solutions prepared from rat tissue homogenate is described which employs high-performance liquid chromatography with fluorescence detection. Putrescine formed from ornithine under the optimal conditions for the enzyme reaction is treated by Cellex P column chromatography for clean-up and converted into the fluorescamine derivative in the presence of cupric ion which inhibits the reaction of interfering amines with fluorescamine. The derivative is separated by reversed-phase chromatography on LiChrosorb RP-18 with linear gradient elution. The lower limit of detection for putrescine formed enzymatically is 5 pmol.

  5. Solvent minimization in two-dimensional liquid chromatography.


    Horváth, Krisztián; Sepsey, Annamária; Hajós, Péter


    An algorithm was developed for the minimization of consumption of organic solvent in comprehensive two-dimensional liquid chromatography (2DLC). It was shown that one can reach higher peak capacities only by using more eluent. The equilibration volume of the second dimension, however, did not affect the solvent consumption significantly. Calculations confirmed that the same target peak capacity could be achieved by consuming significantly different volume of organic modifier depending on the number of fractions analyzed in the second dimension suggesting that 2D separations can be optimized for eluent consumption. It was shown that minimization of eluent usage requires the use of small and high efficient columns in the second dimension. A simple equation was derived for the calculation of the optimal number of collected fractions from the first dimension that allowed the minimization of eluent usage, cost and environmental impact of comprehensive 2DLC separations.

  6. Devising an adjustable splitter for dual-column gas chromatography.


    Wang, Chieh-Heng; Chang, Chih-Chung; Wang, Jia-Lin


    A flow controlled adjustable splitter was configured from a Deans switch and employed in an automated dual column gas chromatographic (GC) system for analyzing mono-aromatic compounds. Volatile organic compounds (VOCs), thermally desorbed from the sorbent trap, were split by the adjustable splitter onto two columns of different phases for separation and then detection by flame ionization detection (FID). Unlike regular splitters in which the split ratio is passively determined by the diameter and/or length of the connecting columns or tubing, the split ratio in our adjustable splitter is controlled by the auxiliary flow in the Deans switch. The auxiliary flow serves as a gas plug on either side of the column for decreasing the sample flow in one transfer line, but increasing the flow in the other. By adjusting the auxiliary flow and therefore the size of the gas plug, the split ratio can be easily varied and favorable to the side of no auxiliary gas. As an illustration, two columns, DB-1 and Cyclodex-B, were employed in this study for separating benzene, toluene, ethylbenzene, xylenes, denoted as BTEX, in particular the structural isomers of o-, m-, p-xylenes. This configuration demonstrates that BTEX cannot be fully separated with either column, but can be deconvoluted by simple algebra if dual columns are used with a splitter. The applicability of the proposed concept was tested by analyzing a gas standard containing BTEX at different split ratios and with various sample sizes, all leading to a constant ratio of m-xylene versus p-xylene.

  7. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography.


    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi


    Chromatography techniques usually use a single state in the mobile phase, such as liquid, gas, or supercritical fluid. Chromatographers manage one of these techniques for their purpose but are sometimes required to use multiple methods, or even worse, multiple techniques when the target compounds have a wide range of chemical properties. To overcome this challenge, we developed a single method covering a diverse compound range by means of a "unified" chromatography which completely bridges supercritical fluid chromatography and liquid chromatography. In our method, the phase state was continuously changed in the following order; supercritical, subcritical and liquid. Moreover, the gradient of the mobile phase starting at almost 100% CO2 was replaced with 100% methanol at the end completely. As a result, this approach achieved further extension of the polarity range of the mobile phase in a single run, and successfully enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide logP range of -2.11 to 10.12. Furthermore, the 17 vitamins were exceptionally separated in 4min. Our results indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches in unified chromatography covering diverse compounds. Additionally, this is a first report to apply the novel approach to unified chromatography, and can open another door for diverse compound analysis in a single chromatographic technique with single injection, single column and single system.

  8. Separation of biological proteins by liquid chromatography

    PubMed Central

    Ali, Imran; Aboul-Enein, Hassan Y.; Singh, Prashant; Singh, Rakesh; Sharma, Bhavtosh


    After the success of human genome project, proteome is a new emerging field of biochemistry as it provides the knowledge of enzymes (proteins) interactions with different body organs and medicines administrated into human body. Therefore, the study of proteomics is very important for the development of new and effective drugs to control many lethal diseases. In proteomics study, analyses of proteome is essential and significant from the pathological point of views, i.e., in several serious diseases such as cancer, Alzheimer’s disease and aging, heart diseases and also for plant biology. The separation and identification of proteomics is a challenging job due to their complex structures and closely related physico-chemical behaviors. However, the recent advances in liquid chromatography make this job easy. Various kinds of liquid chromatography, along with different detectors and optimization strategies, have been discussed in this article. Besides, attempts have been made to include chirality concept in proteomics for understanding mechanism and medication of various disease controlled by different body proteins. PMID:23960722

  9. A straightforward methodology for designing continuous monoclonal antibody capture multi-column chromatography processes.


    Gjoka, Xhorxhi; Rogler, Karl; Martino, Richard Alexander; Gantier, Rene; Schofield, Mark


    A simple process development strategy for continuous capture multi-column chromatography (MCC) is described. The approach involves a few single column breakthrough experiments, based on several simplifying observations that enable users to rapidly convert batch processes into well-designed multi-column processes. The method was validated using a BioSMB(®) (Pall Life Sciences) lab scale multi-column system and a mAb capture process employing Protein A resin. The approach enables users to optimize MCC processes based on their internal preferences and constraints without requiring any mathematical modeling expertise.

  10. Preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) monolithic column by in situ polymerization and a click reaction for capillary liquid chromatography of small molecules and proteins.


    Lin, Zian; Yu, Ruifang; Hu, Wenli; Zheng, Jiangnan; Tong, Ping; Zhao, Hongzhi; Cai, Zongwei


    Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.

  11. Evaluation between ultrahigh pressure liquid chromatography and high-performance liquid chromatography analytical methods for characterizing natural dyestuffs.


    Serrano, Ana; van Bommel, Maarten; Hallett, Jessica


    An evaluation was undertaken of ultrahigh pressure liquid chromatography (UHPLC) in comparison to high-performance liquid chromatography (HPLC) for characterizing natural dyes in cultural heritage objects. A new UHPLC method was optimized by testing several analytical parameters adapted from prior UHPLC studies developed in diverse fields of research. Different gradient elution programs were tested on seven UHPLC columns with different dimensions and stationary phase compositions by applying several mobile phases, flow rates, temperatures, and runtimes. The UHPLC method successfully provided more improved data than that achieved by the HPLC method. Indeed, even though carminic acid has shown circa 146% higher resolution with HPLC, UHPLC resulted in an increase of 41-61% resolution and a decrease of 91-422% limit of detection, depending on the dye compound. The optimized method was subsequently assigned to analyse 59 natural reference materials, in which 85 different components were ascribed with different physicochemical properties, in order to create a spectral database for future characterization of dyes in cultural heritage objects. The majority of these reference samples could be successfully distinguished with one single method through the examination of these compounds' retention times and their spectra acquired with a photodiode array detector. These results demonstrate that UHPLC analyses are extremely valuable for the acquisition of more precise chromatographic information concerning natural dyes with complex mixtures of different and/or closely related physicochemical properties, essential for distinguishing similar species of plants and animals used to colour cultural heritage objects.

  12. Sulphonic acid strong cation-exchange restricted access columns in sample cleanup for profiling of endogenous peptides in multidimensional liquid chromatography. Structure and function of strong cation-exchange restricted access materials.


    Machtejevas, E; Denoyel, R; Meneses, J M; Kudirkaite, V; Grimes, B A; Lubda, D; Unger, K K


    In this work, the pore structural parameters and size exclusion properties of LiChrospher strong cation-exchange and reverse phase restricted access materials (RAM) are analysed. The molecular weight size exclusion limit for polystyrenes was found to be about 17.7 kDa, while for standard proteins, the molecular weight size exclusion limit was higher, at approximately 25 kDa. The average pore diameter on a volume basis calculated from the pore network model changes from 8.5 nm (native LiChrospher) to 8.6 nm (diol derivative) to 8.2 nm (sulphonic acid derivative) to 6.9 nm (n-octadecyl derivative). Additional characterisations were performed on restricted access materials with nitrogen sorption at 77 K, water adsorption at 25 degrees C, intrusion-extrusion of water (in order to evaluate the hydrophobic properties of the pores of the hydrophobic RAM), and zeta potential measurements by microelectrophoresis. For peptide analysis out of the biofluids, the strong cation-exchange functionality seems to be particularly suitable mainly because of the high loadability of the strong cation-exchange restricted access material (SCX-RAM) and the fact that one can work under non-denaturing conditions to perform effective chromatographic separations. For bacitracin, the dynamic capacity of the SCX-RAM columns does not reach its maximum value in the analysed range. For lysozyme, the dynamic capacity reaches a value of 0.08 mg/ml of column volume before column is overloaded. Additionally, the proper column operating conditions that lead to the total effective working time of the RAM column to be equal to approximately 500 injections (depending on the type of sample), is comprehensively described. The SCX-RAM column was used in the same system analysing urine samples for the period of 1 month (approximately 150 injections) with run-to-run reproducibility below 5% RSD and below 10% RSD for the relative fractions.

  13. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.


    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun


    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine.

  14. Multi-column chromatography of urinary steriods and adrenocortical dysfunction.


    Sayegh, J F; Vestergaard, P


    The potential of the multi-column assay for urinary neutral steroids in work with samples from patients with adrenocortical pathology is demonstrated through analyses performed on urine samples from Cushing and congenital adrenal hyperplasia cases, after modification of the routine methodology to include the quantitation of additional steroids of particular importance for pathological samples.

  15. Improvement in Liquid Chromatographic Performance of Organic Polymer Monolithic Capillary Columns with Controlled Free-Radical Polymerization.


    Gama, Mariana R; Aggarwal, Pankaj; Liu, Kun; Lee, Milton L; Bottoli, Carla B G


    Capillary columns containing butyl or lauryl methacrylate monoliths were prepared using two different free-radical polymerization methods: conventional free-radical polymerization and controlled/living free-radical polymerization, both initiated thermally, and these methods were compared for the first time. Both monolith morphology and chromatographic efficiency were compared for the synthesized stationary phases using scanning electronic microscopy (SEM) and capillary liquid chromatography, respectively. Columns prepared using controlled method gave better chromatographic performance for both monomers tested. The lauryl-based monolith showed 7-fold improvement in chromatographic efficiency with a plate count of 42,000 plates/m (corrected for dead volume) for a non-retained compound. Columns fabricated using controlled polymerization appeared more homogenous radially with fused small globular morphologies, evaluated by SEM, and lower column permeability. The columns were compared with respect to resolving power of a series of alkylbenzenes under isocratic and gradient elution conditions.

  16. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)


    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  17. Developing Inquiry-Based Labs Using Micro-Column Chromatography

    ERIC Educational Resources Information Center

    Barden-Gabbei, Laura M.; Moffitt, Deborah L.


    Chromatography is a process by which mixtures can be separated or substances can be purified. Biological and chemical laboratories use many different types of chromatographic processes. For example, the pharmaceutical industry uses chromatographic techniques to purify drugs, medical labs use them to identify blood components such as cholesterol,…

  18. Determination of myo-inositol (free and bound as phosphatidylinositol) in infant formula and adult nutritionals by liquid chromatography/pulsed amperometry with column switching: first action 2011.18.


    Schimpf, Karen; Thompson, Linda; Baugh, Steve


    Myo-inositol is a 6-carbon cyclic polyalcohol also known as meso-inositol, meat sugar, inosite, and i-inositol. It occurs in nature in both free (myo-inositol) and bound (inositol phosphates and phosphatidylinositol) forms. For the determination of free myo-inositol, samples are mixed with dilute hydrochloric acid to extract myo-inositol and precipitate proteins, diluted with water, and filtered. For the determination of myo-inositol bound as phosphatidylinositol, samples are extracted with chloroform, isolated from other fats with silica SPE cartridges, and hydrolyzed with concentrated acid to free myo-inositol. Prepared samples are first injected onto a Dionex CarboPac PA1 column, which separates myo-inositol from other late-eluting carbohydrates. After column switching, myo-inositol is further separated on a CarboPac MA1 column using a 0.12% sodium hydroxide mobile phase; strongly retained carbohydrates are eluted from the PA1 column with a 3% sodium hydroxide mobile phase. Eluant from the CarboPac MA1 analytical column passes through an electrochemical detector cell where myo-inositol is detected by pulsed amperometry using a gold electrode. The method showed appropriate performance characteristics versus selected established standard method performance requirement parameters for the determination of myo-inositol: linear response; repeatability (RSDr) of 2%; and intermediate precision (RSDir) of 2.5%. Instrument LOD and LOQ were 0.0004 and 0.0013 mg/100 mL, respectively, and correspond to a free myo-inositol quantitation limit of 0.026 mg/100 g and a phosphatidylinositol quantitation limit of 0.016 mg/100 g. Correlation with the reference microbiological assay was good. The proposed method has been accepted by the Expert Review Panel as an AOAC First Action Method, suitable for the routine determination of myo-inositol in infant formula and adult nutritionals.

  19. A core-shell column approach to a comprehensive high-performance liquid chromatography phenolic analysis of Vitis vinifera L. and interspecific hybrid grape juices, wines, and other matrices following either solid phase extraction or direct injection.


    Manns, David C; Mansfield, Anna Katharine


    Four high-throughput reverse-phase chromatographic protocols utilizing two different core-shell column chemistries have been developed to analyze the phenolic profiles of complex matrices, specifically targeting juices and wines produced from interspecific hybrid grape cultivars. Following pre-fractionation via solid-phase extraction or direct injection, individual protocols were designed to resolve, identify and quantify specific chemical classes of compounds including non-anthocyanin monomeric phenolics, condensed tannins following acid hydrolysis, and anthocyanins. Detection levels ranging from 1.2 ppb to 27.5 ppb, analyte %RSDs ranging from 0.04 to 0.38, and linear ranges of quantitation approaching five orders of magnitude were achieved using conventional HPLC instrumentation. Using C(18) column chemistry, the non-anthocyanin monomeric protocol effectively separated a set of 16 relevant phenolic compounds comprised flavan-3-ols, hydroxycinnamic acids, and flavonols in under 14 min. The same column was used to develop a 15-min protocol for hydrolyzed condensed tannin analysis. Two anthocyanin protocols are presented, one utilizing the same C(18) column, best suited for anthocyanidin and monoglucoside analysis, the other utilizing a pentafluorophenyl chemistry optimized to effectively separate complex mixtures of coexisting mono- and diglucoside anthocyanins. These protocols and column chemistries have been used initially to explore a wide variety of complex phenolic matrices, including red and white juices and wines produced from Vitis vinifera and interspecific hybrid grape cultivars, juices, teas, and plant extracts. Each protocol displayed robust matrix responses as written, yet are flexible enough to be easily modified to suit specifically tailored analytical requirements.

  20. Deformation and degradation of polymers in ultra-high-pressure liquid chromatography.


    Uliyanchenko, Elena; van der Wal, Sjoerd; Schoenmakers, Peter J


    Ultra-high-pressure liquid chromatography (UHPLC) using columns packed with sub-2 μm particles has great potential for separations of many types of complex samples, including polymers. However, the application of UHPLC for the analysis of polymers meets some fundamental obstacles. Small particles and narrow bore tubing in combination with high pressures generate significant shear and extensional forces in UHPLC systems, which may affect polymer chains. At high stress conditions flexible macromolecules may become extended and eventually the chemical bonds in the molecules can break. Deformation and degradation of macromolecules will affect the peak retention and the peak shape in the chromatogram, which may cause errors in the obtained results (e.g. the calculated molecular-weight distributions). In the present work we explored the limitations of UHPLC for the analysis of polymers. Degradation and deformation of macromolecules were studied by collecting and re-injecting polymer peaks and by off-line two-dimensional liquid chromatography. Polystyrene standards with molecular weight of 4 MDa and larger were found to degrade at UHPLC conditions. However, for most polymers degradation could be avoided by using low linear velocities. No degradation of 3-MDa PS (and smaller) was observed at linear velocities up to 7 mm/s. The column frits were implicated as the main sources of polymer degradation. The extent of degradation was found to depend on the type of the column and on the column history. At high flow rates degradation was observed without a column being installed. We demonstrated that polymer deformation preceded degradation. Stretched polymers eluted from the column in slalom chromatography mode (elution order opposite to that in SEC or HDC). Under certain conditions we observed co-elution of large and small PS molecules though a convolution of slalom chromatography and hydrodynamic chromatography.

  1. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography.


    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik


    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented.

  2. Analyzing insulin samples by size-exclusion chromatography: a column degradation study.


    Teska, Brandon M; Kumar, Amit; Carpenter, John F; Wempe, Michael F


    Investigating insulin analogs and probing their intrinsic stability at physiological temperature, we observed significant degradation in the size-exclusion chromatography (SEC) signal over a moderate number of insulin sample injections, which generated concerns about the quality of the separations. Therefore, our research goal was to identify the cause(s) for the observed signal degradation and attempt to mitigate the degradation in order to extend SEC column lifespan. In these studies, we used multiangle light scattering, nuclear magnetic resonance, and gas chromatography-mass spectrometry methods to evaluate column degradation. The results from these studies illustrate: (1) that zinc ions introduced by the insulin product produced the observed column performance issues; and (2) that including ethylenediaminetetraacetic acid, a zinc chelator, in the mobile phase helped to maintain column performance.

  3. Analytical and preparative enantioseparation of DL-penicillamine and DL-cysteine by high-performance liquid chromatography on alpha-acid glycoprotein and beta-cyclodextrin columns using ninhydrin as a reversible tagging reagent.


    Bhushan, Ravi; Kumar, Rajender


    Two sulfur-containing amino acids, DL-cysteine (Cys) and DL-penicillamine (PenA), were condensed with ninhydrin to form their spirothiazolidine derivatives. These were separated by HPLC using alpha-acid glycoprotein (AGP) and beta-cyclodextrin (beta-CD) columns. The resolution conditions were optimized and the results were compared. Since the method provided resolution greater than 2 it was also applied to preparative separation. After separation, each of them was detagged using Zn dust and 10% aqueous trifluoroacetic acid. For analytical purposes dinitrophenyl (DNP) derivatives of DL-Cys and DL-PenA were also prepared and were resolved on both the columns. The detection was carried out using photodiode array detection system at 231 nm. The limits of detection were found to be 0.01% and 0.004% for spirothiazolidine carboxylic acid and DNP derivatives, respectively.

  4. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.


    Angarita, Monica; Müller-Späth, Thomas; Baur, Daniel; Lievrouw, Roel; Lissens, Geert; Morbidelli, Massimo


    A twin-column counter-current chromatography processes, CaptureSMB, was used for the protein A affinity capture of a monoclonal antibody (mAb). By means of sequential loading, the process improves the utilization of the stationary phase by achieving loadings much closer to the static binding capacity of the resin in comparison to batch chromatography. Using a mAb capture case study with protein A affinity chromatography, the performance and product quality obtained from CaptureSMB and batch processes were compared. The effect of the flow rate, column length and titer concentration on the process performance and product quality were evaluated. CaptureSMB showed superior performance compared to batch chromatography with respect to productivity, capacity utilization, product concentration and buffer consumption. A simplified economic evaluation showed that CaptureSMB could decrease resin costs of 10-30% depending on the manufacturing scenario.

  5. Modeling the effects of type and concentration of organic modifiers, column type and chemical structure of analytes on the retention in reversed phase liquid chromatography using a single model.


    Jouyban, Abolghasem; Soltani, Somaieh; Shayanfar, Ali; Pappa-Louisi, Adriani


    A previously proposed model for representing the retention factor (k) of an analyte in mixed solvent mobile phases was extended to calculate the k of different analytes with respect to the nature of analyte, organic modifier, its concentration and type of the stationary phase. The accuracy of the proposed method was evaluated by calculating mean percentage deviation (MPD) as accuracy criterion. The predicted vs. observed plots were also provided as goodness of fit criteria. The developed model prediction capability compared with a number of previous models (i.e. LSER, general LSER and Oscik equation) through MPD and fitting plots. The proposed method provided acceptable predictions with the advantage of modeling the effects of organic modifiers, mobile phase compositions, columns and analytes using a single equation. The accuracy of developed model was checked using the one column and one analyte out cross validation analyses and the results showed that the developed model was able to predict the unknown analyte retention and the analytes retentions on unknown column accurately.

  6. Collapse of a Liquid Column: Numerical Simulation and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.


    This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.

  7. Safety concerns in ultrahigh pressure capillary liquid chromatography using air-driven pumps.


    Xiang, Yanqiao; Maynes, Daniel R; Lee, Milton L


    Ultrahigh pressure liquid chromatography (UHPLC) is an emerging technique which utilizes pressures higher than 10,000 p.s.i. to overcome the flow resistance imposed when using very small particles as packing materials in fused-silica capillary columns (1 p.s.i.=6894.76 Pa). This technique has demonstrated exceptionally high separation speeds and chromatographic efficiencies. However, safety is a concern when extremely high pressures are used. In this study, the safety aspects of capillary column rupture during operation were identified and carefully evaluated. First, liquid jets may be formed as a result of blow-out of the on-column frits or from rupture of the capillary at or near the column inlet. Second, incorrect installation of the capillary at the injector, failure of the ferrule used in the capillary connection, or rupture of the capillary can produce high speed projectiles of silica particles or column fragments. Experiments were carried out in the laboratory to produce liquid (water) jets and capillary projectiles using a UHPLC system, and the power density, an important parameter describing water jets in industrial practice, was calculated. Experimental results were in accordance with theoretical calculations. Both indicated that water jets and capillary projectiles under ultrahigh pressures might lead to skin penetration under limited conditions. The use of a plexiglass shroud to cover an initial length of the installed capillary column can eliminate any safety-related concerns about liquid jets or capillary projectiles.

  8. Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin.


    Rathore, Anurag S; Mittal, Shachi; Lute, Scott; Brorson, Kurt


    Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance.

  9. Separation of stereoisomers of several furan derivatives by capillary gas chromatography-mass spectrometry, supercritical fluid chromatography, and liquid chromatography using chiral stationary phases.


    Kasai, Hiroko F; Tsubuki, Masayoshi; Takahashi, Kazunori; Shirao, Mika; Matsumoto, Yohichiro; Honda, Toshio; Seyama, Yoshiyuki


    The direct separation of several stereoisomers (enantiomers and geometrical isomers) of furan derivatives, important intermediates for the synthesis of physiologically active natural products, was achieved using capillary gas chromatography/mass spectrometry with a per-O-methyl-beta-cyclodextrin, supercritical fluid chromatography and high-performance liquid chromatography with a tris(3,5-dimethylphenylcarbamate) of cellulose or amylose for the chiral stational phases, respectively. The temperature dependence of the peak resolution (Rs) and the retention factor (k) over the range of 110-130 degrees was studied using crotyl furfuryl ether in gas chromatography. Successive increases in the Rs value and of the difference between the k value of the E-isomer and the k value of the Z-isomer were observed when the gradient temperature was decreased. The per-O-methyl-beta-cyclodextrin column was suitable for use with volatile furan ethers whose molecular masses are between 150 and 180. In conclusion, the separation of thermally unstable furan derivatives was accomplished using supercritical fluid chromatography and high-performance liquid chromatography.

  10. Improved micromachined column design and fluidic interconnects for programmed high-temperature gas chromatography separations.


    Gaddes, David; Westland, Jessica; Dorman, Frank L; Tadigadapa, Srinivas


    This work focuses on the development and experimental evaluation of micromachined chromatographic columns for use in a commercial gas chromatography (GC) system. A vespel/graphite ferrule based compression sealing technique is presented using which leak-proof fluidic interconnection between the inlet tubing and the microchannel was achieved. This sealing technique enabled separation at temperatures up to 350°C on a μGC column. This paper reports the first high-temperature separations in microfabricated chromatographic columns at these temperatures. A 2m microfabricated column using a double Archimedean spiral design with a square cross-section of 100μm×100μm has been developed using silicon microfabrication techniques. The microfabricated column was benchmarked against a 2m 100μm diameter commercial column and the performance between the two columns was evaluated in tests performed under identical conditions. High temperature separations of simulated distillation (ASTM2887) and polycyclic aromatic hydrocarbons (EPA8310) were performed using the μGC column in temperature programmed mode. The demonstrated μGC column along with the high temperature fixture offers one more solution toward potentially realizing a portable μGC device for the detection of semi-volatile environmental pollutants and explosives without the thermal limitations reported to date with μGC columns using epoxy based interconnect technology.

  11. Innovative modeling of Tuned Liquid Column Damper motion

    NASA Astrophysics Data System (ADS)

    Di Matteo, A.; Lo Iacono, F.; Navarra, G.; Pirrotta, A.


    In this paper a new model for the liquid motion within a Tuned Liquid Column Damper (TLCD) device is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it is shown that existing model does not always lead to accurate prediction of the liquid motion. A better model is then needed for accurate simulation of the behavior of TLCD systems. As regards, it has been demonstrated how correctly including the first linear liquid sloshing mode, through the equivalent mechanical analogy well established in literature, produces numerical results that highly match the corresponding experimental ones. Since the apparent effect of sloshing is the deviation of the natural frequency from the theoretical one, the authors propose a fractional differential equation of motion. The latter choice is supported by the fact that the introduction a fractional derivative of order α alters simultaneously both the resonant frequency and the degree of damping of the system. It will be shown, through an extensive experimental analysis, how the proposed model accurately describes liquid surface displacements.

  12. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.


    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  13. Sub-to super-ambient temperature programmable microfabricated gas chromatography column


    Robinson, Alex L.; Anderson, Lawrence F.


    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  14. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil


    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  15. Rapid simultaneous determination of eperisone, tolperisone, and tizanidine in human serum by using a MonoSpin® C18 extraction column and liquid chromatography/tandem mass spectrometry.


    Miura, Naoya; Saito, Takeshi; Taira, Takayuki; Yamagiwa, Takeshi; Morita, Sein; Inokuchi, Sadaki


    A method was developed for rapid toxicological analysis of eperisone, tolperisone, and tizanidine in human serum using a MonoSpin® C18 extraction column and LC/MS/MS. The method was validated for LOD, linearity, precision, and extraction recovery. This method was rapid with an LOD of 0.5 ng/mL, linearity range 1-500.0 ng/mL (r2 = 0.999), and RSD value below 14.6%. Extraction recovery from the sample was greater than 98.6, 98.8, and 88.5% for eperisone, tolperisone, and tizanidine, respectively. Results showed that combination of the MonoSpin C18 extraction column and LC/MS/MS is a simple and rapid method for the analysis of these three analytes, and a method is described for simultaneous quantitative determination of the analytes in human serum by LC/MSIMS. This method was used to determine the serum levels of eperisone in a patient with eperisone poisoning, and could be successfully applied for screening analyses in clinical cases other than poisoning.

  16. Separation of carbohydrates using hydrophilic interaction liquid chromatography.


    Fu, Qing; Liang, Tu; Li, Zhenyu; Xu, Xiaoyong; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao


    A strategy was developed to rapidly evaluate chromatographic properties of hydrophilic interaction chromatography (HILIC) columns for separating carbohydrates. Seven HILIC columns (Silica, Diol, TSK Amide-80, XAmide, Click Maltose, Click β-CD, and Click TE-Cys columns) were evaluated by using three monosaccharide and seven disaccharides as probes. The influence of column temperature on the peak shape and tautomerization of carbohydrates, as well as column selectivity were investigated. The influence of surface charge property on the retention was also studied by using glucose, glucuronic acid, and glucosamine, which indicated that buffer salt concentration and pH value in mobile phase was necessary to control the ionic interactions between ionic carbohydrates and HILIC columns. According to evaluation results, the XAmide column was selected as an example to establish experimental schemes for separation of complex mixtures of oligosaccharide.

  17. Quality evaluation of moluodan concentrated pill using high-performance liquid chromatography fingerprinting coupled with chemometrics.


    Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong


    In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill.

  18. Trends in High Performance Liquid Chromatography for Cultural Heritage.


    Degano, Ilaria; La Nasa, Jacopo


    The separation, detection and quantitation of specific species contained in a sample in the field of Cultural Heritage requires selective, sensitive and reliable methods. Procedures based on liquid chromatography fulfil these requirements and offer a wide range of applicability in terms of analyte types and concentration range. The main applications of High Performance Liquid Chromatography in this field are related to the separation and detection of dyestuffs in archaeological materials and paint samples by reversed-phase liquid chromatography with suitable detectors. The relevant literature will be revised, with particular attention to sample treatment strategies and future developments. Reversed phase chromatography has also recently gained increasing importance in the analysis of lipid binders and lipid materials in archaeological residues: the main advantages and disadvantages of the new approaches will be discussed. Finally, the main applications of ion chromatography and size exclusion chromatography in the field of Cultural Heritage will be revised in this chapter.

  19. Homochiral metal-organic framework used as a stationary phase for high-performance liquid chromatography.


    Kong, Jiao; Zhang, Mei; Duan, Ai-Hong; Zhang, Jun-Hui; Yang, Rui; Yuan, Li-Ming


    Metal-organic frameworks are promising porous materials. Chiral metal-organic frameworks have attracted considerable attention in controlling enantioselectivity. In this study, a homochiral metal-organic framework [Co(2) (D-cam)(2) (TMDPy)] (D-cam = D-camphorates, TMDPy = 4,4'-trimethylenedipyridine) with a non-interpenetrating primitive cubic net has been used as a chiral stationary phase in high-performance liquid chromatography. It has allowed the successful separation of six positional isomers and six chiral compounds. The good selectivity and baseline separation, or at least 60% valley separation, confirmed its excellent molecular recognition characteristics. The relative standard deviations for the retention time of run-to-run and column-to-column were less than 1.8 and 3.1%, respectively. These results demonstrate that [Co(2) (D-cam)(2) (TMDPy)] may represent a promising chiral stationary phase for use in high-performance liquid chromatography.

  20. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.


    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett


    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks.

  1. Modeling Transport in Gas Chromatography Columns for the Micro-ChemLab

    SciTech Connect



    The gas chromatography (GC) column is a critical component in the microsystem for chemical detection ({mu}ChemLab{trademark}) being developed at Sandia. The goal is to etch a meter-long GC column onto a 1-cm{sup 2} silicon chip while maintaining good chromatographic performance. Our design strategy is to use a modeling and simulation approach. We have developed an analytical tool that models the transport and surface interaction process to achieve an optimized design of the GC column. This analytical tool has a flow module and a separation module. The flow module considers both the compressibility and slip flow effects that may significantly influence the gas transport in a long and narrow column. The separation module models analyte transport and physico-chemical interaction with the coated surface in the GC column. It predicts the column efficiency and performance. Results of our analysis will be presented in this paper. In addition to the analytical tool, we have also developed a time-dependent adsorption/desorption model and incorporated this model into a computational fluid dynamics (CFD) code to simulate analyte transport and separation process in GC columns. CFD simulations can capture the complex three-dimensional flow and transport dynamics, whereas the analytical tool cannot. Different column geometries have been studied, and results will be presented in this paper. Overall we have demonstrated that the modeling and simulation approach can guide the design of the GC column and will reduce the number of iterations in the device development.

  2. A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography

    ERIC Educational Resources Information Center

    Nash, Barbara T.


    A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…

  3. Separation of the Carotenoid Bixin from Annatto Seeds Using Thin-Layer and Column Chromatography

    ERIC Educational Resources Information Center

    McCullagh, James V.; Ramos, Nicholas


    In this experiment the carotenoid bixin is isolated from annatto ("Bixa orellana") seeds using column chromatography. The experiment has several key advantages over previous pigment separation experiments. First, unlike other experiments significant quantities of the carotenoid (typically 20 to 25 mg) can be isolated from small quantities of plant…

  4. High-performance liquid chromatography analysis of plant saponins: An update 2005-2010

    PubMed Central

    Negi, Jagmohan S.; Singh, Pramod; Pant, Geeta Joshi Nee; Rawat, M. S. M.


    Saponins are widely distributed in plant kingdom. In view of their wide range of biological activities and occurrence as complex mixtures, saponins have been purified and separated by high-performance liquid chromatography using reverse-phase columns at lower wavelength. Mostly, saponins are not detected by ultraviolet detector due to lack of chromophores. Electrospray ionization mass spectrometry, diode array detector , evaporative light scattering detection, and charged aerosols have been used for overcoming the detection problem of saponins. PMID:22303089

  5. Investigation of Pinus mugo essential oil oxygenated fraction by combined use of gas chromatography and dry column chromatography.


    A, M B; Coran, S A; Giannellini, V; Vincieri, F F; Moneti, G


    The oxygenated compounds of Pinus mugo Turra essential oil were investigated by a combination of GC and dry column chromatography (DCC) coordinated by GC data processing. The collected data resulted in a bar graph ("normalized" gas chromatogram) giving the RRT's and relative amounts of 68 components; 38 of them were identified by MS and IR. The described procedure may be used for essential oil analysis in general.

  6. Emerging approaches to estimate retention factors in high performance liquid chromatography.


    Bermúdez-Saldaña, José María; Escuder-Gilabert, Laura; Villanueva-Camañas, Rosa María; Medina-Hernández, María José; Sagrado, Salvador


    The retention factor is one of the most universally used parameters in chromatography. The errors associated with the conventional ways to determine the retention factor of compounds in liquid chromatography are studied and compared with those corresponding to new approaches. The later avoid the use of extra-column time and hold-up time values, which have proven to be tedious and ambiguous. Simulations and real data, used to examine the accuracy of four different approaches (two classic and two new), suggest that the new approaches could be considered more satisfactory than the classic ones.

  7. 5-O-caffeoylshikimic acid from Solanum somalense leaves: advantage of centrifugal partition chromatography over conventional column chromatography.


    Chideh, Saïda; Pilard, Serge; Attoumbré, Jacques; Saguez, Robert; Hassan-Abdallah, Alshaimaa; Cailleu, Dominique; Wadouachi, Anne; Baltora-Rosset, Sylvie


    Solanum somalense leaves, used in Djibouti for their medicinal properties, were extracted by MeOH. Because of the high polyphenol and flavonoid contents of the extract, respectively, determined at 80.80 ± 2.13 mg gallic acid equivalent/g dry weight and 24.4 ± 1.01 mg quercetin equivalent/g dry weight, the isolation and purification of the main polyphenols were carried out by silica gel column chromatography and centrifugal partition chromatography. Column chromatography led to 11 enriched fractions requiring further purification, while centrifugal partition chromatography allowed the easy recovery of the main compound of the extract. In a solvent system composed of CHCl3/MeOH/H2O (9.5:10:5), 21.8 mg of this compound at 97% purity was obtained leading to a yield of 2.63%. Its structure was established as 5-O-caffeoylshikimic acid by mass spectrometry and NMR spectroscopy. This work shows that S. somalense leaves contain very high level of 5-O-caffeoylshikimic acid (0.74% dry weight), making it a potential source of production of this secondary metabolite that is not commonly found in nature but could be partly responsible of the medicinal properties of S. somalense leaves.

  8. Use of high pressure liquid chromatography in the study of liquid lubricant oxidation

    NASA Technical Reports Server (NTRS)

    Morales, W.


    The general principles of classical liquid chromatography and high-pressure liquid chromatography (HPLC) are reviewed, and their advantages and disadvantages are compared. Several chromatographic techniques are reviewed, and the analysis of a C-ether liquid lubricant by each technique is illustrated. An analysis by size exclusion chromatography of an ester lubricant, which had been degraded using a micro-oxidation apparatus, is illustrated to show how HPLC can be used in the study of high-temperature lubricant degradation.

  9. High performance liquid chromatography equipped with a cathodic detector and column-switching device as a high-throughput method for a phosphatase assay with p-nitrophenyl phosphate.


    Yamauchi, Yuji; Ido, Megumi; Maeda, Hatsuo


    LC coupled to an electrochemical detector (LC-EC) operating in cathodic mode with a column-switching system realizes a high-throughput detection of p-nitrophenol (NP). The measurement-time for each NP sample was shortened to 20 s, and the successive analyses of 39 samples was completed within 13 min. In the present system, the limits of detection and quantification were 0.15 and 0.20 microM, respectively, and further, up to 25 microM, a linear calibration curve was afforded. Relative standard deviations for standard solutions of 0.20, 1.0, and 25 microM NP were 4.3, 2.0, and 1.1% (n = 5), respectively. Between-run precisions of the analysis of 5.0 and 25 microM NP over 6 days were 4.8 and 1.3%, respectively. A comparison with the commonly used Bessey-Lowry-Brock method indicates that the present LC-EC is useful for the high-throughput assay of acid and alkaline phosphatases in urine and blood samples with a p-nitrophenyl phosphate substrate.

  10. Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column.


    Rostagno, M A; Manchón, N; D'Arrigo, M; Guillamón, E; Villares, A; García-Lafuente, A; Ramos, A; Martínez, J A


    A fast HPLC method with diode-array absorbance detector and fluorescence detector for the analysis of 19 phenolic acids, flavan-3-ols, flavones, flavonols and caffeine in different types of samples was developed. Using a C(18) reverse-phase fused-core column separation of all compounds was achieved in less than 5 min with an overall sample-to-sample time of 10 min. Evaluation of chromatographic performance revealed excellent reproducibility, resolution, selectivity and peak symmetry. Limits of detection for all analyzed compounds ranged from 0.5 to 211 μg L(-1), while limits of quantitation ranged between 1.5 and 704 μg L(-1). The developed method was used for the determination of analytes present in different samples, including teas (black, white, green), mate, coffee, cola soft drink and an energetic drink. Concentration of the analyzed compounds occurring in the samples ranged from 0.4 to 314 mg L(-1). Caffeine was the analyte found in higher concentrations in all samples. Phytochemical profiles of the samples were consistent with those reported in the literature.

  11. A novel fully automated on-line coupled liquid chromatography-gas chromatography technique used for the determination of organochlorine pesticide residues in tobacco and tobacco products.


    Qi, Dawei; Fei, Ting; Sha, Yunfei; Wang, Leijun; Li, Gang; Wu, Da; Liu, Baizhan


    In this study, a novel fully automated on-line coupled liquid chromatography-gas chromatography (LC-GC) technique was reported and applied for the determination of organochlorine pesticide residues (OCPs) in tobacco and tobacco products. Using a switching valve to isolate the capillary pre-column and the analytical column during the solvent evaporation period, the LC solvent can be completely removed and prevented from reaching the GC column and the detector. The established method was used to determinate the OCPs in tobacco samples. By using Florisil SPE column and employing GPC technique, polarity impurities and large molecule impurities were removed. A dynamic range 1-100ng/mL was achieved with detection limits from 1.5 to 3.3μg/kg. The method exhibited good repeatability and recoveries. This technology may provide an alternative way for trace analysis of complex samples.

  12. A method for the quantification of biomarkers of exposure to acrylonitrile and 1,3-butadiene in human urine by column-switching liquid chromatography-tandem mass spectrometry.


    Schettgen, T; Musiol, A; Alt, A; Ochsmann, E; Kraus, T


    1,3-Butadiene and acrylonitrile are important industrial chemicals that have a high production volume and are ubiquitous environmental pollutants. The urinary mercapturic acids of 1,3-butadiene and acrylonitrile-N-acetyl-S-(3,4-dihydroxybutyl)cysteine (DHBMA) and MHBMA (an isomeric mixture of N-acetyl-S-((1-hydroxymethyl)-2-propenyl)cysteine and N-acetyl-S-((2-hydroxymethyl)-3-propenyl)cysteine) for the former and N-acetyl-S-2-cyanoethylcysteine (CEMA) for the latter-are specific biomarkers for the determination of individual internal exposure to these chemicals. We have developed and validated a fast, specific, and very sensitive method for the simultaneous determination of DHBMA, MHBMA, and CEMA in human urine using an automated multidimensional LC/MS/MS method that requires no additional sample preparation. Analytes are stripped from urinary matrix by online extraction on a restricted access material, transferred to the analytical column, and subsequently determined by tandem mass spectrometry using labeled internal standards. The limits of quantification (LOQs) for DHBMA, MHBMA, and CEMA were 10 microg/L, 2 microg/L, and 1 microg/L urine, respectively, and were sufficient to quantify the background exposure of the general population. Precision within series and between series for all analytes ranged from 5.4 to 9.9%; mean accuracy was between 95 and 115%. We applied the method on spot urine samples from 210 subjects from the general population with no occupational exposure to 1,3-butadiene or acrylonitrile. A background exposure of the general population to acrylonitrile was discovered that is basically influenced by individual exposure to passive smoke as well as active smoking habits. Smokers showed a significantly higher excretion of MHBMA, whereas DHBMA levels did not differ significantly. Owing to its automation, our method is well suited for application in occupational or environmental studies.

  13. Combining the quick, easy, cheap, effective, rugged and safe approach and clean-up by immunoaffinity column for the analysis of 15 mycotoxins by isotope dilution liquid chromatography tandem mass spectrometry.


    Desmarchelier, Aurélien; Tessiot, Sabine; Bessaire, Thomas; Racault, Lucie; Fiorese, Elisa; Urbani, Alessandro; Chan, Wai-Chinn; Cheng, Pearly; Mottier, Pascal


    Optimization and validation of a multi-mycotoxin method by LC-MS/MS is presented. The method covers the EU-regulated mycotoxins (aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, T-2 and HT-2), as well as nivalenol and 3- and 15-acetyldeoxynivalenol for analysis of cereals, cocoa, oil, spices, infant formula, coffee and nuts. The proposed procedure combines two clean-up strategies: First, a generic preparation suitable for all mycotoxins based on the QuEChERS (for quick, easy, cheap, effective, rugged and safe) protocol. Second, a specific clean-up devoted to aflatoxins and ochratoxin A using immunoaffinity column (IAC) clean-up. Positive identification of mycotoxins in matrix was conducted according to the confirmation criteria defined in EU Commission Decision 2002/657/EC while quantification was performed by isotopic dilution using (13)C-labeled mycotoxins as internal standards. Limits of quantification were at or below the maximum levels set in the EC/1886/2006 document for all mycotoxin/matrix combinations under regulation. In particular, the inclusion of an IAC step allowed achieving LOQs as low as 0.05 and 0.25μg/kg in cereals for aflatoxins and ochratoxin A, respectively. Other performance parameters like linearity [(r)(2)>0.99], recovery [71-118%], precision [(RSDr and RSDiR)<33%], and trueness [78-117%] were all compliant with the analytical requirements stipulated in the CEN/TR/16059 document. Method ruggedness was proved by a verification process conducted by another laboratory.

  14. A simple method for the assay of colistin in human plasma, using pre-column derivatization with 9-fluorenylmethyl chloroformate in solid-phase extraction cartridges and reversed-phase high-performance liquid chromatography.


    Li, J; Milne, R W; Nation, R L; Turnidge, J D; Coulthard, K; Johnson, D W


    A simple, selective and sensitive high-performance liquid chromatographic (HPLC) method is described for the determination of colistin in human plasma. Derivatization with 9-fluorenylmethyl chloroformate was performed in the same solid-phase extraction C18 cartridge used for sample pre-treatment, followed by reversed-phase HPLC with fluorimetric detection. Quantification was achieved using the ratio of the summed peak areas of colistin A and B derivatives to that of the derivative of netilmicin (internal standard). Linear calibration curves were obtained within the concentrations of colistin sulfate from 0.10 to 4.0 mg/l in plasma. Accuracy was within 10% and reproducibility (RSD) was less than 10%.

  15. Determination of the column hold-up volume in supercritical fluid chromatography using nitrous-oxide.


    Vajda, Péter; Guiochon, Georges


    This study introduces a new tracer that is useful for the determination of the hold-up time or volume of packed columns, particularly of those used in supercritical fluid chromatography. The thermodynamic void volume of three columns packed with different adsorbents were determined using the weight difference method. These void volumes were used as the reference point in the further discussion. The hold-up volumes of these columns were determined under dynamic conditions, using nitrous oxide dissolved in methanol as the hold-up time marker. Changes in the hold-up volumes of these columns were monitored during changes of the volumetric flow rate of pure supercritical carbon dioxide and of dilute mixtures of organic modifier and supercritical carbon dioxide. The results suggest significant methanol enrichment on the adsorbent surface.

  16. Separation and characterization of bufadienolides in toad skin using two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography coupled with mass spectrometry.


    Zhang, Yun; Jin, Hongli; Li, Xiaolong; Zhao, Jianqiang; Guo, Xiujie; Wang, Jixia; Guo, Zhimou; Zhang, Xiuli; Tao, Yanduo; Liu, Yanfang; Chen, Deliang; Liang, Xinmiao


    Bufadienolides possess various bioactivities especially antitumor. Due to the high structural diversity, the separation of bufadienolides often suffers from coelution problem on conventional RP columns. In this work, an off-line two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D-NPLC×RPLC) method was developed to separate and characterize bufadienolides in toad skin. Several RP and NP columns were evaluated with five reference bufadienlides. The XUnion C18 and XAmide columns exhibited superior chromatographic performances for bufadienlide separation, and were selected in RPLC and NPLC, respectively. RPLC was used in the second-dimension for the good compatibility with MS, while NPLC was adopted in the first-dimension. The orthogonality of the 2D-NPLC×RPLC system was investigated by the geometric approach using fifteen bufadienolide mixtures. The result was 49.6%, demonstrating reasonable orthogonality of this 2D-LC system. By combining the 2D-LC system with MS, 64 bufadienlides including 33 minor ones and 11 pairs of isomers in toad skin were identified. This off-line 2D-NPLC×RPLC allowed to solve the coelution problem of bufadienlides in one-dimension RPLC, and thus facilitated the identification significantly.

  17. High Performance Liquid Chromatography of Vitamin A: A Quantitative Determination.

    ERIC Educational Resources Information Center

    Bohman, Ove; And Others


    Experimental procedures are provided for the quantitative determination of Vitamin A (retinol) in food products by analytical liquid chromatography. Standard addition and calibration curve extraction methods are outlined. (SK)

  18. A generalized theory of chromatography and multistep liquid extraction

    NASA Astrophysics Data System (ADS)

    Chizhkov, V. P.; Boitsov, V. N.


    A generalized theory of chromatography and multistep liquid extraction is developed. The principles of highly efficient processes for fine preparative separation of binary mixture components on a fixed sorbent layer are discussed.

  19. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Miller, C. J.; Elias, G.; Schmitt, N. C.; Rae, C.


    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify trace levels of the military explosives, RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol and filtered using no additional sample cleanup of the sample extract prior to analysis. The filtered methanol extracts were injected directly into several different column types and analyzed by high performance liquid chromatography using ultraviolet detection and/or gas chromatography using electron capture detection. This paper describes general screening methods that were used to determine the presence of explosives (RDX, TNT, and PETN) in unknown samples of denim, colored flannel, vinyl and canvas in addition to techniques that have been optimized for quantification of each explosive from the substrate extracts.

  20. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak's extracts

    NASA Astrophysics Data System (ADS)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny


    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  1. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak’s extracts

    SciTech Connect

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,; Suzery, Meiny


    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  2. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    SciTech Connect

    Morris, John B.


    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  3. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.


    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan


    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography.

  4. Comparison of IMAC and MOAC for phosphopeptide enrichment by column chromatography.


    Negroni, Luc; Claverol, Stephane; Rosenbaum, Jean; Chevet, Eric; Bonneu, Marc; Schmitter, Jean-Marie


    Automated phosphopeptide enrichment prior to MS analysis by means of Immobilized Metal Affinity Chromatography (IMAC) and Metal Oxide Affinity Chromatography (MOAC) has been probed with packed columns. We compared POROS-Fe³⁺ and TiO₂ (respectively IMAC and MOAC media), using a simple mixture of peptides from casein-albumin and a complex mixture of peptides isolated from mouse liver. With theses samples, selectivity of POROS-Fe³⁺ and TiO₂ were pH dependant. In the case of liver extract, selectivity increased from 12-18% to 58-60% when loading buffer contained 0.1 M acetic acid or 0.1 M trifluoroacetic acid, respectively. However, with POROS-Fe³⁺ column, the number of identifications decreased from 356 phosphopeptides with 0.1 M acetic acid to 119 phosphopeptides with 0.1 M TFA. This decrease of binding capacity of POROS-Fe³⁺ was associated with strong Fe³⁺ leaching. Furthermore, repetitive use of IMAC-Fe³⁺ with the 0.5 M NH₄OH solution required for phosphopeptide elution induced Fe₂O₃ accumulation in the column. By comparison, MOAC columns packed with TiO₂ support do not present any problem of stability in the same conditions and provide a reliable solution for packed column phosphopeptide enrichment.

  5. Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications.


    Yusuf, Kareem; Aqel, Ahmad; A L Othman, Zeid; Badjah-Hadj-Ahmed, Ahmed Yacine


    Gas chromatography (GC) is considered the least common application of both polymer and silica-based monolithic columns. This study describes the fabrication of alkyl methacrylate monolithic materials for use as stationary phases in capillary gas chromatography. Following the deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (TMSM), the monoliths were formed by the co-polymerization of either hexyl methacrylate (HMA) or lauryl methacrylate (LMA) with different percentage of ethylene glycol dimethacrylate (EDMA) in presence of an initiator (azobisisobutyronitrile, AIBN) and a mixture of porogens include 1-propanol, 1,4-butanediol and water. The monoliths were prepared in 500mm length capillaries possessing inner diameters of 250μm. The efficiencies of the monolithic columns for low molecular weight compounds significantly improved as the percentage of crosslinker was increased, because of the greater proportion of pores less than 50nm. The columns containing lower percentages of crosslinker were able to rapidly separate a series of 8 alkane members in 0.7min, but the separation was less efficient for the light alkanes. Columns prepared with the lauryl methacrylate monomer yielded a different morphology for the monolith-interconnected channels. The channels were more branched, which increased the separation time, and unlike the other columns, allowed for temperature programming.

  6. Enantioseparation of methamphetamine by supercritical fluid chromatography with cellulose-based packed column.


    Segawa, Hiroki; Iwata, Yuko T; Yamamuro, Tadashi; Kuwayama, Kenji; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Inoue, Hiroyuki


    The enantiomers of methamphetamine were differentiated by supercritical fluid chromatography (SFC) with an enantioselective cellulose-based packed column. The optimization of the chromatographic conditions was achieved by changing column temperature, co-solvent proportion, additive concentration, flow rate and back pressure. In particular, the additive concentration crucially changed the resolution between the enantiomers. After determining the optimized conditions, the enantiomers of methamphetamine were successfully separated. The analytical precision, accuracy and limit of detection were checked by using the authentic standard and seized real samples. We believe that chiral SFC is a promising method for enantioseparation of forensic samples.

  7. [Construction of a two-dimensional liquid chromatography separation system for high abundance proteins depletion in human plasma].


    Zhu, Shaochun; Zhang, Xueyang; Gao, Mingxia; Yan, Guoquan; Zhang, Xiangmin


    High abundance proteins existing in human plasma severely impede the detection of low abundance proteins. This is one of the most difficult problems encountered in plasma proteomics research. We developed a two-dimensional liquid chromatography system with strong anion exchange chromatography-reversed-phase liquid chromatography (SAX-RPLC) for the extensive separation of plasma proteins and selective depletion of high abundance proteins. TSKgel SuperQ-5PW was selected as the first dimensional separation column for crude human plasma fractionation and Jupiter C4 column was selected as the second dimensional separation column. Separation gradients of the two-dimensional liquid chromatography system were optimized to ensure an extensive separation of plasma proteins. Ten peaks with high signal intensities ( >20 mAU) at 215 nm during the second dimensional separation were collected and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). As a result, 32 proteins, all of which were reported to be high abundance proteins in plasma, including human serum albumin (HSA), immunoglobulin G (IgG) and so on were successfully identified. This system provides an effective method for future depletion of more high abundance proteins and in-depth research in human plasma proteomics.

  8. Chromatography


    Chromatography is a way of separating two or more chemical compounds. Chemical compounds are chemicals that are ... of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  9. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography.


    Luo, Haibin; Lee, Nacole; Wang, Xiangyang; Li, Yuling; Schmelzer, Albert; Hunter, Alan K; Pabst, Timothy; Wang, William K


    Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS.

  10. Microfluidic liquid chromatography system for proteomic applications and biomarker screening.


    Lazar, Iulia M; Trisiripisal, Phichet; Sarvaiya, Hetal A


    A microfluidic liquid chromatography (LC) system for proteomic investigations that integrates all the necessary components for stand-alone operation, i.e., pump, valve, separation column, and electrospray interface, is described in this paper. The overall size of the LC device is small enough to enable the integration of two fully functional separation systems on a 3 in. x 1 in. glass microchip. A multichannel architecture that uses electroosmotic pumping principles provides the necessary functionality for eluent propulsion and sample valving. The flow rates generated within these chips are fully consistent with the requirements of nano-LC platforms that are routinely used in proteomic applications. The microfluidic device was evaluated for the analysis of a protein digest obtained from the MCF7 breast cancer cell line. The cytosolic protein extract was processed according to a shotgun protocol, and after tryptic digestion and prefractionation using strong cation exchange chromatography (SCX), selected sample subfractions were analyzed with conventional and microfluidic LC platforms. Using similar experimental conditions, the performance of the microchip LC was comparable to that obtained with benchtop instrumentation, providing an overlap of 75% in proteins that were identified by more than two unique peptides. The microfluidic LC analysis of a protein-rich SCX fraction enabled the confident identification of 77 proteins by using conventional data filtering parameters, of 39 proteins with p < 0.001, and of 5 proteins that are known to be cancer-specific biomarkers, demonstrating thus the potential applicability of these chips for future high-throughput biomarker screening applications.

  11. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    SciTech Connect

    C.J. Miller; G. Elias; N.C. Schmitt; C. Rae


    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that were used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.

  12. Determination of sulfite in foods by headspace liquid chromatography

    SciTech Connect

    Lawrence, J.F.; Chadha, R.K.


    Sulfite was determined in a variety of foods by liquid chromatography (LC) after the samples were mixed with a solution containing mannitol, FeSO/sub 4/, and Na/sub 2/HPO/sub 4/, adjusted to pH 11, and left to stand for 15 min at room temperature. An aliquot of the mixture was placed in a headspace vial and mixed with 50% H/sub 3/PO/sub 4/. After 15 min, a portion of the headspace was removed with a syringe containing LC mobile phase without acetonitrile. The syringe was shaken and an aliquot of the solution was analyzed on an anion exchange column with a mobile phase of 0.03M methane sulfonate (pH 10.8) containing 5% acetonitrile. Sulfite was detected amperometrically (glassy carbon electrode) at +0.7 V. The method was successfully compared to the FDA-modified Monier-Williams procedure for a variety of foods. Minimum detectable levels were about 1, based on a 15 g sample.

  13. Gas-liquid chromatography of fecal neutral steriods.


    Gerhardt, K O; Gehrke, C W; Rogers, I T; Flynn, M A; Hentges, D J


    A method is described for the analysis of fecal neutral steriods with a dual-column gas-liquid chromatography (GLC) system. After saponification of the fecal slurry, the neutral steroids were extracted with hexane. The GLC separation of the compounds and quantitation were achieved by simultaneous injection of the derivatized and derivatized aliquots of the extract onto dual colmuns under identical conditions. The neutral steroids of interest were than identified by matching the retention times with those of known standards, and identification was confirmed by use of an interfaced GLC high-resolution mass spectrometry system. The detection limit was 0.003 mg of steroid/g of fecal slurry. The pricision of the method is illustrated by a relative standard diviation of 2-10% and a recovery of neutral steroids from 73-96%. The method was applied to the determination of fecal neutral steroids in a "High protein diet in colon cancer study". A considerably larger level of coprostanone than of coprostanol was observed. Data on neutral steroids in fecal samples from subjects on different diets are the subject of a separate publication.

  14. A Fiber Optic Colorimeter For Liquid Phase Chromatography Of Aminoacids

    NASA Astrophysics Data System (ADS)

    Donati, S.; Tambosso, T.


    Liquid phase chromatography is a well known technique routinely used in analytical chemistry for assays and measurements of aminoacids 1,2. Basically, the solution is pumped at high pressure in a long capillary tube (the chromatographic column) to fraction out the constituents, is mixed to a suitable reactant (usually ninhydrine) so as to develop a spectral absorbance, and is finally analyzed in a flow cell by a colorimeter. With ninhydrine, the reaction product is DIDA (diketo-hydrindilidene-diketolhydrin diamine) which exhibits absorbance peaks at 440 nm (blue) and 570 nm (yellow) in a proportion dependent on the specific aminoacid (Fig. 1), while the amplitude of peaks is proportional to the aminoacid concentration in view of Lambert-Beer law. Besides the two measurement channels of absorbance, either of which or the sum of which is taken as the output signal, a third channel at the wavelength 690 nm at which DIDA is transparent (Ar = 0), is used internally as the reference to the first two. Thus, the colorimeter is actually a spectrophotometer with two fixed-wavelength channels, each referenced in wavelength. In this paper, we report on the design and engineering of a colorimeter aimed to medium/high performances, high reliability and low cost. Use of fiber optics as the beamsplitter of the optical channels is shown to give substantial advantages.

  15. Hydrophilic interaction liquid chromatography with alcohol as a weak eluent.


    Liu, Min; Ostovic, Judy; Chen, Emily X; Cauchon, Nina


    There has been a significant increase of interest in polar compound separation by hydrophilic interaction liquid chromatography (HILIC), in which acetonitrile is mostly used as a weak eluent. Although replacing acetonitrile with alcohols as organic modifiers has been previously reported, the separation mechanism was poorly understood. In this paper we explored the separation mechanism through the method development for the analysis of the trace amounts of polar and basic hydrazines, which were genotoxic in nature. Separation parameters such as the type and concentration of alcohol, acid modifier, and buffer in mobile phase as well as the choice of stationary phase and column temperature were studied. The data indicated that both electrostatic and hydrophilic interactions contributed to the retention and separation of the hydrazines. The results presented here provide insight into the adjustment of the retention and separation of analytes in HILIC mode with alcohol as a weak eluent. The optimized HILIC method coupled with chemiluminescent nitrogen detection (CLND) is simple and sensitive (reporting limit at 0.02%) and was applied to simultaneous analysis of hydrazine and 1,1-dimethylhydrazine in a pharmaceutical intermediate.

  16. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    SciTech Connect

    Read, Douglas; Sillerud, Colin Halliday


    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  17. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography.


    Liu, Huaping; Tanaka, Takeshi; Kataura, Hiromichi


    We report a gel column chromatography method for easily separating the optical isomers (i.e., left- and right-handed structures) of single-chirality carbon nanotubes. This method uses the difference in the interactions of the two isomers of a chiral single-wall carbon nanotube (SWCNT) with an allyl dextran-based gel, which result from the selective interaction of the chiral moieties of the gel with the isomers. Using this technique, we sorted optical isomers of nine distinct (n, m) single-chirality species from HiPco SWCNTs, which is the maximum number of isolable species of SWCNTs reported to date. Because of its advantages of technical simplicity, low cost, and high efficiency, gel column chromatography allows researchers to prepare macroscopic ensembles of single-structure SWCNTs and enables the complete discovery of intrinsic properties of SWCNTs and advances their application.

  18. Size exclusion chromatography of synthetic polymers and biopolymers on common reversed phase and hydrophilic interaction chromatography columns.


    Caltabiano, Anna M; Foley, Joe P; Barth, Howard G


    This work describes the applicability of common reversed phase and HILIC columns for size exclusion chromatography of synthetic and natural polymers. Depending on the nature of the solute and column stationary phase, a "non-retention" condition must be created with the aid of the mobile phase to achieve a unique size-based separation in isocratic mode. The various bonded phases show remarkable differences in size separations that are controlled by mobile phase conditions. Polymer-mobile phase and column-mobile phase solvation interactions determine polymer hydrodynamic volume (or solute bulkiness) and polymer-column steric interaction. Solvation interactions in turn depend on polymer, mobile phase and stationary phase polarities. Column-mobile phase solvation interactions determine the structural order of the bonded ligands that can vary from ordered (extended, aligned away from the silica substrate) to disordered (folded, pointing toward the silica substrate). Chain order increases with increased solvent penetration into the bonded phase. Increased chain order reduces pore volume, and therefore decreases the size-separation efficiency of a column. Conversely, decreased chain order increases pore volume and therefore increases the size-separation efficiency. The thermodynamic quality of the mobile phase also plays a significant role in the separation of polymers. "Poor" solvents can significantly reduce the hydrodynamic diameter of a solute and thus change their retention behavior. Medium polarity stationary phases, such as fluoro-phenyl and cyano, exhibit a unique retention behavior. With an appropriate polarity mobile phase, polar and non-polar synthetic polymers of the same molecular masses can be eluted at the same retention volumes.

  19. Signal analysis of NEMS sensors at the output of a chromatography column

    SciTech Connect

    Bertholon, François; Harant, Olivier; Bourlon, Bertrand; Gerfault, Laurent; Grangeat, Pierre; Jutten, Christian


    This article introduces a joined Bayesian estimation of gas samples issued from a gas chromatography column (GC) coupled with a NEMS sensor based on Giddings Eyring microscopic molecular stochastic model. The posterior distribution is sampled using a Monte Carlo Markov Chain and Gibbs sampling. Parameters are estimated using the posterior mean. This estimation scheme is finally applied on simulated and real datasets using this molecular stochastic forward model.

  20. Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan

    PubMed Central

    Suzuki, Shigeru


    The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891

  1. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua


    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  2. Selective isolation of β-glucan from corn pericarp hemicelluloses by affinity chromatography on cellulose column.


    Yoshida, Tomoki; Honda, Yoichi; Tsujimoto, Takashi; Uyama, Hiroshi; Azuma, Jun-ichi


    A combination of anion-exchange chromatography and affinity chromatography on a cellulose column was found to be effective for the isolation of β-(1,3;1,4)-glucan (BG) from corn pericarp hemicelluloses (CPHs). CPHs containing 6.6% BG were extracted from corn pericarp with 6M urea-2 wt% NaOH solution and initially fractionated into neutral and acidic parts by anion exchange chromatography to remove acidic arabinoxylan consisting of arabinose (35.6%) and xylose (50.9%). The neutral fraction (yield; 10.1% on the basis of CPHs) consisting of 1.0% arabinose, 10.1% xylose and 80.3% glucose containing 28.4% BG was then applied to a cellulose column of Whatman CF-11. BG could be recovered from the adsorbed fraction on the cellulose column by elution with 2% NaOH in a yield of 2.6% on the basis of CPHs with a purity of 84.7%. The chemical structure of the isolated corn pericarp BG was confirmed by (13)C NMR spectroscopic, methylation and lichenase treatment analyses. The results indicate that the ratios of (1,4)/(1,3) linkage and cellotriosyl/cellotetraosyl segments of the BG were 2.60 and 2.5, respectively.

  3. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.


    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia


    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column.

  4. Simultaneous determination of cyclodol and diprazin by thin layer chromatography and high performance liquid chromatography.


    Makharadze, R; Adeishvili, L; Chelidze, T; Imnadze, N; Nizharadze, N


    Ciklodol (trihexyphenidil)--the central and peripheral m-cholinoblocker is currently used with other antipsychotic drugs such as phenotiazines and tricycle antidepressants. For the purpose of simultaneous determination of ciklodol and diprazine, were selected two methods of analysis: Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography (HPLC). During development of TLC method was studied the 10 visualizing system and 24 mobile systems. For individual or simultaneous determination of ciklodol and diprazine were recommended the following solvents' systems: 1. Toluene-acetone-ethanole-25%NH(4)OH (45:45: 7.5:2.5), 2. Hexane-ethyl acetate (15:5), 3. Chloroform-heptene-25%NH(4)OH (16:3:3), 4. Ethylacetate-hexane (10:10), 5. Acetonitrile-metanol (10:10) and 6.Heptene-chloroform-ethanol-25% NH(4)OH (5:10:3:1). As visualizing systems were chosen: Iodine vapors, blacklight (UV254) and reagent of FNP. Reagent of FNP gives colored spot just with diprazine and it is also could be used for separation of both objects in simultaneous analysis. Developed HPLC method of simultaneous determination of ciklodol and diprazine: like mobile phase is recommended: Acetonitril- 0.05M KH(2)PO4 (55:45) (v/v) +H(3)PO(4) (pH3.5), column EC250 x 4.6mm, with solid phase Nucleosil, flow rate 1ml/min, sample volume 40 microl. In given conditions, the retention time of ciklodol is 6.005min and diprazine 7.227min. Developed method of simultaneous determination and separation of ciklodol and diprazine in respective mixtures could be successfully applied as in the pharmaceutical, as well in the chemical-toxicological laboratories.

  5. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.


    Park, Sin Young; Cheong, Won Jo


    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits.

  6. A micro gas chromatography column with a micro thermal conductivity detector for volatile organic compound analysis.


    Sun, J H; Cui, D F; Chen, X; Zhang, L L; Cai, H Y; Li, H


    In this paper, a micro gas chromatography (μGC) system contained a μGC column and a micro thermal conductivity detector (μTCD) was proposed. In order to reduce the volume of the system, some micro heaters were integrated on the surface and backside of the GC column, which could provide a robust temperature programming capability and rapidly increase the temperature of the μGC column. In addition, a silicon-glass μTCD with four-thermistor thermal conductivity cells that can offer significant advantages over previously reported designs including low dead volume, good thermal isolation, and elimination of the thermal noise was proposed in this paper. Experimental results have indicated that the μGC system with a detection limit of several ppm concentration levels separated and detected the benzene, toluene, and styrene in less than 3 min, and the μGC system also exhibited a good linear response in the test range.

  7. Isolation and purification of heroin from heroin street samples by preparative high performance liquid chromatography.


    Guo, Zhen; Zheng, Hui; Lu, Yanzhen; Wei, Yun


    The present study established a novel method using preparative high performance liquid chromatography to isolate and purify heroin·HCl from heroin street samples to be used as a reference standard. Different kinds of mobile phases and columns were used, ultimately the mobile phase consisting of hexane-isopropanol-methanol (65:28:7, v/v) and the SIL preparative column prepared in laboratory were selected as the final condition. Heroin was further purified by the drowning-out crystallization method using isopropanol-methanol (50:1, v/v) and hexane as drowning-out anti-solvents and salting-out agents, respectively. The purity was assessed by analytical high performance liquid chromatography and the confirmation of the chemical structure was performed by IR and NMR. About 110.7mg of heroin·HCl at a purity of over 99.52% was obtained from 180mg of heroin street samples which contained 156.15mg of heroin·HCl component by preparative high performance liquid chromatography. This method is suitable for preparing heroin standards in forensic science area.

  8. Multidimensional liquid chromatography for the determination of chiral coumarins and furocoumarins in Citrus essential oils.


    Dugo, Paola; Russo, Marina; Sarò, Mariagiovanna; Carnovale, Caterina; Bonaccorsi, Ivana; Mondello, Luigi


    In this work the enantiomeric distribution of chiral coumarins (meranzin and epoxyaurapten), and furocoumarins (oxypeucedanin, byakangelicol, and epoxybergamottin) in different Citrus essential oils (lemon, lime, grapefruit, and bitter orange) was determined by means of a heart-cutting multidimensional-liquid chromatography (MD-LC) system, equipped with a microsilica column in the first dimension in a combination to a cellulosic-based chiral column used in the second dimension. The normal phase-liquid chromatography-liquid chromatography (NP-LC-LC) instrumentation was equipped with a photodiode array detector and a multiport valve as interface. For method optimization and the determination of absolute configuration, natural compounds were isolated and racemic mixture was synthesized. The NP-LC-LC/PDA (where PDA is photodiode array) method provided a good baseline separation of chiral coumarins (meranzin and epoxyaurapten) and furocoumarins (epoxybergamottin and byakangelicol) present in cold-pressed Citrus essential oils without any sample pretreatment. Results obtained showed that for all the chiral compounds present in Citrus essential oils analyzed, there is always a clear prevalence of one of the two enantiomers, and do not appear influenced by the different geographical origin of the oils.

  9. The analysis of carbohydrates in milk powder by a new "heart-cutting" two-dimensional liquid chromatography method.


    Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong


    In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved.

  10. Monitoring of cefepime in human serum and plasma by micellar electrokinetic capillary chromatography: Improvement of sample preparation and validation by liquid chromatography coupled to mass spectrometry.


    Šestáková, Nela; Theurillat, Regula; Sendi, Parham; Thormann, Wolfgang


    Cefepime monitoring in deproteinized human serum and plasma by micellar electrokinetic capillary chromatography and liquid chromatography coupled to mass spectrometry in presence of other drugs is reported. For micellar electrokinetic capillary chromatography, sample preparation comprised dodecylsulfate protein precipitation at pH 4.5 using an increased buffer concentration compared to that of a previous assay and removal of hydrophobic compounds with dichloromethane. This provided robust conditions for cefepime analysis in the presence of sulfamethoxazole and thus enabled its determination in samples of patients that receive co-trimoxazole. The liquid chromatography assay is based upon use of a column with a pentafluorophenyl-propyl modified and multi-endcapped stationary phase and the coupling to electrospray ionization with a single quadrupole detector. The performances of both assays with multi-level internal calibration were assessed with calibration and control samples and both assays were determined to be robust. Cefepime levels monitored by micellar electrokinetic capillary chromatography in samples from patients that were treated with cefepime only and with cefepime and co-trimoxazole were found to compare well with those obtained by liquid chromatography coupled to mass spectrometry. Cefepime drug levels determined by micellar electrokinetic capillary chromatography could thereby be validated. This article is protected by copyright. All rights reserved.

  11. Novel design for centrifugal counter-current chromatography: VI. Ellipsoid column.


    Gu, Dongyu; Yang, Yi; Xin, Xuelei; Aisa, Haji Akber; Ito, Yoichiro


    A novel ellipsoid column was designed for centrifugal counter-current chromatography. Performance of the ellipsoid column with a capacity of 3.4 mL was examined with three different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW), hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMH), and 12.5% (w/w) PEG1000 and 12.5% (w/w) dibasic potassium phosphate in water (PEG-DPP) each with suitable test samples. In dipeptide separation with BAW system, both stationary phase retention (Sf) and peak resolution (Rs) of the ellipsoid column were much higher at 0° column angle (column axis parallel to the centrifugal force) than at 90° column angle (column axis perpendicular to the centrifugal force), where elution with the lower phase at a low flow rate produced the best separation yielding Rs at 2.02 with 27.8% Sf at a flow rate of 0.07 ml/min. In the DNP-amino acid separation with HEMW system, the best results were obtained at a flow rate of 0.05 ml/min with 31.6% Sf yielding high Rs values at 2.16 between DNP-DL-glu and DNP-β-ala peaks and 1.81 between DNP-β-ala and DNP-L-ala peaks. In protein separation with PEG-DPP system, lysozyme and myolobin were resolved at Rs of 1.08 at a flow rate of 0.03 ml/min with 38.9% Sf. Most of those Rs values exceed those obtained from the figure-8 column under similar experimental conditions previously reported.

  12. Pressure Tuning of First Dimension Columns in Comprehensive Two-Dimensional Gas Chromatography.


    Sharif, Khan M; Kulsing, Chadin; Marriott, Philip J


    The experimental approach and mechanism of pressure tuning (PT) are introduced for the first stage of a comprehensive two-dimensional gas chromatography (GC × GC) separation. The PT-GC × GC system incorporates a first dimension ((1)D) coupled column ensemble comprising a pair of (1)D columns ((1)D1 and (1)D2) connected via a microfluidic splitter device, allowing variable decompression of carrier gas across each (1)D column, and a conventional (2)D narrow bore column. By variation of junction pressure between the (1)D1 and (1)D2 columns, tunable total (1)D retentions of analytes are readily derived. Separations of a standard mixture comprising a number of different chemical classes (including alkanes, monoaromatics, alcohols, aldehydes, ketones, and esters) and Australian tea tree oil (TTO) were studied as practical examples of the PT-GC × GC system application. This illustrated the change of analyte retention time with experimental conditions depending on void time and retention on the different columns. In addition to void time change, variation of carrier gas relative decompression in the (1)D ensemble leads to tunable contribution of the (1)D1/(1)D2 columns that changes apparent polarity and selectivity of the ensemble. The resulting changes in (1)D elution order further altered elution temperature and thus retention of each analyte on the (2)D column in temperature-programmed GC × GC. 2D orthogonality measurements were then conducted to evaluate overall separation performance under application of different (1)D junction pressure. As a result, distribution and selectivity of particular target compounds, monoterpenes, sesquiterpenes, and oxygenated terpenes in 2D space, and thus orthogonality, could be adequately tuned. This indicates the potential of PT-GC × GC to be applicable for practical sample separation and provides a general approach to tune selectivity of target compounds.

  13. Determination of acaricides in honey by high-performance liquid chromatography with photodiode array detection.


    Martel, Anne-Claire; Zeggane, Sarah


    Rapid analytical methods are described to control quality of honeys, concerning residues of acaricides applied in hives to prevent Varroa jacobsoni infestation. A liquid-liquid extraction with hexane-propanol-2-ammonia (60 ml:30 ml:0.28%) was used for the simultaneous analysis of coumaphos, bromopropylate, amitraz and fluvalinate. For thymol, one clean up on a solid-phase extraction C18 (500 mg, 6 ml) column was performed; for rotenone, a liquid extraction with dichloromethane was realised. Quantitative recoveries obtained with honey were satisfactory and were superior to 80%. All acaricides are identified by reversed-phase high-performance liquid chromatography with photodiode array detection. Quantification limits obtained were below maximal residue limits when these e