Sample records for liquid crystal film

  1. Thermotropic Liquid Crystal Film Underwater

    NASA Astrophysics Data System (ADS)

    Uto, Sadahito; Nakanishi, Yuuji; Matsumoto, Takahumi

    2005-05-01

    A thermotropic liquid crystal film was produced in distilled water successfully. A lecithin suspension was utilized to make the film. Polarizing microscopic observations were carried out. The molecular arrangement was seemed to be homeotoropic. An expected electrooptic response of the film underwater was confirmed.

  2. Liquid crystals for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  3. Liquid crystals for organic thin-film transistors

    PubMed Central

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi

    2015-01-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V−1 s−1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics. PMID:25857435

  4. Liquid crystals for organic thin-film transistors.

    PubMed

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi

    2015-04-10

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm(2) V(-1) s(-1)) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  5. Focusing of light by polymer-dispersed liquid-crystal films with nanosized droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.

    2006-12-15

    An analysis is presented of polarization-independent electrically tunable light focusing by polymerdispersed liquid-crystal films with nanosized liquid-crystal droplets. Polymer-dispersed liquid-crystal films with axially symmetric distributions of liquid-crystal droplet concentration and layers with axially symmetric thickness profiles are considered. The paraxial, Rayleigh, and Rayleigh-Gans approximations, as well as the Foldy-Twersky equation, are used to examine the dependence of focal length on lens geometry, droplet size, concentration of nematic liquid-crystal droplets, and applied field. The tunable focusing ranges are evaluated for both lens types considered in the study. Dependence of the transmittance of polymer-dispersed liquid-crystal film on its characteristics is analyzed. Themore » results obtained are compared with those available from the literature.« less

  6. Liquid crystal film development for plasma mirrors and waveplates

    NASA Astrophysics Data System (ADS)

    Cochran, G. E.; Poole, P. L.; Willis, C.; Hanna, R. J.; Pytel, K.; Sullivan, K. S.; Andereck, C. D.; Schumacher, D. W.

    2015-11-01

    Many laser-plasma phenomena currently under study depend critically on the quality of the pulse contrast. Costly sacrificial plasma mirrors are now commonly used to improve the temporal laser contrast before target interaction, especially for ion acceleration where high contrast is necessary to achieve interesting new mechanisms. Liquid crystal films were originally developed as variable thickness thin-film targets, and were demonstrated for this purpose in. Varying film formation parameters such as volume, temperature, and draw speed allows thickness control between 10 nm and several 10s of microns, in-situ and under vacuum. Development since that initial work has allowed large area films to be formed, several cm2 in extent, with the same thickness range. The molecular flatness of a freely suspended film renders these films excellent low-cost plasma mirrors, given appropriate formation control. Additionally, the birefringence of the liquid crystal used here permits these films to be used as large area zero-order waveplates at the appropriate thickness. Details on the current state of liquid crystal film application development, including a >1 Hz small area film formation device, will be presented. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  7. Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2018-04-01

    We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.

  8. Variable Thickness Liquid Crystal Films for High Repetition Rate Laser Applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Hanna, Randall; Andereck, C. David; Schumacher, Douglass

    2015-05-01

    The presentation of a clean target or target substrate at high repetition rates is of importance to a number of photoelectron spectroscopy and free electron laser applications, often in high vacuum environments. Additionally, high intensity laser facilities are approaching the 10 Hz shot rate at petawatt powers, but are currently unable to insert targets at these rates. We have developed liquid crystal films to address this need for high rep rate targets while preserving the planar geometry advantageous to many applications. The molecular ordering of liquid crystal is variable with temperature and can be manipulated to form a layered thin film. In this way temperature and volume control can be used to vary film thickness in vacuo and on-demand between 10 nm and over 10 μm. These techniques were previously applied to a single-shot ion acceleration experiment in, where target thickness critically determines the physics of the acceleration. Here we present an automatic film formation device that utilizes a linear sliding rail to form liquid crystal films within the aforementioned range at rates up to 0.1 Hz. The design ensures film formation location within 2 μm RMS, well within the Rayleigh range of even short f-number systems. Details of liquid crystal films and this target formation device will be shown as well as recent experimental data from the Scarlet laser facility at OSU. This work was supported by DARPA through a grant from AMRDEC.

  9. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  10. Random lasing in dye-doped polymer dispersed liquid crystal film

    NASA Astrophysics Data System (ADS)

    Wu, Rina; Shi, Rui-xin; Wu, Xiaojiao; Wu, Jie; Dai, Qin

    2016-09-01

    A dye-doped polymer-dispersed liquid crystal film was designed and fabricated, and random lasing action was studied. A mixture of laser dye, nematic liquid crystal, chiral dopant, and PVA was used to prepare the dye-doped polymer-dispersed liquid crystal film by means of microcapsules. Scanning electron microscopy analysis showed that most liquid crystal droplets in the polymer matrix ranged from 30 μm to 40 μm, the size of the liquid crystal droplets was small. Under frequency doubled 532 nm Nd:YAG laser-pumped optical excitation, a plurality of discrete and sharp random laser radiation peaks could be measured in the range of 575-590 nm. The line-width of the lasing peak was 0.2 nm and the threshold of the random lasing was 9 mJ. Under heating, the emission peaks of random lasing disappeared. By detecting the emission light spot energy distribution, the mechanism of radiation was found to be random lasing. The random lasing radiation mechanism was then analyzed and discussed. Experimental results indicated that the size of the liquid crystal droplets is the decisive factor that influences the lasing mechanism. The surface anchor role can be ignored when the size of the liquid crystal droplets in the polymer matrix is small, which is beneficial to form multiple scattering. The transmission path of photons is similar to that in a ring cavity, providing feedback to obtain random lasing output. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Colleges and Universities in Liaoning Province Outstanding Young Scholars Growth Plans, China (Grant No. LJQ2015093), and Shenyang Ligong University Laser and Optical Information of Liaoning Province Key Laboratory Open Funds, China.

  11. The ion capturing effect of 5° SiOx alignment films in liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Bos, Philip J.; Bhowmik, Achintya

    2010-09-01

    We show that SiOx, deposited at 5° to the interior surface of a liquid crystal cell allows for a surprisingly substantial reduction in the ion concentration of liquid crystal devices. We have investigated this effect and found that this type of film, due to its surface morphology, captures ions from the liquid crystal material. Ion adsorption on 5° SiOx film obeys the Langmuir isotherm. Experimental results shown allow estimation of the ion capturing capacity of these films to be more than an order of 10 000/μm2. These types of materials are useful for new types of very low power liquid crystal devices such as e-books.

  12. Flow Meter Based on Freely Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Green, Adam; Qi, Zhiyuan; Park, Cheol; Glaser, Matthew; Maclennan, Joseph; Clark, Noel

    We present the realization of a idealized 2D hydrodynamic system coupled to air-flow, and show that freely suspended films (FSF) of smectic liquid crystals can be used as a novel flow-meter. Freely-suspended films of liquid crystals are one of the closest physical realizations of an idealized 2D fluid. The velocity of air-flow above a film suspended above a channel can be inferred by studying the velocity profile of the smectic film. This velocity profile can be measured using digital video microscopy to track the inclusions present in the moving film. The velocity profile is then fitted to the coupled 2D solutions of an embedded fluid in air, and the velocity of the air can then be extracted. This flow meter serves as a demonstration of a robust test-bed for further exploration of 2D hydrodynamics. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and DMR-1420736.

  13. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.

    1997-01-01

    The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

  14. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.

    PubMed

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy

    2010-05-20

    Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.

  15. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  16. Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, P. L., E-mail: poole.134@osu.edu; Andereck, C. D.; Schumacher, D. W.

    2014-06-15

    We have developed a new type of target for intense laser-matter experiments that offers significant advantages over those currently in use. The targets consist of a liquid crystal film freely suspended within a metal frame. They can be formed rapidly on-demand with thicknesses ranging from nanometers to micrometers, where the particular value is determined by the liquid crystal temperature and initial volume as well as by the frame geometry. The liquid crystal used for this work, 8CB (4′-octyl-4-cyanobiphenyl), has a vapor pressure below 10{sup −6} Torr, so films made at atmospheric pressure maintain their initial thickness after pumping to high vacuum.more » Additionally, the volume per film is such that each target costs significantly less than one cent to produce. The mechanism of film formation and relevant physics of liquid crystals are described, as well as ion acceleration data from the first shots on liquid crystal film targets at the Ohio State University Scarlet laser facility.« less

  17. Influence of the liquid crystal behaviour on the Langmuir and Langmuir-Blodgett film supramolecular architecture of an ionic liquid crystal.

    PubMed

    Pérez-Gregorio, Víctor; Giner, Ignacio; López, M Carmen; Gascón, Ignacio; Cavero, Emma; Giménez, Raquel

    2012-06-01

    A new luminescent ionic liquid crystal, called Ipz-2, has been synthesised and its mesophase behaviour and also at the air-liquid interface has been studied and compared with Ipz, another ionic pyrazole derivative, with a similar molecular structure, previously studied. The X-ray diffraction pattern shows that Ipz-2 exhibits hexagonal columnar mesomorphism, while Ipz adopts lamellar mesophases. Langmuir films of both compounds are flat and homogeneous at large areas per molecule, but create different supramolecular structures under further compression. Ipz-2 Langmuir films have been transferred onto solid substrates, and Atomic Force Microscopy (AFM) images of the Langmuir-Blodgett films have shown that large columnar structures hundreds of nm in diameter are formed on top of the initial monolayer, in contrast with well-defined trilayer LB films obtained for Ipz. Our results show that Ipz-2 has a tendency to stack in columnar arrangements both in liquid crystalline bulk and in Langmuir and Langmuir-Blodgett films. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film.

    PubMed

    Petriashvili, Gia; De Santo, Maria Penelope; Devadze, Lali; Zurabishvili, Tsisana; Sepashvili, Nino; Gary, Ramla; Barberi, Riccardo

    2016-03-01

    Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real-time image recording feature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Freely Suspended Liquid Crystalline Films

    NASA Astrophysics Data System (ADS)

    Sonin, A. A.

    2003-05-01

    Freely Suspended Liquid Crystalline Films Andrei A. Sonin Centre d'Etudes Atomiques de Saclay, France and Institute of Crystallography, Russian Academy of Sciences with a Foreword by Professor Noel Clark University of Colorado, USA This book provides a brief introduction to the physics of liquid crystals and to macroscopic physical parameters characterising freely suspended liquid crystalline (FSLC) films, and then reviews the experimental techniques for preparing these films, measuring their thicknesses, and investigating their physical properties and structural aspects. Molecular structures and defects of FSLC films and the problems of film stability, thinning and rupture are discussed in later chapters. Physical phenomena, such as orientational and phase transitions, Frederick's and flexoelectric effects, hydroelectrodynamics, etc., are also analysed. Finally, some applications of FSLC films in industry and in various branches of science are discussed. Specialists working in the physics of liquid crystals and in surface physics will find this book of interest. Industrial firms and their research centres investigating liquid crystals, biological membranes, detergent/surfactant/biomedical areas; and graduates and postgraduates in solid state physics and crystallography will also benefit from this book. The book has an easy-to-read style with just the minimum amount of mathematics necessary to explain important concepts. This is the first book dedicated exclusively to the physics of FSLC in almost a century since their discovery and last twenty years of their active studies. Andrei Sonin, a scientist in the area of FSLC and author of many articles on surface phenomena in liquid crystals, the properties and behaviour of thin liquid crystalline and surfactant films, has a long standing reputation in liquid crystals and surfactant systems and has been particularly active in issues involving surface interactions.

  20. Experiment-scale molecular simulation study of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-03-01

    Supercomputers have now reached a performance level adequate for studying thin films with molecular detail at the relevant scales. By exploiting the power of GPU accelerators on Titan, we have been able to perform simulations of characteristic liquid crystal films that provide remarkable qualitative agreement with experimental images. We have demonstrated that key features of spinodal instability can only be observed with sufficiently large system sizes, which were not accessible with previous simulation studies. Our study emphasizes the capability and significance of petascale simulations in providing molecular-level insights in thin film systems as well as other interfacial phenomena.

  1. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael

    2014-01-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top ofmore » thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.« less

  2. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

    NASA Astrophysics Data System (ADS)

    Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor

    2017-12-01

    Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

  3. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    DOE PAGES

    Poole, P. L.; Willis, C.; Cochran, G. E.; ...

    2016-10-10

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less

  4. Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, P. L.; Willis, C.; Cochran, G. E.

    Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less

  5. Geometrical optics approach in liquid crystal films with three-dimensional director variations.

    PubMed

    Panasyuk, G; Kelly, J; Gartland, E C; Allender, D W

    2003-04-01

    A formal geometrical optics approach (GOA) to the optics of nematic liquid crystals whose optic axis (director) varies in more than one dimension is described. The GOA is applied to the propagation of light through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeotropic to multidomainlike transition (HMD cell). Properties of the GOA solution are explored, and comparison with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct computer calculation and a previously developed simplified model, are in good agreement.

  6. Liquid-phase explosive crystallization of electron-beam-evaporated a-Si films induced by flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Ohdaira, Keisuke; Matsumura, Hideki

    2013-01-01

    We succeed in the formation of micrometer-order-thick polycrystalline silicon (poly-Si) films through the flash-lamp-induced liquid-phase explosive crystallization (EC) of precursor a-Si films prepared by electron-beam (EB) evaporation. The velocity of the explosive crystallization (vEC) is estimated to be ˜14 m/s, which is close to the velocity of the liquid-phase epitaxy (LPE) of Si at a temperature around the melting point of a-Si of 1418 K. Poly-Si films formed have micrometer-order-long grains stretched along a lateral crystallization direction, and X-ray diffraction (XRD) and electron diffraction pattern measurements reveal that grains in poly-Si films tend to have a particular orientation. These features are significantly different from our previous results: the formation of poly-Si films containing randomly-oriented 10-nm-sized fine grains formed from a-Si films prepared by catalytic chemical vapor deposition (Cat-CVD) or sputtering. One possible reason for the emergence of a different EC mode in EB-evaporated a-Si films is the suppression of solid-phase nucleation (SPN) during Flash Lamp Annealing (FLA) due to tensile stress which precursor a-Si films originally hold. Poly-Si films formed from EB-evaporated a-Si films would contribute to the realization of high-efficiency thin-film poly-Si solar cells because of large and oriented grains.

  7. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

    PubMed

    Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan

    2016-12-30

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  8. Realization of hydrodynamic experiments on quasi-2D liquid crystal films in microgravity

    NASA Astrophysics Data System (ADS)

    Clark, Noel A.; Eremin, Alexey; Glaser, Matthew A.; Hall, Nancy; Harth, Kirsten; Klopp, Christoph; Maclennan, Joseph E.; Park, Cheol S.; Stannarius, Ralf; Tin, Padetha; Thurmes, William N.; Trittel, Torsten

    2017-08-01

    Freely suspended films of smectic liquid crystals are unique examples of quasi two-dimensional fluids. Mechanically stable and with quantized thickness of the order of only a few molecular layers, smectic films are ideal systems for studying fundamental fluid physics, such as collective molecular ordering, defect and fluctuation phenomena, hydrodynamics, and nonequilibrium behavior in two dimensions (2D), including serving as models of complex biological membranes. Smectic films can be drawn across openings in planar supports resulting in thin, meniscus-bounded membranes, and can also be prepared as bubbles, either supported on an inflation tube or floating freely. The quantized layering renders smectic films uniquely useful in 2D fluid physics. The OASIS team has pursued a variety of ground-based and microgravity applications of thin liquid crystal films to fluid structure and hydrodynamic problems in 2D and quasi-2D systems. Parabolic flights and sounding rocket experiments were carried out in order to explore the shape evolution of free floating smectic bubbles, and to probe Marangoni effects in flat films. The dynamics of emulsions of smectic islands (thicker regions on thin background films) and of microdroplet inclusions in spherical films, as well as thermocapillary effects, were studied over extended periods within the OASIS (Observation and Analysis of Smectic Islands in Space) project on the International Space Station. We summarize the technical details of the OASIS hardware and give preliminary examples of key observations.

  9. Fast response liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsun

    LC-based VOA. In Chapter 7, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. Through analyzing the structure of this axially-symmetric SPNLC, we construct a 3-D model to explain the observed phenomena. An axially-symmetric sheared polymer network liquid crystal has several attractive features: (1) it is polarization independent, (2) it has gradient phase change, and (3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, the optic axis and phase retardation value of the compensation film can be determined. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.

  10. Tilted Liquid Crystal Alignment on Asymmetrically Grooved Porous Alumina Film

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Hiroshima, Kohki

    2005-06-01

    This paper reports the achievement of tilted liquid crystal (LC) alignment on an anodic porous alumina (APA) film using microgrooves with asymmetric shapes and dozens of minute pores. The microgrooves with asymmetric shapes were formed by a rubbing technique. The minute pores were then produced by anodization. The LC pretilt angle was controlled by the shapes of the microgrooves and pores. The LC director was orientated in the same inclining direction as that of a rubbed polyimide (PI) film. The pretilt angle was in the range of 20 to 90°. This tilted LC alignment remains very stable against external forces such as thermal shock and intense light.

  11. Effect of liquid crystal birefringence on the opacity and off-axis haze of PDLC films

    NASA Astrophysics Data System (ADS)

    Pane, S.; Caporusso, M.

    1998-02-01

    PDLC systems are thin films consisting of a dispersion of liquid crystal micro-droplets in a continuous solid phase of polymer matrix. Application of an electric field on a thin layer of PDLC sandwiched between two transparent on-state. This effect make them useful for a wide variety of applications. Among them, smart windows for architectural is the most popular subject in literature. For this application, the key parameters of performance are the haze and the opacity. There are essentially two technologies used to prepare PDLC films, namely micro-encapsulation and phase separation.In the present work we will show the correlation between the opacity and the off-axis haze in PDLC films prepared with a phase separation technology. We will give the general rule in order to select the liquid crystal properties that allow the preparation of high opacity ad low haze PDLC films. Further study about the control of the parameters which influence the performances of PDLC films prepared with phase separation technology and the difference with the NCAP approach are in progress at our laboratory.

  12. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    PubMed

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  13. Reverse-mode microdroplet liquid crystal display

    NASA Astrophysics Data System (ADS)

    Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang

    1990-04-01

    This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.

  14. Flow Velocity Profiles in Actively-Driven 2D Nozzle Experiments using Freely-Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Dutch, Evan; Briggs, Corrina; Ferguson, Kyle; Green, Adam; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel

    Freely-suspended smectic A liquid crystal films have been used to explore a large range of interesting flow phenomena. Passive microrheology experiments have confirmed previously that such films are ideal systems with which to investigate two-dimensional (2D) hydrodynamics. Here we describe an experiment that uses smectic films to study actively-driven 2D flows. Flow excited by blowing air over a film of smectic liquid crystal material containing small inclusions is captured using digital video microscopy. The flow fields are extracted using particle imaging velocimetry. We have measured the velocity field generated by flow through a thin nozzle into a large rectangular reservoir and compared this to a theoretical model based on 2D complex potential flows. The observations confirm that there is parabolic flow in straight channels, and that the theory accurately models the film velocity flow field in the reservoir. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  15. Textures in a chiral smectic liquid-crystal film

    NASA Astrophysics Data System (ADS)

    Langer, Stephen A.; Sethna, James P.

    1986-12-01

    Freely suspended liquid-crystal films of the smectic-I phase of HOBACPC [R(-) hexyloxybenzylidene p'-amino-2-chloropropyl cinnamate] display distinctive stripe and droplet textures. We derive these patterns from a Landau expansion of the free energy using a vector order parameter. Strong pinning boundary conditions lead to boojums in the droplets and stable defect lines between the stripes. The boojum is a two-dimensional version of its namesake in superfluid 3A. The surface defect in the boojum is expelled from the smectic-I droplet in order to lower the internal gradient energy, leaving a defect-free texture. The expulsion distance and the width of the stripes are calculated in terms of the elastic constants.

  16. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    PubMed

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  17. Polymer dispersed nematic liquid crystal for large area displays and light valves

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1986-09-01

    A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.

  18. On dewetting of thin films due to crystallization (crystallization dewetting).

    PubMed

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  19. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  20. Hydrodynamic interactions in freely suspended liquid crystal films

    NASA Astrophysics Data System (ADS)

    Kuriabova, Tatiana; Powers, Thomas R.; Qi, Zhiyuan; Goldfain, Aaron; Park, Cheol Soo; Glaser, Matthew A.; Maclennan, Joseph E.; Clark, Noel A.

    2016-11-01

    Hydrodynamic interactions play an important role in biological processes in cellular membranes, a large separation of length scales often allowing such membranes to be treated as continuous, two-dimensional (2D) fluids. We study experimentally and theoretically the hydrodynamic interaction of pairs of inclusions in two-dimensional, fluid smectic liquid crystal films suspended in air. Such smectic membranes are ideal systems for performing controlled experiments as they are mechanically stable, of highly uniform structure, and have well-defined, variable thickness, enabling experimental investigation of the crossover from 2D to 3D hydrodynamics. Our theoretical model generalizes the Levine-MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent. We describe in detail the theoretical and computational approach previously outlined in Z. Qi et al., Phys. Rev. Lett. 113, 128304 (2014), 10.1103/PhysRevLett.113.128304 and extend the method to study the mutual mobilities of inclusions with asymmetric shapes. The model predicts well the observed mutual mobilities of pairs of circular inclusions in films and the self-mobility of a circular inclusion in the vicinity of a linear boundary.

  1. Liquid crystals for organic transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  2. Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoya; Shibata, Yosei; Takeda, Risa; Ishinabe, Takahiro; Fujikake, Hideo

    2017-01-01

    For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

  3. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    PubMed

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  4. Structure and Dynamics of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2004-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1 D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline or quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enables the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new LC physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase

  5. Smectic C liquid crystal growth through surface orientation by ZnxCd1-xSe thin films

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Bineva, I.; Levi, Z.; Mineva, M.

    2012-12-01

    A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1-xSe. The surface morphology and orientation features of the ZnxCd1-xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1-xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.

  6. Control of liquid crystal molecular orientation using ultrasound vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Satoki; Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321; Koyama, Daisuke

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distributionmore » of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.« less

  7. Liquid crystals as on-demand, variable thickness targets for intense laser applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick L.; Andereck, C. David; Schumacher, Douglass W.

    2014-10-01

    Laser-based ion acceleration is currently studied for its applications to advanced imaging and cancer therapy, among others. Targets for these and other high-intensity laser experiments are often small metallic foils with few to sub-micron thicknesses, where the thickness determines the physics of the dominant acceleration mechanism. We have developed liquid crystal films that preserve the planar target geometry advantageous to ion acceleration schemes while providing on-demand thickness variation between 50 and 5000 nm. This thickness control is obtained in part by varying the temperature at which films are formed, which governs the phase (and hence molecular ordering) of the liquid crystal material. Liquid crystals typically have vapor pressures well below the 10-6 Torr operating pressures of intense laser target chambers, and films formed in air maintain their thickness during chamber evacuation. Additionally, the minute volume that comprises each film makes the cost of each target well below one cent, in stark contrast to many standard solid targets. We will discuss the details of liquid crystal film control and formation, as well as characterization experiments performed at the Scarlet laser facility. This work was performed with support from DARPA and NNSA.

  8. Effect of film thickness on morphological evolution in dewetting and crystallization of polystyrene/poly(ε-caprolactone) blend films.

    PubMed

    Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang

    2011-11-01

    In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.

  9. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and

  10. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    PubMed

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  11. Liquid crystals of carbon nanotubes and graphene.

    PubMed

    Zakri, Cécile; Blanc, Christophe; Grelet, Eric; Zamora-Ledezma, Camilo; Puech, Nicolas; Anglaret, Eric; Poulin, Philippe

    2013-04-13

    Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.

  12. Microfludic Sensing Devices Employing In Situ-Formed Liquid Crystal Thin Film for Detection of Biochemical Interactions1†

    PubMed Central

    Liu, Ye; Cheng, Daming; Lin, I-Hsin; Abbott, Nicholas L.; Jiang, Hongrui

    2012-01-01

    Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A2 (PLA2). PMID:22842797

  13. Low-voltage tunable color in full visible region using ferroelectric liquid-crystal-doped cholesteric liquid-crystal smart materials

    NASA Astrophysics Data System (ADS)

    Lin, Jia-De; Lin, Jyun-Wei; Lee, Chia-Rong

    2018-02-01

    Electrical tuning of photonic bandgap (PBG) of cholesteric liquid crystal (CLC) without deformation within the entire visible region at low voltages is not easy to achieve. This study demonstrates low-voltage-tunable PBG in full visible region with less deformation of the PBG based on smart materials of ferroelectric liquid crystal doped CLC (FLC-CLC) integrating with electrothermal film heaters. Experimental results show that the reflective color of the FLC-CLC can be low-voltage-tuned through entire visible region. The induced temperature change is induced by electrically heating the electrothermal film heaters at low voltages at near the smectic-CLC transition temperature. Coaxial electrospinning can be used to develop smart fibrous devices with FLC/CLC-core and polymer-shell which color is tunable in full visible region at low voltages.

  14. Spatiospectral Analysis of Accelerated Protons from Sub-Micron Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick; Cochran, Ginevra; van Woerkom, Linn; Schumacher, Douglass

    2017-10-01

    Recent studies on ion acceleration have trended towards ultra-thin (<1 μm) targets due to improved ion energies and yields from these targets. As discussed here, ultra-thin targets may exhibit unusual spatial distributions in the accelerated ions, such that ion spectrometer data may not be representative of the overall distribution. More complete characterization of the ions requires spectral unfolding of radiochromic film (RCF) data, yielding spatially dependent spectra. Spatiospectral data will be presented from several experiments using sub-micron liquid crystal film targets at the Scarlet (OSU), Texas Petawatt (UT, Austin) and PHELIX (GSI, Darmstadt) laser facilities, including evidence of >75 MeV protons from 300 nm films at PHELIX. Analysis of RCF data is supported by Monte-Carlo modeling of RCF response to ions and electrons using FLUKA. Trends in the resulting ion distributions will be discussed including spatially varying slope temperature and observation of annular ring features at moderate ion energies on many shots. This material is based upon work supported by the AFOSR under award FA9550-14-1-0085, by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0003107.

  15. The opto-thermal effect on encapsulated cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Sung; Lin, Hui-Chi; Yang, Kin-Min

    2017-12-01

    In this study, we implemented a micro-encapsulated CLC electronic paper that is optically addressed and electrically erasable. The mechanism that forms spot diameters on the CLC films is discussed and verified through various experimental parameters, including the thickness of CLCs and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), pump intensity, and pumping time. The opto-thermal effect, brought on by the PEDOT:PSS absorbing layer, causes the spot diameters on the cholesteric liquid crystal thin films to vary. According to our results, the spot diameter is larger for a sample with a thinner cholesteric liquid crystal layer with the same excitation conditions and same thickness of the PEDOT layer. The spot diameter is also larger for a sample with a thicker PEDOT under the same excitation conditions and same thickness of the cholesteric liquid crystal layer. We proposed a simple heat-conducting model to explain the experimental results, which qualitatively agree with this theoretical model.

  16. Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V.; Zyryanov, V. Ya.

    2017-03-15

    We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing themore » volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.« less

  17. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.

    2016-04-26

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond timescale in ultrahigh vacuum (UHV). Details of the design, implementation and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ~1010 K/s for temperature increases of ~100 – 200 K are obtained. Subsequent rapid cooling (~5 × 109more » K/s) quenches the film, permitting in-situ, post-mortem analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ~ ± 3% leading to a temperature uncertainty of ~ ± 5 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.« less

  18. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.

    PubMed

    Xu, Yuntao; Dibble, Collin J; Petrik, Nikolay G; Smith, R Scott; Joly, Alan G; Tonkyn, Russell G; Kay, Bruce D; Kimmel, Greg A

    2016-04-28

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  19. Optical-strain characteristics of anisotropic polymer films fabricated from a liquid crystal diacrylate

    NASA Astrophysics Data System (ADS)

    Escuti, Michael J.; Cairns, Darran R.; Crawford, Gregory P.

    2004-03-01

    The optomechanical characteristics of oriented polymer films made from a photopolymerizable liquid crystal diacrylate (BASF LC242) were examined, with general implications for oriented films of similar materials being used and considered for display-component applications. The birefringence of these uniaxial films before and after polymerization was determined by measuring the retardation between crossed polarizers, (resulting in Δn=0.142±0.002 at 633 nm for the cured polymer films). Optical-strain characteristics were also determined by measuring the transmittance of the films between crossed polarizers at two wavelengths (612 and 633 nm) during the application of a monotonically increasing tensile strain. Under the conservative assumption that Poisson's ratio is constant for the relatively small strains in our experiment, we develop a strained-waveplate model to detect changes in birefringence directly from the modulation in transmittance with increasing strain. We show that strain applied along the axis of the polymer chains did not substantially affect the birefringence, and strain applied perpendicularly caused only a slight decrease (˜1% decrease for 10% strain). These results highlight the robustness of fully polymerized reactive mesogen optical films to withstand the moderate strains anticipated during manufacturing processes and in-service deformation caused by bending or impact.

  20. Liquid Crystals in Chromatography

    NASA Astrophysics Data System (ADS)

    Witkiewicz, Zygfryd

    The following sections are included: * INTRODUCTION * LIQUID CRYSTALS SUITABLE FOR GAS CHROMATOGRAPHY * Monomeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Conventional Analytical Columns * Capillary Columns * FACTORS AFFECTING THE CHROMATOGRAPHIC SEPARATIONS ON LIQUID CRYSTAL STATIONARY PHASES * Kind of Mesophase of the Liquid Crystal * Molecular Structure of the Liquid Crystals and of the Chromatographed Substances * Substrate on which the Liquid Crystal is Deposited * ANALYTICAL APPLICATIONS OF LIQUID CRYSTAL STATIONARY PHASES IN GAS CHROMATOGRAPHY * Separation of Isomers of Benzene and Naphthalene Derivatives * Separation of Alkane and Alkene Isomers * Separation of Mixtures of Benzene and Aliphatic Hydrocarbon Derivatives Containing Heteroatoms * Separation of Polynuclear Hydrocarbons * INVESTIGATION OF THE PROPERTIES OF LIQUID CRYSTALS BY GAS CHROMATOGRAPHY * APPLICATION OF LIQUID CRYSTALS IN LIQUID CHROMATOGRAPHY * Column Chromatography * Thin-Layer Chromatography * APPLICATION OF LIQUID CRYSTAL STATIONARY PHASES IN SUPERCRITICAL FLUID CHROMATOGRAPHY * FINAL REMARKS * References

  1. Flow in Smectic Liquid Crystal Films: Examining the Flow Field of a Smectic Liquid Crystal Film due to Fluid Ejected From a Small Nozzle

    NASA Astrophysics Data System (ADS)

    Ferguson, Kyle; Qi, Zhiyuan; Park, Cheol; Maclennan, Jospeh; Glaser, Matthew; Clark, Noel

    The rheological properties of 2D fluids are well-understood theoretically, but few experiments testing theoretical predictions have been carried out. We have used MX 12805, a smectic C liquid crystal at room temperature, to create quasi-2D films with which to study high-Reynolds number flow. We map the flow field as the fluid is ejected from a thin nozzle into a large reservoir, probing both laminar and turbulent flow. We also attempt to carry out the experiment in a vacuum to study the true 2D-regime; despite encountering experimental difficulties, some useful information can still be gleaned. This work was supported by NASA Grant NNX-13AQ81G, by the Soft Materials Research Center under NSF MRSEC Grants DMR-0820579 and DMR-1420736, by Department of Energy Grant DE-FG02-08ER54995, and by NSF Grant CBET-0854108.

  2. Applications of thin-film sandwich crystallization platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axford, Danny, E-mail: danny.axford@diamond.ac.uk; Aller, Pierre; Sanchez-Weatherby, Juan

    2016-03-24

    Crystallization via sandwiches of thin polymer films is presented and discussed. Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal samplemore » intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.« less

  3. AFM and x-ray studies of buffing and uv light induced alignment of liquid crystals on SE610 polyimide films

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hoon; Shi, Yushan; Ha, Kiryong; West, John L.; Kumar, Satyendra

    1997-03-01

    We have studied the competition between the effects of mechanical buffing of and photo-induced chemical reaction in Nissan SE610 polyimide film on the director orientation of liquid crystals using atomic force microscopy (AFM) and textural study under polarizing miscroscope. It was found that the uv light exposure after buffing significantly alters the degree and the direction of alignment achieved by buffing. Results of our study show that the two techniques can be used to control and fine-tune liquid crystal alignment. A description of the microscopic changes as inferred from AFM and x-ray studies will be presented.

  4. Experimental study of strong nonlinear-optics effects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Darbin, S. D.; Arakelyan, S. M.; Cheung, M. M.; Shen, Y. R.

    1984-07-01

    Nonlinear optical effects that arise in nematic liquid crystals as a result of a change in the index of refraction induced by a laser field are considered. Since the resultant nonlinearity is extremely high, the approximation of perturbation theory cannot be used in calculations. However, the change in refractive index results mainly in phase advance as waves propagate through a thin film of liquid crystal, while the change of intensity is significant. Moreover, if there is no change in polarization of the pumping field, calculations are relatively simple. An investigation is made of the propagation of a cross sectionally bounded laser beam through a homeotropically oriented liquid crystal, giving rise to spatial phase modulation of emission. When the intensity of the laser beam exceeds a certain value, a system of aberation rings is observed in the output radiation. Effects of dynamic self-diffraction accompanying degenerate four-wave mixing when a change in refractive index is induced in a homeotropic liquid crystal film, and optical bistability in a nonlinear Fabry-Perot optical cavity, as well as generation of a self-oscillatory state in such a resonator are discussed.

  5. Optical-to-optical interface device. [consisting of two transparent electrodes on glass substrates that enclose thin film photoconductor and thin layer of nematic liquid crystal

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.

    1973-01-01

    Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.

  6. Paintable band-edge liquid crystal lasers.

    PubMed

    Gardiner, Damian J; Morris, Stephen M; Hands, Philip J W; Mowatt, Carrie; Rutledge, Rupert; Wilkinson, Timothy D; Coles, Harry J

    2011-01-31

    In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.

  7. Nanoparticles in liquid crystals, and liquid crystals in nanoparticles

    NASA Astrophysics Data System (ADS)

    de Pablo, Juan

    2015-03-01

    Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.

  8. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  9. Visible Light Responsive Liquid Crystal Polymers Containing Reactive Moieties with Good Processability.

    PubMed

    Liu, Yuyun; Wu, Wei; Wei, Jia; Yu, Yanlei

    2017-01-11

    Two types of novel reactive linear liquid crystal polymers (LLCPs) with different azotolene concentrations have been synthesized and processed into films and fibers by solution and melting processing methods. Then, the LLCPs in the obtained monodomain fiber and polydomain film were easily cross-linked with difunctional primary amines. The resulted cross-linked liquid crystal polymers (CLCPs) underwent reversible photoinduced bending and unbending behaviors in response to 445 and 530 nm visible light at room temperature, respectively. The post-cross-linking method provides a facile way to prepare the CLCP films and fibers with different shapes from LLCPs, which can be processed by traditional melting and solution methods.

  10. Effect of the annealing temperature and ion-beam bombardment on the properties of solution-derived HfYGaO films as liquid crystal alignment layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hong-Gyu; Lee, Yun-Gun; Jang, Sang Bok

    2015-11-15

    Hafnium yttrium gallium oxide (HfYGaO) films were applied to liquid crystal displays (LCDs) as liquid crystal (LC) alignment layers, replacing conventional polyimide (PI) layers. The HfYGaO alignment layers were prepared by fabricating solution-processed HfYGaO films, annealing them, and treating them with ion-beam (IB) irradiation. The authors studied the effects of annealing temperature and IB irradiation of the solution-derived HfYGaO films on the orientation of LC molecules. The LC molecules on the solution-derived HfYGaO films were homogeneously and uniformly aligned by IB irradiation, irrespective of the annealing temperature. Atomic force microscopy analyses revealed that the surface reformation of the HfYGaO filmsmore » induced by IB irradiation strengthened the van der Waals force between the LC molecules and the HfYGaO films, leading to uniform LC alignment. Enhanced electro-optical characteristics were observed in the twisted-nematic (TN) LCDs based on IB-irradiated HfYGaO films compared with those of TN-LCDs based on PI layers, demonstrating the high application potential of the proposed solution-derived HfYGaO films as LC alignment layers.« less

  11. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  12. High Resolution Displays Using NCAP Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Macknick, A. Brian; Jones, Phil; White, Larry

    1989-07-01

    Nematic curvilinear aligned phase (NCAP) liquid crystals have been found useful for high information content video displays. NCAP materials are liquid crystals which have been encapsulated in a polymer matrix and which have a light transmission which is variable with applied electric fields. Because NCAP materials do not require polarizers, their on-state transmission is substantially better than twisted nematic cells. All dimensional tolerances are locked in during the encapsulation process and hence there are no critical sealing or spacing issues. By controlling the polymer/liquid crystal morphology, switching speeds of NCAP materials have been significantly improved over twisted nematic systems. Recent work has combined active matrix addressing with NCAP materials. Active matrices, such as thin film transistors, have given displays of high resolution. The paper will discuss the advantages of NCAP materials specifically designed for operation at video rates on transistor arrays; applications for both backlit and projection displays will be discussed.

  13. Non-equilibrium dynamics of 2D liquid crystals driven by transmembrane gas flow.

    PubMed

    Seki, Kazuyoshi; Ueda, Ken; Okumura, Yu-ichi; Tabe, Yuka

    2011-07-20

    Free-standing films composed of several layers of chiral smectic liquid crystals (SmC*) exhibited unidirectional director precession under various vapor transfers across the films. When the transferred vapors were general organic solvents, the precession speed linearly depended on the momentum of the transmembrane vapors, where the proportional constant was independent of the kind of vapor. In contrast, the same SmC* films under water transfer exhibited precession in the opposite direction. As a possible reason for the rotational inversion, we suggest the competition of two origins for the torques, one of which is microscopic and the other macroscopic. Next, we tried to move an external object by making use of the liquid crystal (LC) motion. When a solid or a liquid particle was set on a film under vapor transfer, the particle was rotated in the same direction as the LC molecules. Using home-made laser tweezers, we measured the force transmitted from the film to the particle, which we found to be several pN.

  14. Inkjet printing of single-crystal films.

    PubMed

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-13

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  15. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films

  16. Optical biosensor based on liquid crystal droplets for detection of cholic acid

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao

    2016-12-01

    A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.

  17. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    PubMed

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  18. Electro-opto-thermal addressing bistable and re-addressable display device based on gelator-doped liquid crystals in a poly(N-vinylcarbazole) film-coated liquid crystal cell.

    PubMed

    Cheng, Ko-Ting; Tang, Yi; Liu, Cheng-Kai

    2016-10-03

    This paper reports an electro-opto-thermal addressing bistable and re-addressable display device based on gelator-doped liquid crystals (LCs) in a poly(N-vinylcarbazole) film-coated LC cell. The bistability and re-addressability of the devices were achieved through the formation of a rubbery LC/gel mixture at room temperature. The desired patterns were addressed, erased, and re-addressed by controlling the temperature, applied voltage, and UV light illumination. Moreover, grayscales were obtained by adjusting UV light intensity. The initiation, relaxation, rise, and fall times of photoconductive poly(N-vinylcarbazole) via UV light illumination of various intensities were also examined.

  19. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro

    2008-12-01

    The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.

  20. Transrotational Crystals Revealed by TEM in Crystallizing Amorphous Films: New Solid State Order or Novel Extended Imperfection?

    NASA Astrophysics Data System (ADS)

    Kolosov, Vladimir Yu.

    2011-03-01

    Uunusual transrotational structure is presented for crystal growth in thin amorphous films. Experimental results have been obtained for the microcrystals of different chemical nature (oxides, chalcogenides, metals and alloys) grown in thin films prepared by various methods. Basically we used transmission electron microscopy (TEM): our original bend contour technique combined with selected area diffraction (HREM, EDX and CBED used in due cases as well as AFM). The unusual phenomenon (also traced inside TEM in situ) resides in strong (up to the whole rotation per micrometer) regular internal bending of crystal lattice planes (transrotation) in a growing crystal. As a result permanent rotation of the lattice orientation (realized round an axis lying in the film plane) is revealed by TEM. Different geometries of transrotational nanostructures are described: cylindrical, ellipsoidal, etc. Such crystal with transrotational atom periodicity resembles ideal single crystal enclosed in a curved space. Transrotational crystals can be considered as endless 2.5 D analogy of nanotubes, nanonions. Transrotation is strongly increasing as the film gets thinner in the range 100-15 nm. Transrotations supplement well known dislocations (in crystals) and disclinations (in liquid crystals). Support of RF Ministry of Education and Science is acknowledged.

  1. Transition from Spin Dewetting to continuous film in spin coating of Liquid Crystal 5CB.

    PubMed

    Dhara, Palash; Bhandaru, Nandini; Das, Anuja; Mukherjee, Rabibrata

    2018-05-08

    Spin dewetting refers to spontaneous rupture of the dispensed solution layer during spin coating, resulting in isolated but periodic, regular sized domains of the solute and is pre-dominant when the solute concentration (C n ) is very low. In this article we report how the morphology of liquid crystal (LC) 5CB thin films coated on flat and patterned PMMA substrate transform from spin dewetted droplets to continuous films with increase in C n . We further show that within the spin dewetted regime, with gradual increase in the solute concentration, periodicity of the isotropic droplets (λ D ) as well as their mean diameter (d D ), gradually decreases, till the film becomes continuous at a critical concentration (C n *). Interestingly, the trend that λ D reduces with increase in C n is exact opposite to what is observed in thermal/solvent vapor induced dewetting of a thin film. The spin dewetted droplets exhibit transient Radial texture, in contrast to Schlieren texture observed in elongated threads and continuous films of 5CB, which remains in the Nematic phase at room temperature. Finally we show that by casting the film on a grating patterned substrate it becomes possible to align the spin dewetted droplets along the contours substrate patterns.

  2. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite.

    PubMed

    Pratibha, R; Park, K; Smalyukh, I I; Park, W

    2009-10-26

    Effect of the surrounding anisotropic liquid crystal medium on the surface plasmon resonance (SPR) exhibited by concentrated suspensions of gold nanospheres has been investigated experimentally and compared with the Mie scattering theory. The observed polarization-sensitive SPR and the red-shift in the SPR wavelength with increasing concentration of the gold nanospheres in the liquid crystal matrix have been explained using calculations based on the Maxwell Garnet effective medium theory. Agglomeration of the gold nanospheres that could also lead to such a red-shift has been ruled out using Atomic force microscopy study of thin nanoparticle-doped smectic films obtained on solid substrates. Our study demonstrates feasibility of obtaining tunable optical bulk metamaterials based on smectic liquid crystal - nanoparticle composites.

  3. A study of substrate-liquid crystal interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Baoshe

    This thesis concerns the study of substrate-liquid crystal interaction from two different angles. In one approach, we used the IPS (in-plane switching) technique to investigate the liquid crystal alignment by rubbed polyimide films. The IPS mode of liquid crystal cell operation is facilitated through comb electrodes capable of producing planar electric field. We have fabricated comb electrodes with a periodicity of 2 mum in order to confine the planar electric field close to the liquid crystal-substrate interface. Through optical transmittance measurements and comparison with theoretical predictions based on the Ladau-de Gennes formalism, we found the experimental data to be consistent with the physical picture of soft anchoring, in which the liquid crystal director at the substrate interface is rotated azimuthally under the planar electric field. As a result, we were able to obtain the azimuthal anchoring strength as a fitting parameter of the theory. This part of the thesis thus presents evidence(s) for director switching at the liquid crystal-substrate interface, as well as a method for measuring the azimuthal anchoring strength through optical means. In the second approach, we used nano-lithographic technique to fabricate textured two dimensional periodic patterns on silicon wafers, and examined the resulting liquid crystal alignment effect of such textured substrates. It was found that with decreasing periodicity, there exists an orientational transition from a state in which the liquid crystal alignment copies the substrate pattern at larger periodicity, to a state of uniform alignment at smaller periodicity. In our system, this transition occurs at a periodicity between 0.4 mum and 0.8 mum. Through theoretical simulations based on the model of competition between the elastic distortion energy and the interfacial anchoring potential, it was found that there is indeed a first-order abrupt transition when the periodicity is decreased. This is due to the fact

  4. Ultrasound liquid crystal lens

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuki; Koyama, Daisuke; Fukui, Marina; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2018-04-01

    A variable-focus lens using a combination of liquid crystals and ultrasound is discussed. The lens uses a technique based on ultrasound vibration to control the molecular orientation of the liquid crystal. The lens structure is simple, with no mechanical moving parts and no transparent electrodes, which is helpful for device downsizing; the structure consists of a liquid crystal layer sandwiched between two glass substrates with a piezoelectric ring. The tens-of-kHz ultrasonic resonance flexural vibration used to excite the lens generates an acoustic radiation force on the liquid crystal layer to induce changes in the molecular orientation of the liquid crystal. The orientations of the liquid crystal molecules and the optical characteristics of the lens were investigated under ultrasound excitation. Clear optical images were observed through the lens, and the focal point could be controlled using the input voltage to the piezoelectric ring to give the lens its variable-focus action.

  5. A cellulose liquid crystal motor: a steam engine of the second kind

    PubMed Central

    Geng, Yong; Almeida, Pedro Lúcio; Fernandes, Susete Nogueira; Cheng, Cheng; Palffy-Muhoray, Peter; Godinho, Maria Helena

    2013-01-01

    The salient feature of liquid crystal elastomers and networks is strong coupling between orientational order and mechanical strain. Orientational order can be changed by a wide variety of stimuli, including the presence of moisture. Changes in the orientation of constituents give rise to stresses and strains, which result in changes in sample shape. We have utilized this effect to build soft cellulose-based motor driven by humidity. The motor consists of a circular loop of cellulose film, which passes over two wheels. When humid air is present near one of the wheels on one side of the film, with drier air elsewhere, rotation of the wheels results. As the wheels rotate, the humid film dries. The motor runs so long as the difference in humidity is maintained. Our cellulose liquid crystal motor thus extracts mechanical work from a difference in humidity. PMID:23293743

  6. A cellulose liquid crystal motor: a steam engine of the second kind.

    PubMed

    Geng, Yong; Almeida, Pedro Lúcio; Fernandes, Susete Nogueira; Cheng, Cheng; Palffy-Muhoray, Peter; Godinho, Maria Helena

    2013-01-01

    The salient feature of liquid crystal elastomers and networks is strong coupling between orientational order and mechanical strain. Orientational order can be changed by a wide variety of stimuli, including the presence of moisture. Changes in the orientation of constituents give rise to stresses and strains, which result in changes in sample shape. We have utilized this effect to build soft cellulose-based motor driven by humidity. The motor consists of a circular loop of cellulose film, which passes over two wheels. When humid air is present near one of the wheels on one side of the film, with drier air elsewhere, rotation of the wheels results. As the wheels rotate, the humid film dries. The motor runs so long as the difference in humidity is maintained. Our cellulose liquid crystal motor thus extracts mechanical work from a difference in humidity.

  7. The ergonomics approach for thin film transistor-liquid crystal display manufacturing process.

    PubMed

    Lu, Chih-Wei; Yao, Chia-Chun; Kuo, Chein-Wen

    2012-01-01

    The thin film transistor-liquid crystal display (TFT-LCD) has been used all over the world. Although the manufacture process of TFT-LCD was highly automated, employees are hired to do manual job in module assembly process. The operators may have high risk of musculoskeletal disorders because of the long work hours and the repetitive activities in an unfitted work station. The tools of this study were questionnaire, checklist and to evaluate the work place design. The result shows that the participants reported high musculoskeletal disorder symptoms in shoulder (59.8%), neck (49.5%), wrist (39.5%), and upper back (30.6%). And, to reduce the ergonomic risk factors, revising the height of the work benches, chairs and redesigning the truck to decrease the chance of unsuitable positions were recommended and to reduce other ergonomics hazards and seta good human machine interface and appropriate job design.

  8. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In

  9. Large Area Microencapsulated Reflective Guest-Host Liquid Crystal Displays and Their Applications

    NASA Astrophysics Data System (ADS)

    Nakai, Yutaka; Tanaka, Masao; Enomoto, Shintaro; Iwanaga, Hiroki; Hotta, Aira; Kobayashi, Hitoshi; Oka, Toshiyuki; Kizaki, Yukio; Kidzu, Yuko; Naito, Katsuyuki

    2002-07-01

    We have developed reflective liquid crystal displays using microencapsulated guest-host liquid crystals, whose size was sufficiently large for viewing documents. A high-brightness image can be realized because there is no need for polarizers. Easy fabrication processes, consisting of screen-printing of microencapsulated liquid crystal and film adhesion, have enabled the realization of thinner and lighter cell structures. It has been confirmed that the display is tolerant of the pressures to which it would be subject in actual use. The optimization of fabrication processes has enabled the realization of reflectance uniformity in the display area and reduction of the driving voltage. Our developed display is suitable for portable information systems, such as electronic book applications.

  10. Measurements of Translational and Rotational Mobilities of Inclusions near a Boundary in TiltedFreely-Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Cadenhead, Ian; Green, Adam; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel

    Freely-suspended liquid crystal films serve as an excellent model system for investigating two-dimensional hydrodynamics, including the study of inclusion mobilities near fixed boundaries. We present experimental measurements using digital video microscopy of the translational and rotational mobilities of smectic islands near the boundary of a rectangular smectic A film a few molecular layers thick. The islands are thicker, circular domains that behave as large particles embedded in the film. Tilting the film causes the islands to drift under gravity. Measuring the diffusion and velocities of these islands allows us to extract the translational and rotational mobilities of the inclusions as a function of distance from the film boundary. The results are compared to Saffman-Delbrück theory using the general approach of Levine and MacKintosh. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  11. Applications of thin-film sandwich crystallization platforms.

    PubMed

    Axford, Danny; Aller, Pierre; Sanchez-Weatherby, Juan; Sandy, James

    2016-04-01

    Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal sample intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.

  12. Automated optical inspection of liquid crystal display anisotropic conductive film bonding

    NASA Astrophysics Data System (ADS)

    Ni, Guangming; Du, Xiaohui; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong

    2016-10-01

    Anisotropic conductive film (ACF) bonding is widely used in the liquid crystal display (LCD) industry. It implements circuit connection between screens and flexible printed circuits or integrated circuits. Conductive microspheres in ACF are key factors that influence LCD quality, because the conductive microspheres' quantity and shape deformation rate affect the interconnection resistance. Although this issue has been studied extensively by prior work, quick and accurate methods to inspect the quality of ACF bonding are still missing in the actual production process. We propose a method to inspect ACF bonding effectively by using automated optical inspection. The method has three steps. The first step is that it acquires images of the detection zones using a differential interference contrast (DIC) imaging system. The second step is that it identifies the conductive microspheres and their shape deformation rate using quantitative analysis of the characteristics of the DIC images. The final step is that it inspects ACF bonding using a back propagation trained neural network. The result shows that the miss rate is lower than 0.1%, and the false inspection rate is lower than 0.05%.

  13. Elasticity-driven partial demixing in cholesteric liquid crystal films.

    PubMed

    Schmidtke, Jürgen; Coles, Harry J

    2009-07-01

    We discuss the partial demixing of a chiral nematic mixture of a chiral and an achiral compound, induced by inhomogeneous confinement between substrates. While the effect is tiny in low molar mass mixtures, it is predicted to be noticeable in polymeric systems. The potential of the effect for improving performance of liquid crystal based photonic devices is discussed.

  14. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    NASA Technical Reports Server (NTRS)

    Marshall, Kenneth L. (Inventor)

    2009-01-01

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  15. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    DOEpatents

    Marshall, Kenneth L [Rochester, NY

    2009-02-17

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  16. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  17. Liquid Crystal Colloids

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  18. Studies of Islands on Freely Suspended Bubbles of Smectic Liquid Crystal

    NASA Technical Reports Server (NTRS)

    Pattanaporkratana, A.; Mavel, B.; Park, C. S.; Maclennan, J. E.; Clark, N. A.

    2002-01-01

    We have constructed an optical system for observing the internal structure of freely suspended smectic liquid crystal bubbles using a reflected light microscope. Liquid crystal bubbles can have thicker circular regions (islands) which can easily be generated by shrinking the bubble diameter. The diameter of these islands is approximately 10 microns and they are typically up to five times thicker than the surrounding liquid crystal film (500 angstroms). In the Laboratory, the location of the islands is strongly influenced by gravity, which causes the majority of islands to migrate to the bottom half of the bubble. We will describe the size and thickness distributions of islands and their time evolution, and also discuss two-dimensional hydrodynamics and turbulence of smectic bubbles, the shapes of islands and holes affected by bubble vibrations, and the interactions between islands, which we have probed using optical tweezers.

  19. Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Ekkad, S. V.; Du, H.; Teng, S.

    2000-01-01

    Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model.

  20. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  1. Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Yue; Liu, Pan; Zeng, Chao; Yao, Qiu-Xiang; Zheng, Zhiqiang; Liu, Jicheng; Zheng, Huadong; Yu, Ying-Jie; Zeng, Zhen-Xiang; Sun, Tao

    2016-09-01

    We present holographic storage of three-dimensional (3D) images and data in a photopolymer film without any applied electric field. Its absorption and diffraction efficiency are measured, and reflective analog hologram of real object and image of digital information are recorded in the films. The photopolymer is compared with polymer dispersed liquid crystals as holographic materials. Besides holographic diffraction efficiency of the former is little lower than that of the latter, this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field. Therefore, our study proposes a potential holographic storage material to apply in large size static 3D holographic displays, including analog hologram displays, digital hologram prints, and holographic disks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474194, 11004037, and 61101176) and the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1415500).

  2. Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.

    PubMed

    Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin

    2016-03-09

    The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.

  3. Tunable two-dimensional photonic crystals using liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.

    2000-01-01

    The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.

  4. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  5. Electro-optical effects in porous PET films filled with liquid crystal: new possibilities for fiber optics and THZ applications.

    PubMed

    Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V

    2014-03-15

    The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (ffc) electric field induces an overall change in the light intensity, which is typical for an electro-optical response of a liquid crystal (LC) layer in a conventional "sandwich"-like cell. The dependences of critical frequency fc, threshold voltages, and characteristic times on a pore diameter d were established. The peculiarities of electro-optical effects can be explained in the framework of the approach which connects the variations of light intensity with the corresponding changes of the effective refractive index n(eff) of a composite LC media. The unusual behavior of the electro-optical response at low frequencies is assigned to the orienting action of the specific shear flow typical for electrokinetic phenomena in polar liquids.

  6. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  7. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  8. Colorimetric qualification of shear sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Muratore, Joseph J., Jr.

    1993-01-01

    The work that has been done to date on the Shear Sensitive Liquid Crystal Project demonstrated that cholesteric liquid crystal coatings respond to both the direction and magnitude of a shearing force. The response of the coating is to selectively scatter incident white light into a spectrum of colors. Discernible color changes at a fixed angle of observation and illumination are the result of an applied shear stress. The intention was to be able to convert these observable color patterns from a flow visualization technique into a quantitative tool. One of the earlier intentions was to be able to use liquid crystals in dynamic flow fields. This was assumed possible because liquid crystals had made it possible to visualize transients in surface shear forces. Although the transients were visualized by color changes to an order one micro second, the time response of a coating to align to a shearing force is dependent on the magnitude of the change between its initial and final states. Unfortunately, the response is not instantaneous. It is for this reason any future attempt at quantifying the magnitude and directions of a shearing force are limited to surface shear stress vector fields in three dimensional steady state flows. This limitation does not significantly detract from the utility of liquid crystal coatings. The measurement of skin friction in the study of transition on wings, prediction of drag forces, performance assessment, and the investigation of boundary layer behavior is of great importance in aerodynamics. There exist numerous examples of techniques for the measurement of surface shear stress. Most techniques require arduous calibrations and necessitate extensive preparation of the receiving surfaces. However, the main draw back of instruments such as Preston tubes, hot films, buried wire gages, and floating element balances is that they only provide a point measurement. The advantages of capturing global shear data would be appreciable when compared

  9. Wetting of cholesteric liquid crystals.

    PubMed

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  10. Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics

    NASA Astrophysics Data System (ADS)

    Woliński, T. R.; Ertman, S.; Lesiak, P.; Domański, A. W.; Czapla, A.; Dąbrowski, R.; Nowinowski-Kruszelnicki, E.; Wójcik, J.

    2006-12-01

    The paper reviews and discusses the latest developments in the field of the photonic liquid crystal fibers that have occurred for the last three years in view of new challenges for both fiber optics and liquid crystal photonics. In particular, we present the latest experimental results on electrically induced birefringence in photonic liquid crystal fibers and discuss possibilities and directions of future developments.

  11. Liquid-film electron stripper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavin, B.F.

    1986-12-02

    This patent describes an improved liquid-film electron stripper for high intensity heavy ion beams comprising: at least one rotatable disc mounted in a housing, means for rotating the disc, a liquid reservoir operatively connected to the housing, means for directing liquid from the reservoir onto the rotatable disc for forming a film of liquid as liquid is spun from the disc, the disc being configured to define a sharp edge located at one side of the periphery of the disc, and configured to include a flat, smooth radially outer section located adjacent the sharp edge, the liquid being directed ontomore » the flat, smooth section of the disc, the means for directing liquid onto the disc including a nozzle positioned with respect to the disc so that liquid from the nozzle impinges at about a 90/sup 0/ angle with respect to the flat, smooth surface of the disc, and liquid film terminator means located in spaced relation to the disc and approximately perpendicular to a formed liquid film, the terminator means comprising at least one ribbon of material secured to the housing.« less

  12. Homeotropic alignment of multiple bent-core liquid crystal phases using a polydimethylsiloxane alignment layer

    NASA Astrophysics Data System (ADS)

    Carlson, Eric D.; Foley, Lee M.; Guzman, Edward; Korblova, Eva D.; Visvanathan, Rayshan; Ryu, SeongHo; Gim, Min-Jun; Tuchband, Michael R.; Yoon, Dong Ki; Clark, Noel A.; Walba, David M.

    2017-08-01

    The control of the molecular orientation of liquid crystals (LCs) is important in both understanding phase properties and the continuing development of new LC technologies including displays, organic transistors, and electro-optic devices. Many techniques have been developed for successfully inducing alignment of calamitic LCs, though these techniques typically do not translate to the alignment of bent-core liquid crystals (BCLCs). Some techniques have been utilized to align various phases of BCLCs, but these techniques are often unsuccessful for general alignment of multiple materials and/or multiple phases. Here, we demonstrate that glass cells treated with polydimethylsiloxane (PDMS) thin films induce high quality homeotropic alignment of multiple mesophases of four BCLCs. On cooling to the lowest temperature phase the homeotropic alignment is lost, and spherulitic growth is seen in crystal and crystal-like phases including the dark conglomerate (DC) and helical nanofilament (HNF) phases. Evidence of homeotropic alignment is observed using polarized optical microscopy. We speculate that the methyl groups on the surface of the PDMS films strongly interact with the aliphatic tails of each mesogens, resulting in homeotropic alignment.

  13. Nematic Liquid-Crystal Colloids

    PubMed Central

    Muševič, Igor

    2017-01-01

    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574

  14. Thin film modeling of crystal dissolution and growth in confinement.

    PubMed

    Gagliardi, Luca; Pierre-Louis, Olivier

    2018-01-01

    We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.

  15. Thin film modeling of crystal dissolution and growth in confinement

    NASA Astrophysics Data System (ADS)

    Gagliardi, Luca; Pierre-Louis, Olivier

    2018-01-01

    We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.

  16. Enhanced dual-frequency operation of a polymerized liquid crystal microplate by liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-04-01

    The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.

  17. Liquid-film electron stripper

    DOEpatents

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  18. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    DOE PAGES

    Santala, M. K.; Raoux, S.; Campbell, G. H.

    2015-12-24

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ~100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measuredmore » with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. As a result, the high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less

  19. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santala, M. K., E-mail: melissa.santala@oregonstate.edu; Campbell, G. H.; Raoux, S.

    2015-12-21

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ∼100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured withmore » time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less

  20. Hidden Gratings in Holographic Liquid Crystal Polymer-Dispersed Liquid Crystal Films.

    PubMed

    De Sio, Luciano; Lloyd, Pamela F; Tabiryan, Nelson V; Bunning, Timothy J

    2018-04-18

    Dynamic diffraction gratings that are hidden in the field-off state are fabricated utilizing a room-temperature photocurable liquid crystal (LC) monomer and nematic LC (NLC) using holographic photopolymerization techniques. These holographic LC polymer-dispersed LCs (HLCPDLCs) are hidden because of the refractive index matching between the LC polymer and the NLC regions in the as-formed state (no E-field applied). Application of a moderate E-field (5 V/μm) generates a refractive index mismatch because of the NLC reorientation (along the E-field) generating high-diffraction efficiency transmission gratings. These dynamic gratings are characterized by morphological, optical, and electrooptical techniques. They exhibit a morphology made of oriented LC polymer regions (containing residual NLC) alternating with a two-phase region of an NLC and LC polymer. Unlike classic holographic polymer-dispersed LC gratings formed with a nonmesogenic monomer, there is index matching between the as-formed alternating regions of the grating. These HLCPDLCs exhibit broad band and high diffraction efficiency (≈90%) at the Bragg angle, are transparent to white light across the visible range because of the refractive index matching, and exhibit fast response times (1 ms). The ability of HLCPDLCs not to consume electrical power in the off state opens new possibilities for the realization of energy-efficient switchable photonic devices.

  1. Liquid Crystal Bragg Gratings: Dynamic Optical Elements for Spatial Light Modulators (Postprint)

    DTIC Science & Technology

    2007-01-01

    These gratings consist of a peri- odic modulation of the index of refraction in a material . If the index of refraction can be strongly modulated on a...apparent when releasing the shear force. The slides actually seem to slip across the film with- out losing optical contact. Thin films of thiol-ene...in the material . Monomer is preferentially polymerized in the bright regions of the optical interference pattern, while liquid crystal diffuses to the

  2. Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo; Weiser, Erik; Hou, Tan; Jensen, Brian; St. Clair, Terry

    2004-01-01

    One of the major challenges for NASA's next-generation reusable-launch-vehicle (RLV) program is the design of a cryogenic lightweight composite fuel tank. Potential matrix resin systems need to exhibit a low coefficient of thermal expansion (CTE), good mechanical strength, and excellent barrier properties at cryogenic temperatures under load. In addition, the resin system needs to be processable by a variety of non-autoclavable techniques, such as vacuum-bag curing, resin-transfer molding (RTM), vacuum-assisted resin-transfer molding (VaRTM), resin-film infusion (RFI), pultrusion, and advanced tow placement (ATP). To meet these requirements, the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center developed a new family of wholly aromatic liquid-crystal oligomers that can be processed and thermally cross-linked while maintaining their liquid-crystal order. All the monomers were polymerized in the presence of a cross-linkable unit by use of an environmentally benign melt-condensation technique. This method does not require hazardous solvents, and the only side product is acetic acid. The final product can be obtained as a powder or granulate and has an infinite shelf life. The obtained oligomers melt into a nematic phase and do not exhibit isotropization temperatures greater than the temperatures of decomposition (Ti > T(sub dec)). Three aromatic formulations were designed and tested and included esters, ester-amides, and ester-imides. One of the major advantages of this invention, named LaRC-LCR or Langley Research Center-Liquid Crystal Resin, is the ability to control a variety of resin characteristics, such as melting temperature, viscosity, and the cross-link density of the final part. Depending on the formulation, oligomers can be prepared with melt viscosities in the range of 10-10,000 poise (100 rad/s), which can easily be melt-processed using a variety of composite-processing techniques. This capability provides NASA with custom

  3. Preparation of Liquid Crystal Networks for Macroscopic Oscillatory Motion Induced by Light.

    PubMed

    Vantomme, Ghislaine; Gelebart, Anne Helene; Broer, Dirk J; Meijer, E W

    2017-09-20

    A strategy based on doped liquid crystalline networks is described to create mechanical self-sustained oscillations of plastic films under continuous light irradiation. The photo-excitation of dopants that can quickly dissipate light into heat, coupled with anisotropic thermal expansion and self-shadowing of the film, gives rise to the self-sustained deformation. The oscillations observed are influenced by the dimensions and the modulus of the film, and by the directionality and intensity of the light. The system developed offers applications in energy conversion and harvesting for soft-robotics and automated systems. The general method described here consists of creating free-standing liquid crystalline films and characterizing the mechanical and thermal effects observed. The molecular alignment is achieved using alignment layers (rubbed polyimide), commonly used in the display manufacturing industry. To obtain actuators with large deformation, the mesogens are aligned and polymerized in a splay/bend configuration, i.e., with the director of the liquid crystals (LCs) going gradually from planar to homeotropic through the film thickness. Upon irradiation, the mechanical and thermal oscillations obtained are monitored with a high-speed camera. The results are further quantified by image analysis using an image processing program.

  4. Preparation of Liquid Crystal Networks for Macroscopic Oscillatory Motion Induced by Light

    PubMed Central

    Broer, Dirk J.; Meijer, E. W.

    2017-01-01

    A strategy based on doped liquid crystalline networks is described to create mechanical self-sustained oscillations of plastic films under continuous light irradiation. The photo-excitation of dopants that can quickly dissipate light into heat, coupled with anisotropic thermal expansion and self-shadowing of the film, gives rise to the self-sustained deformation. The oscillations observed are influenced by the dimensions and the modulus of the film, and by the directionality and intensity of the light. The system developed offers applications in energy conversion and harvesting for soft-robotics and automated systems. The general method described here consists of creating free-standing liquid crystalline films and characterizing the mechanical and thermal effects observed. The molecular alignment is achieved using alignment layers (rubbed polyimide), commonly used in the display manufacturing industry. To obtain actuators with large deformation, the mesogens are aligned and polymerized in a splay/bend configuration, i.e., with the director of the liquid crystals (LCs) going gradually from planar to homeotropic through the film thickness. Upon irradiation, the mechanical and thermal oscillations obtained are monitored with a high-speed camera. The results are further quantified by image analysis using an image processing program. PMID:28994766

  5. Direct induction of molecular alignment in liquid crystal polymer network film by photopolymerization

    NASA Astrophysics Data System (ADS)

    Hisano, K.; Aizawa, M.; Ishizu, M.; Kurata, Y.; Shishido, A.

    2016-09-01

    Liquid crystal (LC) is the promising material for the fabrication of high-performance soft, flexible devices. The fascinating and useful properties arise from their cooperative effect that inherently allows the macroscopic integration and control of molecular alignment through various external stimuli. To date, light-matter interaction is the most attractive stimuli and researchers developed photoalignment through photochemical or photophysical reactions triggered by linearly polarized light. Here we show the new choice based on molecular diffusion by photopolymerization. We found that photopolymerization of a LC monomer and a crosslinker through a photomask enables to direct molecular alignment in the resultant LC polymer network film. The key generating the molecular alignment is molecular diffusion due to the difference of chemical potentials between irradiated and unirradiated regions. This concept is applicable to various shapes of photomask and two-dimensional molecular alignments can be fabricated depending on the spatial design of photomask. By virtue of the inherent versatility of molecular diffusion in materials, the process would shed light on the fabrication of various high-performance flexible materials with molecular alignment having controlled patterns.

  6. Mechanism of Cohesion of Monomolecular Water Film with the β-AgI Crystal Surface under Thermal Fluctuations

    NASA Astrophysics Data System (ADS)

    Shevkunov, S. V.

    2018-07-01

    The growth of liquid phase nuclei on the surface of some crystals was shown to differ from that described in the classic theory of capillarity. The surface of the base face of a silver iodide crystal is completely covered with a monomolecular water film already in unsaturated vapors, and the wetting conditions of the substrate are determined by the hydrophobic properties of the film surface, but not the crystal surface itself. The mechanism by which the monomolecular film is held on the surface of crystalline silver iodide was studied by the Monte Carlo method at the molecular level. It was found that the adhesion of the film to the surface of the base face of the crystal was by hydrogen bonding with the ions of the second crystallographic layer of the substrate, and the film was thermodynamically stable even in unsaturated water vapor. The film hydrophobicity is due to the deficiency of hydrogen bond donors on its surface. The nanostructural elements on the surface of the aerosol particle can neutralize the hydrophobic properties of the film and thus serve as nucleation centers.

  7. Chemical and biological sensing using liquid crystals

    PubMed Central

    Carlton, Rebecca J.; Hunter, Jacob T.; Miller, Daniel S.; Abbasi, Reza; Mushenheim, Peter C.; Tan, Lie Na; Abbott, Nicholas L.

    2014-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output. PMID:24795857

  8. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  9. Alignment of nematic liquid crystals by inhomogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Hiap Liew; Hurd, Alan J.; Meyer, Robert B.

    1985-01-01

    Variable oblique alignment of nematic liquid crystals has been achieved on microscopically inhomogeneous surfaces. The surfaces consist of small patches favoring vertical (homeotropic) alignment surrounded by a matrix favoring a planar alignment. The construction of these surfaces employs randomly distributed microscopic metal islands formed by certain metals as vapor-deposited films. Larger scale periodic patterns were made as well to verify the techniques. The results are interpreted in terms of a continuum elasticity theory and azimuthal degeneracy is also discussed.

  10. Liquid crystal interfaces: Experiments, simulations and biosensors

    NASA Astrophysics Data System (ADS)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  11. Thermotropic Ionic Liquid Crystals

    PubMed Central

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  12. Thermotropic Ionic Liquid Crystals.

    PubMed

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  13. Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content

    PubMed Central

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.

    2009-01-01

    In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835

  14. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    PubMed

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  15. Recovery of valuable materials from waste liquid crystal display panel.

    PubMed

    Li, Jinhui; Gao, Song; Duan, Huabo; Liu, Lili

    2009-07-01

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 degrees C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO(3):H(2)O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 degrees C.

  16. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    PubMed

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    PubMed Central

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  18. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  19. Transient phases during crystallization of solution-processed organic thin films

    NASA Astrophysics Data System (ADS)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffery; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam; Headrick, Randall

    We report an in-situ study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition from solution via hollow pen writing, which exhibits multiple transient phases during crystallization. Under high writing speed (25 mm/s) the films have an isotropic morphology, although the mobilities range up to 3.0 cm2/V.s. To understand the crystallization in this highly non-equilibrium regime, we employ in-situ microbeam grazing incidence wide-angle X-ray scattering combined with optical video microscopy at different deposition temperatures. A sequence of crystallization was observed in which a layered liquid-crystalline (LC) phase of C8-BTBT precedes inter-layer ordering. For films deposited above 80ºC, a transition from LC phase to a transient crystalline state that we denote as Cr1 occurs after a temperature-dependent incubation time, which is consistent with classical nucleation theory. After an additional ~ 0.5s, Cr1 transforms to the final stable structure Cr2. Based on these results, we demonstrate a method to produce large crystalline grain size and high carrier mobility during high-speed processing by controlling the nucleation rate during the transformation from the LC phase. Nsf DMR-1307017, NSF DMR-1332208.

  20. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of amore » blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.« less

  1. Rapid crystallization of WS2 films assisted by a thin nickel layer: An in situ energy-dispersive X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Seeger, S.; Mientus, R.

    2006-08-01

    By rapid thermal crystallization of an amorphous WS3+x film, deposited by reactive magnetron sputtering at temperatures below 150 °C, layer-type semiconducting tungsten disulfide films (WS2) were grown. The rapid crystallization was monitored in real-time by in situ energy-dispersive X-ray diffraction. The films crystallize very fast (>40 nm/s), provided that a thin nickel film acts as nucleation seeds. Experiments on different substrates and the onset of the crystallization only at a temperature between 600 and 700 °C points to the decisive role of seeds for the textured growth of WS2, most probably liquid NiSx drops. The rapidly crystallized WS2 films exhibit a pronounced (001) texture with the van der Waals planes oriented parallel to the surface, leading to photoactive layers with a high hole mobility of about 80 cm2/Vs making such films suitable as absorbers for thin film solar cells.

  2. Improved liquid-film electron stripper

    DOEpatents

    Gavin, B.F.

    1984-11-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one side of the disc's periphery and with highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90/sup 0/ angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  3. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  4. Impact of carrier doping on electrical properties of laser-induced liquid-phase-crystallized silicon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Umishio, Hiroshi; Matsui, Takuya; Sai, Hitoshi; Sakurai, Takeaki; Matsubara, Koji

    2018-02-01

    Large-grain-size (>1 mm) liquid-phase-crystallized silicon (LPC-Si) films with a wide range of carrier doping levels (1016-1018 cm-3 either of the n- or p-type) were prepared by irradiating amorphous silicon with a line-shaped 804 nm laser, and characterized for solar cell applications. The LPC-Si films show high electron and hole mobilities with maximum values of ˜800 and ˜200 cm2 V-1 s-1, respectively, at a doping level of ˜(2-4) × 1016 cm-3, while their carrier lifetime monotonically increases with decreasing carrier doping level. A grain-boundary charge-trapping model provides good fits to the measured mobility-carrier density relations, indicating that the potential barrier at the grain boundaries limits the carrier transport in the lowly doped films. The open-circuit voltage and short-circuit current density of test LPC-Si solar cells depend strongly on the doping level, peaking at (2-5) × 1016 cm-3. These results indicate that the solar cell performance is governed by the minority carrier diffusion length for the highly doped films, while it is limited by majority carrier transport as well as by device design for the lowly doped films.

  5. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    PubMed

    Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank

    2018-06-06

    The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11  m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    PubMed

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  7. Liquid-Phase Processing of Barium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  8. Dynamic Time Multiplexing Fabrication of Holographic Polymer Dispersed Liquid Crystals for Increased Wavelength Sensitivity

    NASA Technical Reports Server (NTRS)

    Fontecchio, Adam K. (Inventor); Rai, Kashma (Inventor)

    2017-01-01

    Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed. XXXX Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband 10 HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more 15 motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting 20 a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically switchable beam steering capability is disclosed.

  9. Cholesteric liquid crystals doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bitar, Rajaa; Agez, Gonzague; Mitov, Michel

    2012-10-01

    The reflection color of a cholesteric liquid crystal depends on material parameters such as the molecular chirality or the concentration of chiral dopant, the helical pitch of the twisted structure and the optical indices. We show that the color may be selected simply by varying the annealing time of an open cholesteric oligomer film with hybrid anchoring. The 3D representation of the structure is provided by combining complementary imaging techniques. The color selectivity is due to controlled changes of the orientation of the helix axis with respect to the air-material interface. Potential applications are chiral microreflectors and microlenses. Then, we demonstrate the symbiotic association of gold nanoparticles within such cholesteric textures and their long-range self-organized arrangements. We show that the nanoparticles can be patterned on demand only by playing with the film thickness and the interfacial properties of the CLC film. We investigate how the selective reflection is affected by the in situ organization of gold nanoparticles and what is the plasmon response of nanoparticle chains. Potential applications are envisioned in the field of soft nanotechnology and optical materials.

  10. Noncovalent Polymerization of Mesogens Crystallizes Lysozyme: Correlation between Nonamphiphilic Lyotropic Liquid Crystal Phase and Protein Crystal Formation

    PubMed Central

    Simon, Karen A.; Shetye, Gauri S.; Englich, Ulrich; Wu, Lei; Luk, Yan-Yeung

    2011-01-01

    Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual non-amphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain non-amphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals. Using five of these mesogenic molecules as additives to induce protein crystallization, we discover that molecules that can form liquid crystal phases in water are highly effective at inducing the crystal formation of lysozyme, even at concentrations significantly lower than that required for forming liquid crystal phases. This result reveals an example of inducing protein crystallization by the molecular assembly of the additives, and is consistent with a new mechanism by which the strong hydration of an assembly process provides a gradual means to compete for the water molecules to enable solvated proteins to form crystals. PMID:21786812

  11. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  12. Programmable Liquid Crystal Elastomers Prepared by Thiol-Ene Photopolymerization (Postprint)

    DTIC Science & Technology

    2015-08-17

    defect forms a 2D wrinkling pattern that leads to an areal contraction (Figure 4c,d). Both of these films return to a largely flat state on cooling...photopolymerization. ■ MATERIALS AND METHODS RM82 (1,4-bis-[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylben- zene) was purchased from Synthon Chemicals. 1,2...noted. Liquid crystal cells were prepared using methods described elsewhere.10 Briefly for cells patterned using rubbed surfaces, Elvamide was

  13. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular

  14. Chiral liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Martinez, Angel; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2018-01-01

    Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau-de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.

  15. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE PAGES

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; ...

    2016-06-03

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  16. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  17. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  18. Liquid crystal true 3D displays for augmented reality applications

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-01

    Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.

  19. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    PubMed

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%.

  20. Key Developments in Ionic Liquid Crystals.

    PubMed

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  1. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  2. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  3. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    PubMed Central

    Dumée, Ludovic F.; Lemoine, Jean-Baptiste; Ancel, Alice; Hameed, Nishar; He, Li; Kong, Lingxue

    2015-01-01

    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation. PMID:28347094

  4. Highly Polarized Fluorescent Illumination Using Liquid Crystal Phase.

    PubMed

    Gim, Min-Jun; Turlapati, Srikanth; Debnath, Somen; Rao, Nandiraju V S; Yoon, Dong Ki

    2016-02-10

    Liquid crystal (LC) materials are currently the dominant electronic materials in display technology because of the ease of control of molecular orientation using an electric field. However, this technology requires the fabrication of two polarizers to create operational displays, reducing light transmission efficiency below 10%. It is therefore desirable to develop new technologies to enhance the light efficiency while maintaining or improving other properties such as the modulation speed of the molecular orientation. Here we report a uniaxial-oriented B7 smectic liquid crystalline film, using fluorescent bent-core LC molecules, a chemically modified substrate, and an in-plane electric field. A LC droplet under homeotropic boundary conditions of air/LC as well as LC/substrate exhibits large focal conic like optical textures. The in-plane electric field induced uniaxial orientation of the LC molecules, in which molecular polar directors are aligned in the direction of the electric field. This highly oriented LC film exhibits linearly polarized luminescence and microsecond time-scale modulation characteristics. The resultant device is both cheap and easy to fabricate and thus has great potential for electro-optic applications, including LC displays, bioimaging systems, and optical communications.

  5. Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomoyuki; Okuyama, Hiroki; Sakamoto, Moritsugu; Noda, Kohei; Okamoto, Hiroyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-04-01

    We fabricated a terahertz (THz) polarization converter using a twisted nematic (TN) liquid crystal (LC) cell. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) films coated on quartz glass substrates were used as electrode layers in the TN LC cell. The PEDOT/PSS films were rubbed unidirectionally using a rayon cloth to align the nematic LC, thereby also serving as an alignment layer. The azimuthal surface anchoring strength of the PEDOT/PSS films was measured to be 5 × 10-4 J/m2 using the Néel wall method, which is similar to that of typical polymeric alignment layers. The optical constants of the PEDOT/PSS film in the THz range were also characterized using the Drude-Smith model, and the results indicated that the PEDOT/PSS films could be used both as transparent electrodes in the THz range and as alignment layers for the LC. The electro-optical properties of the fabricated TN LC cell were also investigated using a polarized visible laser and THz time-domain spectroscopic system. In particular, the transmission spectra and polarization conversion property of the TN LC cell in the THz range were theoretically analyzed based on a stratified model that considers optical anisotropy, absorption, and multiple interference. This work substantiates the advantages of TN LC cells with rubbed PEDOT/PSS films useful for THz polarization converters with electrical tunability.

  6. Passive Sensor Materials Based on Liquid Crystals

    DTIC Science & Technology

    2011-03-12

    REPORT Passive Sensor Materials based on Liquid Crystals 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Research supported by this grant entitled “Passive...Sensor Materials Based on Liquid Crystals” revolved around an investigation of liquid crystalline materials for use in passive sensors for chemical... based on Liquid Crystals Report Title ABSTRACT Research supported by this grant entitled “Passive Sensor Materials Based on Liquid Crystals” revolved

  7. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    ERIC Educational Resources Information Center

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  8. Ultrasound sensing using the acousto-optic effect in polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Trushkevych, O.; Eriksson, T. J. R.; Ramadas, S. N.; Dixon, S.; Edwards, R. S.

    2015-08-01

    Acousto-optic effects are demonstrated in polymer dispersed liquid crystal (PDLC) films, showing promise for applications in ultrasound sensing. The PDLC films are used to image two displacement profiles of air-coupled flexural transducers' resonant modes at 295 kHz and 730 kHz. Results are confirmed using laser vibrometry. The regions on the transducers with the largest displacements are clearly imaged by the PDLC films, with the resolution agreeing well with laser vibrometry scanning. Imaging takes significantly less time than a scanning system (switching time of a few seconds, as compared to 8 h for laser vibrometry). Heating effects are carefully monitored using thermal imaging and are found not to be the main cause of PDLC clearing.

  9. Temperature-programed time-of-flight secondary ion mass spectrometry study of 1-butyl-3-methylimidazolium trifluoromethanesulfonate during glass-liquid transition, crystallization, melting, and solvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souda, Ryutaro; Guenster, Jens; CiC Ceramic Institute Clausthal GmbH, D-38678 Clausthal-Zellerfeld

    2008-09-07

    For this study, time-of-flight secondary ion mass spectrometry was used to analyze the molecular orientation of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]) and its interaction with the adsorbed Na and LiI species at temperatures of 150-300 K. A glassy [bmim][OTf] film crystallizes at around 230 K, as observed from the increase in the [bmim]{sup +} yield. LiI and Na adsorbed on the glassy film are solvated, whereas they tend to form islands on a crystalline film. The crystalline surface inertness is ascribable to the termination with the CF{sub 3} and C{sub 4}H{sub 9} groups, whereas the exposure of polar SO{sub 3} and imidazolemore » groups at the glassy film results in the solvation. Surface layering occurs during solvation of LiI on the glassy film in such a way that the [bmim]{sup +} ([OTf]{sup -}) moiety is exposed to the vacuum (oriented to the bulk). The LiI adsorbed on the glassy film is incorporated into the bulk at temperatures higher than 200 K because of the glass-liquid transition. No further uptake of LiI is observed during crystallization, providing a contrast to the results of normal molecular solids such as water and ethanol. The surface layers of the crystal melt at temperatures below the bulk melting point, as confirmed from the dissolution of adsorbed LiI, but the melting layer retains a short-range order similar to the crystal. The [bmim][OTf] can be regarded as a strongly correlated liquid with the combined liquid property and crystal-type local structure. The origin of this behavior is discussed.« less

  10. Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    McPhail, Dennis; Straub, Martin; Gu, Min

    2005-01-01

    Electrically tunable three-dimensional photonic crystals with a tunable wavelength range of over 70nm of stop gaps between 3 and 4μm have been generated in a liquid crystal-polymer composite. The photonic crystals were fabricated by femtosecond-laser direct writing of void channels in an inverse woodpile configuration with 20 layers providing an extinction of infrared light transmission of 70% in the stacking direction. Stable structures could be manufactured up to a liquid crystal concentration of 24%. Applying a direct voltage of several hundred volts in the stacking direction of the photonic crystal changes the alignment of the liquid crystal directors and hence the average refractive index of the structure. This mechanism permits the direct tuning of the photonic stop gap.

  11. Microstructure and phase behavior in colloids and liquid crystals

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew Alan

    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct

  12. Liquid film target impingement scrubber

    DOEpatents

    McDowell, William J.; Coleman, Charles F.

    1977-03-15

    An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.

  13. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  14. Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.

    2000-06-01

    We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.

  15. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  16. Transparent ITO electrode in the polymer network liquid crystal variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Zhang, Xindong; Dong, Wei; Liu, Caixia; Chen, Yinghua; Ruan, Shengping; Zhang, Shuang; Guo, Wenbin; Yang, Dong; Han, Lin; Chen, Weiyou

    2004-05-01

    Indium tin oxide (ITO) films as transparent conductors have caused a great deal of interest due to their prominent electro-optical behavior. This paper describes a study of the properties of ITO thin films that are used for a new type variable optical attenuator using polymer network liquid crystal (PNLC). The mechanism of PNLC optical attenuator operation is that the light from the input fiber is scattered when no voltage is applied, and the light passes through the attenuator when sufficient voltage is applied. So the ITO thin films can provide transparent electrodes for PNLC. They were deposited under various preparation conditions using the radio-frequency (rf) magnetron sputtering technique. Here discuss the results of the structural, electrical and optical properties of the ITO films. The paper presents some experimental results obtained in laboratory.

  17. Effect of binder liquid type on spherical crystallization.

    PubMed

    Maghsoodi, Maryam; Hajipour, Ali

    2014-11-01

    Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.

  18. Demonstrations with a Liquid Crystal Shutter

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  19. Variable wide range of lens power and its improvement in a liquid-crystal lens using highly resistive films divided into two regions with different diameters

    NASA Astrophysics Data System (ADS)

    Kawamura, Marenori; Sato, Susumu

    2018-05-01

    The variable range of lens power of a liquid-crystal (LC) lens driven by two voltages is discussed on the basis of calculated and experimental results. The LC lens has two electrodes, which are a circularly hole-patterned electrode and a circular electrode, in addition to a common electrode, and highly resistive transparent films. The variable range of lens power increases with increasing driving voltage applied across the circularly hole-patterned electrode and the common electrode, and with decreasing diameter of highly resistive films. However, the optical-phase retardation profile tends to deviate from a parabolic curve in these cases. As a method to improve the trade-off properties, the highly resistive film is divided into two regions with different diameters, where the sheet resistance of an outer film is larger than that of an inner one. The improved LC lens has a lens power that varies in a wide range, and it exhibits a good parabolic phase retardation profile.

  20. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    NASA Astrophysics Data System (ADS)

    Zuo, Biao; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping

    2016-06-01

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  1. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films,more » with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.« less

  2. Surface and bulk crystallization of amorphous solid water films: Confirmation of “top-down” crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-01-11

    Here, the crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism wasmore » confirmed by selective placement of an isotopic layer (5% D 2O in H 2O) at various positions in an ASW (H 2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.« less

  3. Liquid crystal foil for the detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk

    2016-09-01

    Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.

  4. Growth and nonlinear optical characterization of organic single crystal films

    NASA Astrophysics Data System (ADS)

    Zhou, Ligui

    1997-12-01

    Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard

  5. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    PubMed

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations

  6. Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis

    2016-09-01

    Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.

  7. Molecular dynamics simulations of liquid silica crystallization.

    PubMed

    Niu, Haiyang; Piaggi, Pablo M; Invernizzi, Michele; Parrinello, Michele

    2018-05-07

    Silica is one of the most abundant minerals on Earth and is widely used in many fields. Investigating the crystallization of liquid silica by atomic simulations is of great importance to understand the crystallization mechanism; however, the high crystallization barrier and the tendency of silica to form glasses make such simulations very challenging. Here we have studied liquid silica crystallization to [Formula: see text]-cristobalite with metadynamics, using X-ray diffraction (XRD) peak intensities as collective variables. The frequent transitions between solid and liquid of the biased runs demonstrate the highly successful use of the XRD peak intensities as collective variables, which leads to the convergence of the free-energy surface. By calculating the difference in free energy, we have estimated the melting temperature of [Formula: see text]-cristobalite, which is in good agreement with the literature. The nucleation mechanism during the crystallization of liquid silica can be described by classical nucleation theory. Copyright © 2018 the Author(s). Published by PNAS.

  8. Electrically rotating suspended films of polar liquids

    NASA Astrophysics Data System (ADS)

    Shirsavar, R.; Amjadi, A.; Tonddast-Navaei, A.; Ejtehadi, M. R.

    2011-02-01

    Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical parameters (e.g. viscosity, density, conductivity, etc.). So far, no significant correlation has been observed between the electric field thresholds and macroscopic properties of the liquids.

  9. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  10. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  11. Instability of liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  12. Multiple chiral topological states in liquid crystals from unstructured light beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loussert, Charles; Brasselet, Etienne, E-mail: e.brasselet@loma.u-bordeaux1.fr

    2014-02-03

    It is shown experimentally that unstructured light beams can generate a wealth of distinct metastable defect structures in thin films of chiral liquid crystals. Various kinds of individual chiral topological states are obtained as well as dimers and trimers, which correspond to the entanglement of several topological unit cells. Self-assembled nested assemblies of several metastable particle-like topological states can also be formed. Finally, we propose and experimentally demonstrate an opto-electrical approach to generate tailor-made architectures.

  13. Two distinct crystallization processes in supercooled liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tane, Masakazu, E-mail: mtane@sanken.osaka-u.ac.jp; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-21

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al{sub 2}O{sub 3} model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al{sub 2}O{sub 3} exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquidmore » does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.« less

  14. Drop impact on flowing liquid films: asymmetric splashing

    NASA Astrophysics Data System (ADS)

    Ismail, Renad; Che, Zhizhao; Rotkovitz, Lauren; Adebayo, Idris; Matar, Omar

    2015-11-01

    The splashing of droplets on flowing liquid films is studied experimentally using high-speed photography. The flowing liquid films are generated on an inclined substrate. The flow rate of the liquid film, the inclination angle, and the droplet speed are controlled and their effects on the splashing process studied. Due to the flow in the liquid film and the oblique impact direction, the splashing process is asymmetric. The propagation of the asymmetric crown and the generation of secondary droplets on the rim of the crown are analysed through image processing. The results show that the flow in the liquid films significantly affects the propagation of the liquid crown and the generation of secondary droplets. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  15. Optic properties of bile liquid crystals in human body

    PubMed Central

    Yang, Hai Ming; Wu, Jie; Li, Jin Yi; Zhou, Jian Li; He, Li Jun; Xu, Xian Fang

    2000-01-01

    AIM: To further study the properties of bile liquid crystals, and probe into the relationship between bile liquid crystals and gallbladder stone formation, and provide evidence for the prevention and treatment of cholecystolithiasis. METHODS: The optic properties of bile liquid crystals in human body were determined by the method of crystal optics under polarizing microscope with plane polarized light and perpendicular polarized light. RESULTS: Under a polarizing microscope with plane polarized light, bile liquid crystals scattered in bile appeared round, oval or irregularly round. The color of bile liquid crystals was a little lighter than that of the bile around. When the stage was turned round, the color of bile liquid crystals or the darkness and lightness of the color did not change obviously. On the border between bile liquid crystals and the bile around, brighter Becke-Line could be observed. When the microscope tube is lifted, Becke-Line moved inward, and when lowered, Becke-Line moved outward. Under a perpendicular polarized light, bile liquid crystals showd some special interference patterns, called Malta cross. When the stage was turning round at an angle of 360°, the Malta cross showed four times of extinction. In the vibrating direction of 45° angle of relative to upper and lower polarizing plate, gypsum test-board with optical path difference of 530 nm was inserted, the first and the third quadrants of Malt a cross appeared to be blue, and the second and the fourth quadrants appeared orange. When mica test-board with optical path difference of 147 nm was inserted, the first and the third quadrants of Malta cross appeared yellow, and the second and the fourth quadrants appeared dark grey. CONCLUSION: The bile liquid crystals were distributed in bile in the form of global grains. Their polychroism and absorption were slight, but the edge and Becke*Line were very clear. Its refractive index was larger than that of the bile. These liquid crystals were

  16. Optical monitoring of gases with cholesteric liquid crystals.

    PubMed

    Han, Yang; Pacheco, Katherine; Bastiaansen, Cees W M; Broer, Dirk J; Sijbesma, Rint P

    2010-03-10

    A new approach to optical monitors for gases is introduced using cholesteric liquid crystals doped with reactive chiral compounds. The approach is based on cholesteric pitch length changes caused by a change in helical twisting power (HTP) of the chiral dopants upon reaction with the analyte. The concept is demonstrated for monitoring carbon dioxide via reversible carbamate formation and for oxygen using the irreversible oxidation of a chiral dithiol to a disulfide. Monitoring of CO(2) was achieved by doping a commercial cholesteric liquid crystalline mixture (E7) with 1.6% mol of the 1:1 complex of an optically pure diamine with a TADDOL derivative. Upon exposure to carbon dioxide, the reflection band of a thin film of the mixture shifted from 637 to 495 nm as a consequence of dissociation of the complex after carbamate formation of the diamine. An O(2) monitor was obtained by doping E7 with a chiral binaphthyl dithiol derivative and a nonresponsive codopant. The reflection band of the oxygen monitor film changed from 542 to 600 nm, due to the conformational change accompanying oxidation of the dithiol to disulfide. These monitoring mechanisms hold promise for application in smart packaging, where carbon dioxide and oxygen are of special interest because of their roles in food preservation.

  17. Semiconductor liquid crystal composition and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  18. Thermotropic liquid crystals from biomacromolecules

    PubMed Central

    Liu, Kai; Chen, Dong; Marcozzi, Alessio; Zheng, Lifei; Su, Juanjuan; Pesce, Diego; Zajaczkowski, Wojciech; Kolbe, Anke; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A.; Herrmann, Andreas

    2014-01-01

    Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. PMID:25512508

  19. Liquid Crystals for Laser Applications

    DTIC Science & Technology

    1992-07-01

    336. Zei’dovich, B . Ya. and Tabiryan, N. V., Induced light scattering in the mesophase of a nematic liquid crystal (NLC), JETP Lett., 30, 478- 482 ...and devices. ADVANCES IN MATERIALS I Ferroelectric LC’s Ferroelectricity in liquid crystals was first suggested in 1974 by R. B . Meyer2 3 who, by means...most recently, 2 4 the M* phase. These tilted chiral smectic phases are classified according to the nature of the intermolecular I I packing within

  20. Coarsening Dynamics of Inclusions and Thermocapillary Phenomena in Smectic Liquid Crystal Bubbles

    NASA Astrophysics Data System (ADS)

    Park, Cheol; Maclennan, Joseph; Glaser, Matthew; Clark, Noel; Trittel, Torsten; Eremin, Alexey; Stannarius, Ralf; Tin, Padetha; Hall, Nancy

    The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that probe interfacial and hydrodynamic behavior of thin spherical-bubbles of smectic liquid crystal in microgravity. Smectic films are the thinnest known stable condensed phase structures, making them ideal for studies of two-dimensional (2D) coarsening dynamics and thermocapillary phenomena in microgravity. The OASIS flight hardware was launched on SpaceX-6 in April 2015 and experiments were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We will describe the behavior of collective island dynamics on the bubbles, including temperature gradient-induced themomigration, and the diffusion and coalescence-driven coarsening dynamics of island emulsions in microgravity. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  1. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  2. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  3. Nano Liquid Crystal Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; de Pablo, Juan; dePablo Team

    2015-03-01

    Liquid droplet impaction on solid surfaces is an important problem with a wide range of applications in everyday life. Liquid crystals (LCs) are anisotropic liquids whose internal structure gives rise to rich optical and morphological phenomena. In this work we study the liquid crystal droplet impaction on solid surfaces by molecular dynamics simulations. We employ a widely used Gay-Berne model to describe the elongated liquid crystal molecules and their interactions. Our work shows that, in contrast to isotropic liquids, drop deformation is symmetric unless an instability kicks in, in which case a nano scale liquid crystal droplet exhibits distinct anisotropic spreading modes that do not occur in simple liquids. The drop prefers spreading along the low viscosity direction, but inertia can in some cases overcome that bias. The effects of the director field of the droplet, preferred anchoring direction and the anchoring strength of the wall are investigated. Large scale (0.1 micron) simulations are performed to connect our nano scale results to the experiments. Our studies indicate that LCs could provide an interesting alternative for development of next-generation printing inks.

  4. All-optical image processing with nonlinear liquid crystals

    NASA Astrophysics Data System (ADS)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  5. Electrically tunable liquid crystal photonic bandgap fiber laser

    NASA Astrophysics Data System (ADS)

    Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders

    2010-02-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.

  6. Spatial-temporal light modulation by a liquid crystal-polymer photoconductor structure with conjugate bonds

    NASA Astrophysics Data System (ADS)

    Sliusar', A. V.; Myl'Nikov, V. S.

    1991-11-01

    A method is proposed for the spatial-temporal modulation of light by a polymer photoconductor-liquid crystal structure using conjugate-bond organic polymers as photosensitive elements. The preparation of such structures and their modulation characteristics are described. It is shown that the spectral absorption and photosensitivity characteristics of the structures are largely determined by the heat treament of the polymer film. Sensitivity limits of a modulator using a polyacrylonitrile film are 5 x 10 exp -6 J/sq cm and 5 x 10 exp -4 W/sq cm for the write and read light, respectively.

  7. Effect of ice contamination on liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  8. Effect of ice contamination of liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  9. A study of waste liquid crystal display generation in mainland China.

    PubMed

    Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing

    2016-01-01

    The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network. © The Author(s) 2015.

  10. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  11. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  12. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2015-09-30

    liquid crystals for infrared laser beam steering applications. To suppress the optical loss in MW1R and LW1R, we have investigated following...dielectric anisotropy, and low optical loss nematic liquid crystals for infrared laser beam steering applications. To suppress the optical loss in MWIR and...modulators. 1. Objective The main objective of this program is to develop low-loss liquid crystals for electronic laser beam steering in the infrared

  13. Dynamic Photonic Materials Based on Liquid Crystals (Postprint)

    DTIC Science & Technology

    2013-09-01

    AFRL-RX-WP-JA-2015-0059 DYNAMIC PHOTONIC MATERIALS BASED ON LIQUID CRYSTALS (POSTPRINT) Luciano De Sio and Cesare Umeton University...ON LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) (see back...10.1016/B978-0-444-62644-8.00001-7. 14. ABSTRACT Liquid crystals, combining optical non-linearity and self-organizing properties with fluidity, and being

  14. Dynamic Self-Stiffening in Liquid Crystal Elastomers

    PubMed Central

    Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.

    2013-01-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury, and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials which respond to external stresses through a permanent increase in stiffness are uncommon. Here, we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a nematic director which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement. PMID:23612280

  15. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    PubMed

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  16. Nanoparticles Doped Liquid Crystal Filled Photonic Bandgap Fibers

    NASA Astrophysics Data System (ADS)

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders

    2008-10-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum to the one achieved with undoped liquid crystals. New interesting features such as frequency dependent behavior and a transmission spectrum with tunable attenuation on the short wavelength side of the bandgap suggest a potential application of this device as a tunable all-in-fiber gain equalization filter. The tunability of the device is demonstrated by changing the temperature of the liquid crystal and by varying both the amplitude and the frequency of the applied external electric field.

  17. Liquid crystals in micron-scale droplets, shells and fibers

    NASA Astrophysics Data System (ADS)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  18. Living liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S.; Sokolov, A.; Lavrentovich, O. D.

    2014-01-13

    Collective motion of self-propelled organisms or synthetic par­ticles, often termed •active fluid,• has attracted enormous atten­tion in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here,we introduce a class of active matter-living liquid crystals (UCs}­ that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingre­dients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena. caused by the coupling between themore » activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence­ enabled visualization of microflow generated by the nanometers­ thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.« less

  19. Liquid crystals in tribology.

    PubMed

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  20. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  1. Organic holographic polymer dispersed liquid crystal distributed feedback laser from different diffraction orders

    NASA Astrophysics Data System (ADS)

    Liu, Minghuan; Liu, Yonggang; Zhang, Guiyang; Peng, Zenghui; Li, Dayu; Ma, Ji; Xuan, Li

    2016-11-01

    Holographic polymer dispersed liquid crystal (HPDLC) based distributed feedback (DFB) lasers were prepared with poly (-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) film as the active medium layer. The HPDLC grating film was fabricated via holographic induced photopolymerization. The pure film spectra of MEH-PPV and the amplified spontaneous emission (ASE) spectrum were investigated. The laser device was single-longitudinal mode operation. The tunability of the HPDLC DFB laser was achieved by selecting different grating periods. The lasing performances were also characterized and compared from different diffraction orders. The lasing threshold increased with the diffraction order and the third order laser possessed the largest conversion efficiency in this device. The experimental results were in good agreement with the theoretical calculations.

  2. Single crystal, liquid crystal, and hybrid organic semiconductors

    NASA Astrophysics Data System (ADS)

    Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.

    2003-07-01

    The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.

  3. Mechanical and electro-optical properties of unconventional liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Liao, Guangxun

    Four types of unconventional liquid crystal systems - amphotropic glycolipids; novel bent-core liquid crystals, bent-core liquid crystal and glycolipid mixtures, and colloidal crystal-liquid crystal systems - were studied and characterized by polarizing microscopy, electrical current, digital scanning calorimetry, and dielectric spectroscopy. Thermotropic properties of glycolipids show a number of unusual properties, most notably high (60-120) relative dielectric constants mainly proportional to the number of polar sugar heads. The relaxation of this dielectric mode is found to be governed by the hydrogen bonding between sugar heads. Studies on novel bent-core liquid crystals reveal a new optically isotropic ferroelectric phase, molecular chirality-induced polarity, and transitions between molecular chirality and polarity driven phases. Mixtures of several bent-core substances with nematic, polar SmA and SmC phases, and a simple amphiphilic sugar lipid with SmA mesophase found to obey the well known miscibility rules, i.e. the sugar lipid mixes best with the polar SmA bent-core material. In addition, the chiral sugar lipid was found to induce tilt to the non-tilted polar SmA phase, which represents a new direction among the chirality--polarity--tilt relations. The effects of the surface properties and electric fields were studied on various colloid particles--and liquid crystal systems. It is found that the surface properties (hydrophobicity, roughness, rubbing) of the substrates are important in determining the size and symmetry of colloidal crystals. The director field of the liquid crystal infiltrated in the colloid crystals can be rendered both random and uniform along one of the crystallographic axis. We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electrorotation is essentially identical to the well - known Quincke rotation, which in liquid crystals triggers an

  4. Magneto-optic garnet and liquid crystal optical switches

    NASA Technical Reports Server (NTRS)

    Krawczak, J. A.; Torok, E. J.; Harvey, W. A.; Hewitt, F. G.; Nelson, G. L.

    1984-01-01

    Magnetic stripe domain and liquid crystal devices are being developed and evaluated as fiber optic switches that can be utilized for nonblocking type nxm optical matrix switches in networking and optical processing. Liquid crystal switches are characterized by very low insertion loss and crosstalk, while stripe domain switches commutate in less than one microsecond. Both switches operate on multimode, randomly polarized fiber light with potentially large values for (n,m). The applications of these magnetic stripe domain and liquid crystal devices are discussed.

  5. Liquid film demonstration experiment Skylab SL-4

    NASA Technical Reports Server (NTRS)

    Darbro, W.

    1975-01-01

    The liquid film demonstration experiment performed on Skylab 4 by Astronaut Gerald Carr, which involved the construction of water and soap films by boundary expansion and inertia, is discussed. Results include a 1-ml globule of water expanded into a 7-cm-diameter film as well as complex film structures produced by inertia whose lifetimes are longer in the low-g environment. Also discussed are 1-g acceleration experiments in which the unprovoked rupture of films was photographed and film lifetimes of stationary and rotated soap films were compared. Finally, there is a mathematical discussion regarding minimal surfaces, an isoperimetric problem, and liquid films.

  6. Improvement in device performance from a mixture of a liquid crystal and photosensitive acrylic prepolymer with the photoinduced vertical alignment method

    PubMed Central

    Ho, Czung-Yu; Lin, Fa-Hsin; Tao, Yu-Tai; Lee, Jiunn-Yih

    2011-01-01

    In a multicomponent nematic liquid crystal (NLC) mixture of a liquid crystal (negative-type NLC) and a photosensitive acrylic prepolymer, photopolymerization upon UV irradiation induces the separation of the LC and photosensitive acrylic prepolymer layers, thereby leading to a vertical arrangement of LC molecules. In this study, we propose a simple vertical alignment method for LC molecules, by adding a chiral smectic A (SmA∗) liquid crystal having homeotropic texture characteristics to an NLC mixture solution. Measurements of electro-optical properties revealed that the addition of the SmA∗ LC not only strengthened the anchoring force of the copolymer alignment film surface, but also significantly enhanced the contrast ratio (∼73%), response time and grayscale switching performance of the device. PMID:27877462

  7. Liquid phase heteroepitaxial growth on convex substrate using binary phase field crystal model

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Zhang, Tinghui; Chen, Zheng

    2018-06-01

    The liquid phase heteroepitaxial growth on convex substrate is investigated with the binary phase field crystal (PFC) model. The paper aims to focus on the transformation of the morphology of epitaxial films on convex substrate with two different radiuses of curvature (Ω) as well as influences of substrate vicinal angles on films growth. It is found that films growth experience different stages on convex substrate with different radiuses of curvature (Ω). For Ω = 512 Δx , the process of epitaxial film growth includes four stages: island coupled with layer-by-layer growth, layer-by-layer growth, island coupled with layer-by-layer growth, layer-by-layer growth. For Ω = 1024 Δx , film growth only experience islands growth and layer-by-layer growth. Also, substrate vicinal angle (π) is an important parameter for epitaxial film growth. We find the film can grow well when π = 2° for Ω = 512 Δx , while the optimized film can be obtained when π = 4° for Ω = 512 Δx .

  8. Bubble migration in a compacting crystal-liquid mush

    NASA Astrophysics Data System (ADS)

    Boudreau, Alan

    2016-04-01

    Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid

  9. Nucleation type instabilities in partially wetting nanoscale nematic liquid films

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Cummings, Linda; Kondic, Lou

    2016-11-01

    Nucleation type instabilities are studied in nematic liquid crystal (NLC) films with thicknesses less than a micrometer. Within the framework of the long wave approximation, a 4th order nonlinear partial differential equation is proposed for the free surface height. Unlike simple fluids, NLC molecules have a dipole moment which induces an elastic response due to deformation in the bulk of the fluid. The model includes the balance between the bulk elasticity energy and the anchoring (boundary) energy at the substrate and free surface, and van der Waals' intermolecular forces, by means of a structural disjoining pressure. In this presentation, we focus on two-dimensional flow and present simulation results for a flat film with a localized perturbation. We are interested in the morphology of the dewetted film as a function of the initial film thickness. We will show that there exists a range of film thicknesses within the linearly unstable flat film regime where stability analysis does not explain the morphology of the dewetted film. Marginal stability criterion (MSC) is used to derive an analytical expression for the velocity at which a perturbation propagates into the unstable flat film. Finally, we discuss the degree to which MSC can be used to explain the observed morphology.

  10. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    NASA Astrophysics Data System (ADS)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  11. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  12. Field induced heliconical structure of cholesteric liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie

    A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to themore » plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.« less

  13. Multistable Phase-Retardation Plate Based on Gelator-Doped Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ying-Guey Fuh, Andy; Chiang, Jou-Ting; Chien, Yu-Shein; Chang, Chih-Juang; Lin, Hui-Chi

    2012-07-01

    This work demonstrates a multistable, large phase-retardation plate using gelator-doped liquid crystals (LCs). Multistability is achieved by forming a rubbery LC gel at room temperature. Experimentally, the phase retardation (PR) of an LC-gel film can be varied and fixed by the thermoreversible association and dissociation of the gelator molecules. The PR of the LC plate ranging from 0.3-3.7π can be electrically controllable within 10 V. Half-wave and quarter-wave LC plates were also produced at applied voltages of 3.5 and 6.3 V, respectively. Their properties were examined and found to be stable.

  14. Multistable Phase-Retardation Plate Based on Gelator-Doped Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Fuh, Andy Ying-Guey; Chiang, Jou-Ting; Chien, Yu-Shein; Chang, Chih-Juang; Lin, Hui-Chi

    2012-07-01

    This work demonstrates a multistable, large phase-retardation plate using gelator-doped liquid crystals (LCs). Multistability is achieved by forming a rubbery LC gel at room temperature. Experimentally, the phase retardation (PR) of an LC-gel film can be varied and fixed by the thermoreversible association and dissociation of the gelator molecules. The PR of the LC plate ranging from 0.3--3.7π can be electrically controllable within 10 V. Half-wave and quarter-wave LC plates were also produced at applied voltages of 3.5 and 6.3 V, respectively. Their properties were examined and found to be stable.

  15. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  16. Molecular reorientation of a nematic liquid crystal by thermal expansion

    PubMed Central

    Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.

    2012-01-01

    A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803

  17. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals.

    PubMed

    Ha, Na Young; Ohtsuka, Youko; Jeong, Soon Moon; Nishimura, Suzushi; Suzaki, Goroh; Takanishi, Yoichi; Ishikawa, Ken; Takezoe, Hideo

    2008-01-01

    A cholesteric liquid crystal (CLC) is a self-assembled photonic crystal formed by rodlike molecules, including chiral molecules, that arrange themselves in a helical fashion. The CLC has a single photonic bandgap and an associated one-colour reflection band for circularly polarized light with the same handedness as the CLC helix (selective reflection). These optical characteristics, particularly the circular polarization of the reflected light, are attractive for applications in reflective colour displays without using a backlight, for use as polarizers or colour filters and for mirrorless lasing. Recently, we showed by numerical simulation that simultaneous multicolour reflection is possible by introducing fibonaccian phase defects. Here, we design and fabricate a CLC system consisting of thin isotropic films and of polymeric CLC films, and demonstrate experimentally simultaneous red, green and blue reflections (multiple photonic bandgaps) using the single-pitched polymeric CLC films. The experimental reflection spectra are well simulated by calculations. The presented system can extend applications of CLCs to a wide-band region and could give rise to new photonic devices, in which white or multicolour light is manipulated.

  18. New developments in 3D liquid crystal elastomers scaffolds for tissue engineering: from physical template to responsive substrate

    NASA Astrophysics Data System (ADS)

    Prévôt, Marianne E.; Bergquist, Leah E.; Sharma, Anshul; Mori, Taizo; Gao, Yungxiang; Bera, Tanmay; Zhu, Chenhui; Leslie, Michelle T.; Cukelj, Richard; Korley, LaShanda T. J.; Freeman, Ernest J.; McDonough, Jennifer A.; Clements, Robert J.; Hegmann, Elda

    2017-08-01

    We report here on cell growth and proliferation within a 3D architecture created using smectic liquid crystal elastomers (LCEs) leading to a responsive scaffold for tissue engineering. The investigated LCE scaffolds exhibit biocompatibility, controlled degradability, with mechanical properties and morphologies that can match development of the extracellular matrix. Moreover, the synthetic pathway and scaffold design offer a versatility of processing, allowing modifications of the surface such as adjusting the hydrophilic/hydrophobic balance and the mobility of the LC moieties to enhance the biomaterial performance. First, we succeeded in generating LCEs whose mechanical properties mimic muscle tissue. In films, our LCEs showed cell adhesion, proliferation, and alignment. We also achieved creating 3D LCE structures using either metallic template or microsphere scaffolds. Finally, we recorded a four times higher cell proliferation capability in comparison to conventional porous films and, most importantly, anisotropic cell growth that highlights the tremendous effect of liquid crystal moieties within LCEs on the cell environment.

  19. Copper and liquid crystal polymer bonding towards lead sensing

    NASA Astrophysics Data System (ADS)

    Redhwan, Taufique Z.; Alam, Arif U.; Haddara, Yaser M.; Howlader, Matiar M. R.

    2018-02-01

    Lead (Pb) is a highly toxic and carcinogenic heavy metal causing adverse impacts on environment and human health, thus requiring its careful monitoring. In this work, we demonstrate the integration of copper (Cu) film-based electrodes toward Pb sensing. For this, we developed a direct bonding method for Cu thin film and liquid crystal polymer (LCP) substrate using oxygen plasma treatment followed by contact and heat at 230 °C. The oxygen plasma activation forms hydroxyl groups (OH-) on Cu and LCP. The activated surfaces further adsorb water molecules when exposed to clean room air during contact. After contact, hydrogen bonds are formed between the OH- groups. The interfacial water is removed when the contacted films are heated, leading to shrinkage of OH- chain. This results in an intermediate oxide layer linking the Cu and C sites of Cu and LCP respectively. A strong adhesion (670 N·m-1) is obtained between Cu/LCP that may offer prolonged use of the electrode without delamination in wet sensing applications. Anodic stripping voltammetry of Pb using Cu thin film electrode shows a stronger current peak than sputtered Cu electrode, which implies the significance of the direct bonding approach to integrate thin films. We also studied the electrochemical impedance that will enable modeling of integrated environmental sensors for on-site monitoring of heavy metals.

  20. Thermal conductivity of Glycerol’s liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Ove; Johari, G. P., E-mail: joharig@mcmaster.ca

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κ{sub crystal} is 3.6-times the κ{sub liquid} value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T{sup −0.95}; (ii) the ratio κ{sub liquid} (p)/κ{sub liquid} (0.1 MPa) is 1.45 GPa{sup −1} at 280 K, which, unexpectedly, is about themore » same as κ{sub crystal} (p)/κ{sub crystal} (0.1 MPa) of 1.42 GPa{sup −1} at 298 K; (iii) κ{sub glass} is relatively insensitive to T but sensitive to the applied p (1.38 GPa{sup −1} at 150 K); (iv) κ{sub glass}-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κ{sub crystal} of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.« less

  1. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth

    PubMed Central

    Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.

    2017-01-01

    We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697

  2. Investigation of ferroelectric liquid crystal orientation in the silica microcapillaries

    NASA Astrophysics Data System (ADS)

    Budaszewski, D.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    In the paper we present our recent results concerning the orientation of ferroelectric liquid crystal molecules inside silica micro capillaries. We have infiltrated the silica micro capillaries with experimental ferroelectric liquid crystal material W-260K synthesized in the Military University of Technology. The infiltrated micro capillaries were observed under the polarization microscope while both a polarizer and an analyzer were crossed. The studies on the orientation of ferroelectric liquid crystal molecules may contribute to further studies on behavior of this group of liquid crystal materials inside photonic crystal fiber. The obtained results may lead to design of a new type of fast optical fiber sensors.

  3. Ellipsometric measurement of liquid film thickness

    NASA Technical Reports Server (NTRS)

    Chang, Ki Joon; Frazier, D. O.

    1989-01-01

    The immediate objective of this research is to measure liquid film thickness from the two equilibrium phases of a monotectic system in order to estimate the film pressure of each phase. Thus liquid film thicknesses on the inside walls of the prism cell above the liquid level have been measured elliposmetrically for the monotectic system of succinonitrile and water. The thickness varies with temperature and composition of each plane. The preliminary results from both layers at 60 deg angle of incidence show nearly uniform thickness from about 21 to 23 C. The thickness increases with temperature but near 30 C the film appears foggy and scatters the laser beam. As the temperature of the cell is raised beyond room temperature it becomes increasingly difficult to equalize the temperature inside and outside the cell. The fogging may also be an indication that solution, not pure water, is adsorbed onto the substrate. Nevertheless, preliminary results suggest that ellipsometric measurement is feasible and necessary to measure more accurately and rapidly the film thickness and to improve thermal control of the prism walls.

  4. Plateau borders of smectic liquid crystalline films

    NASA Astrophysics Data System (ADS)

    Trittel, Torsten; Aldred, Ruth; Stannarius, Ralf

    2011-06-01

    We investigate the geometrical properties of Plateau borders in an arrangement of connected smectic A free standing films. The geometry is chosen such that a circular Plateau border surrounds a planar smectic film and connects it with two smectic catenoids. It is demonstrated that, similar to soap films, the smectic film geometry can be described by a negative line tension of the circular contact region. Thus, the equilibrium angle between the films depends upon the liquid content in this region, and with increasing liquid content, deviations from Plateau's rule are observed. The experimental results are qualitatively comparable to soap films. A possible origin of slight quantitative differences is discussed.

  5. Electrorotation of colloidal particles in liquid crystals

    NASA Astrophysics Data System (ADS)

    Liao, G.; Smalyukh, I. I.; Kelly, J. R.; Lavrentovich, O. D.; Jákli, A.

    2005-09-01

    We present the first observations of dc electric-field-induced rotational motion of finite particles in liquid crystals. We show that the electrorotation is essentially identical to the well-known Quincke rotation, which in liquid crystals triggers an additional translational motion at higher fields. In the smectic phase the translational motion is confined to the two-dimensional geometry of smectic layers, in contrast to the isotropic and nematic phases, where the particles can move in all three dimensions. We demonstrate that by a proper analysis of the electrorotation, one can determine the in-plane viscosity of smectic liquid crystals. This method needs only a small amount of material, does not require uniform alignment over large areas, and enables probing rheological properties locally.

  6. Liquid-Crystal-Enabled Active Plasmonics: A Review

    PubMed Central

    Si, Guangyuan; Zhao, Yanhui; Leong, Eunice Sok Ping; Liu, Yan Jun

    2014-01-01

    Liquid crystals are a promising candidate for development of active plasmonics due to their large birefringence, low driving threshold, and versatile driving methods. We review recent progress on the interdisciplinary research field of liquid crystal based plasmonics. The research scope of this field is to build the next generation of reconfigurable plasmonic devices by combining liquid crystals with plasmonic nanostructures. Various active plasmonic devices, such as switches, modulators, color filters, absorbers, have been demonstrated. This review is structured to cover active plasmonic devices from two aspects: functionalities and driven methods. We hope this review would provide basic knowledge for a new researcher to get familiar with the field, and serve as a reference for experienced researchers to keep up the current research trends. PMID:28788515

  7. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers.

    PubMed

    Kim, Yunhee; Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Youngmin; Park, Gilbae; Lee, Byoungho

    2007-06-20

    A depth-enhanced three-dimensional integral imaging system with electrically variable image planes is proposed. For implementing the variable image planes, polymer-dispersed liquid-crystal (PDLC) films and a projector are adopted as a new display system in the integral imaging. Since the transparencies of PDLC films are electrically controllable, we can make each film diffuse the projected light successively with a different depth from the lens array. As a result, the proposed method enables control of the location of image planes electrically and enhances the depth. The principle of the proposed method is described, and experimental results are also presented.

  8. Ultra fast polymer network blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar

    2011-06-01

    Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).

  9. Conductivity of Langmuir-Blodgett films of a disk-shaped liquid-crystalline molecule-DNA complex studied by current-sensing atomic force microscopy.

    PubMed

    Nayak, Alpana; Suresh, K A

    2008-08-01

    We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.

  10. Conductivity of Langmuir-Blodgett films of a disk-shaped liquid-crystalline molecule-DNA complex studied by current-sensing atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nayak, Alpana; Suresh, K. A.

    2008-08-01

    We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.

  11. Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements

    NASA Astrophysics Data System (ADS)

    Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki

    2018-04-01

    Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.

  12. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  13. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  14. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  15. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  16. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  17. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... color changes of heat sensitive liquid crystals corresponding to the variation in the surface temperature of the skin. The liquid crystals, which are cholesteric esters, are sealed in plastic. (b...

  18. Rotational reorganization of doped cholesteric liquid crystalline films.

    PubMed

    Eelkema, Rienk; Pollard, Michael M; Katsonis, Nathalie; Vicario, Javier; Broer, Dirk J; Feringa, Ben L

    2006-11-08

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric pitch. The direction of this reorganization is correlated to the sign of the change in helical twisting power of the dopant. The rotational reorganization of the liquid crystalline film was used to rotate microscopic objects 4 orders of magnitude larger than the bistable dopants in the film, which shows that molecular motors and switches can perform work. The surface of the doped cholesteric liquid crystalline films was found to possess a regular surface relief, whose periodicity coincides with typical cholesteric polygonal line textures. These surface features originate from the cholesteric superstructure in the liquid crystalline film, which in turn is the result of the presence of the chiral dopant. As such, the presence of the dopant is expressed in these distinct surface structures. A possible mechanism at the origin of the rotational reorganization of liquid crystalline films and the cholesteric surface relief is discussed.

  19. Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo

    2016-03-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.

  20. Lipid decorated liquid crystal pressure sensors

    NASA Astrophysics Data System (ADS)

    Lopatkina, Tetiana; Popov, Piotr; Honaker, Lawrence; Jakli, Antal; Mann, Elizabeth; Mann's Group Collaboration; Jakli's Group Collaboration

    Surfactants usually promote the alignment of liquid crystal (LC) director parallel to the surfactant chains, and thus on average normal to the substrate (homeotropic), whereas water promotes tangential (planar) alignment. A water-LC interface is therefore very sensitive to the presence of surfactants, such as lipids: this is the principle of LC-based chemical and biological sensing introduced by Abbott et al.Using a modified configuration, we found that at higher than 10 micro molar lipid concentration, the uniformly dark texture seen for homeotropic alignment between left-, and right-handed circular polarizers becomes unstable and slowly brightens again. This texture shows extreme sensitivity to external air pressure variations offering its use for sensitive pressure sensors. Our analysis indicates an osmotic pressure induced bending of the suspended films explaining both the birefringence and pressure sensitivity. In the talk we will discuss the experimental details of these effects. This work was financially supported by NSF DMR No. DMR-0907055.

  1. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with themore » thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.« less

  2. Young-Laplace equation for liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  3. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal vein locator. 880.6970 Section 880.6970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters). (b...

  4. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal vein locator. 880.6970 Section 880.6970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters). (b...

  5. A molecular dynamics study on thin film liquid boiling characteristics under rapid linear boundary heating: Effect of liquid film thickness

    NASA Astrophysics Data System (ADS)

    Rabbi, Kazi Fazle; Tamim, Saiful Islam; Faisal, A. H. M.; Mukut, K. M.; Hasan, Mohammad Nasim

    2017-06-01

    This study is a molecular dynamics investigation of phase change phenomena i.e. boiling of thin liquid films subjected to rapid linear heating at the boundary. The purpose of this study is to understand the phase change heat transfer phenomena at nano scale level. In the simulation, a thin film of liquid argon over a platinum surface has been considered. The simulation domain herein is a three-phase system consisting of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system is brought to an equilibrium state at 90 K and then the temperature of the bottom wall is increased to a higher temperature (250K) within a finite time interval. Four different liquid argon film thicknesses have been considered (3 nm, 4 nm, 5 nm and 6 nm) in this study. The boundary heating rate (40×109 K/s) is kept constant in all these cases. Variation in system temperature, pressure, net evaporation number, spatial number density of the argon region with time for different film thickness have been demonstrated and analyzed. The present study indicates that the pattern of phase transition may be significantly different (i.e. evaporation or explosive boiling) depending on the liquid film thickness. Among the four cases considered in the present study, explosive boiling has been observed only for the liquid films of 5nm and 6nm thickness, while for the other cases, evaporation take place.

  6. Liquid crystal nanocomposites produced by mixtures of hydrogen bonded achiral liquid crystals and functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Keskinova, E.; Naradikian, H.; Rafailov, P. M.; Dettlaff-Weglikowska, U.; Spassov, T.

    2014-12-01

    The liquid crystalline (LC) nature of alkyloxybenzoic acids is preserved after adding of any mesogenic or non-mesogenic compound through hydrogen bonding. However, this noncovalent interaction provokes a sizable effect on the physical properties as, e. g. melting point and mesomorphic states. In the present work we investigate nanocomposites, prepared by mixture of the eighth homologue of p-n-alkyloxybenzoic acids (8OBA) with single-walled carbon nanotubes (SWCNT) with the purpose to modify the optical properties of the liquid crystal. We exercise optical control on the LC system by inserting SWCNT specially functionalized by carboxylic groups. Since the liquid crystalline state combines order and mobility at the molecular (nanoscale) level, molecular modification can lead to different macroscopical nanocomposite symmetry. The thermal properties of the functionalized nanocomposite are confirmed by DSC analyses. The mechanism of the interaction between surface-treated nanoparticles (functionalized nanotubes) and the liquid crystal 8OBA bent- dimer molecules is briefly discussed.

  7. Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization

    NASA Astrophysics Data System (ADS)

    Hong, Won-Eui; Ro, Jae-Sang

    2015-01-01

    Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.

  8. Effect of Viscosity on the Crystallization of Undercooled Liquids

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.

  9. Single-crystal films of a combination of materials (co-crystal) involving DAST and IR-125 for electro-optic applications

    NASA Astrophysics Data System (ADS)

    Narayanan, A.; Titus, J.; Rajagopalan, H.; Vippa, P.; Thakur, M.

    2006-03-01

    Single-crystal film of DAST (4'-dimethylamino-N-methyl-4-stilbazolium tosylate) has been shown [1] to have exceptionally large electro-optic coefficients (r11 ˜ 770 pm/V at 633 nm). In this report, single crystal film of a combination of materials (co-crystal) involving DAST and a dye molecule IR-125 will be discussed. Modified shear method was used to prepare the co-crystal films. The film has been characterized using polarized optical microscopy, optical absorption spectroscopy and x-ray diffraction. The optical absorption spectrum has two major bands: one at about 350--600 nm corresponding to DAST and the other at about 600-900 nm corresponding to IR-125. The x-ray diffraction results show peaks involving the presence of DAST and IR-125 within the co-crystal film. Since the co-crystal has strong absorption at longer wavelengths it is expected to show higher electro-optic coefficients at longer wavelengths. Preliminary measurements at 1.55 μm indicate a high electro-optic coefficient of the co-crystal film. [1] Swamy, Kutty, Titus, Khatavkar, Thakur, Appl. Phys. Lett. 2004, 85, 4025; Kutty, Thakur, Appl. Phys. Lett. 2005, 87, 191111.

  10. Rupture of thin liquid films on structured surfaces

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir S.; Gatapova, Elizaveta Ya.; Kabov, Oleg A.

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  11. Multiple-Star System Adaptive Vortex Coronagraphy Using a Liquid Crystal Light Valve

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Artur; Kravets, Nina; Brasselet, Etienne

    2017-05-01

    We propose the development of a high-contrast imaging technique enabling the simultaneous and selective nulling of several light sources. This is done by realizing a reconfigurable multiple-vortex phase mask made of a liquid crystal thin film on which local topological features can be addressed electro-optically. The method is illustrated by reporting on a triple-star optical vortex coronagraphy laboratory demonstration, which can be easily extended to higher multiplicity. These results allow considering the direct observation and analysis of worlds with multiple suns and more complex extrasolar planetary systems.

  12. Amorphous silicon thin-film transistor active-matrix for reflective cholesteric liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Nahm, Jeong-Yeop

    Reflective cholesteric liquid crystal displays (Ch-LCDs) have advantages, such as, high brightness, low power consumption, and wide viewing angle, since they do not need any polarizer, color filter, and backlight. Furthermore, due to their bistability Ch-LCDs can retain their images virtually forever without additional power consumption. But conventional passive-matrix addressing of Ch-LCDs allows only a slow image updating speed. Active-matrix addressing should allow fast image updating or video-rate operation. However, because the threshold voltage of cholesteric, liquid crystal is high (>20V), the switching devices for active-matrix addressing should satisfy required characteristics even under high bias conditions. In order to investigate the applicability of hydrogenated amorphous silicon thin film transistors (a-Si:H TFTs) for the switching devices of active-matrix (AM) Ch-LCDs, the characteristics of conventional and gate offset high voltage a-Si:H TTFs were examined under high bias conditions. And it was concluded that high OFF-current of conventional a-Si:H TFTs and low ON-current of gate offset high voltage a-Si:H TFTs were main problems for reflective AM Ch-LCD applications. In order to improve the TFT characteristics under high bias conditions, we propose two new a-Si:H TFT structures called gate planarized (GP) and buried field plate (BFP) high voltage a-Si:H TFTs. Firstly, in the GP a-Si:H TFTs, we used a thick spin-coated benzocyclobutene (BCB) layer beneath a thin hydrogenated amorphous silicon nitride (a-SiNx:H) layer for gate insulator. The GP a-Si:H TFT showed normal TFT characteristic up to VGS = VDS = ˜100 V without any device failure. But TFT ON-current of GP a-Si:H TFT was reduced due to the introduction of the thick low dielectric BCB layer. Secondly, in the BFP a-Si:H TFT, an offset region and a buried field plate were introduced between the drain/source and gate electrodes to reduce the electric field in the pinch-off region. For this BFP

  13. Invited review liquid crystal models of biological materials and silk spinning.

    PubMed

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  14. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  15. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2013-10-22

    Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic mixture, deuteration, nematic phase, birefringence, overtone...absorption compounds for LWIR and SWIR are also investigated. Key words: Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic ...the melting point significantly. We did careful investigation and formed a eutectic mixture consisting of five fluorinated compounds without any

  16. Liquid-crystal science from 1888 to 1922: building a revolution.

    PubMed

    Mitov, Michel

    2014-05-19

    The saga of liquid crystals started with their discovery in 1888 by the botanist Friedrich Reinitzer, who unexpectedly observed "two melting points" for crystals extracted from the root of a carrot. At the end of the nineteenth century, most scientists did not believe in the existence of "liquid crystals" as promoted by the crystallographer Otto Lehmann. The controversies were very vivid; to the point that the recognition of mesomorphic states of matter by the scientific community required more than two decades. In the end, liquid crystals have changed our vision of matter by shattering the three-state paradigm. Since the mid-1970s, liquid crystals have revolutionized the worldwide information-display industry and now play a host of key roles in various technologies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Intangible pointlike tracers for liquid-crystal-based microsensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasselet, Etienne; Juodkazis, Saulius

    2010-12-15

    We propose an optical detection technique for liquid-crystal-based sensors that is based on polarization-resolved tracking of optical singularities and does not rely on standard observation of light-intensity changes caused by modifications of the liquid crystal orientational ordering. It uses a natural two-dimensional network of polarization singularities embedded in the transverse cross section of a probe beam that passes through a liquid crystal sample, in our case, a nematic droplet held in laser tweezers. The identification and spatial evolution of such a topological fingerprint is retrieved from subwavelength polarization-resolved imaging, and the mechanical constraint exerted on the molecular ordering by themore » trapping beam itself is chosen as the control parameter. By restricting our analysis to one type of point singularity, C points, which correspond to location in space where the polarization azimuth is undefined, we show that polarization singularities appear as intangible pointlike tracers for liquid-crystal-based three-dimensional microsensors. The method has a superresolution potential and can be used to visualize changes at the nanoscale.« less

  18. Development and Characterization of Liquid Crystal-Gold Nanoparticle Hybrid Materials for Optical Applications

    NASA Astrophysics Data System (ADS)

    Quint, Makiko T.

    Hybrid material, mixtures of two or more materials with new properties, represents an exciting class of new materials for a variety of potential applications such as displays, optoelectronics, and sensors due to their unique physical and optical properties. The scope of this dissertation is to produce two new plasmonic applications by combining liquid crystals with gold nanoparticles. The first application is gold nanoparticle coated liquid crystal thin film. Most liquid crystal (LC) thin films require external voltage to reorient LC molecules. Recent advances in optical controlling technology of LC molecule behavior, resulting in the reduction of energy consumption, have stimulated research and development of new LC thin films. In order to re-orient LC molecules by just using light, the common approach is to include either a photo-responsive LC host, one that require high power light and severely narrows the range of usable materials, or add photo-active dye or polymer layer, photodegradation over time. Our work designing an all-optical method for LC re-orientation that overcomes all the limitations mentioned above. We have successfully both in- and out-of-plane spatial orientation of nematic liquid crystal (LC) molecules by leveraging the highly localized electric fields produced in the near-field regime of a gold nanoparticle (AuNP) layer. This re-orientation of LC molecules in thin LC-AuNP film is all-optical, driven by a small resonance excitation power with the localized surface plasmon absorption of the AuNPs at room temperature. The second application is LC mediated nano-assembled gold microcapsules. This application has a potential in controlled-release cargo-style delivery system. Targeted delivery systems with controlled release mechanisms have been the subject of extensive research more than fifty years. One is to control the release process remotely by using optical excitation. Optical actuation of delivery capsules, which plasmonic nanoparticle such

  19. Electrically Tilted Liquid Crystal Display Mode for High Speed Operation

    NASA Astrophysics Data System (ADS)

    Gwag, Jin Seog; Kim, Jae Chang; Yoon, Tae-Hoon

    2006-09-01

    To develop liquid crystal displays suitable for moving picture, a liquid crystal display mode having an electrically tilted phase is proposed. This is realized by initially having a tilted liquid crystal with low bias voltage. We found that its measured response time is in good agreement with numerical calculation obtained using the Erickson-Leslie equation. The falling times were smaller than 10 ms with conventional driving and 6 ms with overdriving.

  20. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  1. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films

    PubMed Central

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-01-01

    The structure evolution and crystallization processes of Sb2Te-TiO2 films have been investigated. The Sb2Te-rich nanocrystals, surrounded by TiO2 amorphous phases, are observed in the annealed Sb2Te-TiO2 composite films. The segregated domains exhibit obvious chalcogenide/TiOx interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge2Sb2Te5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb2Te)94.7(TiO2)5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb2Te)94.7(TiO2)5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications. PMID:28397858

  2. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films.

    PubMed

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-04-11

    The structure evolution and crystallization processes of Sb 2 Te-TiO 2 films have been investigated. The Sb 2 Te-rich nanocrystals, surrounded by TiO 2 amorphous phases, are observed in the annealed Sb 2 Te-TiO 2 composite films. The segregated domains exhibit obvious chalcogenide/TiO x interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge 2 Sb 2 Te 5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications.

  3. Scalable Synthesis of Cholesteric Glassy Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Jason U.; Shestopalov, Alexander; Kosc, Tanya

    2018-03-08

    Capable of non-absorbing circular polarization of unpolarized incident light, cholesteric glassy liquid crystals consisting of hybrid chiral-nematic pendants to volume-excluding cores are potentially useful for the fabrication of various robust optical devices. As illustrated in this study, the well-oriented glassy film of enantiomeric Bz3ChN, with a glass transition at 73 oC and a cholesteric-to-isotropic transition at 295 oC, exhibits a selective reflection band centered at approximately 410 nm, an exceptional set of properties well suited for optical device exploration. To enable sustainable, large-scale synthesis of this material class for widespread applications, a productive strategy has been established, requiring a meremore » three-step scheme with an overall yield, atom economy, and reaction mass efficiency at 34, 33 and 12 %, respectively. While amenable to improvements, the resultant green chemistry metrics are encouraging as the first attempt.« less

  4. Liquid-crystal WDM power equalizer

    NASA Astrophysics Data System (ADS)

    Chiao, Jung-Chih; Huang, Tizhi

    2002-06-01

    In this work, we demonstrated a liquid-crystal WDM (wavelength-division-multiplexing) power equalizer. It provides functionality of optical power equalization and tilting using liquid-crystal modulators and harmonic synthesis approach. The demonstrations show fast gain equalization with a flatness of +/- 0.3dB for several EDFA profiles in C or L bands. The equalization for WDM discrete-channel cases also reached flatness within +/- 0.3dB. The measured polarization dependent losses are less than 0.15dB and 0.1dB for flattened and through-state profiles, respectively. The measured polarization mode dispersions are less than 0.15ps under the through, flattened and 10-dB attenuation states. The measured chromatic dispersion is less than degree(s)7ps/nm.

  5. Slovenian Pre-Service Teachers' Conceptions about Liquid Crystals

    ERIC Educational Resources Information Center

    Pavlin, Jerneja; Vaupotic, Natasa; Glazar, Sasa A.; Cepic, Mojca; Devetak, Iztok

    2011-01-01

    A total of 448 first-year university students participated in the study at the beginning of the academic year 2009/10. A paper-pencil liquid crystal questionnaire (LCQ) comprising 20 items was used to evaluate students' general conceptions related to liquid crystals, their properties and to the state of matter in general. The results show that 2/3…

  6. Distortion of liquid film discharging from twin-fluid atomizer

    NASA Astrophysics Data System (ADS)

    Mehring, C.; Sirignano, W. A.

    2001-11-01

    The nonlinear distortion and disintegration of a thin liquid film exiting from a two-dimensional twin-fluid atomizer is analyzed numerically. Pulsed gas jets impacting on both sides of the discharging liquid film at the atomizer exit generate dilational and/or sinuous deformations of the film. Both liquid phase and gas phase are inviscid and incompressible. For the liquid phase the so-called long-wavelength approximation is employed yielding a system of unsteady one-dimensional equations for the planar film. Solution of Laplace's equation for the velocity potential yields the gas-phase velocity field on both sides of the liquid stream. Coupling between both phases is described through kinematic and dynamic boundary conditions at the phase interfaces, and includes the solution of the unsteady Bernoulli equation to determine the gas-phase pressure along the interfaces. Both gas- and liquid-phase equations are solved simultaneously. Solution of Laplace's equation for the gas streams is obtained by means of a boundary-element method. Numerical solutions for the liquid phase use the Lax-Wendroff method with Richtmyer splitting. Sheet distortion resulting from the stagnation pressure of the impacting gas jets and subsequent disturbance amplification due to Kelvin-Helmholtz effects are studied for various combinations of gas-pulse timing, gas-jet impact angles, gas-to-liquid-density ratio, liquid-phase Weber number and gas-jet-to-liquid-jet-momentum ratio. Dilational and sinuous oscillations of the liquid are examined and film pinch-off is predicted.

  7. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  8. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  9. Characterising laser beams with liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  10. Viscous Effect of Drop Impacting on Liquid Film

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao

    2017-11-01

    Drop impacting a liquid film is commonly observed in many processes including inkjet printing and thermal sprays. The accumulation and growth of the film depend on the outcome of subsequent drop impact on the initially formed film. In our recent study (Tang, et al. Soft Matter 2016), we have proposed a regime diagram based on the Weber number We (ratio of impact inertia and surface tension) and the film thickness, characterizing non-monotonic transitions between the bouncing and merging outcomes and providing scaling analysis for the boundaries for a single liquid (n-tetradecane). Since liquid viscosity fundamentally affects the impact outcome, through its influence on the flow field and dissipation of the kinetic energy, here we extend the study for a number of alkanes and silicone oils, covering a wide range of viscosity, to evaluate its effect on the regime diagram. We will show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and eventually the non-monotonicity disappears. We will model the viscous effects and present a modified scaling. This new scaling attempts to unify all liquids and provides a useful tool to manipulate the outcome of drop impact on liquid film. The work at Princeton University is supported by the Army Research Office and the Xerox Corporation.

  11. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashi, T.; Ohmori, M.; Ramananarivo, M. F.

    2015-12-01

    The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.

  12. Thaumatin crystallization aboard the International Space Station using liquid-liquid diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN).

    PubMed

    Barnes, Cindy L; Snell, Edward H; Kundrot, Craig E

    2002-05-01

    This paper reports results from the first biological crystal-growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor-diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from 77 to 273 K in about 4 d, about the same time it took to warm from 273 to 293 K. The temperature within the EGN was 293-297 K for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space-grown crystal extended to 1.28 A, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground-control crystal was only 1.47 A. It is not clear if the difference in diffraction limit arises from factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that the EGN on the ISS can be used to produce space-grown crystals that diffract to high resolution.

  13. Thaumatin Crystallization Aboard the International Space Station Using Liquid-Liquid Diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN)

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig; Barnes, Cindy L.; Snell, Edward H.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    This paper reports results from the first biological crystal growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different Volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from -196 C to 0 C in about four days, about the same time it took to warm from 0 C to 20 C. The temperature within the EGN was 20 - 24 C for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space grown crystal extended to 1.28 Angstroms, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground control crystal was only 1.47 Angstroms. It is not clear if the difference in diffraction limit is due to factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that EGN on the ISS can be used to produce space grown crystals that diffract to high resolution.

  14. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    PubMed

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. UV response on dielectric properties of nano nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Pandey, Kamal Kumar; Tripathi, Pankaj Kumar; Misra, Abhishek Kumar; Manohar, Rajiv

    2018-03-01

    In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB) and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz-10 MHz in the nematic mesophase range.

  16. Viscous dewetting of metastable liquid films on substrates with microgrooves.

    PubMed

    Kim, Taehong; Kim, Wonjung

    2018-06-15

    We present a combined experimental and theoretical investigation of dewetting on substrates with parallel microgrooves. A thin, static liquid film has an equilibrium thickness so as to minimize the sum of the surface free energy and the gravitational potential energy. When the thickness of a liquid film is less than the equilibrium thickness, the film seeks the equilibrium through contraction of the wetted area, which is referred to as dewetting. We experimentally observed the dewetting of thin, metastable liquid films on substrates with parallel microgrooves. The experiments revealed that the films retract in the direction along the grooves and leaves liquid residues with various morphologies. We classify the residue morphologies into three modes and elucidate the dependence of the mode selection on the groove geometry and the equilibrium contact angle of the liquid. We also experimentally examined the dynamic motion of the receding contact lines of the dewetting films, and developed a mechanical model for the receding speed. Our results provide a basis for controlling liquid films using microstructures, which is useful for lubricant-impregnated surface production, painting, spray cooling, and surface cleaning. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ta; Chen, Chun-Wei; Yang, Tzu-Hsuan; Nys, Inge; Li, Cheng-Chang; Lin, Tsung-Hsien; Neyts, Kristiaan; Beeckman, Jeroen

    2018-01-01

    Selection of the bandedge lasing mode of a photonic crystal laser has been realized in a fluorescent dye doped chiral nematic liquid crystal by exerting electrical control over the mode competition. The bandedge lasing can be reversibly switched from the short-wavelength edge mode to the long-wavelength edge mode by applying a voltage of only 20 V, without tuning the bandgap. The underlying mechanism is the field-induced change in the order parameter of the fluorescent dye in the liquid crystal. The orientation of the transition dipole moment determines the polarization state of the dye emission, thereby promoting lasing in the bandedge mode that favors the emission polarization. Moreover, the dynamic mode-selection capability is retained upon polymer-stabilizing the chiral nematic liquid crystal laser. In the polymer-stabilized system, greatly improved stability and lasing performance are observed.

  18. Molecular dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1997-02-01

    We derive Green-Kubo relations for the viscosities of a nematic liquid crystal. The derivation is based on the application of a Gaussian constraint algorithm that makes the director angular velocity of a liquid crystal a constant of motion. Setting this velocity equal to zero means that a director-based coordinate system becomes an inertial frame and that the constraint torques do not do any work on the system. The system consequently remains in equilibrium. However, one generates a different equilibrium ensemble. The great advantage of this ensemble is that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble. This facilitates the numerical evaluation of the viscosities by molecular dynamics simulations.

  19. Nanoparticle guests in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  20. Crystallization Kinetics of Amorphous AgInS2 Film

    NASA Astrophysics Data System (ADS)

    Kerimova, N. K.; Mamedova, A. Ch.

    2018-04-01

    The paper deals with crystallization kinetics of amorphous AgInS2 film. The dependence between lnln(V0 / (V0 -Vt) and lnt is obtained for 423, 448 and 468 K temperatures, which shows a linear arrangement of points for these temperatures, i.e. 2.80 2.87 and 2.93, respectively. The approximate equality of these values indicates that during AgInS2 film crystallization, a two-dimensional crystal growth occurs and the reaction rate constant equals (1/3π) {η}_n{η}_c^2.

  1. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    Working on a state space determined by considering a discrete system of rigid rods, we use nonequilibrium statistical mechanics to derive macroscopic balance laws for liquid crystals. A probability function that satisfies the Liouville equation serves as the starting point for deriving each macroscopic balance. The terms appearing in the derived balances are interpreted as expected values and explicit formulas for these terms are obtained. Among the list of derived balances appear two, the tensor moment of inertia balance and the mesofluctuation balance, that are not standard in previously proposed macroscopic theories for liquid crystals but which have precedents in other theories for structured media. PMID:23554513

  2. Electrowetting on polymer dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Fan, Shih-Kang; Chiu, Cheng-Pu; Lin, Jing-Wei

    2009-04-01

    Polymer dispersed liquid crystal (PDLC) is used as a dielectric layer in electrowetting. By applying voltage between a liquid droplet and the electrode underlying PDLC, electrowetting occurs at the liquid/PDLC interface accompanied with electro-optic responses of the reoriented LC droplets embedded in PDLC. Two basic experiments investigating the electrowetting by sessile water droplets and the electro-optic effects through squeezed water droplets were design and performed. The basic functions of a liquid lens and droplet manipulations, including transporting, splitting, and merging, were demonstrated.

  3. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal.

    PubMed

    Tercjak, A; Garcia, I; Mondragon, I

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  4. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  5. Reflection Spectra of Distorted Cholesteric Liquid Crystal Structures in Cells with Interdigitated Electrodes (Postprint)

    DTIC Science & Technology

    2014-07-01

    adjusting the magnitude of the electric field. 15. SUBJECT TERMS liquid crystals , liquid- crystal devices, Bragg reflectors, optical properties, chiral ...160.3710) Liquid crystals ; (230.3720) Liquid- crystal devices; (230.1480) Bragg reflectors; (160.4760) Optical properties; (160.1585) Chiral media...White, and T. J. Bunning, “Local optical spectra and texture for chiral nematic liquid crystals in cells with interdigitated electrodes,” Mol

  6. Drop impact on thin liquid films using TIRM

    NASA Astrophysics Data System (ADS)

    Pack, Min; Ying Sun Team

    2015-11-01

    Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.

  7. Scalable Synthesis of Cholesteric Glassy Liquid Crystals

    DOE PAGES

    Wallace, Jason U.; Shestopalov, Alexander; Kosc, Tanya; ...

    2018-03-15

    Capable of non-absorbing circular polarization of unpolarized incident light, cholesteric glassy liquid crystals consisting of hybrid chiral-nematic pendants to volume-excluding cores are potentially useful for the fabrication of various robust optical devices. As illustrated in this study, the well-oriented glassy film of enantiomeric Bz3ChN, with a glass transition at 73 °C and a cholesteric-to-isotropic transition at 295 °C, exhibits a selective reflection band centered at approximately 410 nm, an exceptional set of properties well suited for optical device exploration. To enable sustainable, large-scale synthesis of this material class for widespread applications, a productive strategy has been established, requiring a meremore » three-step scheme with an overall yield, atom economy, and reaction mass efficiency at 34%, 33% and 12%, respectively. Lastly, while amenable to improvements, the resultant green chemistry metrics are encouraging as the first attempt.« less

  8. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  9. Surface dynamics and mechanics in liquid crystal polymer coatings

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  10. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) ormore » silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.« less

  11. Tunable properties of light propagation in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Szaniawska, K.; Nasilowski, T.; Woliński, T. R.; Thienpont, H.

    2006-12-01

    Tunable properties of light propagation in photonic crystal fibers filled with liquid crystals, called photonic liquid crystal fibers (PLCFs) are presented. The propagation properties of PLCFs strongly depend on contrast between refractive indices of the solid core (pure silica glass) and liquid crystals (LCs) filing the holes of the fiber. Due to relatively strong thermo-optical effect, we can change the refractive index of the LC by changing its temperature. Numerical analysis of light propagation in PLCF, based on two simulation methods, such as finite difference (FD) and multipole method (MM) is presented. The numerical results obtained are in good agreement with our earlier experimental results presented elsewhere [1].

  12. Influence of coolant injector configuration on film cooling effectiveness for gaseous and liquid film coolants

    NASA Astrophysics Data System (ADS)

    Shine, S. R.; Sunil Kumar, S.; Suresh, B. N.

    2012-05-01

    An experimental investigation is conducted to bring out the effects of coolant injector configuration on film cooling effectiveness, film cooled length and film uniformity associated with gaseous and liquid coolants. A series of measurements are performed using hot air as the core gas and gaseous nitrogen and water as the film coolants in a cylindrical test section simulating a thrust chamber. Straight and compound angle injection at two different configurations of 30°-10° and 45°-10° are investigated for the gaseous coolant. Tangential injection at 30° and compound angle injection at 30°-10° are examined for the liquid coolant. The analysis is based on measurements of the film-cooling effectiveness and film uniformity downstream of the injection location at different blowing ratios. Measured results showed that compound angle configuration leads to lower far-field effectiveness and shorter film length compared to tangential injection in the case of liquid film cooling. For similar injector configurations, effectiveness along the stream wise direction showed flat characteristics initially for the liquid coolant, while it was continuously dropping for the gaseous coolant. For liquid coolant, deviations in temperature around the circumference are very low near the injection point, but increases to higher values for regions away from the coolant injection locations. The study brings out the existance of an optimum gaseous film coolant injector configuration for which the effectiveness is maximum.

  13. Generation of laser-induced periodic surface structures in indium-tin-oxide thin films and two-photon lithography of ma-N photoresist by sub-15 femtosecond laser microscopy for liquid crystal cell application

    NASA Astrophysics Data System (ADS)

    Klötzer, Madlen; Afshar, Maziar; Feili, Dara; Seidel, Helmut; König, Karsten; Straub, Martin

    2015-03-01

    Indium-tin-oxide (ITO) is a widely used electrode material for liquid crystal cell applications because of its transparency in the visible spectral range and its high electrical conductivity. Important examples of applications are displays and optical phase modulators. We report on subwavelength periodic structuring and precise laser cutting of 150 nm thick indium-tin-oxide films on glass substrates, which were deposited by magnetron reactive DC-sputtering from an indiumtin target in a low-pressure oxygen atmosphere. In order to obtain nanostructured electrodes laser-induced periodic surface structures with a period of approximately 100 nm were generated using tightly focused high-repetition rate sub-15 femtosecond pulsed Ti:sapphire laser light, which was scanned across the sample by galvanometric mirrors. Three-dimensional spacers were produced by multiphoton photopolymerization in ma-N 2410 negative-tone photoresist spin-coated on top of the ITO layers. The nanostructured electrodes were aligned in parallel to set up an electrically switchable nematic liquid crystal cell.

  14. Polycrystalline silicon thin-film transistors with location-controlled crystal grains fabricated by excimer laser crystallization

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung

    2007-11-01

    In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.

  15. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue ormore » red shifted depending on the frequency of the applied voltage.« less

  16. Current progress and technical challenges of flexible liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Sato, Hiroto

    2009-02-01

    We focused on several technical approaches to flexible liquid crystal (LC) display in this report. We have been developing flexible displays using plastic film substrates based on polymer-dispersed LC technology with molecular alignment control. In our representative devices, molecular-aligned polymer walls keep plastic-substrate gap constant without LC alignment disorder, and aligned polymer networks create monostable switching of fast-response ferroelectric LC (FLC) for grayscale capability. In the fabrication process, a high-viscosity FLC/monomer solution was printed, sandwiched and pressed between plastic substrates. Then the polymer walls and networks were sequentially formed based on photo-polymerization-induced phase separation in the nematic phase by two exposure processes of patterned and uniform ultraviolet light. The two flexible backlight films of direct illumination and light-guide methods using small three-primary-color light-emitting diodes were fabricated to obtain high-visibility display images. The fabricated flexible FLC panels were driven by external transistor arrays, internal organic thin film transistor (TFT) arrays, and poly-Si TFT arrays. We achieved full-color moving-image displays using the flexible FLC panel and the flexible backlight film based on field-sequential-color driving technique. Otherwise, for backlight-free flexible LC displays, flexible reflective devices of twisted guest-host nematic LC and cholesteric LC were discussed with molecular-aligned polymer walls. Singlesubstrate device structure and fabrication method using self-standing polymer-stabilized nematic LC film and polymer ceiling layer were also proposed for obtaining LC devices with excellent flexibility.

  17. Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.

    PubMed

    Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael

    2016-02-06

    LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.

  18. Statistics of wormlike chains. II. Phase transition of polymer liquid crystals and its mixture with low molecular weight liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Zhao, S. R.; Sun, C. P.

    1997-02-01

    A general self-consistent field (SCF) for the mixture of polymer and low molecular weight (LMW) molecules has been derived by variation principle. Considering a Maier-Saupe type of interaction, the analytical expressions of the SCF for polymer liquid crystals (PLCs) and the mixture of PLCs and LMW liquid crystals are obtained, from which the phase behaviors of PLCs as well as the mixture are studied. The theoretical results are in agreement with experimental results by adjusting a parameter.

  19. Liquid crystal thermography and true-colour digital image processing

    NASA Astrophysics Data System (ADS)

    Stasiek, J.; Stasiek, A.; Jewartowski, M.; Collins, M. W.

    2006-06-01

    In the last decade thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLCs at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make visible the temperature and velocity fields in liquids by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are also presented.

  20. Preparation and blood compatibility of polysiloxane/liquid-crystal composite membranes.

    PubMed

    Li, L; Tu, M; Mou, S; Zhou, C

    2001-10-01

    Polysiloxane/liquid crystal composite membrane was first suggested to be used as biomaterials. In this work, the polydimethyl-methylhydrosiloxane and polydimethyl-methylethylenesilosiane, as a substrate, were blended with cholesteryl oleyl carbonate (COC) in tetrahydrofuran, and then crosslinked into membranes on glass plates by means of the platinum catalyst at 110 degrees C for 20 min. The effects of the liquid-crystal content in composite membranes on the formation of liquid-crystal phase were verified by the observation of optical polarization microscopy. The relationship between the morphology of the composite membranes and blood compatibility was identified by the dynamic blood-clotting tests, haemolysis ratio measurement, platelet adhesion and SEM observation. The results show that the blood-compatibility of composite membranes with the concentration of liquid crystal 20, 30% (wt) is more excellent than that of other composite membranes.

  1. The {alpha}-particle excited scintillation response of the liquid phase epitaxy grown LuAG:Ce thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prusa, P.; Cechak, T.; Mares, J. A.

    2008-01-28

    Liquid phase epitaxy grown Lu{sub 3}Al{sub 5}O{sub 12}:Ce (LuAG:Ce) 20 {mu}m thick films and plate cut from the bulk Czochralski-grown LuAG:Ce crystal were prepared for comparison of photoelectron yield (PhY) and PhY dependence on shaping time (0.5-10 {mu}s). {sup 241}Am ({alpha} particles) was used for excitation. At the 0.5 {mu}s shaping time, the best film shows comparable PhY with the bulk sample. PhY of bulk material increases noticeably more with shaping time than that of the films. Energy resolution of films is better. Influence of Pb{sup 2+} contamination in the films (from the flux) and antisite Lu{sub Al} defect inmore » bulk material is discussed.« less

  2. Bio-recognition and detection using liquid crystals.

    PubMed

    Hussain, A; Pina, A S; Roque, A C A

    2009-09-15

    Liquid crystals (LCs) are used extensively by the electronics industry as display devices. Advances in the understanding of the liquid crystalline phase and the chemistry therein lead to the development of LC exhibiting faster switching speed with greater twist angle. This in turn lead to the emergence of liquid crystal displays, rendering dial-and-needle based displays (such as those used in various meters) and cathode ray tubes obsolete. In this article, we review the history of LC and their emergence as an invaluable material for display devices and the more recent discovery of their use as sensing elements in biosensors. This new application of LC as tools in the development of fast and simple biosensors is envisaged to gain more importance in the foreseeable future.

  3. Reflective and transflective liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Zhou, Fushan

    Recently transflective liquid crystal displays (LCD) received a lot of attention. A transflective display has a transmissive mode and a reflective mode. It combines the high contrast, high brightness of the transmissive mode with energy-saving of reflective mode and has good performance in various illumination conditions. However, state-of-the-art transflective displays have problems such as different electro-optical properties, difficulty in compatibility and optimization of both modes, low efficiency of light utilization, and complexity in structure. This dissertation focuses on finding new designs of transflective displays that address those problems. One way to do this is to study film compensation of LCD. We first studied film compensation of bistable twisted nematic (BTN) LCD. Starting form the reduced (3x3) Mueller matrices, we derived and simplified the conditions that film compensated BTN can be optimized. Based on these relations, electro-optical properties of some particular configurations, and designs of transflective BTN with high brightness and contrast were given. To confirm and get a better understanding of the results, we use the Poincare sphere to analyze film compensated BTN. The key to this approach is the existence of "fixed points". Compared with the matrix approach, this approach is more simple, elegant, and efficient. We then generalized the Poincare sphere approach to a universal approach of LCD. We applied the universal approach to film compensation of ECB and IPS, and the design of achromatic birefringent filters. We also give two more new designs of transflective displays. In the first design, a dichroic mirror is used to split the visible spectrum into two parts used in transmissive and reflective modes, respectively. Both modes can be optimized. It has a simple structure and good light utilization. A design for a full-color transflective display with good performance is also given. In the second design, each pixel is divided into two

  4. Cholesteric liquid crystals in living matter.

    PubMed

    Mitov, Michel

    2017-06-14

    Liquid crystals play an important role in biology because the combination of order and mobility is a basic requirement for self-organisation and structure formation in living systems. Cholesteric liquid crystals are omnipresent in living matter under both in vivo and in vitro conditions and address the major types of molecules essential to life. In the animal and plant kingdoms, the cholesteric structure is a recurring design, suggesting a convergent evolution to an optimised left-handed helix. Herein, we review the recent advances in the cholesteric organisation of DNA, chromatin, chitin, cellulose, collagen, viruses, silk and cholesterol ester deposition in atherosclerosis. Cholesteric structures can be found in bacteriophages, archaea, eukaryotes, bacterial nucleoids, chromosomes of unicellular algae, sperm nuclei of many vertebrates, cuticles of crustaceans and insects, bone, tendon, cornea, fish scales and scutes, cuttlebone and squid pens, plant cell walls, virus suspensions, silk produced by spiders and silkworms, and arterial wall lesions. This article specifically aims at describing the consequences of the cholesteric geometry in living matter, which are far from being fully defined and understood, and discusses various perspectives. The roles and functions of biological cholesteric liquid crystals include maximisation of packing efficiency, morphogenesis, mechanical stability, optical information, radiation protection and evolution pressure.

  5. Aluminum induced crystallization of amorphous Ge thin films on insulating substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ch. Kishan, E-mail: kisn@igcar.gov.in; Tah, T.; Sunitha, D. T.

    2016-05-23

    Aluminium (metal) induced crystallization of amorphous Ge in bilayer and multilayer Ge/Al thin films deposited on quartz substrate at temperature well below the crystallization temperature of bulk Ge is reported. The crystallization of poly-Ge proceeds via formations of dendritic crystalline Ge grains in the Al matrix. The observed phases were characterized by Raman spectroscopy and X-ray diffraction. The microstructure of Al thin film layer was found to have a profound influence on such crystallization process and formation of dendritic grains.

  6. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  7. Bouncing and coalescence of droplets on falling liquid films

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Deygas, Amandine; Matar, Omar

    2014-11-01

    When a droplet impacts on a falling liquid film, the outcome depends on the fluid properties of the droplet, its speed, and angle of incidence, as well as on the film flow rate and associated flow regimes. In this study, the oblique impact of droplets on a falling liquid film is investigated experimentally. The falling film is created on an inclined substrate and the Reynolds number is varied. Droplets with different sizes and different speeds are used to study the impact process for different Weber and Ohnesorge numbers. Different phenomena of droplet impact are identified and analysed, such as bouncing, partial coalescence, total coalescence, and splashing. An impact regime map is generated, and the effects of droplet impact speed and size, and the film flow rates are studied. The propagation of waves on the liquid film post-impact is analysed. The results show that the flowing film can significantly affect the impact process of droplets, and the latter can alter the propagation of waves on the falling film. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  8. Contactless laser viscometer for flowing liquid films

    NASA Astrophysics Data System (ADS)

    Michels, Alexandre F.; Menegotto, Thiago; Grieneisen, Hans-Peter; Horowitz, Flavio

    2005-12-01

    This work briefly reviews recent progress in interferometric monitoring of spin and of dip coating, from a unified point of view, and its application for contactless viscometry of liquid films. Considering the associated models and measurement uncertainties, the method was validated for both coating processes with oil standards of known viscosities and constant refractive indices. Limitations and perspectives for application of the laser viscometer to liquid films with a varying refractive index are also discussed.

  9. Anchoring energy of photo-sensitive polyimide alignment film containing methoxy cinnamate

    NASA Astrophysics Data System (ADS)

    Kim, Suyoung; Shin, Sung Eui; Shin, DongMyung

    2010-02-01

    Photosensitive polyimide containing 2-methoxy cinnamate was synthesized for photo-alignment layer of liquid crystals (LCs). 2-Methoxy cinnamic acid was confirmed photo-sensitive material by linearly polarized UV light. We studied that effect of polarized UV light on rubbed polyimide film. Anchoring energy of liquid crystal with aligning surface was measured. Irradiation of depolarized UV light on rubbed Polyimide film suppressed effective anchoring energy. Linearly polarized UV light on rubbed polyimide film controlled anchoring energy effectively. Polyimide film containing 2-methoxy cinnamate can control the photo-alignment layer easily due to its photo-sensitivity.

  10. Stretchable liquid-crystal blue-phase gels.

    PubMed

    Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

  11. Transition of vertically aligned liquid crystal driven by fan-shaped electric field

    NASA Astrophysics Data System (ADS)

    Tsung, J. W.; Ting, T. L.; Chen, C. Y.; Liang, W. L.; Lai, C. W.; Lin, T. H.; Hsu, W. H.

    2017-09-01

    Interdigital electrodes are implemented in many commercial and novel liquid crystal devices to align molecules. Although many empirical principles and patents apply to electrode design, only a few numerical simulations of alignment have been conducted. Why and how the molecules align in an ordered manner has never been adequately explained. Hence, this investigation addresses the Fréedericksz transition of vertically aligned liquid crystal that is driven by fishbone electrodes, and thereafter identifies the mechanism of liquid crystal alignment. Theoretical calculations suggest that the periodic deformation that is caused by the fan-shaped fringe field minimizes the free energy in the liquid crystal cell, and the optimal alignment can be obtained when the cell parameters satisfy the relation p /2 d =√{k11/k33 } , where p is the spatial period of the strips of the electrode; d denotes the cell gap; and k11 and k33 are the splay and bend elastic constants of the liquid crystal, respectively. Polymer-stabilized vertical alignment test cells with various p values and spacings between the electrodes were fabricated, and the process of liquid crystal alignment was observed under an optical microscope. The degree of alignment was evaluated by measuring the transmittance of the test cell. The experimental results were consistent with the theoretical predictions. The principle of design, p /2 d =√{k11/k33 } , greatly improves the uniformity and stability of the aligned liquid crystal. The methods that are presented here can be further applied to cholesteric liquid crystal and other self-assembled soft materials.

  12. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    PubMed Central

    Poole, P. L.; Krygier, A.; Cochran, G. E.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-01-01

    We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592

  13. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    DOE PAGES

    Poole, P. L.; Krygier, A.; Cochran, G. E.; ...

    2016-08-25

    Here, we describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating.more » Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors.« less

  14. Instability in a system of two interacting liquid films: Formation of liquid bridges between solid surfaces

    NASA Astrophysics Data System (ADS)

    Forcada, Mikel L.

    1993-01-01

    A theoretical study of systems composed of two solid-supported liquid films that are subject to a mutual attractive interaction reveals the existence of a mechanical instability: for distances closer than a certain threshold value, the system composed by two separate liquid films has no stable equilibrium configurations, and the system collapses to form a single liquid body. The sudden condensation of a connecting liquid bridge when two solid surfaces are brought to close proximity inside an undersaturated medium has been observed experimentally using the surface-force apparatus [see, e.g., Christenson et al., Phys. Rev. B 39, 11750 (1989)]. In this paper, these results are explained as follows: first, liquid films condense on the surfaces; then, if the distance is short enough, the films jump to contact, because of a mechanical instability due to attractive interactions.

  15. Numerical investigation of thin film of polar liquid with added surfactant

    NASA Astrophysics Data System (ADS)

    Gordeeva, V. Y.; Lyushnin, A. V.

    2017-11-01

    The thin film of polar liquid with an added surfactant is investigated numerically in this paper. The evolution equations for film thickness and surface concentrations were solved using the semi-implicit Crank-Nikolson scheme. A few profiles on the liquid film developing from an ellipse-shaped drop were received. It was confirmed that the developing film divides into two coexisting films with predictable thickness. It was discovered that this pecularity of the polar liquid is valid only in little range of vapor pressure, which corresponds to the disjoining pressure. It was found that the surfactant desorbed on the gas-liquid interface does not effect to the thickness of the film while the surfactant desorbed on the substrate does effect. It was also found that the stable thickness of the film grows with absolute value of the vapor pressure in stated little range.

  16. Localized soft elasticity in liquid crystal elastomers (POSTPRINT)

    DTIC Science & Technology

    2016-02-23

    AFRL-RX-WP-JA-2016-0280 LOCALIZED SOFT ELASTICITY IN LIQUID CRYSTAL ELASTOMER (POSTPRINT) Taylor H. Ware, Andreas F. Shick, and...MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) 11 August 2015 Interim 31 January 2014 – 11 July 2015 4. TITLE AND SUBTITLE LOCALIZED SOFT ...2016 Localized soft elasticity in liquid crystal elastomers Taylor H. Ware1,2, John S. Biggins3, Andreas F. Shick1, Mark Warner3 & Timothy J. White1

  17. New developments in flexible cholesteric liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Schneider, Tod; Davis, Donald J.; Franklin, Sean; Venkataraman, Nithya; McDaniel, Diaz; Nicholson, Forrest; Montbach, Erica; Khan, Asad; Doane, J. William

    2007-02-01

    Flexible Cholesteric liquid crystal displays have been rapidly maturing into a strong contender in the flexible display market. Encapsulation of the Cholesteric liquid crystal permits the use of flexible plastic substrates and roll-to-roll production. Recent advances include ultra-thin displays, laser-cut segmented displays of variable geometry, and smart card applications. Exciting technologies such as simultaneous laser-edge sealing and singulation enable high volume production, excellent quality control and non-traditional display geometries and formats.

  18. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  19. High Birefringence Liquid Crystals for Laser Hardening and IR Countermeasure

    DTIC Science & Technology

    2004-09-24

    A fast-switching and scattering-free phase modulator using polymer network liquid crystal ( PNLC ) is demonstrated at **=l.55 um for laser beam...steering application. The strong polymer network anchoring greatly reduces the visco-elastic coefficient of the liquid crystal. As a result, the PNLC

  20. Experimental Investigation of Shear Driven Liquid Films for Film Cooling Applications in Liquid Rocket Engines

    DTIC Science & Technology

    2012-12-01

    6 1.1.1 Differences Between Hot-Fire at Subcritical Conditions and Cold Flow ........10 1.1.2 Differences at Supercritical Conditions...cooling. 1.1.2 Differences at Supercritical Conditions Liquid film cooling is expected to behave even more differently at supercritical conditions...phase will behave more like the mixing of two gases of dissimilar densities. Once enough heat is imparted into the supercritical fuel film, it

  1. Application of a liquid crystal spatial light modulator to laser marking.

    PubMed

    Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P

    2011-04-20

    Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America

  2. Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodornus J. (Inventor); Weiser, Erik S. (Inventor); SaintClair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,OOO grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end- capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  3. Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorous J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  4. Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment.

    PubMed

    Liu, Yan Jun; Loh, Wei Wei; Leong, Eunice Sok Ping; Kustandi, Tanu Suryadi; Sun, Xiao Wei; Teng, Jing Hua

    2012-11-23

    Ultrafine 50 nm line and space nanogratings were fabricated using nanoimprint lithography, and were further used as an alignment layer for liquid crystals. The surface morphologies of the nanogratings were characterized and their surface energies were estimated through the measurement of the contact angles for two different liquids. Experimental results show that the surface energies of the nanogratings are anisotropic: the surface free energy towards the direction parallel to the grating lines is higher than that in the direction perpendicular to the grating lines. Electro-optical characteristics were tested from a twisted nematic liquid crystal cell, which was assembled using two identical nanogratings. Experimental results show that such a kind of nanograting is promising as an alternative to the conventional rubbing process for liquid crystal alignment.

  5. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  6. Interplay between Long-Range Crystal Order and Short-Range Molecular Interactions Tunes Carrier Mobility in Liquid Crystal Dyes

    PubMed Central

    2017-01-01

    We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π–π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10–5 cm2 V–1 s–1 in as-spun films to μ = (5.0 ± 0.8) × 10–3 cm2 V–1 s–1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π–π interactions between molecular pairs in the FPPTB film. PMID:28139915

  7. The role of disclinations on the organization and conductivity in liquid crystal nanocomposites

    NASA Astrophysics Data System (ADS)

    Martinez-Miranda, Luz J.; Romero-Hasler, P.; Meneses-Franco, A.; Soto-Bustamante, E. A.

    The structure of TiO2 nanoparticles in a liquid crystal nanocomposite was found to be an oblique structure due to the alignment of the TiO2 with respect to the liquid crystals. This order is anisotropic due to the ordering of the liquid crystals. The particles are highly localized in the nanocomposite, which has consequences in the electrical percolation. We want to obtain an understanding of how the nanoparticles organize in this highly localized fashion. The nanoparticles and the liquid crystals phase separate, with the nanoparticles accumulating in the defects exhibited by the liquid crystal even after being sonicated initially. The liquid crystal is polymerized by the process of electropolymerization that takes place in the isotropic phase of the monomers. The nanoparticles are free to move away from the defects where they phase separate since the defects disappear in the isotropic. We believe the polymerization imposes a limitation in the movement of the nanoparticles. The combination of the accumulation in the disclinations, the polymerization in the isotropic and the formation of the liquid crystal unit side chains can affect the conductivity of the nanocomposite. NSF-OISE-1157589; Fondecyt Project 1130187; CONICYT scholarships 21130413 and 21090713.

  8. First PIC simulations modeling the interaction of ultra-intense lasers with sub-micron, liquid crystal targets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Poole, Patrick; Willis, Christopher; Andereck, David; Schumacher, Douglass

    2014-10-01

    We recently introduced liquid crystal films as on-demand, variable thickness (50-5000 nanometers), low cost targets for intense laser experiments. Here we present the first particle-in-cell (PIC) simulations of short pulse laser excitation of liquid crystal targets treating Scarlet (OSU) class lasers using the PIC code LSP. In order to accurately model the target evolution, a low starting temperature and field ionization model are employed. This is essential as large starting temperatures, often used to achieve large Debye lengths, lead to expansion of the target causing significant reduction of the target density before the laser pulse can interact. We also present an investigation of the modification of laser pulses by very thin targets. This work was supported by the DARPA PULSE program through a grant from ARMDEC, by the US Department of Energy under Contract No. DE-NA0001976, and allocations of computing time from the Ohio Supercomputing Center.

  9. Engineered liquid crystal anchoring energies with nanopatterned surfaces.

    PubMed

    Gear, Christopher; Diest, Kenneth; Liberman, Vladimir; Rothschild, Mordechai

    2015-01-26

    The anchoring energy of liquid crystals was shown to be tunable by surface nanopatterning of periodic lines and spaces. Both the pitch and height were varied using hydrogen silsesquioxane negative tone electron beam resist, providing for flexibility in magnitude and spatial distribution of the anchoring energy. Using twisted nematic liquid crystal cells, it was shown that this energy is tunable over an order of magnitude. These results agree with a literature model which predicts the anchoring energy of sinusoidal grooves.

  10. An unusual type of polymorphism in a liquid crystal

    DOE PAGES

    Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan; ...

    2018-02-19

    Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less

  11. An unusual type of polymorphism in a liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin; Salamonczyk, Miroslaw; Shadpour, Sasan

    Polymorphism is a remarkable concept in chemistry, materials science, computer science, and biology. Whether it is the ability of a material to exist in two or more crystal structures, a single interface connecting to two different entities, or alternative phenotypes of an organism, polymorphism determines function and properties. In materials science, polymorphism can be found in an impressively wide range of materials, including crystalline materials, minerals, metals, alloys, and polymers. Here in this paper we report on polymorphism in a liquid crystal. A bent-core liquid crystal with a single chiral side chain forms two structurally and morphologically significantly different liquidmore » crystal phases solely depending on the cooling rate from the isotropic liquid state. On slow cooling, the thermodynamically more stable oblique columnar phase forms, and on rapid cooling, a not heretofore reported helical microfilament phase. Since structure determines function and properties, the structural color for these phases also differs.« less

  12. Electric-field-induced motion of colloid particles in smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Jakli, Antal

    2005-03-01

    We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electro-rotation is basically identical to the well known Quincke rotation, which triggers the translational motion at higher fields. From the electric field dependence of the angular velocity of the rotation we obtain the viscosity of the liquid crystals. The analysis of the translational motion in smectic liquid crystals indicates elastic responses near the threshold for translation. At increasing fields the speed of the particles is increasing and at sufficiently high speeds the flow of the smectic A and smectic C liquid crystal around the beads become purely viscous. Colloid particles in smectic materials maybe considered as model systems for understanding motion of proteins in cell membranes.

  13. Hybrid molecular-colloidal liquid crystals.

    PubMed

    Mundoor, Haridas; Park, Sungoh; Senyuk, Bohdan; Wensink, Henricus H; Smalyukh, Ivan I

    2018-05-18

    Order and fluidity often coexist, with examples ranging from biological membranes to liquid crystals, but the symmetry of these soft-matter systems is typically higher than that of the constituent building blocks. We dispersed micrometer-long inorganic colloidal rods in a nematic liquid crystalline fluid of molecular rods. Both types of uniaxial building blocks, while freely diffusing, interact to form an orthorhombic nematic fluid, in which like-sized rods are roughly parallel to each other and the molecular ordering direction is orthogonal to that of colloidal rods. A coarse-grained model explains the experimental temperature-concentration phase diagram with one biaxial and two uniaxial nematic phases, as well as the orientational distributions of rods. Displaying properties of biaxial optical crystals, these hybrid molecular-colloidal fluids can be switched by electric and magnetic fields. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene

    PubMed Central

    Li, Xiongying; He, Yezeng; Wang, Yong; Dong, Jichen; Li, Hui

    2014-01-01

    In this work, we report simulation evidence that the graphene surface decorated by carbon nanotube pillars shows strong dewettability, which can give it great advantages in dewetting and detaching metallic nanodroplets on the surfaces. Molecular dynamics (MD) simulations show that the ultrathin liquid film first contracts then detaches from the graphene on a time scale of several nanoseconds, as a result of the inertial effect. The detaching velocity is in the order of 10 m/s for the droplet with radii smaller than 50 nm. Moreover, the contracting and detaching behaviors of the liquid film can be effectively controlled by tuning the geometric parameters of the liquid film or pillar. In addition, the temperature effects on the dewetting and detaching of the metallic liquid film are also discussed. Our results show that one can exploit and effectively control the dewetting properties of metallic nanodroplets by decorating the surfaces with nanotube pillars. PMID:24487279

  15. Variational Approach in the Theory of Liquid-Crystal State

    NASA Astrophysics Data System (ADS)

    Gevorkyan, E. V.

    2018-03-01

    The variational calculus by Leonhard Euler is the basis for modern mathematics and theoretical physics. The efficiency of variational approach in statistical theory of liquid-crystal state and in general case in condensed state theory is shown. The developed approach in particular allows us to introduce correctly effective pair interactions and optimize the simple models of liquid crystals with help of realistic intermolecular potentials.

  16. Liquid crystal dynamic flow control by bidirectional alignment surface

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Lee, C. Y.; Kwok, H. S.

    2009-02-01

    We investigate the behavior of liquid crystal dynamic flow in a cell with a bidirectional alignment (BDA) surface. Numerical simulations show that with a BDA surface having a pitch comparable to the cell gap d, the liquid crystal dynamic flow direction can be controlled by the driving voltage. Such an effect can be applied to bistable twisted nematic displays without the need for anchoring breaking.

  17. Real-time associative memory with photorefractive crystal KNSBN and liquid-crystal optical switches

    NASA Astrophysics Data System (ADS)

    Xu, Haiying; Yuan, Yang Y.; Yu, Youlong; Xu, Kebin; Xu, Yuhuan; Zhu, De-Rui

    1990-05-01

    We present a real-time holographic associative memory implemented with photorefractive KNSBN : Co crystal as memory element and liquid crystal electrooptical switches as reflective thresholding device. The experimental results show that the system has real-time multiple-image storage and recall function.

  18. Segregation of liquid crystal mixtures in topological defects

    DOE PAGES

    Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Zhang, Rui; ...

    2017-04-28

    The structure and physical properties of liquid crystal (LC) mixtures are a function of composition, and small changes can have pronounced effects on observables, such as phase-transition temperatures. Traditionally, LC mixtures have been assumed to be compositionally homogenous. The results of chemically detailed simulations presented here show that this is not the case; pronounced deviations of the local order from that observed in the bulk at defects and interfaces lead to significant compositional segregation effects. More specifically, two disclination lines are stabilized in this work by introducing into a nematic liquid crystal mixture a cylindrical body that exhibits perpendicular anchoring.more » Here, it is found that the local composition deviates considerably from that of the bulk at the interface with the cylinder and in the defects, thereby suggesting new assembly and synthetic strategies that may capitalize on the unusual molecular environment provided by liquid crystal mixtures.« less

  19. Direct observation of MoO 2 crystal growth from amorphous MoO 3 film

    NASA Astrophysics Data System (ADS)

    Nina, Kenji; Kimura, Yuki; Yokoyama, Kaori; Kido, Osamu; Binyo, Gong; Kaito, Chihiro

    2008-08-01

    The formation process of MoO 2 crystal from amorphous MoO 3 film has been imaged by in situ observation with a transmission electron microscope. Selective growth of flower-shaped MoO 2 crystals by heating above 673 K in vacuum was directly observed. Since the MoO 2 crystal has metallic conductivity of the order of indium oxide film containing tin (ITO film), the thin film growth of the MoO 2 phase has been discussed on the basis of a new substitute for ITO film.

  20. Thermal Conductivity and Liquid Crystal Thermometers.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1993-01-01

    Describes using stock liquid crystal postcards as inexpensive classroom thermometers. Also suggests using these postcards as a good visual temperature indicator for classroom demonstrations such as temperature gradients. One such activity is provided. (MVL)

  1. Experiments with Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Fergason, James L.

    1970-01-01

    Describes laboratory experiments designed to demonstrate (1) the properties of cholesteric liquid crystals, (2) thermal mapping, (3) thermal diffusivity, (4) adiabatic expansion of rubber, and (5) measurement of radiated energy by a point source. Contains all of the information on materials and apparatus needed to perform the experiments.…

  2. On the crystallization of amorphous germanium films

    NASA Astrophysics Data System (ADS)

    Edelman, F.; Komem, Y.; Bendayan, M.; Beserman, R.

    1993-06-01

    The incubation time for crystallization of amorphous Ge (a-Ge) films, deposited by e-gun, was studied as a function of temperature between 150 and 500°C by means of both in situ transmission electron microscopy and Raman scattering spectroscopy. The temperature dependence of t0 follows an Arrhenius curve with an activation energy of 2.0 eV for free-sustained a-Ge films. In the case where the a-Ge films were on Si 3N 4 substrate, the activation energy of the incubation process was 1.3 eV.

  3. Communication: Distinguishing between bulk and interface-enhanced crystallization in nanoscale films of amorphous solid water.

    PubMed

    Yuan, Chunqing; Smith, R Scott; Kay, Bruce D

    2017-01-21

    The crystallization of amorphous solid water (ASW) nanoscale films was investigated using reflection absorption infrared spectroscopy. Two ASW film configurations were studied. In one case the ASW film was deposited on top of and capped with a decane layer ("sandwich" configuration). In the other case, the ASW film was deposited on top of a decane layer and not capped ("no cap" configuration). Crystallization of ASW films in the "sandwich" configuration is about eight times slower than in the "no cap." Selective placement of an isotopic layer (5% D 2 O in H 2 O) at various positions in an ASW (H 2 O) film was used to determine the crystallization mechanism. In the "sandwich" configuration, the crystallization kinetics were independent of the isotopic layer placement whereas in the "no cap" configuration the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These results are consistent with a mechanism whereby the decane overlayer suppresses surface nucleation and provide evidence that the observed ASW crystallization in "sandwich" films is the result of uniform bulk nucleation.

  4. Organic Single-Crystal Semiconductor Films on a Millimeter Domain Scale.

    PubMed

    Kwon, Sooncheol; Kim, Jehan; Kim, Geunjin; Yu, Kilho; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Junghwan; Kang, Hongkyu; Park, Byoungwook; Lee, Kwanghee

    2015-11-18

    Nucleation and growth processes can be effectively controlled in organic semiconductor films through a new concept of template-mediated molecular crystal seeds during the phase transition; the effective control of these processes ensures millimeter-scale crystal domains, as well as the performance of the resulting organic films with intrinsic hole mobility of 18 cm(2) V(-1) s(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less

  6. Fabrication and Characterization of Colloidal Crystal Thin Films

    ERIC Educational Resources Information Center

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  7. Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle.

    PubMed

    Tian, Hongmiao; Wang, Zhijian; Chen, Yilong; Shao, Jinyou; Gao, Tong; Cai, Shengqiang

    2018-03-07

    Optically driven active materials have received much attention because their deformation and motion can be controlled remotely, instantly, and precisely in a contactless way. In this study, we investigated an optically actuated elastomer with rapid response: polydopamine (PDA)-coated liquid crystal elastomer (LCE). Because of the photothermal effect of PDA coating and thermal responsiveness of LCE, the elastomer film contracted significantly with near-infrared (NIR) irradiation. With a fixed strain, light-induced actuating stress in the film could be as large as 1.5 MPa, significantly higher than the maximum stress generated by most mammalian skeletal muscle (0.35 MPa). The PDA-coated LCE films could also bend or roll up by surface scanning of an NIR laser. The response time of the film to light exposure could be as short as 1/10 of a second, comparable to or even faster than that of mammalian skeletal muscle. Using the PDA-coated LCE film, we designed and fabricated a prototype of robotic swimmer that was able to swim near the water-air interface by performing "swimming strokes" through reversible bending and unbending motions induced and controlled by an NIR laser. The results presented in this study clearly demonstrated that PDA-coated LCE is a promising optically driven artificial muscle, which may have great potential for applications of soft robotics and optomechanical coupling devices.

  8. Method for Growing Low-Defect Single Crystal Heteroepitaxial Films

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor)

    2002-01-01

    A method is disclosed for growing high-quality low-defect crystal films heteroepitaxially on substrates that are different than the crystal films. The growth of the first two heteroepitaxial bilayers is performed on a first two-dimensional nucleate island before a second growth of two-dimensional nucleation is allowed to start. The method is particularly suited for the growth of 3C-SiC, 2H-AlN, or 2H-GaN on 6H-SiC, 4H-SiC, or silicon substrates.

  9. Adsorbed water and thin liquid films on Mars

    NASA Astrophysics Data System (ADS)

    Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.

    2012-07-01

    At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001-0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6-66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55-325 times larger than Mars' atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104-1.5×106 litres of water, which is 6.0×10-7-4.0×10-4%, respectively, of a 10 pr μm water vapour column, and 3.0×10-6-4.0×10-4% and 6.0×10

  10. Method for monitoring the crystallization of an organic material from a liquid

    DOEpatents

    Asay, Blaine W.; Henson, Bryan F.; Sander, Robert K.; Robinson, Jeanne M.; Son, Steven F.; Dickson, Peter M.

    2004-10-05

    Method for monitoring the crystallization of at least one organic material from a liquid. According to the method, a liquid having at least one organic material capable of existing in at least one non-centrosymmetric phase is prepared. The liquid is interrogated with a laser beam at a chosen wavelength. As at least a portion of the at least one organic material crystallizes from the liquid, the intensity of any light scattered by the crystallized material at a wavelength equal to one-half the chosen wavelength of the interrogating laser beam is monitored. If the intensity of this scattered light, increases, then the crystals that form include at least one non-cetrosymmetric phase.

  11. IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses

    PubMed Central

    Han, Jeong In

    2013-01-01

    IR sensor synchronizing active shutter glasses for three-dimensional high definition television (3D HDTV) were developed using a flexible liquid crystal (FLC) lens. The FLC lens was made on a polycarbonate (PC) substrate using conventional liquid crystal display (LCD) processes. The flexible liquid crystal lens displayed a maximum transmission of 32% and total response time of 2.56 ms. The transmittance, the contrast ratio and the response time of the flexible liquid crystal lens were superior to those of glass liquid crystal lenses. Microcontroller unit and drivers were developed as part of a reception module with power supply for the IR sensor synchronizing active shutter glasses with the flexible liquid crystal lens prototypes. IR sensor synchronizing active shutter glasses for 3D HDTV with flexible liquid crystal lenses produced excellent 3D images viewing characteristics.

  12. The transmission spectrum of sound through a phononic crystal subjected to liquid flow

    NASA Astrophysics Data System (ADS)

    Declercq, Nico F.; Chehami, Lynda; Moiseyenko, Rayisa P.

    2018-01-01

    The influence of liquid-flow up to 7 mm/s is examined on transmission spectra of phononic crystals, revealing a potential use for slow liquid-flow measurement techniques. It is known that transmission of ultrasound through a phononic crystal is determined by its periodicity and depends on the material characteristics of the crystal's constituents. Here, the crystal consists of metal rods with the space in between filled with water. Previous studies have assumed still water in the crystal, and here, we consider flowing liquid. First, the crystal bandgaps are investigated in still water, and the results of transmission experiments are compared with theoretical band structures obtained with the finite element method. Then, changes in transmission spectra are investigated for different speeds of liquid flow. Two situations are investigated: a crystal is placed with a principal symmetry axis in the flow direction ( ΓX) and then at an angle ( ΓM). The good stability of the bandgap structure of the transmission spectrum for both directions is observed, which may be of importance for the application of phononic crystals as acoustic filters in an environment of flowing liquid. Minor transmission amplitude changes on the other hand reveal a possibility for slow liquid flow measurements.

  13. A high-transmission liquid-crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection

    NASA Astrophysics Data System (ADS)

    Liu, Zhonglun; Xin, Zhaowei; Long, Huabao; Wei, Dong; Dai, Wanwan; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Previous studies have presented the usefulness of typical liquid-crystal Fabry-Perot (LC-FP) infrared filters for spectral imaging detection. Yet, their infrared transmission performances still remain to improve or even rise. In this paper, we propose a new type of electrically tunable LC-FP infrared filter to solve the problem above. The key component of the device is a FP resonant cavity composed of two parallel plane mirrors, in which the zinc selenide (ZnSe) materials with a very high transmittance in the mid-long-wavelength infrared regions are used as the electrode substrates and a layer of nano-aluminum (Al) film, which is directly contacted with liquid-crystal materials, is chosen to make high reflective mirrors as well as the electrodes. Particularly, it should be noted that the directional layer made up of ployimide (PI) used previously is removed. The experiment results indicate that the filter can reduce the absorption of infrared wave remarkably, and thus highlight a road to effectively improve the infrared transmittance ability.

  14. Field-controlled structures in ferromagnetic cholesteric liquid crystals.

    PubMed

    Medle Rupnik, Peter; Lisjak, Darja; Čopič, Martin; Čopar, Simon; Mertelj, Alenka

    2017-10-01

    One of the advantages of anisotropic soft materials is that their structures and, consequently, their properties can be controlled by moderate external fields. Whereas the control of materials with uniform orientational order is straightforward, manipulation of systems with complex orientational order is challenging. We show that a variety of structures of an interesting liquid material, which combine chiral orientational order with ferromagnetic one, can be controlled by a combination of small magnetic and electric fields. In the suspensions of magnetic nanoplatelets in chiral nematic liquid crystals, the platelet's magnetic moments orient along the orientation of the liquid crystal and, consequently, the material exhibits linear response to small magnetic fields. In the absence of external fields, orientations of the liquid crystal and magnetization have wound structure, which can be either homogeneously helical, disordered, or ordered in complex patterns, depending on the boundary condition at the surfaces and the history of the sample. We demonstrate that by using different combinations of small magnetic and electric fields, it is possible to control reversibly the formation of the structures in a layer of the material. In such a way, different periodic structures can be explored and some of them may be suitable for photonic applications. The material is also a convenient model system to study chiral magnetic structures, because it is a unique liquid analog of a solid helimagnet.

  15. Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A. (Inventor)

    2018-01-01

    An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.

  16. Ordering of Glass Rods in Nematic and Cholesteric Liquid Crystals

    DTIC Science & Technology

    2011-12-01

    3), 483–508 (2007). 2. M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid...Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science 303(5658), 652–655 (2004). 17. R. Eelkema, M. M. Pollard, J...Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994). 1. Introduction Incorporating rod-like particles into liquid crystal (LC) media can lead

  17. Experiments and PIC simulations on liquid crystal plasma mirrors for pulse contrast enhancement

    NASA Astrophysics Data System (ADS)

    Cochran, G. E.; Poole, P. L.; Krygier, A.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Heery, R.; Purcell, J.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-10-01

    High pulse contrast is crucial for performing many experiments on high intensity lasers in order to minimize modification of the target surface by pre-pulse. This is often achieved through the use of solid dielectric plasma mirrors which can limit laser shot rates. Liquid crystal films, originally developed as variable thickness ion acceleration targets, have been demonstrated as effective plasma mirrors for pulse cleaning, reaching peak reflectivities over 70%. These films were used as plasma mirrors in an ion acceleration experiment on the Scarlet laser and the resultant increase in peak proton energy and change in acceleration direction will be discussed. Also presented here are novel 2D3V, LSP particle-in-cell simulations of dielectric plasma mirror operation. By including multiphoton ionization and dimensionality corrections, an excellent match to experiment is obtained over 4 decades in intensity. Analysis of pulse shortening and plasma critical surface behavior in these simulations will be discussed. Formation of thin films at 1.5 Hz will also be presented. Performed with support from the DARPA PULSE program through AMRDEC, from NNSA, and from OSC.

  18. Perovskite single crystals and thin films for optoelectronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Gang; Han, Qifeng; Yang, Yang; Bae, Sang-Hoon; Sun, Pengyu

    2016-09-01

    Hybrid organolead trihalide perovskite (OTP) solar cells have developed as a promising candidate in photovoltaics due to their excellent properties including a direct bandgap, strong absorption coefficient, long carrier lifetime, and high mobility. Most recently, formamidinium (NH2CH=NH2+ or FA) lead iodide (FAPbI3) has attracted significant attention due to several advantages: (1) the larger organic FA cation can replace the MA cation and form a more symmetric crystal structure, (2) the smaller bandgap of FAPbI3 allows for near infrared (NIR) absorption, and (3) FAPbI3 has an elevated decomposition temperature and thus potential to improve stability. Single crystals provide an excellent model system to study the intrinsic electrical and optical properties of these materials due to their high purity, which is particularly important to understand the limits of these materials. In this work, we report the growth of large ( 5 millimeter size) single crystal FAPbI3 using a novel liquid based crystallization method. The single crystal FAPbI3 demonstrated a δ-phase to α-phase transition with a color change from yellow to black when heated to 185°C within approximately two minutes. The crystal structures of the two phases were identified and the PL emission peak of the α-phase FAPbI3 (820 nm) shows clear red-shift compared to the FAPbI3 thin film (805 nm). The FAPbI3 single crystal shows a long carrier lifetime of 484 ns, a high carrier mobility of 4.4 cm2·V-1·s-1, and even more interestingly a conductivity of 1.1 × 10-7(ohm·cm)-1, which is approximately one order of magnitude higher than that of the MAPbI3 single crystal. Finally, high performance photoconductivity type photodetectors were successfully demonstrated using the single crystal FAPbI3.

  19. Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

    2003-01-01

    On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

  20. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle.

    PubMed

    Matsuyama, Akihiko

    2009-11-28

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  1. Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors

    PubMed Central

    Honaker, Lawrence W.; Usol’tseva, Nadezhda; Mann, Elizabeth K.

    2017-01-01

    In this review article, we analyze recent progress in the application of liquid crystal-assisted advanced functional materials for sensing biological and chemical analytes. Multiple research groups demonstrate substantial interest in liquid crystal (LC) sensing platforms, generating an increasing number of scientific articles. We review trends in implementing LC sensing techniques and identify common problems related to the stability and reliability of the sensing materials as well as to experimental set-ups. Finally, we suggest possible means of bridging scientific findings to viable and attractive LC sensor platforms. PMID:29295530

  2. Characterization of light scattering in nematic droplet-polymer films

    NASA Astrophysics Data System (ADS)

    Kinugasa, Naoki; Yano, Yuichi; Takigawa, Akio; Kawahara, Hideo

    1992-06-01

    The optical properties of nematic droplet-polymer films were studied both in the on and off state using Lambert-Beer''s law to characterize their scattering phenomena. For the preparation of the devices, NCAP process was employed with the different diameter, distribution, shape, and density of nematic droplets. Their cell thickness and refractive indices concerning the birefringence of liquid crystals were also controlled. The results showed that the scattering phenomena of nematic droplet-polymer films were likely caused by two types of features. One, related to the surface area of nematic droplets, was the difference of the refractive indices in the interface between liquid crystals and polymer matrix. The other, related to the liquid crystal volume inside the nematic droplets, was the birefringence of liquid crystals. Considering such relations, the extinction coefficient of Lambert-Beer''s law could be described by the sum of the area in the interface multiplied by the difference of the refractive indices between two materials and the liquid crystal volume multiplied by their birefringence. Furthermore, it was found their parallel transmittance in the off state and haze ratio in the on state were well characterized by such extinction coefficient of Lambert-Beer''s law.

  3. Chitin Liquid-Crystal-Templated Oxide Semiconductor Aerogels.

    PubMed

    Chau, Trang The Lieu; Le, Dung Quang Tien; Le, Hoa Thi; Nguyen, Cuong Duc; Nguyen, Long Viet; Nguyen, Thanh-Dinh

    2017-09-13

    Chitin nanocrystals have been used as a liquid crystalline template to fabricate layered oxide semiconductor aerogels. Anisotropic chitin liquid crystals are transformed to sponge-like aerogels by hydrothermally cross-linked gelation and lyophilization-induced solidification. The hydrothermal gelation of chitin aqueous suspensions then proceeds with peroxotitanate to form hydrogel composites that recover to form aerogels after freeze-drying. The homogeneous peroxotitanate/chitin composites are calcined to generate freestanding titania aerogels that exhibit the nanostructural integrity of layered chitin template. Our extended investigations show that coassembling chitin nanocrystals with other metal-based precursors also yielded semiconductor aerogels of perovskite BaTiO 3 and CuO x nanocrystals. The potential of these materials is great to investigate these chitin sponges for biomedicine and these semiconductor aerogels for photocatalysis, gas sensing, and other applications. Our results present a new aerogel templating method of highly porous, ultralight materials with chitin liquid crystals.

  4. The microjet-film interaction: the interaction and resulting shapes of a liquid microjet impacting a soap film

    NASA Astrophysics Data System (ADS)

    Chan, Jau Tung; Lee, Jie Liang; Tjeng, Vincent; Yeo, Ye; Tan, Guoxian

    2014-11-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide annual competition for high-school students. This paper is adapted from the solution to problem 8, Jet and Film, as presented by the Singapore Team at the 26th IYPT, Taipei, Taiwan. The impact of liquid microjets on stable soap films was investigated. Two steady regimes were observed: refraction (where the microjet penetrates the soap film and is deflected) and absorption (where the microjet merges with the soap film and forms vertical undulating patterns on the soap film surface). This phenomenon has potential applications in controlling the trajectory of a liquid microjet in air. Although Kirstetter et al (2012) investigated this interaction by using the same liquid for both the microjet and the soap film, this paper extends their work by using different liquids for the microjet and the soap film. In addition, the need for a small-angle approximation of Snell’s law is removed for the refraction regime, and an alternative expression is proposed for the force exerted by the soap film on the microjet in the absorption regime that accounts for the dependence of the wavelength of the undulating patterns on the angle of incidence of the microjet on the soap film. Empirical data support these improved theoretical predictions.

  5. Synthesis and Characterization of Self-Assembled Liquid Crystals: "p"-Alkoxybenzoic Acids

    ERIC Educational Resources Information Center

    Jensen, Jana; Grundy, Stephan C.; Bretz, Stacey Lowery; Hartley, C. Scott

    2011-01-01

    Thermotropic liquid crystal phases are ordered fluids found, for some molecules, at intermediate temperatures between the crystal and liquid states. Although technologically important, these materials typically receive little attention in the undergraduate curriculum. Here, we describe a laboratory activity for introductory organic chemistry…

  6. Wide-view transflective liquid crystal display for mobile applications

    NASA Astrophysics Data System (ADS)

    Kim, Hyang Yul; Ge, Zhibing; Wu, Shin-Tson; Lee, Seung Hee

    2007-12-01

    A high optical efficiency and wide-view transflective liquid crystal display based on fringe-field switching structure is proposed. The transmissive part has a homogenous liquid crystal (LC) alignment and is driven by a fringe electric field, which exhibits excellent electro-optic characteristics. The reflective part has a hybrid LC alignment with quarter-wave phase retardation and is also driven by a fringe electric field. Consequently, the transmissive and reflective parts have similar gamma curves.

  7. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals.

    PubMed

    Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2017-02-28

    An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.

  8. Laser Crystallization of Silicon Thin Films for Three-Dimensional Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Ganot, Gabriel S.

    Advanced sequential lateral solidification (SLS), as presented in this thesis, is a novel implementation of the previously-developed directional-SLS method, and is specifically aimed at addressing the microstructural non-uniformity issue that can be encountered in the directional solidification processing of continuous Si films. Films crystallized via the directional-SLS method, for instance, can contain physically distinct regions with varying densities of planar defects and/or crystallographic orientations. As a result, transistors fabricated within such films can potentially exhibit relatively poor device uniformity. To address this issue, we employ advanced SLS whereby Si films are prepatterned into closely-spaced, long, narrow stripes that are then crystallized via directional-SLS in the long-axis-direction of the stripe length. By doing so, one can create microstructurally distinct regions within each stripe, which are then placed within the active channel region of a device. It is shown that when the stripes are sufficiently narrow (less than 2 µm), a bi-crystal microstructure is observed. This is explained based on the change in the interface morphology as a consequence of enhanced heat flow at the edges of the stripe. It is suggested that this bi-crystal formation is beneficial to the approach, as it increases the effective number of stripes within the active channel region. One issue of fundamental and technological significance that is nearly always encountered in laser crystallization is the formation of structural defects, in general, and in particular, twins. Due to the importance of reducing the density of these defects in order to increase the performance of transistors, this thesis investigates the formation mechanism of twins in rapidly laterally solidified Si thin films. These defects have been characterized and examined in the past, but a physically consistent explanation has not yet been provided. To address this situation, we have carried out

  9. An Optically Isotropic Antiferroelectric Liquid Crystal (OI-AFLC) Display Mode Operating over a Wide Temperature Range using Ternary Bent-Core Liquid Crystal Mixtures

    DOE PAGES

    Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.; ...

    2017-02-07

    Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less

  10. An Optically Isotropic Antiferroelectric Liquid Crystal (OI-AFLC) Display Mode Operating over a Wide Temperature Range using Ternary Bent-Core Liquid Crystal Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.

    Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less

  11. The liquid crystal light valve, an optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Beard, T. D.; Bleha, W. P.; Margerum, J. D.; Wong, S. Y.

    1972-01-01

    A photoactivated liquid crystal light valve is described as an optical-to-optical interface device (OTTO) which is designed to transfer an optical image from a noncoherent light beam to a spatially coherent beam of light, in real time. Schematics of OTTO in use, the liquid cyrstal cell, and the liquid crystal structure are presented. Sensitivity characteristics and the principles of operation are discussed.

  12. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  13. An electrochemical study of a liquid crystal used in information displays

    NASA Technical Reports Server (NTRS)

    Oglesby, D. M.; Kern, J. B.; Robertson, J. B.

    1974-01-01

    The operational lifetime of liquid crystal displays were investigated. Electrochemical reaction at the electrodes of the display can cause failure after 2000 to 3000 hours of operation. Studies using cyclic voltametry of electrochemical reactions of N (p-methoxybenzilidene p-butylaniline (MBBA), a nematic liquid crystal were made. These studies indicate the presence of a reversible reduction of MBBA at the cathode, and that the reduction product undergoes a further reaction leading to products which are not reversibly oxidized. It is concluded that the degradation of the liquid crystal in displays can be reduced with a suitable frequency of alternating voltage.

  14. Effects of crystallization interfaces on irradiated ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Brewer, S. J.; Williams, S. C.; Cress, C. D.; Bassiri-Gharb, N.

    2017-11-01

    This work investigates the role of crystallization interfaces and chemical heterogeneity in the radiation tolerance of chemical solution-deposited lead zirconate titanate (PZT) thin films. Two sets of PZT thin films were fabricated with crystallization performed at (i) every deposited layer or (ii) every three layers. The films were exposed to a range of 60Co gamma radiation doses, between 0.2 and 20 Mrad, and their functional response was compared before and after irradiation. The observed trends indicate enhancements of dielectric, ferroelectric, and piezoelectric responses at low radiation doses and degradation of the same at higher doses. Response enhancements are expected to result from low-dose (≤2 Mrad), ionizing radiation-induced charging of internal interfaces—an effect that results in neutralization of pre-existing internal bias in the samples. At higher radiation doses (>2 Mrad), accumulation and self-ordering of radiation-modified, mobile, oxygen vacancy-related defects contribute to degradation of dielectric, ferroelectric, and piezoelectric properties, exacerbated in the samples with more crystallization layers, potentially due to increased defect accumulation at these internal interfaces. These results suggest that the interaction between radiation and crystallization interfaces is multifaceted—the effects of ionization, domain wall motion, point defect mobility, and microstructure are considered.

  15. 3D nanoporous graphene films converted from liquid-crystalline holey graphene oxide for thin and high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Liu, Jinzhang; Zhao, Yi; Zheng, Dezhi; Li, Yan; Sha, Jiangbo

    2018-01-01

    Holey graphene oxide (HGO) is prepared and its liquid crystal (LC) formation in water is investigated. The blade-coated LC-HGO hydrogel is hydrothermally reduced to form 3D nanoporous films used as supercapacitor electrodes. Holey graphene sheets are rumpled and interconnected to form a cellular structure with pore size around 100 nm during the reduction process. Reduced HGO films with different thicknesses are integrated into solid-state symmetric supercapacitors and their electrochemical performances are studied. High specific capacitance up to 304 F g-1 and high volumetric capacitance around 400 F cm-3 are achieved from our thin and flexible devices.

  16. Do protein crystals nucleate within dense liquid clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, Dominique, E-mail: dommaes@vub.ac.be; Vorontsova, Maria A.; Potenza, Marco A. C.

    2015-06-27

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clustersmore » serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein

  17. Transient phases during fast crystallization of organic thin films from solution

    NASA Astrophysics Data System (ADS)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.

    2016-01-01

    We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.

  18. Dynamic wetting of a liquid film in a vertical hydrophobic tube

    NASA Astrophysics Data System (ADS)

    Pigeonneau, Franck; Hayoun, Pascaline; Barthel, Etienne; Lequeux, Francois; Verneuil, Emilie; Letailleur, Alban; Teisseire, Jeremie; Saint-Gobain Recherche Collaboration; Espci-Physico-Chimie Des Polymeres Et Milieux Disperses Collaboration; Surface Du Verre Et Interfaces Collaboration

    2016-11-01

    The drop of a liquid plug through a tube occurs for instance in vending machine. In such a system, the fouling is linked to the creation of the liquid film at the rear of the liquid plug. Consequently, the conditions leading to the film creation are important to know. We study numerically the dynamic wetting transition of a liquid plug undergoing gravity on hydrophobic surface in a vertical tube. Using a lubrication theory, the liquid film thickness obeys the mass conservation equation with a volume flow rate depending on the relative motion of the tube, capillary and gravity forces. An ad hoc friction at the triple line is used to take into account the wetting dynamics. The lubrication equation is solved using a finite difference technique in space and a time integrator for stiff system with an adaptive time step. The numerical results are compared to experimental data. The complex film morphology due to the transients and the critical slowing down at the dynamic transition are reproduced. However, several experimental features are not predicted numerically especially the width of the transition. Our preliminary calculations suggest that the dispersion relation of the liquid film mode can explain the discrepancy.

  19. Hysteresis-free and submillisecond-response polymer network liquid crystal.

    PubMed

    Lee, Yun-Han; Gou, Fangwang; Peng, Fenglin; Wu, Shin-Tson

    2016-06-27

    We demonstrate a polymer network liquid crystal (PNLC) with negligible hysteresis while keeping submillisecond response time. By doping about 1% dodecyl acrylate (C12A) into the liquid crystal/monomer precursor, both hysteresis and residual birefringence are almost completely eliminated. The operating voltage and scattering properties remain nearly intact, but the tradeoff is enhanced double relaxation. This hysteresis-free PNLC should find applications in spatial light modulators, laser beam control, and optical communications in infrared region.

  20. Carbon films produced from ionic liquid carbon precursors

    DOEpatents

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  1. Temperature-independent zero-birefringence polymer for liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Shikanai, M. D.; Tagaya, A.; Koike, Y.

    2016-03-01

    A polymer film that shows almost no orientational birefringence even when the polymer main chain is in an oriented state and almost no temperature dependence of orientational birefringence in the temperature range from around -40 to 85 °C was prepared. This temperature range is important because it is where in-car liquid crystal displays (LCDs) are generally used; therefore, it is desirable to have constant orientational birefringence over this range. We suggest a method to compensate for the intrinsic birefringence and temperature coefficient of intrinsic birefringence of individual polymers by copolymerizing monomers of homopolymers that display opposite signs of the two parameters described above. Analysis of four types of polymers, methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate, benzyl methacrylate (BzMA), and phenyl methacrylate (PhMA), reveal that they possess both positive and negative signs of their temperature coefficient of intrinsic birefringence. Using this approach, we prepare P(MMA/PhMA/BzMA) (39:23:38 wt. %), which exhibits almost no intrinsic birefringence and almost no temperature dependence of intrinsic birefringence. The retardation of this polymer film when drawn uniaxially scarcely changed (between 0.3 and 0.8 nm) between 12 and 70 °C, which is small enough not to cause image degradation in LCDs.

  2. Old and new ideas in ferroelectric liquid crystal technology

    NASA Astrophysics Data System (ADS)

    Lagerwall, Sven T.; Matuszczyk, M.; Matuszczyk, T.

    1998-02-01

    Ferroelectric liquid crystals (FLC) are to conventional liquid crystal what Gallium Arsenide is to Silicon in the semiconductor area. The first generation of FLC displays in now present on the market and has some outstanding features based on the symmetric bistability which may be achieved in these materials. One of the greatest challenges for the next generation is to achieve an analog grey scale out of an essentially digital principle. We will analyze in some detail which major problems had to be solved to reach the present state and show how the final steps could be taken toward a new state-of-the-art level in liquid crystal devices. In the last decade university research and industrial R and D have almost equally contributed to treat the very serious complications caused by the so-called chevron structures We will review this important topic in particular detail.

  3. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  4. Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface.

    PubMed

    Xia, Tian; Luo, Wenhao; Hu, Fan; Qiu, Wu; Zhang, Zhisen; Lin, Youhui; Liu, Xiang Yang

    2017-07-05

    On the basis of their superior optical performance, photonic crystals (PCs) have been investigated as excellent candidates for widespread applications including sensors, displays, separation processes, and catalysis. However, fabrication of structurally controllable large-area PC assemblies with no defects is still a tough task. Herein, we develop an effective strategy for preparing centimeter-scale crack-free photonic crystal films by the combined effects of soft assembly and superhydrophobic nanopin surfaces. Owing to its large contact angle and low-adhesive force on the superhydrophobic substrate, the colloidal suspension exhibits a continuous retraction of the three-phase (gas-liquid-solid) contact line (TCL) in the process of solvent (water molecules) evaporation. The constantly receding TCL can bring the colloidal spheres closer to each other, which could timely close the gaps due to the loss of water molecules. As a result, close-packed and well-ordered assembly structures can be easily obtained. We expect that this work may pave the way to utilize novel superhydrophobic materials for designing and developing high-quality PCs and to apply PCs in different fields.

  5. Pulsed-Laser Crystallization of Ferroelectric/Piezoelectric Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Rajashekhar, Adarsh

    Integration of ferroelectric/piezoelectric thin films, such as those of lead zirconate titanate (PZT), with temperature sensitive substrates (complementary metal oxide semiconductors (CMOS), or polymers) would benefit from growth at substrate temperatures below 400°C. However, high temperatures are usually required for obtaining good quality PZT films via conventional routes like rapid thermal processing (>550°C). Those conditions are not compatible either with polymer substrates or completed CMOS circuits and dictate exploration of alternative methods to realize integration with such substrates. In part of this work, factors influencing KrF excimer laser induced crystallization of amorphous sputtered Pb(Zr0.30Ti0.70)O3 thin films at substrate temperatures < 215°C were investigated. (111) Pt/Si substrates were utilized to understand the process window. Laser energy densities studied were in the range 35 - 85 mJ/cm2. The Pb content in the films was varied via the Ar gas pressure (in the range 5 mTorr - 9 mTorr) during sputtering of amorphous films. It was seen that a higher Pb content in the asdeposited films aided nucleation of the perovskite phase. Ozone-containing ambients (10% O3/90% O2) during the annealing promoted the formation of the metastable Pb-rich pyrochlore/fluorite phase, while annealing in pure oxygen produced the perovskite phase at relatively lower annealing laser energy densities. Heterogeneous nucleation from the substrate is favored on utilizing a layer-by-layer growth and crystallization process. Films were also grown on polymers using this method. Ferroelectric switching was demonstrated, but extensive process optimization would be needed to reduce leakage and porosity. Real time laser annealing during growth allows for scaling of the layer-by-layer growth process. A pulsed laser deposition system with in situ laser annealing was thus designed, built, and utilized to grow Pb(Zr 0.52Ti0.48)O3 thin films on a laser crystallized Pb(Zr0.20Ti0

  6. Demonstrations of Some Optical Properties of Liquid Crystals.

    ERIC Educational Resources Information Center

    Nicastro, Anthony J.

    1983-01-01

    Discusses several properties of liquid crystal displays. Includes instructions for demonstrating liquid crystalline phase, ordering of the long axes of molecules along one direction, and electro-optic effects. The latter is accomplished with the use of an overhead projector following preparation of a sandwich cell. (JN)

  7. Depolarization in liquid-crystal televisions

    NASA Astrophysics Data System (ADS)

    Pezzaniti, Larry J.; McClain, Stephen C.; Chipman, Russell A.; Lu, Shih-Yau

    1993-12-01

    TVT-6000 liquid crystal television (LCTV) polarization properties have been mapped as a function of biased voltage to the pixel and angle of incidence by a Mueller-matrix imaging polarimeter at 632.8 nm. Operating without polarizers the LCTV shows between 2% to 9% depolarization depending on angle of incidence, the incident polarization state, and the pixel bias voltage.

  8. Locomotion in a liquid crystal near a wall

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Krieger, Madison; Spagnolie, Saverio

    2015-11-01

    Recent observations of bacteria swimming in nematic liquid crystal solution motivate the theoretical study of how swimming speed depends on liquid crystal properties. We consider the Taylor sheet near a wall, in which propulsion is achieved by the propagation of traveling waves along the length of the swimmer. Using the lubrication approximation, we determine how swimming speed depends on the Ericksen number, which is the ratio of elastic to viscous stresses. We also study the effect of anchoring strength, at the surface of the swimmer and the surface of the wall. Supported by NSF-CBET 1437195.

  9. Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation

    PubMed Central

    Miyata, Kiyoshi; Atallah, Timothy L.; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This “crystal-liquid” duality implies that lead halide perovskites belong to phonon glass electron crystals, a class of materials believed to make the most efficient thermoelectrics. We show that the crystal-liquid duality and the resulting dielectric response are responsible for large polaron formation and screening of charge carriers, leading to defect tolerance, moderate charge carrier mobility, and radiative recombination properties. Large polaron formation, along with the phonon glass character, may also explain the marked reduction in hot carrier cooling rates in these materials. PMID:29043296

  10. Smectic layer instabilities in liquid crystals.

    PubMed

    Dierking, Ingo; Mitov, Michel; Osipov, Mikhail A

    2015-02-07

    Scientists aspire to understand the underlying physics behind the formation of instabilities in soft matter and how to manipulate them for diverse investigations, while engineers aim to design materials that inhibit or impede the nucleation and growth of these instabilities in critical applications. The present paper reviews the field-induced rotational instabilities which may occur in chiral smectic liquid-crystalline layers when subjected to an asymmetric electric field. Such instabilities destroy the so-named bookshelf geometry (in which the smectic layers are normal to the cell surfaces) and have a detrimental effect on all applications of ferroelectric liquid crystals as optical materials. The transformation of the bookshelf geometry into horizontal chevron structures (in which each layer is in a V-shaped structure), and the reorientation dynamics of these chevrons, are discussed in details with respect to the electric field conditions, the material properties and the boundary conditions. Particular attention is given to the polymer-stabilisation of smectic phases as a way to forbid the occurrence of instabilities and the decline of related electro-optical performances. It is also shown which benefit may be gained from layer instabilities to enhance the alignment of the liquid-crystalline geometry in practical devices, such as optical recording by ferroelectric liquid crystals. Finally, the theoretical background of layer instabilities is given and discussed in relation to the experimental data.

  11. Study on the waste liquid crystal display treatment: focus on the resource recovery.

    PubMed

    Wang, Xinying; Lu, Xuebin; Zhang, Shuting

    2013-01-15

    A process combined pyrolysis and acid immersion was proposed in this study to dispose the hazardous liquid crystal display (LCD) waste for recovering valuable resources. The thermogravimetric (TG) analysis and fixed bed pyrolysis were investigated for the polarizing film that was separated from LCD. The results suggested the liquid product mainly contained acids, esters and aromatics should be upgraded such as hydrotreating process before used as industrial feedstock or fuel source. The gaseous product mainly consisted of H(2), CO, CO(2) and CH(4) can be used as a valuable fuel. The sulfuric acid immersion experiments were studied for recovering indium from the LCD glass after stripping the polarizing film. Central composite design (CCD) under response surface methodology (RSM) was used to optimize the acid immersion process and the results indicated the indium recovery can be fitted based on the actual value to a polynomial quadratic equation and the temperature was more essential factor than time and acid concentration in the studied ranges. The optimum processing condition was obtained with time 42.2 min, temperature 65.6 °C and acid concentration 0.6 mol/L. Under the optimal conditions, the indium recovery was close to 100%. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Modeling liquid organic thin films on substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.

    We present the rationale, methods, and results of modeling of thin film organic liquids on various substrates. These liquids may coat surfaces (substrates) either as a result of their production, dispersal via aerosols or spills. Identification of unknown coated surfaces using either reflectance or emittance spectroscopy cannot be accomplished simply through reference to reflectance signature libraries since neither the thickness of the liquid layer nor the substrate type is known beforehand and both contribute to the signature. Liquid spectral libraries offer the complex index of refraction (n,k) as a function of wavelength which by itself is useful only for thickmore » (bulk) liquid layers via computation of reflectance and transmittance coefficients using the Fresnel equations. Thin liquid layers both reflect and refract incident light in combination with reflectance from the substrate. We show modeling of various organic liquids on substrates using commercial thin film design and modeling software, as well as Monte Carlo ray tracing software to demonstrate the variety of potential signatures encountered that depend on the thickness of the liquid layer as well as the characteristics of the substrate (metal or dielectric). These substrates give rise to transflectance behavior, while many dielectric substrates have rich absorption features that provide complex signatures that combine attributes of both the liquid and the substrate. Knowledge of the complex index of refraction of both target liquids and substrates is essential in order to synthesize spectra necessary in the application of target identification algorithms.« less

  13. Secondary Crystal Growth on a Cracked Hydrotalcite-Based Film Synthesized by the Sol-Gel Method.

    PubMed

    Lee, Wooyoung; Lee, Chan Hyun; Lee, Ki Bong

    2016-05-02

    The sol-gel synthesis method is an attractive technology for the fabrication of ceramic films due to its preparation simplicity and ease of varying the metal composition. However, this technique presents some limitations in relation to the film thickness. Notably, when the film thickness exceeds the critical limit, large tensile stresses occur, resulting in a cracked morphology. In this study, a secondary crystal growth method was introduced as a post-treatment process for Mg/Al hydrotalcite-based films synthesized by the sol-gel method, which typically present a cracked morphology. The cracked hydrotalcite-based film was hydrothermally treated for the secondary growth of hydrotalcite crystals. In the resulting film, hydrotalcite grew with a vertical orientation, and the gaps formed during the sol-gel synthesis were filled with hydrotalcite after the crystal growth. The secondary crystal growth method provides a new solution for cracked ceramic films synthesized by the sol-gel method.

  14. Electronic functions of solid-to-liquid interfaces of organic semiconductor crystals and ionic liquid

    NASA Astrophysics Data System (ADS)

    Takeya, J.

    2008-10-01

    The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.

  15. Magnetowetting of Ferrofluidic Thin Liquid Films

    PubMed Central

    Tenneti, Srinivas; Subramanian, Sri Ganesh; Chakraborty, Monojit; Soni, Gaurav; DasGupta, Sunando

    2017-01-01

    An extended meniscus of a ferrofluid solution on a silicon surface is subjected to axisymmetric, non-uniform magnetic field resulting in significant forward movement of the thin liquid film. Image analyzing interferometry is used for accurate measurement of the film thickness profile, which in turn, is used to determine the instantaneous slope and the curvature of the moving film. The recorded video, depicting the motion of the film in the Lagrangian frame of reference, is analyzed frame by frame, eliciting accurate information about the velocity and acceleration of the film at any instant of time. The application of the magnetic field has resulted in unique changes of the film profile in terms of significant non-uniform increase in the local film curvature. This was further analyzed by developing a model, taking into account the effect of changes in the magnetic and shape-dependent interfacial force fields. PMID:28303971

  16. Structural analysis of benzothienobenzothiophene-based soluble organic semiconducting crystals grown by liquid crystal solvent

    NASA Astrophysics Data System (ADS)

    Shibata, Yosei; Matsuzaki, Tomoya; Ishinabe, Takahiro; Fujikake, Hideo

    2018-06-01

    In this study, we analyzed organic semiconducting single crystals composed of benzothienobenzothiophene derivatives (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, C8-BTBT) grown by nematic-phase liquid crystal (LC) solvent. As a result, we clarified that the crystal b-axis direction of the C8-BTBT single crystals was consistent with the LC alignment direction. By optical evaluation and simulation based on density functional theory, we found that the C8-BTBT single crystals in LC solvent exhibited a novel molecular conformation having alkyl chains oriented toward the b-axis.

  17. Polymer-stabilized liquid crystal blue phases.

    PubMed

    Kikuchi, Hirotsugu; Yokota, Masayuki; Hisakado, Yoshiaki; Yang, Huai; Kajiyama, Tisato

    2002-09-01

    Blue phases are types of liquid crystal phases that appear in a temperature range between a chiral nematic phase and an isotropic liquid phase. Because blue phases have a three-dimensional cubic structure with lattice periods of several hundred nanometres, they exhibit selective Bragg reflections in the range of visible light corresponding to the cubic lattice. From the viewpoint of applications, although blue phases are of interest for fast light modulators or tunable photonic crystals, the very narrow temperature range, usually less than a few kelvin, within which blue phases exist has always been a problem. Here we show the stabilization of blue phases over a temperature range of more than 60 K including room temperature (260-326 K). Furthermore, we demonstrate an electro-optical switching with a response time of the order of 10(-4) s for the stabilized blue phases at room temperature.

  18. Gas flow-field induced director alignment in polymer dispersed liquid crystal microdroplets deposited on a glass substrate

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on glass substrates by the processes of polymerization and solvent evaporation induced phase separation. The electron and the optical polarization microscopies of the films reveal that PDLC microdroplets formed during the process of phase separation near the top surface of the film remain exposed and respond to shear stress due to air or gas flow on the surface. Optical response of the film to an air flow-induced shear stress input on the free surface has been measured. Director orientation in the droplets changes with the applied shear stress leading to time varying transmitted light intensity. Director dynamics of the droplet for an applied step shear stress has been discussed from free energy considerations. Results on the measurement of light transmission as a function of the gas flow parameter unambiguously demonstrate the potential of these systems for use as boundary layer and gas flow sensors.

  19. Making waves in a photoactive polymer film

    NASA Astrophysics Data System (ADS)

    Gelebart, Anne Helene; Jan Mulder, Dirk; Varga, Michael; Konya, Andrew; Vantomme, Ghislaine; Meijer, E. W.; Selinger, Robin L. B.; Broer, Dirk J.

    2017-06-01

    Oscillating materials that adapt their shapes in response to external stimuli are of interest for emerging applications in medicine and robotics. For example, liquid-crystal networks can be programmed to undergo stimulus-induced deformations in various geometries, including in response to light. Azobenzene molecules are often incorporated into liquid-crystal polymer films to make them photoresponsive; however, in most cases only the bending responses of these films have been studied, and relaxation after photo-isomerization is rather slow. Modifying the core or adding substituents to the azobenzene moiety can lead to marked changes in photophysical and photochemical properties, providing an opportunity to circumvent the use of a complex set-up that involves multiple light sources, lenses or mirrors. Here, by incorporating azobenzene derivatives with fast cis-to-trans thermal relaxation into liquid-crystal networks, we generate photoactive polymer films that exhibit continuous, directional, macroscopic mechanical waves under constant light illumination, with a feedback loop that is driven by self-shadowing. We explain the mechanism of wave generation using a theoretical model and numerical simulations, which show good qualitative agreement with our experiments. We also demonstrate the potential application of our photoactive films in light-driven locomotion and self-cleaning surfaces, and anticipate further applications in fields such as photomechanical energy harvesting and miniaturized transport.

  20. A comparative study on the breakup of Newtonian and viscoelastic liquid films

    NASA Astrophysics Data System (ADS)

    Qian, Lijuan; Song, Shaobo; Jiang, Lisha; Li, Xiaolu; Lin, Jianzhong

    2018-05-01

    The breakup of viscoelastic liquid films are investigated experimentally and analytically. The breakup phenomena of viscoelastic liquid film are recorded by the time resolved high speed camera. Video images reveal the difference behavior of liquid bubble breakup for Newtonian and viscoelastic liquid. For the Newtonian liquid, cylindrical ligaments are stretched into droplets with large distributions of drop size. For the viscoelastic liquid, the pinch-off point is located on the liquid connections to the nozzle and finally the main part of the ligament no longer elongates. Furthermore, a dispersion relation based on the stability analysis is involved to predict the ligament length and drop mean size after breakup for liquid film. The calculated ligament length is validated by the measured drop mean size at higher air-to-liquid mass flow ratio.

  1. Calculation of Optical Parameters of Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    2007-12-01

    Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.

  2. Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Wu, Ri-Na; Wu, Jie; Wu, Xiao-Jiao; Dai, Qin

    2015-05-01

    In this work, negative dielectric nematic liquid crystal SLC12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperature-tunable lasing in negative dielectric chiral nematic liquid crystal, we measure the transmission and lasing spectrum of this sample. The photonic band gap (PBG) is observed to red shift with its width reducing from 71.2 nm to 40.2 nm, and its short-wavelength band edge moves 55.3 nm while the long-wavelength band edge only moves 24.9 nm. The wavelength of output laser is found to red shift from 614.4 nm at 20 °C to 662.8 nm at 67 °C, which is very different from the previous experimental phenomena. The refractive indices, parallel and perpendicular to the director in chiral nematic liquid crystal have different dependencies on temperature. The experiment shows that the pitch of this chiral nematic liquid crystal increases with the increase of temperature. The decrease in the PBG width, different shifts of band edges, and the red shift of laser wavelength are the results of refractive indices change and pitch thermal elongation. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Outstanding Young Scholars Growth Plans of Colleges and Universities in Liaoning Province, China (Grant No. LJQ2013022), the Science and Technology Research of Liaoning Province, China (Grant No. L2010465), the Open Funds of Liaoning Province Key Laboratory of Laser and Optical Information of Shenyang Ligong University, China.

  3. Light Scattering Studies of Defects in Nematic/Twist-Bend Liquid Crystals and Layer Fluctuations in Free-Standing Smectic Membranes

    NASA Astrophysics Data System (ADS)

    Pardaev, Shokir A.

    This research described in this dissertation comprises three experimental topics and includes the development of an appropriate theoretical framework to understand the various observations in each. In the first part, we present results from angle-resolved second-harmonic light scattering measurements on three different classes of thermotropic nematic liquid crystals: polar and non-polar rodlike compounds, and a bent-core compound. We analyze the data in terms of the "flexoelectric" polarization induced by distortions of the nematic director field around topological defects known as inversion walls, which are analogous to Neel walls in magnetic spin systems and which often exhibit a closed loop morphology in nematic systems. The second part of this dissertation explores the possible existence of a helical polarization field in the nematic twist-bend (NTB) phase of dimeric liquid crystals, utilizing a similar nonlinear light scattering approach. The NTB phase is characterized by a heliconical winding of the local molecular long axis (director) with a remarkably short, nanoscale pitch. According to theoretical conjecture, a helical electric polarization field accompanies this director modulation, but, due to the short pitch, presents a significant challenge for experimental detection. Our study focuses on topological defects, classified as parabolic focal conics, in two achiral, NTB-forming liquid crystals. These defects generate distortions of the polarization field on sufficiently long (micron) lengths to enable a confirmation of the existence of polar structure. We analyze our results with a coarse-grained free energy density that combines a Landau-deGennes expansion of the polarization field, the elastic energy of a nematic, and a bilinear coupling between the two. The last part of the dissertation focuses on the layer dynamics of thin, free-standing membranes of a smectic-A liquid crystal, with a particular consideration of the surface (interfacial) parameters

  4. Theoretical Studies of Nonuniform Orientational Order in Liquid Crystals and Active Particles

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan

    I investigate three systems that exhibit complex patterns in orientational order, which are controlled by geometry interacting with the dynamics of phase transitions, metastability, and activity. 1. Liquid Crystal Elastomers: Liquid-crystal elastomers are remarkable materials that combine the elastic properties of cross-linked polymer networks with the anisotropy of liquid crystals. Any distortion of the polymer network affects the nematic order of the liquid crystal, and, likewise, any change in the magnitude or direction of the nematic order influences the shape of the elastomer. When elastomers are prepared without any alignment, they develop disordered polydomain structures as they are cooled into the nematic phase. To model these polydomain structures, I develop a dynamic theory for the isotropic-nematic transition in elastomers. 2. Active Brownian Particles: Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. I perform Langevin dynamics simulations and analytic calculations to explore how systems cross over from equilibrium to active behavior as the activity is increased. Based on these results, I calculate how the pressure depends on wall curvature, and hence make analytic predictions for the motion of curved tracers and other effects of confinement in active matter systems. 3. Skyrmions in Liquid Crystals: Skyrmions are localized topological defects in the orientation of an order parameter field, without a singularity in the magnitude of the field. For many years, such defects have been studied in the context of chiral liquid crystals--for example, as bubbles in a confined cholesteric phase or as double-twist tubes in a blue phase. More recently, skyrmions have been investigated extensively in the context of chiral magnets. In this project, I compare skyrmions in chiral liquid crystals with the analogous magnetic defects. Through simulations based on the nematic order tensor, I model both isolated skyrmions

  5. Wavelength-tunable light shaping with cholesteric liquid crystal microlenses.

    PubMed

    Bayon, Chloé; Agez, Gonzague; Mitov, Michel

    2014-06-21

    The ability to guide light on the mesoscopic scale is important both scientifically and technologically. Especially relevant is the development of wavelength-tunable light-shaping microdevices. Here we demonstrate the use of cholesteric liquid crystal polygonal textures organized as an array of microlenses for this purpose. The beam shaping is controlled by tuning the wavelength of the incident light in the visible spectrum. By taking advantage of the self-organization property of liquid crystals, the structure of the lens and its optical response are tailored by changing the annealing time of the single layer material during a completely integrated one-step process. The intrinsic helical organization of the layer is the cause of the light shaping and not the shape of the surface as for conventional lenses. A new concept of light manipulation using the structure chirality of liquid crystals is demonstrated, which concerns soft matter photonic circuits to mould the light.

  6. Photo-switchable bistable twisted nematic liquid crystal optical switch.

    PubMed

    Wang, Chun-Ta; Wu, Yueh-Chi; Lin, Tsung-Hsien

    2013-02-25

    This work demonstrates a photo-switchable bistable optical switch that is based on an azo-chiral doped liquid crystal (ACDLC). The photo-induced isomerization of the azo-chiral dopant can change the chirality of twisted nematic liquid crystal and the gap/pitch ratio of an ACDLC device, enabling switching between 0° and 180° twist states in a homogeneous aligned cell. The bistable 180° and 0° twist states of the azo-chiral doped liquid crystal between crossed polarizers correspond to the ON and OFF states of a light shutter, respectively, and they can be maintained stably for tens of hours. Rapid switching between 180° and 0° twist states can be carried out using 408 and 532 nm addressing light. Such a photo-controllable optical switch requires no specific asymmetric alignment layer or precise control of the cell gap/pitch ratio, so it is easily fabricated and has the potential for use in optical systems.

  7. Liquid film drag out in the presence of molecular forces

    NASA Astrophysics Data System (ADS)

    Schmidhalter, I.; Cerro, R. L.; Giavedoni, M. D.; Saita, F. A.

    2013-03-01

    From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, "Dragging of a liquid by a moving plate," Acta Physicochim. USSR 17, 42-54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van der Waals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed.

  8. Film and membrane-model thermodynamics of free thin liquid films.

    PubMed

    Radke, C J

    2015-07-01

    In spite of over 7 decades of effort, the thermodynamics of thin free liquid films (as in emulsions and foams) lacks clarity. Following a brief review of the meaning and measurement of thin-film forces (i.e., conjoining/disjoining pressures), we offer a consistent analysis of thin-film thermodynamics. By carefully defining film reversible work, two distinct thermodynamic formalisms emerge: a film model with two zero-volume membranes each of film tension γ(f) and a membrane model with a single zero-volume membrane of membrane tension 2γ(m). In both models, detailed thermodynamic analysis gives rise to thin-film Gibbs adsorption equations that allow calculation of film and membrane tensions from measurements of disjoining-pressure isotherms. A modified Young-Laplace equation arises in the film model to calculate film-thickness profiles from the film center to the surrounding bulk meniscus. No corresponding relation exists in the membrane model. Illustrative calculations of disjoining-pressure isotherms for water are presented using square-gradient theory. We report considerable deviations from Hamaker theory for films less than about 3 nm in thickness. Such thin films are considerably more attractive than in classical Hamaker theory. Available molecular simulations reinforce this finding. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Van der waals forces on thin liquid films in capillary tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdt, G.C.; Swanson, L.W.

    1993-10-01

    A theory of the van der Waals attraction between a thin liquid films and a capillary tube is presented assuming the presence of a vapor-liquid interface. The model is based on the surface mode analysis method of van Kampen et al. Values for the van der Waals interaction energy per unit area were calculated for liquid films of pentane on a gold substrate assuming a thin liquid film. Results indicate that the effect of capillary curvature on the van der Waals interaction increases as the ratio of the liquid film thickness to the capillary radius is increased. This trend ismore » consistent with predictions based on the Hamaker theory. Deviations from results based on the Hamaker theory are easily explained in terms of retardation of the van der Waals interaction. Because the effect of capillary curvature increases in the regime where retardation effects become important, curvature effects constitute a small correction to the van der Waals forces in a capillary tube.« less

  10. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors.

    PubMed

    Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun

    2010-09-01

    The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Nematic-like stable glasses without equilibrium liquid crystal phases

    DOE Data Explorer

    Gomez, Jaritza [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Huang, Chengbin [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Bishop, Camille [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Yu, Lian [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    2017-02-01

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition.Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ~105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  12. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH 3NH 3PbI 3 nanorods/PC 60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films keptmore » for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  13. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    PubMed

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  14. Liquid film on a circular plate formed by a droplet train impingement

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Yamamoto, Shoya

    2017-11-01

    Droplet impingement phenomena are found in the wide variety of industrial processes, however the detail of liquid film structure formed by the continuous impact of droplets is not clarified. In this study, we experimentally investigated behavior of liquid film which was formed by a droplet train impact. Especially, we focus on the diameter of hydraulic jump formed on a circular plate. The effects of nozzle diameter, liquid surface tension and liquid flow rate on the jump diameter were investigated. In addition, we compared the liquid film by the droplet train impact with that by a liquid column impact. As a result, the hydraulic jump was observed under the smaller water flow rate condition compare to the liquid column impact. And the jump diameters for the case of droplet train impact were greater than that of liquid column impact. However, the jump diameters for the small surface tension liquid for the case of droplet train impact were smaller than that of liquid column impact. We consider that this phenomenon is related to both high speed lateral flow after droplet impact and splash formation. In addition, the liquid film heights after hydraulic jump on a small circular plate were sensitive to either the droplet train impact or liquid column impact.

  15. Dual gauge field theory of quantum liquid crystals in two dimensions

    NASA Astrophysics Data System (ADS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Liu, Ke; Slager, Robert-Jan; Nussinov, Zohar; Cvetkovic, Vladimir; Zaanen, Jan

    2017-04-01

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (;stress photons;), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this 'deconfined' mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties

  16. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  17. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE PAGES

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...

    2017-04-18

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  18. Dynamic amplification of light signals in photorefractive ferroelectric liquid crystal blends containing photoconductive chiral dopant

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Hafuri, M.; Suda, T.; Nakano, M.; Funada, K.; Ohta, M.; Terazono, T.; Le, K. V.; Naka, Y.

    2017-08-01

    Effect of ferroelectricity on the photorefractive effect of ferroelectric liquid crystal blends was investigated. The photorefractive effect of ferroelectric liquid crystal blends strongly depend on the ferroelectricity of the blend. We have prepared a series of ferroelectric liquid crystal blends that contains several concentrations of a chiral compound while keeping a constant concentration of a photoconductive moiety. The photorefractive properties of the ferroelectric liquid crystal blends were discussed with relations to the ferroelectric properties of the blends.

  19. 2D-crystallization of Rhodococcus 20S proteasome at the liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazuhiro

    1996-10-01

    The 2D-crystallization method using the liquid-liquid interface between a aqueous phase (protein solution) and a thin organic liquid (dehydroabietylamine) layer has been applied to the Rhodococcus 20S proteasome. The 20S proteasome is known to be the core complex of the 26S proteasome, which is the central protease of the ubiquitin-dependent pathway. Two types of ordered arrays were obtained, both large enough for high resolution analysis by electron crystallography. The first one had a four-fold symmetry, whereas the second one was found out to be a hexagonally close-packed array. By image analysis based on a real space correlation averaging (CAV) technique, the close-packed array was found to be hexagonally packed, but the molecules had presumably rotational freedom. The four-fold array was found to be a true crystal with p4 symmetry. Lattice constants were a = b = 20.0 nm and α = 90°. The unit cell of this crystal contained two molecules. The diffraction pattern computed from the original picture showed spots up to (4, 5) that corresponds to 3.1 nm resolution. After applying an unbending procedure, the diffraction pattern showed spots extending to 1.8 nm resolution.

  20. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    NASA Astrophysics Data System (ADS)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  1. Energy driven self-organization in nanoscale metallic liquid films.

    PubMed

    Krishna, H; Shirato, N; Favazza, C; Kalyanaraman, R

    2009-10-01

    Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.

  2. Large polar pretilt for the liquid crystal homologous series alkylcyanobiphenyl

    NASA Astrophysics Data System (ADS)

    Huang, Zhibin; Rosenblatt, Charles

    2005-01-01

    Sufficiently strong rubbing of the polyimide alignment layer SE-1211 (Nissan Chemical Industries, Ltd.) results in a large pretilt of the liquid crystal director from the homeotropic orientation. The threshold rubbing strength required to induce nonzero pretilt is found to be a monotonic function of the number of methylene units in the homologous liquid crystal series alkylcyanobiphenyl. The results are discussed in terms of the dual easy axis model for alignment.

  3. Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling

    NASA Technical Reports Server (NTRS)

    Faghri, Amir

    2005-01-01

    In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from which

  4. Liquid oxygen dicting cleaned by falling film method

    NASA Technical Reports Server (NTRS)

    Paul, H. I.

    1967-01-01

    Principle of a vertical falling film is used to clean contaminated large diameter and length liquid oxygen /LOX/ cylindrical ducting. The cleaning cycle is performed by flowing trichloroethylene in a falling film down a vertically mounted duct for approximately one hour.

  5. Computerized Liquid Crystal Phase Identification by Neural Networks Analysis of Polarizing Microscopy Textures

    NASA Astrophysics Data System (ADS)

    Karaszi, Zoltan; Konya, Andrew; Dragan, Feodor; Jakli, Antal; CPIP/LCI; CS Dept. of Kent State University Collaboration

    Polarizing optical microscopy (POM) is traditionally the best-established method of studying liquid crystals, and using POM started already with Otto Lehman in 1890. An expert, who is familiar with the science of optics of anisotropic materials and typical textures of liquid crystals, can identify phases with relatively large confidence. However, for unambiguous identification usually other expensive and time-consuming experiments are needed. Replacement of the subjective and qualitative human eye-based liquid crystal texture analysis with quantitative computerized image analysis technique started only recently and were used to enhance the detection of smooth phase transitions, determine order parameter and birefringence of specific liquid crystal phases. We investigate if the computer can recognize and name the phase where the texture was taken. To judge the potential of reliable image recognition based on this procedure, we used 871 images of liquid crystal textures belonging to five main categories: Nematic, Smectic A, Smectic C, Cholesteric and Crystal, and used a Neural Network Clustering Technique included in the data mining software package in Java ``WEKA''. A neural network trained on a set of 827 LC textures classified the remaining 44 textures with 80% accuracy.

  6. Liquid Crystal Airborne Display

    DTIC Science & Technology

    1977-08-01

    Cum.nings, J. P., et al., Properties and Limitations oe Liquid Crystals for Aircraft Displays, Honeywell Corporate Researc ."I Center, Final Report HR-72...basic module could be used to build displays for both the commercial and military! 157- marhecs, and so would establi sh a broad and sizable market ... market for the display becomes a reality; therein lies, f TABLE 16 THE COURSE OF FUTURE DISPLAY DEVELOPMENT Today 1976-77 1980 1985 Display Size 2" 1 3.2

  7. Liquid-filled simplified hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Gao, Wei; Li, Hongwei; Dong, Yongkang; Zhang, Hongying

    2014-12-01

    We report on a novel type of liquid-filled simplified hollow-core photonic crystal fibers (HC-PCFs), and investigate their transmission properties with various filling liquids, including water, ethanol and FC-40. The loss and dispersion characterizations are calculated for different fiber parameters including strut thickness and core diameter. The results show that there are still low-loss windows existing for liquid-filled simplified HC-PCFs, and the low-loss windows and dispersions can be easily tailored by filling different liquids. Such liquid-filled simplified HC-PCFs open up many possibilities for nonlinear fiber optics, optical, biochemical and medical sensing.

  8. The finite-size effect in thin liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  9. Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications.

    PubMed

    Park, Jiyoung; Kang, Doo-Eui; Paulson, Bjorn; Nazari, Tavakol; Oh, Kyunghwan

    2014-07-14

    A defectless hexagonal air-silica photonic crystal fiber (PCF) structure with its central hole selectively filled by a low-refractive-index liquid is numerically analyzed. Despite the fact that the refractive index of the liquid is significantly lower than that of silica, we found an optimal range of waveguide parameters to ensure light guidance through the liquid core in the fundamental mode, maximizing the light-liquid interaction over a desired wavelength range. Using the vectorial finite element method (FEM), we report detailed parametric studies in terms of the effective index, chromatic dispersion, optical loss, and modal intensity distribution of the liquid core PCFs.

  10. The evolution of droplet impacting on thin liquid film at superhydrophilic surface

    NASA Astrophysics Data System (ADS)

    Li, Yun; Zheng, Yi; Lan, Zhong; Xu, Wei; Ma, Xuehu

    2017-12-01

    Thin films are ubiquitous in nature, and the evolution of a liquid film after droplet impact is critical in many industrial processes. In this paper, a series of experiments and numerical simulations are conducted to investigate the distribution and evolution features of local temperature as the droplet impacts a thin film on the superhydrophilic surface by the thermal tracing method. A cold area is formed in the center after droplet impacts on heated solid surfaces. For the droplet impact on thin heated liquid film, a ring-shaped low temperature zone is observed in this experiment. Meanwhile, numerical simulation is adopted to analyze the mechanism and the interaction between the droplet and the liquid film. It is found that due to the vortex velocity distribution formed inside the liquid film after the impact, a large part of the droplet has congested. The heating process is not obvious in the congested area, which leads to the formation of a low-temperature area in the results.

  11. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  12. Direct droplet production from a liquid film: a new gas-assisted atomization mechanism

    NASA Astrophysics Data System (ADS)

    Snyder, Herman E.; Reitz, Rolf D.

    1998-11-01

    X-ray lithography and micro-machining have been used to study gas-assisted liquid atomization in which a liquid film was impinged by a large number of sonic micro-gas jets. Three distinct breakup regimes were demonstrated. Two of these regimes share characteristics with previously observed atomization processes: a bubble bursting at a free surface (Newitt et al. 1954; Boulton-Stone & Blake 1993) and liquid sheet disintegration in a high gas/liquid relative velocity environment (Dombrowski & Johns 1963). The present work shows that suitable control of the gas/liquid interface creates a third regime, a new primary atomization mechanism, in which single liquid droplets are ejected directly from the liquid film without experiencing an intermediate ligament formation stage. The interaction produces a stretched liquid sheet directly above each gas orifice. This effectively pre-films the liquid prior to its breakup. Following this, surface tension contracts the stretched film of liquid into a sphere which subsequently detaches from the liquid sheet and is entrained by the gas jet that momentarily pierces the film. After droplet ejection, the stretched liquid film collapses, covering the gas orifice, and the process repeats. This new mechanism is capable of the efficient creation of finely atomized sprays at low droplet ejection velocities (e.g. 20 [mu]m Sauter mean diameter methanol sprays using air at 239 kPa, with air-to-liquid mass ratios below 1.0, and droplet velocities lower than 2.0 m s[minus sign]1). Independent control of the gas and the liquid flows allows the droplet creation process to be effectively de-coupled from the initial droplet momentum, a characteristic not observed with standard gas-assisted atomization mechanisms.

  13. Analysis of thickness dependent on crystallization kinetics in thin isotactic-polysterene films

    NASA Astrophysics Data System (ADS)

    Khairuddin

    2016-11-01

    Crystalliaztion kinetics of thin film of Isotactic Polysterene (it-PS) films has been studied. Thin PET films having thickness of 338, 533, 712, 1096, 1473, and 2185 A° were prepared by using spin-cast technique. The it-PS crystals were grown on Linkam-hostage in the temperature range 130-240°C with an interval of 10°C. The crystal growths are measured by optical microscopy in lateral direction. It was found that a substantial thickness dependence on crystallisation rate. The analysis using fitting technique based on theory crystal growth of Lauritzen-Hoffman showed that the fitting technique could not resolve to predict the mechanism controlling the thickness dependence on the rate of crystallisation. The possible reasons were due to the crystallisation rate varies with the type of crystals (smooth, rough, overgrowth terrace), and the crystallisation rate changes with the time of crystallisation.

  14. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    PubMed

    Lin, Kae-Long

    2007-09-05

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  15. Crystallization tendencies of modelled Lennard-Jones liquids with different attractions

    NASA Astrophysics Data System (ADS)

    Valdès, L.-C.; Gerges, J.; Mizuguchi, T.; Affouard, F.

    2018-01-01

    Molecular dynamics simulations are performed on simple models composed of monoatomic Lennard-Jones atoms for which the repulsive interaction is the same but the attractive part is tuned. We investigate the precise role of the attractive part of the interaction potential on different structural, dynamical, and thermodynamical properties of these systems in the liquid and crystalline states. It includes crystallization trends for which the main physical ingredients involved have been computed: the diffusion coefficient, the Gibbs energy difference between the liquid and the crystalline state, and the crystal-liquid interfacial free energy. Results are compared with predictions from the classical nucleation theory including transient and steady-state regimes at moderate and deeper undercooling. The question of the energetic and entropic impact of the repulsive and attractive part of the interaction potential towards crystallization is also addressed.

  16. Phototropic liquid crystal materials containing naphthopyran dopants

    NASA Astrophysics Data System (ADS)

    Rumi, Mariacristina; Cazzell, Seth; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; Bunning, Timothy; White, Timothy

    2015-03-01

    Dopant molecules dispersed in a liquid crystalline material usually affects the order of the system and the transition temperature between various phases. If the dopants undergo photoisomerization between conformers with different shapes, the interactions with the liquid crystal molecules can be different for the material in the dark and during exposure to light of appropriate wavelength. This can be used to achieve isothermal photoinduced phase transitions (phototropism). With proper selection of materials components, both order-to-disorder and disorder-to-order photoinduced transition have been demonstrated. Isothermal order-increasing transitions have been observed recently using naphthopyran derivatives as dopants. We are investigating the changes in order parameter and transition temperature of liquid crystal mixtures containing naphthopyrans and how they are related to exposure conditions and to the concentration and molecular structure of the dopants. We are also studying the nature of the photoinduced phase transitions, and comparing the behavior with that of azobenzene-doped mixtures, in which exposure to light leads to a decrease, instead of an increase, in the order of the system.

  17. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    NASA Astrophysics Data System (ADS)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  18. Infrared diagnosis using liquid crystal detectors

    NASA Technical Reports Server (NTRS)

    Hugenschmidt, M.; Vollrath, K.

    1986-01-01

    The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.

  19. Method For Growth of Crystal Surfaces and Growth of Heteroepitaxial Single Crystal Films Thereon

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Larkin, David J. (Inventor); Neudeck, Philip G. (Inventor); Matus, Lawrence G. (Inventor)

    2000-01-01

    A method of growing atomically-flat surfaces and high quality low-defect crystal films of semiconductor materials and fabricating improved devices thereon is discussed. The method is also suitable for growing films heteroepitaxially on substrates that are different than the film. The method is particularly suited for growth of elemental semiconductors (such as Si), compounds of Groups III and V elements of the Periodic Table (such as GaN), and compounds and alloys of Group IV elements of the Periodic Table (such as SiC).

  20. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.

    PubMed

    Vieweg, M; Gissibl, T; Pricking, S; Kuhlmey, B T; Wu, D C; Eggleton, B J; Giessen, H

    2010-11-22

    Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

  1. Colors Of Liquid Crystals Used To Measure Surface Shear Stresses

    NASA Technical Reports Server (NTRS)

    Reda, D. C.; Muratore, J. J., Jr.

    1996-01-01

    Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.

  2. Synthesis and carbon-13 NMR studies of liquid crystals

    NASA Astrophysics Data System (ADS)

    Sun, Hong

    2000-08-01

    The orientation of different segments of 4'-cyanophenyl 4-heptylbenzoate (7CPB) has been investigated using 13C NMR. The method of proton encoded local field (PELF) spectroscopy was used in combination with off-magic-angle spinning (OMAS) of the sample. High-resolution 2D spectra were obtained and the order parameters were calculated from the spectra. Linear relationships between the obtained order parameters and anisotropic chemical shifts determined by 1D 13C NMR were established and semi-empirical parameters were obtained. A 1:2 mixture of 7CPB and its chain-perfluorinated analog (7PFCPB) shows interesting phase behavior with changing of temperature. The mixture was studied by the use of 13C NMR and polarizing optical microscopy. The order parameters of 7CPB in the smectic A phase of the mixture were calculated using the semi-empirical parameters obtained by the 2D NMR method. Eight series of liquid crystals containing an electron- donating group at one end of a conjugated system and an electron-withdrawing group at the other end have been synthesized. The electron-donating group is 4- n-alkylpiperazinyl group, the electron- withdrawing group is nitro group and the conjugated system is diphenyldiazene with zero, one or two substituents on the phenyl rings. The substituents are -F, -Cl, and -CH3. Two series of compounds with cyano group as electron-withdrawing group were also synthesized. Most of the compounds synthesized are nematogenic and exhibit rather broad liquid crystalline ranges. The effects of the lateral substituents on the optical absorption and phase transition temperatures are correlated with their nature and position of substitution. Birefringence, dielectric anisotropy, elastic constant ratio and rise time of the liquid crystals were carried out using 10 wt% LC mixtures in E7. It has been found that lateral substituents have subtle effects on the properties. The presence of lateral substituents depresses melting points and clearing points of the

  3. Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time.

    PubMed

    Mohammadimasoudi, Mohammad; Beeckman, Jeroen; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan

    2014-08-11

    A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  4. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    NASA Astrophysics Data System (ADS)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  5. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  6. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armas-Pérez, Julio C.; Li, Xiao; Martínez-González, José A.

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal.more » To do so, we adopt a tensorial description of the free energy of the hybrid liquidcrystal surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.« less

  7. Effect of Dielectric Material Films on Crystallization Characteristics of Ge2Sb2Te5 Phase-Change Memory Film

    NASA Astrophysics Data System (ADS)

    Nishiuchi, Kenichi; Yamada, Noboru; Kawahara, Katsumi; Kojima, Rie

    2007-11-01

    Reduction of the film thickness of phase-change film and the adoption of GeN- or ZrO2-based dielectric films are both effective in achieving good thermal stability in phase-change optical disks. It was experimentally confirmed that, at a heating rate of 10 °C/min, the crystallization temperature Tx of the Ge2Sb2Te5 amorphous film when sandwiched by ZnS-SiO2 films markedly increases from 162 to 197 °C, while the thickness of the Ge2Sb2Te5 film decreases from 10 to 3 nm. Tx also slightly increases when ZnS-SiO2 films are substituted for GeN-based films (from 162 to 165 °C) and ZrO2-based films (from 162 to 167 °C). At the same time, the activation energy of crystallization is 2.4 eV for both GeN- and ZrO2-based films, and is higher than 2.2 eV for ZnS-SiO2 films.

  8. Advection of nematic liquid crystals by chaotic flow

    NASA Astrophysics Data System (ADS)

    O'Náraigh, Lennon

    2017-04-01

    Consideration is given to the effects of inhomogeneous shear flow (both regular and chaotic) on nematic liquid crystals in a planar geometry. The Landau-de Gennes equation coupled to an externally prescribed flow field is the basis for the study: this is solved numerically in a periodic spatial domain. The focus is on a limiting case where the advection is passive, such that variations in the liquid-crystal properties do not feed back into the equation for the fluid velocity. The main tool for analyzing the results (both with and without flow) is the identification of the fixed points of the dynamical equations without flow, which are relevant (to varying degrees) when flow is introduced. The fixed points are classified as stable/unstable and further as either uniaxial or biaxial. Various models of passive shear flow are investigated. When tumbling is present, the flow is shown to have a strong effect on the liquid-crystal morphology; however, the main focus herein is on the case without tumbling. Accordingly, the main result of the work is that only the biaxial fixed point survives as a solution of the Q-tensor dynamics under the imposition of a general flow field. This is because the Q-tensor experiences not only transport due to advection but also co-rotation relative to the local vorticity field. A second result is that all families of fixed points survive for certain specific velocity fields, which we classify. We single out for close study those velocity fields for which the influence of co-rotation effectively vanishes along the Lagrangian trajectories of the imposed velocity field. In this scenario, the system exhibits coarsening arrest, whereby the liquid-crystal domains are "frozen in" to the flow structures, and the growth in their size is thus limited.

  9. Liquid crystal television custom drive circuit

    NASA Astrophysics Data System (ADS)

    Loudin, Jeffrey A.

    1994-03-01

    A new drive circuit for the liquid crystal display (LCD) of the InFocus TVT-6000TM video projector is currently under development at the U.S. Army Missile Command. The new circuit will allow individual pixel control of the LCD. This paper will discuss results of the effort to date.

  10. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm-2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm-2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

  11. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor.

    PubMed

    Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong

    2017-03-01

    One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.

  12. Versatile alignment layer method for new types of liquid crystal photonic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnemeyer, V.; Bryant, D.; Lu, L.

    2015-07-21

    Liquid crystal photonic devices are becoming increasingly popular. These devices often present a challenge when it comes to creating a robust alignment layer in pre-assembled cells. In this paper, we describe a method of infusing a dye into a microcavity to produce an effective photo-definable alignment layer. However, previous research on such alignment layers has shown that they have limited stability, particularly against subsequent light exposure. As such, we further describe a method of utilizing a pre-polymer, infused into the microcavity along with the liquid crystal, to provide photostability. We demonstrate that the polymer layer, formed under ultraviolet irradiation ofmore » liquid crystal cells, has been effectively localized to a thin region near the substrate surface and provides a significant improvement in the photostability of the liquid crystal alignment. This versatile alignment layer method, capable of being utilized in devices from the described microcavities to displays, offers significant promise for new photonics applications.« less

  13. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.

    2017-03-01

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier.

  14. Lyotropic chromonic liquid crystals as materials for optical and biosensing applications

    NASA Astrophysics Data System (ADS)

    Tortora, L.; Park, H.-S.; Antion, K.; Finotello, D.; Lavrentovich, O. D.

    2007-02-01

    Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with rigid polyaromatic cores and ionic groups at the periphery that form aggregates while in water. Most of the LCLCs are not toxic to the biological cells and can be used as an amplifying medium in real-time biosensors. The detector is based on the principle that the immune aggregates growing in the LCLC bulk trigger the director distortions. Self-assembly of LCLC molecules into oriented structures allows one to use them in various structured films. For example, layer-by-layer electrostatic deposition produces monomolecular layers and stacks of layers of LCLC with long-range in-plane orientational order which sets them apart from the standard Langmuir-Blodgett films. We demonstrate that divalent and multivalent salts as well as acidic and basic materials that alter pH of the LCLC water solutions, are drastically modifying the phase diagrams of LCLC, from shifting the phase transition temperatures by tens of degrees, to causing condensation of the LCLC aggregates into more compact structures, such as birefringent bundles or formation of a columnar hexagonal phase from the nematic phase.

  15. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

  16. Periodic grain-boundary formation in a poly-Si thin film crystallized by linearly polarized Nd:YAG pulse laser with an oblique incident angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaki, Hirokazu; Horita, Susumu

    2005-01-01

    We investigated the periodic grain-boundary formation in the polycrystalline silicon film crystallized by a linearly polarized Nd:YAG (where YAG is yttrium aluminum garnet) pulse laser with an oblique incident angle {theta}{sub i}=25 deg. , compared with the normal incident angle {theta}{sub i}=0. The alignment of the grain boundary was uncontrollable and fluctuated in the case of the oblique incident and large irradiation pulse number while that in the case of the normal incident was performed stably. It was found that the main cause for its low controllability was the nonphase matching between the periodic surface corrugation of the crystallized siliconmore » film and the periodic temperature profile induced by the laser irradiation. Also, it was found that, in the case of {theta}{sub i}=25 deg. , the dominant periodic width of the grain boundary depended on the pulse number N. That is, it was around {lambda}/(1+sin {theta}{sub i}) for small N{approx_equal}10 and {lambda}/(1-sin {theta}{sub i}) for large N{approx_equal}100 at the laser wavelength of {lambda}=532 nm. In order to explain this dependence, we proposed a model to take into account the periodic corrugation height proportional to the molten volume of the silicon film, the impediment in interference between the incident beam and diffracted beam on the irradiated surface due to the corrugation height, and the reduction of the liquid surface roughness during melting-crystallization process due to liquid-silicon viscosity.« less

  17. Dynamics of liquid films exposed to high-frequency surface vibration

    NASA Astrophysics Data System (ADS)

    Manor, Ofer; Rezk, Amgad R.; Friend, James R.; Yeo, Leslie Y.

    2015-05-01

    We derive a generalized equation that governs the spreading of liquid films under high-frequency (MHz-order) substrate vibration in the form of propagating surface waves and show that this single relationship is universally sufficient to collectively describe the rich and diverse dynamic phenomena recently observed for the transport of oil films under such substrate excitation, in particular, Rayleigh surface acoustic waves. In contrast to low-frequency (Hz- to kHz-order) vibration-induced wetting phenomena, film spreading at such high frequencies arises from convective drift generated by the viscous periodic flow localized in a region characterized by the viscous penetration depth β-1≡(2μ /ρ ω ) 1 /2 adjacent to the substrate that is invoked directly by its vibration; μ and ρ are the viscosity and the density of the liquid, respectively, and ω is the excitation frequency. This convective drift is responsible for driving the spreading of thin films of thickness h ≪kl-1 , which spread self-similarly as t1 /4 along the direction of the drift corresponding to the propagation direction of the surface wave, kl being the wave number of the compressional acoustic wave that forms in the liquid due to leakage of the surface wave energy from the substrate into the liquid and t the time. Films of greater thicknesses h ˜kl-1≫β-1 , in contrast, are observed to spread with constant velocity but in a direction that opposes the drift and surface wave propagation due to the attenuation of the acoustic wave in the liquid. The universal equation derived allows for the collective prediction of the spreading of these thin and thick films in opposing directions.

  18. Characteristics of a liquid-crystal-filled composite lattice terahertz bandgap fiber

    NASA Astrophysics Data System (ADS)

    Bai, Jinjun; Ge, Meilan; Wang, Shasha; Yang, Yanan; Li, Yong; Chang, Shengjiang

    2018-07-01

    A new type of terahertz fiber is presented based on composite lattice photonic crystal bandgap. The cladding is filled selectively with the nematic liquid crystal 5CB which is sensitive to the electric field. The terahertz wave can be modulated by using the electric field to control the orientation of liquid crystal molecules. The plane wave expansion method and the finite element method are employed to theoretically analyze bandgap characteristics, polarization characteristics, energy fraction and material absorption loss. The results show that this fiber structure can be used as tunable terahertz polarization controller.

  19. Dynamic and magneto-optic properties of bent-core liquid crystals

    NASA Astrophysics Data System (ADS)

    Salili, Seyyed Muhammad

    In this work, we describe dynamic behavior of free-standing bent-core liquid crystal filaments under dilative and axial compressive stresses in the B7 phase. We found that such filaments demonstrate very complex structures depending on the filament's temperature relative to the isotropic phase, initial filament thickness, and velocity at which the filament is pulled or compressed. We also present our experimental methods, results and analysis of the rupture and recoil properties of several bent-core liquid crystal filaments, anticipating that they may serve as a model system for complex biological fibers. After that, we systematically describe rheological measurements for dimeric liquid crystal compounds. We studied the shear-induced alignment properties, measured the viscoelastic properties as a function of temperature, shear rate, stress and frequency, and compared the results with the rheological properties of conventional chiral nematic and smectic phases. Then we present results of chiral nematic liquid crystals composed of flexible dimer molecules subject to large DC magnetic fields between 0 and 31T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. Finally, we report an unprecedented magnetic field-induced shifts of the isotropic-nematic phase transition temperature observed in liquid crystal dimers where two rigid linear mesogens are linked by flexible chains of either even- or odd-numbered hydrocarbon groups. This effect is explained in terms of quenching of the thermal fluctuations and decrease of the average bend angle of molecules in the odd-numbered dimers.

  20. Smart lighting using a liquid crystal modulator

    NASA Astrophysics Data System (ADS)

    Baril, Alexandre; Thibault, Simon; Galstian, Tigran

    2017-08-01

    Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.

  1. Liquid crystal materials and tunable devices for optical communications

    NASA Astrophysics Data System (ADS)

    Du, Fang

    In this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic communications. The curing temperature is found to have significant effects on the PSLC performance. The electro-optic properties of nematic polymer network liquid crystal (PNLC) at different curing temperatures are investigated experimentally. At high curing temperature, a high contrast, low drive voltage, and small hysteresis PNLC is obtained as a result of the formed large LC microdomains. With the help of curing temperature effect, it is able to develop PNLC based optical devices with highly desirable performances for optical communications. Such high performance is generally considered difficult to realize for a PNLC. In fact, the poor performance of PNLC, especially at long wavelengths, has hindered it from practical applications for optical communications for a long time. Therefore, the optimal curing temperature effect discovered in this thesis would enable PSLCs for practical industrial applications. Further more, high birefringence LCs play an important role for near infrared photonic devices. The isothiocyanato tolane liquid crystals exhibit a high birefringence and low viscosity. The high birefringence LC dramatically improves the PSLC contrast ratio while keeping a low drive voltage and fast response time. A free-space optical device by PNLC is experimentally demonstrated and its properties characterized. Most LC devices are polarization sensitive. To overcome this drawback, we have investigated the polymer-stabilized cholesteric LC (PSCLC). Combining the curing

  2. Influence of crystal phases on electro-optic properties of epitaxially grown lanthanum-modified lead zirconate titanate films

    NASA Astrophysics Data System (ADS)

    Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro

    2010-02-01

    We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.

  3. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals.

    PubMed

    Tercjak, Agnieszka; Gutierrez, Junkal; Ocando, Connie; Mondragon, Iñaki

    2010-03-16

    Conductive properties of different thermosetting materials modified with nematic 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) liquid crystal and rutile TiO(2) nanoparticles were successfully studied by means of tunneling atomic force miscroscopy (TUNA). Taking into account the liquid crystal state of the HBC at room temperature, depending on both the HBC content and the presence of TiO(2) nanoparticles, designed materials showed different TUNA currents passed through the sample. The addition of TiO(2) nanoparticles into the systems multiply the detected current if compared to the thermosetting systems without TiO(2) nanoparticles and simultaneously stabilized the current passed through the sample, making the process reversible since the absolute current values were almost the same applying both negative and positive voltage. Moreover, thermosetting systems modified with liquid crystals with and without TiO(2) nanoparticles are photoluminescence switchable materials as a function of temperature gradient during repeatable heating/cooling cycle. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals can allow them to find potential application in the field of photoresponsive devices, with a high contrast ratio between transparent and opaque states.

  4. Characteristics of color optical shutter with dye-doped polymer network liquid crystal.

    PubMed

    Lee, G H; Hwang, K Y; Jang, J E; Jin, Y W; Lee, S Y; Jung, J E

    2011-03-01

    The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.

  5. Orientational Order in Liquid Crystal Complexes Based on Lanthanides

    NASA Astrophysics Data System (ADS)

    Dobrun, L. A.; Kovshik, A. P.; Ryumtsev, E. I.; Kalinkin, A. A.

    2018-04-01

    In this study, we have for the first time determined the degree of an orientational order S for a series of liquid-crystal complexes based on lanthanides (Eu+3, Gd+3, Tb+3, Dy+3) with the same ligand composition in the temperature range of existence of the nematic phase by using experimental refractometry results. We have also found an even-odd alternative S as number of protons in the ions complexing agent has consecutively increased. The obtained values of S have been compared with the corresponding degrees of order of the calamite organic liquid crystals.

  6. Fabrication of focus-tunable liquid crystal microlens array with spherical electrode

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ming; Su, Guo-Dung J.

    2016-09-01

    In this paper, a new approach to fabricate a liquid crystal (LC) microlens array with spherical-shaped electrode is demonstrated, which can create the inhomogeneous electric field. Inkjet-printing, hydrophilic confinement, self-assemble and replication process is used to form the convex microlens array on glass. After the spherical-shaped electrode is done, we assemble it with ITO glass to form a liquid crystal cell. We used Zemax® to simulate the liquid crystal lens as a Gradient-index (GRIN) lens. The simulation results show that a GRIN lens model can well match with the theoretical focal length of liquid crystal lens. The dimension of the glass is 1.5 cm x 1.5 cm x 0.7 mm which has 7 concave microlens on the top surface. These microlens have same diameter and height about 300 μm and 85 μm. The gap between each other is 100 μm. We first fabricate microlens array on silicon substrate by hydrophilic confinement, which between hydrophilicity of silicon substrate and hydrophobicity of SU-8, and inkjet printing process. Then we start replication process with polydimethylsiloxane (PDMS) to transfer microlens array form silicon to glass substrate. After the transparent conducted polymer, PEDOT:PSS, is spin-coated on the microlens arrays surface, we flatten it by NOA65. Finally we assemble it with ITO glass and inkjet liquid crystal. From measuring the interference rings, the optical power range is from 47.28 to 331 diopter. This will be useful for the optical zoom system or focus-tunable lens applications.

  7. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater.

    PubMed

    Lei, C N; Whang, L M; Lin, H L

    2008-01-01

    The amount of pollutants produced during manufacturing processes of TFT-LCD (thin-film transistor liquid crystal display) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. The total amount of wastewater from TFT-LCD manufacturing plants is expected to exceed 200,000 CMD in the near future. Typically, organic solvents used in TFT-LCD manufacturing processes account for more than 33% of the total TFT-LCD wastewater. The main components of these organic solvents are composed of the stripper (dimethyl sulphoxide (DMSO) and monoethanolamine (MEA)), developer (tetra-methyl ammonium hydroxide (TMAH)) and chelating agents. These compounds are recognized as non-or slow-biodegradable organic compounds and little information is available regarding their biological treatability. In this study, the performance of an A/O SBR (anoxic/oxic sequencing batch reactor) treating synthetic TFT-LCD wastewater was evaluated. The long-term experimental results indicated that the A/O SBR was able to achieve stable and satisfactory removal performance for DMSO, MEA and TMAH at influent concentrations of 430, 800, and 190 mg/L, respectively. The removal efficiencies for all three compounds examined were more than 99%. In addition, batch tests were conducted to study the degradation kinetics of DMSO, MEA, and TMAH under aerobic, anoxic, and anaerobic conditions, respectively. The organic substrate of batch tests conducted included 400 mg/L of DMSO, 250 mg/L of MEA, and 120 mg/L of TMAH. For DMSO, specific DMSO degradation rates under aerobic and anoxic conditions were both lower than 4 mg DMSO/g VSS-hr. Under anaerobic conditions, the specific DMSO degradation rate was estimated to be 14 mg DMSO/g VSS-hr, which was much higher than those obtained under aerobic and anoxic conditions. The optimum specific MEA and TMAH degradation rates were obtained under aerobic conditions with values of 26.5 mg MEA/g VSS-hr and 17.3 mg TMAH/g VSS

  8. Interfacial kinetics in nanosized Au/Ge films: An in situ TEM study

    NASA Astrophysics Data System (ADS)

    Kryshtal, Aleksandr P.; Minenkov, Alexey A.; Ferreira, Paulo J.

    2017-07-01

    We investigate the morphology and crystalline structure of Au/Ge films in a wide range of temperatures by in situ TEM heating. Au/Ge films with Au mass thickness of 0.2-0.3 nm and Ge thickness of 5 nm were produced in vacuum by the sequential deposition of components on a carbon substrate at room temperature. It has been shown that particles with an average size of 4 nm, formed by Au film de-wetting, melt on the germanium substrate at temperatures 110-160 °C, which are below the eutectic temperature for the bulk. The effect of crystallization-induced capillary motion of liquid eutectic particles over Ge surface has been found in this work. Formation of metastable fcc phase of Ge has been observed at the liquid-germanium interface and behind the moving particle. Formation of a liquid phase with its subsequent crystallization at the metal-semiconductor interface seems to play a key role in the metal-induced crystallization effect.

  9. Design principles for functional liquid crystals

    NASA Astrophysics Data System (ADS)

    Bedolla Pantoja, Marco A.

    The work described in this dissertation details how the properties of liquid crystals (LCs) can be utilized for chemical sensing of volatile organic compounds or as templates for the synthesis of polymer nanofibers. Through a series of experiments using thin films of various types of LCs, this work provides a fundamental understanding of the properties of confined LC systems that arise from the anisotropy, elasticity, and surface interactions of LCs. This dissertation is organized into two parts, as detailed below. In the first part of this dissertation, I present a new mechanism for detection of vapors of aromatic volatile organic compounds (VOCs) that exploits the elastic strain stored in thin films of nematic LCs. The discovery of this mechanism was enabled by the design of novel microfabricated structures that stabilize films of LCs with thicknesses from 0.7 - 30 microm. By exposing these LC films to vapors of toluene, a model for aromatic VOCs, I demonstrate that the response of the LC film to toluene depends on the thickness of the LC film and the identity of the supporting substrate. Furthermore, I show that the response to toluene can be increased sevenfold in elastically-strained thin films as compared to bulk LCs. Building further on the concept of elastically strained LCs, I describe the responsiveness of cholesteric and blue phase LCs to toluene. The work demonstrates that internal elastic strain stored within cholesteric LC phases can drive a transition into a so-called blue phase LC when vapors of toluene are introduced. When combined, these results show that engineering of elastic strain in LC materials offers the bases for a general and facile approach to design of stimuli-responsive LC systems. In the second part of this dissertation, I present the discovery of a novel method for the LC-templated synthesis of polymer nanofibers. By performing chemical vapor deposition of reactive polymer precursors into films of LCs, I observed the formation of

  10. Voltage‐Controlled Switching of Strong Light–Matter Interactions using Liquid Crystals

    PubMed Central

    Hertzog, Manuel; Rudquist, Per; Hutchison, James A.; George, Jino; Ebbesen, Thomas W.

    2017-01-01

    Abstract We experimentally demonstrate a fine control over the coupling strength of vibrational light–matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C−Nstr vibration on the liquid crystal molecule is coupled to a cavity mode, and FT‐IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. PMID:29155469

  11. Deposition and characterization of silicon thin-films by aluminum-induced crystallization

    NASA Astrophysics Data System (ADS)

    Ebil, Ozgenc

    Polycrystalline silicon (poly-Si) as a thin-film solar cell material could have major advantages compared to non-silicon thin-film technologies. In theory, thin-film poly-Si may retain the performance and stability of c-Si while taking advantage of established manufacturing techniques. However, poly-Si films deposited onto foreign substrates at low temperatures typically have an average grain size of 10--50 nm. Such a grain structure presents a potential problem for device performance since it introduces an excessive number of grain boundaries which, if left unpassivated, lead to poor solar cell properties. Therefore, for optimum device performance, the grain size of the poly-Si film should be at least comparable to the thickness of the films. For this project, the objectives were the deposition of poly-Si thin-films with 2--5 mum grain size on glass substrates using in-situ and conventional aluminum-induced crystallization (AIC) and the development of a model for AIC process. In-situ AIC experiments were performed using Hot-Wire Chemical Vapor Deposition (HWCVD) both above and below the eutectic temperature (577°C) of Si-Al binary system. Conventional AIC experiments were performed using a-Si layers deposited on aluminum coated glass substrates by Electron-beam deposition, Plasma Enhanced Chemical Vapor Deposition (PECVD) and HWCVD. Continuous poly-Si films with an average grain size of 10 mum on glass substrates were achieved by both in-situ and conventional aluminum-induced crystallization of Si below eutectic temperature. The grain size was determined by three factors; the grain structure of Al layer, the nature of the interfacial oxide, and crystallization temperature. The interface oxide was found to be crucial for AIC process but not necessary for crystallization itself. The characterization of interfacial oxide layer formed on Al films revealed a bilayer structure containing Al2O3 and Al(OH)3 . The effective activation energy for AIC process was determined

  12. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    NASA Astrophysics Data System (ADS)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions

  13. Gradient index liquid crystal devices and method of fabrication thereof

    DOEpatents

    Lee, J.C.; Jacobs, S.

    1991-10-29

    Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

  14. Gradient index liquid crystal devices and method of fabrication thereof

    DOEpatents

    Lee, Jae-Cheul; Jacobs, Stephen

    1991-01-01

    Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

  15. Drop impact on liquid film: dynamics of interfacial gas layer

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao

    2016-11-01

    Drop impacting liquid film is commonly observed in many processes including inkjet printing and thermal sprays. Owing to the resistance from the interfacial gas layer trapped between the drop and film surface, impact may not always result in coalescence; and as such investigating the behavior of the interfacial gas layer is important to understand the transition between bouncing and merging outcomes. The gas layer is, however, not easily optically accessible due to its microscopic scale and curved interfaces. We report the measurement of this critical gas layer thickness between two liquid surfaces using high-speed color interferometry capable of measuring micron and submicron thicknesses. The complete gas layer dynamics for the bouncing cases can be divided into two stages: the approaching stage when the drop squeezes the gas layer at the beginning of the impact, and the rebounding stage when the drop retracts and rebounds from the liquid film. The approaching stage is found to be similar across wide range of conditions studied. However, for the rebounding stage, with increase of liquid film thickness, the evolution of gas layer changes dramatically, displaying a non-monotonic behavior. Such dynamics is analyzed in lights of various competing timescales.

  16. Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.

    PubMed

    He, Meng; Xu, Min; Zhang, Lina

    2013-02-01

    A novel, highly hydrophobic cellulose composite film (RCS) with biodegradability was fabricated via solvent-vaporized controllable crystallization of stearic acid in the porous structure of cellulose films (RC). The interface structure and properties of the composite films were investigated with wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, solid-state (13)C NMR, water uptake, tensile testing, water contact angle, and biodegradation tests. The results indicated that the RCS films exhibited high hydrophobicity (water contact angle achieved to 145°), better mechanical properties in the humid state and lower water uptake ratio than RC. Interestingly, the stearic acid crystallization was induced by the pore wall of the cellulose matrix to form a micronano binary structure, resulting in a rough surface. The rough surface with a hierarchical structure containing micronanospace on the RCS film surface could trap abundant air, leading to the high hydrophobicity. Moreover, the RCS films were flexible, biodegradable, and low-cost, showing potential applications in biodegradable water-proof packaging.

  17. Crystallization Mechanism and Charge Carrier Transport in MAPLE-Deposited Conjugated Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ban Xuan; Strzalka, Joseph; Jiang, Zhang

    Although spin casting and chemical surface reactions are the most common methods used for fabricating functional polymer films onto substrates, they are limited with regard to producing films of certain morphological characteristics on different wetting and nonwetting substrates. The matrix-assisted pulsed laser evaporation (MAPLE) technique offers advantages with regard to producing films of different morphologies on different types of substrates. Here, we provide a quantitative characterization, using X-ray diffraction and optical methods, to elucidate the additive growth mechanism of MAPLE-deposited poly(3-hexylthiophene) (P3HT) films on substrates that have undergone different surface treatments, enabling them to possess different wettabilities. We show thatmore » MAPLE-deposited films are composed of crystalline phases, wherein the overall P3HT aggregate size and crystallite coherence length increase with deposition time. A complete pole figure constructed from X-ray diffraction measurements reveals that in these MAPLE-deposited films, there exist two distinct crystallite populations: (i) highly oriented crystals that grow from the flat dielectric substrate and (ii) misoriented crystals that preferentially grow on top of the existing polymer layers. The growth of the highly oriented crystals is highly sensitive to the chemistry of the substrate, whereas the effect of substrate chemistry on misoriented crystal growth is weaker. The use of a self-assembled monolayer to treat the substrate greatly enhances the population and crystallite coherence length at the buried interfaces, particularly during the early stage of deposition. Furthermore, the evolution of the in-plane carrier mobilities during the course of deposition is consistent with the development of highly oriented crystals at the buried interface, suggesting that this interface plays a key role toward determining carrier transport in organic thin-film transistors.« less

  18. Crystallization Mechanism and Charge Carrier Transport in MAPLE-Deposited Conjugated Polymer Thin Films

    DOE PAGES

    Dong, Ban Xuan; Strzalka, Joseph; Jiang, Zhang; ...

    2017-11-23

    Although spin casting and chemical surface reactions are the most common methods used for fabricating functional polymer films onto substrates, they are limited with regard to producing films of certain morphological characteristics on different wetting and nonwetting substrates. The matrix-assisted pulsed laser evaporation (MAPLE) technique offers advantages with regard to producing films of different morphologies on different types of substrates. Here, we provide a quantitative characterization, using X-ray diffraction and optical methods, to elucidate the additive growth mechanism of MAPLE-deposited poly(3-hexylthiophene) (P3HT) films on substrates that have undergone different surface treatments, enabling them to possess different wettabilities. We show thatmore » MAPLE-deposited films are composed of crystalline phases, wherein the overall P3HT aggregate size and crystallite coherence length increase with deposition time. A complete pole figure constructed from X-ray diffraction measurements reveals that in these MAPLE-deposited films, there exist two distinct crystallite populations: (i) highly oriented crystals that grow from the flat dielectric substrate and (ii) misoriented crystals that preferentially grow on top of the existing polymer layers. The growth of the highly oriented crystals is highly sensitive to the chemistry of the substrate, whereas the effect of substrate chemistry on misoriented crystal growth is weaker. The use of a self-assembled monolayer to treat the substrate greatly enhances the population and crystallite coherence length at the buried interfaces, particularly during the early stage of deposition. Furthermore, the evolution of the in-plane carrier mobilities during the course of deposition is consistent with the development of highly oriented crystals at the buried interface, suggesting that this interface plays a key role toward determining carrier transport in organic thin-film transistors.« less

  19. Defect topologies in chiral liquid crystals confined to mesoscopic channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlotthauer, Sergej, E-mail: s.schlotthauer@mailbox.tu-berlin.de; Skutnik, Robert A.; Stieger, Tillmann

    2015-05-21

    We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system.more » If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.« less

  20. Liquid crystal 'blue phases' with a wide temperature range.

    PubMed

    Coles, Harry J; Pivnenko, Mikhail N

    2005-08-18

    Liquid crystal 'blue phases' are highly fluid self-assembled three-dimensional cubic defect structures that exist over narrow temperature ranges in highly chiral liquid crystals. The characteristic period of these defects is of the order of the wavelength of visible light, and they give rise to vivid specular reflections that are controllable with external fields. Blue phases may be considered as examples of tuneable photonic crystals with many potential applications. The disadvantage of these materials, as predicted theoretically and proved experimentally, is that they have limited thermal stability: they exist over a small temperature range (0.5-2 degrees C) between isotropic and chiral nematic (N*) thermotropic phases, which limits their practical applicability. Here we report a generic family of liquid crystals that demonstrate an unusually broad body-centred cubic phase (BP I*) from 60 degrees C down to 16 degrees C. We prove this with optical texture analysis, selective reflection spectroscopy, Kössel diagrams and differential scanning calorimetry, and show, using a simple polarizer-free electro-optic cell, that the reflected colour is switched reversibly in applied electric fields over a wide colour range in typically 10 ms. We propose that the unusual behaviour of these blue phase materials is due to their dimeric molecular structure and their very high flexoelectric coefficients. This in turn sets out new theoretical challenges and potentially opens up new photonic applications.