Sample records for liquid drop effects

  1. Surfactant Effect on the Average Flow Generation Near Curved Interface

    NASA Astrophysics Data System (ADS)

    Klimenko, Lyudmila; Lyubimov, Dmitry

    2018-02-01

    The present work is devoted to the average flow generation near curved interface with a surfactant adsorbed on the surface layer. The investigation was carried out for a liquid drop embedded in a viscous liquid with a different density. The liquid flows inside and outside the drop are generated by small amplitude and high frequency vibrations. Surfactant exchange between the drop surface and the surrounding liquid is limited by the process of adsorption-desorption. It was assumed that the surfactant is soluble in the surrounding liquid, but not soluble in the liquid drop. Surrounding liquid and the liquid in the drop are considered incompressible. Normal and shear viscous stresses balance at the interface is performed under the condition that the film thickness of the adsorbed surfactant is negligible. The problem is solved under assumption that the shape of the drop in the presence of adsorbed surfactant remains spherical symmetry. The effective boundary conditions for the tangential velocity jump and shear stress jump, describing the above generation have been obtained by matched asymptotic expansions method. The conditions under which the drop surface can be considered as a quasi-solid are determined. It is shown that in the case of the significant effect of surfactant on the surface tension, the dominant mechanism for the generation is the Schlichting mechanisms under vibrations.

  2. Numerical study of effect of the gas-coolant free surface on the droplet fragmentation behavior of coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.X.; Anh, B.V.; Dinh, T.N.

    1999-07-01

    This paper presents results of a numerical investigation on the behavior of melt drops falling in a gas (vapor) space and then penetrating into a liquid volume through the gas-liquid interface. The phenomenon studied here is, usually, observed when a liquid drop falls through air into a water pool and is, specially, of interest when a hypothetical severe reactor core meltdown accident is considered. The objective of this work is to study the effect of the gas-liquid interface on the dynamic evolution of the interaction area between the fragmenting melt drop and water. In the present study, the Navier-Stokes equationsmore » are solved for three phases (gas, liquid and melt-drop) using a higher-order, explicit, numerical method, called Cubic-Interpolated Pseudo-Particle (CIP) method, which is employed in combination with an advanced front-capturing scheme, named the Level Set Algorithm (LSA). By using this method, reasonable physical pictures of droplet deformation and fragmentation during movement in a stationary uniform water pool, and in a gas-liquid two-layer volume, is simulated. Effect of the gas-liquid interface on the drop deformation and fragmentation is analyzed by comparing the simulation results obtained for the two cases. Effects of the drop geometry, and of the flow conditions, on the behavior of the melt drop are also analyzed.« less

  3. Dynamics of Oscillating and Rotating Liquid Drop using Electrostatic Levitator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Awazu, Shigeru; Abe, Yutaka; Watanabe, Tadashi; Nishinari, Katsuhiro; Yoda, Shinichi

    2006-11-01

    In order to understand the nonlinear behavior of liquid drop with oscillatory and/or rotational motions, an experimental study was performed. The electrostatic levitator was employed to achieve liquid drop formation on ground. A liquid drop with about 3 mm in diameter was levitated. The oscillation of mode n=2 along the vertical axis was induced by an external electrostatic force. The oscillatory motions were observed to clarify the nonlinearities of oscillatory behavior. A relationship between amplitude and frequency shift was made clear and the effect of frequency shift on amplitude agreed well with the theory. The frequency shift became larger with increasing the amplitude of oscillation. To confirm the nonlinear effects, we modeled the oscillation by employing the mass-spring-damper system included the nonlinear term. The result indicates that the large-amplitude oscillation includes the effect of nonlinear oscillation. The sound pressure was imposed to rotate the liquid drop along a vertical axis by using a pair of acoustic transducers. The drop transited to the two lobed shape due to centrifugal force when nondimensional angular velocity exceeded to 0.58.

  4. Fluid flow inside and outside an evaporating sessile drop

    NASA Astrophysics Data System (ADS)

    Bouchenna, C.; Aitsaada, M.; Chikh, S.; Tadrist, L.

    2017-11-01

    The sessile drop evaporation is a phenomena which is extensively studied in the literature, but the governing effects are far from being well understood especially those involving movements taking place in both liquid and gas phases. The present work numerically studies the flow within and around an evaporating sessile drop. The flow is induced by the strong mass loss at contact line, the thermo-capillary effect and the buoyancy effect in the surrounding air. The results showed that buoyancy-induced flow in gas phase weakly influences thermo-capillarity-induced flow in the liquid phase. Buoyancy effect can strongly modify the temperature distribution at liquid-gas interface and thus the overall evaporation rate of the drop when the substrate is heated.

  5. Rheological properties, shape oscillations, and coalescence of liquid drops with surfactants

    NASA Technical Reports Server (NTRS)

    Apfel, R. E.; Holt, R. G.

    1990-01-01

    A method was developed to deduce dynamic interfacial properties of liquid drops. The method involves measuring the frequency and damping of free quadrupole oscillations of an acoustically levitated drop. Experimental results from pure liquid-liquid systems agree well with theoretical predictions. Additionally, the effects of surfactants is considered. Extension of these results to a proposed microgravity experiment on the drop physics module (DPM) in USML-1 are discussed. Efforts are also underway to model the time history of the thickness of the fluid layer between two pre-coalescence drops, and to measure the film thickness experimentally. Preliminary results will be reported, along with plans for coalescence experiments proposed for USML-1.

  6. CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor

    NASA Astrophysics Data System (ADS)

    Gelves, R.

    2013-10-01

    In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.

  7. Analysis of Skylab IV fluid mechanic science demonstration

    NASA Technical Reports Server (NTRS)

    Klett, M. G.; Bourgeois, S. V.

    1975-01-01

    Several science demonstrations performed on Skylab III and IV were concerned with the behavior of fluid drops free floating in microgravity. These demonstrations, with large liquid drops, included the oscillation, rotation, impact and coalescence, and air injection into the drops. Rayleigh's analysis of the oscillation of spherical drops of a liquid predicts accurately the effect of size and surface tension on the frequency of vibrated water globules in the Skylab demonstration. However, damping occurred much faster than predicted by Lamb's or Scriven's analyses of the damping time for spherical drops. The impact demonstrations indicated that a minimum velocity is necessary to overcome surface forces and effect a coalescence, but a precise criterion for the coalescence of liquids in low g could not be determined.

  8. ISDAC Microphysics

    DOE Data Explorer

    McFarquhar, Greg

    2011-07-25

    Best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the National Research Council (NRC) of Canada Convair-580 during ISDAC. These files contain phase, liquid and ice crystal size distributions (Nw(D) and Ni(D) respectively), liquid water content (LWC), ice water content (IWC), extinction of liquid drops (bw), extinction of ice crystals (bi), effective radius of water drops (rew) and of ice crystals (rei) and median mass diameter of liquid drops (Dmml) and of ice crystals (Dmmi) at 30 second resolution.

  9. Liquid drops attract or repel by the inverted Cheerios effect.

    PubMed

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  10. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    PubMed

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  11. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  12. Drop impact onto a thin film: Miscibility effect

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Chen, H.; Amirfazli, A.

    2017-09-01

    In this work a systematic experimental study was performed to understand the process of liquid drop impact onto a thin film made of a different liquid from drop. The drop and film liquids can be miscible or immiscible. Three general outcomes of deposition, crown formation without splashing, and splashing, were observed in the advancing phase of the drop impact onto a solid surface covered by either a miscible or an immiscible thin film. However, for a miscible film, a larger Weber number and film thickness are needed for the formation of a crown and splashing comparing with immiscible cases. The advancing phase of drop impact onto a thin immiscible film with a large viscosity is similar to that of drop impact onto a dry surface; for a miscible film viscous film, the behavior is far from that of a dry surface. The behavior of liquid lamella in the receding phase of drop impact onto a thin miscible film is reported for the first time. The results show that immiscibility is not a necessary condition for the existence of a receding phase. The existence of a receding phase is highly dependent on the interfacial tension between the drop and the film. The miscibility can significantly affect the receding morphology as it will cause mixing of the two liquids.

  13. Viscous Effect of Drop Impacting on Liquid Film

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao

    2017-11-01

    Drop impacting a liquid film is commonly observed in many processes including inkjet printing and thermal sprays. The accumulation and growth of the film depend on the outcome of subsequent drop impact on the initially formed film. In our recent study (Tang, et al. Soft Matter 2016), we have proposed a regime diagram based on the Weber number We (ratio of impact inertia and surface tension) and the film thickness, characterizing non-monotonic transitions between the bouncing and merging outcomes and providing scaling analysis for the boundaries for a single liquid (n-tetradecane). Since liquid viscosity fundamentally affects the impact outcome, through its influence on the flow field and dissipation of the kinetic energy, here we extend the study for a number of alkanes and silicone oils, covering a wide range of viscosity, to evaluate its effect on the regime diagram. We will show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and eventually the non-monotonicity disappears. We will model the viscous effects and present a modified scaling. This new scaling attempts to unify all liquids and provides a useful tool to manipulate the outcome of drop impact on liquid film. The work at Princeton University is supported by the Army Research Office and the Xerox Corporation.

  14. Drop Impact on Hairy Surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Hosoi, Anette

    2017-11-01

    Using a combination of experiments and theory, we investigate the effect of a millimeter-scale hairy texture on impact of liquid drops. By varying the speed of the drop at impact and the spacing of the hairs, we observe a variety of behaviors. For dense hairs and low impact velocity, the liquid drop sits on top of the hair, similar to a Cassie-Baxter state. For higher impact velocity, and intermediate to high density of hairs, the drops penetrate through the surface, but the hairs resist their spreading. For low hair density and high impact velocity, the drops impact and splash.

  15. Physical phenomena in containerless glass processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. Shankar; Cole, Robert

    1988-01-01

    Flight experiments are planned on drops containing bubbles. The experiments involve stimulating the drop via non-uniform heating and rotation. The resulting trajectories of the bubbles as well as the shapes of the drops and bubble will be videotaped and analyzed later frame-by-frame on the ground. Supporting ground based experiments are planned in the area of surface tension driven motion of bubbles, the behavior of compound drops settling in an immiscible liquid and the shapes and trajectories of large bubbles and drops in a rotating liquid. Theoretical efforts will be directed at thermocapillary migration of drops and bubbles, surfactant effects on such migration, and the behavior of compound drops.

  16. Cooling and solidification of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. K.; Markworth, A. J.; Collings, E. W.; Brodkey, R. S.

    1992-01-01

    The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and solidification of the drop are described for both gaseous and vacuum atmospheres. A simple model, in which the drop is assumed to fall rectilinearly, with behavior like that of a rigid particle, is developed to describe cooling behavior. Recalescence of supercooled drops is assumed to occur instantaneously when a specified temperature is passed. The effects of solidification and experimental parameters on drop cooling are calculated and discussed. Major results include temperature as a function of time, and of drag, time to complete solidification, and drag as a function of the fraction of the drop solidified.

  17. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  18. Gas-Liquid Packed Bed Reactors in Microgravity

    NASA Technical Reports Server (NTRS)

    Balakotaiah, Vemuri; Motil, Brian J.; McCready, Mark J.; Kamotani, Yasuhiro

    2004-01-01

    Flow regime and pressure drop data was obtained and analyzed. Pulse flow exists at lower liquid flow rates in 0-g compared to 1-g. 1-g flow regime maps do not apply in microgravity. Pressure drop is higher in microgravity (enhanced interfacial effects).

  19. Impact of Beads and Drops on a Repellent Solid Surface: A Unified Description

    NASA Astrophysics Data System (ADS)

    Arora, S.; Fromental, J.-M.; Mora, S.; Phou, Ty; Ramos, L.; Ligoure, C.

    2018-04-01

    We investigate freely expanding sheets formed by ultrasoft gel beads, and liquid and viscoelastic drops, produced by the impact of the bead or drop on a silicon wafer covered with a thin layer of liquid nitrogen that suppresses viscous dissipation thanks to an inverse Leidenfrost effect. Our experiments show a unified behavior for the impact dynamics that holds for solids, liquids, and viscoelastic fluids and that we rationalize by properly taking into account elastocapillary effects. In this framework, the classical impact dynamics of solids and liquids, as far as viscous dissipation is negligible, appears as the asymptotic limits of a universal theoretical description. A novel material-dependent characteristic velocity that includes both capillary and bulk elasticity emerges from this unified description of the physics of impact.

  20. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  1. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  2. Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Simmel, M.; Wurzler, S.

    There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.

  3. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  4. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  5. Looking Under a Leidenfrost Drop

    NASA Astrophysics Data System (ADS)

    Burton, Justin; Sharpe, Aaron; van der Veen, Roeland; Franco, Andres; Nagel, Sidney

    2011-11-01

    The Leidenfrost effect can be observed when small water drops move around effortlessly without sticking on a hot pan. The transition to a levitated state, where the drops rest on an insulating layer of vapor, occurs at the Leidenfrost temperature. Experiment and theory have examined the lifetime and maximum size of Leidenfrost drops. However, the liquid-vapor interface beneath the drop has not been fully charcterized. We report experiments using laser-light interference to measure the geometry of the liquid-vapor interface. By imaging the interference fringes produced between the bottom surface of the liquid and the hot substrate, we can measure the curvature of the vapor pocket beneath the drop as well as the azimuthal undulations along the neck that sits closest to the surface. From these measurements, we can extrapolate the shape of the bottom of the drop, which fluctuates in time with a period of a few milliseconds for millimeter-sized water drops. Our measurements of the azimuthal neck radius agree with predictions: the difference between the drop and neck radii, (Rd -Rn) ~0.53 λ in the limit of large drops where λ is the capillary length of the fluid. For small drops we recover the result found in that Rn ~Rd2 / λ .

  6. Acoustic Levitation and its Applications in the Study of Liquid Surface Rheology.

    NASA Astrophysics Data System (ADS)

    Tian, Yuren

    Due to its non-contact manipulation and requirement of small amounts of test sample, acoustical levitation has been used to investigate the interfacial dynamics of liquids. In this current work, the surface rheology of liquid drops levitated in air has been studied. The surrounding of a gaseous medium simplifies the theoretical analysis and the interpretation of experimental results. For a ground-based experiment, the effect of gravity and the levitation sound field can change a levitated drop into a nonspherical shape. A theory which involves the multiple interactions between the drop and the sound field, the acoustic scattering by a nonspherical object and the limitation of droplet volume variation is developed. The droplet aspect ratio is determined as a function of the sound pressure, frequency (or wavelength) and the surface tension of liquid under both zero and nonzero gravity environments. The dynamics of a liquid drop of surfactant solution is also theoretically analyzed by including the different surfactant transfer processes at the droplet surface. The approximate solutions of the resonance frequency and damping constant of droplet free quadrupole shape oscillation are derived analytically and verified with the exact numerical solutions. The phase relationship between the driving force and the droplet response is established for the case of forced droplet shape oscillation. The surface viscoelasticity of liquid has shown a strong effect on the droplet dynamics. An acoustic levitation apparatus is constructed and used to levitate a liquid drop in air. By gauging the static shape of the drop versus its spatial location, the equilibrium surface tension of the liquid can be determined. The surface elasticity and viscosity are evaluated from the measurements of the resonance frequency, damping constant and phase relationship of the droplet quadrupole shape oscillation. Different kind of liquids are tested. For surfactant solutions, the experimental results illustrate the existence of surface viscoelasticities.

  7. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.

    PubMed

    Chen, Longquan; Bonaccurso, Elmar

    2014-08-01

    In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.

  8. Inverse Leidenfrost effect: self-propelling drops on a bath

    NASA Astrophysics Data System (ADS)

    Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team

    2017-11-01

    When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.

  9. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop organization depend on the initial gas temperature, this being due to the drop/turbulence coupling. The vapor-composition mean molar mass and standard deviation distributions strongly correlate with the initial liquid-composition PDF; such a correlation only exists for the magnitude of the mean but not for that of the standard deviation. Unlike in pre-transitional situations, regions of large composition standard deviation no longer necessarily coincide with regions of large mean molar mass. The kinetic energy, rotational and composition characteristics, and dissipation are liquid specific and the variation among liquids is amplified with increasing free-stream gas temperature. Eulerian and Lagrangian statistics of gas-phase quantities show that the different. Observation framework may affect the perception of the flow characteristics. The gas composition, of which the first four moments are calculated, is shown to be close to, but distinct from a SGPDF. The PDF of the scalar dissipation rate is calculated for drop-laden layers and is shown to depart more significantly from the typically assumed Gaussian in gaseous flows than experimentally measured gaseous scalar dissipation rates, this being attributed to the increased heterogeneity due to drop/flow interactions.

  10. Bouncing-to-Merging Transition in Drop Impact on Liquid Film: Role of Liquid Viscosity.

    PubMed

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K; Sun, Chao

    2018-02-27

    When a drop impacts on a liquid surface, it can either bounce back or merge with the surface. The outcome affects many industrial processes, in which merging is preferred in spray coating to generate a uniform layer and bouncing is desired in internal combustion engines to prevent accumulation of the fuel drop on the wall. Thus, a good understanding of how to control the impact outcome is highly demanded to optimize the performance. For a given liquid, a regime diagram of bouncing and merging outcomes can be mapped in the space of Weber number (ratio of impact inertia and surface tension) versus film thickness. In addition, recognizing that the liquid viscosity is a fundamental fluid property that critically affects the impact outcome through viscous dissipation of the impact momentum, here we investigate liquids with a wide range of viscosity from 0.7 to 100 cSt, to assess its effect on the regime diagram. Results show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and the retraction merging regime disappears when the viscosity is very high. The viscous effects are modeled and subsequently the mathematical relations for the transition boundaries are proposed which agree well with the experiments. The new expressions account for all the liquid properties and impact conditions, thus providing a powerful tool to predict and manipulate the outcome when a drop impacts on a liquid film.

  11. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    NASA Astrophysics Data System (ADS)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  12. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  13. Wetting and drying of liquid on crossed fibers

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Bick, Alison D.; Stone, Howard A.; Complex Fluids Group Team

    2013-11-01

    Fibrous media are common in various engineered systems such as filters, paper or the textile industry. Many of these materials can be described as a network of fibers in which a wetting liquid tends to accumulate at its nodes and changes the bulk properties. Here we study a drop of silicone oil sitting on the simplest element of the array: two rigid crossed fibers. In particular, we investigate experimentally how the structure of the material affects the wetting and drying dynamics of that liquid drop. We first show that the liquid can adopt different shapes from a long liquid column to a drop. The transition between these morphologies depends on the volume of liquid, the tilting angle between the fibers, as well as the fiber radius. The wetting length in the column state can be predicted analytically. Because of these different shapes, the liquid exhibits different drying kinetics, which effects the overall drying time. Our study suggests that shearing a wetted array of fibers, by tuning the liquid morphology, may enhance the drying rate.

  14. The effect of shear and extensional viscosity on atomization in medical inhaler.

    PubMed

    Broniarz-Press, L; Ochowiak, M; Matuszak, M; Włodarczak, S

    2014-07-01

    The paper contains the results of experimental studies of water, aqueous solutions of glycerol and aqueous solutions of glycerol-polyethylene oxide (PEO) atomization process in a medical inhaler obtained by the use of the digital microphotography method. The effect of the shear and extensional viscosity on the drop size, drop size histogram and mean drop diameter has been analyzed. The obtained results have shown that the drop size increases with the increase in shear and extensional viscosity of liquid atomized. Extensional viscosity has a greater impact on the spraying process. It has been shown that the change in liquid viscosity leads to significant changes in drop size distribution. The correlation for Sauter mean diameter as function of the shear and extensional viscosity was proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Drop impact on thin liquid films using TIRM

    NASA Astrophysics Data System (ADS)

    Pack, Min; Ying Sun Team

    2015-11-01

    Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.

  16. Drop splashing: the role of surface wettability and liquid viscosity

    NASA Astrophysics Data System (ADS)

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  17. Wetting and Coalescence of Drops of Self-Healing Agents on Electrospun Nanofiber Mats.

    PubMed

    An, Seongpil; Kim, Yong Il; Lee, Min Wook; Yarin, Alexander L; Yoon, Sam S

    2017-10-10

    Here we study experimentally the behavior of liquid healing agents released in vascular core-shell nanofiber mats used in self-healing engineered materials. It is shown that wettability-driven spreading of liquid drops is accompanied by the imbibition into the nanofiber matrix, and its laws deviate from those known for spreading on an intact surface. We also explore coalescence of the released drops on nanofiber mats, in particular, coalescence of drops of resin monomer and cure important for self-healing. The coalescence process is also affected by the imbibition into the pores of an underlying nanofiber mat. A theoretical model is developed to account for the imbibition effect on drop coalescence.

  18. Oscillations of a sessile droplet in open air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenchenko, A. E., E-mail: korenchenko@physics.susu.ac.ru; Beskachko, V. P.

    2013-11-15

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy ofmore » measurement of the surface tension by sessile drop method.« less

  19. Stability analysis applied to the early stages of viscous drop breakup by a high-speed gas stream

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Longmire, Ellen K.

    2013-11-01

    The instability of a liquid drop suddenly exposed to a high-speed gas stream behind a shock wave is studied by considering the gas-liquid motion at the drop interface. The discontinuous velocity profile given by the uniform, parallel flow of an inviscid, compressible gas over a viscous liquid is considered, and drop acceleration is included. Our analysis considers compressibility effects not only in the base flow, but also in the equations of motion for the perturbations. Recently published high-resolution images of the process of drop breakup by a passing shock have provided experimental evidence supporting the idea that a critical gas dynamic pressure can be found above which drop piercing by the growth of acceleration-driven instabilities gives way to drop breakup by liquid entrainment resulting from the gas shearing action. For a set of experimental runs from the literature, results show that, for shock Mach numbers >= 2, a band of rapidly growing waves forms in the region well upstream of the drop's equator at the location where the base flow passes from subsonic to supersonic, in agreement with experimental images. Also, the maximum growth rate can be used to predict the transition of the breakup mode from Rayleigh-Taylor piercing to shear-induced entrainment. The authors acknowledge support of the NSF (DMS-0908561).

  20. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  1. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  2. Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system

    NASA Astrophysics Data System (ADS)

    James, Mark D.

    The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.

  3. Compensating effect of ultrasonic waves on retarding action of nanoparticles in drops liquid-liquid extraction.

    PubMed

    Saien, Javad; Daneshamoz, Sana

    2018-03-01

    The influence of ultrasonic waves on liquid-liquid extraction of circulating drops and in the presence of magnetite nanoparticles was investigated. Experiments were conducted in a column equipped with an ultrasound transducer. The frequency and intensity of received waves, measured by the hydrophone standard method, were 35.40 kHz and 0.37 mW/cm 2 , respectively. The recommended chemical system of cumene-isobutyric acid-water was used in which mass transfer resistance lies in the aqueous phase. Nanoparticles, within concentration range of (0.0003-0.0030) wt%, were added to the aqueous continuous phase. The presence of nanoparticles and ultrasonic waves provided no sensible change in drop size (within 2.49-4.17 mm) and measured terminal velocities were close to Grace model. However, presence of nanoparticles, caused mass transfer to decrease. This undesired effect was significantly diminished by using ultrasonic waves so that mass transfer coefficient increased from (73.0-178.2) to (130.2-240.2) µm/s, providing a 55.6% average enhancement. It is presumably due to disturbing the accumulated nanoparticles around the drops. The current innovative study highlights the fact that using ultrasonic waves is an interesting way to improve liquid-liquid extraction in the presence and absence of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Drop coalescence and liquid flow in a single Plateau border

    NASA Astrophysics Data System (ADS)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014), 10.1103/PhysRevLett.112.218303] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed.

  5. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a sampling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less effected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  6. A comparative flow visualization study of thermocapillary flow in drops in liquid-liquid systems

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rashidnia, N.

    1991-01-01

    Experiments are performed to visualize thermocapillary flow in drops in an immiscible host liquid. The host liquid used is silicone oil. Drops of three different liquids are used, viz, vegetable oil, water-methanol mixture anad pure methanol. Clear evidence of thermocapillary flow is seen in vegetable oil drops. For a mixture of water and methanol (approximately 50-50 by weight), natural convection is seen to dominate the flow outside the drop. Pure methanol drops exhibit thermocapillary flow, but dissolve in silicone oil. A small amount of water added to pure methanol significantly reduces the dissolution. Flow oscillations occur in this system for both isothermal and non-isothermal conditions.

  7. The behavior of a liquid drop levitated and drastically flattened by an intense sound field

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Anilkumar, A. V.; Wang, Taylor G.

    1992-01-01

    The deformation and break-up are studied of a liquid drop in levitation through the radiation pressure. Using high-speed photography ripples are observed on the central membrane of the drop, atomization of the membrane by emission of satellite drops from its unstable ripples, and shattering of the drop after upward buckling like an umbrella, or after horizontal expansion like a sheet. These effects are captured on video. The ripples are theorized to be capillary waves generated by the Faraday instability excited by the sound vibration. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. The vibration leads to a destabilizing Bernoulli correction in the static pressure. Buckling occurs when an existent equilibrium is unstable to a radial (i.e., tangential) motion of the membrane because of the Bernoulli effect. Besides, the radiation stress at the rim of the drop is a suction stress which can make equilibrium impossible, leading to the horizontal expansion and the subsequent break-up.

  8. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics

    NASA Astrophysics Data System (ADS)

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported.

  9. Active structuring of colloidal armour on liquid drops

    NASA Astrophysics Data System (ADS)

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-06-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.

  10. Active structuring of colloidal armour on liquid drops.

    PubMed

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal 'ribbons', electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of 'pupil'-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for 'smart armoured' droplets.

  11. Water tribology on graphene.

    PubMed

    N'guessan, Hartmann E; Leh, Aisha; Cox, Paris; Bahadur, Prashant; Tadmor, Rafael; Patra, Prabir; Vajtai, Robert; Ajayan, Pulickel M; Wasnik, Priyanka

    2012-01-01

    Classical experiments show that the force required to slide liquid drops on surfaces increases with the resting time of the drop, t(rest), and reaches a plateau typically after several minutes. Here we use the centrifugal adhesion balance to show that the lateral force required to slide a water drop on a graphene surface is practically invariant with t(rest). In addition, the drop's three-phase contact line adopts a peculiar micrometric serrated form. These observations agree well with current theories that relate the time effect to deformation and molecular re-orientation of the substrate surface. Such molecular re-orientation is non-existent on graphene, which is chemically homogenous. Hence, graphene appears to provide a unique tribological surface test bed for a variety of liquid drop-surface interactions.

  12. Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate.

    PubMed

    Pham, Jonathan T; Paven, Maxime; Wooh, Sanghyuk; Kajiya, Tadashi; Butt, Hans-Jürgen; Vollmer, Doris

    2017-10-13

    The contact between liquid drops and hot solid surfaces is of practical importance for industrial processes, such as thermal spraying and spray cooling. The contact and bouncing of solid spheres is also an important event encountered in ball milling, powder processing, and everyday activities, such as ball sports. Using high speed video microscopy, we demonstrate that hydrogel drops, initially at rest on a surface, spontaneously jump upon rapid heating and continue to bounce with increasing amplitudes. Jumping is governed by the surface wettability, surface temperature, hydrogel elasticity, and adhesion. A combination of low-adhesion impact behavior and fast water vapor formation supports continuous bouncing and trampolining. Our results illustrate how the interplay between solid and liquid characteristics of hydrogels results in intriguing dynamics, as reflected by spontaneous jumping, bouncing, trampolining, and extremely short contact times.Drops of liquid on a hot surface can exhibit fascinating behaviour such as the Leidenfrost effect in which drops hover on a vapour layer. Here Pham et al. show that when hydrogel drops are placed on a rapidly heated plate they bounce to increasing heights even if they were initially at rest.

  13. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    NASA Technical Reports Server (NTRS)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  14. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-02

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  15. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  16. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    PubMed Central

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  17. Viscosity Measurement of Highly Viscous Liquids Using Drop Coalescence in Low Gravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    The method of drop coalescence is being investigated for use as a method for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in this case to minimize the undesirable effects of body forces and liquid motion in levitated drops. Also, the low gravity environment will allow for investigating large liquid volumes which can lead to much higher accuracy for the viscosity calculations than possible under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. In the analytical aspect of the method two liquid volumes are brought into contact which will coalesce under the action of surface tension alone. The free surface geometry development as well as its velocity during coalescence which are obtained from numerical computations are compared with an analogous experimental model. The viscosity in the numerical computations is then adjusted to bring into agreement of the experimental results with the calculations. The true liquid viscosity is the one which brings the experiment closest to the calculations. Results are presented for method validation experiments performed recently on board the NASA/KC-135 aircraft. The numerical solution for this validation case was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, in this case glycerine at room temperature, was determined to high degree of accuracy using the liquid coalescence method. These experiments gave very encouraging results which will be discussed together with plans for implementing the method in a shuttle flight experiment.

  18. A new approach to stability and oscillations of constrained drops and capillary bridges

    NASA Astrophysics Data System (ADS)

    Fabre, David; Chireux, Veronique; Risso, Frederic; Tordjeman, Philippe

    2014-11-01

    Static equilibria of liquid inclusions under the effect of gravity and capillarity is a large class of situations which encompasses drops hanging from a ceiling or from a capillary, sessile drops, liquid bridges, etc... In such equilibria the surface shape is governed by the Yong-Laplace equation, which is usually solved in a local way using a ``shooting'' method. We introduce a new method which solves the Laplace-Young in a global way, using an iterative deformation of the shape towards the equilibrium shape. The method is easy to implement and versatile, and allows to prescribe constraints such as the volume of liquid, the angle of attachment, etc... We subsequently consider the issue of stability and oscillations of such configurations. Using finite elements and considering small-amplitude displacements of the surface with respect to the static configuration previously computed, we introduce a global stability approach which allows to predict the stability limits, the oscillation frequencies and the eigenmode shapes for quite general geometries. The approach will be illustrated and compared with experiments in two situations, namely a drop attached to a capilary and a liquid bridge resulting from the coalescence of two facing millimetric drops.

  19. Modeling of Turbulence Effect on Liquid Jet Atomization

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.

    2007-01-01

    Recent studies indicate that turbulence behaviors within a liquid jet have considerable effect on the atomization process. Such turbulent flow phenomena are encountered in most practical applications of common liquid spray devices. This research aims to model the effects of turbulence occurring inside a cylindrical liquid jet to its atomization process. The two widely used atomization models Kelvin-Helmholtz (KH) instability of Reitz and the Taylor analogy breakup (TAB) of O'Rourke and Amsden portraying primary liquid jet disintegration and secondary droplet breakup, respectively, are examined. Additional terms are formulated and appropriately implemented into these two models to account for the turbulence effect. Results for the flow conditions examined in this study indicate that the turbulence terms are significant in comparison with other terms in the models. In the primary breakup regime, the turbulent liquid jet tends to break up into large drops while its intact core is slightly shorter than those without turbulence. In contrast, the secondary droplet breakup with the inside liquid turbulence consideration produces smaller drops. Computational results indicate that the proposed models provide predictions that agree reasonably well with available measured data.

  20. Cryogenic spray vaporization in high-velocity helium, argon and nitrogen gasflows

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1993-01-01

    Effects of gas properties on cryogenic liquid-jet atomization in high-velocity helium, nitrogen, and argon gas flows were investigated. Volume median diameter, D(sub v.5e), data were obtained with a scattered-light scanning instrument. By calculating the change in spray drop size, -Delta D(sub v.5)(exp 2), due to droplet vaporization, it was possible to calculate D(sub v.5C). D(sub v.5C) is the unvaporized characteristic drop size formed at the fuel-nozzle orifice. This drop size was normalized with respect to liquid-jet diameter, D(sub O). It was then correlated with several dimensionless groups to give an expression for the volume median diameter of cryogenic LN2 sprays. This expression correlates drop size D(sub v.5c) with aerodynamic and liquid-surface forces so that it can be readily determined in the design of multiphase-flow propellant injectors for rocket combustors.

  1. Coalescence of a Drop inside another Drop

    NASA Astrophysics Data System (ADS)

    Mugundhan, Vivek; Jian, Zhen; Yang, Fan; Li, Erqiang; Thoroddsen, Sigurdur

    2016-11-01

    Coalescence dynamics of a pendent drop sitting inside another drop, has been studied experimentally and in numerical simulations. Using an in-house fabricated composite micro-nozzle, a smaller salt-water drop is introduced inside a larger oil drop which is pendent in a tank containing the same liquid as the inner drop. On touching the surface of outer drop, the inner drop coalesces with the surrounding liquid forming a vortex ring, which grows in time to form a mushroom-like structure. The initial dynamics at the first bridge opening up is quantified using Particle Image Velocimetry (PIV), while matching the refractive index of the two liquids. The phenomenon is also numerically simulated using the open-source code Gerris. The problem is fully governed by two non-dimensional parameters: the Ohnesorge number and the diameter ratios of the two drops. The validated numerical model is used to better understand the dynamics of the phenomenon. In some cases a coalescence cascade is observed with liquid draining intermittently and the inner drop reducing in size.

  2. Evaporation of pure liquid sessile and spherical suspended drops: a review.

    PubMed

    Erbil, H Yildirim

    2012-01-15

    A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Active structuring of colloidal armour on liquid drops

    PubMed Central

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716

  4. Drop dynamics in space and interference with acoustic field (M-15)

    NASA Technical Reports Server (NTRS)

    Yamanaka, Tatsuo

    1993-01-01

    The objective of the experiment is to study contactless positioning of liquid drops, excitation of capillary waves on the surface of acoustically levitated liquid drops, and deformation of liquid drops by means of acoustic radiation pressure. Contactless positioning technologies are very important in space materials processing because the melt is processed without contacting the wall of a crucible which can easily contaminate the melt specifically for high melting temperatures and chemically reactive materials. Among the contactless positioning technologies, an acoustic technology is especially important for materials unsusceptible to electromagnetic fields such as glasses and ceramics. The shape of a levitated liquid drop in the weightless condition is determined by its surface tension and the internal and external pressure distribution. If the surface temperature is constant and there exist neither internal nor external pressure perturbations, the levitated liquid drop forms a shape of perfect sphere. If temperature gradients on the surface and internal or external pressure perturbations exist, the liquid drop forms various modes of shapes with proper vibrations. A rotating liquid drop was specifically studied not only as a classical problem of theoretical mechanics to describe the shapes of the planets of the solar system, as well as their arrangement, but it is also more a contemporary problem of modern non-linear mechanics. In the experiment, we are expecting to observe various shapes of a liquid drop such as cocoon, tri-lobed, tetropod, multi-lobed, and doughnut.

  5. Effects of Swirler Shape on Two-Phase Swirling Flow in a Steam Separator

    NASA Astrophysics Data System (ADS)

    Kataoka, Hironobu; Shinkai, Yusuke; Tomiyama, Akio

    Experiments on two-phase swirling flow in a separator are carried out using several swirlers having different vane angles, different hub diameters and different number of vanes to seek a way for improving steam separators of uprated boiling water reactors. Ratios of the separated liquid flow rate to the total liquid flow rate, flow patterns, liquid film thicknesses and pressure drops are measured to examine the effects of swirler shape on air-water two-phase swirling annular flows in a one-fifth scale model of the separator. As a result, the following conclusions are obtained for the tested swirlers: (1) swirler shape scarcely affects the pressure drop in the barrel of the separator, (2) decreasing the vane angle is an effective way for reducing the pressure drop in the diffuser of the separator, and (3) the film thickness at the inlet of the pick-off-ring of the separator is not sensitive to swirler shape, which explains the reason why the separator performance does not depend on swirler shape.

  6. Analysis of the reflection of a micro drop fiber sensor

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Liu, Qiang; Zhao, Lei; Li, Yingjuan; Yuan, Libo

    2005-01-01

    Micro drop fiber sensors are effective tools for measuring characters of liquids. These types of sensors are wildly used in biotechnology, beverage and food markets. For a fiber micro drop sensor, the signal of the output light is wavy with two peaks, normally. Carefully analyzing the wavy process can identify the liquid components. Understanding the reason of forming this wavy signal is important to design a suitable sensing head and to choose a suitable signal-processing method. The dripping process of a type of liquids is relative to the characters of the liquid and the shape of the sensing head. The quasi-Gauss model of the light field from the input-fiber end is used to analyse the distribution of the light field in the liquid drop. In addition, considering the characters of the liquid to be measured, the dripping process of the optical signal from the output-fiber end can be expected. The reflection surface of the micro drop varies as serials of spheres with different radiuses and global centers. The intensity of the reflection light changes with the shape of the surface. The varying process of the intensity relates to the tense, refractive index, transmission et al. To support the analyse above, an experimental system is established. In the system, LED is chosen as the light source and the PIN transform the light signal to the electrical signal, which is collected by a data acquisition card. An on-line testing system is made to check the theory discussed above.

  7. Directional motion of impacting drops on dual-textured surfaces.

    PubMed

    Vaikuntanathan, V; Sivakumar, D

    2012-09-01

    In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.

  8. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  9. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop-size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a smapling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less affected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  10. Parametric effects on pinch-off modes in liquid/liquid jet systems

    NASA Astrophysics Data System (ADS)

    Milosevic, Ilija N.

    Many industries rely on liquid/liquid extraction systems, where jet pinch off occurs on a regular basis. Inherent short time and length scales make analytical and numerical simulation of the process very challenging. A main objective of this work was to document the details of various pinch-off modes at different length scales using Laser Induced Fluorescence and Particle Image Velocimetry. A water glycerine mixture was injected into ambient either silicone oil or 1-octanol. The resultant viscosity ratios, inner to outer fluid, were 1.6 and 2.8, respectively. Ohnesorge numbers were 0.013 for ambient silicone oil and 0.08 for ambient 1-octanol. Reynolds and Strouhal numbers ranged from 30 to 100 and 0.5 to 3.5, respectively. Decreasing the Strouhal number increased the number of drops formed per forcing. Increasing the Reynolds number suppressed satellite formation, and in some cases the number of drops decreased from two to one per cycle. Increasing the Ohnesorge number to 0.08 suppressed the pinch off yielding a longer jet with three-dimensional threads. At Ohnesorge number 0.013, increasing the forcing amplitude shortened the jet, and eventually led to a dripping mode. High-resolution measurements of pinch-off angles were compared to results from similarity theory. Two modes were investigated: drops breaking from the jet (jet/drop) and, one drop splitting into two (splitting drop). The jet/drop mode angle measurements agreed with similarity predictions. The splitting drop mode converged towards smaller angles. Scaling analysis showed that a Stokesian similarity regime applied for a neck radius of 6 microns or less. The smallest radius observed in experiments was 15 microns. Therefore, it is not known whether splitting drop mode might still converge to same behavior.

  11. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    PubMed Central

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume. PMID:23758982

  12. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates

    NASA Astrophysics Data System (ADS)

    Afferrante, L.; Carbone, G.

    2018-01-01

    In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid-solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid-solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie-Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.

  13. Spreading dynamics of superposed liquid drops on a spinning disk

    NASA Astrophysics Data System (ADS)

    Sahoo, Subhadarshinee; Orpe, Ashish V.; Doshi, Pankaj

    2018-01-01

    We have experimentally studied simultaneous spreading of superposed drops of two Newtonian liquids on top of a horizontal spinning disk using the flow visualization technique. An inner drop of high surface tension liquid is placed centrally on the disk followed by a drop of outer liquid (lower surface tension) placed exactly above that. The disk is then rotated at a desired speed for a range of volume ratios of two liquids. Such an arrangement of two superposed liquid drops does not affect the spreading behavior of the outer liquid but influences that of the inner liquid significantly. The drop spreads to a larger extent and breaks into more fingers (Nf) as compared to the case where the same liquid is spreading in the absence of outer liquid. The experimentally observed number of fingers is compared with the prediction using available theory for single liquid. It is found that the theory over-predicts the value of Nf for the inner liquid while it is covered by an outer liquid. We provide a theoretical justification for this observation using linear stability analysis. Our analysis demonstrates that for small but finite surface tension ratio of the two liquids, the presence of the outer interface reduces the value of the most unstable wave number which is equivalent to the decrease in the number of fingers observed experimentally. Finally, sustained rotation of the disk leads to the formation of droplets at the tip of the fingers traveling outwards.

  14. Automation of liquid-liquid extraction-spectrophotometry using prolonged pseudo-liquid drops and handheld CCD for speciation of Cr(VI) and Cr(III) in water samples.

    PubMed

    Chen, Wen; Zhong, Guanping; Zhou, Zaide; Wu, Peng; Hou, Xiandeng

    2005-10-01

    A simple spectrophotometric system, based on a prolonged pseudo-liquid drop device as an optical cell and a handheld charge coupled device (CCD) as a detector, was constructed for automatic liquid-liquid extraction and spectrophotometric speciation of trace Cr(VI) and Cr(III) in water samples. A tungsten halogen lamp was used as the light source, and a laboratory-constructed T-tube with two open ends was used to form the prolonged pseudo-liquid drop inside the tube. In the medium of perchloric acid solution, Cr(VI) reacted with 1,5-diphenylcarbazide (DPC); the formed complex was automatically extracted into n-pentanol, with a preconcentration ratio of about 5. The organic phase with extracted chromium complex was then pumped through the optical cell for absorbance measurement at 548 nm. Under optimal conditions, the calibration curve was linear in the range of 7.5 - 350 microg L(-1), with a correlation coefficient of 0.9993. The limit of detection (3sigma) was 7.5 microg L(-1). That Cr(III) species cannot react with DPC, but can be oxidized to Cr(VI) prior to determination, is the basis of the speciation analysis. The proposed speciation analysis was sensitive, yet simple, labor-effective, and cost-effective. It has been preliminarily applied for the speciation of Cr(VI) and Cr(III) in spiked river and tap water samples. It can also be used for other automatic liquid-liquid extraction-spectrophotometric determinations.

  15. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, Lawrence L.; Bae, Jae-Heum

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  16. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  17. Deformation and breakup of liquid-liquid threads, jets, and drops

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj

    The formation and breakup of two-fluid jets and drops find application in various industrially important processes like microencapsulation, inkjet printing, dispersion and emulsion formation, micro fluidics. Two important aspects of these problems are studied in this thesis. The first regards the study of the dynamics of a two-fluid jet issuing out of a concentric nozzle and breaking into multiple liquid drops. The second aspect concerns the study of the dynamics of liquid-liquid interface rupture. Highly robust and accurate numerical algorithms based on the Galerkin finite element method (G/FEM) and elliptic mesh generation technique are developed. The most important results of this research are the prediction of compound drop formation and volume partitioning between primary drop and satellite drops, which are of critical importance for microencapsulation technology. Another equally important result is computational and experimental demonstration of a self-similar behavior for the rupture of liquid-liquid interface. The final focus is the study of the pinch-off dynamics of generalized-Newtonian fluids with deformation-rate-dependent rheology using asymptotic analysis and numerical computation. A significant result is the first ever prediction of self-similar pinch-off of liquid threads of generalized Newtonian fluids.

  18. A theoretical and experimental study of turbulent nonevaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent nonevaporating sprays injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogenous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well with no modifications in the prescription of eddy properties from its original calibration. Some effects of drops on turbulence properties were observed near the dense regions of the sprays.

  19. Hydrodynamic and aerodynamic breakup of liquid sheets

    NASA Technical Reports Server (NTRS)

    Ingebo, R.

    1982-01-01

    The effect of hydrodynamic, aerodynamic and liquid surface forces on the mean drop diameter of water sprays that are produced by the breakup of nonswirling and swirling water sheets in quiescent air and in airflows similar to those encountered in gas turbine combustors is investigated. The mean drop diameter is used to characterize fuel sprays and it is a very important factor in determining the performance and exhaust emissions of gas turbine combustors.

  20. Normal Forces at Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Das, Ratul

    Adhesion can be defined as the tendency of dissimilar particles or surfaces to cling on to one another. Fields that require knowledge about adhesion interactions at the solid-liquid interface span over a wide spectrum from biotechnological issues such as liquid adhesion to skin tissues, insect feet adhesion to solids, or contact lenses to tear fluid adhesion; filtration issues such as membrane fouling and membrane affinity to different liquids; oil and gas extraction where one needs knowledge of the adhesion of the oil and brine to the rock; fuel cells in which droplets are formed on the electrodes and need to be considered in the system's design; classic chemical engineering industry such as drop adhesion to the mist eliminators in flash drums, or to heat exchangers; and classic surface science such as nano-structured surfaces, self cleaning surfaces, and general wetting phenomena. We execute the Young-Dupre (Y-P) gedanken experiment to establish unique values of work of adhesion rather than a work of adhesion range that the contact angle hysteresis results in. We use the Centrifugal Adhesion Balance (CAB) which allows independent manipulation of normal and lateral forces to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. The values obtained for the work of adhesion are independent of drop size and are in agreement with the Y-P estimate. Cyclically varying the normal force, just to prevent the drop flying away from the surface will also enable us to study the Contact Angle Hysteresis for a pendant drop. With this set up, the work of adhesion is not only calculated from experimental normal force measurements, but the found results are also used to provide a venue for calculating the Young equilibrium contact angle, theta0. According to Shanahan and de Gennes, a liquid drop with a non-zero contact angle is associated with a deformation of the solid surface at the three phase contact line, causing the triple line to protrude up and form a rim, this is due to the unsatisfied normal component of the surface tension. Such rims were demonstrated by Care et al, and by Extrand, and the stresses associated with the rims facilitate reorientation of solid molecules at the interface, and therefore result in stronger solid liquid interaction at the rim. This stronger interaction gives rise to retention forces (due to adhesion). Recently, Xu et al, wrote a force equation based on this understanding, we test the validity of this approach and the Furmidge - Dussan model and other, more empirical, retention force approaches. A liquid drop that partially wets a solid surface will slide along the plane when a force beyond a critical value is applied to it. We study the sliding pattern of such a drop. Experiments for identifying the pattern of motion of liquid drops under influence of different normal forces are performed. We use a centrifugal adhesion balance (CAB) to study the pattern of drop motion under different effective gravities. A drop on a solid surface only slides after a certain critical force is applied to it, which is dependent on the drop volume, surface heterogeneities and other factors, even after the application of force the drop doesn't continue to move uniformly, which is the subject matter of this discussion.

  1. Impact of a drop onto a wetted wall: description of crown formation and propagation

    NASA Astrophysics Data System (ADS)

    Roisman, I. V.; Tropea, C.

    2002-12-01

    The impact of a drop onto a liquid film with a relatively high impact velocity, leading to the formation of a crown-like ejection, is studied theoretically. The motion of a kinematic discontinuity in the liquid film on the wall due to the drop impact, the formation of the upward jet at this kinematic discontinuity and its elevation are analysed. Four main regions of the drop and film are considered: the perturbed liquid film on the wall inside the crown, the unperturbed liquid film on the wall outside the crown, the upward jet forming a crown, and the free rim bounding this jet. The theory of Yarin & Weiss (1995) for the propagation of the kinematic discontinuity is generalized here for the case of arbitrary velocity vectors in the inner and outer liquid films on the wall. Next, the mass, momentum balance and Bernoulli equations at the base of the crown are considered in order to obtain the velocity and the thickness of the jet on the wall. Furthermore, the dynamic equations of motion of the crown are developed in the Lagrangian form. An analytical solution for the crown shape is obtained in the asymptotic case of such high impact velocities that the surface tension and the viscosity effects can be neglected in comparison to inertial effects. The edge of the crown is described by the motion of a rim, formed due to the surface tension.

  2. Instant freezing of impacting wax drops

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel

    2015-11-01

    We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.

  3. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, L.L.; Bae, J.H.

    1991-12-24

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.

  4. Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    1993-02-01

    The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.

  5. Analytical and experimental investigation of liquid double drop dynamics: Preliminary design for space shuttle experiments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.

  6. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  7. Water drop dynamics on a granular layer

    NASA Astrophysics Data System (ADS)

    Llorens, Coraline; Biance, Anne-Laure; Ybert, Christophe; Pirat, Christophe; Liquids; Interfaces Team

    2015-11-01

    Liquid drop impacts, either on a solid surface or a liquid bath, have been studied for a while and are still subject of intense research. Less is known concerning impacts on granular layers that are shown to exhibit an intermediate situation between solid and liquid. In this study, we focus on water drop impacts on granular matter made of micrometer-sized spherical glass beads. In particular, we investigate the overall dynamics arising from the interplay between liquid and grains throughout the impact. Depending on the relevant parameters (impact velocity, drop and grain sizes, as well as their wetting properties), various behaviors are evidenced. In particular, the behavior of the beads at the liquid-gas interface (ball-bearing vs imbibition) is shown to greatly affect the spreading dynamics of the drop, as well as satellite droplets formation, beads ejection, and the final crater morphology.

  8. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  9. Elasto-capillary interactions of drops and particles

    NASA Astrophysics Data System (ADS)

    Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno

    2017-11-01

    The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.

  10. Flow visualization and characterization of evaporating liquid drops

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    An optical system, consisting of drop-reflection image, reflection-refracted shadowgraphy and top-view photography, is used to measure the spreading and instant dynamic contact angle of a volatile-liquid drop on a non-transparent substrate. The drop-reflection image and the shadowgraphy is shown by projecting the images of a collimated laser beam partially reflected by the drop and partially passing through the drop onto a screen while the top view photograph is separately viewed by use of a camera video recorder and monitor. For a transparent liquid on a reflective solid surface, thermocapillary convection in the drop, induced by evaporation, can be viewed nonintrusively, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this technique clearly reveal that evaporation and thermocapillary convection greatly affect the spreading process and the characteristics of dynamic contact angle of the drop.

  11. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil

    1995-01-01

    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  12. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    NASA Astrophysics Data System (ADS)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  13. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  14. Effect of Eccentricity in Compound Droplets Subject to a Simple Shear Flow

    NASA Astrophysics Data System (ADS)

    Kim, Sangkyu; Dabiri, Sadegh

    2016-11-01

    A double emulsion, or a compound droplet, is a system where two liquids are separated by an immiscible third liquid, thereby forming an emulsion inside an emulsion. Compound drops benefit from this separation in applications such food sciences, microfluidics, pharmaceutical engineering, and polymer sciences. While the subjects of double emulsion preparations, deformations, and breakup mechanisms are well-explored, the time-evolution of non-concentric compound drops has received far less analytical or computational scrutiny. In this work, we present computational results using finite volume method with front-tracking approach for initially spherical and non-concentric compound drops in a shear flow. Our findings for low Reynolds number flows show that: 1. The surrounding shear flow to the outer drop induces a rotational velocity field inside it, causing the inner drop to tumble with the flow, 2. the tumbling motion persists in time, and acts to increase the eccentricity of the compound drop, and 3. the hemisection-plane to the outer drop that is aligned with the plane of the simple shear defines an unstable equilibrium for inner drop's center, and the inner drop continuously drifts away from that plane. This work suggests a means of favorably configuring compound drops suitable for breakups, and helps to understand their migration in channel flows.

  15. Bouncing dynamics of liquid drops impact on ridge structure: an effective approach to reduce the contact time.

    PubMed

    Li, Tao; Zhang, Lishu; Wang, Zhichao; Duan, Yunrui; Li, Jie; Wang, Junjun; Li, Hui

    2018-06-20

    Surfaces designed so that liquid metals do not stick to them but instead rebound as soon as possible have received considerable attention due to their significant importance in many practical technologies. We herein design a ridge structure that can induce the drop to rapidly rebound through the combination effect of centre-drawing recoil and the resulting faster retraction velocity. The suitable sharp-angle of the ridge for minimizing the contact time is determined as 20-30°. Further analysis reveals that multi-ridge structure or two-ridge structure with gaps can reduce more contact time. We also highlight the role the impact velocity played in minimizing the contact time, which has been a neglected parameter previously. Our studies would open up a new way to reduce the contact time and control the bouncing dynamics of metal drops, which provides guidance for some potential applications, such as preventing splashing molten drops from depositing on clean surface.

  16. Aerosol partitioning in natural mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.

    2004-03-01

    In situ aerosol and cloud drop microphysical measurements at a high-alpine site are used to investigate aerosol partitioning between cloud and interstitial phases in natural, mid-latitude, mixed-phase clouds. Measurements indicate a decrease in the activated aerosol fraction (FN) for particle diameters dP > 100 nm with cloud temperature from FN ~ 0.54 in summer liquid-phase clouds to FN ~ 0.08 in winter mixed-phase clouds. The latter may be attributed to the Bergeron-Findeisen mechanism whereby ice crystals grow at the expense of liquid water drops, releasing formerly activated aerosols back into the interstitial phase. This provides a means to distinguish the indirect effects of aerosols on drops and ice crystals.

  17. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  18. Star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  19. Convergent-Filament Nonmechanical Pump

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1989-01-01

    Simple device induces small flow of liquid without help of moving parts, in presence or absence of gravity. Drops of liquid move on filaments from wide end of cone to narrow end. Gradually blend with drops on adjacent filaments to form large drops with menisci. Important use expected to be returning liquid condensate in heat pipes, and collection of samples from clouds or fog.

  20. A comparative study on the breakup of Newtonian and viscoelastic liquid films

    NASA Astrophysics Data System (ADS)

    Qian, Lijuan; Song, Shaobo; Jiang, Lisha; Li, Xiaolu; Lin, Jianzhong

    2018-05-01

    The breakup of viscoelastic liquid films are investigated experimentally and analytically. The breakup phenomena of viscoelastic liquid film are recorded by the time resolved high speed camera. Video images reveal the difference behavior of liquid bubble breakup for Newtonian and viscoelastic liquid. For the Newtonian liquid, cylindrical ligaments are stretched into droplets with large distributions of drop size. For the viscoelastic liquid, the pinch-off point is located on the liquid connections to the nozzle and finally the main part of the ligament no longer elongates. Furthermore, a dispersion relation based on the stability analysis is involved to predict the ligament length and drop mean size after breakup for liquid film. The calculated ligament length is validated by the measured drop mean size at higher air-to-liquid mass flow ratio.

  1. Afterlife of a Drop Impacting a Liquid Pool

    NASA Astrophysics Data System (ADS)

    Saha, Abhishek; Wei, Yanju; Tang, Xiaoyu; Law, Chung K.

    2017-11-01

    Drop impact on liquid pool is ubiquitous in industrial processes, such as inkjet printing and spray coating. While merging of drop with the impacted liquid surface is essential to facilitate the printing and coating processes, it is the afterlife of this merged drop and associated mixing which control the quality of the printed or coated surface. In this talk we will report an experimental study on the structural evolution of the merged droplet inside the liquid pool. First, we will analyze the depth of the crater created on the pool surface by the impacted drop for a range of impact inertia, and we will derive a scaling relation and the associated characteristic time-scale. Next, we will focus on the toroidal vortex formed by the moving drop inside the liquid pool and assess the characteristic time and length scales of the penetration process. The geometry of the vortex structure which qualitatively indicates the degree of mixedness will also be discussed. Finally, we will present the results from experiments with various viscosities to demonstrate the role of viscous dissipation on the geometry and structure formed by the drop. This work is supported by the Army Research Office and the Xerox Corporation.

  2. Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad

    2017-01-25

    A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry

    NASA Astrophysics Data System (ADS)

    Calvimontes, Alfredo

    2018-05-01

    A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of "switching off" gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young's equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young`s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.

  4. Method and means for producing solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1976-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  5. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  6. Shaping liquid drops by vibration

    NASA Astrophysics Data System (ADS)

    Pototsky, Andrey; Bestehorn, Michael

    2018-02-01

    We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in the horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragment into smaller drops.

  7. Analysis of the free-fall behavior of liquid-metal drops in a gaseous atmosphere

    NASA Technical Reports Server (NTRS)

    Mccoy, J. Kevin; Markworth, Alan J.; Collings, E. W.; Brodkey, Robert S.

    1987-01-01

    The free-fall of a liquid-metal drop and heat transfer from the drop to its environment are described for both a gaseous atmosphere and vacuum. A simple model, in which the drop is assumed to fall rectilinearly with behavior like that of a rigid particle, is developed first, then possible causes of deviation from this behavior are discussed. The model is applied to describe solidification of drops in a drop tube. Possible future developments of the model are suggested.

  8. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  9. Viscosity Measurement via Drop Coalescence: A Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Antar, Basil; Ethridge, Edwin C.

    2010-01-01

    The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.

  10. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes

    PubMed Central

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2015-01-01

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes. PMID:25548187

  11. Corner wetting during the vapor-liquid-solid growth of faceted nanowires

    NASA Astrophysics Data System (ADS)

    Spencer, Brian; Davis, Stephen

    2016-11-01

    We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.

  12. Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.; Balasubramanyam, M. S.

    2005-01-01

    This paper describes numerical implementation of a newly developed hybrid model, T-blob/T-TAB, into an existing computational fluid dynamics (CFD) program for primary and secondary breakup simulation of liquid jet atomization. This model extend two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O'Rourke and Amsden to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. Several assessment studies are presented and the results indicate that the existing KH and TAB models tend to under-predict the product drop size and spray angle, while the current model provides superior results when compared with the measured data.

  13. The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuhiro; Sussman, Mark

    2012-11-01

    The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.

  14. Electrowetting-driven spreading and jumping of drops in oil

    NASA Astrophysics Data System (ADS)

    Hong, Jiwoo; Lee, Sang Joon

    2013-11-01

    Electrowetting-based practical applications include digital microfluidics, liquid lenses, and reflective displays. Most of them are performed in water/oil system, because oil medium reduces the contact-angle hysteresis and prevents drop evaporation. In this study, the effects of drop volume, oil viscosity, and applied voltage on the dynamic behaviors of spreading drops, such as transition of spreading pattern and response time, are investigated. Interestingly, jumping phenomena of drops are observed in oil when the applied voltage is turned off after reaching the electrowetted equilibrium radius of drops. A numerical model to predict the transient behavior of jumping drops is formulated based on the phase-field method. The numerical results for the transient deformation of jumping drops show quantitative agreement with the experimental results.

  15. Effect of interface deformability on thermocapillary motion of a drop in a tube

    NASA Astrophysics Data System (ADS)

    Mahesri, S.; Haj-Hariri, H.; Borhan, A.

    2014-03-01

    The effect of an externally imposed axial temperature gradient on the mobility and deformation of a drop in an otherwise stagnant liquid within an insulated cylindrical tube is investigated. In the absence of bulk transport of momentum and energy, the boundary integral technique is used to obtain the flow and temperature fields inside and outside the deformable drop. The steady drop shapes and the corresponding migration velocities are examined over a wide range of the dimensionless parameters. The steady drop shape is nearly spherical for dimensionless drop sizes <0.5, but becomes slightly elongated in the axial direction for drop sizes comparable to tube diameter. The adverse effect of drop deformation on the effective temperature gradient driving the motion is slightly more pronounced than its favorable effect of reducing drag, thereby leading to a slight reduction in drop mobility with increasing drop deformation. Increasing the viscosity ratio reduces drop deformation and leads to a slight enhancement in the relative mobility (with respect to free thermocapillary motion) of confined drops. When the drop fluid has a lower thermal conductivity than the exterior phase, the presence of the thermally-insulating wall increases the thermal driving force for drop motion (compared to that for the same drop in unbounded domain) by causing more pronounced bending of the isotherms toward the drop. However, the favorable thermal effect of the confining wall is overwhelmed by its retarding hydrodynamic effect, causing the confined drop to always move slower than its unbounded counterpart regardless of the value of the thermal conductivity ratio.

  16. Surfactant-laden drop jellyfish-breakup mode induced by the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2017-03-01

    Drop breakup is a familiar event in both nature and technology. In this study, we find that the bag breakup mode can be replaced by a new breakup mode: jellyfish breakup, when the surfactant concentration of a surfactant-laden drop is high. This new breakup mode has a morphology resembling a jellyfish with many long tentacles. This is due to the inhomogeneous distribution of surfactant in the process of drop deformation and breakup. The thin film of liquid can remain stable as a result of the Marangoni effect. Finally, we propose that the dimensionless surfactant concentration can serve as a criterion for breakup mechanisms.

  17. Liquid ``Coffee Rings'' and the Spreading of Volatile Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Wood, Clay; Pye, Justin; Burton, Justin

    When a volatile liquid drop is placed on a wetting surface, it rapidly spreads and evaporates. The spreading dynamics and drop geometry are determined by a balance between thermal and interfacial forces, including Marangoni effects. However, this spreading behavior is drastically altered when drops contain a miniscule amount of a less-volatile miscible liquid (solute) in the bulk (solvent); contact line instabilities in the form of ``fingers'' develop. Characteristic finger size increases with increasing solute concentration and is apparent for concentrations as small as 0.1% by volume. Also, the spreading rate depends sensitively on the solute concentration, especially if the solute preferentially wets the substrate. At higher solute concentrations, the spreading droplet will form ``beads'' at the contact line, rather than fingers, and are deposited as the solvent recedes and evaporates, leaving behind a complex pattern of solute micro-droplets. Liquid ``coffee rings'' are often left behind after evaporation because there is a high evaporation rate of the solvent at the contact line, which increases the concentration of the solute, and the longevity of the rings depends on the solute vapor pressure. These results highlight the unusual sensitivity to contamination of volatile spreading, and the complex patterns of liquid contamination deposited following evaporation from a wetted surface. NSF 1455086.

  18. A Cost-effective and Reliable Method to Predict Mechanical Stress in Single-use and Standard Pumps

    PubMed Central

    Dittler, Ina; Dornfeld, Wolfgang; Schöb, Reto; Cocke, Jared; Rojahn, Jürgen; Kraume, Matthias; Eibl, Dieter

    2015-01-01

    Pumps are mainly used when transferring sterile culture broths in biopharmaceutical and biotechnological production processes. However, during the pumping process shear forces occur which can lead to qualitative and/or quantitative product loss. To calculate the mechanical stress with limited experimental expense, an oil-water emulsion system was used, whose suitability was demonstrated for drop size detections in bioreactors1. As drop breakup of the oil-water emulsion system is a function of mechanical stress, drop sizes need to be counted over the experimental time of shear stress investigations. In previous studies, the inline endoscopy has been shown to be an accurate and reliable measurement technique for drop size detections in liquid/liquid dispersions. The aim of this protocol is to show the suitability of the inline endoscopy technique for drop size measurements in pumping processes. In order to express the drop size, the Sauter mean diameter d32 was used as the representative diameter of drops in the oil-water emulsion. The results showed low variation in the Sauter mean diameters, which were quantified by standard deviations of below 15%, indicating the reliability of the measurement technique. PMID:26274765

  19. A model of the evaporation of binary-fuel clusters of drops

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1991-01-01

    A formulation has been developed to describe the evaporation of dense or dilute clusters of binary-fuel drops. The binary fuel is assumed to be made of a solute and a solvent whose volatility is much lower than that of the solute. Convective flow effects, inducing a circulatory motion inside the drops, are taken into account, as well as turbulence external to the cluster volume. Results obtained with this model show that, similar to the conclusions for single isolated drops, the evaporation of the volatile is controlled by liquid mass diffusion when the cluster is dilute. In contrast, when the cluster is dense, the evaporation of the volatile is controlled by surface layer stripping, that is, by the regression rate of the drop, which is in fact controlled by the evaporation rate of the solvent. These conclusions are in agreement with existing experimental observations. Parametric studies show that these conclusions remain valid with changes in ambient temperature, initial slip velocity between drops and gas, initial drop size, initial cluster size, initial liquid mass fraction of the solute, and various combinations of solvent and solute. The implications of these results for computationally intensive combustor calculations are discussed.

  20. Inviscid dynamics of a wet foam drop with monodisperse bubble size distribution

    NASA Astrophysics Data System (ADS)

    McDaniel, J. Gregory; Akhatov, Iskander; Holt, R. Glynn

    2002-06-01

    Motivated by recent experiments involving the acoustic levitation of foam drops, we develop a model for nonlinear oscillations of a spherical drop composed of monodisperse aqueous foam with void fraction below 0.1. The model conceptually divides a foam drop into many cells, each cell consisting of a spherical volume of liquid with a bubble at its center. By treating the liquid as incompressible and inviscid, a nonlinear equation is obtained for bubble motion due to a pressure applied at the outer radius of the liquid sphere. Upon linearizing this equation and connecting the cells at their outer radii, a wave equation is obtained with a dispersion relation for the sound waves in a bubbly liquid. For the spherical drop, this equation is solved by a normal mode expansion that yields the natural frequencies as functions of standard foam parameters. Numerical examples illustrate how the analysis may be used to extract foam parameters, such as void fraction and bubble radius, from the experimentally measured natural frequencies of a foam drop.

  1. The critical pressure drop for the purge process in the anode of a fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Pingwen, Ming; Ming, Hou; Baolian, Yi; Shao, Zhi-Gang

    Purge operation is an effective way to remove the accumulated liquid water in the anode of proton exchange membrane fuel cells (PEMFCs). This paper studies the phenomenon of the two-phase flow as well as the pressure drop fluctuation inside the flow field of a single cell during the purge process. The flow patterns are identified as intermittent purge and annular purge, and the two purge processes are contrastively analyzed and discussed. The intermittent purge greatly affects the fuel cell performance and thus it is not suitable for the in situ application. The annular purge process requires a higher pressure drop, and the critical pressure drop is calculated from the annular purge model. Furthermore, this value is quantitatively analyzed and validated by experiments. The results show that the annular purge is appropriate for removing liquid water out of the anode in the fuel cell.

  2. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  3. Nano Liquid Crystal Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; de Pablo, Juan; dePablo Team

    2015-03-01

    Liquid droplet impaction on solid surfaces is an important problem with a wide range of applications in everyday life. Liquid crystals (LCs) are anisotropic liquids whose internal structure gives rise to rich optical and morphological phenomena. In this work we study the liquid crystal droplet impaction on solid surfaces by molecular dynamics simulations. We employ a widely used Gay-Berne model to describe the elongated liquid crystal molecules and their interactions. Our work shows that, in contrast to isotropic liquids, drop deformation is symmetric unless an instability kicks in, in which case a nano scale liquid crystal droplet exhibits distinct anisotropic spreading modes that do not occur in simple liquids. The drop prefers spreading along the low viscosity direction, but inertia can in some cases overcome that bias. The effects of the director field of the droplet, preferred anchoring direction and the anchoring strength of the wall are investigated. Large scale (0.1 micron) simulations are performed to connect our nano scale results to the experiments. Our studies indicate that LCs could provide an interesting alternative for development of next-generation printing inks.

  4. When a water drop freezes before it solidifies

    NASA Astrophysics Data System (ADS)

    Kavehpour, Pirouz; Davis, Stephen; Tavakoli, Faryar

    2012-11-01

    When a drop of liquid is placed on a substrate which temperature is below the melting point of the liquid, one would expect the drop to solidify instantaneously. However, many liquids, such as water, must be subcooled to solidify below its melting temperature due to homogeneous nucleation's high activation energy. Most of the drop solidification research, particularly for water, phase change is assumed to occur at equilibrium freezing temperature; however, this is not the case. We found that after a certain degree of supercooling, a kinetic based nucleation begins and latent heat of fusion is suddenly liberated, causing an increase in liquid temperature. At the end of this stage, approximately 20% of the drop is crystallized. This phenomenon is known among metallurgists as recalescence. This is followed by a slow solidification process at the melting point. As a water droplet spreads on a cold substrate, its contact line stops just prior to freezing inception from the liquid-solid interface. In this study, we assert that recalescence prior to solidification may be the cause of water's sudden immobility, which results in a fixed contact angle and droplet diameter. In our experiments, the nucleation front initiates from the trijunction point and propagates to the drop volume.

  5. Analysis of preparation of Chinese traditional medicine based on the fiber fingerprint drop trace

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Wang, Jialu; Sun, Weimin; Yan, Qi

    2010-11-01

    The purpose of the fiber micro-drop analyzing technique is to measure the characteristics of liquids using optical methods. The fiber fingerprint drop trace (FFDT) is a curve of light intensity vs. time. This curve indicates the forming, growing and dripping processes of the liquid drops. A pair of fibers was used to monitor the dripping process. The FFDTs are acquired and analyzed by a computer. Different liquid samples of many kinds of preparation of Chinese traditional medicines were tested by using the fiber micro-drop sensor in the experiments. The FFDTs of preparation of Chinese traditional medicines with different concentrations were analyzed in different ways. Considering the characters of the FFDTs, a novel method is proposed to measure the different preparation of Chinese traditional medicines and its concentration based on the corresponding relationship of FFDTs and the physical and chemical parameters of the liquids.

  6. Contraction of an air disk caught between two different liquids

    NASA Astrophysics Data System (ADS)

    Thoraval, M.-J.; Thoroddsen, S. T.

    2013-12-01

    When a drop impacts a pool of liquid it entraps a thin disk of air under its center. This disk contracts rapidly into a bubble to minimize surface energy. Herein we use ultra-high-speed imaging to measure the contraction speed of this disk when the drop and pool are of different liquids. For miscible liquids the contraction rate is governed by the weaker of the two surface tensions. Some undulations are observed on the edge of the disk for a water drop impacting a pool of water, but not on a pool of lower surface tension. Similar results are observed for a pair of immiscible liquids.

  7. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    NASA Technical Reports Server (NTRS)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.

  8. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.

    2014-12-01

    Tektites are small stones formed from rapidly cooling drops of molten rock ejected from high velocity asteroid impacts with the Earth, that freeze into a myriad of shapes during flight. Many splash-form tektites have an elongated or dumb-bell shape owing to their rotation prior to solidification[1]. Here we present a novel method for creating 'artificial tektites' from spinning drops of molten wax, using diamagnetic levitation to suspend the drops[2]. We find that the solid wax models produced this way are the stable equilibrium shapes of a spinning liquid droplet held together by surface tension. In addition to the geophysical interest in tektite formation, the stable equilibrium shapes of liquid drops have implications for many physical phenomena, covering a wide range of length scales, from nuclear physics (e.g. in studies of rapidly rotating atomic nuclei), to astrophysics (e.g. in studies of the shapes of astronomical bodies such as asteroids, rapidly rotating stars and event horizons of rotating black holes). For liquid drops bound by surface tension, analytical and numerical methods predict a series of stable equilibrium shapes with increasing angular momentum. Slowly spinning drops have an oblate-like shape. With increasing angular momentum these shapes become secularly unstable to a series of triaxial pseudo-ellipsoids that then evolve into a family of two-lobed 'dumb-bell' shapes as the angular momentum is increased still further. Our experimental method allows accurate measurements of the drops to be taken, which are useful to validate numerical models. This method has provided a means for observing tektite formation, and has additionally confirmed experimentally the stable equilibrium shapes of liquid drops, distinct from the equivalent shapes of rotating astronomical bodies. Potentially, this technique could be applied to observe the non-equilibrium dynamic processes that are also important in real tektite formation, involving, e.g. viscoelastic effects, non-uniform solidification, surface wrinkling (Schlieren), and rapid separation/fission of dumb-bells via the Rayleigh-Plateau instability. [1] M. R. Stauffer and S. L. Butler, Earth Moon Planets, 107, 169 (2009). [2] R. J. A. Hill and L. Eaves, Phys. Rev. Lett. 101, 234501 (2008).

  9. Size Distribution and Velocity of Ethanol Drops in a Rocket Combustor Burning Ethanol and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1961-01-01

    Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.

  10. Drop Fragmentation at Impact onto a Bath of an Immiscible Liquid

    NASA Astrophysics Data System (ADS)

    Lhuissier, H.; Sun, C.; Prosperetti, A.; Lohse, D.

    2013-06-01

    The impact of a drop onto a deep bath of an immiscible liquid is studied with emphasis on the drop fragmentation into a collection of noncoalescing daughter drops. At impact the drop flattens and spreads at the surface of the crater it transiently opens in the bath and reaches a maximum deformation, which gets larger with increasing impact velocity, before surface tension drives its recession. This recession can promote the fragmentation by two different mechanisms: At moderate impact velocity, the drop recession converges to the axis of symmetry to form a jet which then fragments by a Plateau-Rayleigh mechanism. At higher velocity the edge of the receding drop destabilizes and shapes into radial ligaments which subsequently fragment. For this latter mechanism the number N∝We3 and the size distribution of the daughter drops p(d)∝d-4 as a function of the impact Weber number We are explained on the basis of the observed spreading of the drop. The universality of this model for the fragmentation of receding liquid sheets might be relevant for other configurations.

  11. The origin of star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  12. Initial drop size and velocity distributions for airblast coaxial atomizers

    NASA Technical Reports Server (NTRS)

    Eroglu, H.; Chigier, N.

    1991-01-01

    Phase Doppler measurements were used to determine initial drop size and velocity distributions after a complete disintegration of coaxial liquid jets. The Sauter mean diameter (SMD) distribution was found to be strongly affected by the structure and behavior of the preceding liquid intact jet. The axial measurement stations were determined from the photographs of the coaxial liquid jet at very short distances (1-2 mm) downstream of the observed break-up locations. Minimum droplet mean velocities were found at the center, and maximum velocities were near the spray boundary. Size-velocity correlations show that the velocity of larger drops did not change with drop size. Drop rms velocity distributions have double peaks whose radial positions coincide with the maximum mean velocity gradients.

  13. Pinch-off Scaling Law of Soap Bubbles

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  14. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  15. Automation of Vapor-Diffusion Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hamrick, David T.; Bray, Terry L.

    2005-01-01

    Some improvements have been made in a system of laboratory equipment developed previously for studying the crystallization of proteins from solution by use of dynamically controlled flows of dry gas. The improvements involve mainly (1) automation of dispensing of liquids for starting experiments, (2) automatic control of drying of protein solutions during the experiments, and (3) provision for automated acquisition of video images for monitoring experiments in progress and for post-experiment analysis. The automation of dispensing of liquids was effected by adding an automated liquid-handling robot that can aspirate source solutions and dispense them in either a hanging-drop or a sitting-drop configuration, whichever is specified, in each of 48 experiment chambers. A video camera of approximately the size and shape of a lipstick dispenser was added to a mobile stage that is part of the robot, in order to enable automated acquisition of images in each experiment chamber. The experiment chambers were redesigned to enable the use of sitting drops, enable backlighting of each specimen, and facilitate automation.

  16. Bifurcation of rotating liquid drops: Results from USML-1 experiments in space

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G.; Anilkumar, A. V.; Lee, C. P.; Lin, K. C.

    1994-01-01

    Experiments on rotational bifurcation of liquid drops, in which the drops were levitated and spun using acoustic fields in a low-gravity environment, were conducted during the first United States Microgravity Laboratory (USML-1) Space Shuttle flight. The experiments have successfully resolved the discrepancies existing between the previous experimental results and the theoretical predictions. In the case of a spherical drop, for which theory exists, the results agree well with the predictions. In the case of flattened drops, the experiments have extablished a family of curves, with the spherical drop as the limiting case.

  17. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  18. A Study of Eutectic Gallium Indium Liquid Metal in Microsystems and Interfaces

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohammed Gamal Abdel Naser

    This dissertation studies the behavior of the eutectic alloy of gallium and indium (commonly called EGaIn) in microfluidic channels, on thin metal films and with metal powders. EGaIn is a metal alloy that is liquid at room temperature, has high surface tension and low viscosity. EGaIn forms in presence of oxygen a thin robust oxide skin that allows the liquid metal to take non-spherical shapes despite its high surface tension. The first chapter discusses properties and applications of liquid metals in general and EGaIn in more details. The second chapter studies the phenomenon of spectral colors that appear on PDMS microchannels filled with EGaIn upon applying a compression strain on it. The channels are sealed using oxygen plasma which alters the surface chemistry by attaching oxygen atoms to it and forming a thin rigid film. Buckles form on that thin rigid layer when the channel is compressed due to the difference in elastic moduli between the film and the bulk of PDMS. Optical microscopy and AFM confirmed the presence of the buckles. The third chapter presents a new method for producing liquid metal droplets by forcing EGaIn into reservoirs with designed dimensions. The dimensions of the reservoir can be easily manipulated to produce the desired drop size. We can collect the drops or embed them in PDMS. The fourth chapter studies the behavior of these drops upon contacting metal films. EGaIn drops self-run on weakly-bounded metal films to substrate in media that continuously etch its oxide skin like acid solution or under reducing bias. Our experiments show that EGaIn drops achieve the highest velocities on films of Ag over Au on glass substrates. The running mechanism is novel and has not been reported before, the liquid metal drop pulls the film from the substrate while dissolving it and running forward. The contact between the EGaIn drop and the metal film creates an electrochemical cell that leads to formation of hydrogen bubbles beneath the metal film, the bubbles make the film loose and easy for the EGaIn drop to pull. We investigated the role of drop diameter to film width ratio and the degree of saturation with the other metal on the speed of the drop. The velocity we report is higher than that of any self-running liquid metal drop and any aqueous creature. Self-running drops have potential applications such as fabricating self-destroying electronic circuits. The fifth chapter explores a new method to create metal micro and nanostructures at ambient conditions by imprinting a paste made by mixing gallium and metal powders against molds. Gallium and metal powder interdiffuse in a short period of time and form a solid alloy. In this study we use copper powder as it is not expensive, safe to work with and can form a solid alloy with gallium at room temperature. We investigated the optimum mixing ratio (65 wt% Ga and 35 wt% Cu) that allows easy mixing, enough workable time and results in a solid alloy as diffusion proceeds. The paste can replicate relatively big features (features on a penny for instance) and create free standing structures, however imprints of small features suffers from imperfections. Milling and reducing the powder under inert atmosphere helped to enhance mixing. We are currently studying the effect of particle size on replication and homogeneity of the solid alloy.

  19. Non-Coalescence Effects in Microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1997-01-01

    Non-coalescence of two bodies of the same liquid and the suppression of contact between liquid drops and solid surfaces is being studied through a pair of parallel investigations being conducted at the Georgia Institute of Technology and the Microgravity Research and Support (MARS) Center in Naples, Italy. Both non-coalescence and contact suppression are achieved by exploiting the mechanism of thermocapillary convection to drive a lubricating film of surrounding gas (air) into the space between the two liquid free surfaces (non-coalescence) or between the drop free surface and the solid (contact suppression). Experiments performed to date include flow visualization experiments in both axisymmetric and (nearly) two-dimensional geometries and quantitative measurements of film thickness in the contact-suppression case in both geometries.

  20. Clustering of particles and pathogens within evaporating drops

    NASA Astrophysics Data System (ADS)

    Park, Jaebum; Kim, Ho-Young

    2017-11-01

    The evaporation of sessile suspension drops leads to accumulation of the particles around the pinned contact line, which is widely termed the coffee ring effect. However, the evaporation behavior of a liquid drop containing a small number of particles with the size comparable to the host drop is unclear yet. Thus, here we investigate the motion and spatial distribution of large particles within a sessile drop. The spherical particles cluster only when their initial distance is below a critical value, which is a function of the diameter and wettability of particle as well as the surface tension and size of the host drop. We rationalize such a critical distance for self-assembly based on the balance of the capillary force and the frictional resistance to sliding and rolling of the particles on a solid substrate. We further discuss the physical significance of this drop-mediated ``Cheerios effect'' in connection with the fate of pathogens residing in drops as a result of sneezing and coughing.

  1. Thermocapillary reorientation of Janus drops

    NASA Astrophysics Data System (ADS)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  2. Mechanical tuning of the evaporation rate of liquid on crossed fibers.

    PubMed

    Boulogne, François; Sauret, Alban; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-03-17

    We investigate experimentally the drying of a small volume of perfectly wetting liquid on two crossed fibers. We characterize the drying dynamics for the three liquid morphologies that are encountered in this geometry: drop, column, and a mixed morphology, in which a drop and a column coexist. For each morphology, we rationalize our findings with theoretical models that capture the drying kinetics. We find that the evaporation rate significantly depends upon the liquid morphology and that the drying of the liquid column is faster than the evaporation of the drop and the mixed morphology for a given liquid volume. Finally, we illustrate that shearing a network of fibers reduces the angle between them, changes the morphology toward the column state, and therefore, enhances the drying rate of a volatile liquid deposited on it.

  3. Wrapping a liquid drop with a thin elastic sheet

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Chris; Russell, Thomas; Menon, Narayanan

    2014-11-01

    We study the wrapping of a liquid drop by an initially-planar ultrathin (~ 100 nm) circular sheet. These elastic sheets can completely relax compressive stresses by forming wrinkles. In the experiment, we find that when a small fraction of the drop is covered, the overall shape of the sheet (i.e. averaging over the wrinkles) is axisymmetric. As we shrink the drop further, the sheet develops radial folds that break the axisymmetry of the sheet and the drop. Our data are consistent with a model where the sheet selects the shape that minimizes the exposed liquid surface area. We thus identify a ``geometric wrapping'' regime, where the partially-wrapped shape depends only on the relative radii of the sheet and the drop; the global breaking of axisymmetry is independent of the elastic energy of the deformed sheet. This regime requires that bending energy is negligible compared to surface energy, in contrast to the ``capillary origami'' regime where the static shape of the drop comes from a balance of bending and capillary forces.

  4. CYCLAM - Recycling by a Laser-driven Drop Jet from Waste that Feeds AM

    NASA Astrophysics Data System (ADS)

    Kaplan, Alexander F. H.; Samarjy, Ramiz S. M.

    Additive manufacturing of metal parts is supplied by powder or wire. Manufacturing of this raw material causes additional costs and environmental impact. A new technique is proposed where the feeding directly originates from a metal sheet, which can even be waste. When cutting is done by laser-induced boiling, melt is continuously ejected downwards underneath the sheet. The ejected melt is deposited as a track on a substrate, enabling additive manufacturing by substrate movement along a desired path. The melt first flows downwards as a column and after a few millimeters separates into drops, here about 500 micrometer in diameter, as observed by high speed imaging. The drops incorporate sequentially and calmly into a long melt pool on the substrate. While steel drops formed regular tracks on steel and aluminium substrates, on copper substrate periodic drops solidified instead. For this new technique, called CYCLAM, the laser beam acts indirectly while the drop jet becomes the main tool. From imaging, properties like the width or fluctuations of the drop jet can be statistically evaluated. Despite oscillation of the liquid column, the divergence of the drop jet remained small, improving the precision and robustness. The melt leaves the cut sheet as a liquid column, 1 to 4 mm in length, which periodically separates drops that are transferred as a liquid jet to the substrate. For very short distance of 2 to 3 mm between the two sheets this liquid column can transfer the melt continuously as a liquid bridge. This phenomenon was observed, as a variant of the technique, but the duration of the bridge was limited by fluid mechanic instabilities.

  5. Microgravity experiment study on the vane type surface tension tank

    NASA Astrophysics Data System (ADS)

    Kang, Qi; Duan, Li; Rui, Wei

    Having advantages of low cost, convenience and high level of microgravity, the drop tower has become a significant microgravity experiment facility. National Microgravity Laboratory/CAS(NMLC) drop tower has 3.5s effective microgravity time, meanwhile the level of microgravity can reach 10 (-5) g. And the impact acceleration is less than 15g in the recovery period. The microgravity experiments have been conducted on the scaling model of vane type surface tension tank in NMLC’s drop tower. The efficiency of Propellant Management Devices (PMDs) was studied, which focus on the effects of Propellant Management Devices (PMDs), numbers of PMDs, contact angle, and liquid viscosity on the flow rate. The experimental results shown that the numbers of PMDs have little or no effect on the flow rate while the liquid is sufficient. The experiments about the influence of different charging ratio have been carried out while tank is placed positively and reversely, and we find the charging ratio has less effect on the capillary flow rate when the charging ratio is greater than 2%.

  6. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    NASA Astrophysics Data System (ADS)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but the pressure drop decreases all the way. The offset (0, 2.4, 3.6mm) of gas outlet is an insensitive factor which influences the quality and pressure drop little.

  7. Charged drop dynamics experiment using an electrostatic-acoustic hybrid system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.

    1987-01-01

    The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.

  8. A perspective on the interfacial properties of nanoscopic liquid drops.

    PubMed

    Malijevský, Alexandr; Jackson, George

    2012-11-21

    The structural and interfacial properties of nanoscopic liquid drops are assessed by means of mechanical, thermodynamical, and statistical mechanical approaches that are discussed in detail, including original developments at both the macroscopic level and the microscopic level of density functional theory (DFT). With a novel analysis we show that a purely macroscopic (static) mechanical treatment can lead to a qualitatively reasonable description of the surface tension and the Tolman length of a liquid drop; the latter parameter, which characterizes the curvature dependence of the tension, is found to be negative and has a magnitude of about a half of the molecular dimension. A mechanical slant cannot, however, be considered satisfactory for small finite-size systems where fluctuation effects are significant. From the opposite perspective, a curvature expansion of the macroscopic thermodynamic properties (density and chemical potential) is then used to demonstrate that a purely thermodynamic approach of this type cannot in itself correctly account for the curvature correction of the surface tension of liquid drops. We emphasize that any approach, e.g., classical nucleation theory, which is based on a purely macroscopic viewpoint, does not lead to a reliable representation when the radius of the drop becomes microscopic. The description of the enhanced inhomogeneity exhibited by small drops (particularly in the dense interior) necessitates a treatment at the molecular level to account for finite-size and surface effects correctly. The so-called mechanical route, which corresponds to a molecular-level extension of the macroscopic theory of elasticity and is particularly popular in molecular dynamics simulation, also appears to be unreliable due to the inherent ambiguity in the definition of the microscopic pressure tensor, an observation which has been known for decades but is frequently ignored. The union of the theory of capillarity (developed in the nineteenth century by Gibbs and then promoted by Tolman) with a microscopic DFT treatment allows for a direct and unambiguous description of the interfacial properties of drops of arbitrary size; DFT provides all of the bulk and surface characteristics of the system that are required to uniquely define its thermodynamic properties. In this vein, we propose a non-local mean-field DFT for Lennard-Jones (LJ) fluids to examine drops of varying size. A comparison of the predictions of our DFT with recent simulation data based on a second-order fluctuation analysis (Sampayo et al 2010 J. Chem. Phys. 132 141101) reveals the consistency of the two treatments. This observation highlights the significance of fluctuation effects in small drops, which give rise to additional entropic (thermal non-mechanical) contributions, in contrast to what one observes in the case of planar interfaces which are governed by the laws of mechanical equilibrium. A small negative Tolman length (which is found to be about a tenth of the molecular diameter) and a non-monotonic behaviour of the surface tension with the drop radius are predicted for the LJ fluid. Finally, the limits of the validity of the Tolman approach, the effect of the range of the intermolecular potential, and the behaviour of bubbles are briefly discussed.

  9. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters

    NASA Astrophysics Data System (ADS)

    Li, Yong; Peng, Guilong; He, Qiang; Zhu, Hui; Al-Hamadani, Sulala M. Z. F.

    2015-04-01

    In the present work, a dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of Pb, Co, Cu, Ni, Zn. The influences of analytical parameters, including pH, extraction solvent volume, disperser solvent volume, concentration of chelating agent on the quantitative recoveries of Pb, Co, Cu, Ni, Zn were investigated. The effect of the interfering ions on the analytes recovery was also investigated. Under the optimized conditions, the limits of detection were 0.97-2.18 ng L-1. The relative standard deviations (RSDs) were 2.62-4.51% (n = 7, C = 20 ng L-1). The proposed method was successfully applied for the analysis of ultra trace metals in wastewater samples.

  10. A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Bolster, Diogo; Luo, Li-Shi

    2017-07-01

    We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time (WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct numerical simulation of two-phase flows in three dimensions. The proposed WMRT model enhances the numerical stability of the LBM for immiscible fluids at high density ratios, particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT-LBM-AMR is validated through simulations of (a) buoyancy-driven motion and deformation of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence mechanism of a liquid drop at a liquid-liquid interface. The numerical simulations agree well with available experimental data and theoretical approximations where applicable.

  11. Investigation of Critical Burning of Fuel Droplets. [of liquid rocket propellant

    NASA Technical Reports Server (NTRS)

    Chanin, S. P.; Shearer, A. J.; Faeth, G. M.

    1976-01-01

    An earlier analysis for the combustion response of a liquid monopropellant strand (hydrazine) was extended to consider individual droplets and sprays. While small drops gave low or negative response, large droplets provided response near unity at low frequencies, with the response declining at frequencies greater than the characteristic liquid phase frequency. Temperature gradients in the liquid phase resulted in response peaks greater than unity. A second response peak was found for large drops which corresponded to gas phase transient effects. Spray response was generally reduced from the response of the largest injected droplet, however, even a small percentage of large droplets can yield appreciable response. An apparatus was designed and fabricated to allow observation of bipropellant fuel spray combustion at elevated pressures. A locally homogeneous model was developed to describe this combustion process which allows for high pressure phenomena associated with the thermodynamic critical point.

  12. Method for controlling protein crystallization

    NASA Technical Reports Server (NTRS)

    Noever, David A. (Inventor)

    1993-01-01

    A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.

  13. The dissolution or growth of a gas bubble inside a drop in zero gravity

    NASA Technical Reports Server (NTRS)

    Kondos, Pericles A.; Subramanian, R. Shankar; Weinberg, Michael C.

    1987-01-01

    The radius-time history of a gas bubble located concentrically within a spherical liquid drop in a space laboratory is analyzed within the framework of the quasi-stationary approximation. Illustrative results are calculated from the theory which demonstrate interesting qualitative features. For instance, when a pure gas bubble dissolves within a liquid drop in an environment containing the same gas and some inert species, the dissolution can be more or less rapid than that in an unbounded liquid depending on the initial relative size of the drop. Further, given a similar growth situation, indefinite growth is not possible, and the bubble will initially grow, but always dissolve in the end.

  14. The production of drops by the bursting of a bubble at an air liquid interface

    NASA Technical Reports Server (NTRS)

    Darrozes, J. S.; Ligneul, P.

    1982-01-01

    The fundamental mechanism arising during the bursting of a bubble at an air-liquid interface is described. A single bubble was followed from an arbitrary depth in the liquid, up to the creation and motion of the film and jet drops. Several phenomena were involved and their relative order of magnitude was compared in order to point out the dimensionless parameters which govern each step of the motion. High-speed cinematography is employed. The characteristic bubble radius which separates the creation of jet drops from cap bursting without jet drops is expressed mathematically. The corresponding numerical value for water is 3 mm and agrees with experimental observations.

  15. Drops spreading on flexible fibers

    NASA Astrophysics Data System (ADS)

    Somszor, Katarzyna; Boulogne, François; Sauret, Alban; Dressaire, Emilie; Stone, Howard

    2015-11-01

    Fibrous media are encountered in many engineered systems such as textile, paper and insulating materials. In most of these materials, fibers are randomly oriented and form a complex network in which drops of wetting liquid tend to accumulate at the nodes of the network. Here we investigate the role of the fiber flexibility on the spreading of a small volume of liquid on a pair of crossed flexible fibers. A drop of silicone oil is dispensed at the point of contact of the fibers and we characterize the liquid morphologies as we vary the volume of liquid, the angle between the fibers, and the length and bending modulus of the fibers. Drop morphologies previously reported for rigid fibers, i.e. a drop, a column and a mixed morphology, are also observed on flexible fibers with modified domains of existence. Moreover, at small inclination angles of the fibers, a new behavior is observed: the fibers bend and collapse. Depending on the volume, the liquid can adopt a column or a mixed morphology on the collapsed fibers. We rationalize our observations with a model based on energetic considerations. Our study suggests that the fiber flexibility adds a rich variety of behaviors that can be crucial for industrial applications.

  16. Drop impact on liquid film: dynamics of interfacial gas layer

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao

    2016-11-01

    Drop impacting liquid film is commonly observed in many processes including inkjet printing and thermal sprays. Owing to the resistance from the interfacial gas layer trapped between the drop and film surface, impact may not always result in coalescence; and as such investigating the behavior of the interfacial gas layer is important to understand the transition between bouncing and merging outcomes. The gas layer is, however, not easily optically accessible due to its microscopic scale and curved interfaces. We report the measurement of this critical gas layer thickness between two liquid surfaces using high-speed color interferometry capable of measuring micron and submicron thicknesses. The complete gas layer dynamics for the bouncing cases can be divided into two stages: the approaching stage when the drop squeezes the gas layer at the beginning of the impact, and the rebounding stage when the drop retracts and rebounds from the liquid film. The approaching stage is found to be similar across wide range of conditions studied. However, for the rebounding stage, with increase of liquid film thickness, the evolution of gas layer changes dramatically, displaying a non-monotonic behavior. Such dynamics is analyzed in lights of various competing timescales.

  17. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.

    PubMed

    Pak, S I; Chang, K S

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  18. Measurement of surface tension by sessile drop tensiometer with superoleophobic surface

    NASA Astrophysics Data System (ADS)

    Kwak, Wonshik; Park, Jun Kwon; Yoon, Jinsung; Lee, Sanghyun; Hwang, Woonbong

    2018-03-01

    A sessile drop tensiometer provides a simple and efficient method of determining the surface tension of various liquids. The technique involves obtaining the shape of an axisymmetric liquid droplet and iterative fitting of the Young-Laplace equation, which balances the gravitational deformation of the drop. Since the advent of high quality digital cameras and desktop computers, this process has been automated with precision. However, despite its appealing simplicity, there are complications and limitations in a sessile drop tensiometer, i.e., it must dispense spherical droplets with low surface tension. We propose a method of measuring surface tension using a sessile drop tensiometer with a superoleophobic surface fabricated by acidic etching and anodization for liquids with low surface tension and investigate the accuracy of the measurement by changing the wettability of the measuring plate surface.

  19. Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces

    PubMed Central

    Liu, Yuan; Tan, Peng; Xu, Lei

    2015-01-01

    When a fast-moving drop impacts onto a smooth substrate, splashing will be produced at the edge of the expanding liquid sheet. This ubiquitous phenomenon lacks a fundamental understanding. Combining experiment with model, we illustrate that the ultrathin air film trapped under the expanding liquid front triggers splashing. Because this film is thinner than the mean free path of air molecules, the interior airflow transfers momentum with an unusually high velocity comparable to the speed of sound and generates a stress 10 times stronger than the airflow in common situations. Such a large stress initiates Kelvin–Helmholtz instabilities at small length scales and effectively produces splashing. Our model agrees quantitatively with experimental verifications and brings a fundamental understanding to the ubiquitous phenomenon of drop splashing on smooth surfaces. PMID:25713350

  20. A theoretical and experimental study of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent evaporating sprays, injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogeneous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. For all three models, a k-epsilon model as used to find the properties of the continuous phase. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well--with no modifications in the prescription of eddy properties from its original calibration.

  1. Levitation of a drop over a film flow

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; de, P. K.; Arakeri, Jaywant H.

    1999-02-01

    A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 ml) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

  2. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.

    PubMed

    Das, Arup K; Das, Prasanta K

    2009-10-06

    Smoothed particle hydrodynamics (SPH) is used to numerically simulate the movement of drops down an inclined plane. Diffuse interfaces have been assumed for tracking the motion of the contact line. The asymmetric shape of the three-dimensional drop and the variation of contact angle along its periphery can be calculated using the simulation. During the motion of a liquid drop down an inclined plane, an internal circulation of liquid particles is observed due to gravitational pull which causes periodic change in the drop shape. The critical angle of inclination required for the inception of drop motion is also evaluated for different fluids as a function of drop volume. The numerical predictions exhibit a good agreement with the published experimental results.

  3. Cancellation of residual spacecraft accelerations for zero-G space physics experiments

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1977-01-01

    The Drop Dynamics Module houses an acoustic positioning system which counteracts the effects of small accelerations of a spacecraft and thus allows long-term study of free-floating materials such as liquid drops. The acoustic positioning system provides an acoustic 'well' in the center of the experiment chamber. Data collection is by cinematographic photography. The module subsystems are discussed.

  4. Effects of Metal Ions on Viscosity of Aqueous Sodium Carboxylmethylcellulose Solution and Development of Dropping Ball Method on Viscosity

    ERIC Educational Resources Information Center

    Set, Seng; Ford, David; Kita, Masakazu

    2015-01-01

    This research revealed that metal ions with different charges could significantly affect the viscosity of aqueous sodium carboxylmethylcellulose (CMC) solution. On the basis of an Ostwald viscometer, an improvised apparatus using a dropping ball for examining the viscosity of liquids/solutions has been developed. The results indicate that the…

  5. Forced Oscillations of Supported Drops

    NASA Technical Reports Server (NTRS)

    Wilkes, Edward D.; Basaran, Osman A.

    1996-01-01

    Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

  6. Size of the top jet drop produced by bubble bursting

    NASA Astrophysics Data System (ADS)

    Berny, Alexis; Deike, Luc; Popinet, Stéphane; Seon, Thomas

    2017-11-01

    When a bubble is located on a liquid-air interface, it eventually bursts. First, the bubble cap shatters and produces film drops. Then, the cavity collapses, a tiny liquid jet rises and, depending on bubble radius and liquid parameters, it can eventually break-up and release the so-called jet drops. We perform numerical simulations, using the free software basilisk, to determine and discuss the regime of existence and the size of the first liquid jet droplets. We first validate the numerical scheme by comparing our results with recent experimental data. We then extend our numerical study to a wider range of control parameters in order to enrich our knowledge of the jet drops production. Finally, we show and interpret our results using a scaling law approach and basic physical arguments. This allows us to untangle the intricate roles of viscosity, gravity, and surface tension in the end pinching of the bubble bursting jet.

  7. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  8. Experimental investigations of stability of static liquid fillets and liquid-gas interface in capillary passages for gas-free liquid acquisition in zero gravity

    NASA Astrophysics Data System (ADS)

    Purohit, Ghanshyam Purshottamdas

    Experimental investigations of static liquid fillets formed between small gaps of a cylindrical surface and a flat surface are carried out. The minimum volume of liquid required to form a stable fillet and the maximum liquid content the fillet can hold before becoming unstable are studied. Fillet shapes are captured in photographs obtained by a high speed image system. Experiments were conducted using water, UPA and PF 5060 on two surfaces-stand-blasted titanium and polished copper for different surface inclinations. Experimental data are generalized using appropriate non-dimensional groups. Analytical model are developed to describe the fillet curvature. Fillet curvature data are compared against model predictions and are found to be in close agreement. Bubble point experiments were carried out to measure the capillary pressure difference across the liquid-gas interface in the channels of photo-chemically etched disk stacks. Experiments were conducted using titanium stacks of five different geometrical configurations. Both well wetting liquids (IPA and PF5060) and partially wetting liquid (water) were used during experiments. Test results are found to be in close agreement with analytical predictions. Experiments were carried out to measure the frictional pressure drop across the stack as a function of liquid flow rate using two different liquids (water and IPA) and five stacks of different geometrical configurations. A channel pressure drop model is developed by treating the flow within stack channels as fully developed laminar flow between parallel plates and solving the one-dimensional Navier Stokes equation. An alternate model is developed by treating the flow in channels as flow within porous media. Expressions are developed for effective porosity and permeability for the stacks and the pressure drop is related to these parameters. Pressure drop test results are found to be in close agreement with model predictions. As a specific application of this work, a surface tension propellant management device (PMD) that uses photo-chemically etched disk stacks as capillary elements is examined. These PMDs are used in gas pressurized liquid propellant tanks to supply gas-free propellant to rocket engines in near zero-gravity environment. The experimentally validated models are integrated to perform key analyses for predicting PMD performance in zero gravity.

  9. Hydrodynamic shrinkage of liquid CO2 Taylor drops in a straight microchannel

    NASA Astrophysics Data System (ADS)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2018-03-01

    Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight microchannel (length/width ~100). A general form of a mathematical model of the solvent-side mass transfer coefficient (k s) is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular microchannel, a specific form of k s is derived. Drop length and speed are experimentally measured at three specified positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel (position 2) and the end of the channel (position 3). The reductions of drop length (L x , x  =  1, 2, 3) from position 1 to 2 and down to 3 are used to quantify the drop shrinkage. Using the specific model, k s is calculated mainly based on L x and drop flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios ({{Q}LC{{O2}}}/{{Q}{{H2}O}} ) are generally characterized by higher (nearly three times) k s and Sherwood numbers than those produced by higher {{Q}LC{{O2}}}/{{Q}{{H2}O}} , which is essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of the flowing time and the surface-to-volume ratio (~104 m-1) of all drops. Based on calculated pressure drops of the segmented flow in microchannel, the Peng-Robinson equation of state and initial pressures of drops at the T-junction in experiments, overall pressure drop (ΔP t) in the straight channel as well as the resulted drop volume change are quantified. ΔP t from position 1-3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume changes of 0.3‰ to 0.52‰.

  10. Two phase detonation studies

    NASA Technical Reports Server (NTRS)

    Nicholls, J. A.; Pierce, T. H.; Miyajima, H.; Oza, R.; Patil, P.

    1974-01-01

    An experimental study of the passage of a shock wave over a burning fuel drop is described. This includes high speed framing photographs of the interaction taken at 500,000 frames per second. A theoretical prediction of the ignition of a fuel drop by a shock wave is presented and the results compared with earlier experimental work. Experimental attempts to generate a detonation in a liquid fuel drop (kerosene)-liquid oxidizer drop (hydrogen peroxide)-inert gas-environment are described. An appendix is included which gives the analytical prediction of power requirements for the drop generator to produce certain size drops at a certain mass rate. A bibliography is also included which lists all of the publications resulting from this research grant.

  11. Free-surface flow of liquid oxygen under non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  12. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2017-08-01

    Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  13. Electrohydrodynamics of drops in strong electric fields: Simulations and theory

    NASA Astrophysics Data System (ADS)

    Saintillan, David; Das, Debasish

    2016-11-01

    Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.

  14. Capillary forces exerted by liquid drops caught between crossed cylinders. A 3-D meniscus problem with free contact line

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Scriven, L. E.

    1982-01-01

    The Young-Laplace equation is solved for three-dimensional menisci between crossed cylinders, with either the contact line fixed or the contact angle prescribed, by means of the Galerkin/finite element method. Shapes are computed, and with them the practically important quantities: drop volume, wetted area, capillary pressure force, surface tension force, and the total force exerted by the drop on each cylinder. The results show that total capillary force between cylinders increases with decreasing contact angle, i.e. with better wetting. Capillary force is also increases with decreasing drop volume, approaching an asymptotic limit. However, the wetted area on each cylinder decreases with decreasing drop volume, which raises the question of the optimum drop volume to strive for, when permanent bonding is sought from solidified liquid. For then the strength of the bond is likely to depend upon the area of contact, which is the wetted area when the bonding agent was introduced in liquid form.

  15. Reactor for making uniform capsules

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Anikumar, Amrutur V. (Inventor); Lacik, Igor (Inventor)

    1999-01-01

    The present invention provides a novel reactor for making capsules with uniform membrane. The reactor includes a source for providing a continuous flow of a first liquid through the reactor; a source for delivering a steady stream of drops of a second liquid to the entrance of the reactor; a main tube portion having at least one loop, and an exit opening, where the exit opening is at a height substantially equal to the entrance. In addition, a method for using the novel reactor is provided. This method involves providing a continuous stream of a first liquid; introducing uniformly-sized drops of the second liquid into the stream of the first liquid; allowing the drops to react in the stream for a pre-determined period of time; and collecting the capsules.

  16. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry.

    PubMed

    Bolleddula, D A; Berchielli, A; Aliseda, A

    2010-09-15

    Droplet impact has been studied for over a hundred years dating back to the pioneering work of Worthington. In fact, much of his ingenuity contributed to modern day high speed photography. Over the past 40 years significant contributions in theoretical, numerical, and experimental work have been made. Droplet impact is a problem of fundamental importance due to the wealth of applications involved, namely, spray coating, spray painting, delivery of agricultural chemicals, spray cooling, inkjet printing, soil erosion due to rain drop impact, and turbine wear. Here we highlight one specific application, spray coating. Although most studies have focused their efforts on low viscosity Newtonian fluids, many industrial applications such as spray coating utilize more viscous and complex rheology liquids. Determining dominant effects and quantifying their behavior for colloidal suspensions and polymer solutions remains a challenge and thus has eluded much effort. In the last decade, it has been shown that introducing polymers to Newtonian solutions inhibits the rebounding of a drop upon impact, Bergeron et al. Furthermore Bartolo et al. concluded that the normal stress component of the elongational viscosity was responsible for the rebounding inhibition of polymer based non-Newtonian solutions. We aim to uncover the drop impact dynamics of highly viscous Newtonian and complex rheology liquids used in pharmaceutical coating processes. The generation and impact of drops of mm and microm size drops of coating liquids and glycerol/water mixtures on tablet surfaces are systematically studied over a range of We approximately O(1-300), Oh approximately O(10(-2)-1), and Re approximately O(1-700). We extend the range of Oh to values above 1, which are not available to previous studies of droplet impacts. Outcomes reveal that splashing and rebounding are completely inhibited and the role of wettability is negligible in the early stages of impact. The maximum spreading diameter of the drop is compared with three models demonstrating reasonable agreement. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Physical Phenomena in Containerless Glass Processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. S.; Cole, R.

    1985-01-01

    An investigation into the various physical phenomena of importance in the space experiments is under way. Theoretical models of thermocapillary flow in drops, thermal migration of bubbles and droplets, the motion of bubbles inside drops, and the migration of bubbles in rotating liquid bodies are being developed. Experiments were conducted on the migration of bubbles and droplets to the axis of a rotating liquid body, and the rise of bubbles in molten glass. Also, experiments on thermocapillary motion in silicone oils as well as glass melts were performed. Experiments are currently being conducted on the migration of bubbles in a thermal gradient, and on their motion inside unconstrained liquid drops in a rotating liquid.

  18. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  19. The effect of gravity on liquid plug propagation in a two-dimensional channel

    NASA Astrophysics Data System (ADS)

    Suresh, V.; Grotberg, J. B.

    2005-03-01

    The effect of plug propagation speed and gravity on the quasisteady motion of a liquid plug in a two-dimensional liquid-lined channel oriented at an angle α with respect to gravity is studied. The problem is motivated by the transport of liquid plugs instilled into pulmonary airways in medical treatments such as surfactant replacement therapy, drug delivery, and liquid ventilation. The capillary number Ca is assumed to be small, while the Bond number Bo is arbitrary. Using matched asymptotic expansions and lubrication theory, expressions are obtained for the thickness of the trailing films left behind by the plug and the pressure drop across it as functions of Ca, Bo, α and the thickness of the precursor films. When the Bond number is small it is found that the trailing film thickness and the flow contribution to the pressure drop scale as Ca2/3 at leading order with coefficients that depend on Bo and α. The first correction to the film thickness is found to occur at O(Ca) compared to O(Ca4/3) in the Bo=0 case. Asymmetry in the liquid distribution is quantified by calculating the ratio of liquid volumes above and below the centerline of the channel, VR ˙. VR=1 at Bo=0, indicating a symmetric distribution, and decreases with Bo and Ca, but increases with the plug length Lp. The decrease of VR with Ca suggests that higher propagation speeds in small airways may result in less homogenous liquid distribution, which is in contrast to the expected effect in large airways. For given values of the other parameters, a maximum capillary number Cac is identified above which the plug will eventually rupture. When the Bond number becomes equal to an orientation-dependent critical value Boc, it is found that the scaling of the film thickness and pressure drop change to Ca1/2 and Ca1/6, respectively. It is shown that this scaling is valid for small increments of the Bond number over its critical value, Bo=Boc+BCa1/6, but for higher Bond numbers the asymptotic approach breaks down.

  20. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  1. Experimental Measurements of Spreading of Volatile Liquid Droplets

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    Based on the laser shadowgraphic system used by the first author of the present paper, a simple optical system, which combined the laser shadowgraphy and the direct magnified-photography, has been developed to measure the contact angle, the spreading speed, and the evaporation rate. Additionally, the system can also visualize thermocapillary convection inside of a sessile drop simultaneously. The experimental results show that evaporation/condensation and thermocapillary convection in the sessile drop induced by the evaporation strongly affects the wetting and spreading of the drop. Condensation always promotes the wetting and spreading of the drop. Evaporation may increase or decrease the contact angle of the evaporating sessile drops, depending on the evaporation rate. The thermocapillary convection in the drop induced by the evaporation enhances the effects of evaporation to suppress the spreading.

  2. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-11-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  3. Wetting morphologies on randomly oriented fibers.

    PubMed

    Sauret, Alban; Boulogne, François; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-06-01

    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: 1) a column morphology in which the liquid spreads between the fibers, 2) a mixed morphology where a drop grows at one end of the column or 3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid.

  4. The air bubble entrapped under a drop impacting on a solid surface

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.

    2005-12-01

    We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.

  5. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  6. Oscillations of a deformed liquid drop in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Apfel, Robert E.

    1995-07-01

    The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.

  7. Nonlinear Dynamics of Formation of Drops of Non-Newtonian Liquids from Capillaries: Satellite Formation and Flow Transitions

    NASA Astrophysics Data System (ADS)

    Yildirim, Ozgur E.; Basaran, Osman A.

    1999-11-01

    Drop formation from capillaries, and the often undesired phenomenon of satellite generation, play a central role in diverse applications including ink-jet printing, biochip processors, and spray coating, where the working fluid is usually non-Newtonian. Although some work has been done in related areas, the phenomenon of formation of drops of non--Newtonian fluids from capillaries has remained largely unexplored. Here a theoretical approach is adopted to study the dripping of axisymmetric drops of non--Newtonian liquids from capillaries. The constitutive equation used accounts for both shear thinning and strain hardening. First, regular perturbation theory is utilized to reduce the spatial dimension of the governing equations to one. The computations rely on Galerkin/finite element analysis with adaptive finite differencing for time integration. The dynamics are followed beyond the first breakup to investigate conditions for occurrence of satellites. Effect of increasing flow rate is also studied to uncover transitions that occur as one moves from a regime of periodic drop formation to one of jetting.

  8. An evaporation model of multicomponent solution drops

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  9. Irreversible Entropy Production in Two-Phase Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora

    2003-01-01

    This report presents a study of dissipation (irreversible production of entropy) in three-dimensional, temporal mixing layers laden with evaporating liquid drops. The purpose of the study is to examine the effects of evaporating drops on the development of turbulent features in flows. Direct numerical simulations were performed to analyze transitional states of three mixing layers: one without drops, and two that included drops at different initial mass loadings. Without drops, the dissipation is essentially due to viscous effects. It was found that in the presence of drops, the largest contribution to dissipation was made by heating and evaporation of the drops, and that at large length scales, this contribution is positive (signifying that the drops reduce turbulence), while at small scales, this contribution is negative (the drops increase turbulence). The second largest contribution to dissipation was found to be associated with the chemical potential, which leads to an increase in turbulence at large scales and a decrease in turbulence at small scales. The next smaller contribution was found to be that of viscosity. The fact that viscosity effects are only third in order of magnitude in the dissipation is in sharp contrast to the situation for the mixing layer without the drops. The next smaller contribution - that of the drag and momentum of the vapor from the drops - was found to be negative at lower mass loading but to become positive at higher mass loading.

  10. Soft Listeria: actin-based propulsion of liquid drops.

    PubMed

    Boukellal, Hakim; Campás, Otger; Joanny, Jean-François; Prost, Jacques; Sykes, Cécile

    2004-06-01

    We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pearlike shape under the action of the elastic stresses exerted by the actin comet, a tail of cross-linked actin filaments. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.

  11. Heat Transfer and Observation of Droplet-Surface Interactions During Air-Mist Cooling at CSP Secondary System Temperatures

    NASA Astrophysics Data System (ADS)

    Huerta L., Mario E.; Mejía G., M. Esther; Castillejos E., A. Humberto

    2016-04-01

    Air-mists are key elements in the secondary cooling of modern thin steel slab continuous casters. The selection of water, W, and air, A, flow rates, and pressures in pneumatic nozzles open up a wide spectrum of cooling possibilities by their influence on droplet diameter, d, droplet velocity, v, and water impact flux, w. Nonetheless, due to the harsh environment resulting from the high temperatures and dense mists involved, there is very little information about the correlation between heat flux extracted, - q, and mist characteristics, and none about the dynamics of drop-wall interactions. For obtaining both kinds of information, this work combines a steady-state heat flux measuring method with a visualization technique based on a high-speed camera and a laser illumination system. For wall temperatures, T w, between ~723 K and ~1453 K (~450 °C and ~1180 °C), which correspond to film boiling regime, it was confirmed that - q increases with increase in v, w, and T w and with decrease in d. It should be noticed, however, that the increase in w generally decreases the spray cooling effectiveness because striking drops do not evaporate efficiently due to the interference by liquid remains from previous drops. Visualization of the events happening close to the surface also reveals that the contact time of the liquid with the surface is very brief and that rebounding, splashing, sliding, and levitation of drops lead to ineffective contact with the surface. At the center of the mist footprint, where drops impinge nearly normal to the surface those with enough momentum establish intimate contact with it before forming a vapor layer that pushes away the remaining liquid. Also, some drops are observed sliding upon the surface or levitating close to it; these are drops with low momentum which are influenced by the deflecting air stream. At footprint positions where oblique impingement occurs, frequently drops are spotted sliding or levitating and liquid films flowing in from inner positions are seen generating vapor cushions after having stayed in contact with the surface. Visualization of events taking place under high, ~500 kPa, and low, ~200 kPa, air nozzle pressure, p a, conditions suggests that the considerably larger heat extraction obtained under high p a is related to more frequent impingement of finer and faster drops that result in the formation of a dense fog of tiny secondary drops that moves tangentially close to the surface.

  12. Thermally driven oscillations and wave motion of a liquid drop

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Hendricks, R. C.; Schoessow, G. J.

    1977-01-01

    In the state of Leidenfrost boiling, liquid drops are observed to vibrate in a variety of modal patterns. Theories are presented which predict the frequency of oscillation and show that the observed modal patterns of drops correspond to the minimum energy oscillatory excitation state. High-speed photographic techniques were used to record these motions and substantiate the theories. An incipient temperature was also found for water drops in film boiling below which free oscillations do not exist. In addition to these oscillations, photographic sequences are presented which show that wave motion can exist along the circumference of the drop. Following the study of free oscillations, the system was mounted on a shaker table and the drop subjected to a range of forced frequencies and accelerations.

  13. Thermally Driven Oscillations and Wave Motion of a Liquid Drop

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Hendricks, R. C.; Schoessow, G. J.

    1977-01-01

    In the state of Leidenfrost boiling, liquid drops are observed to vibrate in a variety of modal patterns. Theories are presented which predict the frequency of oscillation and show that the observed model patterns of drops correspond to the minimum energy oscillatory excitation state. High-speed photographic techniques were used to record these motions and substantiate the theories. An incipient temperature was also found for water drops in film boiling below which free oscillations do not exist. In addition to these oscillations, photographic sequences are presented which show that wave motion can exist along the circumference of the drop. Following the study of free oscillations, the system was mounted on a shaker table and the drop subjected to a range of forced frequencies and accelerations.

  14. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  15. Impact dynamics of oxidized liquid metal drops.

    PubMed

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We* is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor P(m)=R(0)/R(m), given by the ratio of initial to maximum drop radius, and the impact number K=We*/Re(4/5), which scales with the effective Weber number We* as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number K(c)≈0.1.

  16. Non-Coalescence Effects in Microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1998-01-01

    Non-coalescence of two bodies of the same liquid and the suppression of contact between liquid drops and solid surfaces is being studied through a pair of parallel investigations being conducted at the Georgia Institute of Technology and the Microgravity Research and Support (MARS) Center in Naples, Italy. Both non-coalescence and contact suppression are achieved by exploiting the mechanism of thermocapillary convection to drive a lubricating film of surrounding gas (air) into the space between the two liquid free surfaces (non-coalescence) or between the drop free surface and the solid (contact suppression). Earlier experiments performed included flow-visualization experiments in both axisymmetric and (nearly) two-dimensional geometries and quantitative measurements of film thickness in the contact-suppression case in both geometries. Work done in the second year has focused on obtaining quantitative results relating to the effects of variable air pressure, development of analytical and numerical models of non-coalescing droplets and to pursuing potential applications of these self-lubricated systems.

  17. Spreading of a pendant liquid drop underneath a textured substrate

    NASA Astrophysics Data System (ADS)

    Mistry, Aashutosh; Muralidhar, K.

    2018-04-01

    A pendant drop spreading underneath a partially wetting surface from an initial shape to its final equilibrium configuration and contact angle is studied. A mathematical formulation that quantifies spreading behavior of liquid drops over textured surfaces is discussed. The drop volume and the equilibrium contact angle are treated as parameters in the study. The unbalanced force at the three-phase contact line is modeled as being proportional to the degree of departure from the equilibrium state. Model predictions are verified against the available experimental data in the literature. Results show that the flow dynamics is strongly influenced by the fluid properties, drop volume, and contact angle of the liquid with the partially wetting surface. The drop exhibits rich dynamical behavior including inertial oscillations and gravitational instability, given that gravity tries to detach the drop against wetting contributions. Flow characteristics of drop motion, namely, the radius of the footprint, slip length, and dynamic contact angle in the pendant configuration are presented. Given the interplay among the competing time-dependent forces, a spreading drop can momentarily be destabilized and not achieve a stable equilibrium shape. Instability is then controlled by the initial drop shape as well. The spreading model is used to delineate stable and unstable regimes in the parameter space. Predictions of the drop volume based on the Young-Laplace equation are seen to be conservative relative to the estimates of the dynamical model discussed in the present study.

  18. Investigation into Behavior of a Steam-Water Mixture Flow Through Holes in a Submerged Perforated Sheet at High Void Fractions

    NASA Astrophysics Data System (ADS)

    Melikhov, V. I.; Melikhov, O. I.; Nerovnov, A. A.; Nikonov, S. M.

    2018-01-01

    Processing of experimental data on the pressure difference across a submerged perforated sheet (SPS) revealed that, at sufficiently high void fractions under SPS, the pressure difference across it became less than the pressure difference for the pure steam stream with the same flowrate. To find the cause of this, the effect of a liquid film, which can be formed on the SPS upstream surface as a result of water droplets' impact and can smooth over sharp edges of holes in SDS, was examined. This can decrease the pressure drop across the sharp edges of holes. This assumption was checked through numerical solution to several model problems in the axisymmetric formulation for a steam flow in a round pipe with an orifice. The flow of steam and water was modeled using the viscous incompressible liquid approximation, while the turbulence was described by the k-ɛ model. The evolution of the interfacial area was modeled using the VOF model. The following model problems of steam flow through an orifice were studied: a single-phase flow, a flow through the orifice with a liquid film on its upstream surface, a flow through a chamfered hole, and a flow through the orifice with a liquid film on its upstream surface without liquid supply to the film. The predictions demonstrate that even the approximate account of the liquid film effect on the steam flow yields a considerable decrease in the pressure drop across the hole (from 8 to 24%) due to smoothing its sharp outlet edges over. This makes it possible to make a conclusion that the cause of a decrease in the pressure drop across SPS observed in the experiments at high void fractions is the formation of a liquid film, which smooths the sharp edges of the hole.

  19. New theoretical results for the Lehmann effect in cholesteric liquid crystals

    NASA Technical Reports Server (NTRS)

    Brand, Helmut R.; Pleiner, Harald

    1988-01-01

    The Lehmann effect arising in a cholesteric liquid crystal drop when a temperature gradient is applied parallel to its helical axis is investigated theoretically using a local approach. A pseudoscalar quantity is introduced to allow for cross couplings which are absent in nematic liquid crystals, and the statics and dissipative dynamics are analyzed in detail. It is shown that the Lehmann effect is purely dynamic for the case of an external electric field and purely static for an external density gradient, but includes both dynamic and static coupling contributions for the cases of external temperature or concentration gradients.

  20. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation

    PubMed Central

    Sáenz, P. J.; Wray, A. W.; Che, Z.; Matar, O. K.; Valluri, P.; Kim, J.; Sefiane, K.

    2017-01-01

    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications. PMID:28294114

  1. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation.

    PubMed

    Sáenz, P J; Wray, A W; Che, Z; Matar, O K; Valluri, P; Kim, J; Sefiane, K

    2017-03-15

    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications.

  2. The liquid drop nature of nucleoli.

    PubMed

    Marko, John F

    2012-03-01

    Nucleoli are prominent subnuclear organelles, and are known to be hubs of ribosome synthesis. A recent study of Brangwynne et al. reports that the nucleoli of Xenopus oocytes display "liquid drop" behavior, suggesting that nucleolar structure may be driven by rather simple physical principles.

  3. New Method Developed to Measure Contact Angles of a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2002-01-01

    The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.

  4. Undercooling of acoustically levitated molten drops

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Glicksman, M. E.

    1990-01-01

    It was observed that the acoustically levitated molten SCN (succinonitrile) drops can generally be undercooled to a degree where the impurities in the drop are responsible for the nucleation of the solid phase. However, it was also observed that ultrasound occasionally terminates undercooling of the levitated drops by initiating the nucleation of the solid at an undercooling level which is lower than that found for the nucleation catalyzed by the impurities in the drop. This premature nucleation can be explained by thermodynamic considerations which predict an increase in effective undercooling of the liquid upon the collapse of cavities. Pre-existing gas microbubbles which grow under the influence of ultrasound are suggested as the source of cavitation. The highly undercooled SCN drops can be utilized to measure the growth velocity of the solid in the deeply undercooled region including the hypercooled region.

  5. Measuring the Densities of Aqueous Glasses at Cryogenic Temperatures.

    PubMed

    Shen, Chen; Julius, Ethan F; Tyree, Timothy J; Dan, Ritwik; Moreau, David W; Thorne, Robert

    2017-06-28

    We demonstrate a method for determining the vitreous phase cryogenic temperature densities of aqueous mixtures, and other samples that require rapid cooling, to prepare the desired cryogenic temperature phase. Microliter to picoliter size drops are cooled by projection into a liquid nitrogen-argon (N2-Ar) mixture. The cryogenic temperature phase of the drop is evaluated using a visual assay that correlates with X-ray diffraction measurements. The density of the liquid N2-Ar mixture is adjusted by adding N2 or Ar until the drop becomes neutrally buoyant. The density of this mixture and thus of the drop is determined using a test mass and Archimedes principle. With appropriate care in drop preparation, management of gas above the liquid cryogen mixture to minimize icing, and regular mixing of the cryogenic mixture to prevent density stratification and phase separation, densities accurate to <0.5% of drops as small as 50 pL can readily be determined. Measurements on aqueous cryoprotectant mixtures provide insight into cryoprotectant action, and provide quantitative data to facilitate thermal contraction matching in biological cryopreservation.

  6. Drops in Space: Super Oscillations and Surfactant Studies

    NASA Technical Reports Server (NTRS)

    Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Shi, Tao; Chen, X.; Holt, R. Glynn; Trinh, Eugene; Croonquist, Arvid; Thornton, Kathyrn C.; Sacco, Albert, Jr.; hide

    1996-01-01

    An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995). The observation was precipitated by the action of an intense sound field which produced a deforming force on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion. Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character. Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a theory which relies on spherical symmetry to solve the momentum and mass transport equations.

  7. Analysis of Drop Shapes during Electrowetting on a Dielectric

    NASA Astrophysics Data System (ADS)

    Daneshbod, Yousef

    2005-03-01

    Electrowetting refers to the electrostatic control of the interfacial energy of a liquid on a solid, primarily used for the transport of micro-liter volumes of drops on surfaces with embedded electrode arrays. In the present work, the drop is modeled as a two-dimensional lens-like conductor immersed in an infinite dielectric medium slightly above a planar conductor. A matched asymptotic expansion is used to approximate the electrostatic field surrounding the drop. The outer problem models the drop as a conducting circular segment resting on the conducting plane, each maintained at a separate constant potential. The inner problem corrects the region near the edge of the drop by modeling it as an infinite planar conducting wedge lying slightly above the conducting plane. By matching the inner and outer solutions, the charge density along the entire surface of the drop can be approximated, enabling the calculation of the total capacitance of the system. An energy minimization method similar to that of Shapiro et al. [J. Appl. Phys., 93, 5794 (2003)] is applied to the total energy consisting of the liquid/gas, liquid/solid and solid/gas surface energies, together with the electrostatic contribution, subject to the constraint that the drop volume remains constant. A modified form of the Young-Lippmann equation is thus derived that includes the contribution from the extra capacitance of the drop obtained via matched asymptotics.

  8. LOX/Hydrogen Coaxial Injector Atomization Test Program

    NASA Technical Reports Server (NTRS)

    Zaller, M.

    1990-01-01

    Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.

  9. Experimental Investigation of Rotating Menisci

    NASA Astrophysics Data System (ADS)

    Reichel, Yvonne; Dreyer, Michael E.

    2014-07-01

    In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.

  10. Preconcentration of valsartan by dispersive liquid-liquid microextraction based on solidification of floating organic drop and its determination in urine sample: Central composite design.

    PubMed

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayesteh; Talebianpoor, Mohammad Sharif; Khodadoust, Saeid

    2016-05-01

    In this work, a fast, easy, and efficient dispersive liquid-liquid microextraction method based on solidification of floating organic drop followed by high-performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1-dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min(-1) . The linear response (r(2) = 0.997) was obtained in the range of 0.013-10.0 μg mL(-1) with a limit of detection of 4.0 ng mL(-1) and relative standard deviations of less than 5.0 % (n = 6). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experimental study of the spray characteristics of a research airblast atomizer

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.

    1985-01-01

    Airblast atomization was studied using a especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radially outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.

  12. Experimental study of the spray characteristics of a research airblast atomizer

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.

    1985-01-01

    Airblast atomization was studied using a especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radically outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.

  13. Effect of ice contamination on liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. This paper presents experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  14. Effect of ice contamination of liquid-nitrogen drops in film boiling

    NASA Technical Reports Server (NTRS)

    Schoessow, G. J.; Chmielewski, C. E.; Baumeister, K. J.

    1977-01-01

    Previously reported vaporization time data of liquid nitrogen drops in film boiling on a flat plate are about 30 percent shorter than predicted from standard laminar film boiling theory. This theory, however, had been found to successfully correlate the data for conventional fluids such as water, ethanol, benzene, or carbon tetrachloride. Experimental evidence that some of the discrepancy for cryogenic fluids results from ice contamination due to condensation is presented. The data indicate a fairly linear decrease in droplet evaporation time with the diameter of the ice crystal residue. After correcting the raw data for ice contamination along with convection, a comparison of theory with experiment shows good agreement.

  15. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Dynamics of formation of the liquid-drop phase of laser erosion jets near the surfaces of metal targets

    NASA Astrophysics Data System (ADS)

    Goncharov, V. K.; Kontsevoi, V. L.; Puzyrev, M. V.

    1995-03-01

    An investigation was made of laser erosion jets formed at 0.1-1.5 mm above the surfaces of Pb, Co, Ni, Sn, and Zn targets. A neodymium laser emitting rectangular pulses of 400 μs duration and of energy up to 400 J was used. The diameters, as well as the number density and volume fraction of the metal particles present in the jet, were measured. An analysis of the results showed that the metal liquid drops broke up near the surface and experienced additional evaporation because of their motion opposite to the laser beam.

  16. Microscopic treatment of a barrel drop on fibers and nanofibers.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2005-06-15

    The microscopic approach of Berim and Ruckenstein (J. Phys. Chem. B 108 (2004) 19330, 19339) regarding the shape and stability of a liquid drop on a planar bare solid surface is extended to a liquid barrel drop on the bare surface of a solid cylinder (fiber) of arbitrary radius. Assuming the interaction potentials of the liquid molecules between themselves and with the molecules of the solid of the London-van der Waals form, the potential energy of a liquid molecule with an infinitely long fiber was calculated analytically. A differential equation for the drop profile was derived by the variational minimization of the total potential energy of the drop by taking into account the structuring of the liquid near the fiber. This equation was solved in quadrature and the shape and stability of the barrel drop were analyzed as functions of the radius of the fiber and the microscopic contact angle theta(0) which the drop profile makes with the surface of the fiber. The latter angle is dependent on the fiber radius and on the microscopic parameters of the model (strength of the intermolecular interactions, densities of the liquid and solid phases, hard core radii, etc.). Expressions for the evaluation of the microcontact angle from experimentally measurable characteristics of the drop profile (height, length, volume, location of inflection point) are obtained. All drop characteristics, such as stability, shape, are functions of theta(0) and a certain parameter a which depends on the model parameters. In particular, the range of drop stability consists of three domains in the plane theta(0)-a, separated by two critical curves a=a(c)(theta(0)) and a=a(c1)(theta(0)) [a(c)(theta(0))h(m1) cannot exist, whereas in the third domain (between those curves) the drop can have values of h(m) either smaller than h(m1) or larger than h(m2), where h(m2)>h(m1) is a second critical height. For sufficiently large fiber radii, R(f)1 >/= microm, the critical curves almost coincide and only two domains, the first and the second, remain. The smaller the radius, the larger is the difference between the critical curves and the larger is the second domain of drop stability. The shape of the drop depends on whether the point (theta(0),a) on the theta(0)-a plane is far from the critical curve or near it. In the first case the drop profile has generally a large circular part, while in the second case the shape is either almost planar or contains a long manchon that is similar to a film on the fiber.

  17. Vapor condensation onto a non-volatile liquid drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inci, Levent; Bowles, Richard K., E-mail: richard.bowles@usask.ca

    2013-12-07

    Molecular dynamics simulations of miscible and partially miscible binary Lennard–Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the coremore » of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.« less

  18. Multiphase flow of miscible liquids: jets and drops

    NASA Astrophysics Data System (ADS)

    Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.

    2015-05-01

    Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.

  19. Utilization of Low Gravity Environment for Measuring Liquid Viscosity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin

    1998-01-01

    The method of drop coalescence is used for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in order to allow for examining large volumes affording much higher accuracy for the viscosity calculations than possible for smaller volumes available under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. Results are presented for method validation experiments recently performed on board the NASA/KC-135 aircraft. While the numerical solution was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, glycerine at room temperature, was determined using the liquid coalescence method. The results from these experiments will be discussed.

  20. Pressure Profiles in a Loop Heat Pipe Under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  1. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  2. MACROSCOPIC PATTERNS OF BACTERIA AFTER DEVELOPMENT IN DROPS OF LIQUID MEDIUM

    PubMed Central

    Lorian, Victor

    1963-01-01

    Lorian, Victor (Laboratório Central de Tuberculose, Rio de Janeiro, Brazil). Macroscopic patterns of bacteria after development in drops of liquid medium. J. Bacteriol. 86:582–584. 1963.—Cultures of bacteria in liquid media with 0.06% triphenyltetrazolium hydrochloride showed visible macroscopic development and a characteristic pattern for each strain, when deposited in 0.35-ml drops on the surface of silicone-coated glass or in concavities of slides, after 3 to 4 hr of immobility in an incubator at 37 C. These patterns could be due to sedimentation or autoagglutination occurring as the bacteria developed under these conditions. Images PMID:14066441

  3. Ground-states for the liquid drop and TFDW models with long-range attraction

    NASA Astrophysics Data System (ADS)

    Alama, Stan; Bronsard, Lia; Choksi, Rustum; Topaloglu, Ihsan

    2017-10-01

    We prove that both the liquid drop model in R 3 with an attractive background nucleus and the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model attain their ground-states for all masses as long as the external potential V(x) in these models is of long range, that is, it decays slower than Newtonian (e.g., V ( x ) ≫ | x | - 1 for large |x|.) For the TFDW model, we adapt classical concentration-compactness arguments by Lions, whereas for the liquid drop model with background attraction, we utilize a recent compactness result for sets of finite perimeter by Frank and Lieb.

  4. Gyroscopic instability of a drop trapped inside an inclined circular hydraulic jump.

    PubMed

    Pirat, Christophe; Lebon, Luc; Fruleux, Antoine; Roche, Jean-Sébastien; Limat, Laurent

    2010-08-20

    A drop of moderate size deposited inside a circular hydraulic jump remains trapped at the shock front and does not coalesce with the liquid flowing across the jump. For a small inclination of the plate on which the liquid is impacting, the drop does not always stay at the lowest position and oscillates around it with a sometimes large amplitude, and a frequency that slightly decreases with flow rate. We suggest that this striking behavior is linked to a gyroscopic instability in which the drop tries to keep constant its angular momentum while sliding along the jump.

  5. OsO(4) in ionic liquid [Bmim]PF(6): a recyclable and reusable catalyst system for olefin dihydroxylation. remarkable effect of DMAP.

    PubMed

    Yao, Qingwei

    2002-06-27

    [reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity.

  6. Preliminary drop-tower experiments on liquid-interface geometry in partially filled containers at zero gravity

    NASA Technical Reports Server (NTRS)

    Smedley, G.

    1990-01-01

    Plexiglass containers with rounded trapezoidal cross sections were designed and built to test the validity of Concus and Finn's existence theorem (1974, 1983) for a bounded free liquid surface at zero gravity. Experiments were carried out at the NASA Lewis two-second drop tower. Dyed ethanol-water solutions and three immiscible liquid pairs, with one liquid dyed, were tested. High-speed movies were used to record the liquid motion. Liquid rose to the top of the smaller end of the containers when the contact angle was small enough, in agreement with the theory. Liquid interface motion demonstrated a strong dependence on physical properties, including surface roughness and contamination.

  7. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.

    PubMed

    Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q

    2015-05-01

    The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Modeling drop impacts on inclined flowing soap films

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Small drops impinging on soap films flowing at an angle primarily exhibit three fundamental regimes of post-impact dynamics: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow, and (c) it pierces through the film. During impact, the drop deforms along with a simultaneous, almost elastic deformation of the film transverse to the stream direction. Hence, the governing dynamics for this interaction present the rare opportunity to explore the in-tandem effects of elasticity and hydrodynamics alike. In this talk, we outline the analytical framework to study the drop impact dynamics. The model assumes a deformable drop and a deformable three-dimensional soap film and invokes a parametric study to qualify the three mentioned impact types. The physical parameters include the impact angle, drop impact speed, and the diameters of the drop prior to and during impact when it deforms and spreads out. Our model system offers a path towards optimization of interactions between a spray and a flowing liquid.

  9. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.

  10. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    PubMed

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Drop splashing is independent of substrate wetting

    NASA Astrophysics Data System (ADS)

    Latka, Andrzej; Boelens, Arnout M. P.; Nagel, Sidney R.; de Pablo, Juan J.

    2018-02-01

    A liquid drop impacting a dry solid surface with sufficient kinetic energy will splash, breaking apart into numerous secondary droplets. This phenomenon shows many similarities to forced wetting, including the entrainment of air at the contact line. Because of these similarities and the fact that forced wetting has been shown to depend on the wetting properties of the surface, existing theories predict splashing to depend on wetting properties as well. However, using high-speed interference imaging, we observe that at high capillary numbers wetting properties have no effect on splashing for various liquid-surface combinations. Additionally, by fully resolving the Navier-Stokes equations at length and time scales inaccessible to experiments, we find that the shape and motion of the air-liquid interface at the contact line/edge of the droplet are independent of wettability. We use these findings to evaluate existing theories and to compare splashing with forced wetting.

  12. Liquid fuel spray processes in high-pressure gas flow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1985-01-01

    Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.

  13. Drop Impingement on Highly Wetting Micro/Nano Porous Surfaces

    NASA Astrophysics Data System (ADS)

    Buie, Cullen; Joung, Youngsoo

    2011-11-01

    Recently, we developed a novel fabrication method using a combination of electrophoretic deposition (EPD) and break down anodization (BDA) to achieve highly wetting nanoporous surfaces with microscale features. In this study we investigate droplet impingement behavior on these surfaces as a function of impact velocity, droplet size, and liquid properties. We observe impingement modes we denote as ``necking'' (droplet breaks before full penetration in the porous surface), ``spreading'' (continuous wicking into the porous surface), and ``jetting'' (jets of liquid emanate from the edges of the wicking liquid). To predict the droplet impingement modes, we've developed a non-dimensional parameter that is a function of droplet velocity, dynamic viscosity, effective pore radius and contact angle. The novel dimensionless parameter successfully predicts drop impingement modes across multiple fluids. Results of this study will inform the design of spray impingement cooling systems for electronics applications where the ``spreading'' mode is preferred.

  14. Liquid fuel spray processes in high-pressure gas flow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1986-01-01

    Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.

  15. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR 3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R 3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  16. Liquid rims collisions and the formation of fines

    NASA Astrophysics Data System (ADS)

    Néel, Baptiste; Villermaux, Emmanuel

    2017-11-01

    As an elementary mechanism for the formation of drops from liquid sheets, we investigate the collision of liquid cylinders. This results from the opening of two nearby holes on a liquid film, growing at a constant speed while collecting liquid into two rims, eventually colliding with each other. In this surface tension driven phenomenon, a unique Weber number We = ρ(2 V) 2 2 a / σ controls a variety of behaviors (ρ , σ are the liquid density and surface tension, and 2 V the relative velocity of the impinging rims, each of individual radius a). At low We , the rims merge through an inelastic, dissipative collision which produces a corrugated ligament, finally breaking into drops of size scaling like a, on average. Above a critical Wec 60 , the collision leads to a splash, with the formation of a thin transverse liquid sheet. We will describe the expansion-retraction dynamics of this secondary sheet and its destabilization, responsible for the production of a mist of finer droplets. These alter sensibly the mean, and overall drops size distribution, thus weighted by a substantial fraction of so-called fines.

  17. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  18. Microgravity

    NASA Image and Video Library

    1997-04-01

    Apfel's excellent match: This series of photos shows a water drop containing a surfactant (Triton-100) as it experiences a complete cycle of superoscillation on U.S. Microgravity Lab-2 (USML-2; October 1995). The time in seconds appears under the photos. The figures above the photos are the oscillation shapes predicted by a numerical model. The time shown with the predictions is nondimensional. Robert Apfel (Yale University) used the Drop Physics Module on USML-2 to explore the effect of surfactants on liquid drops. Apfel's research of surfactants may contribute to improvements in a variety of industrial processes, including oil recovery and environmental cleanup.

  19. 40 CFR Table 7 to Subpart Ddddd of... - Establishing Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Particulate matter, mercury, or total selected metals a. Wet scrubber operating parameters i. Establish a site... drop and liquid flow rate monitors and the particulate matter, mercury, or total selected metals... from the pressure drop and liquid flow rate monitors and the particulate matter, mercury, or total...

  20. Growth of Juniperus and Potentilla using Liquid Exponential and Controlled-release Fertilizers

    Treesearch

    R. Kasten Dumroese

    2003-01-01

    Juniperus scopularum Sarg. (Rocky Mountain juniper) and Potentilla fruticosa L. 'Gold Drop (gold drop potentilla) plants grown in containers had similar or better morphology, higher nitrogen concentrations and contents, and higher N-use efficiency when grown with liquid fertilizer applied at an exponentially increasing rate as...

  1. Evaluation of a Proposed Drift Reduction Technology High-Speed Wind Tunnel Testing Protocol

    DTIC Science & Technology

    2009-03-01

    05: “Standard Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Nonimaging Light- Scattering Instruments” 15...Method for Determining Liquid Drop Size Characteris- tics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards

  2. Liquid jet response to internal modulated ultrasonic radiation pressure and stimulated drop production.

    PubMed

    Lonzaga, Joel B; Osterhoudt, Curtis F; Thiessen, David B; Marston, Philip L

    2007-06-01

    Experimental evidence shows that a liquid jet in air is an acoustic waveguide having a cutoff frequency inversely proportional to the jet diameter. Ultrasound applied to the jet supply liquid can propagate within the jet when the acoustic frequency is near to or above the cutoff frequency. Modulated radiation pressure is used to stimulate large amplitude deformations and the breakup of the jet into drops. The jet response to the modulated internal ultrasonic radiation pressure was monitored along the jet using (a) an optical extinction method and (b) images captured by a video camera. The jet profile oscillates at the frequency of the radiation pressure modulation and where the response is small, the amplitude was found to increase in proportion to the square of the acoustic pressure amplitude as previously demonstrated for oscillating drops [P.L. Marston and R.E. Apfel, J. Acoust. Soc. Am. 67, 27-37 (1980)]. Small amplitude deformations initially grow approximately exponentially with axial distance along the jet. Though aspects of the perturbation growth can be approximated from Rayleigh's analysis of the capillary instability, some detailed features of the observed jet response to modulated ultrasound are unexplained neglecting the effects of gravity.

  3. Final Report fir DE-SC0005507 (A1618): The Development of an Improved Cloud Microphysical Product for Model and Remote Sensing Evaluation using RACORO Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarquhar, Greg M.

    2012-09-21

    We proposed to analyze data collected during the Routine Aerial Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) in order to develop an integrated product of cloud microphysical properties (number concentration of drops in different size bins, total liquid drop concentration integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds, effective radius of water drops, and radar reflectivity factor) that could be used to evaluate large-eddy simulations (LES), general circulation models (GCMs) and ground-based remote sensing retrievals, and to develop cloud parameterizations with the end goal of improving the modeling ofmore » cloud processes and properties and their impact on atmospheric radiation. We have completed the development of this microphysical database. We investigated the differences in the size distributions measured by the Cloud and Aerosol Spectrometer (CAS) and the Forward Scattering Probe (FSSP), between the one dimensional cloud imaging probe (1DC) and the two-dimensional cloud imaging probe (2DC), and between the bulk LWCs measured by the Gerber probe against those derived from the size resolved probes.« less

  4. Modeling, investigation and formulation of hydrophobic coatings for potential self-cleaning applications

    NASA Astrophysics Data System (ADS)

    Rios, Pablo Fabian

    Self-cleaning surfaces have received a great deal of attention, both in research and commercial applications. Transparent and non-transparent self-cleaning surfaces are highly desired. The Lotus flower is a symbol of purity in Asian cultures, even when rising from muddy waters it stays clean and untouched by dirt. The Lotus leaf "self-cleaning" surface is hydrophobic and rough, showing a two-layer morphology. While hydrophobicity produces a high contact angle, surface morphology reduces the adhesion of dirt and water to the surface, thus water drops slide easily across the leaf carrying the dirt particles with them. Nature example in the Lotus-effect and extensive scientific research on related fields have rooted wide acceptance that high hydrophobicity can be obtained only by a proper combination of surface chemistry and roughness. Most researchers relate hydrophobicity to a high contact angle. However, the contact angle is not the only parameter that defines liquid-solid interactions. An additional parameter, the sliding angle, related to the adhesion between the liquid drop and the solid surface is also important in cases where liquid sliding is involved, such as self-cleaning applications. In this work, it is postulated that wetting which is related to the contact angle, and interfacial adhesion, which is related to the sliding angle, are interdependent phenomena and have to be considered simultaneously. A variety of models that relate the sliding angle to forces developed along the contact line between a liquid drop and a solid surface have been proposed in the literature. A new model is proposed here that quantifies the drop sliding phenomenon, based also on the interfacial adhesion across the contact area of the liquid/solid interface. The effects of roughness and chemical composition on the contact and sliding angles of hydrophobic smooth and rough surfaces were studied theoretically and experimentally. The validity of the proposed model was investigated and compared with the existing models. Ultra-hydrophobic non-transparent and transparent coatings for potential self-cleaning applications were produced using hydrophobic chemistry and different configurations of roughening micro and nano-particles, however they present low adhesion and durability. Durability and stability enhancement of such coatings was attempted and improved by different methods.

  5. The Illustrated Topology of Liquid Drops during Formation

    ERIC Educational Resources Information Center

    Libii, Josue Njock

    2004-01-01

    High-speed photography can show that the shape often used for a newly forming drop is wrong. Knowledge of drop behaviour is important for inkjet printers, and a close look at the formation of drops as given here can enhance critical observation, thinking and analysis.

  6. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Chen, C. P.

    2004-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experiments also showed that the breakup length of the liquid core is sharply shortened as the liquid jet is changed from the laminar to the turbulent flow conditions. In the numerical and physical modeling arena, most of commonly used atomization models do not include the turbulence effect. Limited attempts have been made in modeling the turbulence phenomena on the liquid jet disintegration. The subject correlation and models treat the turbulence either as an only source or a primary driver in the breakup process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. In the course of this study, two widely used models, Reitz's primary atomization (blob) and Taylor-Analogy-Break (TAB) secondary droplet breakup by O Rourke et al. are examined. Additional terms are derived and implemented appropriately into these two models to account for the turbulence effect on the atomization process. Since this enhancement effort is based on a framework of the two existing atomization models, it is appropriate to denote the two present models as T-blob and T-TAB for the primary and secondary atomization predictions, respectively. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic time scales and the initial flow conditions. This treatment offers a balance of contributions of individual physical phenomena on the liquid breakup process. For the secondary breakup, an addition turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. The turbulence energy is also considered in this process.

  7. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  8. A deformable surface model for real-time water drop animation.

    PubMed

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  9. Fluorinated pickering emulsions impede interfacial transport and form rigid interface for the growth of anchorage-dependent cells.

    PubMed

    Pan, Ming; Rosenfeld, Liat; Kim, Minkyu; Xu, Manqi; Lin, Edith; Derda, Ratmir; Tang, Sindy K Y

    2014-12-10

    This study describes the design and synthesis of amphiphilic silica nanoparticles for the stabilization of aqueous drops in fluorinated oils for applications in droplet microfluidics. The success of droplet microfluidics has thus far relied on one type of surfactant for the stabilization of drops. However, surfactants are known to have two key limitations: (1) interdrop molecular transport leads to cross-contamination of droplet contents, and (2) the incompatibility with the growth of adherent mammalian cells as the liquid-liquid interface is too soft for cell adhesion. The use of nanoparticles as emulsifiers overcomes these two limitations. Particles are effective in mitigating undesirable interdrop molecular transport as they are irreversibly adsorbed to the liquid-liquid interface. They do not form micelles as surfactants do, and thus, a major pathway for interdrop transport is eliminated. In addition, particles at the droplet interface provide a rigid solid-like interface to which cells could adhere and spread, and are thus compatible with the proliferation of adherent mammalian cells such as fibroblasts and breast cancer cells. The particles described in this work can enable new applications for high-fidelity assays and for the culture of anchorage-dependent cells in droplet microfluidics, and they have the potential to become a competitive alternative to current surfactant systems for the stabilization of drops critical for the success of the technology.

  10. "Pressure Blocking" Effect in the Growing Vapor Bubble in a Highly Superheated Liquid

    NASA Astrophysics Data System (ADS)

    Zudin, Yu. B.; Zenin, V. V.

    2016-09-01

    The problem on the growth of a vapor bubble in a liquid whose superheating enthalpy exceeds the phase transition heat has been considered. A physical model of the "pressure blocking" in the bubble is presented. The problem for the conditions of the experiment on the effervescence of a butane drop has been solved numerically. An algorithm for constructing an analytical solution of the problem on the bubble growth in a highly superheated liquid is proposed.

  11. Nuclear Matter Properties with the Re-evaluated Coefficients of Liquid Drop Model

    NASA Astrophysics Data System (ADS)

    Chowdhury, P. Roy; Basu, D. N.

    2006-06-01

    The coefficients of the volume, surface, Coulomb, asymmetry and pairing energy terms of the semiempirical liquid drop model mass formula have been determined by furnishing best fit to the observed mass excesses. Slightly different sets of the weighting parameters for liquid drop model mass formula have been obtained from minimizations of \\chi 2 and mean square deviation. The most recent experimental and estimated mass excesses from Audi-Wapstra-Thibault atomic mass table have been used for the least square fitting procedure. Equation of state, nuclear incompressibility, nuclear mean free path and the most stable nuclei for corresponding atomic numbers, all are in good agreement with the experimental results.

  12. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  13. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  14. Cavity optomechanics in a levitated helium drop

    NASA Astrophysics Data System (ADS)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  15. A computer-controlled apparatus for micrometric drop deposition at liquid surfaces

    NASA Astrophysics Data System (ADS)

    Peña-Polo, Franklin; Trujillo, Leonardo; Sigalotti, Leonardo Di G.

    2010-05-01

    A low-cost, automated apparatus has been used to perform micrometric deposition of small pendant drops onto a quiet liquid surface. The approach of the drop to the surface is obtained by means of discrete, micron-scale translations in order to achieve deposition at adiabatically zero velocity. This process is not only widely used in scientific investigations in fluid mechanics and thermal sciences but also in engineering and biomedical applications. The apparatus has been designed to produce accurate deposition onto the surface and minimize the vibrations induced in the drop by the movement of the capillary tip. Calibration tests of the apparatus have shown that a descent of the drop by discrete translational steps of ˜5.6 μm and duration of 150-200 ms is sufficient to minimize its penetration depth into the liquid when it touches the surface layer and reduce to a level of noise the vibrations transmitted to it by the translation of the dispenser. Different settings of the experimental setup can be easily implemented for use in a variety of other applications, including deposition onto solid surfaces, surface tension measurements of pendant drops, and wire bonding in microelectronics.

  16. Model of Mixing Layer With Multicomponent Evaporating Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2004-01-01

    A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The study is motivated by the fact that typical real petroleum fuels contain hundreds of chemical species. Previously, for the sake of computational efficiency, spray studies were performed using either models based on a single representative species or models based on surrogate fuels of at most 15 species. The present multicomponent model makes it possible to perform more realistic simulations by accounting for hundreds of chemical species in a computationally efficient manner. The model is used to perform Direct Numerical Simulations in continuing studies directed toward understanding the behavior of liquid petroleum fuel sprays. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and the drops, respectively. This representation is consistent with the expected volumetrically small loading of the drops in gas (of the order of 10 3), although the mass loading can be substantial because of the high ratio (of the order of 103) between the densities of liquid and gas. The drops are treated as point sources of mass, momentum, and energy; this representation is consistent with the drop size being smaller than the Kolmogorov scale. Unsteady drag, added-mass effects, Basset history forces, and collisions between the drops are neglected, and the gas is assumed calorically perfect. The model incorporates the concept of continuous thermodynamics, according to which the chemical composition of a fuel is described probabilistically, by use of a distribution function. Distribution functions generally depend on many parameters. However, for mixtures of homologous species, the distribution can be approximated with acceptable accuracy as a sole function of the molecular weight. The mixing layer is initially laden with drops in its lower stream, and the drops are colder than the gas. Drop evaporation leads to a change in the gas-phase composition, which, like the composition of the drops, is described in a probabilistic manner

  17. On the uniqueness of the receding contact angle: effects of substrate roughness and humidity on evaporation of water drops.

    PubMed

    Pittoni, Paola G; Lin, Chia-Hui; Yu, Teng-Shiang; Lin, Shi-Yow

    2014-08-12

    Could a unique receding contact angle be indicated for describing the wetting properties of a real gas-liquid-solid system? Could a receding contact angle be defined if the triple line of a sessile drop is not moving at all during the whole measurement process? To what extent is the receding contact angle influenced by the intrinsic properties of the system or the measurement procedures? In order to answer these questions, a systematic investigation was conducted in this study on the effects of substrate roughness and relative humidity on the behavior of pure water drops spreading and evaporating on polycarbonate (PC) surfaces characterized by different morphologies. Dynamic, advancing, and receding contact angles were found to be strongly affected by substrate roughness. Specifically, a receding contact angle could not be measured at all for drops evaporating on the more rugged PC surfaces, since the drops were observed strongly pinning to the substrate almost until their complete disappearance. Substrate roughness and system relative humidity were also found responsible for drastic changes in the depinning time (from ∼10 to ∼60 min). Thus, for measurement observations not sufficiently long, no movement of the triple line could be noted, with, again, the failure to find a receding contact angle. Therefore, to keep using concepts such as the receding contact angle as meaningful specifications of a given gas-liquid-solid system, the imperative to carefully investigate and report the inner characteristics of the system (substrate roughness, topography, impurities, defects, chemical properties, etc.) is pointed out in this study. The necessity of establishing methodological standards (drop size, measurement method, system history, observation interval, relative humidity, etc.) is also suggested.

  18. 40 CFR Table 2 to Subpart Kkkkk of... - Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Maintain the average scrubber pressure drop for each 3-hour block period at or above the average pressure drop established during the performance test; andb. Maintain the average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test...

  19. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  20. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.

    PubMed

    Mohammadi, Morteza; Tembely, Moussa; Dolatabadi, Ali

    2017-02-28

    Dynamical analysis of an impacting liquid drop on superhydrophobic surfaces is mostly carried out by evaluating the droplet contact time and maximum spreading diameter. In this study, we present a general transient model of the droplet spreading diameter developed from the previously defined mass-spring model for bouncing drops. The effect of viscosity was also considered in the model by definition of a dash-pot term extracted from experiments on various viscous liquid droplets on a superhydrophobic surface. Furthermore, the resultant shear force of the stagnation air flow was also considered with the help of the classical Homann flow approach. It was clearly shown that the proposed model predicts the maximum spreading diameter and droplet contact time very well. On the other hand, where stagnation air flow is present in contradiction to the theoretical model, the droplet contact time was reduced as a function of both droplet Weber numbers and incoming air velocities. Indeed, the reduction in the droplet contact time (e.g., 35% at a droplet Weber number of up to 140) was justified by the presence of a formed thin air layer underneath the impacting drop on the superhydrophobic surface (i.e., full slip condition). Finally, the droplet wetting model was also further developed to account for low temperature through the incorporation of classical nucleation theory. Homogeneous ice nucleation was integrated into the model through the concept of the reduction of the supercooled water drop surface tension as a function of the gas-liquid interface temperature, which was directly correlated with the Nusselt number of incoming air flow. It was shown that the experimental results was qualitatively predicted by the proposed model under all supercooling conditions (i.e., from -10 to -30 °C).

  1. Characteristics of Evaporator with a Lipuid-Vapor Separator

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Masaki; Tanaka, Naoki; Yumikura, Tsuneo

    Flow pattern of refrigerant in a heat exchanger tube changes depending on vapor quality, tube diameter, refrigerant flow rate and refrigerant properties. High flow rate causes mist flow where the quality is from 0.8 to 1.0. 1n this flow pattern, the liquid film detaches from the tube wall so that the heat flow is intervened. The heat transfer coefficient generally increases with the flow rate. But the pressure drop of refrigerant flow simultaneously increases and the region of the mist flow enlarges. In order to reduce the pressure drop and suppress the mist flow, we have developped a small liquid-vapor separator that removes the vapor from the evaporating refrigerant flow. This separator is equipped in the middle of the evaporator where the flow pattern is annular. The experiments to evaluate the effect of this separator were carried out and the following conclutions were obtained. (1) Average heat transfer coefficient increases by 30-60 %. (2) Pressure drop reduces by 20-30 %. (3) Cooling Capacity increases by 2-9 %.

  2. Shaping drops with textured surfaces

    NASA Astrophysics Data System (ADS)

    Ehlinger, Quentin; Biance, Anne-Laure; Ybert, Christophe

    2017-11-01

    When a drop impacts a substrate, it can behave differently depending on the nature of the surface and of the liquid (spreading, bouncing, resting, splashing ...). Understanding these behaviors is crucial to predict the drop morphology during and after impact. Whereas surface wettability has extensively been studied, the effect of surface roughness remains hardly explored. In this work, we consider the impact of a drop in a pure non-wetting situation by using superheated substrates i.e. in the Leidenfrost regime. The surface texture consists of a well-controlled microscopic defect shaped with photolithography on a smooth silicon wafer. Different regimes are observed, depending on the distance between the defect and the impact point and the defect size. Comparing the lamella thickness versus the defect height proves relevant as the transition criteria between regimes. Others characteristics of the drop behavior (direction of satellite droplet ejection, lamella rupture) are also well captured by inertial/capillary models. Drop impacts on multiple defects are also investigated and drop shape well predicted considering the interactions between the local flow and the defects.

  3. Sensitive Determination of Cd in Small-Volume Samples by Miniaturized Liquid Drop Anode Atmospheric Pressure Glow Discharge Optical Emission Spectrometry.

    PubMed

    Jamroz, Piotr; Greda, Krzysztof; Dzimitrowicz, Anna; Swiderski, Krzysztof; Pohl, Pawel

    2017-06-06

    A novel liquid drop anode (LDA) direct current atmospheric pressure glow discharge (dc-APGD) system was applied for direct determination of Cd in liquid microsamples (50 μL) by optical emission spectrometry (OES). The microdischarge was generated in open-to-air atmosphere between a solid pin type tungsten cathode and a liquid drop placed on a graphite disk anode. The arrangement of the graphite disk placed on a PTFE chip platform as well as the solid pin type cathode was simple and robust. The limit of detection (LOD) of Cd for the developed LDA-APGD-OES method was 0.20-0.40 μg L -1 , while precision (as the relative standard deviation for the repeated measurements) was within 2-5%. By using the liquid drop of 50 μL, the linearity range of 1-1000 μg L -1 was achieved. The effect of addition of the low-molecular weight (LMW) organic compounds, easily ionized elements (EIEs), i.e., Ca, K, Mg, and Na, as well as the foreign ions (Al, Cu, Fe, Mn, Zn) to the solution on the in situ atomization and excitation processes occurred during operation of the LDA-APGD system, and the response of Cd was studied. Validation of the proposed method was demonstrated by analysis of Lobster hepatopancreas (TORT-2), pig kidney (ERM-BB186), and groundwater (ERM-CA615) certified reference materials (CRMs) and recoveries of Cd from water samples spiked with 25 μg L -1 of Cd. Very good agreement between the found and certified values of Cd in the CRMs (the recoveries were within the range of 96.3-99.6%) indicated trueness of the method and its reliability for determination of traces of Cd. In the case of the spiked water samples, the recoveries obtained were in the range from 95.2 to 99.5%.

  4. Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-10-31

    A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.

  5. Maximum spreading of liquid drop on various substrates with different wettabilities

    NASA Astrophysics Data System (ADS)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  6. Investigation and visualization of liquid-liquid flow in a vertically mounted Hele-Shaw cell: flow regimes, velocity and shape of droplets

    NASA Astrophysics Data System (ADS)

    Shad, S.; Gates, I. D.; Maini, B. B.

    2009-11-01

    The motion and shape of a liquid drop flowing within a continuous, conveying liquid phase in a vertical Hele-Shaw cell were investigated experimentally. The continuous phase was more viscous and wetted the bounding walls of the Hele-Shaw cell. The gap between the Hele-Shaw plates was set equal to 0.0226 cm. Four different flow regimes were observed: (a) small-droplet flow, (b) elongated-droplet flow, (c) churn flow and (d) channel flow. At low capillary number, that is, when capillary forces are larger than viscous forces, the droplet shape was irregular and changed with time and distance, and it moved with lower velocity than that of the conveying phase. At higher capillary number, several different shapes of stabilized elongated and flattened drops were observed. In contrast to gas-liquid systems, the velocities of droplets are higher than that of conveying liquid. New correlations derived from dimensionless analysis and fitted to the experimental data were generated to predict the elongated-drop velocity and aspect ratio.

  7. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    PubMed

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  8. Air cushioning in drop impact

    NASA Astrophysics Data System (ADS)

    de Ruiter, Jolet; Oh, Jung; van den Ende, Dirk; Mugele, Frieder

    2011-11-01

    Liquid drops impacting on solid surfaces deform under the influence of the ambient gas that needs to be squeezed out before a true solid-liquid contact can be established. We demonstrate experimentally the existence of this theoretically predicted air layer and follow its evolution with time for moderate impact speeds (We ~ 1 ... 10) using reflection interference microscopy with a thickness resolution of approximately 10nm. For a wide range of fluid properties (ρ, γ, η) we find a very robust generic behavior that includes the predicted formation of a dimple in the center of the drop with a local minimum of the air film thickness at its boundary. Depending on We as well as the fluid properties, a skating layer of more or less constant thickness as well as a second local minimum of the air film thickness farther away from the drop center develop in time. Eventually, solid-liquid contact is generated via random nucleation event. The nucleation spot spreads across the drop-substrate interface within a few milliseconds. This process can lead to the entrapment of an air bubble.

  9. Impact of a single drop on the same liquid: formation, growth and disintegration of jets

    NASA Astrophysics Data System (ADS)

    Agbaglah, G. Gilou; Deegan, Robert

    2015-11-01

    One of the simplest splashing scenarios results from the impact of a single drop on on the same liquid. The traditional understanding of this process is that the impact generates a jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are bifurcations in the multiplicity of jets. First, we study the formation, growth and disintegration of jets following the impact of a drop on a thin film of the same liquid using a combination of numerical simulations and linear stability theory. We obtain scaling relations from our simulations and use these as inputs to our stability analysis. We also use experiments and numerical simulations of a single drop impacting on a deep pool to examine the bifurcation from a single jet into two jets. Using high speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet.

  10. Transient electrohydrodynamics of a liquid drop.

    PubMed

    Esmaeeli, Asghar; Sharifi, Payam

    2011-09-01

    The transient behavior of a leaky dielectric liquid drop under a uniform electric field of small strength is investigated. It is shown that for small distortion from a spherical shape, the drop deforms to an ellipsoid, and the deformation time history is represented by D=D(∞)[1-exp(-t/τ)], where D(∞) is the steady-state deformation and τ=(aμ(o)/γ)(19μ+16)(2μ+3)/(40μ+40)is the characteristic time, a, γ, μ(o) and μ being the drop radius, the surface tension, the viscosity of ambient fluid, and ratio of the drop viscosity to that of the ambient fluid, respectively. The contributions of the net normal and tangential electrical stresses in the degree of deformation and fluid flow strength are also determined.

  11. Droplet size distributions in waveplate demisters using optical techniques

    NASA Astrophysics Data System (ADS)

    Layton, J. S.; Zaidi, Sohail H.; Altunbas, Ayse; Walters, J. K.; Azzopardi, B. J.

    1997-11-01

    Droplet separators or demisters are extensively used in the chemical industry. The effectiveness of many demisters is decisively affected by droplet sizes. As the misty gas passes through the demister, the liquid droplets impinge on the walls and form a liquid film. A part of this film can be re-entrained by the gas flow in the form of larger droplets. These droplets can escape the demister, affecting its efficiency. The measurement of drop size distributions inside the zigzag passages of the demister can provide useful information about the complex flow phenomena occurring within the demister. In the present work, a wave plate demister of the industrial dimensional specifications has been chosen to investigate the drop size distributions at various flow conditions. The laser diffraction technique has been employed for this purpose. This paper describes the suitability of the technique and presents some laser results to describe the effect of changing flow conditions inside and outside the demister.

  12. The undercooling of liquids

    NASA Technical Reports Server (NTRS)

    Turnbull, D.

    1984-01-01

    The formation by melt quenching of such metastable structures as glassy or microcrystalline solids and highly supersaturated solutions is made possible by the extreme resistance of most melts to homophase crystal nucleation at deep undercooling. This nucleation resistance contrasts sharply with the very low kinetic resistance to the movement of crystal-melt interfaces, once formed, in metals and other fluid systems at even minute undercooling. The methods of nucleation study which have proven especially effective in bypassing nucleation by heterophase impurities thereby exposing the high resistance of melts to homophase nucleation may be summarized as follows: observation of the crystallization behavior of dispersed small droplets; drop tube experiments in which liquid drops solidify, under containerless conditions, during their fall in the tube; and observation of the crystallization of bulk specimens immersed in fluxes chosen to dissolve or otherwise deactivate (e.g., by wetting) heterophase nucleants. This method has proven to be remarkably effective in deactivating such nucleants in certain pure metals.

  13. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past, however none of these studies identified the crucial differences between the subcritical and supercritical behavior. In fact, in two of these studies, it was found that the subcritical and supercritical behavior is similar as the drop diameter decreased according to the classical d(exp 2)-law over a wide range of pressures and drop diameters. The present study is devoted to the exploration of differences in fluid-behavior characteristics under subcritical and supercritical conditions in the particular case of heptane fluid drops in nitrogen; these substances were selected because of the availability of experimental observations for model validation.

  14. Viscosity Measurement using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    We present in here details of a new method, using drop coalescence, for application in microgravity environment for determining the viscosity of highly viscous undercooled liquids. The method has the advantage of eliminating heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Also, due to the rapidity of the measurement, homogeneous nucleation would be avoided. The technique relies on both a highly accurate solution to the Navier-Stokes equations as well as on data gathered from experiments conducted in near zero gravity environment. The liquid viscosity is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity of two coalescing drops. Results are presented from two validation experiments of the method which were conducted recently on board the NASA KC-135 aircraft. In these tests the viscosity of a highly viscous liquid, such as glycerine at different temperatures, was determined to reasonable accuracy using the liquid coalescence method. The experiments measured the free surface velocity of two glycerine drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The free surface velocity was then compared with the computed values obtained from different viscosity values. The results of these experiments were found to agree reasonably well with the calculated values.

  15. Droplet Breakup Mechanisms in Air-blast Atomizers

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  16. Transport Powder and Liquid Samples by Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  17. Elasticity modulated Electrowetting of a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.

  18. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  19. Drop impact on flowing liquid films: asymmetric splashing

    NASA Astrophysics Data System (ADS)

    Ismail, Renad; Che, Zhizhao; Rotkovitz, Lauren; Adebayo, Idris; Matar, Omar

    2015-11-01

    The splashing of droplets on flowing liquid films is studied experimentally using high-speed photography. The flowing liquid films are generated on an inclined substrate. The flow rate of the liquid film, the inclination angle, and the droplet speed are controlled and their effects on the splashing process studied. Due to the flow in the liquid film and the oblique impact direction, the splashing process is asymmetric. The propagation of the asymmetric crown and the generation of secondary droplets on the rim of the crown are analysed through image processing. The results show that the flow in the liquid films significantly affects the propagation of the liquid crown and the generation of secondary droplets. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  20. Measuring Rock-Fluid Adhesion Directly

    NASA Astrophysics Data System (ADS)

    Tadmor, R.

    2017-12-01

    We show how to measure directly solid-liquid adhesion. We consider the normal adhesion, the work adhesion, and the lateral adhesion. The technique at the center of the method is Centrifugal Adhesion Balance (CAB) which allows coordinated manipulation of normal and lateral forces. For example: 1. It allows to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. 2. It allows to increase the lateral force at zero normal force, mimicking zero gravity. From this one can obtain additional solid-liquid interaction parameters. When performing work of adhesion measurements, the values obtained are independent of drop size and are in agreement with theoretical predictions.

  1. Consistent Large-Eddy Simulation of a Temporal Mixing Layer Laden with Evaporating Drops. Part 2; A Posteriori Modelling

    NASA Technical Reports Server (NTRS)

    Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette

    2005-01-01

    Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.

  2. Solid surface wetting and the deployment of drops in microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Depew, J.

    1994-01-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simultaneously retracting dual-injector system in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors under dynamic stimuli from the continuous injection flow as well as from the stepped motion of the injectors. The final released drop must have a well determined volume and negligible residual linear or angular momentum. The outcome of Earth-based short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts. They were successfully utilized during the USML-1 Spacelab mission as the primary tips. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module range between 0.3 and 2.7 cm. The tests conducted on-orbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  3. Solid Surface Wetting and the Deployment of Drops in Microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Depew, J.

    1994-01-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simuttaneously retracting dual-injector system used in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors even under dynamic stimuli due to continuous injection flow as well as to the stepped motion of the injectors, and the final released drop must have a well determined volume as well as negligible residual linear or angular momentum from the deployment process. The outcome of Earthbased short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts and were successfully utilized during the USML-1 Spacelab mission. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module ranged between 0.3 and 2.7 cm. The tests conducted onsrbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  4. Flow of High Internal Phase Ratio Emulsions through Pipes

    NASA Astrophysics Data System (ADS)

    Kostak, K.; Özsaygı, R.; Gündüz, I.; Yorgancıoǧlu, E.; Tekden, E.; Güzel, O.; Sadıklar, D.; Peker, S.; Helvacı, Ş. Ş.

    2015-04-01

    The flow behavior of W/O type of HIPRE stabilized by hydrogen bonds with a sugar (sorbitol) in the aqueous phase, was studied. Two groups of experiments were done in this work: The effect of wall shear stresses were investigated in flow through pipes of different diameters. For this end, HIPREs prestirred at constant rate for the same duration were used to obtain similar drop size distributions. Existence and extent of elongational viscosity were used as a probe to elucidate the effect of drop size distribution on the flow behavior: HIPREs prestirred for the same duration at different rates were subjected to flow through converging pipes. The experimental flow curves for flow through small cylindrical pipes indicated four different stages: 1) initial increase in the flow rate at low pressure difference, 2) subsequent decrease in the flow rate due to capillary flow, 3) pressure increase after reaching the minimum flow rate and 4) slip flow after a critical pressure difference. HIPREs with sufficient external liquid phase in the plateau borders can elongate during passage through converging pipes. In the absence of liquid stored in the plateau borders, the drops rupture during extension and slip flow takes place without elongation.

  5. Nitrogen stars: morphogenesis of a liquid drop

    NASA Astrophysics Data System (ADS)

    Strier, D. E.; Duarte, A. A.; Ferrari, H.; Mindlin, G. B.

    2000-08-01

    We report a study of a symmetry-breaking instability which ocurrs during the free evaporation of liquid nitrogen placed on a concave container initially at room temperature. The system evolves spontaneously from a highly disordered boiling state to one characterized by sequence of well-defined spatio-temporal structures. This sequence starts with the formation of a levitating drop. As the evaporation proceeds the drop undergoes an alternation between different star-like-shaped patterns with decreasing number of tips. In addition, each of this patterns oscillates. We frame the observed phenomena within the qualitative theory of bifurcations.

  6. Nonlinear electrohydrodynamics of leaky dielectric drops in the Quincke regime: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2015-11-01

    The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic electrohydrodynamic phenomenon best described by the well-known Melcher-Taylor leaky dielectric model. In this work, we develop a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of liquid drops in strong electric fields. We compare our results with existing numerical studies, most of which have been constrained to axisymmetric drops or have neglected interfacial charge convection by the flow. The leading effect of convection is to enhance deformation of prolate drops and suppress deformation of oblate drops, as previously observed in the axisymmetric case. The inclusion of charge convection also enables us to investigate the dynamics in the Quincke regime, in which experiments exhibit a symmetry-breaking bifurcation leading to a tank-treading regime. Our simulations confirm the existence of this bifurcation for highly viscous drops, and also reveal the development of sharp interfacial charge gradients driven by convection near the drop's equator. American Chemical Society, Petroleum Research Fund.

  7. Fundamentals of Mold Free Casting: Experimental and Computational Studies

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Ceccio, Steven

    1997-01-01

    Researchers are developing the technology of 'Ballistic Particle Manufacturing' (BPM) in which individual drops are precisely layered onto a substrate, and the drops are deposited so as to prevent splatting. These individual drops will ultimately be combined to form a net-shape, three-dimensional object. Our understanding of controlled drop deposition as applied to BPM is far from complete. Process parameters include the size and temperature of the liquid metal drop, its impact velocity and trajectory, and the condition and temperature of the substrate. Quantitative knowledge of the fluid mechanics and heat transfer of drop deposition and solidification are necessary to fully optimize the manufacturing process and to control the material microstructure of the final part. The object of this study is to examine the dynamics of liquid metal drops as they impinge upon a solid surface and solidify under conditions consistent with BPM (i.e. conditions which produce non-splatting drops). A program of both numerical simulations and experiments will be conducted. Questions this study will address include the following: How do the deformation and solidification of the drop depend on the properties of the fluid drop and the solid substrate? How does the presence of previously deposited drops affect the impingement and solidification process? How does the impingement of the new drop affect already deposited material? How does the cooling rate and solidification of the drops influence the material microstructure?

  8. Drop interaction with solid boundaries in liquid/liquid systems

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur Deep

    The present experimental work was motivated primarily by the CO 2 sequestration process. In a possible scenario during this process, gravity driven CO2 bubbles coalesce at an interface near the rock surface. In another scenario, trapped CO2 fluid may escape from a porous matrix overcoming interfacial force inside a pore. Based on these potential scenarios, the current research was divided into two broad experimental studies. In the first part, coalescence at a quiescent interface of two analogous fluids (silicone oil and water/glycerin mixture) was investigated for water/glycerin drops with Bond number (Bo) ~7 and Ohnesorge number ~ 0.01 using high-speed imaging and time-resolved tomographic PIV. Two perturbation cases with a solid particle wetted in oil and water/glycerin placed adjacent to the coalescing drop were considered. The results were compared with coalescence of a single drop and that of a drop neighBored by a second drop of equivalent size. Each perturbing object caused an initial tilting of the drop, influencing its rupture location, subsequent film retraction and eventual collapse behavior. Once tilted, drops typically ruptured near their lowest vertical position which was located either toward or away from the perturbing object depending on the case. The trends in local retraction speed of the ruptured film and the overall dynamics of the collapsing drops were discussed in detail. In the second part, the motion of gravity driven drops (B o~0.8-11) through a confining orifice d/D<1) was studied using high speed imaging and planar PIV. Drops of water/glycerin, surrounded by silicone oil, fall toward and encounter the orifice plate after reaching terminal speed. The effects of surface wettability were investigated for Both round-edged and sharp-edged orifices. For the round-edged case, a thin film of surrounding oil prevented the drop fluid from contacting the orifice surface, such that the flow outcomes of the drops were independent of surface wettability. For d/D<0.8, the Boundary between drop capture and release depended on a modified Bond number relating drop gravitational time scale to orifice surface tension time scale. For the sharp-edged case, contact was initiated at the orifice edge immediately upon impact, such that surface wettability influenced the drop outcome.

  9. Study on Orbital Liquid Transport and Interface Behavior in Vane Tank

    NASA Astrophysics Data System (ADS)

    Kang, Qi; Rui, Wei

    2016-07-01

    Liquid propellant tank is used to supply gas free liquid for spacecraft as an important part of propulsion system. The liquid behavior dominated by surface tension in microgravity is obviously different with that on the ground, which put forward a new challenge to the liquid transport and relocation. The experiments which are investigated at drop tower in National Microgravity Lab have concentrated on liquid relocation following thruster firing. Considered that the liquid located at the bottom in the direction of the acceleration vector, a sphere scale vane tank is used to study the liquid-gas interface behaviors with different acceleration vector and different filling independently and we obtain a series of stable equilibrium interface and relocation time. We find that there is an obvious sedimentation in the direction of acceleration vector when fill rate greater than 2% fill. Suggestions have been put forward that outer vanes transferring liquid to the outlet should be fixed and small holes should be dogged at the vane close to the center post to improve the liquid flow between different vanes when B0 is greater than 2.5. The research about liquid transport alone ribbon vanes is simulated though software Flow3D. The simulation process is verified by comparing the liquid lip and vapor-liquid interface obtained from drop tower experiment and simulation result when fill rate is 15%. Then the influence of fill rate, numbers of vanes and the gap between vane and wall is studied through the same simulate process. Vanes' configurations are also changed to study the effect on the lip and liquid volume below some section. Some suggestions are put forward for the design of vanes.

  10. Ground Based Studies of Thermocapillary Flows in Levitated Drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1996-01-01

    Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.

  11. Self-focused acoustic ejectors for viscous liquids.

    PubMed

    Hon, S F; Kwok, K W; Li, H L; Ng, H Y

    2010-06-01

    Self-focused acoustic ejectors using the Fresnel zone plate (FZP) have been developed for ejecting viscous liquids, without nozzle, in the drop-on-demand mode. The FZP is composed of a lead zirconate titanate piezoelectric plate patterned with a series of annular electrodes, with the unelectroded region of the plate removed. Our results show that the acoustic waves are effectively self-focused by constructive interference in glycerin (with a viscosity of 1400 mPa s), giving small focal points with a high pressure. Due to the high attenuation, the wave pressure decreases significantly with the distance from the FZP. Nevertheless, the pressure at the focal points 2.5 and 6.5 mm from the FZP is high enough to eject glycerin droplets in the drop-on-demand mode. Driven by a simple wave train comprising a series of sinusoidal voltages with an amplitude of 35 V, a frequency of 4.28 MHz, and a duration of 2 ms, the ejector can eject fine glycerin droplets with a diameter of 0.4 mm at a repetition frequency of 120 Hz in a downward direction. Droplets of other viscous liquids, such as the prepolymer of an epoxy with a viscosity of 2000 mPa s, can also be ejected in the drop-on-demand mode under similar conditions.

  12. Bubble formation during drop impact on a heated pool

    NASA Astrophysics Data System (ADS)

    Tian, Yuansi; Alhazmi, Muath; Kouraytem, Nadia; Thoroddsen, Sigurdur

    2017-11-01

    Ultra high-speed video imaging, at up to 200 kfps, is used to investigate a drop impinging onto a high temperature pool. The room-temperature perfluorohexane drop, which has a boiling temperature as low as 56 °C impacts on the soybean oil pool heated up to around 200 °C, which is overwhelmingly higher than the boiling temperature of the drop. The bottom of the drop is therefore covered by a layer of vapor which prevents contact between the two immiscible liquid surfaces, akin to the Leidenfrost effect However, as the pool temperature is reduced, one starts seeing contact and the dynamics transition into the vapor explosion regime. At the boundary of this regime we observe some entrapment of scattered or a toroidal ring of small bubbles. Experimental video data will be presented to show this novel phenomenon and explain how these bubbles are formed and evolve.

  13. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  14. A variational approach to the study of capillary phenomena

    NASA Technical Reports Server (NTRS)

    Emmer, M.; Gonzalez, E.; Tamanini, I.

    1982-01-01

    The problem of determining the free surface of a liquid in a capillary tube, and of a liquid drop, sitting first on a horizontal plane and then on more general surfaces is considered. With some modifications, the method applies to the study of pendent drops and of rotating drops as well. The standard capillary problem, i.e. the determination of the free surface of a liquid in a thin tube of general cross section, which resuls from the simultaneous action of surface tension, boundary adhesion and gravity is discussed. It turns out that in this case the existence of the solution surface depends heavily on the validity of a simple geometric condition about the mean curvature of the boundary curve of the cross section of the capillary tube. Some particular examples of physical interest are also be discussed. Liquid drops sitting on or hanging from a fixed horizontal plane are discussed. The symmetry of the solutions (which can actually be proved, as consequence of a general symmetrization argument) now plays the chief role in deriving both the existence and the regularity of energy-minimizing configurations. When symmetry fails (this is the case, for example, when the contact angle between the drop and the plate is not constant, or when the supporting surface is not itself symmetric), then more sophisticated methods must be used. Extensions in this direction are outlined.

  15. Electron-Hole Condensation in Semiconductors: Electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties.

    PubMed

    Jeffries, C D

    1975-09-19

    In Ge and Si, and also in Ge-Si alloys (74), there is extensive evidence for the stable binding of electrons and holes into a cold plasma of constant density, which undergoes a phase separation. Liquid metallic drops 1 to 300 microm in size are formed, with lifetimes ranging from 0.1 to 600 microsec. For Ge a surprising amount is known: the phase diagram, the surface energy, the work function, the decay kinetics. Much less is known for Si. There is good agreement between theoretical and experimental values of the liquid density, the critical density, the critical temperature, and the binding energy. The stability of the liquid phase is strikingly dependent on band structure. The multivalley structure and mass anisotropy of Si, Ge, and Ge-Si, together with their indirect band gap, are no doubt responsible for the observed stability in these crystals. In the similar semiconductor gallium phosphide, drops have not yet been observed, most likely because the high impurity content traps the excitons. In gallium arsenide the existence of drops is controversial (75). Undoubtedly drops will be found to exist in other semiconductors, perhaps at even higher temperatures. This is an exciting field for the experimentalist; new phenomena are being rapidly discovered, usually before they are predicted. For the theorist, the electron-hole drop is of high intrinsic interest. It represents the first example of a quantum liquid of constant density in a periodic crystal lattice. A number of challenging experimental and theoretical problems remain.

  16. The lift force on a drop in unbounded plane Poiseuille flow

    NASA Technical Reports Server (NTRS)

    Wohl, P. R.

    1976-01-01

    The lift force on a deformable liquid sphere moving in steady, plane Poiseuille-Stokes flow and subjected to an external body force is calculated. The results are obtained by seeking a solution to Stokes' equations for the motion of the liquids inside and outside the slightly perturbed sphere surface, as expansions valid for small values of the ratio of the Weber number to the Reynolds number. When the ratio of the drop and external fluid viscosities is small, the lift exerted on a neutrally buoyant drop is found to be approximately one-tenth of the magnitude of the force reported by Wohl and Rubinow acting on the same drop in unbounded Poiseuille flow in a tube. The resultant trajectory of the drop is calculated and displayed as a function of the external body force.

  17. Edge-effect fragmentation in the context of foliar disease transmission

    NASA Astrophysics Data System (ADS)

    Lejeune, S.; Gilet, T.; Bourouiba, L.

    2017-11-01

    Rain-induced foliar pathogen propagation is inherently linked to raindrop fragmentation upon impact on infected leaves. Close to leaf edges, the outcome of a drop impact is complex and asymmetric. Despite the ubiquitous nature of impacts close to edges, little is known on the role of edges in shaping drop fragmentation (edge-effect fragmentation). To address this gap, we present a series of drop impact experimental results with impact point close to the surface edge. We focus on the liquid sheet expansion in the air and the role of the edge in introducing the asymmetry in such expansion. We link the edge-induced asymmetry of the sheet to the emergence of different families of droplet-producing fragmentation processes. We discuss how our results can help shed light on foliar disease transmission.

  18. A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    NASA Astrophysics Data System (ADS)

    Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto

    2017-11-01

    In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.

  19. Results of the Fluid Merging Viscosity Measurement International Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William; Antar, Basil

    2009-01-01

    The purpose of FMVM is to measure the rate of coalescence of two highly viscous liquid drops and correlate the results with the liquid viscosity and surface tension. The experiment takes advantage of the low gravitational free floating conditions in space to permit the unconstrained coalescence of two nearly spherical drops. The merging of the drops is accomplished by deploying them from a syringe and suspending them on Nomex threads followed by the astronaut s manipulation of one of the drops toward a stationary droplet till contact is achieved. Coalescence and merging occurs due to shape relaxation and reduction of surface energy, being resisted by the viscous drag within the liquid. Experiments were conducted onboard the International Space Station in July of 2004 and subsequently in May of 2005. The coalescence was recorded on video and down-linked near real-time. When the coefficient of surface tension for the liquid is known, the increase in contact radius can be used to determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Recent fluid dynamical numerical simulations of the coalescence process will be presented. The results are important for a better understanding of the coalescence process. The experiment is also relevant to liquid phase sintering, free form in-situ fabrication, and as a potential new method for measuring the viscosity of viscous glass formers at low shear rates.

  20. Ion evaporation from the surface of a Taylor cone.

    PubMed

    Higuera, F J

    2003-07-01

    An analysis is carried out of the electric field-induced evaporation of ions from the surface of a polar liquid that is being electrosprayed in a vacuum. The high-field cone-to-jet transition region of the electrospray, where ion evaporation occurs, is studied taking advantage of its small size and neglecting the inertia of the liquid and the space charge around the liquid. Evaporated ions and charged drops coexist in a range of flow rates, which is investigated numerically. The structure of the cone-to-jet transition comprises: a hydrodynamic region where the nearly equipotential surface of the liquid departs from a Taylor cone and becomes a jet; a slender region where the radius of the jet decreases and the electric field increases while the pressure and the viscous stress balance the electric stress at the surface; the ion evaporation region of high, nearly constant field; and a charged, continuously strained jet that will eventually break into drops. Estimates of the ion and drop contributions to the total, conduction-limited current show that the first of these contributions dominates for small flow rates, while most of the mass is still carried by the drops.

  1. The shape and dynamics of the generation of the splash forms in single-phase systems after drop hitting

    NASA Astrophysics Data System (ADS)

    Sochan, Agata; Beczek, Michał; Mazur, Rafał; RyŻak, Magdalena; Bieganowski, Andrzej

    2018-02-01

    The splash phenomenon is being increasingly explored with the use of modern measurement tools, including the high-speed cameras. Recording images at a rate of several thousand frames per second facilitates parameterization and description of the dynamics of splash phases. This paper describes the impact of a single drop of a liquid falling on the surface of the same liquid. Three single-phase liquid systems, i.e., water, petrol, and diesel fuel, were examined. The falling drops were characterized by different kinetic energy values depending on the height of the fall, which ranged from 0.1 to 7.0 m. Four forms, i.e., waves, crowns, semi-closed domes, and domes, were distinguished depending on the drop energy. The analysis of the recorded images facilitated determination of the static and dynamic parameters of each form, e.g., the maximum height of each splash form, the width of the splash form at its maximum height, and the rate of growth of the splash form. We, Re, Fr, and K numbers were determined for all analyzed liquid systems. On the basis of the obtained values of dimensionless numbers, the areas of occurrence of characteristic splash forms were separated.

  2. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  3. Ultrasonic characterization of single drops of liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, D.N.

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-qualitymore » measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.« less

  4. Time-Dependent Liquid Transport on a Biomimetic Topological Surface.

    PubMed

    Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei

    2018-05-02

    Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.

  5. Weight loss and isotopic shifts for water drops frozen on a liquid nitrogen surface.

    PubMed

    Eguchi, Keiko; Abe, Osamu; Hiyama, Tetsuya

    2008-10-01

    A liquid nitrogen freezing method was used to collect raindrops for the determination of isotope-size distribution. Water drops that fall onto a surface of liquid nitrogen stay suspended for 10 to 20 s, until their temperature reaches the Leidenfrost point (126 K). As their temperature falls to the freezing point, they release their heat by thermal conduction. At the freezing point, latent heat of fusion is released, along with a significant loss of water. After freezing completely, the ice droplets stay suspended, cooling by thermal conduction until they reach the Leidenfrost point. They then lose buoyancy and start sinking. Consistent isotopic changes of 1.5 +/- 0.4 and 0.33 +/- 0.05 per thousand for hydrogen and oxygen, respectively, were found for droplets with radii between 1.0 and 1.5 mm. Isotope fractionation appeared to occur at the same time as water loss, as the droplets were freezing, in what was probably a kinetic effect.

  6. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  7. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  8. The Propagation of a Liquid Bolus Through an Elastic Tube and Airway Reopening

    NASA Technical Reports Server (NTRS)

    Howell, Peter D.; Grotberg, James B.

    1996-01-01

    We use lubrication theory and matched asymptotic expansions to model the quasi-steady propagation of a liquid bridge through an elastic tube. In the limit of small capillary number, asymptotic expressions are found for the pressure drop across the bridge and the thickness of the liquid film left behind, as functions of the capillary number, the thickness of the liquid lining ahead of the bridge and the elastic characteristics of the tube wall. For a given precursor thickness, we find a critical propagation speed, and hence a critical imposed pressure drop, above which the bridge will eventually burst, and hence the tube will reopen.

  9. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    NASA Astrophysics Data System (ADS)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior are discussed. References: [1]R. D. Deegan,, PRE 61,475 (2000). [2]M. Maillard et al., J. Phys. Chem. B 104, 11871 (2000). [3]H. Wang et al. Langmuir 15, 957 (2001). [4]B. G. Moore et al., J. Phys. Chem. 94, 4588 (1990). [5]J. C. Berg & A. Acrivos, Chem. Eng. Sci. 20,737 (1965).

  10. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.-W, E-mail: attwl@asu.edu; An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  11. Distinguishing between microscale gaseous bubbles and liquid drops

    NASA Astrophysics Data System (ADS)

    Tan, Beng Hau; An, Hongjie; Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    In recent years, there has been strong research interest in decorating surfaces with tiny bubbles and drops due to their potential applications in reducing slippage in micro and nanofluidic devices. Both nanobubbles and nanodrops are typically nucleated by exchanging fluids over a suitable substrate. However, the nucleation experiments present many challenges, such as reproducibility and the possibility of contamination. The use of one-use plastic syringes and needle cannulas in nucleation experiments can introduce polymeric contamination. A contaminated experiment may nucleate bubbles, drops or both. Moreover, it is surprisingly difficult to distinguish between bubbles and drops under the usual atomic force microscopy or optical techniques. Here we present an experimental study comparing bubbles and oil (PDMS) drops on an atomically smooth surface (HOPG). Instead of nucleating the objects via solvent exchange, we directly introduced bubbles via electrolysis, and oil drops by injecting a dilute solution. Contrary to previous reports, we find that under careful AFM characterisation, liquid drops and gaseous bubbles respond differently to a change in imaging force, and moreover present different characteristic force curves.

  12. Effect of the pool depth on drop impact splashing

    NASA Astrophysics Data System (ADS)

    Chizari, Hossain; Thoraval, Marie-Jean

    2017-11-01

    We investigate the effect of the pool depth on the splashing dynamics of drop impact. The splashing of a single drop impacting into a deep pool or on wet surface has been investigated for many years both numerically and experimentally. However, recent results have demonstrated the importance of the vorticity produced during the impact on the splashing behavior. More specifically, the shedding of a vortex ring inside the liquid during the impact can separate the splash jet into several parts. The shedding of the vorticity can be influenced by the proximity of the bottom of the pool, if the pool depth is small enough. We study here how the pool depth can affect the vorticity shedding and the resulting splashing jets. We perform axisymmetric numerical simulations of the impacts with the open sources codes Gerris and Basilisk, and systematically vary the impact conditions, focusing on the effect of pool depth in the splashing regimes.

  13. Finite amplitude effects on drop levitation for material properties measurement

    NASA Astrophysics Data System (ADS)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  14. Dynamic ultrasonic nebulisation extraction coupled with headspace ionic liquid-based single-drop microextraction for the analysis of the essential oil in Forsythia suspensa.

    PubMed

    Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua

    2014-01-01

    Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  15. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of the inside convection on the wetting and spreading processes can be figured out through comparison of the drop profiles with and without inside convection when the sessile drop is placed at different evaporation conditions.

  16. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  17. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    NASA Astrophysics Data System (ADS)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  18. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    PubMed

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  19. O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus

    NASA Astrophysics Data System (ADS)

    Wright, Graham Scott

    This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be synergistic; drop volumes over a range of 175 to 1 were obtained, while maintaining good drop velocity. The differing strategies for obtaining large and small drops are described. Drop extraction using only the electric field is more difficult, but promising approaches remain open.

  20. Motion of deformable drops through granular media and other confined geometries.

    PubMed

    Davis, Robert H; Zinchenko, Alexander Z

    2009-06-15

    This article features recent simulation studies of the flow of emulsions containing deformable drops through pores, constrictions, and granular media. The flow is assumed to be at low Reynolds number, so that viscous forces dominate, and boundary-integral methods are used to determine interfacial velocities and, hence, track the drop motion and shapes. A single drop in a flat channel migrates to the channel centerplane due to deformation-induced drift, which increases its steady-state velocity along the channel. A drop moving towards a smaller interparticle constriction squeezes through the constriction if the capillary number (ratio of viscous deforming forces and interfacial tension forces) is large enough, but it becomes trapped when the capillary number is below a critical value. These concepts then influence the flow of an emulsion through a granular medium, for which the drop phase moves faster than the suspending liquid at large capillary numbers but slower than the suspending liquid at smaller capillary numbers. The permeabilities of the granular medium to both phases increase with increasing capillary number, due to the reduced resistance to squeezing of easily deformed drops, though drop breakup must also be considered at large capillary numbers.

  1. Cells on Gels: Cell Behavior at the Air-Gel Interface

    NASA Astrophysics Data System (ADS)

    O'Bryan, Christopher; Hormel, Tristan; Bhattacharjee, Tapomoy; Sawyer, W.; Angelini, Thomas

    Numerous different types of cells are often grown at air-liquid interfaces. For example, a common way to create cell spheroids is to disperse cells in a droplet of liquid media that hangs from the lid of a culture dish - the ``hanging drop'' method. Some types of epithelial cells form monolayers at the bottom of hanging drops, instead of spheroids. Corneal epithelial cells stratify and exhibit a tissue-like phenotype when attached to liquid permeable culture surfaces positioned at the air-liquid media interface (air-lifted culture). These widely used culture methods make experimentation challenging - imaging through hanging drops and air-lifted culture dishes is prohibitive. However, similar results may be achieved by culturing cells on hydrogel surfaces at the air-gel interface. In this talk we will describe a method for culturing cells at air-gel interfaces. We seed human corneal epithelial cells (hTCEpi) onto the surfaces of hydrogel networks and jammed microgels, exposed to air. Preliminary observations of cell behavior at the air-gel interface will be presented.

  2. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  3. Small Liquid Hydrogen Tank for Drop Tower Tests

    NASA Image and Video Library

    1964-11-21

    A researcher fills a small container used to represent a liquid hydrogen tank in preparation for a microgravity test in the 2.2-Second Drop Tower at the National Aeronautics and Space Administration (NASA) Lewis Research Center. For over a decade, NASA Lewis endeavored to make liquid hydrogen a viable propellant. Hydrogen’s light weight and high energy made it very appealing for rocket propulsion. One of the unknowns at the time was the behavior of fluids in the microgravity of space. Rocket designers needed to know where the propellant would be inside the fuel tank in order to pump it to the engine. NASA Lewis utilized sounding rockets, research aircraft, and the 2.2 Second Drop Tower to study liquids in microgravity. The drop tower, originally built as a fuel distillation tower in 1948, descended into a steep ravine. By early 1961 the facility was converted into an eight-floor, 100-foot tower connected to a shop and laboratory space. Small glass tanks, like this one, were installed in experiment carts with cameras to film the liquid’s behavior during freefall. Thousands of drop tower tests in the early 1960s provided an increased understanding of low-gravity processes and phenomena. The tower only afforded a relatively short experiment time but was sufficient enough that the research could be expanded upon using longer duration freefalls on sounding rockets or aircraft. The results of the early experimental fluid studies verified predictions made by Lewis researchers that the total surface energy would be minimized in microgravity.

  4. Drop size distributions and related properties of fog for five locations measured from aircraft

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen

    1994-01-01

    Fog drop size distributions were collected from aircraft as part of the Synthetic Vision Technology Demonstration Program. Three west coast marine advection fogs, one frontal fog, and a radiation fog were sampled from the top of the cloud to the bottom as the aircraft descended on a 3-degree glideslope. Drop size versus altitude versus concentration are shown in three dimensional plots for each 10-meter altitude interval from 1-minute samples. Also shown are median volume radius and liquid water content. Advection fogs contained the largest drops with median volume radius of 5-8 micrometers, although the drop sizes in the radiation fog were also large just above the runway surface. Liquid water content increased with height, and the total number of drops generally increased with time. Multimodal variations in number density and particle size were noted in most samples where there was a peak concentration of small drops (2-5 micrometers) at low altitudes, midaltitude peak of drops 5-11 micrometers, and high-altitude peak of the larger drops (11-15 micrometers and above). These observations are compared with others and corroborate previous results in fog gross properties, although there is considerable variation with time and altitude even in the same type of fog.

  5. Calculation of nanodrop profile from fluid density distribution.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2016-05-01

    Two approaches are examined, which can be used to determine the drop profile from the fluid density distributions (FDDs) obtained on the basis of microscopic theories. For simplicity, only two-dimensional (cylindrical, or axisymmetrical) distributions are examined and it is assumed that the fluid is either in contact with a smooth solid or separated from the smooth solid by a lubricating liquid film. The first approach is based on the sharp-kink interface approximation in which the density of the liquid inside and the density of the vapor outside the drop are constant with the exception of the surface layer of the drop where the density is different from the above ones. In this case, the drop profile was calculated by minimizing the total potential energy of the system. The second approach is based on a nonuniform FDD obtained either by the density functional theory or molecular dynamics simulations. To determine the drop profile from such an FDD, which does not contain sharp interfaces, three procedures can be used. In the first two procedures, P1 and P2, the one-dimensional FDDs along straight lines which are parallel to the surface of the solid are extracted from the two-dimensional FDD. Each of those one-dimensional FDDs has a vapor-liquid interface at which the fluid density changes from vapor-like to liquid-like values. Procedure P1 uses the locations of the equimolar dividing surfaces for the one-dimensional FDDs as points of the drop profile. Procedure P2 is based on the assumption that the fluid density is constant on the surface of the drop, that density being selected either arbitrarily or as a fluid density at the location of the equimolar dividing surface for one of the one-dimensional FDDs employed in procedure P1. In the third procedure, P3, which is suggested for the first time in this paper, the one-dimensional FDDs are taken along the straight lines passing through a selected point inside the drop (radial line). Then, the drop profile is calculated like in procedure P1. It is shown, that procedure P3 provides a drop profile which is more reasonable than the other ones. Relationship of the discussed procedures to those used in image analysis is briefly discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of Marangoni Convection on Surfactant Transfer Between the Drop Connected to the Reservoir and Surrounding Liquid

    NASA Astrophysics Data System (ADS)

    Kostarev, K.; Denisova, M.; Shmyrov, A.

    2018-03-01

    The paper presents the results of comparative investigation of the interaction between the capillary and buoyant mechanisms of motion in a problem of surfactant mass transfer between an insoluble drop and surrounding fluid under different gravity conditions. The research was performed for the drop that is coupled with the reservoir filled with a source mixture through a long thin tube (needle). Visualization of the flow patterns and concentration fields has shown that surfactant diffusion from the needle at normal gravity leads to the onset of the oscillatory mode of the capillary convection in the drop. It has been found that the frequency of the Marangoni convection outbursts, the lifetime of the oscillatory flow modes and the amount of the source mixture involved in the process of mass transfer depend on the drop size and initial concentration of the surfactant. The obtained results are compared with the cases of surfactant diffusion from the isolated drop under terrestrial conditions and from the drop coupled with reservoir in microgravity. Additionally, a series of experiments were performed to investigate diffusion of a surfactant from the surrounding solution into a drop.

  7. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    PubMed

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  8. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  9. Large Eddy Simulation of jets laden with evaporating drops

    NASA Technical Reports Server (NTRS)

    Leboissetier, A.; Okong'o, N.; Bellan, J.

    2004-01-01

    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  10. Dynamics of initial drop splashing on a dry smooth surface.

    PubMed

    Wu, Zhenlong; Cao, Yihua

    2017-01-01

    We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of the lamella in the early stage of the impact. We find that the onset time of the splash is primarily dependent on the characteristic timescale, which is defined by the impact velocity as well as the drop radius, with no strong dependence on either the liquid viscosity or surface tension. Three regimes are found to be responsible for different splashing patterns. The outermost ejected droplets keep extending radially at a uniform speed proportional to the impact speed. Finally, we discuss the underlying mechanism which is responsible for the occurrence of the initial drop splash in the study.

  11. Experimental and computation study of liquid droplets impinging on an afterburner

    NASA Astrophysics Data System (ADS)

    Lavergne, G.; Hebrard, P.; Donnadille, Ph.

    The actual development of three-dimensional computation codes of internal reactive flows in combustion chambers needs, for the liquid phase, accurate boundary conditions. A series of experiments was undertaken to identify and then to analyze physical phenomena occurring during spray transport and spray boundary interaction. The purpose of this paper is to investigate drop wall interaction, drop impingement, the liquid film, and the liquid flow rate captured by a flameholder. The experimental approach is divided in two parts: a parametric study on the captured fuel flow rate by a flameholder in an isothermal two-dimensional square facility, and a fundamental study of monosized droplet impingement on a hot plate to determine rebound criteria.

  12. Hydrophobic properties of a wavy rough substrate.

    PubMed

    Carbone, G; Mangialardi, L

    2005-01-01

    The wetting/non-wetting properties of a liquid drop in contact with a chemically hydrophobic rough surface (thermodynamic contact angle theta(e)>pi/2) are studied for the case of an extremely idealized rough profile: the liquid drop is considered to lie on a simple sinusoidal profile. Depending on surface geometry and pressure values, it is found that the Cassie and Wenzel states can coexist. But if the amplitude h of the substrate is sufficiently large the only possible stable state is the Cassie one, whereas if h is below a certain critical value hcr a transition to the Wenzel state occurs. Since in many potential applications of such super-hydrophobic surfaces, liquid drops often collide with the substrate (e.g. vehicle windscreens), in the paper the critical drop pressure pW is calculated at which the Cassie state is no longer stable and the liquid jumps into full contact with the substrate (Wenzel state). By analyzing the asymptotic behavior of the systems in the limiting case of a large substrate corrugation, a simple criterion is also proposed to calculate the minimum height asperity h necessary to prevent the Wenzel state from being formed, to preserve the super-hydrophobic properties of the substrate, and, hence, to design a robust super-hydrophobic surface.

  13. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    PubMed

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  15. An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples.

    PubMed

    Vidal, Lorena; Psillakis, Elefteria; Domini, Claudia E; Grané, Nuria; Marken, Frank; Canals, Antonio

    2007-02-12

    A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 microL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n=5). The limits of detection ranged between 0.102 and 0.203 microg L(-1). Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.

  16. Experimental evidence for modifying the current physical model for ice accretion on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Walker, E.

    1986-01-01

    Closeup movies, still photographs, and other experimental data suggest that the current physical model for ice accretion needs significant modification. At aircraft airspeeds there was no flow of liquid over the surface of the ice after a short initial flow, even at barely subfreezing temperatures. Instead, there were very large stationary drops on the ice surface that lose water from their bottoms by freezing and replenish their liquid by catching the microscopic cloud droplets. This observation disagrees with the existing physical model, which assumes there is a thin liquid film continuously flowing over the ice surface. With no such flow, the freezing-fraction concept of the model fails when a mass balance is performed on the surface water. Rime ice does, as the model predicts, form when the air temperature is low enough to cause the cloud droplets to freeze almost immediately on impact. However, the characteristic shapes of horn-glaze ice or rime ice are primarily caused by the ice shape affecting the airflow locally and consequently the droplet catch and the resulting ice shape. Ice roughness greatly increases the heat transfer coefficient, stops the movement of drops along the surface, and may also affect the airflow initially and thereby the droplet catch. At high subreezing temperatures the initial flow and shedding of surface drops have a large effect on the ice shape. At the incipient freezing limit, no ice forms.

  17. Numerical investigation of thin film of polar liquid with added surfactant

    NASA Astrophysics Data System (ADS)

    Gordeeva, V. Y.; Lyushnin, A. V.

    2017-11-01

    The thin film of polar liquid with an added surfactant is investigated numerically in this paper. The evolution equations for film thickness and surface concentrations were solved using the semi-implicit Crank-Nikolson scheme. A few profiles on the liquid film developing from an ellipse-shaped drop were received. It was confirmed that the developing film divides into two coexisting films with predictable thickness. It was discovered that this pecularity of the polar liquid is valid only in little range of vapor pressure, which corresponds to the disjoining pressure. It was found that the surfactant desorbed on the gas-liquid interface does not effect to the thickness of the film while the surfactant desorbed on the substrate does effect. It was also found that the stable thickness of the film grows with absolute value of the vapor pressure in stated little range.

  18. Adhesion properties of an elastomer enhanced by the presence of liquid drops in its structure

    NASA Astrophysics Data System (ADS)

    Giustiniani, Anais; Drenckhan, Wiebke; Poulard, Christophe

    Macro-cellular polymers present rich mechanical properties due to the internal structuration of the material, in which discrete cells are tightly packed within a continuous polymeric solid matrix. The size, shape, organisation and volume fraction of these cells have an important influence on the overall material properties. Here, we study a solid emulsion which consist of liquid polyethylene glycol drops in a crosslinked PDMS (polydimethylsiloxane). These present novel rheological and adhesive properties. Results show an important hysteresis of the normal stress in a compression/decompression cycle with a significant force at rupture when this force is close to zero for the bare PDMS. This was reported for 2D systems, and in this work we study the influence of the drop sizes inside the matrix, their density and the viscosity of the liquid on the adhesion energy of the 3D material. The overall motivation of this system is to allow to independently control the elastic and viscous properties of the matrix and the drops respectively, in opposition to the viscoelastic fluids commonly used as adhesives such as PSA and gels.

  19. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity

    PubMed Central

    Raghavan, Shreya; Rowley, Katelyn R.; Mehta, Geeta

    2016-01-01

    Multicellular tumor spheroids are powerful in vitro models to perform preclinical chemosensitivity assays. We compare different methodologies to generate tumor spheroids in terms of resultant spheroid morphology, cellular arrangement and chemosensitivity. We used two cancer cell lines (MCF7 and OVCAR8) to generate spheroids using i) hanging drop array plates; ii) liquid overlay on ultra-low attachment plates; iii) liquid overlay on ultra-low attachment plates with rotating mixing (nutator plates). Analysis of spheroid morphometry indicated that cellular compaction was increased in spheroids generated on nutator and hanging drop array plates. Collagen staining also indicated higher compaction and remodeling in tumor spheroids on nutator and hanging drop arrays compared to conventional liquid overlay. Consequently, spheroids generated on nutator or hanging drop plates had increased chemoresistance to cisplatin treatment (20-60% viability) compared to spheroids on ultra low attachment plates (10-20% viability). Lastly, we used a mathematical model to demonstrate minimal changes in oxygen and cisplatin diffusion within experimentally generated spheroids. Our results demonstrate that in vitro methods of tumor spheroid generation result in varied cellular arrangement and chemosensitivity. PMID:26918944

  20. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  1. NASA Glenn Icing Research Tunnel: 2014 Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Ide, Robert F.; Steen, Laura E.; Acosta, Waldo J.

    2014-01-01

    The results of the December 2013 to February 2014 Icing Research Tunnel full icing cloud calibration are presented. The calibration steps included establishing a uniform cloud and conducting drop size and liquid water content calibrations. The goal of the calibration was to develop a uniform cloud, and to generate a transfer function from the inputs of air speed, spray bar atomizing air pressure and water pressure to the outputs of median volumetric drop diameter and liquid water content. This was done for both 14 CFR Parts 25 and 29, Appendix C ('typical' icing) and soon-to-be released Appendix O (supercooled large drop) conditions.

  2. Jet dynamics post drop impact on a deep pool

    NASA Astrophysics Data System (ADS)

    Michon, Guy-Jean; Josserand, Christophe; Séon, Thomas

    2017-02-01

    We investigate experimentally the jet formed by the collapse of a cavity created by the impact of a drop on a pool of the same aqueous liquid. We show that jets can emerge with very different shapes and velocities, depending on the impact parameters, thus generating droplets with various initial sizes and velocities. After presenting the jet velocity and top drop radius variation as a function of the impact parameters, we discuss the influence of the liquid parameters on the jet velocity. This allows us to define two different regimes: the singular jet and the cavity jet regimes, where the mechanisms leading to the cavity retraction and subsequent jet dynamics are drastically different. In particular, we demonstrate that in the first regime, a singular capillary wave collapse sparks the whole jet dynamics, making the jet's fast, thin, liquid parameters dependent and barely reproducible. On the contrary, in the cavity jet regime, defined for higher impact Froude numbers, the jets are fat and slow. We show that jet velocity is simply proportional to the capillary velocity √{γ /ρlDd }, where γ is the liquid surface tension, ρl the liquid density, and Dd the impacting drop diameter, and it is in particular independent of viscosity, impact velocity, and gravity, even though the cavity is larger than the capillary length. Finally, we demonstrate that capillary wave collapse and cavity retraction are correlated in the singular regime and decorrelated in the cavity jet regime.

  3. [Dynamics of the mechanical properties of drops of biological liquids during drying as a reflection of the features of selfassembly of their components from the nano- to microlevel].

    PubMed

    Iakhno, T A; Sanin, A G; Sanina, O A; Iakhno, V G

    2011-01-01

    It has been shown that the dynamics of the molecular self-assembly of the components of liquids drying in the form of drops on a solid moistened surface contains information about their composition and structure. The physical mechanisms of this phenomenon have been considered. A method of recording this dynamics and retrieving useful information has been suggested. Examples of using this method in medicinal diagnosis and the assessment of the quality of food products, drugs, and liquids of domestic appliance are given.

  4. Spray nozzle designs for agricultural aviation applications. [relation of drop size to spray characteristics and nozzle efficiency

    NASA Technical Reports Server (NTRS)

    Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.

    1979-01-01

    Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.

  5. Self-propulsion of Leidenfrost Drops between Non-Parallel Structures.

    PubMed

    Luo, Cheng; Mrinal, Manjarik; Wang, Xiang

    2017-09-20

    In this work, we explored self-propulsion of a Leidenfrost drop between non-parallel structures. A theoretical model was first developed to determine conditions for liquid drops to start moving away from the corner of two non-parallel plates. These conditions were then simplified for the case of a Leidenfrost drop. Furthermore, ejection speeds and travel distances of Leidenfrost drops were derived using a scaling law. Subsequently, the theoretical models were validated by experiments. Finally, three new devices have been developed to manipulate Leidenfrost drops in different ways.

  6. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  7. Numerical simulation of drop impact on a thin film: the origin of the droplets in the splashing regime

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Che, Zhizhao; Ismail, Renad; Pain, Chris; Matar, Omar

    2015-11-01

    Drop impact on a liquid layer is a feature of numerous multiphase flow problems, and has been the subject of numerous theoretical, experimental and numerical investigations. In the splashing regime, however, little attention has been focused on the origin of the droplets that are formed during the splashing process. The objective of this study is to investigate this issue numerically in order to improve our understanding of the mechanisms underlying splashing as a function of the relevant system parameters. In contrast to the conventional two-phase flow approach, commonly used to simulate splashing, here, a three-dimensional, three-phase flow model, with adaptive, unstructured meshing, is employed to study the liquid (droplet) - gas (surrounding air) - liquid (thin film) system. In the cases to be presented, both liquid phases have the same fluid property, although, clearly, our method can be used in the more general case of two different liquids. Numerical results of droplet impact on a thin film are analysed to determine whether the origin of the droplets following impact corresponds to the mother drop, or the thin film, or both. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  8. [Use of an aerosol generator (Guard) to control injurious insects in forestry, agriculture, and medical disinsection].

    PubMed

    Abdraziakov, O N; Ermishev, Iu V; Levkov, P A

    2012-01-01

    The Guard aerosol generator is a universal multioperational device without a field-of-use restriction in the application of permitted chemical and biological substances, by combining the function of a controlled dispersion aerosol generator and a remote small- and large-drop sprayer in one mechanism and can use aerosol pesticides. The drop fractionation range is as follows: 3-50, 50-100, 100-300, and 200-400 microm for aerosol, dead water, small-drop, and large-drop spraying, respectively, with smooth and step control of working liquid drops. Treatment using the Guard generator has been shown to be highly effective against agricultural and forestry pests. This paper describes the advantages of the Guard sprayer over those of the conventional air and ground ones. The long-term use of the Guard generator to control mosquitoes and ticks in the Tyumen region could substantially improve the epidemiological situation of tick-borne infections and protect children's recreation centers from attacks of bloodsuckers.

  9. Experimental studies in fluid mechanics and materials science using acoustic levitation

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Robey, J.; Arce, A.; Gaspar, M.

    1987-01-01

    Ground-based and short-duration low gravity experiments have been carried out with the use of ultrasonic levitators to study the dynamics of freely suspended liquid drops under the influence of predominantly capillary and acoustic radiation forces. Some of the effects of the levitating field on the shape as well as the fluid flow fields within the drop have been determined. The development and refinement of measurement techniques using levitated drops with size on the order of 2 mm in diameter have yielded methods having direct application to experiments in microgravity. In addition, containerless melting, undercooling, and freezing of organic materials as well as low melting metals have provided experimental data and observations on the application of acoustic positioning techniques to materials studies.

  10. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  11. Motion of a drop driven by substrate vibrations

    NASA Astrophysics Data System (ADS)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2009-01-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wet by the drop. Frequency of vibrations ranges from 30 to 200 Hz, and above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up/down symmetry-breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements.

  12. Focal length hysteresis of a double-liquid lens based on electrowetting

    NASA Astrophysics Data System (ADS)

    Peng, Runling; Wang, Dazhen; Hu, Zhiwei; Chen, Jiabi; Zhuang, Songlin

    2013-02-01

    In this paper, an extended Young equation especially suited for an ideal cylindrical double-liquid variable-focus lens is derived by means of an energy minimization method. Based on the extended Young equation, a kind of focal length hysteresis effect is introduced into the double-liquid variable-focus lens. Such an effect can be explained theoretically by adding a force of friction to the tri-phase contact line. Theoretical analysis shows that the focal length at a particular voltage can be different depending on whether the applied voltage is increasing or decreasing, that is, there is a focal length hysteresis effect. Moreover, the focal length at a particular voltage must be larger when the voltage is rising than when it is dropping. These conclusions are also verified by experiments.

  13. Water Touch-and-Bounce from a Soft Viscoelastic Substrate: Wetting, Dewetting, and Rebound on Bitumen.

    PubMed

    Lee, Jae Bong; Dos Santos, Salomé; Antonini, Carlo

    2016-08-16

    Understanding the interaction between liquids and deformable solid surfaces is a fascinating fundamental problem, in which interaction and coupling of capillary and viscoelastic effects, due to solid substrate deformation, give rise to complex wetting mechanisms. Here we investigated as a model case the behavior of water drops on two smooth bitumen substrates with different rheological properties, defined as hard and soft (with complex shear moduli in the order of 10(7) and 10(5) Pa, respectively, at 1 Hz), focusing both on wetting and on dewetting behavior. By means of classical quasi-static contact angle measurements and drop impact tests, we show that the water drop behavior can significantly change from the quasi-static to the dynamic regime on soft viscoelastic surfaces, with the transition being defined by the substrate rheological properties. As a result, we also show that on the hard substrate, where the elastic response is dominant under all investigated conditions, classical quasi-static contact angle measurements provide consistent results that can be used to predict the drop dynamic wetting behavior, such as drop deposition or rebound after impact, as typically observed for nondeformable substrates. Differently, on soft surfaces, the formation of wetting ridges did not allow to define uniquely the substrate intrinsic advancing and receding contact angles. In addition, despite showing a high adhesion to the soft surface in quasi-static measurements, the drop was surprisingly able to rebound and escape from the surface after impact, as it is typically observed for hydrophobic surfaces. These results highlight that measurements of wetting properties for viscoelastic substrates need to be critically used and that wetting behavior of a liquid on viscoelastic surfaces is a function of the characteristic time scales.

  14. Part 1 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora A.; Bellan, Josette

    2004-01-01

    This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.

  15. Pollination drop in Juniperus communis: response to deposited material.

    PubMed

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-12-01

    The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal. These results suggest that the non-specific response may decrease the probability of pollen landing on the drop, reducing pollination efficiency.

  16. Pollination Drop in Juniperus communis: Response to Deposited Material

    PubMed Central

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-01-01

    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal. These results suggest that the non-specific response may decrease the probability of pollen landing on the drop, reducing pollination efficiency. PMID:17942592

  17. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C. P.

    1985-01-01

    A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.

  18. Dynamics of initial drop splashing on a dry smooth surface

    PubMed Central

    Wu, Zhenlong; Cao, Yihua

    2017-01-01

    We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of the lamella in the early stage of the impact. We find that the onset time of the splash is primarily dependent on the characteristic timescale, which is defined by the impact velocity as well as the drop radius, with no strong dependence on either the liquid viscosity or surface tension. Three regimes are found to be responsible for different splashing patterns. The outermost ejected droplets keep extending radially at a uniform speed proportional to the impact speed. Finally, we discuss the underlying mechanism which is responsible for the occurrence of the initial drop splash in the study. PMID:28493989

  19. Foamed emulsion drainage: flow and trapping of drops.

    PubMed

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-06-07

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.

  20. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.

    PubMed

    Lee, Choongyeop; Nam, Youngsuk; Lastakowski, Henri; Hur, Janet I; Shin, Seungwon; Biance, Anne-Laure; Pirat, Christophe; Kim, Chang-Jin C J; Ybert, Christophe

    2015-06-21

    Despite the fact that superhydrophobic surfaces possess useful and unique properties, their practical application has remained limited by durability issues. Among those, the wetting transition, whereby a surface gets impregnated by the liquid and permanently loses its superhydrophobicity, certainly constitutes the most limiting aspect under many realistic conditions. In this study, we revisit this so-called Cassie-to-Wenzel transition (CWT) under the broadly encountered situation of liquid drop impact. Using model hydrophobic micropillar surfaces of various geometrical characteristics and high speed imaging, we identify that CWT can occur through different mechanisms, and at different impact stages. At early impact stages, right after contact, CWT occurs through the well established dynamic pressure scenario of which we provide here a fully quantitative description. Comparing the critical wetting pressure of surfaces and the theoretical pressure distribution inside the liquid drop, we provide not only the CWT threshold but also the hardly reported wetted area which directly affects the surface spoiling. At a later stage, we report for the first time to our knowledge, a new CWT which occurs during the drop recoil toward bouncing. With the help of numerical simulations, we discuss the mechanism underlying this new transition and provide a simple model based on impulse conservation which successfully captures the transition threshold. By shedding light on the complex interaction between impacting water drops and surface structures, the present study will facilitate designing superhydrophobic surfaces with a desirable wetting state during drop impact.

  1. Smoothed particle hydrodynamics method for evaporating multiphase flows.

    PubMed

    Yang, Xiufeng; Kong, Song-Charng

    2017-09-01

    The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.

  2. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.

    PubMed

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-28

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  3. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-01

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  4. In-Situ Microphysics from the RACORO IOP

    DOE Data Explorer

    McFarquhar, Greg

    2013-11-08

    These files were generated by Greg McFarquhar and Robert Jackson at the University of Illinois. Please contact mcfarq@atmos.uiuc.edu or rjackso2@atmos.uiuc.edu for more information or for assistance in interpreting the content of these files. We highly recommend that anyone wishing to use these files do so in a collaborative endeavor and we welcome queries and opportunities for collaboration. There are caveats associated with the use of the data which are difficult to thoroughly document and not all products for all time periods have been thoroughly examined. This is a value added data set of the best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter during RACORO. These files contain best estimates of liquid size distributions N(D) in terms of droplet diameter D, liquid water content LWC, extinction of liquid drops beta, effective radius of cloud drops (re), total number concentration of droplets NT, and radar reflectivity factor Z at 1 second resolution.

  5. Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling

    NASA Astrophysics Data System (ADS)

    Kalani, A.; Kandlikar, S. G.

    2015-11-01

    In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.

  6. Wetting of silicone oil onto a cell-seeded substrate

    NASA Astrophysics Data System (ADS)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  7. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate.

    PubMed

    Davis, Kathryn M; Badu-Tawiah, Abraham K

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O 2 •- ) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution. Graphical Abstract ᅟ.

  8. Direct and Efficient Dehydrogenation of Tetrahydroquinolines and Primary Amines Using Corona Discharge Generated on Ambient Hydrophobic Paper Substrate

    NASA Astrophysics Data System (ADS)

    Davis, Kathryn M.; Badu-Tawiah, Abraham K.

    2017-04-01

    The exposure of an aqueous-based liquid drop containing amines and graphite particles to plasma generated by a corona discharge results in heterogeneous aerobic dehydrogenation reactions. This green oxidation reaction occurring in ambient air afforded the corresponding quinolines and nitriles from tetrahydroquinolines and primary amines, respectively, at >96% yields in less than 2 min of reaction time. The accelerated dehydrogenation reactions occurred on the surface of a low energy hydrophobic paper, which served both as container for holding the reacting liquid drop and as a medium for achieving paper spray ionization of reaction products for subsequent characterization by ambient mass spectrometry. Control experiments indicate superoxide anions (O2 •-) are the main reactive species; the presence of graphite particles introduced heterogeneous surface effects, and enabled the efficient sampling of the plasma into the grounded analyte droplet solution.

  9. Liquid nitrogen cryotherapy of superior limbic keratoconjunctivitis.

    PubMed

    Fraunfelder, Frederick W

    2009-02-01

    To evaluate the effects of liquid nitrogen cryotherapy on superior limbic keratoconjunctivitis (SLK). Interventional case series. In this clinical practice case series, the effects of liquid nitrogen cryotherapy on SLK were observed. Liquid nitrogen cryotherapy was performed using a Brymill E tip spray (0.013-inch aperture) with a double freeze-thaw technique. All subjects were outpatients who had local anesthesia with a single drop of topical proparacaine. The main outcome measure was the resolution of the disease process after treatment. Four female patients (average age, 64 +/- 13 years) and seven eyes with SLK were treated with liquid nitrogen cryotherapy. Resolution of signs and symptoms occurred within two weeks. Disease recurred in two patients and three of seven eyes, although repeat cryotherapy eradicated SLK in all cases. The repeat cryotherapy was performed at three months postoperatively. There were no adverse ocular events. Liquid nitrogen cryotherapy appears to be an effective alternative treatment for SLK as all subjects studied achieved long-term cures. Repeat cryotherapy may be necessary in some instances and may be performed three months after the first treatment.

  10. Effects of Spray Mixtures on Droplet Size Under Aerial Application Conditions and Implications on Drift

    DTIC Science & Technology

    2010-01-01

    Liquid Drop Size Characteristics in a Spray Using Optical Nonimaging Light‐Scattering Instruments (ASTM Standards, 2003). The most common term used to...using optical nonimaging light‐scattering instruments. West Conshohocken, Pa.: ASTM Intl. ASTM Standards. 2004. E 1620. Standard terminology relating

  11. Behavior of fluids in a weightless environment

    NASA Technical Reports Server (NTRS)

    Fester, D. A.; Eberhardt, R. N.; Tegart, J. R.

    1977-01-01

    Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting.

  12. DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2007-01-01

    A paper describes direct numerical simulations (DNSs) of three-dimensional mixing-layer flows undergoing transition to turbulence; the mixing layers may or may not be laden with evaporating liquid drops.

  13. Electronic and structural transitions in dense liquid sodium.

    PubMed

    Raty, Jean-Yves; Schwegler, Eric; Bonev, Stanimir A

    2007-09-27

    At ambient conditions, the light alkali metals are free-electron-like crystals with a highly symmetric structure. However, they were found recently to exhibit unexpected complexity under pressure. It was predicted from theory--and later confirmed by experiment--that lithium and sodium undergo a sequence of symmetry-breaking transitions, driven by a Peierls mechanism, at high pressures. Measurements of the sodium melting curve have subsequently revealed an unprecedented (and still unexplained) pressure-induced drop in melting temperature from 1,000 K at 30 GPa down to room temperature at 120 GPa. Here we report results from ab initio calculations that explain the unusual melting behaviour in dense sodium. We show that molten sodium undergoes a series of pressure-induced structural and electronic transitions, analogous to those observed in solid sodium but commencing at much lower pressure in the presence of liquid disorder. As pressure is increased, liquid sodium initially evolves by assuming a more compact local structure. However, a transition to a lower-coordinated liquid takes place at a pressure of around 65 GPa, accompanied by a threefold drop in electrical conductivity. This transition is driven by the opening of a pseudogap, at the Fermi level, in the electronic density of states--an effect that has not hitherto been observed in a liquid metal. The lower-coordinated liquid emerges at high temperatures and above the stability region of a close-packed free-electron-like metal. We predict that similar exotic behaviour is possible in other materials as well.

  14. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  15. Studying the field induced breakup of acoustically levitated drops

    NASA Astrophysics Data System (ADS)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of drops of different charge, material, and size.

  16. Light-Driven Transport of a Liquid Marble with and against Surface Flows.

    PubMed

    Kavokine, Nikita; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Bickel, Thomas; Baigl, Damien

    2016-09-05

    Liquid marbles, that is, liquid drops coated by a hydrophobic powder, do not wet any solid or liquid substrate, making their transport and manipulation both highly desirable and challenging. Herein, we describe the light-driven transport of floating liquid marbles and emphasize a surprising motion behavior. Liquid marbles are deposited on a water solution containing photosensitive surfactants. Irradiation of the solution generates photoreversible Marangoni flows that transport the liquid marbles toward UV light and away from blue light when the thickness of the liquid substrate is large enough (Marangoni regime). Below a critical thickness, the liquid marbles move in the opposite direction to that of the surface flow at a speed increasing with decreasing liquid thickness (anti-Marangoni). We demonstrate that the anti-Marangoni motion is driven by the free surface deformation, which propels the non-wetting marble against the surface flow. We call this behavior "slide effect". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper

    NASA Astrophysics Data System (ADS)

    Homa, M.; Sobczak, N.; Sobczak, J. J.; Kudyba, A.; Bruzda, G.; Nowak, R.; Pietrzak, K.; Chmielewski, M.; Strupiński, W.

    2018-04-01

    The wettability of graphene-coated SiC single crystal (CGn/SiCsc) by liquid Cu (99.99%) was investigated by a sessile drop method in vacuum conditions at temperature of 1100 °C. The graphene layer was produced via a chemical vapor deposition routine using 4H-SiC single crystal cut out from 6″ wafer. A dispensed drop technique combined with a non-contact heating of a couple of materials was applied. The Cu drop was squeezed from a graphite capillary and deposited on the substrate directly in a vacuum chamber. The first Cu drop did not wet the CGn/SiCsc substrate and showed a lack of adhesion to the substrate: the falling Cu drop only touched the substrate forming a contact angle of θ 0 = 121° and then immediately rolled like a ball along the substrate surface. After settling near the edge of the substrate in about 0.15 s, the Cu drop formed an asymmetric shape with the right and left contact angles of different values (θ R = 86° and θ L = 70°, respectively), while in the next 30 min, θ R and θ L achieved the same final value of 52°. The second Cu drop was put down on the displacement path of the first drop, and immediately after the deposition, it also did not wet the substrate (θ = 123°). This drop kept symmetry and the primary position, but its wetting behavior was unusual: both θ R and θ L decreased in 17 min to the value of 23° and next, they increased to a final value of 65°. Visual observations revealed a presence of 2.5-mm-thick interfacial phase layer reactively formed under the second drop. Scanning electron microscopy (SEM) investigations revealed the presence of carbon-enriched precipitates on the top surface of the first Cu drop. These precipitates were identified by the Raman spectroscopy as double-layer graphene. The Raman spectrum taken from the substrate far from the drop revealed the presence of graphene, while that obtained from the first drop displacement path exhibited a decreased intensity of 2D peak. The results of SEM investigations and Raman spectroscopy studies suggest that the presence of graphene layer on the SiC substrate suppresses but does not completely prevent chemical interaction between liquid Cu drop and SiC. Both chemical degradation (etching) and mechanical degradation of the graphene layer during drop rolling due to high adhesion of the Cu drop to the SiC substrate are responsible for mass transfer through the 2nd drop/substrate interface that in turn results in significant changes of structure and chemistry of the drop and the interface.

  18. Interaction Between Graphene-Coated SiC Single Crystal and Liquid Copper

    NASA Astrophysics Data System (ADS)

    Homa, M.; Sobczak, N.; Sobczak, J. J.; Kudyba, A.; Bruzda, G.; Nowak, R.; Pietrzak, K.; Chmielewski, M.; Strupiński, W.

    2018-05-01

    The wettability of graphene-coated SiC single crystal (CGn/SiCsc) by liquid Cu (99.99%) was investigated by a sessile drop method in vacuum conditions at temperature of 1100 °C. The graphene layer was produced via a chemical vapor deposition routine using 4H-SiC single crystal cut out from 6″ wafer. A dispensed drop technique combined with a non-contact heating of a couple of materials was applied. The Cu drop was squeezed from a graphite capillary and deposited on the substrate directly in a vacuum chamber. The first Cu drop did not wet the CGn/SiCsc substrate and showed a lack of adhesion to the substrate: the falling Cu drop only touched the substrate forming a contact angle of θ 0 = 121° and then immediately rolled like a ball along the substrate surface. After settling near the edge of the substrate in about 0.15 s, the Cu drop formed an asymmetric shape with the right and left contact angles of different values ( θ R = 86° and θ L = 70°, respectively), while in the next 30 min, θ R and θ L achieved the same final value of 52°. The second Cu drop was put down on the displacement path of the first drop, and immediately after the deposition, it also did not wet the substrate ( θ = 123°). This drop kept symmetry and the primary position, but its wetting behavior was unusual: both θ R and θ L decreased in 17 min to the value of 23° and next, they increased to a final value of 65°. Visual observations revealed a presence of 2.5-mm-thick interfacial phase layer reactively formed under the second drop. Scanning electron microscopy (SEM) investigations revealed the presence of carbon-enriched precipitates on the top surface of the first Cu drop. These precipitates were identified by the Raman spectroscopy as double-layer graphene. The Raman spectrum taken from the substrate far from the drop revealed the presence of graphene, while that obtained from the first drop displacement path exhibited a decreased intensity of 2D peak. The results of SEM investigations and Raman spectroscopy studies suggest that the presence of graphene layer on the SiC substrate suppresses but does not completely prevent chemical interaction between liquid Cu drop and SiC. Both chemical degradation (etching) and mechanical degradation of the graphene layer during drop rolling due to high adhesion of the Cu drop to the SiC substrate are responsible for mass transfer through the 2nd drop/substrate interface that in turn results in significant changes of structure and chemistry of the drop and the interface.

  19. Comprehensive quantitative analysis of Chinese patent drug YinHuang drop pill by ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry.

    PubMed

    Wong, Tin-Long; An, Ya-Qi; Yan, Bing-Chao; Yue, Rui-Qi; Zhang, Tian-Bo; Ho, Hing-Man; Ren, Tian-Jing; Fung, Hau-Yee; Ma, Dik-Lung; Leung, Chung-Hang; Liu, Zhong-Liang; Pu, Jian-Xin; Han, Quan-Bin; Sun, Han-Dong

    2016-06-05

    YinHuang drop pill (YHDP) is a new preparation, derived from the traditional YinHuang (YH) decoction. Since drop pills are one of the newly developed forms of Chinese patent drugs, not much research has been done regarding the quality and efficacy. This study aims to establish a comprehensive quantitative analysis of the chemical profile of YHDP. ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify 34 non-sugar small molecules including 15 flavonoids, 9 phenolic acids, 5 saponins, 1 iridoid, and 4 iridoid glycosides in YHDP samples, and 26 of them were quantitatively determined. Sugar composition of YHDP in terms of fructose, glucose and sucrose was examined via a high performance liquid chromatography-evaporative light scattering detector on an amide column (HPLC-NH2P-ELSD). Macromolecules were examined by high performance gel permeation chromatography coupled with ELSD (HPGPC-ELSD). The content of the drop pill's skeleton component PEG-4000 was also quantified via ultra-high performance liquid chromatography coupled with charged aerosol detector (UHPLC-CAD). The results showed that up to 73% (w/w) of YHDP could be quantitatively determined. Small molecules accounted for approximately 5%, PEG-4000 represented 68%, while no sugars or macromolecules were found. Furthermore, YHDP showed no significant differences in terms of daily dosage, compared to YinHuang granules and YinHuang oral liquid; however, it has a higher small molecules content compared to YinHuang lozenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Structure and characteristics of heterogeneous detonation

    NASA Astrophysics Data System (ADS)

    Nicholls, J. A.; Sichel, M.; Kauffman, C. W.

    1983-09-01

    The emphasis of this research program centered around the structure of heterogeneous detonation waves, inasmuch as this had been found to be very important to the detonation characteristics of heterogeneous mixtures. On the experimental side, a vertical detonation tube was used wherein liquid fuel drops, all of one size, were generated at the top of the tube and allowed to fall vertically into the desired gaseous mixture. A strong blast wave was transmitted into the mixture through use of an auxiliary shock tube. The propagation of the resultant wave was monitored by pressure switches, pressure transducers, and photography. The low vapor pressure liquid fuel, decane (400 micrometer drop size) was used for most of the experiments. Attention was given to wave structure, wave velocity, and initiation energy. Three atmospheres (100% O2; 40% O2/60% N2; and air) and a number of equivalence ratios were investigated. Holographic pictures and streak photography were employed to study the drop shattering process and the structure of the front. Other experiments investigated the addition of the sensitizer, normal propyl nitrate (NPN), to the decane. The important aspect of vapor pressure was studied by heating the entire tube to various elevated temperatures and then noting the effect on detonability.

  1. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilpueng, Kitti; Wongwises, Somchai

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less

  2. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  3. Thermocapillary flow contribution to dropwise condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-11-01

    With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.

  4. A comprehensive analysis of the evaporation of a liquid spherical drop.

    PubMed

    Sobac, B; Talbot, P; Haut, B; Rednikov, A; Colinet, P

    2015-01-15

    In this paper, a new comprehensive analysis of a suspended drop of a pure liquid evaporating into air is presented. Based on mass and energy conservation equations, a quasi-steady model is developed including diffusive and convective transports, and considering the non-isothermia of the gas phase. The main original feature of this simple analytical model lies in the consideration of the local dependence of the physico-chemical properties of the gas on the gas temperature, which has a significant influence on the evaporation process at high temperatures. The influence of the atmospheric conditions on the interfacial evaporation flux, molar fraction and temperature is investigated. Simplified versions of the model are developed to highlight the key mechanisms governing the evaporation process. For the conditions considered in this work, the convective transport appears to be opposed to the evaporation process leading to a decrease of the evaporation flux. However, this effect is relatively limited, the Péclet numbers happening to be small. In addition, the gas isothermia assumption never appears to be valid here, even at room temperature, due to the large temperature gradient that develops in the gas phase. These two conclusions are explained by the fact that heat transfer from the gas to the liquid appears to be the step limiting the evaporation process. Regardless of the complexity of the developed model, yet excluding extremely small droplets, the square of the drop radius decreases linearly over time (R(2) law). The assumptions of the model are rigorously discussed and general criteria are established, independently of the liquid-gas couple considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets.

    PubMed

    Kremer, J; Kilzer, A; Petermann, M

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  6. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    NASA Astrophysics Data System (ADS)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  7. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  8. NASA Glenn Icing Research Tunnel: 2014 and 2015 Cloud Calibration Procedures and Results

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.; Acosta, Waldo J.

    2015-01-01

    This report summarizes the current status of the NASA Glenn Research Center (GRC) Icing Research Tunnel cloud calibration: specifically, the cloud uniformity, liquid water content, and drop-size calibration results from both the January-February 2014 full cloud calibration and the January 2015 interim cloud calibration. Some aspects of the cloud have remained the same as what was reported for the 2014 full calibration, including the cloud uniformity from the Standard nozzles, the drop-size equations for Standard and Mod1 nozzles, and the liquid water content for large-drop conditions. Overall, the tests performed in January 2015 showed good repeatability to 2014, but there is new information to report as well. There have been minor updates to the Mod1 cloud uniformity on the north side of the test section. Also, successful testing with the OAP-230Y has allowed the IRT to re-expand its operating envelopes for large-drop conditions to a maximum median volumetric diameter of 270 microns. Lastly, improvements to the collection-efficiency correction for the SEA multi-wire have resulted in new calibration equations for Standard- and Mod1-nozzle liquid water content.

  9. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  10. Three-Dimensional Simulation of Liquid Drop Dynamics Within Unsaturated Vertical Hele-Shaw Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Huang; Paul Meakin

    A three-dimensional, multiphase fluid flow model with volume of fluid-interface tracking was developed and applied to study the multiphase dynamics of moving liquid drops of different sizes within vertical Hele-Shaw cells. The simulated moving velocities are significantly different from those obtained from a first-order analytical approximation, based on simple force-balance concepts. The simulation results also indicate that the moving drops can exhibit a variety of shapes and that the transition among these different shapes is largely determined by the moving velocities. More important, there is a transition from a linear moving regime at small capillary numbers, in which the capillarymore » number scales linearly with the Bond number, to a nonlinear moving regime at large capillary numbers, in which the moving drop releases a train of droplets from its trailing edge. The train of droplets forms a variety of patterns at different moving velocities.« less

  11. Interfacial tension measurement of immiscible liq uids using a capillary tube

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.; Delsignore, D.

    1992-01-01

    The interfacial tension of immiscible liquids is an important thermophysical property that is useful in the behavior of liquids both in microgravity (Martinez et al. (1987) and Karri and Mathur (1988)) and in enhanced oil recovery processes under normal gravity (Slattery (1974)). Many techniques are available for its measurement, such as the ring method, drop weight method, spinning drop method, and capillary height method (Adamson (1960) and Miller and Neogi (1985)). Karri and Mathur mention that many of the techniques use equations that contain a density difference term and are inappropriate for equal density liquids. They reported a new method that is suitable for both equal and unequal density liquids. In their method, a capillary tube forms one of the legs of a U-tube. The interfacial tension is related to the heights of the liquids in the cups of the U-tube above the interface in the capillary. Our interest in this area arose from a need to measure small interfacial tension (around 1 mN/m) for a vegetable oil/silicon oil system that was used in a thermocapillary drop migration experiment (Rashidnia and Balasubramaniam (1991)). In our attempts to duplicate the method proposed by Karri and Mathur, we found it quite difficult to anchor the interface inside the capillary tube; small differences of the liquid heights in the cups drove the interface out of the capillary. We present an alternative method using a capillary tube to measure the interfacial tensions of liquids of equal or unequal density. The method is based on the combined capillary rises of both liquids in the tube.

  12. Nonlinear oscillations of inviscid free drops

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  13. Parametric resonance in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Shen, C. L.; Xie, W. J.; Wei, B.

    2010-05-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  14. Determination of Interfacial Rheological Properties through Microgravity Oscillations of Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Nadim, Ali; Rush, Brian M.

    2000-01-01

    This report summarizes our derivations of analytical expressions for the frequencies and damping constants for small-amplitude axisymmetric shape oscillations of a liquid drop suspended in an immiscible fluid host in microgravity. In particular, this work addresses large Reynolds number shape oscillations and focuses on the surface rheological effects that arise from the presence of insoluble surfactants at the interface. Parameters characterizing viscous effects from the bulk phases, surface viscous effects, Marangoni effects from the surface advection and diffusion of surfactants, and the Gibbs elasticity are all considered and analyzed to determine the relative importance of each contribution. Supplementing the analytical treatment for small-amplitude oscillations, a numerical boundary integral equation formulation is developed for the study of large-amplittide axisymmetric oscillations of a drop in vacuum. The boundary integral formulation is an extension of classical potential flow theory and approximately accounts for viscous effects in the bulk fluid as well as the surface viscous and Marangoni effects resulting from an insoluble surfactant contaminating the interface. Theoretical and numerical results are presented for four distinct cases. These, range from the case when the effects of the surfactants are 'negligible' to 'large' when compared to the viscous effects in the bulk phases. The feasibility of the non-contact measurement of the surface parameters, using experimental observations for the oscillation frequencies and damping constants of drops and bubbles, is discussed.

  15. Singularities in Free Surface Flows

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental techniques. The aim of fifth problem is to analyze the coalescence dynamics of drops through a combination of GFEM and scaling theory. Lastly, the sixth problem concerns the thinning and rupture dynamics of thin films of Newtonian and power-law fluids using scaling theory based on asymptotic analysis and the predictions of this theory are corroborated using computations based on GFEM.

  16. Curvature singularity and film-skating during drop impact

    NASA Astrophysics Data System (ADS)

    Duchemin, Laurent; Josserand, Christophe

    2011-09-01

    We study the influence of the surrounding gas in the dynamics of drop impact on a smooth surface. We use an axisymmetric model for which both the gas and the liquid are incompressible; lubrication regime applies for the gas film dynamics and the liquid viscosity is neglected. In the absence of surface tension a finite time singularity whose properties are analysed is formed and the liquid touches the solid on a circle. When surface tension is taken into account, a thin jet emerges from the zone of impact, skating above a thin gas layer. The thickness of the air film underneath this jet is always smaller than the mean free path in the gas suggesting that the liquid film eventually wets the surface. We finally suggest an aerodynamical instability mechanism for the splash.

  17. Ultrafast cavitation induced by an X-ray laser in water drops

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Willmott, Philip; Stone, Howard; Koglin, Jason; Liang, Mengning; Aquila, Andrew; Robinson, Joseph; Gumerlock, Karl; Blaj, Gabriel; Sierra, Raymond; Boutet, Sebastien; Guillet, Serge; Curtis, Robin; Vetter, Sharon; Loos, Henrik; Turner, James; Decker, Franz-Josef

    2016-11-01

    Cavitation in pure water is determined by an intrinsic heterogeneous cavitation mechanism, which prevents in general the experimental generation of large tensions (negative pressures) in bulk liquid water. We developed an ultrafast decompression technique, based on the reflection of shock waves generated by an X-ray laser inside liquid drops, to stretch liquids to large negative pressures in a few nanoseconds. Using this method, we observed cavitation in liquid water at pressures below -100 MPa. These large tensions exceed significantly those achieved previously, mainly due to the ultrafast decompression. The decompression induced by shock waves generated by an X-ray laser is rapid enough to continue to stretch the liquid phase after the heterogeneous cavitation occurs in water, despite the rapid growth of cavitation nanobubbles. We developed a nucleation-and-growth hydrodynamic cavitation model that explains our results and estimates the concentration of heterogeneous cavitation nuclei in water.

  18. Contact Angle Measurements Using a Simplified Experimental Setup

    ERIC Educational Resources Information Center

    Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric

    2010-01-01

    A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…

  19. Comparison of atomization characteristics of drop-in and conventional jet fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; Micro Scale Thermo-Fluids Lab Team

    2016-11-01

    Surge in energy demand and stringent emission norms have been driving the interest on alternative drop-in fuels in aviation industry. The gas-to-liquid (GTL), synthetic paraffinic kerosene fuel derived from natural gas, has drawn significant attention as drop-in fuel due to its cleaner combustion characteristics when compared to other alternative fuels derived from various feedstocks. The fuel specifications such as chemical and physical properties of drop-in fuels are different from those of the conventional jet fuels, which can affect their atomization characteristics and in turn the combustion performance. The near nozzle liquid sheet dynamics of the drop-in fuel, GTL, is studied at different nozzle operating conditions and compared with that of the conventional Jet A-1 fuel. The statistical analysis of the near nozzle sheet dynamics shows that the drop-in fuel atomization characteristics are comparable to those of the conventional fuel. Furthermore, the microscopic spray characteristics measured using phase Doppler anemometry at downstream locations are slightly different between the fuels. Authors acknowledge the support by National Priorities Research Program (NPRP) of Qatar National Research Fund through the Grant NPRP-7-1449-2-523.

  20. Spread of pathogens through rain drop impact

    NASA Astrophysics Data System (ADS)

    Kim, Seungho; Gruszewski, Hope; Gidley, Todd; Schmale, David G., III; Jung, Sunghwan

    2017-11-01

    Rain drop impact can disperse micron-sized pathogenic particles over long distances. In this study, we aim to elucidate mechanisms for disease dispersal when a rain drop impacts a particle-laden solid surface. Three different dispersal types were observed depending on whether the dispersed glass particles were dry or wet. For a dry particle dispersal, the movement of contact line made the particles initially jump off the surface with relatively high velocity. Then, air vortex was formed due to the air current entrained along with the falling drop, and advected the particles with relatively low velocity. For a wet particle dispersal, the contact line of a spreading liquid became unstable due to the presence of the particles on the substrate. This caused splashing at the contact line and ejected liquid droplets carrying the particles. Finally, we released a drop onto wheat plants infected with the rust fungus, Puccinia triticina, and found that nearly all of the satellite droplets from a single drop contained at least one rust spore. Also, we visualized such novel dispersal dynamics with a high-speed camera and characterized their features by scaling models. This research was partially supported by National Science Foundation Grant CBET-1604424.

  1. Direct numerical simulations of two-phase laminar jet flows with different cross-section injection geometries

    NASA Astrophysics Data System (ADS)

    Abdel-Hameed, H.; Bellan, J.

    2002-10-01

    Direct numerical simulations are performed of spatial, three-dimensional, laminar jets of different inlet geometric configurations for the purpose of quantifying the characteristics of the flows; both single-phase (SP) and two-phase (TP) free jets are considered. The TP jets consist of gas laden with liquid drops randomly injected at the inlet. Drop evaporation ensues both due to the gaseous flow being initially unvitiated by the vapor species corresponding to the liquid drops, and to drop heating as the initial drop temperature is lower than that of the carrier gas. The conservation equations for the TP flow include complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the vapor enthalpy, internal energy, and latent heat of vaporization. Inlet geometries investigated are circular, elliptic, rectangular, square, and triangular. The results focus both on the different spreading achieved according to the inlet geometry, as well as on the considerable change in the flow field due to the presence of the drops. The most important consequence of the drop interaction with the flow is the production of streamwise vorticity that alters entrainment and species mixing according to the inlet geometry. Similar to their SP equivalent, TP jets are shown to reach steady-state entrainment; examination of the flows at this time station shows that the potential cores of TP jets are shorter by an order of magnitude than their SP counterpart. Moreover, whereas the TP circular jet exhibits a symmetric entrainment pattern well past the streamwise location of the potential core, noncircular jets display at the same location strong departures from symmetry. Furthermore, the SP-jet phenomenon of axis switching is no longer present in TP jets. The distributions of drop-number density, liquid mass, and evaporated species are compared for different inlet cross sections and recommendations are made regarding the optimal choice for different applications.

  2. Noncircular Cross Sections Could Enhance Mixing in Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Abdel-Hameed, Hesham

    2003-01-01

    A computational study has shown that by injecting drops in jets of gas having square, elliptical, triangular, or other noncircular injection cross sections, it should be possible to increase (relative to comparable situations having circular cross section) the entrainment and dispersion of liquid drops. This finding has practical significance for a variety of applications in which it is desirable to increase dispersion of drops. For example, in chemical-process sprays, increased dispersion leads to increases in chemical- reaction rates; in diesel engines, increasing the dispersion of drops of sprayed fuel reduces the production of soot; and in household and paint sprays, increasing the dispersion of drops makes it possible to cover larger surfaces. It has been known for some years that single-phase fluid jets that enter flow fields through noncircular inlets entrain more fluid than do comparable jets entering through circular inlets. The computational study reported here was directed in part toward determining whether and how this superior mixing characteristic of noncircular single phase jets translates to a similar benefit in cases of two-phase jets (that is, sprays). The study involved direct numerical simulations of single- and two-phase free jets with circular, elliptical, rectangular, square, and triangular inlet cross sections. The two-phase jets consisted of gas laden with liquid drops randomly injected at the inlets. To address the more interesting case of evaporating drops, the carrier gas in the jets was specified to be initially unvitiated by the vapor of the liquid chemical species and the initial temperature of the drops was chosen to be smaller than that of the gas. The mathematical model used in the study was constructed from the conservation equations for the two-phase flow and included complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the enthalpy, internal energy, and latent heat of vaporization of the vapor.

  3. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  4. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  5. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  6. Vibration-Induced Climbing of Drops

    NASA Astrophysics Data System (ADS)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2007-10-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.

  7. Effectiveness of eye drops protective against ultraviolet radiation.

    PubMed

    Daxer, A; Blumthaler, M; Schreder, J; Ettl, A

    1998-01-01

    To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.

  8. Containerless processing of undercooled melts

    NASA Technical Reports Server (NTRS)

    Shong, D. S.; Graves, J. A.; Ujiie, Y.; Perepezko, J. H.

    1987-01-01

    Containerless drop tube processing allows for significant levels of liquid undercooling through control of parameters such as sample size, surface coating and cooling rate. A laboratory scale (3 m) drop tube has been developed which allows the undercooling and solidification behavior of powder samples to be evaluated under low gravity free-fall conditions. The level of undercooling obtained in an InSb-Sb eutectic alloy has been evaluated by comparing the eutectic spacing in drop tube samples with a spacing/undercooling relationship established using thermal analysis techniques. Undercoolings of 0.17 and 0.23 T(e) were produced by processing under vacuum and He gas conditions respectively. Alternatively, the formation of an amorphous phase in a Ni-Nb eutectic alloy indicates that undercooling levels of approximately 500 C were obtained by drop tube processing. The influence of droplet size and gas environment on undercooling behavior in the Ni-Nb eutectic was evaluated through their effect on the amorphous/crystalline phase ratio. To supplement the structural analysis, heat flow modeling has been developed to describe the undercooling history during drop tube processing, and the model has been tested experimentally.

  9. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    PubMed

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  10. Electrodeless electro-hydrodynamic gentle printing of personalized medicines

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Elele, Ezinwa; Shen, Yueyang

    2010-11-01

    Drop-on-demand (DOD) principle appears to be a particular promising approach for manufacturing personalized treatments carefully tailored to a patient's genetic background. The authors have recently developed a DOD method for gentle printing of personalized medicines. A fluid is infused into an electrically insulating nozzle to form a pendant drop. A sufficiently strong voltage pulse is applied to external electrodes to stretch the pendant drop until it touches an electrically insulating film and forms a liquid bridge. As the liquid bridge is intentionally formed in an unstable configuration, it breaks up, creating two drops, one on the film and the other hanging from the nozzle. To prove the validity and versatility of the method, experiments are conducted on fluids whose viscosity, conductivity, dielectric constant, and surface tension vary over a broad range, respectively: 1-1045 cP, 0.02-290 μS/cm, 9-78, and 41-72 dyn/cm. We present a scaling analysis that captures the essential physics of drop evolution and provides the critical design guidelines. The work was supported by NSF Engineering Research Center on Structured Organic Particulate Systems.

  11. An experimental investigation of the effect of walls on gas-liquid flows through fixed particle beds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Marcia A.; Cote, Raymond O.; Torczynski, John Robert

    The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter inmore » the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow, Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates.« less

  12. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    PubMed

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  13. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    NASA Astrophysics Data System (ADS)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  14. Accurate high-speed liquid handling of very small biological samples.

    PubMed

    Schober, A; Günther, R; Schwienhorst, A; Döring, M; Lindemann, B F

    1993-08-01

    Molecular biology techniques require the accurate pipetting of buffers and solutions with volumes in the microliter range. Traditionally, hand-held pipetting devices are used to fulfill these requirements, but many laboratories have also introduced robotic workstations for the handling of liquids. Piston-operated pumps are commonly used in manually as well as automatically operated pipettors. These devices cannot meet the demands for extremely accurate pipetting of very small volumes at the high speed that would be necessary for certain applications (e.g., in sequencing projects with high throughput). In this paper we describe a technique for the accurate microdispensation of biochemically relevant solutions and suspensions with the aid of a piezoelectric transducer. It is suitable for liquids of a viscosity between 0.5 and 500 milliPascals. The obtainable drop sizes range from 5 picoliters to a few nanoliters with up to 10,000 drops per second. Liquids can be dispensed in single or accumulated drops to handle a wide volume range. The system proved to be excellently suitable for the handling of biological samples. It did not show any detectable negative impact on the biological function of dissolved or suspended molecules or particles.

  15. Manipulating the Coffee-Ring Effect: Interactions at Work.

    PubMed

    Anyfantakis, Manos; Baigl, Damien

    2015-07-31

    The evaporation of a drop of colloidal suspension pinned on a substrate usually results in a ring of particles accumulated at the periphery of the initial drop. Intense research has been devoted to understanding, suppressing and ultimately controlling this so-called coffee-ring effect (CRE). Although the crucial role of flow patterns in the CRE has been thoroughly investigated, the effect of interactions on this phenomenon has been largely neglected. This Concept paper reviews recent works in this field and shows that the interactions of colloids with (and at) liquid-solid and liquid-gas interfaces as well as bulk particle-particle interactions drastically affect the morphology of the deposit. General rules are established to control the CRE by tuning these interactions, and guidelines for the rational physicochemical formulation of colloidal suspensions capable of depositing particles in desirable patterns are provided. This opens perspectives for the reliable control of the CRE in real-world formulations and creates new paradigms for flexible particle patterning at all kinds of interfaces as well for the exploitation of the CRE as a robust and inexpensive diagnostic tool. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phase holdups in three-phase fluidized beds in the presence of disc promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murty, M.S.N.; Ramesh, K.V.; Venkateswarlu, P.

    2011-02-15

    Three-phase fluidized beds are found to have wide applications in process industries. The present investigation essentially comprises of the studies on gas holdup, liquid holdup and bed porosity in three-phase fluidized beds with coaxially placed disc promoter. Holdup data were obtained from bed expansion and pressure drop measurements. Analysis of the data was done to elucidate the effects of dynamic and geometric parameters on gas holdup, liquid holdup and bed porosity. Data were correlated and useful equations were obtained from empirical modeling. (author)

  17. Coal-Face Fracture With A Two-Phase Liquid

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  18. Treatment pattern and frequency of serum TSH measurement in users of different levothyroxine formulations: a population-based study during the years 2009-2015.

    PubMed

    Ferrara, Rosarita; Ientile, Valentina; Arcoraci, Vincenzo; Ferrajolo, Carmen; Piccinni, Carlo; Fontana, Andrea; Benvenga, Salvatore; Trifirò, Gianluca

    2017-10-01

    Several conditions can modify the intestinal absorption of levothyroxine tablets, with potential consequences on their therapeutic effect. Pre-dosed ampoules and oral drops have been recently made available to overcome this limitation. To describe the pattern of use of different formulations of levothyroxine in a general population of Southern Italy and to perform an exploratory analysis investigating the effect of switching from levothyroxine tablets to oral liquid formulations. Data were extracted from the Caserta Local Health Unit database. All patients receiving at least one levothyroxine prescription during the years 2009-2015 were identified. 1-year incidence of use of formulation-specific levothyroxine was calculated. Switchers between levothyroxine tablets and oral liquid formulations were identified and the frequency of thyroid-stimulating hormone measurement within 2 years prior and after the switch date was explored. Overall, 56,354 levothyroxine users were included in the study. Of these, 55,147 patients received at least one prescription for tablets (97.9%), 1867 pre-dosed ampoules (3.3%) and 1550 oral drops (2.8%). The proportion of levothyroxine users receiving oral liquid formulations slightly increased over time. Patients switching from tablets to oral liquid formulations showed a statistically significant reduction in the number of thyroid-stimulating hormone measurements after switching from tablets, especially in presence of drugs interacting with levothyroxine potentially altering its absorption. Use of levothyroxine oral liquid formulations is increasing over time even though their use is still limited in a general population of Southern Italy. Our exploratory analysis showed that the frequency of thyroid-stimulating hormone measurement was reduced in patients switching from levothyroxine tablet to new formulations.

  19. Directional self-cleaning superoleophobic surface.

    PubMed

    Zhao, Hong; Law, Kock-Yee

    2012-08-14

    In this work, we report the creation of a grooved surface comprising 3 μm grooves (height ~4 μm) separated by 3 μm from each other on a silicon wafer by photolithography. The grooved surface was then modified chemically with a fluorosilane layer (FOTS). The surface property was studied by both static and dynamic contact angle measurements using water, hexadecane, and a polyethylene wax ink as the probing liquids. Results show that the grooved surface is both superhydrophobic and superoleophobic. Its observed contact angles agree well with the calculated Cassie-Baxter angles. More importantly, we are able to make a replica of the composite wax ink-air interface and study it by SEM. Microscopy results not only show that the droplet of the wax ink "sits" on air in the composite interface but also further reveal that the ink drop actually pins underneath the re-entrant structure in the side wall of the grooved structure. Contact angle measurement results indicate that wetting on the grooved surface is anisotropic. Although liquid drops are found to have lower static and advancing contact angles in the parallel direction, the drops are found to be more mobile, showing smaller hysteresis and lower sliding angles (as compared to the FOTS wafer surface and a comparable 3-μm-diameter pillar array FOTS surface). The enhanced mobility is attributable to the lowering of the resistance against an advancing liquid because 50% of the advancing area is made of a solid strip where the liquid likes to wet. This also implies that the contact line for advancing is no longer smooth but rather is ragged, having the solid strip area leading the wetting and the air strip area trailing behind. This interpretation is supported by imaging the geometry of the contact lines using molten ink drops recovered from the sliding angle experiments in both the parallel and orthogonal directions. Because the grooved surface is mechanically stronger against mechanical abrasion, the self-cleaning effect exhibited in the parallel direction suggests that groove texturing is a viable approach to create mechanically robust, self-cleaning, superoleophobic surfaces.

  20. Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids

    NASA Astrophysics Data System (ADS)

    Saha, Pritam; Sandilya, Pavitra

    2017-12-01

    Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.

  1. Bubble, Drop and Particle Unit (BDPU)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes the following articles entitled: (1) Oscillatory Thermocapillary Instability; (2) Thermocapillary Convection in Multilayer Systems; (3) Bubble and Drop Interaction with Solidification Front; (4) A Liquid Electrohydrodynamics Experiment; (5) Boiling on Small Plate Heaters under Microgravity and a Comparison with Earth Gravity; (6) Thermocapillary Migration and Interactions of Bubbles and Drops; and (7) Nonlinear Surface Tension Driven Bubble Migration

  2. Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities

    DOE PAGES

    Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano; ...

    2017-08-11

    Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less

  3. Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano

    Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less

  4. Simulations of surfactant effects on the coalescence of drops and bubbles

    NASA Astrophysics Data System (ADS)

    Martin, David; Blanchette, Francois

    2012-11-01

    We present simulations of coalescence in the presence of surfactant. We assume axial symmetry, and consider a fluid-fluid interface on which surfactant concentration and mass are tracked as functions of arclength. Our model can account for two physically distinct setups: a soap bubble merging with a suspended soap film; and a surfactant covered liquid drop merging with a reservoir. In both cases, we describe the regime in which coalescence is only partial. Along with viscous effects, represented by the Ohnesorge number, the elasticity of the surface tension relative to the surfactant concentration is seen to play a key role, and exhibits a surprising nonmonotonic influence. Effects of gravity are also simulated, along with effects of differing initial conditions, including uneven initial surfactant concentration, as is likely to arise in physical applications. We acknowledge support from NSF grant DMS 0808129.

  5. Splashing, feeding, contracting: Drop impact and fluid dynamics of Vorticella

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel E.

    This thesis comprises two main topics: understanding drop impact and splashing, and studying the feeding and contracting of the microorganism Vorticella. In Chapter 1, we study the effect of substrate compliance on the splash threshold of a liquid drop using an elastic membrane under variable tension. We find that splashing can be suppressed by reducing this tension. Measurements of the velocity and acceleration of the spreading drop after impact indicate that the splashing behavior is set at very early times after, or possibly just before, impact, far before the actual splash occurs. We also provide a model for the tension dependence of the splashing threshold. In Chapter 2, we study the evolution of the ejected liquid sheet, or lamella, created after impact of a liquid drop onto a solid surface using high-speed video. We find that the lamella rim thickness is always much larger than the boundary layer thickness, and that this thickness decreases with increasing impact speed. We also observe an unusual plateau behavior in thickness versus time at higher impact speeds as we approach the splash threshold. In Chapter 3, we show through calculations, simulations, and experiments that the eddies often observed near sessile filter feeders are due to the presence of nearby boundaries. We model the common filter feeder Vorticella, and also track particles around live feeding Vorticella to determine the experimental flow field. Our models are in good agreement both with each other and with the experiments. We also provide simple approximate equations to predict experimental eddy sizes due to boundaries. In Chapter 4, we show through calculations that filter feeders such as Vorticella can greatly enhance their nutrient uptake by feeding at an angle rather than perpendicular to a substrate. We also show experimental evidence that living Vorticella use this strategy. Finally, in Chapter 5, we discuss possible future directions for these projects, including potential insights from a close examination of lamella behavior at the splash threshold, and calculations to determine if Vorticella contract rapidly towards the substrate to which they are attached in order to mix the surrounding fluid.

  6. Electro-hydrodynamic printing of drugs onto edible substrates

    NASA Astrophysics Data System (ADS)

    Shen, Yueyang; Elele, Ezinwa; Palle, Prashanth; Khusid, Boris; Basaran, Osman; McGough, Patrick T.; Collins, Robert T.

    2009-11-01

    While most existing drugs are manufactured as tablets using powder processing techniques, there is growing interest in printing drops containing pharmaceutical actives on edible substrates. We have developed a drop-on-demand (DOD) printing method appropriate for either replacing existing manufacturing platforms or enabling personalized medicine that overcomes the various critical challenges facing current DOD technologies. To eliminate adverse effects of electro-chemical reactions at the fluid-electrode interface, the fluid is infused into an electrically insulating nozzle to form a pendant drop that serves as a floating electrode capacitively coupled to external electrodes. A liquid bridge is formed and broken as the voltage applied at the electrode is varied in time. This gentle method for drop deposition has been demonstrated to operate with fluids spanning over three orders of magnitude in viscosity and conductivity. The proposed method has the potential for the evolving field of pharmaceutical and biomedical applications requiring the deposition of fluids at the exact locations with high volume accuracy.

  7. Drop Tower Experiments concerning Fluid Management under Microgravity

    NASA Astrophysics Data System (ADS)

    Gaulke, Diana; Dreyer, Michael

    2012-07-01

    Transport and positioning of liquid under microgravity is done utilizing capillary forces. Therefore, capillary transport processes have to be understood for a wide variety of space applications, ranging from propellant management in tanks of space transportation systems to eating and drinking devices for astronauts. There are two types of liquid transportation in microgravity using capillary forces. First, the driven liquid flow in open channels where the capillary forces at free surfaces ensure a gas and vapor free flow. Here it is important to know the limiting flow rate through such an open channel before the free surface collapses and gas is sucked into the channel. A number of different experiments at the drop tower Bremen, on sounding rockets and at the ISS have been conducted to analyse this phenomenon within different geometries. As result a geometry dependent theory for calculating the maximum flow rate has been found. On the other hand liquid positioning and transportation requires the capillary pressure of curved surfaces to achieve a liquid flow to a desired area. Especially for space applications the weight of structure has to be taken into account for development. For example liquid positioning in tanks can be achieved via a complicated set of structure filling the whole tank resulting in heavy devices not reasonable in space applications. Astrium developed in cooperation with ZARM a propellant management device much smaller than the tank volume and ensuring a gas and vapour free supply of propellant to the propulsion system. In the drop tower Bremen a model of this device was tested concerning different microgravity scenarios. To further decrease weight and ensure functionality within different scenarios structure elements are designed as perforated geometries. Capillary transport between perforated plates has been analyzed concerning the influence of geometrical pattern of perforations. The conducted experiments at the drop tower Bremen show the remarkable influence of perforations on the capillary transport capability.

  8. Unstable bidimensional grids of liquid filaments: Drop pattern after breakups

    NASA Astrophysics Data System (ADS)

    Diez, Javier; Cuellar, Ingrith; Ravazzoli, Pablo; Gonzalez, Alejandro

    2017-11-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops. We acknowledge support from CONICET-Argentina (Grant PIP 844/2012) and ANPCyT-Argentina (Grant PICT 931/2012).

  9. Analysis of Skylab fluid mechanics science demonstrations

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Butz, J. R.

    1975-01-01

    The results of the data reduction and analysis of the Skylab fluid mechanics demonstrations are presented. All the fluid mechanics data available from the Skylab missions were identified and surveyed. The significant fluid mechanics phenomena were identified and reduced to measurable quantities wherever possible. Data correlations were performed using existing theories. Among the phenomena analyzed were: static low-g interface shapes, oscillation frequency and damping of a liquid drop, coalescence, rotating drop, liquid films and low-g ice melting. A survey of the possible applications of the results was made and future experiments are recommended.

  10. Temporal properties of secondary drop breakup in the bag-stamen breakup regime

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Liu, Hai-Feng; Xu, Jian-Liang; Li, Wei-Feng; Lin, Kuang-Fei

    2013-05-01

    The situation of liquid drop bag-stamen breakup in a continuous air jet flow is investigated by a high speed camera. Test liquids include water, ethanol, and various glycerol mixtures. First, the morphology of bag-stamen breakup is observed and analyzed. The bag-stamen breakup range is found to be in good agreement with the model obtained by Rayleigh-Taylor instability. Then the disk and stamen deformation properties, the fragment average size, and size distribution of ring and stamen are researched in detail, respectively.

  11. An improved ionic liquid-based headspace single-drop microextraction-liquid chromatography method for the analysis of camphor and trans-anethole in compound liquorice tablets.

    PubMed

    He, Xiaowen; Zhang, Fucheng; Jiang, Ye

    2012-07-01

    A simple, accurate and sensitive ionic liquid-based headspace single-drop microextraction procedure followed by high-performance liquid chromatography was developed and validated for the determination of camphor and trans-anethole in compound liquorice tablets. The volume of the ionic liquid microdrop was increased to 12 µL by modifying the device of the suspended drop. The stability of the microdrop and the sensitivity of the method were improved. Under the optimum experimental conditions, the calculated calibration curves gave acceptable linearity for camphor and trans-anethole with correlation coefficients of 0.9990 and 0.9998, respectively. The repeatability of the proposed method, expressed as relative standard deviation, was below 4.5% (n = 5). The limits of detection for the two target analytes were found to be 9.77 and 1.95 × 10(-2) μg/mL, respectively. In this study, the separation, purification and enrichment were achieved in one step in an airtight system, which reduced the interferences caused by other complicated constituents, increased the signal-to-noise of the method and ensured the accuracy of the results because there was no loss of volatile components. It is expected to be widely applied for sample pretreatment of volatile components with high boiling points in samples with complicated matrices such as the extractions of plants or Chinese traditional drugs.

  12. Drop trampoline

    NASA Astrophysics Data System (ADS)

    Chantelot, Pierre; Coux, Martin; Clanet, Christophe; Quere, David

    2017-11-01

    Superhydrophobic substrates inspired from the lotus leaf have the ability to reflect impacting water drops. They do so very efficiently and contact lasts typically 10 ms for millimetric droplets. Yet unlike a lotus leaf most synthetic substrates are rigid. Focusing on the interplay between substrate flexibility and liquid repellency might allow us to understand the dynamic properties of natural surfaces. We perform liquid marbles impacts at velocity V onto thin ( 0.01 mm) stretched circular PDMS membranes. We obtain contact time reductions of up to 70%. The bouncing mechanism is drastically modified compared to that on a rigid substrate: the marble leaves the substrate while it is still spread in a disk shape as it is kicked upwards by the membrane. We show that the bouncing is controlled by an interplay between the dynamics of the drop and the membrane.

  13. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  14. Generation and characterization of surface layers on acoustically levitated drops.

    PubMed

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs.

  15. Optical measurements in evolving dispersed pipe flows

    NASA Astrophysics Data System (ADS)

    Voulgaropoulos, Victor; Angeli, Panagiota

    2017-12-01

    Optical laser-based techniques and an extensive data analysis methodology have been developed to acquire flow and separation characteristics of concentrated liquid-liquid dispersions. A helical static mixer was used at the inlet of an acrylic 4 m long horizontal pipe to actuate the dispersed flows at low mixture velocities. The organic (913 kg m^{-3}, 0.0046 Pa s) and aqueous phases (1146 kg m^{-3}, 0.0084 Pa s) were chosen to have matched refractive indices. Measurements were conducted at 15 and 135 equivalent pipe diameters downstream the inlet. Planar laser induced fluorescence (PLIF) measurements illustrated the flow structures and provided the local in-situ holdup profiles. It was found that along the pipe the drops segregate and in some cases coalesce either with other drops or with the corresponding continuous phase. A multi-level threshold algorithm was developed to measure the drop sizes from the PLIF images. The velocity profiles in the aqueous phase were measured with particle image velocimetry (PIV), while the settling velocities of the organic dispersed drops were acquired with particle tracking velocimetry (PTV). It was also possible to capture coalescence events of a drop with an interface over time and to acquire the instantaneous velocity and vorticity fields in the coalescing drop.

  16. Predicting wettability behavior of fluorosilica coated metal surface using optimum neural network

    NASA Astrophysics Data System (ADS)

    Taghipour-Gorjikolaie, Mehran; Valipour Motlagh, Naser

    2018-02-01

    The interaction between variables, which are effective on the surface wettability, is very complex to predict the contact angles and sliding angles of liquid drops. In this paper, in order to solve this complexity, artificial neural network was used to develop reliable models for predicting the angles of liquid drops. Experimental data are divided into training data and testing data. By using training data and feed forward structure for the neural network and using particle swarm optimization for training the neural network based models, the optimum models were developed. The obtained results showed that regression index for the proposed models for the contact angles and sliding angles are 0.9874 and 0.9920, respectively. As it can be seen, these values are close to unit and it means the reliable performance of the models. Also, it can be inferred from the results that the proposed model have more reliable performance than multi-layer perceptron and radial basis function based models.

  17. Deformation and Breakup of a Stretching Liquid Bridge

    NASA Astrophysics Data System (ADS)

    Franses, Elias I.; Liao, Ying-Chih; Basaran, Osman

    2004-11-01

    Surfactants are routinely used to control the breakup of drops and jets in applications as diverse as ink jet printing, crop spraying, and microarraying. While highly accurate algorithms for studying the breakup of surfactant-free drops and jets are well documented and a great deal of information is now available in such situations, little is known about the closely related problem of interface rupture when surfactant effects cannot be neglected. Here we analyze the deformation and breakup of a stretching liquid bridge whose surface is covered with an insoluble surfactant monolayer by means of a two-dimensional (2-d) finite element algorithm using elliptic mesh generation. That the predictions made with the 2-d algorithm are faithful to the physics is confirmed by demonstrating that the computed results accord well with our new high-speed visualization experiments and existing scaling theories. Comparisons are also made to computations made with a one-dimensional (1-d) algorithm based on the slender-jet equations.

  18. Effects of cloud size and cloud particles on satellite-observed reflected brightness

    NASA Technical Reports Server (NTRS)

    Reynolds, D. W.; Mckee, T. B.; Danielson, K. S.

    1978-01-01

    Satellite observations allowed obtaining data on the visible brightness of cumulus clouds over South Park, Colorado, while aircraft observations were made in cloud to obtain the drop size distributions and liquid water content of the cloud. Attention is focused on evaluating the relationship between cloud brightness, horizontal dimension, and internal microphysical structure. A Monte Carlo cloud model for finite clouds was run using different distributions of drop sizes and numbers, while varying the cloud depth and width to determine how theory would predict what the satellite would view from its given location in space. Comparison of these results to the satellite observed reflectances is presented. Theoretical results are found to be in good agreement with observations. For clouds of optical thickness between 20 and 60, monitoring cloud brightness changes in clouds of uniform depth and variable width gives adequate information about a cloud's liquid water content. A cloud having a 10:1 width to depth ratio is almost reaching its maximum brightness for a specified optical thickness.

  19. Universal scaling laws of top jet drop size and speed in bubble bursting

    NASA Astrophysics Data System (ADS)

    Ganan-Calvo, Alfonso

    2017-11-01

    The collapse of a bubble of radius Ro at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R follows a universal flow pattern that can be universally scaled using the difference between the parent bubble radius and a critical radius R* =Oh*-2μ2 /(ρσ) below which no droplet is ejected for a given Newtonian liquid. Here, Oh* = 0.037 is the critical Ohnesorge number, where Oh = μ /(ρσRo) 1 / 2 ; ρ, σ and μ are the liquid density, surface tension and viscosity. Based on a flow singularity occurring for Ro =R* , a scaling analysis of the complex flow structure at the onset of jet ejection for Ro >R* leads to the diameter of the first emitted droplet and the initial ejection velocity: D =kd(Ro -R*) 5 / 4R* - 1 / 4 and V =kv σμ-1(Ro -R*) 3 / 4R* - 3 / 4 , respectively. A remarkable collapse of data taken from available literature since 1954 to 2017 furnishes the universal constants kd = 0.1 and kv = 1.6 , for negligible gravity effects.The role of gravity is subdominant and can be reflected by the exponential dependence of the scaling laws obtained on the Bond number. This work was supported by the Ministerio de Economy Competitividad, Plan Estatal 2013-2016 Retos, project DPI2016-78887-C3-1-R.

  20. Measurement and characterization of lift forces on drops and bubbles in microchannels

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Guglielmini, Laura; Ellerbee, Audrey; Caviezel, Daniel; Whitesides, George; Stone, Howard

    2013-11-01

    The transverse motion of drops and bubbles within liquids flowing in pipes and channels is determined by the combination of several types of hydrodynamic lift forces with external forces. In microfluidic channels, lift forces have been used to position and sort particles with high efficiency and high accuracy. We measured lift forces on drops and bubbles and discriminated between different lift mechanisms under conditions characterized by low particle capillary numbers (0.0003 < CaP < 0.3) and low particle Reynolds numbers (0.0001 < ReP < 0.1). The measured lift forces were often much larger (up to a factor of 1000) than the predictions of analytical models of inertial and deformation-induced lift, indicating that another lift mechanism was the largest contributor to the total lift force. The systems we investigated exhibited either (i) a deformation-induced lift force enhanced by confinement effects, or (ii) a lift force for which to our best knowledge is based on physicochemical effects at the interfaces of drops and bubbles. We will present new experimental data that supports a dynamic interfacial mechanism for the second type of lift force, and discuss possible avenues for creating an analytical model for it.

  1. Dynamic Nucleation of Supercooled Melts and Measurement of the Surface Tension and Viscosity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Ohsaka, K.

    1999-01-01

    We investigate the phenomenon of acoustic pressure-induced nucleation by using a novel approach involving the large amplitude resonant radial oscillations and collapse of a single bubble intentionally injected into a supercooled liquid. Using a combination of previously developed and proven techniques, the bubble is suspended in a fluid host by an ultrasonic field which supplies both the levitation capability as well as the forcing of the radial oscillations. We observe the effects of an increase in pressure (due to bubble collapse) in a region no larger than 100 microns within the supercooled melt to rigorously probe the hypothesis of pressure-induced nucleation of the solid phase. The use of single bubbles operating in narrow temporal and spatial scales will allow the direct and unambiguous correlation between the origin and location of the generation of the disturbance and the location and timing of the nucleation event. In a companion research effort, we are developing novel techniques for the non-contact measurements of the surface tension and viscosity of highly viscous supercooled liquids. Currently used non-invasive methods of surface tension measurement for the case of undercooled liquids generally rely of the quantitative determination of the resonance frequencies of drop shape oscillations, of the dynamics of surface capillary waves, or of the velocity of streaming flows. These methods become quickly ineffective when the liquid viscosity rises to a significant value. An alternate and accurate method which would be applicable to liquids of significant viscosity is therefore needed. We plan to develop such a capability by measuring the equilibrium shape of levitated undercooled melt droplets as they undergo solid-body rotation. The experimental measurement of the characteristic point of transition (bifurcation point) between axisymmetric and two-lobed shapes will be used to calculate the surface tension of the liquid. Such an approach has already been validated through the experimental verification of numerical modeling results. The experimental approach involves levitation, melting, and solidification of undercooled droplets using a hybrid ultrasonic-electrostatic technique in both a gaseous as well as a vacuum environment. A shape relaxation method will be investigated in order to derive a reliable method to measure the viscosity of undercooled melts. The analysis of the monotonic relaxation to equilibrium shape of a drastically deformed and super-critically damped free drop has been used to derive interfacial tension of immiscible liquid combinations where one of the component has high viscosity. A standard approach uses the initial elongation of a droplet through shear flows, but an equivalent method could involve the initial deformation of a drop levitated in a gas by ultrasonic radiation pressure, electric stresses, or even solid body rotation. The dynamic behavior of the free drop relaxing back to equilibrium shape will be modeled, and its characteristic time dependence should provide a quantitative means to evaluate the liquid viscosity.

  2. Assessment of the MHD capability in the ATHENA code using data from the ALEX (Argonne Liquid Metal Experiment) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1988-10-28

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4more » figs., 2 tabs.« less

  3. Modeling of atomization and distribution of drop-liquid fuel in unsteady swirling flows in a combustion chamber and free space

    NASA Astrophysics Data System (ADS)

    Sviridenkov, A. A.; Toktaliev, P. D.; Tretyakov, V. V.

    2018-03-01

    Numerical and experimental research of atomization and propagation of drop-liquid phase in swirling flow behind the frontal device of combustion chamber was performed. Numerical procedure was based on steady and unsteady Reynolds equations solution. It's shown that better agreement with experimental data could be obtained with unsteady approach. Fractional time step method was implemented to solve Reynolds equations. Models of primary and secondary breakup of liquid fuel jet in swirling flows are formulated and tested. Typical mean sizes of fuel droplets for base operational regime of swirling device and combustion chamber were calculated. Comparison of main features of internal swirling flow in combustion chamber with unbounded swirling flow was made.

  4. Effects of physical properties on thermo-fluids cavitating flows

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  5. Electrohydrodynamics of drops covered with small particles

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2013-11-01

    A weakly conductive drop immersed in a more conductive liquid first undergoes an oblate deformation, and then experiences a rotation similar to Quincke rotation when submitted to an increasing DC uniform electrical field. We present an experimental study of a drop with an interface partially or completely covered with microscopic particles. Depending on the field intensity, the surface coverage, and the characteristics of the particles, the drop exhibits: (i) prolate deformation, (ii) emergence of pattern of sustained particle motions, or (iii) decrease of the electrical field that induces rotation.

  6. Shear coaxial injector atomization phenomena for combusting and non-combusting conditions

    NASA Technical Reports Server (NTRS)

    Pal, S.; Moser, M. D.; Ryan, H. M.; Foust, M. J.; Santoro, R. J.

    1992-01-01

    Measurements of LOX drop size and velocity in a uni-element liquid propellant rocket chamber are presented. The use of the Phase Doppler Particle Analyzer in obtaining temporally-averaged probability density functions of drop size in a harsh rocket environment has been demonstrated. Complementary measurements of drop size/velocity for simulants under cold flow conditions are also presented. The drop size/velocity measurements made for combusting and cold flow conditions are compared, and the results indicate that there are significant differences in the two flowfields.

  7. Formation of liquid-metal jets in a vacuum arc cathode spot: Analogy with drop impact on a solid surface

    NASA Astrophysics Data System (ADS)

    Gashkov, M. A.; Zubarev, N. M.

    2018-01-01

    Conditions of the liquid-metal jets formation in a cathode spot of a vacuum arc discharge are studied. Our consideration is based on the analogy between the processes, occurring in the liquid phase of the cathode spot, and the processes, accompanying a liquid drop impact on a flat solid surface. In the latter case there exists a wide variety of experimental data on the conditions under which the spreading regime of fluid motion (i.e., without formation of jets and secondary droplets) changes into the splashing one. In the present work, using the hydrodynamic similarity principle (processes in geometrically similar systems will proceed similarly when their Weber and Reynolds numbers coincide), criteria for molten metal splashing are formulated for different materials of the cathode. They are compared with the experimental data on the threshold conditions for vacuum arc burning.

  8. Synthesis and testing of hypergolic ionic liquids for chemical propulsion

    NASA Astrophysics Data System (ADS)

    Stovbun, S. V.; Shchegolikhin, A. N.; Usachev, S. V.; Khomik, S. V.; Medvedev, S. P.

    2017-06-01

    Synthesis of new highly energetic ionic liquids (ILs) is described, and their hypergolic ignition properties are tested. The synthesized ILs combine the advantages of conventional rocket propellants with the energy characteristics of acetylene derivatives. To this end, N-alkylated imidazoles (alkyl = ethyl, butyl) have been synthesized and alkylated with propargyl bromide. The desired ionic liquids have been produced by metathesis using Ag dicyanamide. Modified hypergolic drop tests with white fuming nitric acid have been performed for N-ethyl (IL-1) and N-butyl propargylimidazolium (IL-2) ionic liquids. In the modified drop tests, high-speed shadowgraph imaging is used to visualize the process, and the temperature rise due to ignition is monitored with a two-color photodetector. It is shown that the ignition delay is shorter for IL-1 as compared to IL-2. The ignition of IL-1 occurs in two stages, whereas the combustion of IL-2 proceeds smoothly without secondary flashes.

  9. Air Entrapment for Liquid Drops Impacting a Solid Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Tan, Peng; Xu, Lei

    2012-11-01

    Using high-speed photography coupled with optical interference, we experimentally study the air entrapment during a liquid drop impacting a solid substrate. We observe the formation of a compressed air film before the liquid touches the substrate, with internal pressure considerably higher than the atmospheric value. The degree of compression highly depends on the impact velocity, as explained by balancing the liquid deceleration with the large pressure of compressed air. After contact, the air film expands vertically at the edge, reducing its pressure within a few tens of microseconds and producing a thick rim on the perimeter. This thick-rimmed air film subsequently contracts into an air bubble, governed by the complex interaction between surface tension, inertia and viscous drag. Such a process is universally observed for impacts above a few centimeters high. Hong Kong GRF grant CUHK404211 and direct grant 2060418.

  10. Lessons: Science. Slime!

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    Describes a science activity in which students make a non-Newtonian fluid (slime), which has both solid and liquid properties. After reviewing the shape and volume of solids and volume of liquids, students make the slime using glue, liquid starch, and food coloring. They can experiment by rolling and dropping slime balls and by pulling the slime…

  11. Exploring the Properties of Liquids. Grade 5. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This unit contains 14 lessons on the properties of liquids for fifth graders. It describes materials, supplementary materials, use of process skill terminology, unit objectives, vocabulary, and background information for teachers. Lessons are: (1) "Heaping and Drops/Cohesion"; (2) "Beading of Liquid Columns/Cohesion"; (3)…

  12. On the universality of Marangoni-driven spreading

    NASA Astrophysics Data System (ADS)

    Visser, Claas; van Capelleveen, Bram; Koldeweij, Robin; Lohse, Detlef

    2017-11-01

    When two liquids of different surface tensions come into contact, the liquid with lower surface tension spreads over the other. Here we measure the dynamics of this Marangoni-driven spreading in the drop-drop geometry, revealing universal behavior with respect to the control parameters as well as other geometries (such as spreading over a flat interface). The distance L over which the low-surface-tension liquid has covered the high-surface-tension droplet is measured as a function of time t, surface tension difference between the liquids Δσ , and viscosity η, revealing power-law behavior L(t) tα . The exponent α is discussed for the early and late spreading regimes. Spreading inhibition is observed at high viscosity, for which the threshold is discussed. Finally, we show that our results collapse onto a single curve of dimensionless L(t) as a function of dimensionless time, which also captures previous results for different geometries, surface tension modifiers, and miscibility. As this curve spans 7 orders of magnitude, Marangoni-induced spreading can be considered a universal phenomenon for many practically encountered liquid-liquid systems.

  13. Electro-hydrodynamic propulsion of counter-rotating Pickering drops

    NASA Astrophysics Data System (ADS)

    Dommersnes, P.; Mikkelsen, A.; Fossum, J. O.

    2016-07-01

    Insulating particles or drops suspended in carrier liquids may start to rotate with a constant frequency when subjected to a uniform DC electric field. This is known as the Quincke rotation electro-hydrodynamic instability. A single isolated rotating particle exhibit no translational motion at low Reynolds number, however interacting rotating particles may move relative to one another. Here we present a simple system consisting of two interacting and deformable Quincke rotating particle covered drops, i.e. deformable Pickering drops. The drops attract one another and spontaneously form a counter-rotating pair that exhibits electro-hydrodynamic driven propulsion at low Reynolds number flow.

  14. Studies of the Stability and Dynamics of Levitated Drops

    NASA Technical Reports Server (NTRS)

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.

    1996-01-01

    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.

  15. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol

    DTIC Science & Technology

    2010-07-01

    Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model

  16. Acoustically induced oscillation and rotation of a large drop in space

    NASA Astrophysics Data System (ADS)

    Jacobi, N.; Croonquist, A. P.; Elleman, D. D.; Wang, T. G.

    1982-03-01

    A 2.5 cm diameter water drop was successfully deployed and manipulated in a triaxial acoustic resonance chamber during a 240 sec low-gravity SPAR rocket flight. Oscillation and rotation were induced by modulating and phase shifting the signals to the speakers. Portions of the film record were digitized and analyzed. Spectral analysis brought out the n = 2, 3, 4 free oscillation modes of the drop, its very low-frequency center-of-mass motion in the acoustic potential well, and the forced oscillation frequency. The drop boundaries were least-square fitted to general ellipses, providing eccentricities of the distorted drop. The normalized equatorial area of the rotating drop was plotted vs a rotational parameter, and was in excellent agreement with values derived from the theory of equilibrium shapes of rotating liquid drops.

  17. Glass-to-Metal Seal Against Liquid Helium

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Gatewood, John R.

    1987-01-01

    Simple compression joint with indium gasket forms demountable seal for superfluids. Seal developed for metal lid on glass jar used in experiments on liquid helium. Glass container allows contents to be viewed for such purposes as calibration of liquid-level detectors and adjustments of displacement plungers. Seal contains liquid helium even when temperature drops below 2.19K. Made from inexpensive, commercially available materials and parts.

  18. Disdrometer and Tipping Bucket Rain Gauge Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomew. MJ

    2009-12-01

    The Distromet disdrometer model RD-80 and NovaLynx tipping bucket rain gauge model 260-2500E-12 are two devices deployed a few meters apart to measure the character and amount of liquid precipitation. The main purpose of the disdrometer is to measure drop size distribution, which it does over 20 size classes from 0.3 mm to 5.4 mm. The data from both instruments can be used to determine rain rate. The disdrometer results can also be used to infer several properties including drop number density, radar reflectivity, liquid water content, and energy flux. Two coefficients, N0 and Λ, from an exponential fit betweenmore » drop diameter and drop number density, are routinely calculated. Data are collected once a minute. The instruments make completely different kinds of measurements. Rain that falls on the disdrometer sensor moves a plunger on a vertical axis. The disdrometer transforms the plunger motion into electrical impulses whose strength is proportional to drop diameter. The rain gauge is the conventional tipping bucket type. Each tip collects an amount equivalent to 0.01 in. of water, and each tip is counted by a data acquisition system anchored by a Campbell CR1000 data logger.« less

  19. On the effectiveness of incorporating shear thickening fluid with fumed silica particles in hip protectors

    NASA Astrophysics Data System (ADS)

    Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.

    2018-01-01

    The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.

  20. Liquid-bridge stability and breakup on surfaces with contact-angle hysteresis.

    PubMed

    Akbari, Amir; Hill, Reghan J

    2016-08-10

    We study the stability and breakup of liquid bridges with a free contact line on surfaces with contact-angle hysteresis (CAH) under zero-gravity conditions. Non-ideal surfaces exhibit CAH because of surface imperfections, by which the constraints on three-phase contact lines are influenced. Given that interfacial instabilities are constraint-sensitive, understanding how CAH affects the stability and breakup of liquid bridges is crucial for predicting the drop size in contact-drop dispensing. Unlike ideal surfaces on which contact lines are always free irrespective of surface wettability, contact lines may undergo transitions from pinned to free and vice versa during drop deposition on non-ideal surfaces. Here, we experimentally and theoretically examine how stability and breakup are affected by CAH, highlighting cases where stability is lost during a transition from a pinned-pinned (more constrained) to pinned-free (less constrained) interface-rather than a critical state. This provides a practical means of expediting or delaying stability loss. We also demonstrate how the dynamic contact angle can control the contact-line radius following stability loss.

  1. Viscoelastic drops moving on hydrophilic and superhydrophobic surfaces.

    PubMed

    Xu, H; Clarke, A; Rothstein, J P; Poole, R J

    2018-03-01

    So-called "superhydrophobic" surfaces are strongly non-wetting such that fluid droplets very easily roll off when the surface is tilted. Our interest here is in understanding if this is also true, all else held equal, for viscoelastic fluid drops. We study the movement of Newtonian and well-characterised constant-viscosity elastic liquids when various surfaces, including hydrophilic (smooth glass), weakly hydrophobic (embossed polycarbonate) and superhydrophobic surfaces (embossed PTFE), are impulsively tilted. Digital imaging is used to record the motion and extract drop velocity. Optical and SEM imaging is used to probe the surfaces. In comparison with "equivalent" Newtonian fluids (same viscosity, density surface tension and contact angles), profound differences for the elastic fluids are only observed on the superhydrophobic surfaces: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string-like phenomena. The strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of order ∼30 µm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. When is an INP not an INP?

    NASA Astrophysics Data System (ADS)

    Simpson, Emma; Connolly, Paul; McFiggans, Gordon

    2016-04-01

    Processes such as precipitation and radiation depend on the concentration and size of different hydrometeors within clouds therefore it is important to accurately predict them in weather and climate models. A large fraction of clouds present in our atmosphere are mixed phase; contain both liquid and ice particles. The number of drops and ice crystals present in mixed phase clouds strongly depends on the size distribution of aerosols. Cloud condensation nuclei (CCN), a subset of atmospheric aerosol particles, are required for liquid drops to form in the atmosphere. These particles are ubiquitous in the atmosphere. To nucleate ice particles in mixed phase clouds ice nucleating particles (INP) are required. These particles are rarer than CCN. Here we investigate the case where CCN and INPs are in direct competition with each other for water vapour within a cloud. Focusing on the immersion and condensation modes of freezing (where an INP must be immersed within a liquid drop before it can freeze) we show that the presence of CCN can suppress the formation of ice. CCN are more hydrophilic than IN and as such are better able to compete for water vapour than, typically insoluble, INPs. Therefore water is more likely to condense onto a CCN than INP, leaving the INP without enough condensed water on it to be able to freeze in the immersion or condensation mode. The magnitude of this suppression effect strongly depends on a currently unconstrained quantity. Here we refer to this quantity as the critical mass of condensed water required for freezing, Mwc. Mwc is the threshold amount of water that must be condensed onto a INP before it can freeze in the immersion or condensation mode. Using the detailed cloud parcel model, Aerosol-Cloud-Precipiation-Interaction Model (ACPIM), developed at the University of Manchester we show that if only a small amount of water is required for freezing there is little suppression effect and if a large amount of water is required there is a large suppression effect. In this poster possible ways to constrain Mwc are discussed as well as conditions where the suppression effect is likely to be greatest. Key Words: Clouds, aerosol, CCN, IN, modelling

  3. Simulations of surfactant effects on the dynamics of coalescing drops and bubbles

    NASA Astrophysics Data System (ADS)

    Martin, David W.; Blanchette, François

    2015-01-01

    We present simulations of coalescence in the presence of surfactant. We consider a fluid-fluid interface where we track surfactant concentration. Our model is applicable to a soap bubble merging with a suspended soap film and to a surfactant covered liquid drop merging with a reservoir. In both cases, we determine the regime in which coalescence is only partial. Along with viscous effects, represented by the Ohnesorge number, the elasticity of the surface tension relative to the surfactant concentration is seen to play a key role and exhibits a surprising nonmonotonic influence, for which we present a physical mechanism. The effects of gravity are also simulated, along with effects of differing initial conditions, as well as those of uneven initial surfactant concentration, as are likely to arise in physical applications. We describe how the presence of surfactants can influence a coalescence cascade.

  4. Apparatus for monitoring two-phase flow

    DOEpatents

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  5. Method and apparatus for monitoring two-phase flow. [PWR

    DOEpatents

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  6. Gas separation and bubble behavior at a woven screen

    NASA Astrophysics Data System (ADS)

    Conrath, Michael; Dreyer, Michael E.

    Gas-liquid two phase flows are widespread and in many applications the separation of both phases is necessary. Chemical reactors, water treatment devices or gas-free delivery of liquids like propellant are only some of them. We study the performance of a woven metal screen in respect to its phase separation behavior under static and dynamic conditions. Beside hydraulic screen resistance and static bubble point, our study also comprises the bubble detachment from the screen upon gas breakthrough. Since a woven screen is essentially an array of identical pores, analogies to bubble detachment from a needle can be established. While the bubble point poses an upper limit for pressurized gas at a wetted screen to preclude gas breakthrough, the necessary pressure for growing bubbles to detach from the screen pores a lower limit when breakthrough is already in progress. Based on that inside, the dynamic bubble point effects were constituted that relate to a trapped bubble at such a screen in liquid flow. A trapped is caused to break through the screen by the flow-induced pressure drop across it. Our model includes axially symmetric bubble shapes, degree of coverage of the screen and bubble pressurization due to hydraulic losses in the rest of the circuit. We have built an experiment that consists of a Dutch Twilled woven screen made of stainless steel in a vertical acrylic glass tube. The liquid is silicon oil SF0.65. The screen is suspended perpendicular to the liquid flow which is forced through it at variable flow rate. Controlled injection of air from a needle allows us to examine the ability of the screen to separate gas and liquid along the former mentioned effects. We present experimental data on static bubble point and detachment pressure for breakthrough at different gas supply rates that suggest a useful criterion for reliable static bubble point measurements. Results for the dynamic bubble point are presented that include i) screen pressure drop for different trapped bubble volumes, liquid flow rates and flow-induced compression, ii) typical breakthrough of a trapped bubble at rising liquid flow rate and iii) steady gas supply in steady liquid flow. It shows that our model can explain the experimental observations. One of the interesting findings for the dynamic bubble point is that hydraulic losses in the rest of the circuit will shift the breakthrough of gas to higher liquid flow rates.

  7. Fluid Merging Viscosity Measurement (FMVM) Experiment on the International Space Station

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Lehman, Daniel; Kaukler, William

    2007-01-01

    The concept of using low gravity experimental data together with fluid dynamical numerical simulations for measuring the viscosity of highly viscous liquids was recently validated on the International Space Station (ISS). After testing the proof of concept for this method with parabolic flight experiments, an ISS experiment was proposed and later conducted onboard the ISS in July, 2004 and subsequently in May of 2005. In that experiment a series of two liquid drops were brought manually together until they touched and then were allowed to merge under the action of capillary forces alone. The merging process was recorded visually in order to measure the contact radius speed as the merging proceeded. Several liquids were tested and for each liquid several drop diameters were used. It has been shown that when the coefficient of surface tension for the liquid is known, the contact radius speed can then determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Experimental and numerical results will be presented in which the viscosity of different highly viscous liquids were determined, to a high degree of accuracy, using this technique.

  8. Voltage transfer function as an optical method to characterize electrical properties of liquid crystal devices.

    PubMed

    Bateman, J; Proctor, M; Buchnev, O; Podoliak, N; D'Alessandro, G; Kaczmarek, M

    2014-07-01

    The voltage transfer function is a rapid and visually effective method to determine the electrical response of liquid crystal (LC) systems using optical measurements. This method relies on crosspolarized intensity measurements as a function of the frequency and amplitude of the voltage applied to the device. Coupled with a mathematical model of the device it can be used to determine the device time constants and electrical properties. We validate the method using photorefractive LC cells and determine the main time constants and the voltage dropped across the layers using a simple nonlinear filter model.

  9. Impact of water drops on small targets

    NASA Astrophysics Data System (ADS)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  10. Deforming water droplets with a superhydrophobic silica coating.

    PubMed

    Li, Xiaoguang; Shen, Jun

    2013-11-04

    The surface liquidity of a water droplet is eliminated by rubbing hydrophobic particles onto the droplet surface using a sol-gel silica coating with extremely weak binding force, which results in solid-like deformability of a liquid drop.

  11. Symmetry breaking in drop bouncing on curved surfaces

    PubMed Central

    Liu, Yahua; Andrew, Matthew; Li, Jing; Yeomans, Julia M.; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves that have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ∼40% reduction in contact time. PMID:26602170

  12. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    NASA Technical Reports Server (NTRS)

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  13. Drop rebound after impact: the role of the receding contact angle.

    PubMed

    Antonini, C; Villa, F; Bernagozzi, I; Amirfazli, A; Marengo, M

    2013-12-31

    Data from the literature suggest that the rebound of a drop from a surface can be achieved when the wettability is low, i.e., when contact angles, measured at the triple line (solid-liquid-air), are high. However, no clear criterion exists to predict when a drop will rebound from a surface and which is the key wetting parameter to govern drop rebound (e.g., the "equilibrium" contact angle, θeq, the advancing and the receding contact angles, θA and θR, respectively, the contact angle hysteresis, Δθ, or any combination of these parameters). To clarify the conditions for drop rebound, we conducted experimental tests on different dry solid surfaces with variable wettability, from hydrophobic to superhydrophobic surfaces, with advancing contact angles 108° < θA < 169° and receding contact angles 89° < θR < 161°. It was found that the receding contact angle is the key wetting parameter that influences drop rebound, along with surface hydrophobicity: for the investigated impact conditions (drop diameter 2.4 < D0 < 2.6 mm, impact speed 0.8 < V < 4.1 m/s, Weber number 25 < We < 585), rebound was observed only on surfaces with receding contact angles higher than 100°. Also, the drop rebound time decreased by increasing the receding contact angle. It was also shown that in general care must be taken when using statically defined wetting parameters (such as advancing and receding contact angles) to predict the dynamic behavior of a liquid on a solid surface because the dynamics of the phenomenon may affect surface wetting close to the impact point (e.g., as a result of the transition from the Cassie-Baxter to Wenzel state in the case of the so-called superhydrophobic surfaces) and thus affect the drop rebound.

  14. Soft beams: When capillarity induces axial compression

    NASA Astrophysics Data System (ADS)

    Neukirch, S.; Antkowiak, A.; Marigo, J.-J.

    2014-01-01

    We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition to the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet, we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfies the classical Young-Dupré relation.

  15. Soft beams: when capillarity induces axial compression.

    PubMed

    Neukirch, S; Antkowiak, A; Marigo, J-J

    2014-01-01

    We study the interaction of an elastic beam with a liquid drop in the case where bending and extensional effects are both present. We use a variational approach to derive equilibrium equations and constitutive relation for the beam. This relation is shown to include a term due to surface energy in addition to the classical Young's modulus term, leading to a modification of Hooke's law. At the triple point where solid, liquid, and vapor phases meet, we find that the external force applied on the beam is parallel to the liquid-vapor interface. Moreover, in the case where solid-vapor and solid-liquid interface energies do not depend on the extension state of the beam, we show that the extension in the beam is continuous at the triple point and that the wetting angle satisfies the classical Young-Dupré relation.

  16. Drop pattern resulting from the breakup of a bidimensional grid of liquid filaments

    NASA Astrophysics Data System (ADS)

    Cuellar, Ingrith; Ravazzoli, Pablo D.; Diez, Javier A.; González, Alejandro G.

    2017-10-01

    A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops, and its predictions are successfully compared with the experimental data as well as with numerical simulations of the full Navier-Stokes equation that provide a detailed time evolution of the dewetting motion of the filament till the breakup into drops. Finally, the prediction for finite filaments is contrasted with the existing theories for infinite ones.

  17. Is drop impact the same for both moving and inclined surfaces?

    NASA Astrophysics Data System (ADS)

    Buksh, Salman; Marengo, Marco; Amirfazli, Alidad; -Team

    2017-11-01

    Drop impact is an important phenomenon in a wide variety of applications. Researchers have largely examined drop impact onto a moving surface, and an inclined surface separately. Given that in both systems the impact phenomenon is influenced by tangential and normal velocity components, the question remains, if these two systems are essentially equivalent or gravity and boundary layer effects are such that the outcomes will be different. Experiments have been performed by varying liquid surface tension, viscosity and both normal and tangential velocities (0.3 to 2.9 m/s). The desired velocity components were achieved by changing the height where drop is released, the surface inclination angle for inclined system, and the horizontal velocity for the moving surface. To compare the systems, spreading was analyzed by measuring the width and length of the lamella at various time intervals; for splashing, top view images were compared to see the extent of splashing at initial stage. The data suggests that, for the given velocity, neither the boundary layer differences between the two systems nor the gravity play a role on spreading and splashing of the drop, as such one system can replace the other for future studies.

  18. Surface tension propellant control for Viking 75 Orbiter

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Hise, R. E.; Peterson, R. G.; Debrock, S. C.

    1976-01-01

    The paper describes the selection, development and qualification of the surface tension system and includes results of low-g drop tower tests of scale models, 1-g simulation tests of low-g large ullage settling and liquid withdrawal, structural qualification tests, and propellant surface tension/contact angle studies. Subscale testing and analyses were used to evaluate the ability of the system to maintain or recover the desired propellant orientation following possible disturbances during the Viking mission. This effort included drop tower tests to demonstrate that valid wick paths exist for moving any displaced propellant back over the tank outlet. Variations in surface tension resulting from aging, temperature, and lubricant contamination were studied and the effects of surface finish, referee fluid exposure, aging, and lubricant contamination on contact angle were assessed. Results of movies of typical subscale drop tower tests and full scale slosh tests are discussed.

  19. Containerless processing of Nb-Ge alloys in a long drop tube

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.

    1982-01-01

    The thirty-two meter drop tube at the Marshall Space Flight Center was used to study the effect of zero gravity containerless processing on the structure and properties of materials. The concept involves the suppression of heterogeneous nucleation of solid in liquid and, therefore, solidification accompanied by large degrees of undercooling. Under these conditions metastable phases can be formed or, at the very least, unique nonequilibrium microstructures (containing equilibrium phases) with unique properties can be produced. The drop tube solidification was applied to niobium base alloys with emphasis on the Nb-Ge binary system in an effort to produce metastable phases with high superconducting transition temperatures in bulk specimens. In the past, only lower Ge alloys (Nb-13 a/o, Nb-18 a/o, and Nb-22 a/o) could be undercooled. Higher Ge alloys (e.g., Nb-25 a/o Ge and Nb-27 a/o Ge) can now be undercooled on a routine basis.

  20. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  1. An experimental study on the numbering-up of microchannels for liquid mixing.

    PubMed

    Su, Yuanhai; Chen, Guangwen; Kenig, Eugeny Y

    2015-01-07

    The numbering-up of zigzag-form microchannels for liquid mixing was experimentally investigated in a multichannel micromixer including 8 parallel channels, based on the Villermaux-Dushman reaction system, with an appropriate sulphuric acid concentration. The results showed that the micromixing performance in such micromixers could reach the same quality as in a single microchannel, when flat constructal distributors with bifurcation configurations were used. The mixing performance did not depend on whether a vertical or horizontal micromixer position was selected. Surprisingly, the channel blockage somewhat increased the micromixing performance in the multichannel micromixer due to the fluid redistribution effect of the constructal distributors. This effect could also be confirmed by CFD simulations. However, the channel blockage resulted in a higher pressure drop and thus higher specific energy dissipation in the multichannel micromixer. The local pressure drop caused by fluid splitting and re-combination in the numbering-up technique could be neglected at low Reynolds numbers, but it became larger with increasing flow rates. The operational zone for the mixing process in multichannel micromixers was sub-divided into two parts according to the specific energy dissipation and the mixing mechanisms.

  2. Liquid toroidal drop under uniform electric field

    NASA Astrophysics Data System (ADS)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  3. Wave drag on floating bodies

    PubMed Central

    Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Élie; Chevy, Frédéric

    2011-01-01

    We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186

  4. Electrostatic formation of liquid marbles and agglomerates

    NASA Astrophysics Data System (ADS)

    Liyanaarachchi, K. R.; Ireland, P. M.; Webber, G. B.; Galvin, K. P.

    2013-07-01

    We report observations of a sudden, explosive release of electrostatically charged 100 μm glass beads from a particle bed. These cross an air gap of several millimeters, are engulfed by an approaching pendant water drop, and form a metastable spherical agglomerate on the bed surface. The stability transition of the particle bed is explained by promotion of internal friction by in-plane electrostatic stresses. The novel agglomerates formed this way resemble the "liquid marbles" formed by coating a drop with hydrophobic particles. Complex multi-layered agglomerates may also be produced by this method, with potential industrial, pharmaceutical, environmental, and biological applications.

  5. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  6. 40 CFR Table 2 to Subpart Jjjjj of... - Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Kiln equipped with a WS a. Maintain the average scrubber pressure drop for each 3-hour block period at... average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test; and c. Maintain the average scrubber liquid flow rate for each 3-hour...

  7. 40 CFR Table 2 to Subpart Jjjjj of... - Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Kiln equipped with a WS a. Maintain the average scrubber pressure drop for each 3-hour block period at... average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test; and c. Maintain the average scrubber liquid flow rate for each 3-hour...

  8. Interaction of a liquid jet with an oncoming gas stream

    NASA Astrophysics Data System (ADS)

    Koval', M. A.; Shvets, A. I.

    1987-06-01

    Wind-tunnel tests were carried out to study the interaction between water jets issuing from various types of nozzles (including cylindrical) and subsonic and supersonic air streams with Mach numbers from 0.3 to 3 and Reynolds numbers from 1 x 10 to the 6th to 3 x 10 to the 7th. The following interaction structure was observed: (1) at moderate outflow velocities, the liquid jet has an extended region, which subsequently expands abruptly as a spherical or mushroom-shaped drop; (2) this drop is atomized in the peripheral region and is carried away as a gas-liquid mixture; (3) a shock wave is formed in front of the jet in the oncoming supersonic stream; and (4) a separated flow region is present in the vicinity of the cylindrical nozzle section.

  9. Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity.

    PubMed

    Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G

    2018-01-24

    Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total evaporation was studied by scanning electronic microscopy, and the effects of the substrate, the particle nature, and their concentrations on these patterns are discussed.

  10. Coalescence of viscous drops translating through a capillary tube

    NASA Astrophysics Data System (ADS)

    AlMatroushi, Eisa; Borhan, Ali

    2014-03-01

    An experimental study of the interaction and coalescence of viscous drops moving through a cylindrical capillary tube under low Reynolds number conditions is presented. The combined pressure- and buoyancy-driven motion of drops in a Newtonian continuous phase is examined. The interaction between two drops is quantified using image analysis, and measurements of the coalescence time are reported for various drop size ratios, Bond numbers, and viscosity ratios. The time scale for coalescence in the non-axisymmetric configuration is found to be substantially larger than that for coalescence in the axisymmetric configuration. Measurements of the radius of the liquid film formed between the two drops at the instant of apparent contact are used in conjunction with a planar film drainage model to predict the dependence of the coalescence time on drop size ratio for coalescence of low viscosity-ratio drops in the axisymmetric configuration.

  11. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.

    PubMed

    Yue, Jun; Rebrov, Evgeny V; Schouten, Jaap C

    2014-05-07

    We report a three-phase slug flow and a parallel-slug flow as two major flow patterns found under the nitrogen-decane-water flow through a glass microfluidic chip which features a long microchannel with a hydraulic diameter of 98 μm connected to a cross-flow mixer. The three-phase slug flow pattern is characterized by a flow of decane droplets containing single elongated nitrogen bubbles, which are separated by water slugs. This flow pattern was observed at a superficial velocity of decane (in the range of about 0.6 to 10 mm s(-1)) typically lower than that of water for a given superficial gas velocity in the range of 30 to 91 mm s(-1). The parallel-slug flow pattern is characterized by a continuous water flow in one part of the channel cross section and a parallel flow of decane with dispersed nitrogen bubbles in the adjacent part of the channel cross section, which was observed at a superficial velocity of decane (in the range of about 2.5 to 40 mm s(-1)) typically higher than that of water for each given superficial gas velocity. The three-phase slug flow can be seen as a superimposition of both decane-water and nitrogen-decane slug flows observed in the chip when the flow of the third phase (viz. nitrogen or water, respectively) was set at zero. The parallel-slug flow can be seen as a superimposition of the decane-water parallel flow and the nitrogen-decane slug flow observed in the chip under the corresponding two-phase flow conditions. In case of small capillary numbers (Ca ≪ 0.1) and Weber numbers (We ≪ 1), the developed two-phase pressure drop model under a slug flow has been extended to obtain a three-phase slug flow model in which the 'nitrogen-in-decane' droplet is assumed as a pseudo-homogeneous droplet with an effective viscosity. The parallel flow and slug flow pressure drop models have been combined to obtain a parallel-slug flow model. The obtained models describe the experimental pressure drop with standard deviations of 8% and 12% for the three-phase slug flow and parallel-slug flow, respectively. An example is given to illustrate the model uses in designing bifurcated microchannels that split the three-phase slug flow for high-throughput processing.

  12. The Leidenfrost Phenomenon

    ERIC Educational Resources Information Center

    Curzon, F. L.

    1978-01-01

    Describes four demonstrations of the Leidenfrost phenomenon; floating of liquid drops on their own vapor above a hot surface, delayed quenching of red-hot brass by water, explosion of vessels containing suspended liquid droplets, and momentary incombustibility of living tissue immersed in boiling oil. (Author/GA)

  13. Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples.

    PubMed

    Vidal, Lorena; Chisvert, Alberto; Canals, Antonio; Salvador, Amparo

    2010-04-15

    A user-friendly and inexpensive ionic liquid-based single-drop microextraction (IL-SDME) procedure has been developed to preconcentrate trace amounts of six typical UV filters extensively used in cosmetic products (i.e., 2-hydroxy-4-methoxybenzophenone, isoamyl 4-methoxycinnamate, 3-(4'-methylbenzylidene)camphor, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 4-dimethylaminobenzoate and 2-ethylhexyl 4-methoxycinnamate) from surface water samples prior to analysis by liquid chromatography-ultraviolet spectrophotometry detection (LC-UV). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the SDME procedure, which were later optimized by means of a circumscribed central composite design. The studied variables were drop volume, sample volume, agitation speed, ionic strength, extraction time and ethanol quantity. Owing to particularities, ionic liquid type and pH of the sample were optimized separately. Under optimized experimental conditions (i.e., 10 microL of 1-hexyl-3-methylimidazolium hexafluorophosphate, 20 mL of sample containing 1% (v/v) ethanol and NaCl free adjusted to pH 2, 37 min extraction time and 1300 rpm agitation speed) enrichment factors up to ca. 100-fold were obtained depending on the target analyte. The method gave good levels of repeatability with relative standard deviations varying between 2.8 and 8.8% (n=6). Limits of detection were found in the low microg L(-1) range, varying between 0.06 and 3.0 microg L(-1) depending on the target analyte. Recovery studies from different types of surface water samples collected during the winter period, which were analysed and confirmed free of all target analytes, ranged between 92 and 115%, showing that the matrix had a negligible effect upon extraction. Finally, the proposed method was applied to the analysis of different water samples (taken from two beaches, two swimming pools and a river) collected during the summer period. (c) 2009 Elsevier B.V. All rights reserved.

  14. Technical Requirements for On-Site Thermal Desorption of Solid Media Contaminated with Hazardous Chlorinated Organics

    DTIC Science & Technology

    1997-09-18

    scrubbers , detectable dioxin/furans may occur, since dioxin/furans are much more soluble in organics than in water. Carbon adsorption is frequently...air pollution control device is required. Acid gases may be controlled by using a wet or dry scrubber or by using a coated baghouse. Operating...unit: 1. exit treated waste temperature; 2. baghouse pressure drop, venturi pressure drop, or drop in liquid/gas ratio; 3. waste feed rate; 4

  15. Influence of coolant injector configuration on film cooling effectiveness for gaseous and liquid film coolants

    NASA Astrophysics Data System (ADS)

    Shine, S. R.; Sunil Kumar, S.; Suresh, B. N.

    2012-05-01

    An experimental investigation is conducted to bring out the effects of coolant injector configuration on film cooling effectiveness, film cooled length and film uniformity associated with gaseous and liquid coolants. A series of measurements are performed using hot air as the core gas and gaseous nitrogen and water as the film coolants in a cylindrical test section simulating a thrust chamber. Straight and compound angle injection at two different configurations of 30°-10° and 45°-10° are investigated for the gaseous coolant. Tangential injection at 30° and compound angle injection at 30°-10° are examined for the liquid coolant. The analysis is based on measurements of the film-cooling effectiveness and film uniformity downstream of the injection location at different blowing ratios. Measured results showed that compound angle configuration leads to lower far-field effectiveness and shorter film length compared to tangential injection in the case of liquid film cooling. For similar injector configurations, effectiveness along the stream wise direction showed flat characteristics initially for the liquid coolant, while it was continuously dropping for the gaseous coolant. For liquid coolant, deviations in temperature around the circumference are very low near the injection point, but increases to higher values for regions away from the coolant injection locations. The study brings out the existance of an optimum gaseous film coolant injector configuration for which the effectiveness is maximum.

  16. Mechanism and preparation of liquid alkali-free liquid setting accelerator for shotcrete

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Ding, Bei; Gan, Jiezhong; Guo, Zhaolai; Zheng, Chunyang; Jiang, Haidong

    2017-03-01

    A new alkali-free liquid accelerator for shotcrete was prepared through normal temperature drop process by using the nano activated alumina and the modified alcohol amine as the main raw materials. The effect of alkali-free liquid accelerator on the cement setting time and the mechanical properties of mortar, the effect of the penetration strength on the shotcrete rebound were investigated. And the accelerating mechanism of the as-prepared alkali-free liquid accelerator was also analyzed via XRD and SEM characterization methods. The experimental results indicated that the hydration of C3A was accelerated by the polyamine complexation of accelerator, resulting in forming a large number of acicular ettringite and reducing the amount of Ca(OH)2 crystal, which would not affect the later hydration of cement. When the content of alkali-free liquid accelerator was 6%, the initial setting time and final setting time were less than 3min and 8min respectively, and 1d and 28d compressive strength ratios reached 207.6% and 114.2% respectively; beside that, the shotcrete rebound was very low because of the high penetration strength within 30min.

  17. On the shape of giant soap bubbles.

    PubMed

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  18. Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation

    NASA Technical Reports Server (NTRS)

    Robert E. Apfel; Zheng, Yibing

    2000-01-01

    An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.

  19. Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Marmottant, Philippe

    2018-04-01

    The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.

  20. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-01-01

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

Top