Sample records for liquid fraction yield

  1. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation

    PubMed Central

    Prays, Nadia; Kaupenjohann, Martin

    2016-01-01

    Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59–62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered. PMID:27116355

  2. Lignin Depolymerisation and Lignocellulose Fractionation by Solvated Electrons in Liquid Ammonia.

    PubMed

    Prinsen, Pepijn; Narani, Anand; Rothenberg, Gadi

    2017-03-09

    We explored the depolymerisation of several lignins in liquid ammonia at relatively high temperatures and pressures (120 °C and 88 bar). Five different lignins were tested: Indulin AT kraft, Protobind 1000 soda, wheat straw organosolv, poplar organosolv and elephant grass-milled wood lignin (EG MWL). In pure liquid ammonia, all lignins underwent slow incorporation of nitrogen into their structure, resulting in higher molecular weight and polydispersity index. Subsequently, we show a reductive depolymerisation by solvated electrons at room temperature by adding sodium metal to the liquid ammonia without any external hydrogen donor. The netto yields of bio-oil are low for technical lignins (10-23 %), but with higher yields of alkylphenols. In the case of native EG MWL, netto yields of 40 % bio-oil were achieved. Finally, when the room temperature method was applied to poplar wood fibre, we observe improved delignification upon the addition of sodium compared to poplar wood fractionation in pure liquid ammonia. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    PubMed Central

    2013-01-01

    Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min) and temperature (190–210°C) on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF) to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD). Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in which the slurry from the pretreatment was divided into a solid fraction and a liquid fraction. The solid fraction was subjected to SSF, while the liquid fraction, together with the filtered residual from SSF, was used in AD. Using sulphuric acid in AD did not inhibit the reaction, which may be due to the low concentration of sulphuric acid used. In contrast, a pretreatment step without sulphuric acid resulted not only in higher concentrations of inhibitors, which affected the ethanol yield, but also in lower methane production. PMID:23356481

  4. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.

    PubMed

    Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E

    2016-01-01

    Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste.

    PubMed

    Liedl, B E; Bombardiere, J; Chaffield, J M

    2006-01-01

    Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.

  6. The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass.

    PubMed

    Mante, Ofei D; Agblevor, F A; Oyama, S T; McClung, R

    2012-05-01

    In this study, the effect of recycling the non-condensable gases (NCG) in the catalytic pyrolysis of hybrid poplar using FCC catalyst was investigated. A 50mm bench scale fluidized bed reactor at 475°C with a weight hourly space velocity (WHSV) of 2h(-1) and a gas recycling capability was used for the studies. Model fluidizing gas mixtures of CO/N(2), CO(2)/N(2), CO/CO(2)/N(2) and H(2)/N(2) were used to determine their independent effects. Recycling of the NCG in the process was found to potentially increase the liquid yield and decrease char/coke yield. The model fluidizing gases increased the liquid yield and the CO(2)/N(2) fluidizing gas had the lowest char/coke yield. The (13)C-NMR analysis showed that recycling of NCG increases the aromatic fractions and decreases the methoxy, carboxylic and sugar fractions. Recycling of NCG increased the higher heating value and the pH of the bio-oil as well as decreased the viscosity and density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Empirical Correlations for the Solubility of Pressurant Gases in Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Asipauskas, Marius; VanDresar, Neil T.

    2010-01-01

    We have analyzed data published by others reporting the solubility of helium in liquid hydrogen, oxygen, and methane, and of nitrogen in liquid oxygen, to develop empirical correlations for the mole fraction of these pressurant gases in the liquid phase as a function of temperature and pressure. The data, compiled and provided by NIST, are from a variety of sources and covers a large range of liquid temperatures and pressures. The correlations were developed to yield accurate estimates of the mole fraction of the pressurant gas in the cryogenic liquid at temperature and pressures of interest to the propulsion community, yet the correlations developed are applicable over a much wider range. The mole fraction solubility of helium in all these liquids is less than 0.3% at the temperatures and pressures used in propulsion systems. When nitrogen is used as a pressurant for liquid oxygen, substantial contamination can result, though the diffusion into the liquid is slow.

  8. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    NASA Astrophysics Data System (ADS)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  9. Biomass pre-treatment for co-production of high-concentration C5- and C6-carbohydrates and their derivatives

    DOEpatents

    Dumesic, James A.; Martin Alonso, David; Luterbacher, Jeremy Scott

    2016-06-07

    Described is a method of processing biomass to separate it into a liquid fraction enriched in solubilized C5-sugar-containing oligomers and C-5 sugar monomers and a solid fraction enriched in substantially insoluble cellulose and C6-sugar-containing oligomers. The method includes the steps of reacting biomass with a solvent system comprising water, at least one lactone, or at least one furan, or at least one cyclic ether, and at least one acid, for a time and at a temperature to yield the liquid and solid fractions. The liquid and solid fractions may then be separated. Gamma-valeroloactone is a preferred lactone for use in the solvent system. Tetrahydrofuran is a preferred furan species for use in the solvent system.

  10. Liquid Hot Water Pretreatment of Olive Tree Pruning Residues

    NASA Astrophysics Data System (ADS)

    Cara, Cristóbal; Romero, Inmaculada; Oliva, Jose Miguel; Sáez, Felicia; Castro, Eulogio

    Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was carried out at seven temperature levels in the range 170-230°C for 10 or 60 min. Sugar recoveries in both solid and liquid fractions resulting from pretreatment as well as enzymatic hydrolysis yield of the solid were used to evaluate pretreatment performance. Results show that the enzyme accessibility of cellulose in the pretreated solid fraction increased with pretreatment time and temperature, although sugar degradation in the liquid fraction was concomitantly higher.

  11. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  12. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  13. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran.

    PubMed

    Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio

    2016-10-01

    This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: Effect of pretreatment parameters on pyrolysis behavior.

    PubMed

    Duan, Dengle; Ruan, Roger; Lei, Hanwu; Liu, Yuhuan; Wang, Yunpu; Zhang, Yayun; Zhao, Yunfeng; Dai, Leilei; Wu, Qiuhao; Zhang, Shumei

    2018-06-01

    The co-pyrolysis of pretreated lignin and soapstock was carried out to upgrade vapors under microwave irradiation. Results showed that the yield of 29.92-42.21 wt% of upgraded liquid oil was achieved under varied pretreatment conditions. Char yield decreased from 32.44 wt% for untreated control to 24.35 wt% for the 150 °C pretreated samples. The increased temperature, irradiation time and acid concentration were conducive to decrease the relative contents of phenols and oxygenates in liquid oils. The main components of the liquid oil were gasoline fraction (mono-aromatics and C5-C12 aliphatics), which ranged from 57.38 to 71.98% under various pretreatment conditions. Meanwhile, the diesel fraction (C12+ aliphatics) ranged from 13.16 to 22.62% from co-pyrolysis of pretreated lignin and soapstock, comparing with 10.18% of C12+ aliphatics from co-pyrolysis of non-pretreated lignin and soapstock. A possible mechanism was proposed for co-pyrolysis of pretreated lignin and soapstock for upgraded liquid oils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Beyond the Fermi liquid paradigm: Hidden Fermi liquids

    PubMed Central

    Jain, J. K.; Anderson, P. W.

    2009-01-01

    An intense investigation of possible non-Fermi liquid states of matter has been inspired by two of the most intriguing phenomena discovered in the past quarter century, namely, high-temperature superconductivity and the fractional quantum Hall effect. Despite enormous conceptual strides, these two fields have developed largely along separate paths. Two widely employed theories are the resonating valence bond theory for high-temperature superconductivity and the composite fermion theory for the fractional quantum Hall effect. The goal of this perspective article is to note that they subscribe to a common underlying paradigm: They both connect these exotic quantum liquids to certain ordinary Fermi liquids residing in unphysical Hilbert spaces. Such a relation yields numerous nontrivial experimental consequences, exposing these theories to rigorous and definitive tests. PMID:19506260

  16. Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast.

    PubMed

    Kim, Yong Seon; Jang, Ji Yeon; Park, Seong Jik; Um, Byung Hwan

    2018-04-01

    Fermentation of food waste biomass can be used to produce biochemicals such as lactic acid and ethanol in a cost-effective manner. Korean food waste (KFW) dewatered by a screw press contains 23.1% glucan on a dry basis and is a potential raw material for the production of ethanol and lactic acid through fermentation. This study was conducted to optimize the dilute acid fractionation conditions for KFW fermentation with respect to the H 2 SO 4 concentration (0-0.8% w/v), temperature (130-190 °C), and residence time (1-128 min) using response surface methodology. Dilute sulfuric acid fractionation was carried out using a 30-mL stainless steel reactor under conditions, and then the dilute acid fractionation was scaled-up in 1-L and 7-L stainless steel reactors under the optimal conditions. The hydrolysate was concentrated, liquid-liquid extracted and neutralized for lactic acid and ethanol production. The highest concentration of glucose obtained from the KFW was 26.4 g/L using fractionation with 0.37% w/v H 2 SO 4 at 156 °C for 123.6 min. Using recombinant Saccharomyces cerevisiae containing a codon-optimized lactate dehydrogenase, the yield of lactic acid and ethanol was 77% of the theoretical yield for 17.4 g/L of fermentable sugar at pH 5.5. Additionally, the yield of ethanol produced by Issatchenkia orientalis was 89% of the theoretical yield for 25 g/L of fermentable sugar at pH 3. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    PubMed

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to avoid environmental impact. Due to the biodegradability of manure, anaerobic digestion is an interesting alternative to treat these effluents. The low volatile solid concentration in the swine manure suggests the need for solid-liquid separation as a tool to improve biogas generation capacity. The present study aimed to determine the influence of simplified and cheap solid-liquid separation strategies (based on screening and settling) and different manure of each swine production phases (gestating and farrowing sows houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sows house (GSH-a and GSH-b), two farrowing sows house (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). The Biochemical Methane Production (BMP) tests were performed according to international standard procedure (VDI 4630). The settled sludge fraction responds for 20-30% of raw manure volume, producing 40-60% of the total methane yield. The methane potential of settled sludge fraction was about 2 times higher than the supernatant fraction. There are differences on biogas yield between the raw manure of different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH 970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences are relative to production phase (feed type, feeding techniques, etc.), but also the management of the effluent inside the facilities (water management). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Huang, He; Xiao, Gang

    2009-02-01

    Fast pyrolysis of corncob with and without catalyst was investigated in a fluidized bed to determine the effects of pyrolysis parameters (temperature, gas flow rate, static bed height and particle size) and a HZSM-5 zeolite catalyst on the product yields and the qualities of the liquid products. The result showed that the optimal conditions for liquid yield (56.8%) were a pyrolysis temperature of 550 degrees C, gas flow rate of 3.4 L/min, static bed height of 10 cm and particle size of 1.0-2.0mm. The presence of the catalyst increased the yields of non-condensable gas, water and coke, while decreased the liquid and char yields. The elemental analysis showed that more than 25% decrease in oxygen content of the collected liquid in the second condenser with HZSM-5 was observed compared with that without catalyst. The H/C, O/C molar ratios and the higher heating value of the oil fraction in the collected liquid with the catalyst were 1.511, 0.149 and 34.6 MJ/kg, respectively. It was indicated that the collected liquid in the second condenser had high qualities and might be used as transport oil.

  19. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    PubMed

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  20. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus

    PubMed Central

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra. PMID:29584745

  1. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract

    USDA-ARS?s Scientific Manuscript database

    Oats (Avena sativa L.) were extracted with 80% aqueous ethanol and the extract was successively isolated by liquid-liquid partition to yield n-hexane, ethyl acetate, n-butanol and water layers. Among these extractions the ethyl acetate (EA) layer exhibited the highest total phenolic content (TPC), t...

  2. Wet fractionation of the succulent halophyte Salicornia sinus-persica, with the aim of low input (water saving) biorefining into bioethanol.

    PubMed

    Alassali, Ayah; Cybulska, Iwona; Galvan, Alejandro Ríos; Thomsen, Mette Hedegaard

    2017-02-01

    In this study Salicornia sinus-persica, a succulent halophyte was assessed for its potential to be used as a feedstock for bioethanol production. For such succulent, salty, green biomasses, direct fractionation and fermentation allow for water preservation in the process. Fresh biomass of S. sinus-persica was collected and split into two fractions by wet fractionation; liquid (juice) and solid (pulp). Sugar contents were found to be 1.0-1.5% for the juice fraction and 50% (w/w) for the fresh pulp. Direct fermentation of the juice using Saccharomyces cerevisiae showed no salt inhibition of the yeast and ethanol yields of ~70% were achieved. A pretreatment study was carried out for the pulp fraction applying mild hydrothermal pretreatment. Cellulose convertibility was found to be significantly higher for severity factors above 2.00, and the highest ethanol yield (76.91 ± 3.03%) was found at process severity of 3.06 (170 °C, 10 min).

  3. Aging of SRC liquids

    NASA Astrophysics Data System (ADS)

    Hara, T.; Jones, L.; Tewari, K. C.; Li, N. C.

    1981-02-01

    The viscosity of SRC-LL liquid increases when subjected to accelerated aging by bubbling oxygen in the presence of copper strip at 62°C. Precipitates are formed and can be separated from the aged liquid by Soxhlet extraction with pentane. A 30-70 blend of SRC-I with SRC-LL was subjected to oxygen aging in the absence of copper, and the viscosity increased dramatically after 6 days at 62°. The content of preasphaltene and its molecular size increase with time of aging, accompanied by decrease of asphaltene and pentane-soluble contents. For the preasphaltene fraction on aging, gel permeation chromatography shows formation of larger particles. ESR experiments show that with oxygen aging, spin concentration in the preasphaltene fraction decreases. Perhaps some semiquinone, together with di- and tri-substituted phenoxy radicals, generated by oxygen aging of the coal liquid, interact with the free radicals already present in coal to yield larger particles and reduce free radical concentration. We are currently using the very high-field (600-MHz) NMR spectrometer at Mellon Institute to determine changes in structural parameters before and after aging of SRC-II and its chromatographically separated fractions.

  4. Targeting Human Serum Fucome by an Integrated Liquid-phase Multi Column Platform Operating in “Cascade” to Facilitate Comparative Mass Spectrometric Analysis of Disease-Free and Breast Cancer Sera

    PubMed Central

    Selvaraju, Subhashini; Rassi, Ziad El

    2013-01-01

    A fully integrated platform was developed for capturing/fractionating human fucome from disease-free and breast cancer sera. It comprised multicolumn operated by HPLC pumps and switching valves for the simultaneous depletion of high abundance proteins via affinity-based subtraction and the capturing of fucosylated glycoproteins via lectin affinity chromatography followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) were utilized. The platform allowed the “cascading” of the serum sample from column-to-column in the liquid phase with no sample manipulation between the various steps. This guaranteed no sample loss and no propagation of experimental biases between the various columns. Finally, the fucome was fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to trypsinolysis for LC-MS/MS analysis. This permitted the identification of the differentially expressed proteins (DEP) in breast cancer serum yielding a broad panel of 35 DEP from the combined LTA and AAL captured proteins and a narrower panel of 8 DEP that were commonly differentially expressed in both LTA and AAL fractions, which are considered as more representative of cancer altered fucome. PMID:23533108

  5. Chemical investigation of Titan and Triton tholins

    NASA Technical Reports Server (NTRS)

    Mcdonald, Gene D.; Thompson, W. R.; Heinrich, Michael; Khare, Bishun N.; Sagan, Carl

    1994-01-01

    We report chromatographic and spectroscopic analyses of both Titan and Triton tholins, organic solids made from the plasma irradiation of 0.9:0.1 and 0.999:0.001 N2/CH4 gas mixtures, respectively. The lower CH4 mixing ratio leads to a nitrogen-richer tholin (N/C greater than 1), probably including nitrogen heterocyclic compounds. Unlike Titan tholin, bulk Triton tholin is poor in nitriles. From high-pressure liquid chromatography, ultraviolet and infrared spectroscopy, and molecular weight estimation by gel filtration chromatography, we conclude that (1) several H2O-soluble fractions, each with distinct UV and IR spectral signatures, are present, (2) these fractions are not identical in the two tholins, (3) the H2O-soluble fractions of Titan tholins do not contain significant amounts of nitriles, despite the major role of nitriles in bulk Titan tholin, and (4) the H2O-soluble fractions of both tholins are mainly molcules containing about 10 to 50 (C + N) atoms. We report yields of amino acids upon hydrolysis of Titan and Triton tholins. Titan tholin is largely insoluble in the putative hydrocarbon lakes or oceans on Titan, but can yield the H2O-soluble species investigated here upon contact with transient (e.g., impact-generated) liquid water.

  6. Surfactant studies for bench-scale operation

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1992-01-01

    A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.

  7. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Analysis of human serum proteins by liquid phase isoelectric focusing and matrix-assisted laser desorption/ionization-mass spectrometry.

    PubMed

    Wang, Michael Z; Howard, Brandon; Campa, Michael J; Patz, Edward F; Fitzgerald, Michael C

    2003-09-01

    Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.

  9. Liquid CO2 extraction of Jasminum grandiflorum and comparison with conventional processes.

    PubMed

    Prakash, Om; Sahoo, Deeptanjali; Rout, Prasant Kumar

    2012-01-01

    The concrete (0.35%) of Jasminum grandiflorum L. flowers was prepared by extraction in n-pentane, and the absolute (0.27%) by fractionation of the n-pentane extract (concrete) with cold methanol. Direct extraction of flowers with liquid CO2 gave a relatively fat-free product in 0.26% yield. The liquid CO2 extract was enriched with terpenoids and benzenoids, thus providing the organoleptically accepted product. The major compounds, such as benzyl acetate, (E,E)-alpha-farnesene and (Z)-3-hexenyl benzoate, along with compounds like indole, methyl anthranilate, (Z)-jasmone, (Z)-methyl jasmonoate and (Z)-methyl epi-jasmonoate, are responsible for the high diffusivity of the jasmine fragrance. These compounds have been obtained with improved recoveries in the liquid CO2 extract. On the other hand, the yield of the essential oil was poor (0.05%), and some polar compounds (oxygenated terpenoids) were recovered in less amounts in comparison with either the n-pentane or liquid CO2 extract.

  10. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    PubMed

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass.

    PubMed

    Feng, Junfeng; Hse, Chungyun; Yang, Zhongzhi; Wang, Kui; Jiang, Jianchun; Xu, Junming

    2017-11-01

    Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3g catalyst per 18g methanol and 2g bamboo at 160°C with 10min. Approximately 78-86wt% of the six biomass materials were converted into liquid products. After the stepwise extraction and precipitation process, the yields of monosaccharide derivatives and three phenolic compound fractions were 39-45% and 28-32%, respectively. Monosaccharides from holocellulose collected with a high purity of methyl glycosides were higher than 90%. Aromatic derivatives with different weight-molecular distributions were separated into three fractions with more than 80% phenolics. As their similar chemical properties within each fraction, platform chemicals have great commercial potential for producing high-quality chemicals and biofuels using mild upgrading conditions. Copyright © 2017. Published by Elsevier Ltd.

  12. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor.

    PubMed

    Stefanidis, S D; Kalogiannis, K G; Iliopoulou, E F; Lappas, A A; Pilavachi, P A

    2011-09-01

    In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500°C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Energy Insecurity: The False Promise of Liquid Biofuels

    DTIC Science & Technology

    2013-01-01

    526 certifications issued to date for biofuels and blends . Any that do not consider the full biofuel lifecycle comprising land- use change for fuel...in physics from the US Naval Academy and a master’s in strategy from the US Army Command and General Staff College. He currently teaches strategy...biofuel yields are far too small, diffuse, and infrequent to displace any meaningful fraction of US primary energy needs, and boosting yields

  14. Inviscid dynamics of a wet foam drop with monodisperse bubble size distribution

    NASA Astrophysics Data System (ADS)

    McDaniel, J. Gregory; Akhatov, Iskander; Holt, R. Glynn

    2002-06-01

    Motivated by recent experiments involving the acoustic levitation of foam drops, we develop a model for nonlinear oscillations of a spherical drop composed of monodisperse aqueous foam with void fraction below 0.1. The model conceptually divides a foam drop into many cells, each cell consisting of a spherical volume of liquid with a bubble at its center. By treating the liquid as incompressible and inviscid, a nonlinear equation is obtained for bubble motion due to a pressure applied at the outer radius of the liquid sphere. Upon linearizing this equation and connecting the cells at their outer radii, a wave equation is obtained with a dispersion relation for the sound waves in a bubbly liquid. For the spherical drop, this equation is solved by a normal mode expansion that yields the natural frequencies as functions of standard foam parameters. Numerical examples illustrate how the analysis may be used to extract foam parameters, such as void fraction and bubble radius, from the experimentally measured natural frequencies of a foam drop.

  15. An integrated process for the recovery of high added-value compounds from olive oil using solid support free liquid-liquid extraction and chromatography techniques.

    PubMed

    Angelis, Apostolis; Hamzaoui, Mahmoud; Aligiannis, Nektarios; Nikou, Theodora; Michailidis, Dimitris; Gerolimatos, Panagiotis; Termentzi, Aikaterini; Hubert, Jane; Halabalaki, Maria; Renault, Jean-Hugues; Skaltsounis, Alexios-Léandros

    2017-03-31

    An integrated extraction and purification process for the direct recovery of high added value compounds from extra virgin olive oil (EVOO) is proposed by using solid support free liquid-liquid extraction and chromatography techniques. Two different extraction methods were developed on a laboratory-scale Centrifugal Partition Extractor (CPE): a sequential strategy consisting of several "extraction-recovery" cycles and a continuous strategy based on stationary phase co-current elution. In both cases, EVOO was used as mobile phase diluted in food grade n-hexane (feed mobile phase) and the required biphasic system was obtained by adding ethanol and water as polar solvents. For the sequential process, 17.5L of feed EVOO containing organic phase (i.e. 7L of EVOO treated) were extracted yielding 9.5g of total phenolic fraction corresponding to a productivity of 5.8g/h/L of CPE column. Regarding the second approach, the co-current process, 2L of the feed oil phase (containing to 0.8L of EVOO) were treated at 100mL/min yielding 1.03g of total phenolic fraction corresponding to a productivity of 8.9g/h/L of CPE column. The total phenolic fraction was then fractionated by using stepwise gradient elution Centrifugal Partition Chromatography (CPC). The biphasic solvent systems were composed of n-hexane, ethyl acetate, ethanol and water in different proportions (X/Y/2/3, v/v). In a single run of 4h on a column with a capacity of 1L, 910mg of oleocanthal, 882mg of oleacein, 104mg of hydroxytyrosol were successfully recovered from 5g of phenolic extract with purities of 85%, 92% and 90%, respectively. CPC fractions were then submitted to orthogonal chromatographic steps (adsorption on silica gel or size exclusion chromatography) leading to the isolation of additional eleven compounds belonging to triterpens, phenolic compounds and secoiridoids. Among them, elenolic acid ethylester was found to be new compound. Thin Layer Chromatography (TLC), Nuclear magnetic Resonance (NMR) and High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD) were used for monitoring and evaluation purposes throughout the entire procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermal and catalytic degradation of high and low density polyethylene into fuel oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Azhar; Koizumi, Kazuo; Sakata, Yusaku

    1996-12-31

    The degradation of four different types of polyethylene (PE) namely high density PE (HDPE), low density PE (LDPE), linear low density PE (LLDPE), and cross-linked PE (XLPE) was carried out at 430 {degrees}C by batch operation using silica-alumina as a solid acid catalyst and thermally without any catalyst. For thermal degradation, both HDPE and XLPE produced significant amount of wax-like compounds and the yield of liquid products were lower than that of LDPE and LLDPE. LDPE and LLDPE also produced small amount of wax-like compounds. Thus the structure of the degrading polymers influenced the product yields. The liquid products frommore » thermal degradation were broadly distributed in the carbon fraction of n-C{sub 5} to n-C{sub 25} (boiling point range, 36-405 C). With silica-alumina, the polyethylenes were converted to liquid products with high yields (77-83 wt%) and without any wax production. The liquid products were distributed in the range of n-C{sub 5} to n-C{sub 20} (Mostly C{sub 5}-C{sub 12}). Solid acid catalyst indiscriminately degraded the various types of polyethylene into light fuel oil. 5 refs., 4 figs., 1 tab.« less

  17. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability.

    PubMed

    Li, Xiaohua; Luque-Moreno, Luis C; Oudenhoven, Stijn R G; Rehmann, Lars; Kersten, Sascha R A; Schuur, Boelo

    2016-09-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid-liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created from acid-leached and untreated pinewood, with levoglucosan contents (most abundant sugar) of 29.0% and 8.3% (w/w), respectively. In a single stage extraction, 70% of the aromatics were effectively removed by P666,14[N(CN)2] and 50% by EA, while no levoglucosan was extracted. The IL was regenerated by vacuum evaporation (100mbar) at 220°C, followed by extraction of aromatics from fresh pyrolytic sugar solutions. Regenerated IL extracted aromatics with similar extraction efficiency as the fresh IL, and the purified sugar fraction from pretreated pinewood was hydrolyzed to glucose and fermented to ethanol, yielding 0.46g ethanol/(g glucose), close to the theoretical maximum yield. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    NASA Astrophysics Data System (ADS)

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-07-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.

  19. Effect of temperature on pyrolysis product of empty fruit bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The charmore » obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.« less

  20. Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge.

    PubMed

    De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F

    2018-06-01

    In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250-1300 °C and its cosmochemical consequences

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Schmidt, Max W.; Bourdon, Bernard

    2012-09-01

    Iron isotope fractionation during metal-silicate differentiation has been proposed as a cause for differences in iron isotope compositions of chondrites, iron meteorites and the bulk silicate Earth. Stable isotope fractionation, however, rapidly decreases with increasing temperature. We have thus performed liquid metal-liquid silicate equilibration experiments at 1250-1300 °C and 1 GPa to address whether Fe isotope fractionation is resolvable at the lowest possible temperatures for magmatic metal-silicate differentiation. A centrifuging piston cylinder apparatus enabled quantitative metal-silicate segregation. Elemental tin or sulphur was used in the synthetic metal-oxide mixtures to lower the melting temperature of the metal. The analyses demonstrate that eight of the 10 experimental systems equilibrated in a closed isotopic system, as was assessed by varying run durations and starting Fe isotope compositions. Statistically significant iron isotope fractionation between quenched metals and silicates was absent in nine of the 10 experiments and all 10 experiments yield an average metal-silicate fractionation factor of 0.01 ± 0.04‰, independent of whether graphite or silica glass capsules were used. This implies that Fe isotopes do not fractionate during low pressure metal-silicate segregation under magmatic conditions. In large bodies such as the Earth, fractionation between metal and high pressure (>20 GPa) silicate phases may still be a possible process for equilibrium fractionation during metal-silicate differentiation. However, the 0.07 ± 0.02‰ heavier composition of bulk magmatic iron meteorites relative to the average of bulk ordinary/carbonaceous chondrites cannot result from equilibrium Fe isotope fractionation during core segregation. The up to 0.5‰ lighter sulphide than metal fraction in iron meteorites and in one ordinary chondrite can only be explained by fractionation during subsolidus processes.

  2. Solar vapor generation enabled by nanoparticles.

    PubMed

    Neumann, Oara; Urban, Alexander S; Day, Jared; Lal, Surbhi; Nordlander, Peter; Halas, Naomi J

    2013-01-22

    Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations.

  3. Chapter 8: Pyrolysis of Biomass for Aviation Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, David J; Jenkins, Rhodri W.; Sutton, Andrew D.

    2016-07-15

    Pyrolysis, the breaking down of organic material using heat and the absence of oxygen, is a method that has been widely researched for the production of liquid fuels. In this chapter, we review the feedstocks typically used for pyrolysis, the properties and the composition of the liquid fraction (termed 'bio-oil') obtained, the studies in which pyrolysis has been used in an attempt to increase the bio-oil yield, and how the bio-oil has been upgraded to fuel-like molecules. We also discuss the viability of pyrolysis to produce jet fuel hydrocarbons.

  4. [Optimization of ultrasonic-assisted extraction of total flavonoids from leaves of the Artocarpus heterophyllus by response surface methodology].

    PubMed

    Wang, Hong-wu; Liu, Yan-qing; Wang, Yuan-hong

    2011-07-01

    To investigate the ultrasonic-assisted extract on of total flavonoids from leaves of the Artocarpus heterophyllus. Investigated the effects of ethanol concentration, extraction time, and liquid-solid ratio on flavonoids yield. A 17-run response surface design involving three factors at three levels was generated by the Design-Expert software and experimental data obtained were subjected to quadratic regression analysis to create a mathematical model describing flavonoids extraction. The optimum ultrasonic assisted extraction conditions were: ethanol volume fraction 69.4% and liquid-solid ratio of 22.6:1 for 32 min. Under these optimized conditions, the yield of flavonoids was 7.55 mg/g. The Box-Behnken design and response surface analysis can well optimize the ultrasonic-assisted extraction of total flavonoids from Artocarpus heterophyllus.

  5. Non-targeted workflow for identification of antimicrobial compounds in animal feed using bioassay-directed screening in combination with liquid chromatography-high resolution mass spectrometry.

    PubMed

    Wegh, Robin S; Berendsen, Bjorn J A; Driessen-Van Lankveld, Wilma D M; Pikkemaat, Mariël G; Zuidema, Tina; Van Ginkel, Leen A

    2017-11-01

    A non-targeted workflow is reported for the isolation and identification of antimicrobial active compounds using bioassay-directed screening and LC coupled to high-resolution MS. Suspect samples are extracted using a generic protocol and fractionated using two different LC conditions (A and B). The behaviour of the bioactive compound under these different conditions yields information about the physicochemical properties of the compound and introduces variations in co-eluting compounds in the fractions, which is essential for peak picking and identification. The fractions containing the active compound(s) obtained with conditions A and B are selected using a microbiological effect-based bioassay. The selected bioactive fractions from A and B are analysed using LC combined with high-resolution MS. Selection of relevant signals is automatically carried out by selecting all signals present in both bioactive fractions A and B, yielding tremendous data reduction. The method was assessed using two spiked feed samples and subsequently applied to two feed samples containing an unidentified compound showing microbial growth inhibition. In all cases, the identity of the compound causing microbiological inhibition was successfully confirmed.

  6. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    PubMed Central

    2012-01-01

    Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics. PMID:22410131

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Daniel J.; Kastengren, Alan L.; Swantek, Andrew B.

    The dynamics of dissolved gas and cavitation are strongly coupled, yet these phenomena are difficult to measure in-situ. Both create voids in the fluid that can be difficult to distinguish. In this paper, we present an application of X-ray fluorescence in which liquid density and total noncondensible gas concentration (both dissolved and nucleated) are simultaneously measured. The liquid phase is doped with 400 ppm of a bromine tracer, and dissolved air is removed and substituted with krypton. Fluorescent emission at X-ray wavelengths is simultaneously excited from the Br and Kr with a focused monochromatic X-ray beam from a synchrotron source.more » We measure the flow in a cavitating nozzle 0.5 mm in diameter. From Br fluorescence, total displacement of the liquid is measured. From Kr fluorescence, the mass fraction of both dissolved and nucleated gas is measured. Volumetric displacement of liquid due to both cavitation and gas precipitation can be separated through estimation of the local equilibrium dissolved mass fraction. The uncertainty in the line of sight projected densities of the liquid and gas phases is 4–6 %. The high fluorescence yields and energies of Br and Kr allow small mass fractions of gas to be measured, down to 10 -5, with an uncertainty of 8 %. Finally, these quantitative measurements complement existing optical diagnostic techniques and provide new insight into the diffusion of gas into cavitation bubbles, which can increase their internal density, pressure and lifetimes by orders of magnitude.« less

  8. X-ray fluorescence measurements of dissolved gas and cavitation

    DOE PAGES

    Duke, Daniel J.; Kastengren, Alan L.; Swantek, Andrew B.; ...

    2016-09-28

    The dynamics of dissolved gas and cavitation are strongly coupled, yet these phenomena are difficult to measure in-situ. Both create voids in the fluid that can be difficult to distinguish. In this paper, we present an application of X-ray fluorescence in which liquid density and total noncondensible gas concentration (both dissolved and nucleated) are simultaneously measured. The liquid phase is doped with 400 ppm of a bromine tracer, and dissolved air is removed and substituted with krypton. Fluorescent emission at X-ray wavelengths is simultaneously excited from the Br and Kr with a focused monochromatic X-ray beam from a synchrotron source.more » We measure the flow in a cavitating nozzle 0.5 mm in diameter. From Br fluorescence, total displacement of the liquid is measured. From Kr fluorescence, the mass fraction of both dissolved and nucleated gas is measured. Volumetric displacement of liquid due to both cavitation and gas precipitation can be separated through estimation of the local equilibrium dissolved mass fraction. The uncertainty in the line of sight projected densities of the liquid and gas phases is 4–6 %. The high fluorescence yields and energies of Br and Kr allow small mass fractions of gas to be measured, down to 10 -5, with an uncertainty of 8 %. Finally, these quantitative measurements complement existing optical diagnostic techniques and provide new insight into the diffusion of gas into cavitation bubbles, which can increase their internal density, pressure and lifetimes by orders of magnitude.« less

  9. STUDY OF THE PROTEIN FRACTIONS IN THE BRAIN AFTER EXPOSURE TO X RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narepekha, O.M.

    1962-01-01

    A study was made of the changes in the water-soluble proteins of the brain in 10 adult rabbits exposed to totalbody radiation by means of a dose of 800 r at a rate of 16 r/min. After the exposure, the brain was cleaned of blood, meninges, and blood vessels, and was homogenized with an equal volume of normal saline. The homogenate was frozen by means of liquid nitrogen and left in the deep freeze for 24 hours. The homogenate was then melted, and centrifuged for one hour at 15,000 rpm. The supernatant liquid obtained had a protein content of 1.8more » to 2%. To increase this to the concentration of serum protein (7 to 8%), the solution was precipitated with tannin and the protein was liberated from the protein-tannate complex with caffeine. The pH adjusted to 4.7. After ten minutes, the solution was centrifuged, the supernatant liquid was discarded, and the centrifugate washed twice in normal saline and redissolved by the addition of caffeine. The solution was centrifuged for 30 minutes at 15,000 rpm, after which the centrifugate contained the protein liberated from the protein-tannate complex. The solution obtained had a protein concentration of 9 to 10%. This was then investigated by electrophoresis on agar gel in a veronal-medinal buffer (pH 8.6), at a voltage of 220 v. In the control rabbits, electrophoresis of the solution obtained in the described manner yields 9 to 11 fractions, one of which was a prealbumin fraction, the second an albumin fraction, and the others corresponded to various serum-globulin fractions. In rabbits exposed to radiation, the number of fractions increased to 13, mainly fractions corresponding to the serum- albumins. (OTS)« less

  10. Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households.

    PubMed

    Murto, Marika; Björnsson, Lovisa; Rosqvist, Håkan; Bohn, Irene

    2013-05-01

    At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a dry fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m3/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE PAGES

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; ...

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  12. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  13. Biological Pretreatment of Chicken Feather and Biogas Production from Total Broth.

    PubMed

    Patinvoh, Regina J; Feuk-Lagerstedt, Elisabeth; Lundin, Magnus; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2016-12-01

    Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2-8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C 4 , a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH 4 /gVS compared to 105 mlCH 4 /gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH 4 /gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.

  14. Effect of catalyst additives on the production of biofuels from palm oil cracking in a transport riser reactor.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2009-05-01

    Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.

  15. Measurement of intact-core length of atomizing liquid jets by image deconvolution

    NASA Technical Reports Server (NTRS)

    Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill

    1993-01-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.

  16. Measurement of intact-core length of atomizing liquid jets by image deconvolution

    NASA Astrophysics Data System (ADS)

    Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill

    1993-11-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.

  17. A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.

    PubMed

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M

    2014-05-22

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.

  18. A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow

    PubMed Central

    Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.

    2014-01-01

    Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961

  19. Comparison of rumen bacteria distribution in original rumen digesta, rumen liquid and solid fractions in lactating Holstein cows.

    PubMed

    Ji, Shoukun; Zhang, Hongtao; Yan, Hui; Azarfar, Arash; Shi, Haitao; Alugongo, Gibson; Li, Shengli; Cao, Zhijun; Wang, Yajing

    2017-01-01

    Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fractions vary from each other and need to be better established. To compare bacterial profiles in each fraction, samples of rumen digesta from six cows fed either a high fiber diet (HFD) or a high energy diet (HED) were collected via rumen fistulas. Rumen digesta was then squeezed through four layers of cheesecloth to separate liquid and solid fractions. The bacterial profiles of rumen original digesta, liquid and solid fractions were analyzed with High-throughput sequencing technique. Rumen bacterial diversity was mainly affected by diet and individual cow ( P  > 0.05) rather than rumen fraction. Bias distributed bacteria were observed in solid and liquid fractions of rumen content using Venn diagram and LEfSe analysis. Fifteen out of 16 detected biomarkers (using LEfSe analysis) were found in liquid fraction, and these 15 biomarkers contributed the most to the bacterial differences among rumen content fractions. Similar results were found when using samples of original rumen digesta, rumen liquid or solid fractions to assess diversity of rumen bacteria; however, more attention should be draw onto bias distributed bacteria in different ruminal fractions, especially when liquid fraction has been used as a representative sample for rumen bacterial study.

  20. Antimicrobial activity of fractions and subfractions of Elaeagia utilis against microorganisms of importance in dental caries.

    PubMed

    Aldana, Jennyfer; Téllez, Nohemí; Gamboa, Fredy

    2013-01-01

    Dental caries is a multifactorial infectious disease that leads to the destruction of dental hard tissue. The main goal of research into medicinal plants is to seek compounds with antimicrobial activity for subsequent use in prevention strategies and control of infectious diseases. The aim of this study was to evaluate the antimicrobial activity of fractions and subfractions obtained from Elaeagia utilis against Streptococcus mutans, Streptococcus sobrinus and Lactobacillus acidophilus. The plant material was collected in the town of Alban (Cundinamarca, Colombia), which is located at an altitude of 2245 meters above sea level. Two extracts were obtained by cold maceration of E. utilis leaves in (a) petroleum ether extract and (b) ethanol extract. Fractions were obtained from the petroleum ether extract by column vacuum chromatography, and from the ethanol extract by continuous liquid/liquid partitioning. The antimicrobial activity of fractions and subfractions was evaluated by the well diffusion method. At a concentration of 10 mg/well, several fractions from both extracts showed antimicrobial activity against S. mutans, S. sobrinus and L. acidophilus. Among the ethanol extract fractions, the dichloromethane fraction had notably greater antimicrobial activity. It was sub-partitioned, yielding three subfractions with inhibitory activity, of which the most active was MeOH: H2O (Bp) with minimum inhibitory concentration 0.1 mg/well on the 3 study bacteria. Terpenes, sesquiterpenlactones and simple phenolic compounds were identified in it. In conclusion, this study shows the antimicrobial potential of fractions and subfractions obtained from extracts of E. utilis leaves against bacteria that are important in dental caries.

  1. Sequential and simultaneous strategies for biorefining of wheat straw using room temperature ionic liquids, xylanases and cellulases.

    PubMed

    Husson, Eric; Auxenfans, Thomas; Herbaut, Mickael; Baralle, Manon; Lambertyn, Virginie; Rakotoarivonina, Harivoni; Rémond, Caroline; Sarazin, Catherine

    2018-03-01

    Sequential and simultaneous strategies for fractioning wheat straw were developed in combining 1-ethyl-3-methyl imidazolium acetate [C2mim][OAc], endo-xylanases from Thermobacillus xylanilyticus and commercial cellulases. After [C2mim][OAc]-pretreatment, hydrolysis catalyzed by endo-xylanases of wheat straw led to efficient xylose production with very competitive yield (97.6 ± 1.3%). Subsequent enzymatic saccharification allowed achieving a total degradation of cellulosic fraction (>99%). These high performances revealed an interesting complementarity of [C2mim][OAc]- and xylanase-pretreatments for increasing enzymatic digestibility of cellulosic fraction in agreement with the structural and morphological changes of wheat straw induced by each of these pretreatment steps. In addition a higher tolerance of endo-xylanases from T. xylaniliticus to [C2mim][AcO] until 30% v/v than cellulases from T. reesei was observed. Based on this property, a simultaneous strategy combining [C2mim][OAc]- and endo-xylanases as pretreatment in a one-batch produced xylose with similar yield than those obtained by the sequential strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Onset of solid state mantle convection and mixing during magma ocean solidification

    NASA Astrophysics Data System (ADS)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris

    2017-04-01

    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  3. Investigation into Behavior of a Steam-Water Mixture Flow Through Holes in a Submerged Perforated Sheet at High Void Fractions

    NASA Astrophysics Data System (ADS)

    Melikhov, V. I.; Melikhov, O. I.; Nerovnov, A. A.; Nikonov, S. M.

    2018-01-01

    Processing of experimental data on the pressure difference across a submerged perforated sheet (SPS) revealed that, at sufficiently high void fractions under SPS, the pressure difference across it became less than the pressure difference for the pure steam stream with the same flowrate. To find the cause of this, the effect of a liquid film, which can be formed on the SPS upstream surface as a result of water droplets' impact and can smooth over sharp edges of holes in SDS, was examined. This can decrease the pressure drop across the sharp edges of holes. This assumption was checked through numerical solution to several model problems in the axisymmetric formulation for a steam flow in a round pipe with an orifice. The flow of steam and water was modeled using the viscous incompressible liquid approximation, while the turbulence was described by the k-ɛ model. The evolution of the interfacial area was modeled using the VOF model. The following model problems of steam flow through an orifice were studied: a single-phase flow, a flow through the orifice with a liquid film on its upstream surface, a flow through a chamfered hole, and a flow through the orifice with a liquid film on its upstream surface without liquid supply to the film. The predictions demonstrate that even the approximate account of the liquid film effect on the steam flow yields a considerable decrease in the pressure drop across the hole (from 8 to 24%) due to smoothing its sharp outlet edges over. This makes it possible to make a conclusion that the cause of a decrease in the pressure drop across SPS observed in the experiments at high void fractions is the formation of a liquid film, which smooths the sharp edges of the hole.

  4. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    PubMed

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is greater for the suspension with soybean oil despite its lower interfacial tension against water. The result can be explained with the different contact angles of the two oils in agreement with the theoretical predictions. The results could contribute for a better understanding, quantitative prediction and control of the mechanical properties of three-phase capillary suspensions solid/liquid/liquid. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Investigation of structural changes of β-casein and lysozyme at the gas-liquid interface during foam fractionation.

    PubMed

    Barackov, Ivana; Mause, Anika; Kapoor, Shobhna; Winter, Roland; Schembecker, Gerhard; Burghoff, Bernhard

    2012-10-15

    Purification and separation of proteins play a major role in biotechnology. Nowadays, alternatives to multistep operations suffering from low product yields and high costs are investigated closely amidst which one of the promising options is foam fractionation. The molecular behavior at the gas-liquid interface plays an important role in the formation and stabilization of enriched foam. This study for the first time correlates the physico-chemical parameters to the molecular structure in view of protein enrichment during foam fractionation of the two relatively different proteins lysozyme and β-casein employing biophysical techniques such as circular dichroism (CD) spectroscopy and infrared reflection absorption spectroscopy (IRRAS). In case of lysozyme, high enrichment was achieved at pH

  6. Trends in long-period seismicity related to magmatic fluid compositions

    USGS Publications Warehouse

    Morrissey, M.M.; Chouet, B.A.

    2001-01-01

    Sound speeds and densities are calculated for three different types of fluids: gas-gas mixture; ash-gas mixture; and bubbly liquid. These fluid properties are used to calculate the impedance contrast (Z) and crack stiffness (C) in the fluid-driven crack model (Chouet: J. Geophys. Res., 91 (1986) 13,967; 101 (1988) 4375; A seismic model for the source of long-period events and harmonic tremor. In: Gasparini, P., Scarpa, R., Aki, K. (Eds.), Volcanic Seismology, IAVCEI Proceedings in Volcanology, Springer, Berlin, 3133). The fluid-driven crack model describes the far-field spectra of long-period (LP) events as modes of resonance of the crack. Results from our calculations demonstrate that ash-laden gas mixtures have fluid to solid density ratios comparable to, and fluid to solid velocity ratios lower than bubbly liquids (gas-volume fractions 20% gas-volume fraction yields values of Q-1r similar to those for a rectangular crack. As with gas-gas and ash-gas mixtures, an increase in mass fraction narrows the bandwidth of the dominant mode and shifts the spectra to lower frequencies. Including energy losses due to dissipative processes in a bubbly liquid increases attenuation. Attenuation may also be higher in ash-gas mixtures and foams if the effects of momentum and mass transfer between the phases were considered in the calculations. ?? 2001 Elsevier Science B. V. All rights reserved.

  7. Isolation and recovery of selected polybrominated diphenyl ethers from human serum and sheep serum: coupling reversed-phase solid-phase disk extraction and liquid-liquid extraction techniques with a capillary gas chromatographic electron capture negative ion mass spectrometric determinative technique.

    PubMed

    Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.

  8. Liquid chromatographic determination of benzo(a)pyrene in total particulate matter of cigarette smoke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkins, B.A.; Jenkins, R.A.; Griest, W.H.

    The benzo(a)pyrene (BaP) delivery of reference and commercially available tobacco cigarettes, as well as reference and placebo marijuana cigarettes, is determined using a sequential liquid chromatographic/liquid chromatographic procedure. The total particulate matter of sample cigarette smoke is collected using a Cambridge filter pad, which is ultrasonically extracted with acetone. The resulting extract is filtered, then fractionated using semipreparative-scale normal phase liquid chromatography (LC). Quantitative determination is achieved using analytical-scale reverse phase LC equipped with a fluorescence detector. The method is precise (+/- 10-15% relative standard deviation) and yields 85% or better BaP recovery at the ng/cig. level. A single padmore » may be analyzed in 8 person-hours, while a more typical lot of 12 pads (6 pads each for 2 cigarette brands) may be analyzed in 10 person-days.« less

  9. Centrifugal partition chromatography: A preparative tool for isolation and purification of xylindein from Chlorociboria aeruginosa.

    PubMed

    Boonloed, Anukul; Weber, Genevieve L; Ramzy, Kelly M; Dias, Veronica R; Remcho, Vincent T

    2016-12-23

    A centrifugal partition chromatography (CPC) method was developed for the preparative-scale isolation and purification of xylindein from the wood-staining fungi, Chlorociboria aeruginosa. Xylindein, a blue-green pigment naturally secreted from the hyphae and fruiting bodies of the fungus, has great value in the decorative wood industry and textile coloration. Xylindein has great potential for use as a fluorescent labeling agent as well as in organic semiconductor applications. However, a primary limitation of xylindein is its poor solubility in most common HPLC solvents. Consequently, it is arduous to purify using preparative liquid chromatography or solid-phase extraction (SPE). Support-free, liquid-liquid chromatographic methods, including CPC, where solutes are separated based on their different distribution coefficients (K D ) between two immiscible solvent systems, are promising alternatives for the purification of the compound on a preparative scale. In this work, a new biphasic solvent system suitable for CPC separation of xylindein was developed. Various groups of solvents were assessed for their suitability as xylindein extractants. A new solvent system suitable for CPC separation of xylindein, composed of heptane/THF/MEK/acetonitrile/acetic acid/water, was developed. This solvent system yielded a K D value for xylindein of 1.54±0.04, as determined by HPLC (n=3). The compositions of the upper phase and lower phase of the solvent system were determined by Heteronuclear Single Quantum Correlation (HSQC) NMR and proton NMR. A CPC system, equipped with a fraction collector, was used for the isolation of xylindein from crude extracts. The xylindein fractions isolated by the CPC were then analyzed using HPLC and presented as a fractogram. Based on the CPC fractogram, the purified xylindein fractions were achieved after 30min CPC separation time, yielding 71% extraction efficiency. The developed CPC method allowed for isolation of this naturally sourced xylindein in amounts suitable for further study. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fractionation of sheep cheese whey by a scalable method to sequentially isolate bioactive proteins.

    PubMed

    Pilbrow, Jodi; Bekhit, Alaa El-Din A; Carne, Alan

    2016-07-15

    This study reports a procedure for the simultaneous purification of glyco(caseino)macropeptide, immunoglobulin, lactoperoxidase, lactoferrin, α-lactalbumin and β-lactoglobulin from sheep cheese sweet whey, an under-utilized by-product of cheese manufacture generated by an emerging sheep dairy industry in New Zealand. These proteins have recognized value in the nutrition, biomedical and health-promoting supplements industries. A sequential fractionation procedure using economical anion and cation exchange chromatography on HiTrap resins was evaluated. The whey protein fractionation is performed under mild conditions, requires only the adjustment of pH between ion exchange chromatography steps, does not require buffer exchange and uses minimal amounts of chemicals. The purity of the whey protein fractions generated were analyzed by reversed phase-high performance liquid chromatography and the identity of the proteins was confirmed by mass spectrometry. This scalable procedure demonstrates that several proteins of recognized value can be fractionated in reasonable yield and purity from sheep cheese whey in one streamlined process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of cavitation on the properties of coal-tar pitch as studied by gas-liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.I. Baikenov; T.B. Omarbekov; S.K. Amerkhanova

    2008-02-15

    The applicability of the cavitation-wave effect to coal-tar pitch processing is considered. The results of the GLC analysis of the test material before and after rotor-pulsation cavitation treatment are given. The organic matter of coal-tar pitch was found to degrade upon cavitation; as a result of this, the yields of light and medium fractions considerably increased. 5 refs., 2 figs., 4 tabs.

  12. Ternary ionic liquid-water pretreatment systems of an agave bagasse and municipal solid waste blend.

    PubMed

    Perez-Pimienta, Jose A; Sathitsuksanoh, Noppadon; Thompson, Vicki S; Tran, Kim; Ponce-Noyola, Teresa; Stavila, Vitalie; Singh, Seema; Simmons, Blake A

    2017-01-01

    Pretreatment is necessary to reduce biomass recalcitrance and enhance the efficiency of enzymatic saccharification for biofuel production. Ionic liquid (IL) pretreatment has gained a significant interest as a pretreatment process that can reduce cellulose crystallinity and remove lignin, key factors that govern enzyme accessibility. There are several challenges that need to be addressed for IL pretreatment to become viable for commercialization, including IL cost and recyclability. In addition, it is unclear whether ILs can maintain process performance when utilizing low-cost, low-quality biomass feedstocks such as the paper fraction of municipal solid waste (MSW), which are readily available in high quantities. One approach to potentially reduce IL cost is to use a blend of ILs at different concentrations in aqueous mixtures. Herein, we describe 14 IL-water systems with mixtures of 1-ethyl-3-ethylimidazolium acetate ([C 2 C 1 Im][OAc]), 1-butyl-3-ethylimidazolium acetate ([C 4 C 1 Im][OAc]), and water that were used to pretreat MSW blended with agave bagasse (AGB). The detailed analysis of IL recycling in terms of sugar yields of pretreated biomass and IL stability was examined. Both biomass types (AGB and MSW) were efficiently disrupted by IL pretreatment. The pretreatment efficiency of [C 2 C 1 Im][OAc] and [C 4 C 1 Im][OAc] decreased when mixed with water above 40%. The AGB/MSW (1:1) blend demonstrated a glucan conversion of 94.1 and 83.0% using IL systems with ~10 and ~40% water content, respectively. Chemical structures of fresh ILs and recycle ILs presented strong similarities observed by FTIR and 1 H-NMR spectroscopy. The glucan and xylan hydrolysis yields obtained from recycled IL exhibited a slight decrease in pretreatment efficiency (less than 10% in terms of hydrolysis yields compared to that of fresh IL), and a decrease in cellulose crystallinity was observed. Our results demonstrated that mixing ILs such as [C 2 C 1 Im][OAc] and [C 4 C 1 Im][OAc] and blending the paper fraction of MSW with agricultural residues, such as AGB, may contribute to lower the production costs while maintaining high sugar yields. Recycled IL-water mixtures provided comparable results to that of fresh ILs. Both of these results offer the potential of reducing the production costs of sugars and biofuels at biorefineries as compared to more conventional IL conversion technologies.Graphical abstractSchematic of ionic liquid (IL) pretreatment of agave bagasse (AB) and paper-rich fraction of municipal solid waste (MSW).

  13. Fischer-Tropsch fuel for use by the U.S. military as battlefield-use fuel of the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delanie Lamprecht

    2007-06-15

    The United States Department of Defense (DoD) has been interested in low-sulfur, environmentally cleaner Fischer-Tropsch (FT) fuels since 2001 because they want to be less dependent upon foreign crude oil and ensure the security of the supply. A three-phase Joint Battlefield-Use Fuel of the Future (BUFF) program was initiated to evaluate, demonstrate, certify, and implement turbine fuels produced from alternative energy resources for use in all of its gas turbine and diesel engine applications. Sasol Synfuels International (Pty) Ltd. and Sasol Chevron Holdings Ltd., among others, were invited to participate in the program with the objective to supply the DoDmore » with a FT BUFF that conforms to Jet Propulsion 8 (JP-8) and JP-5 fuel volatility and low-temperature fluidity requirements. Although the DoD is more interested in coal-to-liquid (CTL) technology, the product from a gas-to-liquid (GTL) Products Work-Up Demonstration Unit in Sasolburg, South Africa, was used to evaluate (on a bench scale) the possibility of producing a BUFF fraction from the Sasol Slurry Phase Distillate (Sasol SPD) low-temperature FT (LTFT) process and Chevron Isocracking technology. It was concluded from the study that the production of a synthetic FT BUFF is feasible using the Sasol SPD LTFT technology together with the current Chevron isocracking technology. The product yield for a BUFF conforming to JP-8 requirements is 30 vol % of the fractionator feed, whereas the product yield for a BUFF conforming to the JP-5 volatility requirement is slightly less than 22 vol % of the fractionator feed. Also concluded from the study was that the end point of the Sasol SPD LTFT BUFF will be restricted by the freezing point requirement of the DoD and not the maximum viscosity requirement. One would therefore need to optimize the hydrocracking process conditions to increase the Sasol SPD LTFT BUFF product yield. 16 refs., 8 figs., 6 tabs.« less

  14. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunarno; Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281; Rochmadi,

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality ofmore » bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.« less

  15. Quantitation of Specific Barley, Rye, and Oat Marker Peptides by Targeted Liquid Chromatography-Mass Spectrometry To Determine Gluten Concentrations.

    PubMed

    Schalk, Kathrin; Koehler, Peter; Scherf, Katharina Anne

    2018-04-04

    Celiac disease is triggered by the ingestion of gluten from wheat, barley, rye, and possibly oats. Gluten is quantitated by DNA-based methods or enzyme-linked immunosorbent assays (ELISAs). ELISAs mostly detect the prolamin fraction and potentially over- or underestimate gluten contents. Therefore, a new independent method is required to comprehensively detect gluten. A targeted liquid chromatography-tandem mass spectrometry method was developed to quantitate seven barley, seven rye, and three oat marker peptides derived from each gluten protein fraction (prolamin and glutelin) and type (barley, B-, C-, D-, and γ-hordeins; rye, γ-75k-, γ-40k-, ω-, and HMW-secalins). The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference gluten protein type resulted in peptide-specific yields, which enabled the conversion of peptide into protein concentrations. This method was applied to quantitate gluten in samples from the brewing process, in raw materials for sourdough fermentation, and in dried sourdoughs.

  16. Melt density and the average composition of basalt

    NASA Technical Reports Server (NTRS)

    Stolper, E.; Walker, D.

    1980-01-01

    Densities of residual liquids produced by low pressure fractionation of olivine-rich melts pass through a minimum when pyroxene and plagioclase joint the crystallization sequence. The observation that erupted basalt compositions cluster around the degree of fractionation from picritic liquids corresponding to the density minimum in the liquid line of descent may thus suggest that the earth's crust imposes a density fiber on the liquids that pass through it, favoring the eruption of the light liquids at the density minimum over the eruption of denser more fractionated and less fractionated liquids.

  17. Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murto, Marika, E-mail: marika.murto@biotek.lu.se; Björnsson, Lovisa, E-mail: lovisa.bjornsson@miljo.lth.se; Environmental and Energy Systems Studies, Lund University, P.O. Box 118, SE-221 00 Lund

    2013-05-15

    Highlights: ► A novel approach for biogas production from a waste fraction that today is incinerated. ► Biogas production is possible in spite of the impurities of the waste. ► Tracer studies are applied in a novel way. ► Structural material is needed to improve the flow pattern of the waste. ► We provide a solution to biological treatment for the complex waste fraction. - Abstract: At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a drymore » fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m{sup 3}/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane.« less

  18. Method of increasing anhydrosugars, pyroligneous fractions and esterified bio-oil

    DOEpatents

    Steele, Philip H; Yu, Fei; Li, Qi; Mitchell, Brian

    2014-12-30

    The device and method are provided to increase anhydrosugars yield during pyrolysis of biomass. This increase is achieved by injection of a liquid or gas into the vapor stream of any pyrolysis reactor prior to the reactor condensers. A second feature of our technology is the utilization of sonication, microwave excitation, or shear mixing of the biomass to increase the acid catalyst rate for demineralization or removal of hemicellulose prior to pyrolysis. The increased reactivity of these treatments reduces reaction time as well as the required amount of catalyst to less than half of that otherwise required. A fractional condensation system employed by our pyrolysis reactor is another feature of our technology. This system condenses bio-oil pyrolysis vapors to various desired fractions by differential temperature manipulation of individual condensers comprising a condenser chain.

  19. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing.

    PubMed

    Toquero, Cristina; Bolado, Silvia

    2014-04-01

    Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A new ester coumarin from Ferula Persica wild, indigenous to Iran.

    PubMed

    Razavi, Seyed Mehdi; Janani, Mehrnoush

    2015-01-01

    Ferula persica wild (Apiaceae) is a perennial herb indigenous to Iran. It has been used in folk medicine for treatment of diabetes, lowering of blood pressure and for antispasmodic, carminative, laxative and expectorant effects in central Iran. Dried ground roots of F. persica (150 g) were extracted sequentially with n-hexane, dichloromethane and methanol (MeOH), 500 ml each, using a Soxhlet apparatus. The n-hexane extract of the roots (3 g) was subjected to vacuum liquid chromatography on silica gel, eluting with solvent mixtures of increasing polarity: 100% n-hexane-ethyl acetate (EtOAc), to yield a number of fractions, Fraction 4 (80% EtOAc in n-hexane) was further analysed by preparative TLC (mobile phase was 12% acetone in chloroform) to yield a coumarin ester (10.1 mg, Rf = 0.31, blue florescent). The structure of the isolated compound was elucidated by spectroscopic means. The compound is 7-O-(4,8,12 -trihydroxy-4,8,12-trimethyl-tridecanoyl)-coumarin, named, ferulone C as a new natural product.

  1. Physical and chemical characterization of petroleum products by GC-MS.

    PubMed

    Mendez, A; Meneghini, R; Lubkowitz, J

    2007-01-01

    There is a need for reliable and fast means of monitoring refining, conversion, and upgrading processes aiming to increase the yield of light distillates, and thus, reducing the oil barrel bottoms. By simultaneously utilizing the FID and mass selective detectors while splitting the column effluent in a controlled way, it is possible to obtain identical gas chromatograms and total ion chromatograms from a single run. This means that besides the intensity vs. time graphs, the intensity vs. mass and boiling point can also be obtained. As a result, physical and chemical characterization can be performed in a simple and rapid manner. Experimental results on middle, heavy distillates, and crude oil fractions show clearly the effect of upgrading processes on the chemical composition and yields of diesel, jet fuels, and high vacuum gasoil fractions. The methodology is fully compliant with ASTM D-2887, D-7213, D-6352, and D7169 for simulated distillation and the previously mentioned mass spectrometry standards. The group type analysis correlated satisfactorily with high-performance liquid chromatography data.

  2. Hydrothermal pre-treatment of rapeseed straw.

    PubMed

    Díaz, Manuel J; Cara, Cristóbal; Ruiz, Encarnación; Romero, Inmaculada; Moya, Manuel; Castro, Eulogio

    2010-04-01

    As a first step for ethanol production from alternative raw materials, rapeseed straw was studied for fermentable sugar production. Liquid hot water was used as a pre-treatment method and the influence of the main pre-treatment variables was assessed. Experimental design and response surface methodology were applied using pre-treatment temperature and process time as factors. The pretreated solids were further submitted to enzymatic hydrolysis and the corresponding yields were used as pre-treatment performance evaluation. Liquid fractions obtained from pre-treatment were also characterized in terms of sugars and no-sugar composition. A mathematical model describing pre-treatment effects is proposed. Results show that enzymatic hydrolysis yields near to 100% based on pretreated materials can be achieved at 210-220 degrees C for 30-50 min, equivalent to near 70% of glucose present in the raw material. According to the mathematical model, a softer pre-treatment at 193 degrees C for 27 min results in 65% of glucose and 39% of xylose available for fermentation. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Solid phase pegylation of hemoglobin.

    PubMed

    Suo, Xiaoyan; Zheng, Chunyang; Yu, Pengzhan; Lu, Xiuling; Ma, Guanghui; Su, Zhiguo

    2009-01-01

    A solid phase conjugation process was developed for attachment of polyethylene glycol to hemoglobin molecule. Bovine hemoglobin was loaded onto an ion exchange chromatography column and adsorbed by the solid medium. Succinimidyl carbonate mPEG was introduced in the mobile phase after the adsorption. Pegylation took place between the hemoglobin on the solid phase, and the pegylation reagent in the liquid phase. A further elution was carried out to separate the pegylated and the unpegylated protein. Analysis by HPSEC, SDS-PAGE, and MALLS demonstrated that the fractions eluted from the solid phase contained well-defined components. Pegylated hemoglobin with one PEG chain was obtained with the yield of 75%, in comparison to the yield of 30% in the liquid phase pegylation. The P(50) values of the mono-pegylated hemoglobin, prepared with SC-mPEG 5 kDa, 10 kDa and 20 kDa, were 19.97, 20.23 and 20.54 mmHg, which were much closer to the value of red blood cells than that of pegylated hemoglobin prepared with the conventional method.

  4. Countercurrent chromatography separation of saponins by skeleton type from Ampelozizyphus amazonicus for off-line ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry analysis and characterisation.

    PubMed

    de Souza Figueiredo, Fabiana; Celano, Rita; de Sousa Silva, Danila; das Neves Costa, Fernanda; Hewitson, Peter; Ignatova, Svetlana; Piccinelli, Anna Lisa; Rastrelli, Luca; Guimarães Leitão, Suzana; Guimarães Leitão, Gilda

    2017-01-20

    Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MS n . Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C 31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Experimental partitioning of Tc, Mo, Ru, and Re between solid and liquid during crystallization in Fe-Ni-S 1

    NASA Astrophysics Data System (ADS)

    Lazar, C.; Walker, D.; Walker, R. J.

    2004-02-01

    Technetium isotopes 97Tc, 98Tc and 99Tc decay to 97Mo, 98Ru and 99Ru, with half-lives of 2.6 My, 4.1 My, and 0.21 My respectively. If there were early solar system processes that resulted in significant fractionation of Tc from the daughter elements, decay of extant Tc could have led to the creation of Mo and Ru isotopic heterogeneities. To assess the potential of metallic core crystallization to fractionate these elements, we examine the partitioning behavior of Tc relative to Re, Mo and Ru in the Fe-Ni-S system between solid metal and liquid metal alloy. The experimental evidence shows that Tc behaves more like the modestly compatible siderophile element Ru than the more highly compatible siderophile element Re, and that Tc is substantially more compatible than Mo. We also demonstrate a pressure effect in the partitioning of Mo during the crystallization of Fe-Ni-S melts. For a sulfur concentration in the liquid fraction of the core of 10 wt% (16.3 at%), the Jones and Malvin (1990) parameter is -ln(1-2 × 1.09 × 0.163) ≅ 0.44, which yields: D(Re) ≅ 4.1; D(Ru) ≅ 2.3; D(Tc) ≅ 1.7; D(Mo) Lo-P ≅ 1.0;.and D(Mo) Hi-P ≅ 0.5. Our results suggest that detectable Tc-induced isotopic anomalies (≥0.1 ɛ unit) in Ru and Mo could only be produced by unrealistically extreme degrees of crystallization of metal during asteroidal core fractionation, regardless of the time scales and initial Tc abundances involved.

  6. Effect of DNA Extraction Methods and Sampling Techniques on the Apparent Structure of Cow and Sheep Rumen Microbial Communities

    PubMed Central

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J.; Waghorn, Garry C.; Janssen, Peter H.

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided. PMID:24040342

  7. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.

    PubMed

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J; Waghorn, Garry C; Janssen, Peter H

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided.

  8. Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation.

    PubMed

    Guadalupe, Zenaida; Soldevilla, Alberto; Sáenz-Navajas, María-Pilar; Ayestarán, Belén

    2006-04-21

    A multiple-step analytical method was developed to improve the analysis of polymeric phenolics in red wines. With a common initial step based on the fractionation of wine phenolics by gel permeation chromatography (GPC), different analytical techniques were used: high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-mass spectrometry (MS), capillary zone electrophoresis (CZE) and spectrophotometry. This method proved to be valid for analyzing different families of phenolic compounds, such as monomeric phenolics and their derivatives, polymeric pigments and proanthocyanidins. The analytical characteristics of fractionation by GPC were studied and the method was fully validated, yielding satisfactory statistical results. GPC fractionation substantially improved the analysis of polymeric pigments by CZE, in terms of response, repeatability and reproducibility. It also represented an improvement in the traditional vanillin assay used for proanthocyanidin (PA) quantification. Astringent proanthocyanidins were also analyzed using a simple combined method that allowed these compounds, for which only general indexes were available, to be quantified.

  9. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen.

    PubMed

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-08-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 degrees C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  10. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen*

    PubMed Central

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-01-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 °C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  11. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction.

    PubMed

    Lemée, L; Pinard, L; Beauchet, R; Kpogbemabou, D

    2013-12-01

    Humic substances were extracted from biodegraded lignocellulosic biomass (LCBb) and submitted to catalytic hydroliquefaction. The resulting bio-oils were compared with those of the initial biomass. Compared to fulvic and humic acids, humin presented a high conversion rate (74 wt.%) and the highest amount of liquid fraction (66 wt.%). Moreover it represented 78% of LCBb. Humin produced 43 wt.% of crude oil and 33 wt.% of hexane soluble fraction containing hydrocarbons which is a higher yield than those from other humic substances as well as from the initial biomass. Hydrocarbons were mainly aromatics, but humin produces the highest amount of aliphatics. Considering the quantity, the quality and the molecular composition of the humic fractions, a classification of the potential of the latter to produce fuel using hydroliquefaction process can be assess: Hu>AF>AH. The higher heating value (HHV) and oxygen content of HSF from humin were fully compatible with biofuel characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice

    NASA Astrophysics Data System (ADS)

    Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias

    2018-02-01

    Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.

  13. In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans.

    PubMed

    Alam, Md Ariful; Zaidul, I S M; Ghafoor, Kashif; Sahena, F; Hakim, M A; Rafii, M Y; Abir, H M; Bostanudin, M F; Perumal, V; Khatib, A

    2017-03-31

    This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling. Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS). The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p < 0.05) impact on DPPH free radical scavenging and α-glucosidase inhibitory activity. Current results proposed the therapeutic potential of Clinacanthus nutans, especially ethyl acetate and butanol fraction as chemotherapeutic agent against oxidative related cellular damages and control the postprandial hyperglycemia. The phytochemical investigation showed the existence of active constituents in Clinacanthus nutans extract and fractions.

  14. α-Amylase-assisted extraction of polysaccharides from Panax ginseng.

    PubMed

    Sun, Lin; Wu, Di; Ning, Xin; Yang, Guang; Lin, Ziheng; Tian, Meihong; Zhou, Yifa

    2015-04-01

    In this paper, α-amylase-assisted extraction was used to isolate the polysaccharide that remained in hot water-extracted ginseng. The yield of the polysaccharide was 9.0%, almost equal to that of the hot water-extracted polysaccharide. Using anion exchange and gel permeation chromatography, the polysaccharide was fractionated into a neutral polysaccharide fraction and six pectic fractions. The neutral fraction accounted for 76% of the polysaccharide and contained both amylopectin and amylose. The pectic polysaccharide fractions were identified to be arabinogalactan, type-I rhamnogalacturonan and homogalacturonan-type pectin by high-performance liquid chromatography, Fourier transform-infrared and nuclear magnetic resonance analysis. Structural and lymphocyte proliferation activity results showed that these polysaccharides were different from those extracted by hot water, indicating that ginseng contains complex polysaccharides with diverse structures, which results in its diverse pharmacological activities. The α-amylase-assisted extraction is a novel method for preparing ginseng polysaccharides and could be applied toward the further study and exploration of ginseng. These findings provide technical and theoretical support for ginseng pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cluster size dependence of high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Hagmeijer, R.; Bastiaens, H. M. J.; Goh, S. J.; van der Slot, P. J. M.; Biedron, S. G.; Milton, S. V.; Boller, K.-J.

    2017-08-01

    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3×1016 to 3 × 1018 {{cm}}-3) at two different reservoir temperatures (303 and 363 K). For the first time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 100 for very small average cluster size (∼200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighboring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (∼200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.

  16. 40 CFR 98.230 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...

  17. 40 CFR 98.230 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...

  18. 40 CFR 98.230 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...

  19. Promoting anaerobic biogasification of corn stover through biological pretreatment by liquid fraction of digestate (LFD).

    PubMed

    Hu, Yun; Pang, Yunzhi; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Wachemo Akiber; Jaffar, Muhammad; Li, Xiujin

    2015-01-01

    A new biological pretreatment method by using liquid fraction of digestate (LFD) was advanced for promoting anaerobic biogasification efficiency of corn stover. 17.6% TS content and ambient temperature was appropriate for pretreatment. The results showed that C/N ratio decreased to about 30, while total lignin, cellulose, and hemicellulose (LCH) contents were reduced by 8.1-19.4% after pretreatment. 3-days pretreatment was considered to be optimal, resulting in 70.4% more biogas production, 66.3% more biomethane yield and 41.7% shorter technical digestion time compared with the untreated stover. The reductions on VS, cellulose, and hemicellulose were increased by 22.1-35.9%, 22.3-35.4%, and 19.8-27.2% for LFD-treated stovers. The promoted anaerobic biogasification efficiency was mainly attributed to the improved biodegradability due to the pre-decomposition role of the bacteria in LFD. The method proved to be an efficient and low cost approach for producing bioenergy from corn stover, meanwhile, reducing LFD discharge and minimizing its potential pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    PubMed

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  1. Molecular Probe Dynamics Reveals Suppression of Ice-Like Regions in Strongly Confined Supercooled Water

    PubMed Central

    Banerjee, Debamalya; Bhat, Shrivalli N.; Bhat, Subray V.; Leporini, Dino

    2012-01-01

    The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice [Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448–11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed. PMID:23049747

  2. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  3. Dilute alkali pretreatment of softwood pine: A biorefinery approach.

    PubMed

    Safari, Ali; Karimi, Keikhosro; Shafiei, Marzieh

    2017-06-01

    Dilute alkali pretreatment was performed on softwood pine to maximize ethanol and biogas production via a biorefinery approach. Alkali pretreatments were performed with 0-2% w/v NaOH at 100-180°C for 1-5h. The liquid fraction of the pretreated substrates was subjected to anaerobic digestion. The solid fraction of the pretreatment was used for separate enzymatic hydrolysis and fermentation. High ethanol yields of 76.9‒78.0% were achieved by pretreatment with 2% (w/v) NaOH at 180°C. The highest biogas yield of 244mL/g volatile solid (at 25°C, 1bar) was achieved by the pretreatment with 1% (w/v) NaOH at 180°C. The highest gasoline equivalent (sum of ethanol and methane) of 197L per ton of pinewood and the lowest ethanol manufacturing cost of 0.75€/L was obtained after pretreatment with 1% NaOH at 180°C for 5h. The manufacturing cost of ethanol from untreated wood was 4.12€/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L.) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential

    PubMed Central

    Fang, Chuanji; Cybulska, Iwona; Brudecki, Grzegorz P.; Frankær, Christian Grundahl; Thomsen, Mette Hedegaard

    2015-01-01

    Date palm residues are one of the most promising lignocellulosic biomass for bioethanol production in the Middle East. In this study, leaflets and rachis were subjected to hydrothermal pretreatment to overcome the recalcitrance of the biomass for enzymatic conversion. Evident morphological, structural, and chemical changes were observed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy after pretreatment. High glucan (>90% for both leaflets and rachis) and xylan (>75% for leaflets and >79% for rachis) recovery were achieved. Under the optimal condition of hydrothermal pretreatment (210°C/10 min) highly digestible (glucan convertibility, 100% to leaflets, 78% to rachis) and fermentable (ethanol yield, 96% to leaflets, 80% to rachis) solid fractions were obtained. Fermentability test of the liquid fractions proved that no considerable inhibitors to Saccharomyces cerevisiae were produced in hydrothermal pretreatment. Given the high sugar recovery, enzymatic digestibility, and ethanol yield, production of bioethanol by hydrothermal pretreatment could be a promising way of valorization of date palm residues in this region. PMID:26347878

  5. Corecovery of lipids and fermentable sugars from Rhodosporidium toruloides using ionic liquid cosolvents: application of recycle to batch fermentation.

    PubMed

    Severa, Godwin; Kumar, Guneet; Cooney, Michael J

    2014-01-01

    This work evaluates the ability of an ionic liquid-methanol cosolvent system to extract lipids and recycle fermentable sugars recovered from oil-bearing Rhodosporidium toruloides grown in batch culture on defined media using glucose and xylose as carbon sources. Growth on the recycled mixed carbon substrate was successful with glucose consumed before xylose and overall cell mass to lipid yields (YP/X ) between 57% and 61% (w/w relative to whole dried cell mass) achieved. Enzymatic hydrolysis of the delipified carbohydrate fraction recovered approximately 9%-11% (w/w) of the whole dried cell mass as fermentable sugars, which were successfully recycled as carbon sources without further purification. In total, up to 70% (w/w) of the whole dried cell mass was recovered as lipids and fermentable sugars and the substrate to lipid yields (YP/S ) was increased from 0.12 to 0.16 g lipid/g carbohydrate consumed, highlighting the promise of this approach to process lipid bearing cell biomass. © 2014 American Institute of Chemical Engineers.

  6. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    NASA Astrophysics Data System (ADS)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (<1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector. To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel. To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to liquid fuel, rather than growing biomass. Furthermore, based on the Sun-to-Wheels recovery for different transportation pathways, synergistic and complementary use of electricity, hydrogen and biomass, all derived from solar energy, is presented in an energy efficient roadmap to successfully propel the entire future transportation sector.

  7. An Investigation into the Relationship Between Distillate Yield and Stable Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sowers, T.; Wagner, A. J.

    2016-12-01

    Recent breakthroughs in laser spectrometry have allowed for faster, more efficient analyses of stable isotopic ratios in water samples. Commercially available instruments from Los Gatos Research and Picarro allow users to quickly analyze a wide range of samples, from seawater to groundwater, with accurate isotope ratios of D/H to within ± 0.2 ‰ and 18O/16O to within ± 0.03 ‰. While these instruments have increased the efficiency of stable isotope laboratories, they come with some major limitations, such as not being able to analyze hypersaline waters. The Los Gatos Research Liquid Water Isotope Analyzer (LWIA) can accurately and consistently measure the stable isotope ratios in waters with salinities ranging from 0 to 4 grams per liter (0 to 40 parts per thousand). In order to analyze water samples with salinities greater than 4 grams per liter, however, it was necessary to develop a consistent method through which to reduce salinity while causing as little fractionation as possible. Using a consistent distillation method, predictable fractionation of δ 18O and δ 2 H values was found to occur. This fractionation occurs according to a linear relationship with respect to the percent yield of the water in the sample. Using this method, samples with high salinity can be analyzed using laser spectrometry instruments, thereby enabling laboratories with Los Gatos or Picarro instruments to analyze those samples in house without having to dilute them using labor-intensive in-house standards or expensive premade standards.

  8. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Pan, Shaopeng; Wu, Z. W.; Wang, W. H.; Li, M. Z.; Xu, Limei

    2017-01-01

    In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest cluster consisting of trapped atoms starts to increase sharply at which the largest cluster spans half of the simulations box along one direction, and the fractional SER starts to follows when the largest cluster percolates the entire system and forms 3-dimentional network structures. Further analysis based on the percolation theory also confirms that percolation occurs at the onset of the fractional SER. Our results directly link the breakdown of the SER with structure inhomogeneity and onset of the fraction SER with percolation of largest clusters, thus provide a possible picture for the break- down of SER and onset of fractional SER in glass-forming liquids, which is is important for the understanding of the dynamic properties in glass-forming liquids.

  9. Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover.

    PubMed

    Alencar, Bárbara Ribeiro Alves; Reis, Alexandre Libanio Silva; de Souza, Raquel de Fatima Rodrigues; Morais, Marcos Antônio; Menezes, Rômulo Simões Cezar; Dutra, Emmanuel Damilano

    2017-10-01

    The aim of this study was to evaluate the influence of recycling the liquid fraction of pretreatment with alkaline hydrogen peroxide (AHP) on the hydrolysis of corn stover. Corn stover was pretreated in the traditional condition with 7.5% v/v H 2 O 2 . After pretreatment, the solids were separated from the liquid fraction and five successive reuse cycles of the liquid fraction were tested. The solid fraction from pretreatment in each recycle was submitted to enzymatic hydrolysis. The number of recycles had a linear negative effect (R 2 =0.98) on biomass delignification efficiency and also affected negatively the enzymatic conversion efficiency. Despite the decrease in efficiency after each recycling step, reuse of the liquid fraction leads to reduction in water, H 2 O 2 and NaOH consumption of up to 57.6%, 59.6% and 57.6%, respectively. These findings point to an efficient recycling technology, which may reduce costs and save water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fractional reactive extraction for symmetrical separation of 4-nitro-D,L-phenylalanine in centrifugal contactor separators: experiments and modeling.

    PubMed

    Tang, Kewen; Wen, Ping; Zhang, Panliang; Huang, Yan

    2015-01-01

    The enantioselective liquid-liquid extraction of 4-nitro-D,L-phenylalanine (D,L-Nphy) using PdCl2 {(s)-BINAP} as extractant in dichloroethane was studied experimentally in a countercurrent cascade of 10 centrifugal contactor separators (CCSs) at 5°C, involving flow ratio, extractant concentration, and Cl(-) concentration. The steady-state enantiomeric excess (ee) in both stream exits was 90.86% at a 93.29% yield. The predicted value was modeled using an equilibrium stage approach. The correlation between model and experiment was satisfactory. The model was applied to optimize the production of both enantiomers in >97% ee and >99% ee. 14 stages and 16 stages are required for 97% ee and 99% ee for both enantiomers, respectively. © 2014 Wiley Periodicals, Inc.

  11. The Effect of DNA Extraction Methods on Observed Microbial Communities from Fibrous and Liquid Rumen Fractions of Dairy Cows

    PubMed Central

    Vaidya, Jueeli D.; van den Bogert, Bartholomeus; Edwards, Joan E.; Boekhorst, Jos; van Gastelen, Sanne; Saccenti, Edoardo; Plugge, Caroline M.; Smidt, Hauke

    2018-01-01

    DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF) and fibrous content (FC) fractions differ substantially in terms of their physical nature and associated microorganisms. The aim of this study was therefore to assess the effect of four DNA extraction methods (RBB, PBB, FDSS, PQIAmini) differing in cell lysis and/or DNA recovery methods on the observed microbial diversity in RF and FC fractions using samples from four rumen cannulated dairy cows fed 100% grass silage (GS100), 67% GS and 33% maize silage (GS67MS33), 33% GS and 67% MS (GS33MS67), or 100% MS (MS100). An ANOVA statistical test was applied on DNA quality and yield measurements, and it was found that the DNA yield was significantly affected by extraction method (p < 0.001) and fraction (p < 0.001). The 260/280 ratio was not affected by extraction (p = 0.08) but was affected by fraction (p = 0.03). On the other hand, the 260/230 ratio was affected by extraction method (p < 0.001) but not affected by fraction (p = 0.8). However, all four extraction procedures yielded DNA suitable for further analysis of bacterial, archaeal and anaerobic fungal communities using quantitative PCR and pyrosequencing of relevant taxonomic markers. Redundancy analysis (RDA) of bacterial 16S rRNA gene sequence data at the family level showed that there was a significant effect of rumen fraction (p = 0.012), and that PBB (p = 0.012) and FDSS (p = 0.024) also significantly contributed to explaining the observed variation in bacterial community composition. Whilst the DNA extraction method affected the apparent bacterial community composition, no single extraction method could be concluded to be ineffective. No obvious effect of DNA extraction method on the anaerobic fungi or archaea was observed, although fraction effects were evident for both. In summary, the comprehensive assessment of observed communities of bacteria, archaea and anaerobic fungi described here provides insight into a rational basis for selecting an optimal methodology to obtain a representative picture of the rumen microbiota. PMID:29445366

  12. The Effect of DNA Extraction Methods on Observed Microbial Communities from Fibrous and Liquid Rumen Fractions of Dairy Cows.

    PubMed

    Vaidya, Jueeli D; van den Bogert, Bartholomeus; Edwards, Joan E; Boekhorst, Jos; van Gastelen, Sanne; Saccenti, Edoardo; Plugge, Caroline M; Smidt, Hauke

    2018-01-01

    DNA based methods have been widely used to study the complexity of the rumen microbiota, and it is well known that the method of DNA extraction is a critical step in enabling accurate assessment of this complexity. Rumen fluid (RF) and fibrous content (FC) fractions differ substantially in terms of their physical nature and associated microorganisms. The aim of this study was therefore to assess the effect of four DNA extraction methods (RBB, PBB, FDSS, PQIAmini) differing in cell lysis and/or DNA recovery methods on the observed microbial diversity in RF and FC fractions using samples from four rumen cannulated dairy cows fed 100% grass silage (GS100), 67% GS and 33% maize silage (GS67MS33), 33% GS and 67% MS (GS33MS67), or 100% MS (MS100). An ANOVA statistical test was applied on DNA quality and yield measurements, and it was found that the DNA yield was significantly affected by extraction method ( p < 0.001) and fraction ( p < 0.001). The 260/280 ratio was not affected by extraction ( p = 0.08) but was affected by fraction ( p = 0.03). On the other hand, the 260/230 ratio was affected by extraction method ( p < 0.001) but not affected by fraction ( p = 0.8). However, all four extraction procedures yielded DNA suitable for further analysis of bacterial, archaeal and anaerobic fungal communities using quantitative PCR and pyrosequencing of relevant taxonomic markers. Redundancy analysis (RDA) of bacterial 16S rRNA gene sequence data at the family level showed that there was a significant effect of rumen fraction ( p = 0.012), and that PBB ( p = 0.012) and FDSS ( p = 0.024) also significantly contributed to explaining the observed variation in bacterial community composition. Whilst the DNA extraction method affected the apparent bacterial community composition, no single extraction method could be concluded to be ineffective. No obvious effect of DNA extraction method on the anaerobic fungi or archaea was observed, although fraction effects were evident for both. In summary, the comprehensive assessment of observed communities of bacteria, archaea and anaerobic fungi described here provides insight into a rational basis for selecting an optimal methodology to obtain a representative picture of the rumen microbiota.

  13. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase.

    PubMed

    Gumienna, Małgorzata; Lasik, Małgorzata; Szambelan, Katarzyna; Czarnecki, Zbigniew

    2011-01-01

    The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. Winter triticale BOGO and "Ethanol Red" Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizingthe triticale, commercial α-amylase SPEZYME ETHYL and glucoamylase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol) as well as protein and potassium concentrations. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage) constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.

  14. Characterization of Coconut Oil Fractions Obtained from Solvent Fractionation Using Acetone.

    PubMed

    Sonwai, Sopark; Rungprasertphol, Poonyawee; Nantipipat, Nantinee; Tungvongcharoan, Satinee; Laiyangkoon, Nantikan

    2017-09-01

    This work was aimed to study the solvent fraction of coconut oil (CNO). The fatty acid and triacylglycerol compositions, solid fat content (SFC) and the crystallization properties of CNO and its solid and liquid fractions obtained from fractionation at different conditions were investigated using various techniques. CNO was dissolved in acetone (1:1 w/v) and left to crystallize isothermally at 10°C for 0.5, 1 and 2 h and at 12°C for 2, 3 and 6 h. The solid fractions contained significantly lower contents of saturated fatty acids of ≤ 10 carbon atoms but considerably higher contents of saturated fatty acids with > 12 carbon atoms with respect to those of CNO and the liquid fractions. They also contained higher contents of high-melting triacylglycerol species with carbon number ≥ 38. Because of this, the DSC crystallization onset temperatures and the crystallization peak temperatures of the solid fractions were higher than CNO and the liquid fractions. The SFC values of the solid fractions were significantly higher than CNO at all measuring temperatures before reaching 0% just below the body temperature with the fraction obtained at 12°C for 2 h exhibiting the highest SFC. On the contrary, the SFC values of the liquid fractions were lower than CNO. The crystallization duration exhibited strong influence on the solid fractions. There was no effect on the crystal polymorphic structure possibly because CNO has β'-2 as a stable polymorph. The enhanced SFC of the solid fractions would allow them to find use in food applications where a specific melting temperature is desired such as sophisticated confectionery fats, and the decreased SFC of the liquid fractions would provide them with a higher cold stability which would be useful during extended storage time.

  15. Preparative Isolation and Purification of Flavone C-Glycosides from the Leaves of Ficus microcarpa L. f by Medium-Pressure Liquid Chromatography, High-Speed Countercurrent Chromatography, and Preparative Liquid Chromatography

    PubMed Central

    Wang, Xiaohong; Liang, Yong; Zhu, Licai; Xie, Huichun; Li, Hang; He, Junting; Pan, Man; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    Combined with medium-pressure liquid chromatography (MPLC) and preparative high-performance liquid chromatography (perp-HPLC), high-speed countercurrent chromatography (HSCCC) was applied for separation and purification of flavone C-glycosides from the crude extract of leaves of Ficus microcarpae L. f. HSCCC separation was performed on a two-phase solvent system composed of methyl tert- butyl ether - ethyl acetate – 1-butanol – acetonitrile – 0.1% aqueous trifluoroacetic acid at a volume ratio of 1:3:1:1:5. Partially resolved peak fractions from HSCCC separation were further purified by preparative HPLC. Four well-separated compounds were obtained and their purities were determined by HPLC. The purities of these peaks were 97.28%, 97.20%, 92.23%, and 98.40%.. These peaks were characterized by ESI-MSn. According to the reference, they were identified as orientin (peak I), isovitexin-3″-O-glucopyranoside (peak II), isovitexin (peak III), and vitexin (peak IV), yielded 1.2 mg, 4.5 mg, 3.3 mg, and 1.8 mg, respectively. PMID:20190866

  16. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed before chemical purification. Initial results provide an equilibrium 98Mo/95Mo isotope fractionation factor between metal and silicate liquids of -0.18±0.10% (2σ) at 1400°C and 1 GPa. Although the relative mass difference of these Mo isotopes is smaller than for Fe isotopes, this result implies that metal-silicate segregation may have led to mass-dependent stable Mo isotope fractionation, as opposed to Fe isotopes. A possible explanation is that the bonding environment of Mo may counterbalance its relatively small mass separation. At reducing conditions, Mo occurs in 4+ valence state in silicates [4] and thus its bond strength difference between metal and silicate may be more similar to that of Si than Fe. Stable Mo isotopes may thus become an important tool for constraining the conditions of core formation in asteroids and terrestrial planets. [1] Rubie et al. (2011) EPSL 301, 31-42. [2] Shahar et al. (2009) EPSL 288, 228-234. [3] Poitrasson et al. (2009) EPSL 278, 376-385. [4] Farges et al. (2006) Can. Min. 44, 731-753.

  17. Valorization of biogas into liquid hydrocarbons in plasma-catalyst reactor

    NASA Astrophysics Data System (ADS)

    Nikravech, Mehrdad; Rahmani, Abdelkader; Labidi, Sana; Saintini, Noiric

    2016-09-01

    Biogas represents an important source of renewable energy issued from biological degradation of biomass. It is planned to produce in Europe the amount of biogas equivalent to 6400 kWh electricity and 4500 kteo (kilo tons equivalent oil) in 2020. Currently the biogas is used in cogeneration engines to produce heat and electricity directly in farms or it is injected in gas networks after purification and odorisation. The aim of this work is to propose a third option that consists of valorization of biogas by transformation into liquid hydrocarbons like acetone, methanol, ethanol, acetic acid etc. These chemicals, among the most important feed materials for chemical industries, retain CO2 molecules participating to reduce the greenhouse gas emissions and have high storage energy capacity. We developed a low temperature atmospheric plasma-catalyst reactor (surface dielectric barrier discharge) to transform biogas into chemicals. The conversion rates of CH4 and CO2 are respectively about 50% and 30% depending on operational conditions. The energetic cost is 25 eV/molecule. The yields of liquid hydrocarbon reaches currently 10% wt. More the 11 liquid chemicals are observed in the liquid fraction. Acknowledgements are due to SPC Programme Energie de demain.

  18. Experimental and theoretical study of iron and mild steel combustion in oxygen flows

    NASA Astrophysics Data System (ADS)

    El-Rabii, Hazem; Kazakov, Kirill A.; Muller, Maryse

    2017-03-01

    The effects of oxygen flow speed and pressure on the iron and mild steel combustion are investigated experimentally and theoretically. The studied specimens are vertical cylindrical rods subjected to an axial oxygen flow and ignited at the upper end by laser irradiation. Three main stages of the combustion process have been identified experimentally: (1) induction period, during which the rod is heated until an intensive metal oxidation begins at its upper end; (2) static combustion, during which a laminar liquid "cap'' slowly grows on the upper rod end, and, after the liquid cap detachment from the sample; (3) dynamic combustion, which is characterized by a rapid metal consumption and turbulent liquid motions. An analytical description of these stages is given. In particular, a model of the dynamic combustion is constructed based on the turbulent oxygen transport through the liquid metal-oxide flow. This model yields a simple expression for the fraction of metal burned in the process and allows one to calculate the normal propagation speed of the solid metal-liquid interface as a function of the oxygen flow speed and pressure. A comparison of the theory with the experimental results is made, and its potential application is mentioned.

  19. Accuracy of recommended sampling and assay methods for the determination of plasma-free and urinary fractionated metanephrines in the diagnosis of pheochromocytoma and paraganglioma: a systematic review.

    PubMed

    Därr, Roland; Kuhn, Matthias; Bode, Christoph; Bornstein, Stefan R; Pacak, Karel; Lenders, Jacques W M; Eisenhofer, Graeme

    2017-06-01

    To determine the accuracy of biochemical tests for the diagnosis of pheochromocytoma and paraganglioma. A search of the PubMed database was conducted for English-language articles published between October 1958 and December 2016 on the biochemical diagnosis of pheochromocytoma and paraganglioma using immunoassay methods or high-performance liquid chromatography with coulometric/electrochemical or tandem mass spectrometric detection for measurement of fractionated metanephrines in 24-h urine collections or plasma-free metanephrines obtained under seated or supine blood sampling conditions. Application of the Standards for Reporting of Diagnostic Studies Accuracy Group criteria yielded 23 suitable articles. Summary receiver operating characteristic analysis revealed sensitivities/specificities of 94/93% and 91/93% for measurement of plasma-free metanephrines and urinary fractionated metanephrines using high-performance liquid chromatography or immunoassay methods, respectively. Partial areas under the curve were 0.947 vs. 0.911. Irrespective of the analytical method, sensitivity was significantly higher for supine compared with seated sampling, 95 vs. 89% (p < 0.02), while specificity was significantly higher for supine sampling compared with 24-h urine, 95 vs. 90% (p < 0.03). Partial areas under the curve were 0.942, 0.913, and 0.932 for supine sampling, seated sampling, and urine. Test accuracy increased linearly from 90 to 93% for 24-h urine at prevalence rates of 0.0-1.0, decreased linearly from 94 to 89% for seated sampling and was constant at 95% for supine conditions. Current tests for the biochemical diagnosis of pheochromocytoma and paraganglioma show excellent diagnostic accuracy. Supine sampling conditions and measurement of plasma-free metanephrines using high-performance liquid chromatography with coulometric/electrochemical or tandem mass spectrometric detection provides the highest accuracy at all prevalence rates.

  20. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw.

    PubMed

    Rodrigues, Ana Cristina; Felby, Claus; Gama, Miguel

    2014-03-01

    The potential of enzymes recycling after hydrolysis and fermentation of wheat straw under a variety of conditions was investigated, monitoring the activity of the enzymes in the solid and liquid fractions, using low molecular weight substrates. A significant amount of active enzymes could be recovered by recycling the liquid phase. In the early stage of the process, enzyme adsorb to the substrate, then gradually returning to the solution as the saccharification proceeds. At 50°C, normally regarded as an acceptable operational temperature for saccharification, the enzymes (Celluclast) significantly undergo thermal deactivation. The hydrolysis yield and enzyme recycling efficiency in consecutive recycling rounds can be increased by using high enzyme loadings and moderate temperatures. Indeed, the amount of enzymes in the liquid phase increased with its thermostability and hydrolytic efficiency. This study contributes towards developing effective enzymes recycling strategies and helping to reduce the enzyme costs on bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    PubMed

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-03-30

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

  2. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

    PubMed Central

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F.; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-01-01

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898

  3. Methanogenic community shifts during the transition from sewage mono-digestion to co-digestion of grass biomass.

    PubMed

    Hardegen, Justus; Latorre-Pérez, Adriel; Vilanova, Cristina; Günther, Thomas; Porcar, Manuel; Luschnig, Olaf; Simeonov, Claudia; Abendroth, Christian

    2018-06-06

    In this work, liquid and solid fractions of grass biomass were used as co-substrates for anaerobic co-digestion of sewage sludge. The input of grass biomass was increased gradually, and the underlying methanogenic microbiome was assessed by means of microscopy-based cell counting and full-length 16S rRNA gene high-throughput sequencing, proving for the first time the suitability of nanopore-based portable sequencers as a monitoring tool for anaerobic digestion systems. In both cases co-fermentation resulted in an increased number of bacteria and methanogenic archaea. Interestingly, the microbial communities were highly different between solid and liquid-fed batches. Liquid-fed batches developed a more stable microbiome, enriched in Methanosarcina spp., and resulted in higher methanogenic yield. In contrast, solid-fed batches were highly unstable at higher substrate concentrations, and kept Methanosaeta spp. - typically associated to sewage sludge - as the majoritary methanogenic archaea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Estimating the Kinematic Viscosity of Petroleum Fractions

    NASA Astrophysics Data System (ADS)

    AlMulla, Hessa A.; Albahri, Tareq A.

    2017-04-01

    Kinematic viscosity correlation has been developed for liquid petroleum fractions at 37.78°C and 98.89°C (100 and 210°F) standard temperatures using a large variety of experimental data. The only required inputs are the specific gravity and the average boiling point temperature. The accuracy of the correlation was compared with several other correlations available in the literature. The proposed correlations proved to be more accurate in predicting the viscosity at 37.78°C and 98.89°C with average absolute deviations of 0.39 and 0.72 mm2/s, respectively. Another objective was to develop a relation for the variation of viscosity with temperature to predict the viscosity of petroleum fraction at a certain temperature from the knowledge of the viscosity for the same liquid at two other temperatures. The newly developed correlation represents a wide array of temperatures from 20°C to 150°C and viscosities from 0.14 mm2/s to 343.64 mm2/s. The results have been validated with experimental data consisting of 9558 data points, yielding an overall deviation of 0.248 mm2/s and R2 of 0.998. In addition, new formulas were developed to interconvert the viscosity of petroleum fractions from one unit of measure to another based on finding the best fit for a set of experimental data from the literature with R2 as high as 1.0 for many cases. Detailed analysis showed good agreement between the predicted values and the experimental data.

  5. Sunlight creates oxygenated species in water-soluble fractions of Deepwater Horizon oil.

    PubMed

    Ray, Phoebe Z; Chen, Huan; Podgorski, David C; McKenna, Amy M; Tarr, Matthew A

    2014-09-15

    In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid-liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O5), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O2). Higher-order oxygen classes (O5-O9) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N1) concurrent with an increased abundance of N1Ox classes after irradiation. The predominance of higher-order oxygen classes indicates that multiple photochemical pathways exist that result in oxidation of petroleum compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Beta2-adrenoceptor-mediated tracheal relaxation induced by higenamine from Nandina domestica Thunberg.

    PubMed

    Tsukiyama, Muneo; Ueki, Takuro; Yasuda, Yoichi; Kikuchi, Hiroko; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2009-10-01

    The fruit of Nandina domestica Thunberg (ND, Berberidaceae) has been used to improve cough and breathing difficulties in Japan for many years, but very little is known about the constituent of ND responsible for this effect. We have recently reported that the crude extract from ND (NDE) inhibits histamine- and serotonin-induced contraction of isolated guinea pig trachea, and the inhibitory activity was not explained by nantenine, a well-known alkaloid isolated from ND. To explore other constituent(s) of NDE with tracheal smooth muscle relaxant activity, we fractionated NDE and assessed the pharmacological effects of the fractions using isolated guinea pig tracheal ring preparations. NDE was introduced into a polyaromatic absorbent resin column and stepwise eluted to yield five fractions, among which only the 40 % methanol fraction was active in relaxing tracheal smooth muscle precontracted with histamine. Further separation of the 40 % methanol fraction with high-performance liquid chromatography yielded multiple subfractions, one of which was remarkably active in relaxing histamine-precontracted trachea. Chemical analysis with a time-of-flight mass spectrometer and nuclear magnetic resonance spectrometer identified the constituent of the most active subfraction as higenamine, a benzyltetrahydroisoquinoline alkaloid. The potency and efficacy of the active constituent from NDE in relaxing trachea were almost equivalent to synthetic higenamine. In addition, the effect of the active constituent from NDE was competitively inhibited by the selective beta (2)-adrenoceptor antagonist ICI 118,551. These results indicate that the major constituent responsible for the effect of NDE is higenamine, which probably causes the tracheal relaxation through stimulation of beta (2) adrenoceptors. Georg Thieme Verlag KG Stuttgart-New York.

  7. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse.

    PubMed

    Li, Ao-Lin; Hou, Xue-Dan; Lin, Kai-Peng; Zhang, Xuan; Fu, Ming-Hui

    2018-04-12

    Lignocellulosic biomass pretreatment with deep eutectic solvents (DESs) is a promising and challenging process for production of biofuels and valuable platform chemicals. In this work, rice straw was mainly fractionated into carbohydrate-rich materials (CRMs) and lignin-rich materials (LRMs) by 90% lactic acid/choline chloride (LC)-water solution with different molar ratio of hydrogen bond donor (HBD, lactic acid) and hydrogen bond acceptor (HBA, choline chloride). It was found that high HBD/HBA molar ratio of DESs was favorable for achieving CRMs and LRMs with high purity, and both HBD and HBA were responsible for effective biomass fractionation possibly due to their synergistic effect on highly efficient breakage of the linkage between hemicellulose and lignin and thus lignin extraction. About 30%-35% of lignin in native rice straw was fractionated as LRMs, and exceeding 70% of xylan were removed and fractionated into the liquid stream as forms of xylose, furfural and humins after pretreatment using aqueous LC (3:1, 5:1) solution. Consequently, polysaccharides enzymatic hydrolysis of the CRMs were significantly enhanced. Moreover, all the DESs could be recovered with high yields of around 90%, and 69% of the LC (3:1) was recovered after 5 cycles reuse at 90 °C. Besides, the recycled DES maintained a good pretreatment ability, and glucose yields of 60-70% were achieved in the enzymatic hydrolysis of CRMs obtained in each cycle. The facile process established in present work is promising for large scale production of fermentable sugars and other chemicals. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Enrichment isolation of adipose-derived stem/stromal cells from the liquid portion of liposuction aspirates with the use of an adherent column.

    PubMed

    Doi, Kentaro; Kuno, Shinichiro; Kobayashi, Akira; Hamabuchi, Takahisa; Kato, Harunosuke; Kinoshita, Kahori; Eto, Hitomi; Aoi, Noriyuki; Yoshimura, Kotaro

    2014-03-01

    Adipose-derived stem/progenitor cells (ASCs) are typically obtained from the lipoaspirates; however, a smaller number of ASCs can be isolated without enzymatic digestion from the infranatant liposuction aspirate fluid (LAF). We evaluated the effectiveness of an adherent column, currently used to isolate mesenchymal stromal cells from bone marrow, to isolate LAF cells. We applied peripheral blood (PB), PB mixed with cultured ASCs (PB-ASC), and LAF solution to the column and divided it into two fractions, the adherent (positive) and the non-adherent (negative) fractions. We compared this method with hypotonic hemolysis (lysis) for the red blood cell count, nucleated cells count and cell compositions as well as functional properties of isolated mesenchymal cells. The column effectively removed red blood cells, though the removal efficiency was slightly inferior to hemolysis. After column processing of PB-ASC, 60.5% of ASCs (53.2% by lysis) were selectively collected in the positive fraction, and the negative fraction contained almost no ASCs. After processing of LAF solution, nucleated cell yields were comparable between the column and hemolysis; however, subsequent adherent culture indicated that a higher average ASC yield was obtained from the column-positive samples than from the lysis samples, suggesting that the column method may be superior to hemolysis for obtaining viable ASCs. Mesenchymal differentiation and network formation assays showed no statistical differences in ASC functions between the lysis and column-positive samples. Our results suggest that a column with non-woven rayon and polyethylene fabrics is useful for isolating stromal vascular fraction cells from LAF solutions for clinical applications. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Homogenization-assisted cavitation hybrid rotation extraction and macroporous resin enrichment of dihydroquercetin from Larix gmelinii.

    PubMed

    Xia, Yu; Wang, Yinhang; Li, Wei; Ma, Chunhui; Liu, Shouxin

    2017-12-01

    Cavitation hybrid rotation, which was and is still looked upon as an unavoidable nuisance in the flow systems, for extraction processing intensification of active chemical compounds from natural products. In this study, a homogenization-assisted cavitation hybrid rotation extraction method was applied to extract dihydroquercetin (DHQ) from larch (Larix gmelinii) wood root. The extraction parameters were optimized in single factor experiments with the DHQ extraction yields as the response values. The optimum conditions were as follows: number of extractions, three; ethanol volume fraction for the extraction, 60%; liquid-solid ratio for homogenization, 10mL/g; homogenization time, 8min; liquid-solid ratio for cavitation extraction, 9mL/g, and cavitation extraction time, 35min. Under these conditions, the DHQ content in extract was 4.50±0.02mg/g, and the extraction efficiency was higher than those of traditional techniques. Cavitation can be effectively used to improve the extraction rate by increasing the mass transfer rates and possible rupture of cell wall due to formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. After the extraction process, macroporous resin column chromatography was used to concentrate and purify the DHQ. Three resins were selected from fifteen macroporous resins for further investigation of their performance. Among these resins, AB-8 resin exhibited relatively better adsorption capacities and desorption ratios for DHQ. The ethanol volume fraction of the solutions for sample loading and desorption, and flow rates for loading and desorption were optimized for the macroporous resin column chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures.

    PubMed

    Moita Fidalgo, Rita; Ortigueira, Joana; Freches, André; Pelica, João; Gonçalves, Magarida; Mendes, Benilde; Lemos, Paulo C

    2014-06-25

    Recent research on polyhydroxyalkanoates (PHAs) has focused on developing cost-effective production processes using low-value or industrial waste/surplus as substrate. One of such substrates is the liquid fraction resulting from pyrolysis processes, bio-oil. In this study, valorisation of bio-oil through PHA production was investigated. The impact of the complex bio-oil matrix on PHA production by an enriched mixed culture was examined. The performance of the direct utilization of pure bio-oil was compared with the utilization of three defined substrates contained in this bio-oil: acetate, glucose and xylose. When compared with acetate, bio-oil revealed lower capacity for polymer production as a result of a lower polymer yield on substrate and a lower PHA cell content. Two strategies for bio-oil upgrade were performed, anaerobic fermentation and vacuum distillation, and the resulting liquid streams were tested for polymer production. The first one was enriched in volatile fatty acids and the second one mainly on phenolic and long-chain fatty acids. PHA accumulation assays using the upgraded bio-oils attained polymer yields on substrate similar or higher than the one achieved with acetate, although with a lower PHA content. The capacity to use the enriched fractions for polymer production has yet to be optimized. The anaerobic digestion of bio-oil could also open-up the possibility to use the fermented bio-oil directly in the enrichment process of the mixed culture. This would increase the selective pressure toward an optimized PHA accumulating culture selection. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Isotopic Abundances as Tracers of the Processes of Lunar Formation

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.

    2011-12-01

    Ever since Apollo, isotopic abundances have been used as tracers to study lunar formation, in particular, to study the sources of the lunar material. In the last decade, however, a number of isotopic similarities have been observed between the lunar samples and the Earth's mantle such that these two reservoirs are now known to be indistinguishable from one another to high precision for a variety of isotopic tracers. This occurs against the backdrop of a Solar System that exhibits widespread heterogeneity with respect to these tracers, a situation that strongly argues that the source of the lunar material is the silicate Earth. To reconcile this observation with the fact that the Moon is thought to result from the collision of two isotopically distinct planetary bodies, a scenario has emerged in which the material from the Moon-forming impactor and the proto-Earth are homogenized in the aftermath of the giant impact. This takes place via turbulent mixing in the time after the giant impact but before lunar accretion while the Earth-Moon system exists in the form of a continuous, high-temperature fluid. Importantly, this high-temperature phase of the evolution occurs in the presence of at least two phases (liquid + vapor) making possible chemical and isotopic fractionation. While equilibrium isotopic fractionation tends to zero at high temperatures, and the post giant impact environment experiences some of the highest temperatures encountered in the Earth sciences, there are several factors that nevertheless make equilibrium isotope effects important probes of this early evolution. (1) Because the vaporization of silicates involves decomposition reactions, the bonding environment for elements in the liquid is often very different from that in the vapor. This difference makes the magnitude of isotopic fractionation intrinsically large, even at the relevant temperatures. (2) Since the isotopic composition of a silicate liquid and co-existing vapor are distinctly different, if the Moon preferentially forms from the liquid or vapor relative to the Earth, mass-dependent isotopic differences at the planetary scale may arise. The large density contrast between liquid and vapor makes phase separation possible. (3) The precision with which planetary isotopic compositions can be determined has increased such that measurements are sensitive to even small degrees of high-temperature phase separation. Using thermodynamic models of silicate liquids to determine the partial vaporization behavior of the major elements, we will present calculations of isotopic fractionation due to liquid-vapor separation for the elements iron, magnesium, silicon, and oxygen. Improvements in analytical precision have largely settled the question of the source of the lunar material - the Earth's mantle - and isotopic measurements are now beginning to yield insight into the high-temperatures processes operating during lunar formation.

  12. Electron Doping a Kagome Spin Liquid

    NASA Astrophysics Data System (ADS)

    Kelly, Zachary; Gallagher, Miranda; McQueen, Tyrel

    In 1987, Anderson proposed that charge doping a material with the resonating valance bond (RVB) state would yield a superconducting state. Ever since, there has been a search for these RVB containing spin liquid materials and their charge doped counterparts. Studies on the most promising spin liquid candidate, Herbertsmithite, ZnCu3(OH)6Cl2, a two dimensional kagomé lattice, show evidence of fractionalized excitations and a gapped ground state. In this work, we report the synthesis and characterization of a newly synthesized electron doped spin liquid, ZnLixCu3(OH)6Cl2 from x = 0 to x = 1.8 (3 / 5 th per Cu2+). Despite heavy doping, the series remains insulating and the magnetism is systematically suppressed. We have done extensive structural studies of the doped series to determine the effect of the intercalated atoms on the structure, and whether these structural differences induce strong localization effects that suppress the metallic and superconducting states. Other doped spin liquid candidates are also being explored to understand if this localization is system dependent or systemic to all doped spin liquid systems. NSF, Division of Materials Research (DMR), Solid State Chemistry (SSMC), CAREER Grant under Award No. DMR- 1253562, Institute for Quantum Matter under Grant No.DE-FG02- 08ER46544, and the David and Lucile Packard Foundation.

  13. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  14. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  15. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE PAGES

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry; ...

    2018-05-19

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  16. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. Experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  17. Investigation of bypass fluid flow in an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry

    Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less

  18. Pyrolysis process for the treatment of scrap tyres: preliminary experimental results.

    PubMed

    Galvagno, S; Casu, S; Casabianca, T; Calabrese, A; Cornacchia, G

    2002-01-01

    The aim of this work is the evaluation, on a pilot scale, of scrap tyre pyrolysis process performance and the characteristics of the products under different process parameters, such as temperature, residence time, pressure, etc. In this frame, a series of tests were carried out at varying process temperatures between 550 and 680 degrees C, other parameters being equal. Pyrolysis plant process data are collected by an acquisition system; scrap tyre samples used for the treatment, solid and liquid by-products and produced syngas were analysed through both on-line monitoring (for gas) and laboratory analyses. Results show that process temperature, in the explored range, does not seem to seriously influence the volatilisation reaction yield, at least from a quantitative point of view, while it observably influences the distribution of the volatile fraction (liquid and gas) and by-products characteristics.

  19. Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate).

    PubMed

    Coelho, D F; Silveira, E; Pessoa Junior, A; Tambourgi, E B

    2013-02-01

    This paper focuses on the feasibility of unconventional aqueous two-phase systems for bromelain purification from pineapple processing waste. The main difference in comparison with conventional systems is the integration of the liquid-liquid extraction technique with fractional precipitation, which can decrease the protein content with no loss of biological activity by removing of unwanted molecules. The analysis of the results was based on the response surface methodology and revealed that the use of the desirability optimisation methodology (DOM) was necessary to achieve higher purification factor values and greater bromelain recovery. The use of DOM yielded an 11.80-fold purification factor and 66.38 % biological activity recovery using poly(ethylene glycol) (PEG) with a molar mass of 4,000, 10.86 % PEG concentration (m/m) and 36.21 % saturation of ammonium sulphate.

  20. Coated armor system and process for making the same

    DOEpatents

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  1. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  2. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  3. Evaluation of a liquid chromatography method for compound-specific δ13C analysis of plant carbohydrates in alkaline media.

    PubMed

    Rinne, Katja T; Saurer, Matthias; Streit, Kathrin; Siegwolf, Rolf T W

    2012-09-30

    Isotope analysis of carbohydrates is important for improved understanding of plant carbon metabolism and plant physiological response to the environment. High-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) for direct compound-specific δ(13)C measurements of soluble carbohydrates has recently been developed, but the still challenging sample preparation and the fact that no single method is capable of separating all compounds of interest hinder its wide-spread application. Here we tested in detail a chromatography method in alkaline media. We examined the most suitable chromatographic conditions for HPLC/IRMS analysis of carbohydrates in aqueous conifer needle extracts using a CarboPac PA20 anion-exchange column with NaOH eluent, paying specific attention to compound yields, carbon isotope fractionation processes and the reproducibility of the method. Furthermore, we adapted and calibrated sample preparation methods for HPLC/IRMS analysis. OnGuard II cartridges were used for sample purification. Good peak separation and highly linear and reproducible concentration and δ(13)C measurements were obtained. The alkaline eluent was observed to induce isomerization of hexoses, detected as reduced yields and (13)C fractionation of the affected compounds. A reproducible pre-purification method providing ~100% yield for the carbohydrate compounds of interest was calibrated. The good level of peak separation obtained in this study is reflected in the good precision and linearity of concentration and δ(13)C results. The data provided crucial information on the behaviour of sugars in LC analysis with alkaline media. The observations highlight the importance for the application of compound-matched standard solution for the detection and correction of instrumental biases in concentration and δ(13)C analysis performed under identical chromatographic conditions. The calibrated pre-purification method is well suited for studies with complex matrices that disable the use of a spiked internal standard for the detection of procedural losses. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition.

    PubMed

    Burger, Trevor; Mokoka, Tsholofelo; Fouché, Gerda; Steenkamp, Paul; Steenkamp, Vanessa; Cordier, Werner

    2018-05-02

    Solanum aculeastrum fruits are used by some cancer sufferers as a form of alternative treatment. Scientific literature is scarce concerning its anticancer activity, and thus the aim of the study was to assess the in vitro anticancer and P-glycoprotein inhibitory potential of extracts of S. aculeastrum fruits. Furthermore, assessment of the combinational effect with doxorubicin was also done. The crude extract was prepared by ultrasonic maceration. Liquid-liquid extraction yielded one aqueous and two organic fractions. Bioactive constituents were isolated from the aqueous fraction by means of column chromatography, solid phase extraction and preparative thin-layer chromatography. Confirmation of bioactive constituent identity was done by nuclear magnetic resonance and ultra-performance liquid chromatography mass spectrometry. The crude extract and fractions were assessed for cytotoxicity and P-glycoprotein inhibition in both cancerous and non-cancerous cell lines using the sulforhodamine B and rhodamine-123 assays, respectively. Both the crude extract and aqueous fraction was cytotoxic to all cell lines, with the SH-SY5Y neuroblastoma cell line being most susceptible to exposure (IC 50  = 10.72 μg/mL [crude], 17.21 μg/mL [aqueous]). Dose-dependent P-glycoprotein inhibition was observed for the crude extract (5.9 to 18.9-fold at 100 μg/mL) and aqueous fraction (2.9 to 21.2 at 100 μg/mL). The steroidal alkaloids solamargine and solanine were identified. While solanine was not bioactive, solamargine displayed an IC 50 of 15.62 μg/mL, and 9.1-fold P-glycoprotein inhibition at 100 μg/mL against the SH-SY5Y cell line. Additive effects were noted for combinations of doxorubicin against the SH-SY5Y cell line. The crude extract and aqueous fraction displayed potent non-selective cytotoxicity and noteworthy P-glycoprotein inhibition. These effects were attributed to solamargine. P-glycoprotein inhibitory activity was only present at concentrations higher than those inducing cytotoxicity, and thus does not appear to be the likely mechanism for the enhancement of doxorubicin's cytotoxicity. Preliminary results suggest that non-selective cytotoxicity may hinder drug development, however, further assessment of the mode of cell death is necessary to determine the route forward.

  5. 40 CFR 98.400 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...

  6. 40 CFR 98.400 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...

  7. 40 CFR 98.400 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...

  8. 40 CFR 98.400 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...

  9. 40 CFR 98.400 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...

  10. Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness

    NASA Astrophysics Data System (ADS)

    Porter, J. M.; Jeffries, J. B.; Hanson, R. K.

    2011-02-01

    A novel two-wavelength mid-infrared laser-absorption diagnostic has been developed for simultaneous measurements of vapor-phase fuel mole fraction and liquid fuel film thickness. The diagnostic was demonstrated for time-resolved measurements of n-dodecane liquid films in the absence and presence of n-decane vapor at 25°C and 1 atm. Laser wavelengths were selected from FTIR measurements of the C-H stretching band of vapor n-decane and liquid n-dodecane near 3.4 μm (3000 cm-1). n-Dodecane film thicknesses <20 μm were accurately measured in the absence of vapor, and simultaneous measurements of n-dodecane liquid film thickness and n-decane vapor mole fraction (300 ppm) were measured with <10% uncertainty for film thicknesses <10 μm. A potential application of the measurement technique is to provide accurate values of vapor mole fraction in combustion environments where strong absorption by liquid fuel or oil films on windows make conventional direct absorption measurements of the gas problematic.

  11. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A

    2017-03-01

    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials

    PubMed Central

    Knight, Andrew W.; Eitrheim, Eric S.; Nelson, Andrew W.; Nelson, Steven; Schultz, Michael K.

    2017-01-01

    Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with 14C-derived age of the material. PMID:24681438

  13. Studies on production of fructo-oligosaccharides (FOS) by gamma radiation processing of microbial levan.

    PubMed

    Jalan, N; Varshney, Lalit; Misra, Nilanjal; Paul, Jhimli; Mitra, D; Rairakhwada, D D; Bhathena, Z; Kumar, Virendra

    2013-07-01

    Microbial levan, a natural polymer of fructose, was produced and purified by alcohol precipitation from culture supernatants of Bacillus megaterium type 1 grown in an optimized liquid sucrose medium. GPC analysis showed that the yield of the major fraction of levan having molecular weight ~5000 D increased with increase in sucrose concentration in the broth. Levan subjected to (60)Co-gamma radiation as well as acid hydrolysis was investigated by rheometry, UV-visible spectrophotometry and gel permeation chromatography (GPC) techniques. Unlike most of the polysaccharides, levan powder exhibited good radiation degradation stability up to 150 kGy. Gamma irradiation of 10% levan aqueous solution at 250 kGy yielded 63.0% fructo-oligosaccharide (FOS) with an average molecular weight of 1250 D. Acid hydrolysis of levan using 0.5 N HCl for 60 min treatment time gave rise to the desired FOS with lower yield (23.1%) as compared to that obtained in gamma radiolysis process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. An Interactive Computer Program for Simulating the Effects of Olivine Fractionation from Basaltic and Ultrabasic Liquids.

    ERIC Educational Resources Information Center

    Pearce, Thomas H.

    1983-01-01

    Describes interactive computer program (listing available from author) which simulates olivine fractionation from basaltic/ultrabasic liquid. The menu-driven nature of the program (for Apple II microcomputer) allows students to select ideal Rayleigh fractionation or equilibrium crystallization. (JN)

  16. Methods of producing armor systems, and armor systems produced using such methods

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-02-19

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  17. Adding liquid feed to a total mixed ration reduces feed sorting behavior and improves productivity of lactating dairy cows.

    PubMed

    DeVries, T J; Gill, R M

    2012-05-01

    This study was designed to determine the effect of adding a molasses-based liquid feed (LF) supplement to a total mixed ration (TMR) on the feed sorting behavior and production of dairy cows. Twelve lactating Holstein cows (88.2±19.5 DIM) were exposed, in a crossover design with 21-d periods, to each of 2 treatment diets: 1) control TMR and 2) control TMR with 4.1% dietary dry matter LF added. Dry matter intake (DMI), sorting, and milk yield were recorded for the last 7 d of each treatment period. Milk samples were collected for composition analysis for the last 3 d of each treatment period; these data were used to calculate 4% fat-corrected milk and energy-corrected milk yield. Sorting was determined by subjecting fresh feed and orts samples to particle separation and expressing the actual intake of each particle fraction as a percentage of the predicted intake of that fraction. Addition of LF did not noticeably change the nutrient composition of the ration, with the exception of an expected increase in dietary sugar concentration (from 4.0 to 5.4%). Liquid feed supplementation affected the particle size distribution of the ration, resulting in a lesser amount of short and a greater amount of fine particles. Cows sorted against the longest ration particles on both treatment diets; the extent of this sorting was greater on the control diet (55.0 vs. 68.8%). Dry matter intake was 1.4 kg/d higher when cows were fed the LF diet as compared with the control diet, resulting in higher acid-detergent fiber, neutral-detergent fiber, and sugar intakes. As a result of the increased DMI, cows tended to produce 1.9 kg/d more milk and produced 3.1 and 3.2 kg/d more 4% fat-corrected milk and energy-corrected milk, respectively, on the LF diet. As a result, cows tended to produce more milk fat (0.13 kg/d) and produced more milk protein (0.09 kg/d) on the LF diet. No difference between treatments was observed in the efficiency of milk production. Overall, adding a molasses-based LF to TMR can be used to decrease feed sorting, enhance DMI, and improve milk yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Condition of Development of Channeled Flow in Analogue Partially Molten Medium

    NASA Astrophysics Data System (ADS)

    Takashima, S.; Kumagai, I.; Kurita, K.

    2003-12-01

    Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from homogeneous flow to localized one is promoted with advance of melting and deformation of the medium, but the physics behind this transition is not yet clarified well. Here we show two kinds of experimental results which are mutually related. One is a development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid is poured at the top of the matrix fluid; homogeneous mixture of soft transparent gel and viscous fluid having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction (between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by PIV/PTV methods. Estimated relative motion and divergence of velocity field of the solid phase show that the state in the relative movement of the solid phase could cause heterogeneous distribution of the solid fraction. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. Deformation experiment with concentric cylinders shows that the mixture system has yield strength at the intermediate gel fraction. In the stress state above the yield strength the region where deformation rate is large has low viscosity and its internal structure evolves to the state in heterogeneous distribution of viscosity. We would like to show that this nature is critical in the development of flow from homogeneous one to localized one.

  19. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    NASA Astrophysics Data System (ADS)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during chemical weathering in terrestrial environments where the role of secondary processes such as adsorption is significant.

  20. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOEpatents

    Comolli, Alfred G.; Lee, Lap-Keung

    2001-01-01

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  1. A Robust Two-Dimensional Separation for Top-Down Tandem Mass Spectrometry of the Low-Mass Proteome

    PubMed Central

    Lee, Ji Eun; Kellie, John F.; Tran, John C.; Tipton, Jeremiah D.; Catherman, Adam D.; Thomas, Haylee M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Vellaichamy, Adaikkalam; Ntai, Ioanna; Marshall, Alan G.; Kelleher, Neil L.

    2010-01-01

    For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The “GELFrEE” (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5–25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches. PMID:19747844

  2. Calcium Isotope Geochemistry: Research Horizons and Nanoscale Fractionation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W; Simon, J I; DePaolo, D J

    Interest in studies of calcium isotope variations in nature continues to increase. Investigations span human biology, plants and soils, oceanography and paleoclimate, early solar system processes, aqueous geochemistry, and silicate liquid structure. Variations in the 44Ca/40Ca ratio are generally small, about 5 {per_thousand}, but gradual small improvements in analytical capability now yield 0.05 to 0.1 {per_thousand} resolution. The field is still plagued by a lack of universal standards for isotope ratios and data representation, but these are secondary issues. Traditional isotopic systems have been based in equilibrium thermodynamics, which can explain the magnitude and sign of observed mass-dependent fractionation behavior.more » For Ca isotopes this is not the case. There is still no reliable way to estimate the equilibrium free energy associated with isotopic exchange between most phases of interest. Experiments are difficult to interpret because it is almost impossible to precipitate minerals from aqueous solution at equilibrium at low temperature. Some studies suggest that, for example, there is no equilibrium isotopic fractionation between calcite and dissolved aqueous Ca. There is good evidence that most Ca isotopic fractionation is caused by kinetic effects. The details of the controlling processes are still missing, and without this mechanistic understanding it is difficult to fully understand the implications of natural isotopic variations. Recent work on dissolved Ca, calcite, and sulfates in both laboratory and natural settings is shedding light on where the fractionation may arise. There is emerging evidence for mass dependent fractionation associated with aqueous diffusion, but probably the primary source of the effects is in the details of precipitation of minerals from solution. This makes the fractionation potentially dependent on a number of factors, including solution composition and mineral growth rate. The next challenge is to develop appropriate experimental tests and combine them with micro- and nano-scale characterization, and to capture the critical processes in mathematical models. Some of the largest fractionation effects have been observed for silicate liquids, where both chemical and thermal diffusion generate large isotopic variations. Intake and transport of Ca in plants is also associated with substantial fractionation. Continuing work is beginning to place the fractionation into the context of global Ca cycles.« less

  3. Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils.

    PubMed

    Pyl, Steven P; Dijkmans, Thomas; Antonykutty, Jinto M; Reyniers, Marie-Françoise; Harlin, Ali; Van Geem, Kevin M; Marin, Guy B

    2012-12-01

    Tall oil fractions obtained from Norwegian spruce pulping were hydrodeoxygenated (HDO) at pilot scale using a commercial NiMo hydrotreating catalyst. Comprehensive two dimensional gas chromatography (GC×GC) showed that HDO of both tall oil fatty acids (TOFA) and distilled tall oil (DTO) produced highly paraffinic hydrocarbon liquids. The hydrotreated fractions also contained fatty acid methyl esters and norabietane and norabietatriene isomers. Steam cracking of HDO-TOFA in a pilot plant revealed that high light olefin yields can be obtained, with 35.4 wt.% of ethene and 18.2 wt.% of propene at a coil outlet pressure (COP) of 1.7 bara, a dilution of 0.45 kg(steam)/kg(HDO-TOFA) and a coil outlet temperature (COT) of 820 °C. A pilot plant coking experiment indicated that cracking of HDO-TOFA at a COT of 850 °C results in limited fouling in the reactor. Co-cracking of HDO tall oil fractions with a typical fossil-based naphtha showed improved selectivity to desired light olefins, further demonstrating the potential of large scale olefin production from hydrotreated tall oil fractions in conventional crackers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.

    PubMed

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Veses, Alberto

    2013-10-15

    This work shows the technical feasibility for valorizing waste tires by pyrolysis using a pilot scale facility with a nominal capacity of 150 kWth. A continuous auger reactor was operated to perform thirteen independent experiments that conducted to the processing of more than 500 kg of shredded waste tires in 100 h of operation. The reaction temperature was 550°C and the pressure was 1 bar in all the runs. Under these conditions, yields to solid, liquid and gas were 40.5 ± 0.3, 42.6 ± 0.1 and 16.9 ± 0.3 wt.% respectively. Ultimate and proximate analyses as well as heating value analysis were conducted for both the solid and liquid fraction. pH, water content, total acid number (TAN), viscosity and density were also assessed for the liquid and compared to the specifications of marine fuels (standard ISO 8217). Gas chromatography was used to calculate the composition of the gaseous fraction. It was observed that all these properties remained practically invariable along the experiments without any significant technical problem. In addition, the reaction enthalpy necessary to perform the waste tire pyrolysis process (907.1 ± 40.0 kJ/kg) was determined from the combustion and formation enthalpies of waste tire and conversion products. Finally, a mass balance closure was performed showing an excellent reliability of the data obtained from the experimental campaign. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effect of Genetic Database Comprehensiveness on Fractional Proteomics of Escherichia coli O157:H7

    DTIC Science & Technology

    2014-01-01

    proteins would be observed in the extracellular fraction. 15. SUBJECT TERMS Escherichia coli O157:H7 Liquid chromatography Mass spectrometry...Preparation ...............1 2.2 Liquid Chromatography /Mass Spectrometry Sample Preparation ....................2 2.3 Liquid Chromatography /Mass... Chromatography /Mass Spectrometry Sample Preparation. Samples were prepared for liquid chromatography tandem mass spectrometry (LC-MS/MS) in a similar

  6. Opposing effects of different soil organic matter fractions on crop yields.

    PubMed

    Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A

    2016-10-01

    Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes. © 2016 by the Ecological Society of America.

  7. Quantitative characterization of nonstructural carbohydrates of mezcal Agave (Agave salmiana Otto ex Salm-Dick).

    PubMed

    Michel-Cuello, Christian; Juárez-Flores, Bertha Irene; Aguirre-Rivera, Juan Rogelio; Pinos-Rodríguez, Juan Manuel

    2008-07-23

    Fructans are the reserve carbohydrates in Agave spp. plants. In mezcal factories, fructans undergoes thermal hydrolysis to release fructose and glucose, which are the basis to produce this spirit. Carbohydrate content determines the yield of the final product, which depends on plant organ, ripeness stage, and thermal hydrolysis. Thus, a qualitative and quantitative characterization of nonstructural carbohydrates was conducted in raw and hydrolyzed juices extracted from Agave salmiana stems and leaves under three ripeness stages. By high-performance liquid chromatography (HPLC), fructose, glucose, sucrose, xylose, and maltose were identified in agave juice. Only the plant fraction with hydrolysis interaction was found to be significant in the glucose concentration plant. Interactions of the fraction with hydrolysis and ripeness with hydrolysis were statistically significant in fructose concentration. Fructose concentration rose considerably with hydrolysis, but only in juice extracted from ripe agave stems (early mature and castrated). This increase was statistically significant only with acid hydrolysis.

  8. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions.

    PubMed

    Gómez-Muñoz, B; Case, S D C; Jensen, L S

    2016-03-01

    The combined effects of pig slurry acidification, subsequent separation techniques and biochar production from the solid fraction on N mineralisation and N2O and CO2 emissions in soil were investigated in an incubation experiment. Acidification of pig slurry increased N availability from the separated solid fractions in soil, but did not affect N2O and CO2 emissions. However acidification reduced soil N and C turnover from the liquid fraction. The use of more advanced separation techniques (flocculation and drainage > decanting centrifuge > screw press) increased N mineralisation from acidified solid fractions, but also increased N2O and CO2 emissions in soil amended with the liquid fraction. Finally, the biochar production from the solid fraction of pig slurry resulted in a very recalcitrant material, which reduced N and C mineralisation in soil compared to the raw solid fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Specific interface area and self-stirring in a two-liquid system experiencing intense interfacial boiling below the bulk boiling temperatures of both components

    NASA Astrophysics Data System (ADS)

    Goldobin, Denis S.; Pimenova, Anastasiya V.

    2017-04-01

    We present an approach to theoretical assessment of the mean specific interface area (δ S/δ V) for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.

  10. Effect of variable water intake as mediated by dietary potassium carbonate supplementation on rumen dynamics in lactating dairy cows.

    PubMed

    Fraley, S E; Hall, M B; Nennich, T D

    2015-05-01

    Water is a critical nutrient for dairy cows, with intake varying with environment, production, and diet. However, little work has evaluated the effects of water intake on rumen parameters. Using dietary potassium carbonate (K2CO3) as a K supplement to increase water intake, the objective of this study was to evaluate the effect of K2CO3 supplementation on water intake and on rumen parameters of lactating dairy cows. Nine ruminally cannulated, late-lactation Holstein cows (207±12d in milk) were randomly assigned to 1 of 3 treatments in a replicated 3×3 Latin square design with 18-d periods. Dietary treatments (on a dry matter basis) were no added K2CO3 (baseline dietary K levels of 1.67% dietary K), 0.75% added dietary K, and 1.5% added dietary K. Cows were offered treatment diets for a 14-d adaption period followed by a 4-d collection period. Ruminal total, liquid, and dry matter digesta weights were determined by total rumen evacuations conducted 2h after feeding on d 4 of the collection period. Rumen fluid samples were collected to determine pH, volatile fatty acids, and NH3 concentrations, and Co-EDTA was used to determine fractional liquid passage rate. Milk samples were collected twice daily during the collection period. Milk, milk fat, and protein yields showed quadratic responses with greatest yields for the 0.75% added dietary K treatment. Dry matter intake showed a quadratic response with 21.8kg/d for the 0.75% added dietary K treatment and 20.4 and 20.5kg/d for control and the 1.5% added dietary K treatment, respectively. Water intake increased linearly with increasing K2CO3 supplementation (102.4, 118.4, and 129.3L/d) as did ruminal fractional liquid passage rate in the earlier hours after feeding (0.118, 0.135, and 0.141 per hour). Total and wet weights of rumen contents declined linearly and dry weight tended to decline linearly as dietary K2CO3 increased, suggesting that the increasing water intake and fractional liquid passage rate with increasing K2CO3 increased the overall ruminal turnover rate. Ruminal ammonia concentrations declined linearly and pH increased linearly as K supplementation increased. As a molar percentage of total volatile fatty acids, acetate increased linearly as dietary K increased, though propionate declined. Increasing dietary K2CO3 and total K in the diets of lactating dairy cows increased water consumption and modified ruminal measures in ways suggesting that both liquid and total ruminal turnover were increased as both water and K intake increased. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Modes of planetary-scale Fe isotope fractionation

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; von Blanckenburg, Friedhelm

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the Fe isotope composition of lithospheric mantle xenoliths are representative for an undisturbed melt source, and second, HED and SNC meteorites, representing melting products of 4Vesta and Mars silicate mantles would be expected to show a similar fractionation towards heavy isotope compositions. This is not observed. Four international granitoid standards with SiO 2 contents between 60 and 70 wt.% yield δ56Fe/ 54Fe values between 0.118‰ and 0.132‰. An investigation of the alpine Bergell igneous rock suite revealed a positive correlation between Fe isotope compositions and SiO 2 contents — from gabbros and tonalites ( δ56Fe/ 54Fe ≈ 0.03 to 0.09‰) to granodiorites and silicic dykes ( δ56Fe/ 54Fe ≈ 0.14 to 0.23‰). Although in this suite δ56Fe/ 54Fe correlates with δ18O values and radiogenic isotopes, open-system behavior to explain the heavy iron is not undisputed. This is because an obvious assimilant with the required heavy Fe isotope composition has so far not been identified. Alternatively, the relatively heavy granite compositions might be obtained by fractional crystallisation of the melt. Ultimately, further detailed studies on natural rocks and the experimental determination of mineral/melt fractionation factors at magmatic conditions are required to unravel whether or not iron isotope fractionation takes place during partial mantle melting and crystal fractionation.

  12. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine the mass fraction of TVH liquid input from each regulated material used in the web coating.../printing or dyeing/finishing operation during the capture efficiency test run, kg. TVHi = Mass fraction of... enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in...

  13. On-line hyphenation of centrifugal partition chromatography and high pressure liquid chromatography for the fractionation of flavonoids from Hippophaë rhamnoides L. berries.

    PubMed

    Michel, Thomas; Destandau, Emilie; Elfakir, Claire

    2011-09-09

    Centrifugal Partition Chromatography (CPC), a liquid-liquid preparative chromatography using two immiscible solvent systems, benefits from numerous advantages for the separation or purification of synthetic or natural products. This study presents the on-line hyphenation of CPC-Evaporative Light Scattering Detector (CPC-ELSD) with High Performance Liquid Chromatography-UV (HPLC-UV) for the fractionation of flavonols from a solvent-free microwave extract of sea buckthorn (Hippophaë rhamnoides L., Elaeagnaceae) berries. An Arizona G system was used for the fractionation of flavonoids by CPC and a fused core Halo C18 column allowed the on-line analyses of collected fractions by HPLC. The on-line CPC/HPLC procedure allowed the simultaneous fractionation step at preparative scale combined with the HPLC analyses which provide direct fingerprint of collected fractions. Thus the crude extract was simplified and immediate information on the composition of fractions could be obtained. Furthermore, this methodology reduced the time of post-fractionation steps and facilitated identification of main molecules by Mass Spectrometry (MS). Rutin, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin-3-O-glucoside, isorhamnetin-rhamnoside, quercetin and isorhamnetin were identified. CPC-ELSD/HPLC-UV could be considered as a high-throughput technique for the guided fractionation of bioactive natural products from complex crude extracts. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Acylation of keratinocyte transglutaminase by palmitic and myristic acids in the membrane anchorage region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, R.; Rice, R.H.

    1989-01-05

    The membrane-bound form of keratinocyte transglutaminase was found to be labeled by addition of (/sup 3/H) acetic, (/sup 3/H)myristic, or (/sup 3/H)palmitic acids to the culture medium of human epidermal cells. Acid methanolysis and high performance liquid chromatography analysis of palmitate-labeled transglutaminase yielded only methyl palmitate. In contrast, analysis of the myristate-labeled protein yielded approximately 40% methyl myristate and 60% methyl palmitate. Incorporation of neither label was significantly affected by cycloheximide inhibition of protein synthesis. The importance of the fatty acid moiety for membrane anchorage was demonstrated in three ways. First, the enzyme was solubilized from the particulate fraction ofmore » cell extracts by treatment with neutral 1 M hydroxylamine, which was sufficient to release the fatty acid label. Second, solubilization of active enzyme from the particulate fraction upon mild trypsin treatment resulted in a reduction in size by approximately 10 kDa and removal of the fatty acid radiolabels. Third, the small fraction of soluble transglutaminase in cell extracts was found almost completely to lack fatty acid labeling. Keratinocyte transglutaminase translated from poly(A+) RNA in a reticulocyte cell-free system was indistinguishable in size from the native enzyme, suggesting anchorage requires only minor post-translational processing. Thus, the data are highly compatible with membrane anchorage by means of fatty acid acylation within 10 kDa of the NH/sub 2/ or COOH terminus.« less

  15. Off-line coupling of new generation centrifugal partition chromatography device with preparative high pressure liquid chromatography-mass spectrometry triggering fraction collection applied to the recovery of secoiridoid glycosides from Centaurium erythraea Rafn. (Gentianaceae).

    PubMed

    Mandova, Tsvetelina; Audo, Grégoire; Michel, Sylvie; Grougnet, Raphaël

    2017-09-01

    A purification sequence including a Gilson CPC 250 PRO device coupled to PrepHPLC hyphenated with a MS triggering fraction collector was applied to isolate secoiridoid glycosides from a complex methanolic extract of Centaurium erythraea. This species is widely used for ethnomedicinal purposes around the Mediterranean Sea. The solvent system ethyle acetate/ethanol/water 7.5/3/5 was determined using shake-flask method targeting swertiamarin, the major secoiridoid of the extract. Optimization of CPC experimental parameters enabled the injection of 4g of extract with a flow rate of 40mL/min at 3000rpm to provide a secoiridoid glycosides enriched fraction. 130mg of this latter was submitted to a second step of purification by preparative HPLC (gradient water/formic acid (19:1) (A) and methanol (B) as follows: 0min, 85% A; 8min, 60% A; 12min, 55% A; 35min, 55% A; 40min, 10% A; 50min, 10% A; 52min, 85% A; 55min, 85% A) to give swertiamarin (36mg, yield 27.7%, purity 98.2%). Other secoiridoid glycosides (sweroside, gentiopicroside, secologanol, secoxyloganin) were also isolated in minor amounts. As these monoterpene derivatives are responsible for several biological activities, their quick recovery with high yield and purity may serve as a model for further scale-up and industrial development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Muon reactivation in muon-catalyzed D-T fusion

    NASA Astrophysics Data System (ADS)

    Rafelski, H. E.; Müller, B.; Rafelski, J.; Trautmann, D.; Viollier, R. D.

    We comprehensively reanalyze and search for the density dependence of the effective muon alpha sticking fraction ωsff observed experimentally in muon catalyzed deuterium-tritium fusion. In our work particular emphasis has been put on the density dependent dense hydrogen stopping power. The main technical details and improvements in this work are: The (αμ) + 2s and 2p states are treated independently and are assigned individual reaction rates. The essential muonic excitation rates have been recalculated taking into account finite nuclear mass effects. The stopping power for a charged projectile in liquid heavy hydrogen is modified to account for dynamic screening effects and a density dependent effective ionization potential. It is shown that the medium dependent stopping power for the (αμ) + ion is the crucial factor controlling the density dependence of the effective sticking fraction. It is also pointed out that the muonic helium K α X-ray yield and the sticking fraction at high density can not be simultaneously brought into agreement with the experimental results without invoking novel mechanisms suppressing Stark mixing in the (Heμ) L-shell.

  17. Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass pretreatment slurry

    DOE PAGES

    Sluiter, Amie; Sluiter, Justin; Wolfrum, Ed; ...

    2016-05-20

    Accurate and precise chemical characterization of biomass feedstocks and process intermediates is a requirement for successful technical and economic evaluation of biofuel conversion technologies. The uncertainty in primary measurements of the fraction insoluble solid (FIS) content of dilute acid pretreated corn stover slurry is the major contributor to uncertainty in yield calculations for enzymatic hydrolysis of cellulose to glucose. This uncertainty is propagated through process models and impacts modeled fuel costs. The challenge in measuring FIS is obtaining an accurate measurement of insoluble matter in the pretreated materials, while appropriately accounting for all biomass derived components. Three methods were testedmore » to improve this measurement. One used physical separation of liquid and solid phases, and two utilized direct determination of dry matter content in two fractions. We offer a comparison of drying methods. Lastly, our results show utilizing a microwave dryer to directly determine dry matter content is the optimal method for determining FIS, based on the low time requirements and the method optimization done using model slurries.« less

  18. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry.

    PubMed

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2015-07-31

    This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Pitch Fractionation.

    DTIC Science & Technology

    1981-12-15

    The solvent fractions were obtained by sequential Soxhlet extraction with solvents such as hexane, cyclohexane, toluene, and pyridine. The most severe...Continued) *.AISYRACT (Continued) fraction increased, the pyrolysis yield and bloating increased, and the msicrostructure of the coke became finer...28 8. Coking Yield and Bloating Behavior of Fractionation Sequence AG 162-4

  20. Extraction of Proanthocyanidins and Anthocyanins from Grape Skin by Using Ionic Liquids

    PubMed Central

    2017-01-01

    Summary In this study, eight different types of imidazolium-based ionic liquids (ILs) were applied as new solvents in the extraction of flavonoids from grape skin, and compared to the conventional organic solvent extraction that was not reported earlier. The structure of anions, cations and concentration of ILs significantly affected extraction yields. The highest mass fractions of proanthocyanidins and anthocyanins were obtained with 2.5 mol/L of 1-butyl-3-methylimidazolium bromide [C4mim][Br] and 2.5 mol/L of 1-ethyl-3-methylimidazolium bromide [C2mim][Br], respectively. The studied ILs provided an excellent preliminary result in the extraction of anthocyanins. Significantly higher mass fractions of total and all free anthocyanins were extracted with 2.5 mol/L of [C2mim][Br] and 2.5 mol/L of 1-methylimidazolium hydrogen sulfate [mim][HSO4] than with conventional solvent with the exception of anthocyanin-3-O-acetylmonoglucosides in the latter. On the other hand, 2.5 mol/L of [C4mim][Br] and 2.5 mol/L of 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate [sC4mim][HSO4] showed significantly higher selectivity towards anthocyanin-3-O-acetylmonoglucosides and anthocyanin-3-(6-O-p-coumaroyl)monoglucosides. PMID:29089857

  1. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2008-03-01

    Liquid-liquid extraction was used in order to recover phenolic compounds from centrifuged olive mill wastewater (OMW), a polluting by-product of olive oil production process, and to reduce their toxicity for a subsequent aerobic or anaerobic digestion. Phenolic compounds were identified in untreated and treated OMW by gas chromatography coupled to mass spectrometry (GC-MS). The experimental results of ethyl acetate extraction showed that the monomers recovery efficiency was over 90%. This pre-treatment resulted in the removal of the major LMM phenolic compounds and a small part of HMM polyphenols. The aerobic treatment of the exhausted OMW fraction removed 78.7% of the soluble COD. In the case of anaerobic digestion at OLR ranged from 1 to 3.5 gCOD l(-1)day(-1), methanisation process exhibited high methane yield as 0.3 l CH4 produced per g COD introduced and high COD removal (80%). However, a disruption of the process was observed when the OLR was increased to 4.5 gCODl(-1)day(-1). A pre-treatment by electro-coagulation resulted in decreasing the toxicity and enhancing the performance of methanisation operated at higher OLR from 4 to 7.5 gCODl(-1)day(-1).

  2. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  3. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine the mass fraction, kg TVH per kg material, of TVH liquid input from each coating, thinner, and... capture efficiency test run, lb. TVHi = Mass fraction of TVH in coating, thinner, or cleaning material, i... enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the...

  4. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, P.F.

    1979-07-17

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  5. Apparatus for measuring the local void fraction in a flowing liquid containing a gas

    DOEpatents

    Dunn, Patrick F.

    1981-01-01

    The local void fraction in liquid containing a gas is measured by placing an impedance-variation probe in the liquid, applying a controlled voltage or current to the probe, and measuring the probe current or voltage. A circuit for applying the one electrical parameter and measuring the other includes a feedback amplifier that minimizes the effect of probe capacitance and a digitizer to provide a clean signal. Time integration of the signal provides a measure of the void fraction, and an oscilloscope display also shows bubble size and distribution.

  6. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  7. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  8. Process for stabilization of coal liquid fractions

    DOEpatents

    Davies, Geoffrey; El-Toukhy, Ahmed

    1987-01-01

    Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

  9. Ultrasound-assisted extraction and purification of schisandrin B from Schisandra chinensis (Turcz.) Baill seeds: optimization by response surface methodology.

    PubMed

    Zhang, Y B; Wang, L H; Zhang, D Y; Zhou, L L; Guo, Y X

    2014-03-01

    The objective of this study is to develop a process consisting of ultrasonic-assisted extraction, silica-gel column chromatography and crystallization to optimize pilot scale recovery of schisandrin B (SAB) from Schisandra chinensis seeds. The effects of five independent variables including liquid-solid ratio, ethanol concentration, ultrasonic power, extraction time, and temperature on the SAB yield were evaluated with fractional factorial design (FFD). The FFD results showed that the ethanol concentration was the only significant factor for the yield of SAB. Then, with the liquid-solid ratio 5 (mL/g) and ultrasonic power 600 W, the other three parameters were further optimized by means of response surface methodology (RSM). The RSM results revealed that the optimal conditions consisted of 95% ethanol, 60 °C and 70 min. The average experimental SAB yield under the optimum conditions was found to be 5.80 mg/g, which was consistent with the predicted value of 5.83 mg/g. Subsequently, a silica gel chromatographic process was used to prepare the SAB-enriched extract with petroleum ether/acetone (95:5, v/v) as eluents. After final crystallization, 1.46 g of SAB with the purity of 99.4% and the overall recovery of 57.1% was obtained from 400 g seeds powder. This method provides an efficient and low-cost way for SAB purification for pharmaceutical industrial applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Tritium calibration of the LUX dark matter experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A. G.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Young, S. K.; Zhang, C.; LUX Collaboration

    2016-04-01

    We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170 000 highly pure and spatially uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 and 105 V /cm and compare the results to the NEST model. We also measure the mean charge recombination fraction and its fluctuations, and we investigate the location and width of the LUX ER band. These results provide input to a reanalysis of the LUX run 3 weakly interacting massive particle search.

  11. Separating liquid and solid products of liquefaction of coal or like carbonaceous materials

    DOEpatents

    Malek, John M.

    1979-06-26

    Slurryform products of coal liquefaction are treated with caustic soda in presence of H.sub.2 O in an inline static mixer and then the treated product is separated into a solids fraction and liquid fractions, including liquid hydrocarbons, by gravity settling preferably effected in a multiplate settling separator with a plurality of settling spacings.

  12. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  13. Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw

    PubMed Central

    2013-01-01

    Background The use of the enzymatic hydrolysis of lignocellulose with subsequent fermentation to ethanol provides a green alternative for the production of transportation fuels. Because of its recalcitrant nature, the lignocellulosic biomass must be pretreated before enzymatic hydrolysis. However, the pretreatment often results in the formation of compounds that are inhibitory for the enzymes or fermenting organism. Although well recognized, little quantitative information on the inhibition of individual cellulase components by identified inhibitors is available. Results Strong cellulase inhibitors were separated from the liquid fraction of the hydrothermal pretreatment of wheat straw. HPLC and mass-spectroscopy analyses confirmed that the inhibitors were oligosaccharides (inhibitory oligosaccharides, IOS) with a degree of polymerization from 7 to 16. The IOS are composed of a mixture of xylo- (XOS) and gluco-oligosaccharides (GOS). We propose that XOS and GOS are the fragments of the xylan backbone and mixed-linkage β-glucans, respectively. The IOS were approximately 100 times stronger inhibitors for Trichoderma reesei cellobiohydrolases (CBHs) than cellobiose, which is one of the strongest inhibitors of these enzymes reported to date. Inhibition of endoglucanases (EGs) by IOS was weaker than that of CBHs. Most of the tested cellulases and hemicellulases were able to slowly degrade IOS and reduce the inhibitory power of the liquid fraction to some extent. The most efficient single enzyme component here was T. reesei EG TrCel7B. Although reduced by the enzyme treatment, the residual inhibitory power of IOS and the liquid fraction was strong enough to silence the major component of the T. reesei cellulase system, CBH TrCel7A. Conclusions The cellulase inhibitors described here may be responsible for the poor yields from the enzymatic conversion of the whole slurries from lignocellulose pretreatment under conditions that do not favor complete degradation of hemicellulose. Identification of the inhibitory compounds helps to design better enzyme mixtures for their degradation and to optimize the pretreatment regimes to minimize their formation. PMID:24053778

  14. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials.

    PubMed

    Knight, Andrew W; Eitrheim, Eric S; Nelson, Andrew W; Nelson, Steven; Schultz, Michael K

    2014-08-01

    Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with (14)C-derived age of the material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, Zan; Xu, Bo; Nameta, Masaaki; Zhang, Ying; Magdeldin, Sameh; Yoshida, Yutaka; Yamamoto, Keiko; Fujinaka, Hidehiko; Yaoita, Eishin; Tasaki, Masayuki; Nakagawa, Yuki; Saito, Kazuhide; Takahashi, Kota; Yamamoto, Tadashi

    2013-06-01

    Vascular endothelial cells (VECs) play crucial roles in physiological and pathologic conditions in tissues and organs. Most of these roles are related to VEC plasma membrane proteins. In the kidney, VECs are closely associated with structures and functions; however, plasma membrane proteins in kidney VECs remain to be fully elucidated. Rat kidneys were perfused with cationic colloidal silica nanoparticles (CCSN) to label the VEC plasma membrane. The CCSN-labeled plasma membrane fraction was collected by gradient ultracentrifugation. The VEC plasma membrane or whole-kidney lysate proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and digested with trypsin in gels for liquid chromatography-tandem mass spectrometry. Enrichment analysis was then performed. The VEC plasma membrane proteins were purified by the CCSN method with high yield (approximately 20 μg from 1 g of rat kidney). By Mascot search, 582 proteins were identified in the VEC plasma membrane fraction, and 1,205 proteins were identified in the kidney lysate. In addition to 16 VEC marker proteins such as integrin beta-1 and intercellular adhesion molecule-2 (ICAM-2), 8 novel proteins such as Deltex 3-like protein and phosphatidylinositol binding clathrin assembly protein (PICALM) were identified. As expected, many key functions of plasma membranes in general and of endothelial cells in particular (i.e., leukocyte adhesion) were significantly overrepresented in the proteome of CCSN-labeled kidney VEC fraction. The CCSN method is a reliable technique for isolation of VEC plasma membrane from the kidney, and proteomic analysis followed by bioinformatics revealed the characteristics of in vivo VECs in the kidney.

  16. CHEMICAL CHARACTERIZATION AND EVALUATION OF ANTIBACTERIAL, ANTIFUNGAL, ANTIMYCOBACTERIAL, AND CYTOTOXIC ACTIVITIES OF Talinum paniculatum

    PubMed Central

    REIS, Luis F.C. DOS; CERDEIRA, Cláudio D.; PAULA, Bruno F. DE; da SILVA, Jeferson J.; COELHO, Luiz F.L.; SILVA, Marcelo A.; MARQUES, Vanessa B.B.; CHAVASCO, Jorge K.; ALVES-DA-SILVA, Geraldo

    2015-01-01

    SUMMARY In this study, the bioactivity of Talinum paniculatum was evaluated, a plant widely used in folk medicine. The extract from the T. paniculatum leaves (LE) was obtained by percolation with ethanol-water and then subjecting it to liquid-liquid partitions, yielding hexane (HX), ethyl acetate (EtOAc), butanol (BuOH), and aqueous (Aq) fractions. Screening for antimicrobial activity of the LE and its fractions was evaluated in vitro through broth microdilution method, against thirteen pathogenic and non-pathogenic microorganisms, and the antimycobacterial activity was performed through agar diffusion assay. The cytotoxic concentrations (CC90) for LE, HX, and EtOAc were obtained on BHK-21 cells by using MTT reduction assay. The LE showed activity against Serratia marcescens and Staphylococcus aureus, with Minimum Inhibitory Concentration (MIC) values of 250 and 500 µg/mL, respectively. Furthermore, HX demonstrated outstanding activity against Micrococcus luteusand Candida albicans with a MIC of 31.2 µg/mL in both cases. The MIC for EtOAc also was 31.2 µg/mL against Escherichia coli. Conversely, BuOH and Aq were inactive against all tested microorganisms and LE proved inactive against Mycobacterium tuberculosis and Mycobacterium bovis as well. Campesterol, stigmasterol, and sitosterol were the proposed structures as main compounds present in the EF and HX/EtOAc fractions, evidenced by mass spectrometry. Therefore, LE, HX, and EtOAc from T. paniculatum showed potential as possible sources of antimicrobial compounds, mainly HX, for presenting low toxicity on BHK-21 cells with excellent Selectivity Index (SI = CC90/MIC) of 17.72 against C. albicans. PMID:26603226

  17. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    PubMed

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Probability of conductive bond formation in a percolating network of nanowires with fusible tips

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Wang, Robert Y.

    2018-03-01

    Meeting the heat dissipation demands of microelectronic devices requires development of polymeric composites with high thermal conductivity. This property is drastically improved by percolation networks of metallic filler particles that have their particle-to-particle contact resistances reduced through thermal or electromagnetic fusing. However, composites with fused metallic fillers are electrically conductive, which prevents their application within the chip-board and the inter-chip gaps. Here, we propose that electrically insulating composites for these purposes can be achieved by the application of fusible metallic coatings to the tips of nanowires with thermally conductive but electrically insulating cores. We derive analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures. We consider two types of materials for these fusible coatings. First, we consider silver-like coatings, which form only conductive bonds when contacting the silver-like coating of another nanowire. Second, we consider liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or an uncoated segment of another nanowire. These models were validated using Monte Carlo simulations, which also revealed that electrical short-circuiting is highly unlikely until most of the wire is coated. Furthermore, we demonstrate that switching the tip coating from silver- to liquid metal-like materials can double the fraction of conductive bonds. Consequently, this work provides motivation to develop scalable methods for fabrication of the hybrid liquid-coated nanowires, whose dispersion in a polymer matrix is predicted to yield highly thermally conductive but electrically insulating composites.

  19. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam

    PubMed Central

    Furuta, Yujiro; Oikawa, Noriko; Kurita, Rei

    2016-01-01

    Liquid foams are classified into a dry foam and a wet foam, empirically judging from the liquid fraction or the shape of the gas bubbles. It is known that physical properties such as elasticity and diffusion are different between the dry foam and the wet foam. Nevertheless, definitions of those states have been vague and the dry-wet transition of foams has not been clarified yet. Here we show that the dry-wet transition is closely related to rearrangement of the gas bubbles, by simultaneously analysing the shape change of the bubbles and that of the entire foam in two dimensional foam. In addition, we also find a new state in quite low liquid fraction, which is named “superdry foam”. Whereas the shape change of the bubbles strongly depends on the change of the liquid fraction in the superdry foam, the shape of the bubbles does not change with changing the liquid fraction in the dry foam. Our results elucidate the relationship between the transitions and the macroscopic mechanical properties. PMID:27874060

  20. The effect of crystal shape, size and bimodality on the maximum packing and the rheology of crystal bearing magma

    NASA Astrophysics Data System (ADS)

    Moitra, Pranabendu; Gonnermann, Helge

    2014-05-01

    Magma often contains crystals of various shapes and sizes. We present experimental results on the effect of the shape- and size-distribution of solid particles on the rheological properties of solid-liquid suspensions, which are hydrodynamically analogous to crystal-bearing magmas. The suspensions were comprised of either a single particle shape and size (unimodal) or a mixture of two different particle shapes and sizes (bimodal). For each type of suspension we characterized the dry maximum packing fraction of the particle mixture using the tap density method. We then systematically varied the total volume fraction of particles in the suspension, as well as the relative proportion of the two different particle types in the bimodal suspensions. For each of the resultant mixtures (suspensions) we performed controlled shear stress experiments using a rotational rheometer in parallel-plate geometry spanning 4 orders of magnitude in shear stress. The resultant data curves of shear stress as a function of shear rate were fitted using a Herschel-Bulkley rheological model. We find that the dry maximum packing decreases with increasing particle aspect ratio (ar) and decreasing particle size ratio (Λ). The highest dry maximum packing was obtained at 60-75% volume of larger particles for bimodal spherical particle mixture. Normalized consistency, Kr, defined as the ratio of the consistency of the suspension and the viscosity of the suspending liquid, was fitted using a Krieger-Dougherty model as a function of the total solid volume fraction (φ). The maximum packing fractions (φm) obtained from the shear experimental data fitting of the unimodal suspensions were similar in magnitude with the dry maximum packing fractions of the unimodal particles. Subsequently, we used the dry maximum packing fractions of the bimodal particle mixtures to fit Kr as a function of φ for the bimodal suspensions. We find that Kr increases rapidly for suspensions with larger ar and smaller Λ. We also find that both the apparent yield stress and the shear thinning behavior of the suspensions increase with increasing ar and become significant at φ/φm ≥ 0.4.

  1. Fish mucus metabolome reveals fish life-history traits

    NASA Astrophysics Data System (ADS)

    Reverter, M.; Sasal, P.; Banaigs, B.; Lecchini, D.; Lecellier, G.; Tapissier-Bontemps, N.

    2017-06-01

    Fish mucus has important biological and ecological roles such as defense against fish pathogens and chemical mediation among several species. A non-targeted liquid chromatography-mass spectrometry metabolomic approach was developed to study gill mucus of eight butterflyfish species in Moorea (French Polynesia), and the influence of several fish traits (geographic site and reef habitat, species taxonomy, phylogeny, diet and parasitism levels) on the metabolic variability was investigated. A biphasic extraction yielding two fractions (polar and apolar) was used. Fish diet (obligate corallivorous, facultative corallivorous or omnivorous) arose as the main driver of the metabolic differences in the gill mucus in both fractions, accounting for 23% of the observed metabolic variability in the apolar fraction and 13% in the polar fraction. A partial least squares discriminant analysis allowed us to identify the metabolites (variable important in projection, VIP) driving the differences between fish with different diets (obligate corallivores, facultative corallivores and omnivorous). Using accurate mass data and fragmentation data, we identified some of these VIP as glycerophosphocholines, ceramides and fatty acids. Level of monogenean gill parasites was the second most important factor shaping the gill mucus metabolome, and it explained 10% of the metabolic variability in the polar fraction and 5% in the apolar fraction. A multiple regression tree revealed that the metabolic variability due to parasitism in the polar fraction was mainly due to differences between non-parasitized and parasitized fish. Phylogeny and butterflyfish species were factors contributing significantly to the metabolic variability of the apolar fraction (10 and 3%, respectively) but had a less pronounced effect in the polar fraction. Finally, geographic site and reef habitat of butterflyfish species did not influence the gill mucus metabolome of butterflyfishes.

  2. Skin whitening and anti-corrugation activities of glycoprotein fractions from liquid extracts of boiled sea cucumber.

    PubMed

    Kim, So Jung; Park, So Yun; Hong, Sun-Mee; Kwon, Eun-Hye; Lee, Taek-Kyun

    2016-10-01

    To determine skin whitening and wrinkle improvement efficacy, glycoprotein fractions were extracted from liquid extracts of boiled sea cucumber and their effects on tyrosine and elastase inhibitory activities were assayed. Fractions above and below 50 kDa (>50 kDa and <50 kDa) were extracted via a series of steps involving: boiling, filtering, desalting and freeze drying. Cytotoxicity, skin whitening and wrinkle-removing effects of boiled liquid were determined. Our MTT data showed that neither glycoprotein fraction of boiled liquid induces cellular cytotoxicity up to a concentration of 10 mg/mL treatment of the mouse melanoma cell line, B16F10, with 10 mg/mL >50 kDa enhanced tyrosinase and elastase inhibitory activities by 50.84% and 28.78%, respectively. Correlations of the >50 kDa concentration with tyrosinase inhibitory (R2 = 0.968) and elastase inhibitory (R2 = 0.983) efficacy were significant. >50 kDa glycoprotein fraction isolated from liquid extracts of boiled sea cucumber, which can serve as a functional cosmetic ingredient for whitening and wrinkle improvement of skin. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  3. Control of crystal growth in water purification by directional freeze crystallization

    NASA Technical Reports Server (NTRS)

    Conlon, William M. (Inventor)

    1996-01-01

    A Directional Freeze Crystallization system employs an indirect contact heat exchanger to freeze a fraction of liquid to be purified. The unfrozen fraction is drained away and the purified frozen fraction is melted. The heat exchanger must be designed in accordance with a Growth Habit Index to achieve efficient separation of contaminants. If gases are dissolved in the liquid, the system must be pressurized.

  4. Extraction and Isolation of Antineoplastic Pristimerin from Mortonia greggii (Celastraceae).

    PubMed

    Mejia-Manzano, Luis Alberto; Barba-Dávila, Bertha A; Gutierrez-Uribe, Janet A; Escalante-Vázquez, Edgardo J; Serna-Saldivar, Sergio O

    2015-11-01

    The aim of this research was to identify, extract and isolate pristimerin in leaves, stems and roots of the Mexican plant Mortonia greggii (Celastraceae). The principal objective was to determine the best laboratory experimental conditions for the extraction and isolation of this powerful natural anticancer agent from the root tissue. Six experimental factors in solid-liquid pristimerin extraction were analyzed: solvent systems, number of extractions, ratio of plant weight (g)/solvent volume (mL) used, time of extraction, temperature and agitation. A mathematical model was generated for pristimerin purity and yield. Ethanol, first extraction, 0.5 ratio of plant weight/solvent volume (g/mL), 0.5 h, 200 rpm and 49.7°C were optimal conditions for the extraction of this phytochemical. The degree of purification of pristimerin root extract was studied by size-exclusion chromatography (SEC) using Sephadex LH-20 reaching fractions with purification indexes (PI) greater than 2 and recoveries of 28.3%. When fractions with purification indices higher than 1 and less than 2 were accumulated, the recovery of pristimerin increased by about 73.6%. By combining the optimum extracts and SEC purification protocols, an enriched fraction containing 245.6 mg pristimerin was obtained from 100 g of root bark, representing about 14.4%, w/w, pristimerin from the total solids presented in the fraction.

  5. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  6. Identification of a dicaffeoylquinic acid isomer from Arctium lappa with a potent anti-ulcer activity.

    PubMed

    Carlotto, Juliane; da Silva, Luisa M; Dartora, Nessana; Maria-Ferreira, Daniele; Sabry, Diego de A; Filho, Arquimedes P S; de Paula Werner, Maria F; Sassaki, Guilherme L; Gorin, Philip A J; Iacomini, Marcello; Cipriani, Thales R; de Souza, Lauro M

    2015-04-01

    Leaves of Arctium lappa contain several mono- and dicaffeoylquinic acids, as evaluated by liquid chromatography-mass spectrometry. In order to investigate the protection on gastric mucosa against ulcers, rats were treated with fractions from leaf extract prior to ethanol-induced ulcers. The original fraction obtained as ethanol soluble fraction from hot aqueous extract was able to protect de gastric mucosa, and this effect was retained in the ethyl acetate fraction, obtained from liquid/liquid fractionation. The main compound in this fraction was isolated and chemically characterized by nuclear magnetic resonance and mass spectrometry, assisted by isopropylidene derivatization which gave rise a mass increment of 40 units. Therefore, the underivatized compound that had m/z 515.119 [M-H](-) was shifted to m/z 555.151, being confirmed as 1,3-O-dicaffeoylquinic acid, which presented an ED50 of 57 µg kg(-1) on gastric protection, lesser than the therapeutic concentration of omeprazole (40 mg kg(-1)). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    PubMed

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.

  8. Bio-oil fractionation and condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C.; Jones, Samuel T.; Pollard, Anthony

    The present invention relates to a method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oilmore » constituents from the condenser in the first stage is collected. Also disclosed are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.« less

  9. Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2015-10-15

    The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.

  10. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to <1400 °C, while variable Fe-oxide contents were used to vary oxygen fugacity in graphite and MgO capsules. Isotopic analyses were performed using a double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  11. Biologically important compounds in synfuels processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, B R; Ho, C; Griest, W H

    1980-01-01

    Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less

  12. Modification of aqueous enzymatic oil extraction to increase the yield of corn oil from dry fractionated corn germ

    USDA-ARS?s Scientific Manuscript database

    In previous aqueous enzymatic extraction experiments we reported an oil yield of 67 grams from 800 grams of dry fractionated corn germ. In the current experiments, a dispersion of 10% cooked, dry-fractionated germ in water and was treated with amylases and a cellulase complex. A foam fraction was s...

  13. Solids precipitation and polymerization of asphaltenes in coal-derived liquids

    DOEpatents

    Kydd, Paul H.

    1984-01-01

    The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

  14. Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction.

    PubMed

    Popovic, Olga; Jensen, Lars Stoumann

    2012-08-01

    Chemical-mechanical separation of pig slurry into a solid fraction rich in dry matter, P, Cu and Zn and a liquid fraction rich in inorganic N but poor in dry matter may allow farmers to manage surplus slurry by exporting the solid fraction to regions with no nutrient surplus. Pig slurry can be applied to arable land only in certain periods during the year, so it is commonly stored prior to field application. This study investigated the effect of storage duration and temperature on chemical characteristics and P, Cu and Zn distribution between particle size classes of raw slurry and its liquid separation fraction. Dry matter, VFA, total N and ammonium content of both slurry products decreased during storage and were affected by temperature, showing higher losses at higher storage temperatures. In both products, total P, Cu and Zn concentrations were not significantly affected by storage duration or temperature. Particle size distribution was affected by slurry separation, storage duration and temperature. In raw slurry, particles larger than 1 mm decreased, whereas particles 250 μm-1 mm increased. The liquid fraction produced was free of particles >500 μm, with the highest proportions of P, Cu and Zn in the smallest particle size class (<25 μm). The proportion of particles <25 μm increased when the liquid fraction was stored at 5 °C, but decreased at 25 °C. Regardless of temperature, distribution of P, Cu and Zn over particle size classes followed a similar pattern to dry matter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  16. Theory of Random Copolymer Fractionation in Columns

    NASA Astrophysics Data System (ADS)

    Enders, Sabine

    Random copolymers show polydispersity both with respect to molecular weight and with respect to chemical composition, where the physical and chemical properties depend on both polydispersities. For special applications, the two-dimensional distribution function must adjusted to the application purpose. The adjustment can be achieved by polymer fractionation. From the thermodynamic point of view, the distribution function can be adjusted by the successive establishment of liquid-liquid equilibria (LLE) for suitable solutions of the polymer to be fractionated. The fractionation column is divided into theoretical stages. Assuming an LLE on each theoretical stage, the polymer fractionation can be modeled using phase equilibrium thermodynamics. As examples, simulations of stepwise fractionation in one direction, cross-fractionation in two directions, and two different column fractionations (Baker-Williams fractionation and continuous polymer fractionation) have been investigated. The simulation delivers the distribution according the molecular weight and chemical composition in every obtained fraction, depending on the operative properties, and is able to optimize the fractionation effectively.

  17. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.

    PubMed

    Dan, Nily

    2014-11-25

    Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.

  18. Tritium calibration of the LUX dark matter experiment

    DOE PAGES

    Akerib, D. S.

    2016-04-20

    Here, we present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170,000 highly pure and spatially uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 and 105 V/cm and compare the results to the NEST model. We also measure the mean charge recombination fraction and its fluctuations, and we investigate the location and width of the LUX ER band. These results provide input to a reanalysis ofmore » the LUX run 3 weakly interacting massive particle search.« less

  19. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  20. Crosslinking of polysaccharides in room temperature ionic liquids by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Kimura, Atsushi; Nagasawa, Naotsugu; Shimada, Akihiko; Taguchi, Mitsumasa

    2016-07-01

    Crosslinking of polysaccharides in room temperature ionic liquids (RTILs) by ionizing radiation were investigated by the scavenging method, fluorescent and X-ray photoelectron spectroscopy (XPS) analysis. Radiation chemical yields of hydroxyl radicals inducing the crosslinking of cellulose were estimated with phenol as a scavenger, and increased with water content in 1-ethyl-3-methylimidazolium acetate (EMI-acetate). Cellulose gel was also produced in fluorescent carboxylate-based RTILs, 1,3-dibutylimidazolium acetate (DBI-acetate). Light emission from DBI-acetate in cellulose gel was observed and 20-nm red shifted at a maximum wavelength of 415 nm when excited at 323 nm. Expected elements of carbon and oxygen were detected in neat cellulose by XPS, while additional nitrogen was detected in radiation-crosslinked cellulose gel produced in EMI-acetate. These results indicate that RTILs is incorporated in the cellulose gel. Chitin gel was first obtained in 1-butyl-3-methyimidazolium chloride by γ-ray irradiations, and its gel fraction increased with the dose and reached 86% at 60 kGy.

  1. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions?

    PubMed

    Buschmann, Johanna; Gao, Shuping; Härter, Luc; Hemmi, Sonja; Welti, Manfred; Werner, Clement M L; Calcagni, Maurizio; Cinelli, Paolo; Wanner, Guido A

    2013-09-01

    Adipose-derived stem cells are easily accessed and have a relatively high density compared with other mesenchymal stromal cells. Isolation protocols of adipose-derived stem cells (ASC) rely on the cell's ability to adhere to tissue culture plastic overnight. It was evaluated whether the floating ASC fractions are also of interest for cell-based therapies. In addition, the impact of age, body mass index (BMI) and harvest site was assessed. The surface protein profile with the use of flow cytometry, the cell yield and the doubling time of passages 4, 5 and 6 of ASC from 30 donors were determined. Adherent and supernatant fractions were compared. The impact of age, BMI and harvest site on cell yield and doubling times was determined. Both adherent and supernatant fractions showed high mean fluorescence intensities for CD13, CD29, CD44, CD73, CD90 and CD105 and comparatively low mean fluorescence intensities for CD11b, CD62L, intracellular adhesion molecule-1 and CD34. Doubling times of adherent and supernatant fractions did not differ significantly. Whereas the old age group had a significantly lower cell yield compared with the middle aged group, BMI and harvest site had no impact on cell yield. Finally, doubling times for passages 4, 5 and 6 were not influenced by the age and BMI of the donors, nor the tissue-harvesting site. The floating ASC fraction is an equivalent second cell source just like the adherent ASC fraction. Donor age, BMI and harvest site do not influence cell yield and proliferation rate. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.

    PubMed

    Xia, Ling; Choi, Chiwoong; Kothekar, Shrinivas C; Dutta, Debashis

    2016-01-05

    In this Article, we describe the generation of pressure gradients on-chip for driving liquid phase separations in submicrometer deep channels. The reported pressure-generation capability was realized by applying an electrical voltage across the interface of two glass channel segments with different depths. A mismatch in the electroosmotic flow rate at this junction led to the generation of pressure-driven flow in our device, a fraction of which was then directed to an analysis channel to carry out the desired separation. Experiments showed the reported strategy to be particularly conducive for miniaturization of pressure-driven separations yielding flow velocities in the separation channel that were nearly unaffected upon scaling down the depth of the entire fluidic network. Moreover, the small dead volume in our system allowed for high dynamic control over this pressure gradient, which otherwise was challenging to accomplish during the sample injection process using external pumps. Pressure-driven velocities up to 3.1 mm/s were realized in separation ducts as shallow as 300 nm using our current design for a maximum applied voltage of 3 kV. The functionality of this integrated device was demonstrated by implementing a pressure-driven ion chromatographic analysis that relied on analyte interaction with the nanochannel surface charges to yield a nonuniform solute concentration across the channel depth. Upon coupling such analyte distribution to the parabolic pressure-driven flow profile in the separation duct, a mixture of amino acids could be resolved. The reported assay yielded a higher separation resolution compared to its electrically driven counterpart in which sample migration was realized using electroosmosis/electrophoresis.

  3. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  4. Development of advanced, continuous mild gasification process for the production of co-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, R.O. Jr.; Aulich, T.R.

    1991-05-01

    The current objective of the University of North Dakota Energy and Environmental Research Center (EERC) mild gasification project is to optimize reaction char and marketable liquids production on a 100-lb/hr scale using Wyodak subbituminous and Indiana No. 3 bituminous coals. Tests performed using the EERC 100-lb/hr process development unit (PDU) include a refractory-cure (Test P001), a test using petroleum coke (Test P002), and tests using Wyodak and Indiana coals. The reactor system used for the 11 PDU tests conducted to date consists of a spouted, fluid-bed carbonizer equipped with an on-line condensation train that yields three boiling point fractions ofmore » coal liquids ranging in volatility from about (77{degrees}--750{degrees}F) (25{degrees}--400{degrees}C). The September--December 1990 quarterly report described reaction conditions and the bulk of the analytical results for Tests P010 and P011. This report describes further P010 and P011 analytical work, including the generation of simulated distillation curves for liquid samples on the basis of sulfur content, using gas chromatography coupled with atomic emission detection (GC/AED) analysis. 13 figs., 3 tabs.« less

  5. Novel comprehensive multidimensional liquid chromatography approach for elucidation of the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 strain.

    PubMed

    Cacciola, Francesco; Mangraviti, Domenica; Rigano, Francesca; Donato, Paola; Dugo, Paola; Mondello, Luigi; Cortes, Hernan J

    2018-06-01

    Shikimic acid is a intermediate of aromatic amino acid biosynthesis and the preferred starting material for production of the most commonly prescribed anti-influenza drug, Tamiflu. Its six-membered carbocyclic ring is adorned with several chiral centers and various functionalities, making shikimic acid a valuable chiral synthon. When microbially-produced, in addition to shikimic acid, numerous other metabolites are exported out of the cytoplasm and accumulate in the culture medium. This extracellular matrix of metabolites is referred to as the microbosphere. Due to the high sample complexity, in this study, the microbosphere of shikimate-producing Escherichia coli SP1.1/pKD15.071 was analyzed by liquid chromatography and comprehensive two-dimensional liquid chromatography coupled to photodiode array and mass spectrometry detection. GC analysis of the trimethylsilyl derivatives was also carried out in order to support the elucidation of the selected metabolites in the microbosphere. The elucidation of the metabolic fraction of this bacterial strain might be of valid aid for improving, through genetic changes, the concentration and yield of shikimic acid synthesized from glucose. Graphical abstract.

  6. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  7. Characterization of phenols biodegradation by compound specific stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    Biodegradation of phenol and alkylphenols has been described under both oxic and anoxic conditions. In the absence of molecular oxygen, the degradation of phenolic compounds is initiated by microorganisms through carboxylation, fumarate addition to the methyl moiety or anoxic hydroxylation of the methyl moiety. Comparatively, under aerobic condition, the initiation mechanisms are revealed to be monoxygenation or dihydroxylation for phenol and ring hydroxylation or methyl group oxidation for cresols. While several studies biochemically characterized the enzymes and reaction mechanisms in the relevant degradation pathways, isotope fractionation patterns were rarely reported possibly due to constraints in current analytical methods. In this study, the carbon isotope fractionation patterns upon the degradation of phenol and cresols by several strains were analyzed by using isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). The corresponding enrichment factors for carbon (ƐC) have been obtained. Cresols degradation by various strains showed generally moderate carbon isotope fractionation patterns with notable differences. For p-cresol degradation, five strains were examined. The aerobic strain Acinetobacter calcoaceticus NCIMB8250 exploits ring hydroxylation by molecular oxygen as initial reaction, and a ƐC value of -1.4±0.2‰ was obtained. Pseudomonas pseudoalcaligenes NCIMB 9867, an aerobic strain initiating cresols degradation via oxygen-dependent side chain hydroxylation, yielded a ƐC value of -2.3±0.2‰. Under nitrate-reducing conditions, Geobacter metallireducens DSM 7210 and Azoarcus buckelii DSM 14744 attacks p-cresol at the side chain by monohydroxylation using water as oxygen source; the two strains produced ƐC values of -3.6±0.4‰ and -2±0.1‰, accordingly. The sulfate-reducing Desulfosarcina cetonica DSM 7267 activating cresols by fumarate addition to the methyl moiety yielded ƐC values of -1.9±0.2‰ for p-cresol degradation and 2.2±0.3‰ for m-cresol degradation, respectively. The carbon isotope fractionation patterns of phenol degradation differed more profoundly. Oxygen-dependent monooxygenation of phenol by A.calcoaceticus as the initial reaction yielded ƐC values of -1.5±0.02‰. In contrast, the anaerobic degradation initiated by ATP-dependent carboxylation performed by Thauera aromatia DSM 6984, produced no detectable fractionation (ƐC 0±0.1‰). D. cetonica showed a slight inverse carbon isotope fractionation (ƐC 0.4±0.1‰). In conclusion, a validated method for compound specific stable isotope analysis was developed for phenolic compounds, and the first data set of carbon enrichment factors upon the biodegradation of phenol and cresols with different activation mechanisms has been obtained in the present study. Carbon isotope fractionation analysis is a potentially powerful tool to monitor phenolic compounds degradation in the environment.

  8. Antioxidant and Antihypertensive Effects of a Chemically Defined Fraction of Syrah Red Wine on Spontaneously Hypertensive Rats

    PubMed Central

    de Figueiredo, Eugênia Abrantes; Alves, Naiane Ferraz Bandeira; Monteiro, Matheus Morais de Oliveira; Cavalcanti, Clenia de Oliveira; da Silva, Tania Maria Sarmento; da Silva, Telma Maria Guedes; Braga, Valdir de Andrade; Oliveira, Eduardo de Jesus

    2017-01-01

    A particularly phenolic-rich fraction extracted from red wine from the São Francisco valley (Northeastern Brazil) was chemically characterized and its hypotensive and antioxidant effects on spontaneously hypertensive rats were studied both in vitro and in vivo. The liquid-liquid pH dependent fractionation scheme afforded a fraction with high content of bioactive phenolics such as flavonols, flavonol glycosides, phenolic acids and anthocyanins, whose identities were confirmed by liquid chromatography coupled to mass spectrometry analysis. Pretreatment of spontaneously hypertensive rats with this wine fraction at doses of 50 and 100 mg/kg by gavage for 15 days was able to decrease mean arterial pressure and heart rate as well as decrease serum lipid peroxidation. The fraction at concentrations of 0.01–1000 µg/mL induced concentration-dependent relaxation of isolated rat superior mesenteric artery rings pre-contracted with phenylephrine and this effect was not attenuated by endothelium removal. Our results demonstrate it is possible for phenolic constituents of red wine that are orally bioavailable to exert in vivo hypotensive and antioxidant effects on intact endothelial function. PMID:28587200

  9. Study of the pyrolysis of sludge and sludge/disposal filter cake mix for the production of value added products.

    PubMed

    Velghe, Inge; Carleer, Robert; Yperman, Jan; Schreurs, Sonja

    2013-04-01

    Slow and fast pyrolysis of sludge and sludge/disposal filter cake (FC) mix are performed to investigate the liquid and solid products for their use as value added products. The obtained slow pyrolysis liquid products separate in an oil, a water rich fraction and a valuable crystalline solid 5,5-dimethyl hydantoin. During fast pyrolysis, mainly an oil fraction is formed. Aliphatic acids and amides present in the water rich fractions can be considered as value added products and could be purified. The oil fractions have properties which make them promising as fuel (25-35 MJ/kg, 14-20 wt% water content, 0.2-0.6 O/C value), but upgrading is necessary. Sludge/FC oils have a lower calorific value, due to evaporation of alcohols present in FC. ICP-AES analyses reveal that almost none of the metals present in sludge or sludge/FC are transferred towards the liquid fractions. The metals are enriched in the solid fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Positive segregation as a function of buoyancy force during steel ingot solidification.

    PubMed

    Radovic, Zarko; Jaukovic, Nada; Lalovic, Milisav; Tadic, Nebojsa

    2008-12-01

    We analyze theoretically and experimentally solute redistribution in the dendritic solidification process and positive segregation during solidification of steel ingots. Positive segregation is mainly caused by liquid flow in the mushy zone. Changes in the liquid steel velocity are caused by the temperature gradient and by the increase in the solid fraction during solidification. The effects of buoyancy and of the change in the solid fraction on segregation intensity are analyzed. The relationships between the density change, liquid fraction and the steel composition are considered. Such elements as W, Ni, Mo and Cr decrease the effect of the density variations, i.e. they show smaller tendency to segregate. Based on the modeling and experimental results, coefficients are provided controlling the effects of chemical composition, secondary dendrite arm spacing and the solid fraction.

  11. Microwave assisted pyrolysis of halogenated plastics recovered from waste computers.

    PubMed

    Rosi, Luca; Bartoli, Mattia; Frediani, Marco

    2018-03-01

    Microwave Assisted Pyrolysis (MAP) of the plastic fraction of Waste from Electric and Electronic Equipment (WEEE) from end-life computers was run with different absorbers and set-ups in a multimode batch reactor. A large amount of various different liquid fractions (up to 76.6wt%) were formed together with a remarkable reduction of the solid residue (up to 14.2wt%). The liquid fractions were characterized using the following different techniques: FT-IR ATR, 1 H NMR and a quantitative GC-MS analysis. The liquid fractions showed low density and viscosity, together with a high concentration of useful chemicals such as styrene (up to 117.7mg/mL), xylenes (up to 25.6mg/mL for p-xylene) whereas halogenated compounds were absent or present in a very low amounts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Phase equilibria constraints on models of subduction zone magmatism

    NASA Astrophysics Data System (ADS)

    Myers, James D.; Johnston, Dana A.

    Petrologic models of subduction zone magmatism can be grouped into three broad classes: (1) predominantly slab-derived, (2) mainly mantle-derived, and (3) multi-source. Slab-derived models assume high-alumina basalt (HAB) approximates primary magma and is derived by partial fusion of the subducting slab. Such melts must, therefore, be saturated with some combination of eclogite phases, e.g. cpx, garnet, qtz, at the pressures, temperatures and water contents of magma generation. In contrast, mantle-dominated models suggest partial melting of the mantle wedge produces primary high-magnesia basalts (HMB) which fractionate to yield derivative HAB magmas. In this context, HMB melts should be saturated with a combination of peridotite phases, i.e. ol, cpx and opx, and have liquid-lines-of-descent that produce high-alumina basalts. HAB generated in this manner must be saturated with a mafic phase assemblage at the intensive conditions of fractionation. Multi-source models combine slab and mantle components in varying proportions to generate the four main lava types (HMB, HAB, high-magnesia andesites (HMA) and evolved lavas) characteristic of subduction zones. The mechanism of mass transfer from slab to wedge as well as the nature and fate of primary magmas vary considerably among these models. Because of their complexity, these models imply a wide range of phase equilibria. Although the experiments conducted on calc-alkaline lavas are limited, they place the following limitations on arc petrologic models: (1) HAB cannot be derived from HMB by crystal fractionation at the intensive conditions thus far investigated, (2) HAB could be produced by anhydrous partial fusion of eclogite at high pressure, (3) HMB liquids can be produced by peridotite partial fusion 50-60 km above the slab-mantle interface, (4) HMA cannot be primary magmas derived by partial melting of the subducted slab, but could have formed by slab melt-peridotite interaction, and (5) many evolved calc-alkaline lavas could have been formed by crystal fractionation at a range of crustal pressures.

  13. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    PubMed Central

    Maas, Ronald HW; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans

    2008-01-01

    Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis). PMID:18699996

  14. Entanglement in 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Matern, S.; Hermanns, M.

    2018-06-01

    Quantum spin liquids are highly fascinating quantum liquids in which the spin degrees of freedom fractionalize. An interesting class of spin liquids are the exactly solvable, three-dimensional Kitaev spin liquids. Their fractionalized excitations are Majonara fermions, which may exhibit a variety of topological band structures—ranging from topologically protected Weyl semi-metals over nodal semi-metals to systems with Majorana Fermi surfaces. We study the entanglement spectrum of such Kitaev spin liquids and verify that it is closely related to the topologically protected edge spectrum. Moreover, we find that in some cases the entanglement spectrum contains even more information about the topological features than the surface spectrum, and thus provides a simple and reliable tool to probe the topology of a system.

  15. Experimental and simulation studies on grain growth in TiC and WC-based cermets during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2000-06-01

    The grain growth behaviors of TiC and WC particles in TiC-Ni, TiC-Mo2C-Ni, WC-Co and WC-VC-Co alloys during liquid phase sintering were investigated for different Ni or Co contents and compared with the results of Monte Carlo simulations. In the experimental study, TiC-Ni and WC-Co alloys had a maximum grain size at a certain liquid volume fraction, while the grain size in TiC-Mo2C-Ni and WC-VC-Co alloys increased monotonically with an increasing liquid volume fraction. These results mean that the grain growth of these alloys cannot be explained by the conventional mechanisms for Ostwald ripening, namely diffusion or reaction controlled processes. Monte Carlo simulations with different energy relationships between solidliquid interfaces predicted the effect of the liquid volume fraction on grain size similar to the experimental results. The contiguous boundaries between solid (carbide) particles appear to influence the grain growth behavior in TiC- and WC-based alloys during liquid phase sintering.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The five iron catalysts reported were all promoted with potassium. The most promising results were obtained with the catalyst containing UCC-111 (Appendix B, Run 10225-3). In earlier studies UCC-111 alone had been found to be a poor Task 1 catalyst for oligomerizing propylene. Physically combined with potassium-promoted iron, however, it proved surprisingly effective as a syngas catalyst in Task 2. It produced straight-chain olefinic hydrocarbons, as a normal Fischer-Tropsch catalyst does, but unlike the normal Fischer-Tropsch catalyst, it may also have isomerized the carbon-carbon double bond. Transfer of the double bond from the usual Position 1, typical for Fischer-Tropsch products,more » to an interior position, should not only lower the pour point of the liquid product, but it should raise its octane number as well. Four of the six cobalt catalysts reported this quarter were promoted with either thorium or thorium and potassium. All six were synthesized by the precipitate-slurry method, with either LZ-105-6, LZ-Y-82, UCC-101 or UCC-107 as the Molecular Sieve component. The test results for most of these catalysts indicate that cobalt is more effective than iron in producing a high yield of motor fuels. This increase in motor fuel yield was due primarily to a higher yield of diesel oil, with the gasoline yield remaining approximately the same as for the iron catalysts. This increased diesel oil yield, as well as an increased methane yield, was balanced against a decreased C/sub 2/-C/sub 4/ yield. The yields of the heavy fractions for both metal catalysts remained relatively low.« less

  17. Quantitative tomographic measurements of opaque multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less

  18. Biochemical Fractionation and Stable Isotope Dilution Liquid Chromatography-mass Spectrometry for Targeted and Microdomain-specific Protein Quantification in Human Postmortem Brain Tissue*

    PubMed Central

    MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu

    2012-01-01

    Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359

  19. Liquid fractionation. Part I: Basic principles and experimental simulations

    NASA Astrophysics Data System (ADS)

    McBirney, Alexander R.; Baker, Brian H.; Nilson, Robert H.

    1985-03-01

    A possible explanation for the closely associated magmas of contrasting compositions erupted from many mature volcanic centers can be found in the large differences of density produced by relatively small compositional variations in liquids that evolve by crystallization or melting at the walls of shallow magma chambers. A mechanism of liquid fractionation in which differentiated liquids segragate gravitationally to form compositionally graded columns of magma may surmount the long-standing problem of explaining large volumes of highly evolved liquids that reach advanced degrees of differentiation in times that are too short to be consistent with conventional models of crystal fractionation based on crystal settling. In those types of magmas that decrease in density as they differentiate, a fractionated liquid next to a wall may form a buoyant compositional boundary layer that flows up the wall and accumulates as a separate zone in the upper levels of the reservoir. Magmas that increase in density as they differentiate will have the opposite behavior; they descend along the wall and pond on the floor. Both types of systems can be modeled using simple aqueous solutions and techniques similar to those developed by Chen and Turner (1980). The insights gained through experiments of this kind suggest a number of processes that may be responsible for common types of volcanic behavior and patterns of differentiation in shallow plutons.

  20. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    NASA Technical Reports Server (NTRS)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  1. Part 1. The effect of microwave receptors on the liquefaction of Turkish coals by microwave energy in a hydrogen donor solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emine Yagmur; Taner Togrul

    2005-12-01

    The effects of microwave receptors to coal (receptor/coal) ratio and the period of heating by microwave energy on the solubilization of Turkish coals (Tuncbilek, Mugla-Yatagan, Beypazari lignites, and Zonguldak bituminous coal) in tetralin have been investigated. V{sub 2}O{sub 5} and TiO{sub 2} were used as microwave receptors. The changes of liquid product yield indicated that it depended significantly on the type and amount of receptor and the type of coal. A significant increase in the lignite conversions to oil fractions was observed by the addition of the V{sub 2}O{sub 5} receptor. The use of TiO{sub 2} receptor decreased the yieldmore » of THF soluble coal products. However, both V{sub 2}O{sub 5} and TiO{sub 2} receptors decreased the yield of preasphaltene (PAS) and asphaltene (AS) due to their catalytic effect on the coal liquefaction. 15 refs., 9 figs., 1 tab.« less

  2. Compressive yield stress of depletion gels from stationary centrifugation profiles

    NASA Astrophysics Data System (ADS)

    Lattuada, Enrico; Buzzaccaro, Stefano; Piazza, Roberto

    2018-01-01

    We have investigated the stationary sedimentation profiles of colloidal gels obtained by an arrested phase-separation process driven by depletion forces, which have been compressed either by natural gravity or by a centrifugal acceleration ranging between 6g and 2300g. Our measurements show that the gel rheological properties display a drastic change when the gel particle volume fraction exceeds a value φc , which barely depends on the strength of the interparticle attractive forces that consolidate the network. In particular, the gel compressive yield stress \\Pi(φ) , which increases as \\Pi(φ) ∼ φ4.2 for φ ≲ φc , displays a diverging behaviour for φ>φc , with an asymptotic value that is close to the random close packing value for hard spheres. The evidence we obtained suggests that φc basically coincides with the liquid (colloid-rich) branch of the metastable coexistence curve, rather than with the lower (and ϕ-dependent) values expected for an attractive glass line penetrating inside the coexistence region.

  3. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects

    DOE PAGES

    Waters, Christopher L.; Janupala, Rajiv R.; Mallinson, Richard G.; ...

    2017-05-25

    Thermal conversion technologies may be the most efficient means of production of transportation fuels from lignocellulosic biomass. In order to increase the viability and improve the carbon emissions profile of pyrolysis biofuels, improvements must be made to the required catalytic upgrading to increase both hydrogen utilization efficiency and final liquid carbon yields. However, no current single catalytic valorization strategy can be optimized to convert the complex mixture of compounds produced upon fast pyrolysis of biomass. Staged thermal fractionation, which entails a series of sequentially increasing temperature steps to decompose biomass, has been proposed as a simple means to create vapormore » product streams of enhanced purity as compared to fast pyrolysis. In this work, we use analytical pyrolysis to investigate the effects of time and temperature on a thermal step designed to segregate the lignin and cellulose pyrolysis products of a biomass which has been pre-torrefied to remove hemicellulose. At process conditions of 380 °C and 180 s isothermal hold time, a stream containing less than 20% phenolics (carbon basis) was produced, and upon subsequent fast pyrolysis of the residual solid a stream of 81.5% levoglucosan (carbon basis) was produced. The thermal segregation comes at the expense of vapor product carbon yield, but the improvement in catalytic performance may offset these losses.« less

  4. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Christopher L.; Janupala, Rajiv R.; Mallinson, Richard G.

    Thermal conversion technologies may be the most efficient means of production of transportation fuels from lignocellulosic biomass. In order to increase the viability and improve the carbon emissions profile of pyrolysis biofuels, improvements must be made to the required catalytic upgrading to increase both hydrogen utilization efficiency and final liquid carbon yields. However, no current single catalytic valorization strategy can be optimized to convert the complex mixture of compounds produced upon fast pyrolysis of biomass. Staged thermal fractionation, which entails a series of sequentially increasing temperature steps to decompose biomass, has been proposed as a simple means to create vapormore » product streams of enhanced purity as compared to fast pyrolysis. In this work, we use analytical pyrolysis to investigate the effects of time and temperature on a thermal step designed to segregate the lignin and cellulose pyrolysis products of a biomass which has been pre-torrefied to remove hemicellulose. At process conditions of 380 °C and 180 s isothermal hold time, a stream containing less than 20% phenolics (carbon basis) was produced, and upon subsequent fast pyrolysis of the residual solid a stream of 81.5% levoglucosan (carbon basis) was produced. The thermal segregation comes at the expense of vapor product carbon yield, but the improvement in catalytic performance may offset these losses.« less

  5. Neutron crosstalk between liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less

  6. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 2. Phase chemistry and crystallization history

    NASA Astrophysics Data System (ADS)

    Perfit, Michael R.; Fornari, Daniel J.

    1983-12-01

    A diverse suite of lavas recovered by DSRV Alvin from the eastern Galapagos rift and Inca transform includes mid-ocean ridge tholeiitic basalts (MORB), iron- and titanium-enriched basalts (FeTi basalts), and abyssal andesites. Rock types transitional in character (ferrobasalts and basaltic andesites) were also recovered. The most mafic glassy basalts contain plagioclase, augite, and olivine as near-liquidus phases, whereas in more fractionated basalts, pigeonite replaces olivine and iron-titanium oxides crystallize. Plagioclase crystallizes after pyroxenes and iron-titanium oxides in andesites, possibly due to increased water contents or cooling rates. Apatite phenocrysts are present in some andesitic glasses. Ovoid sulfide globules are also common in many lavas. Compositional variations of phenocrysts in glassy lavas reflect changes in magma chemistry, temperature of crystallization, and cooling rate. The overall chemical variations parallel the chemical evolution of the lava suite and are similar to those in other fractionated tholeiitic complexes. Elemental partitioning between plagioclase-, pyroxene-, and olivine-glass pairs suggests that equilibration occurred at low pressure in a rather restricted temperature range. Various geothermometers indicate that the most primitive MORB began to crystallize between 1150° and 1200°C with fo2 < 10-7 atm. Coexisting iron-titanium oxides in more evolved lavas yield temperatures ˜1025°C to as low as 910°C withfo2 from 10-8 to 10-12 atm. PH 2 o could have been as high as 1 kbar during andesite crystallization. Compositions of the lavas from the Galapagos rift follow the experimentally determined (1 atm-QFM) liquid line of descent. Least squares calculations for the major elements indicate that the entire suite of lavas can be produced by fractional crystallization of successive residual liquids from a MORB parent magma. FeTi basalts represent 30-65 cumulative weight percent crystallization of plagioclase, augite, and olivine. An additional 30-50% fractionation of pyroxenes, plagioclase, titanomagnetite, and possible apatite is required to generate andesite from FeTi basalt liquids. The presence of partially resorbed mafic xenocrysts in some andesites, FeTi basalt inclusions in these xenocrysts, high-silica glass inclusions in basaltic andesites, and the transitional chemistry of basaltic andesites are evidence that some magma mixing occurred during crystal fractionation. The diversity of lava types recovered at single dive sites suggests that low-pressure fractional crystallization is a very efficient process beneath the eastern Galapagos rift and that isolated magma bodies must be present at shallow levels beneath the accretionary locus. Voluminous FeTi basalts erupted at the rift-transform intersection are genetically related to the rift lavas, but their restricted chemistry reflects different thermal and tectonic controls on their petrogenesis.

  7. 40 CFR 63.824 - Standards: Publication rotogravure printing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....000 For the purposes of this calculation, the mass fraction of organic HAP present in the recovered volatile matter is assumed to be equal to the mass fraction of organic HAP present in the volatile matter... section: (i) Perform a liquid-liquid material balance for each month as follows: (A) Measure the mass of...

  8. 40 CFR 63.824 - Standards: Publication rotogravure printing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....000 For the purposes of this calculation, the mass fraction of organic HAP present in the recovered volatile matter is assumed to be equal to the mass fraction of organic HAP present in the volatile matter... section: (i) Perform a liquid-liquid material balance for each month as follows: (A) Measure the mass of...

  9. Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes.

    PubMed

    Gyalai-Korpos, Miklós; Mangel, Réka; Alvira, Pablo; Dienes, Dóra; Ballesteros, Mercedes; Réczey, Kati

    2011-07-01

    Pretreatment is a necessary step in the biomass-to-ethanol conversion process. The side stream of the pretreatment step is the liquid fraction, also referred to as the hydrolyzate, which arises after the separation of the pretreated solid and is composed of valuable carbohydrates along with compounds that are potentially toxic to microbes (mainly furfural, acetic acid, and formic acid). The aim of our study was to utilize the liquid fraction from steam-exploded wheat straw as a carbon source for cellulase production by Trichoderma reesei RUT C30. Results showed that without detoxification, the fungus failed to utilize any dilution of the hydrolyzate; however, after a two-step detoxification process, it was able to grow on a fourfold dilution of the treated liquid fraction. Supplementation of the fourfold-diluted, treated liquid fraction with washed pretreated wheat straw or ground wheat grain led to enhanced cellulase (filter paper) activity. Produced enzymes were tested in hydrolysis of washed pretreated wheat straw. Supplementation with ground wheat grain provided a more efficient enzyme mixture for the hydrolysis by means of the near-doubled β-glucosidase activity obtained.

  10. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  11. Catalytic conversion of biomass-derived ethanol to liquid hydrocarbon blend-stock: Effect of light gas recirculation

    DOE PAGES

    Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.; ...

    2016-01-01

    Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less

  12. Catalytic conversion of biomass-derived ethanol to liquid hydrocarbon blend-stock: Effect of light gas recirculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.

    Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less

  13. Characterization and disinfection by-product formation potential of natural organic matter in surface and ground waters from Northern Florida

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.

    2000-01-01

    Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.

  14. Characterization of oxidized tannins: comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering.

    PubMed

    Vernhet, Aude; Dubascoux, Stéphane; Cabane, Bernard; Fulcrand, Hélène; Dubreucq, Eric; Poncet-Legrand, Céline

    2011-09-01

    Condensed tannins are a major class of plant polyphenols. They play an important part in the colour and taste of foods and beverages. Due to their chemical reactivity, tannins are not stable once extracted from plants. A number of chemical reactions can take place, leading to structural changes of the native structures to give so-called derived tannins and pigments. This paper compares results obtained on native and oxidized tannins with different techniques: depolymerization followed by high-performance liquid chromatography analysis, small-angle X-ray scattering (SAXS) and asymmetric flow field-flow fractionation (AF4). Upon oxidation, new macromolecules were formed. Thioglycolysis experiments showed no evidence of molecular weight increase, but thioglycolysis yields drastically decreased. When oxidation was performed at high concentration (e.g., 10 g L(-1)), the weight average degree of polymerization determined from SAXS increased, whereas it remained stable when oxidation was done at low concentration (0.1 g L(-1)), indicating that the reaction was intramolecular, yet the conformations were different. Differences in terms of solubility were observed; ethanol being a better solvent than water. We also separated soluble and non-water-soluble species of a much oxidized fraction. Thioglycolysis showed no big differences between the two fractions, whereas SAXS and AF4 showed that insoluble macromolecules have a weight average molecular weight ten times higher than the soluble ones.

  15. Analytical Phase Equilibrium Function for Mixtures Obeying Raoult's and Henry's Laws

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    When a mixture of two substances exists in both the liquid and gas phase at equilibrium, Raoults and Henry's laws (ideal solution and ideal dilute solution approximations) can be used to estimate the gas and liquid mole fractions at the extremes of either very little solute or solvent. By assuming that a cubic polynomial can reasonably approximate the intermediate values to these extremes as a function of mole fraction, the cubic polynomial is solved and presented. A closed form equation approximating the pressure dependence on mole fraction of the constituents is thereby obtained. As a first approximation, this is a very simple and potentially useful means to estimate gas and liquid mole fractions of equilibrium mixtures. Mixtures with an azeotrope require additional attention if this type of approach is to be utilized. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molarmore » syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic polymethylbenzenes. However, as syngas conversion increases with increasing temperature, selectivity to liquid product diminished. This is attributed, in large part, to increased saturation of the olefinic intermediates over PdZn metal sites. Under all the conditions and catalysts evaluated in this study, generating liquid product in high yield was challenging (<10 wt. % C5+ yield).« less

  17. Response of soil carbon fractions and dryland maize yield to mulching

    USDA-ARS?s Scientific Manuscript database

    Stimulation of root growth from mulching may enhance soil C fractions under maize (Zea mays L.). We studied the 5-yr straw (SM) and plastic film (PM) mulching effect on soil C fractions and maize yield compared with no mulching (CK) in the Loess Plateau of China. Soil samples collected from 0- to 10...

  18. A novel method for flow pattern identification in unstable operational conditions using gamma ray and radial basis function.

    PubMed

    Roshani, G H; Nazemi, E; Roshani, M M

    2017-05-01

    Changes of fluid properties (especially density) strongly affect the performance of radiation-based multiphase flow meter and could cause error in recognizing the flow pattern and determining void fraction. In this work, we proposed a methodology based on combination of multi-beam gamma ray attenuation and dual modality densitometry techniques using RBF neural network in order to recognize the flow regime and determine the void fraction in gas-liquid two phase flows independent of the liquid phase changes. The proposed system is consisted of one 137 Cs source, two transmission detectors and one scattering detector. The registered counts in two transmission detectors were used as the inputs of one primary Radial Basis Function (RBF) neural network for recognizing the flow regime independent of liquid phase density. Then, after flow regime identification, three RBF neural networks were utilized for determining the void fraction independent of liquid phase density. Registered count in scattering detector and first transmission detector were used as the inputs of these three RBF neural networks. Using this simple methodology, all the flow patterns were correctly recognized and the void fraction was predicted independent of liquid phase density with mean relative error (MRE) of less than 3.28%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams.

    PubMed

    Mariette, François; Lucas, Tiphaine

    2005-03-09

    The NMR relaxation signals from complex products such as ice cream are hard to interpret because of the multiexponential behavior of the relaxation signal and the difficulty of attributing the NMR relaxation components to specific molecule fractions. An attribution of the NMR relaxation parameters is proposed, however, based on an approach that combines quantitative analysis of the spin-spin and spin-lattice relaxation times and the signal intensities with characterization of the ice cream components. We have been able to show that NMR can be used to describe the crystallized and liquid phases separately. The first component of the spin-spin and spin-lattice relaxation describes the behavior of the protons of the crystallized fat in the mix. The amount of fat crystals can then be estimated. In the case of ice cream, only the spin-lattice relaxation signal from the crystallized fraction is relevant. However, it enables the ice protons and the protons of the crystallized fat to be distinguished. The spin-lattice relaxation time can be used to describe the mobility of the protons in the different crystallized phases and also to quantify the amount of ice crystals and fat crystals in the ice cream. The NMR relaxation of the liquid phase of the mix has a biexponential behavior. A first component is attributable to the liquid fraction of the fat and to the sugars, while a second component is attributable to the aqueous phase. Overall, the study shows that despite the complexity of the NMR signal from ice cream, a number of relevant parameters can be extracted to study the influence of the formulation and of the process stages on the ice fraction, the crystallized fat fraction, and the liquid aqueous fraction.

  20. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bignell, L. J.; Diwan, M. V.; Hans, S.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  1. Effect of low electric fields on alpha scintillation light yield in liquid argon

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.

  2. Liquid Propellant Blast Yields for Delta IV Heavy Vehicles

    DTIC Science & Technology

    2010-07-01

    explode simultaneously, up to 1.4 million lb of liquid oxygen and liquid hydrogen (LO2/ LH2 ) may be involved and at least partially contribute to the...in the third so as to prevent them from contributing to the blast yield. Since the PYRO LO2/ LH2 yield model was originally developed using data from...that mixing interfaces between the LO2 and LH2 tanks for all three CBCs occur simultaneously, then a reasonable argument can be made for all three

  3. Nonesterified fatty acid determination for functional lipidomics: comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction.

    PubMed

    Hellmuth, Christian; Weber, Martina; Koletzko, Berthold; Peissner, Wolfgang

    2012-02-07

    Despite their central importance for lipid metabolism, straightforward quantitative methods for determination of nonesterified fatty acid (NEFA) species are still missing. The protocol presented here provides unbiased quantitation of plasma NEFA species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Simple deproteination of plasma in organic solvent solution yields high accuracy, including both the unbound and initially protein-bound fractions, while avoiding interferences from hydrolysis of esterified fatty acids from other lipid classes. Sample preparation is fast and nonexpensive, hence well suited for automation and high-throughput applications. Separation of isotopologic NEFA is achieved using ultrahigh-performance liquid chromatography (UPLC) coupled to triple quadrupole LC-MS/MS detection. In combination with automated liquid handling, total assay time per sample is less than 15 min. The analytical spectrum extends beyond readily available NEFA standard compounds by a regression model predicting all the relevant analytical parameters (retention time, ion path settings, and response factor) of NEFA species based on chain length and number of double bonds. Detection of 50 NEFA species and accurate quantification of 36 NEFA species in human plasma is described, the highest numbers ever reported for a LC-MS application. Accuracy and precision are within widely accepted limits. The use of qualifier ions supports unequivocal analyte verification. © 2012 American Chemical Society

  4. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genova, Alessandro, E-mail: alessandro.genova@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide, E-mail: davide.ceresoli@cnr.it

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that aremore » linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH{sup •} radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH{sup •} radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.« less

  5. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical.

    PubMed

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  6. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found tomore » be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.« less

  7. Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at

    Science.gov Websites

    NREL | Energy Systems Integration Facility | NREL Asetek Asetek's Warm-Water Liquid Cooling System Yields Energy Cost Savings at NREL Asetek's RackCDU liquid cooling system was installed and tested at the Energy Systems Integration Facility's (ESIF's) ultra-energy-efficient high-performance

  8. Long-term batch study of sorption, transformation and extractability to characterize the fate of the veterinary antibiotic sulfadiazine

    NASA Astrophysics Data System (ADS)

    Sittig, Stephan; Kasteel, Roy; Groeneweg, Joost; Vereecken, Harry

    2010-05-01

    The occurrence of veterinary antibiotic substances in various environmental compartments is of growing concern. Once released into the environment (e.g. via manure), these organic substances can cause changes in the composition of microbial populations, provoke the development and spreading of resistance genes and finally reach the food chain. The substance under study is the veterinary antibiotic sulfadiazine (SDZ), which belongs to the chemical group of the sulfonamides. These compounds are widely applied in animal husbandry. There are hardly any studies on the macroscopic sorption and desorption behaviour in combination with transformation processes, particularly investigating the sorbed fraction. We are conducting long-term batch sorption experiments to characterize the partitioning between the liquid and the solid phases as well as formation of transformation products. A sequential extraction procedure enables us to analyse the composition of the various sorbed fractions. We applied 14C-labelled SDZ in aqueous solution to fresh soil, originating from an agricultural field (silty loam). Adsorption and desorption studies are conducted for the duration of 60 d and 80 d, respectively. Unique setups for single time-steps allow us to trace the development of the partition process between the liquid and the solid phase and also partitioning within the solid phase. The composition of these liquid phases concerning the parent substance and the transformation products is analyzed. Using Radio-HPLC we find at least five transformation products: 4-hydroxy-sulfadiazine (4-OH-SDZ), 4-(2-iminopyrimidin-1(2H)-yl)-aniline (An-SDZ) and additionally three yet unknown products. By means of a sequential extraction, differently strong bound fractions of the compound can be distinguished. Extractions consist of a mild method (0.01 M CaCl2-solution; 24 h) followed by a methanol extraction (4 h). Finally, a residual fraction is gained by microwave extraction at an elevated temperature (150°C) and pressure (mixture of water and acetonitril, 4:1). Bound residues are determined by combustion. The course of the kinetic adsorption/desorption processes as well as the partitioning of the compound over the various solid phase fractions is observed. Sorption is time-dependent and strongly non-linear. The topsoil shows a significantly higher sorption affinity than the subsoil. While the amount of radioactivity sorbed to the soil matrix increases with time, the extractability decreases significantly, i. e. at the end of the experimental time there is no yield with mild extraction methods. On the contrary, after 60 d, there is still a considerably mass gained with the microwave extraction. Desorption is very slow due to hysteresis. In the topsoil transformation occurs with higher rates, leading to more detectable transformation products as in the subsoil. With our experimental setup it will be possible to set up a kinetic modell for the partitioning of the solute between the liquid and the solid phase. This description will also include an estimation of the transformation parameters.

  9. Preparation of hydrolytic liquid from dried distiller's grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13.

    PubMed

    Liu, Huan; Yue, Xuemin; Jin, Yuhan; Wang, Meng; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-10-01

    Fumaric acid production from lignocellulosic materials is an alternative chemicals production system. This work investigated the suitable conditions for hydrolysis of dried distiller's grains with solubles (DDGS). The hydrolytic liquid was subsequently used for the production of fumaric acid. After optimizing the hydrolysis conditions, the most suitable concentration of H 2 SO 4 (2%), hydrolysis temperature (120 °C), hydrolysis time (100min) and solid/liquid ratio (1:10) were obtained. The yield of monosaccharides reached 258 mg/g DDGS and 15.88 g/L glucose, 7.53 g/L xylose and 2.35 g/L arabinose were obtained in unprocessed hydrolytic liquid. The furfural inhibitor in the hydrolytic liquid was also detected and the yield of it was reducing progressively in the pretreatment process. The ferment ability of the hydrolytic liquid from DDGS was tested through the process of fumaric acid production by Rhizopus arrhizus RH 7-13. The unprocessed hydrolytic liquid was not appropriate for the fermentation process. The yield of fumaric acid from the concentrated processed hydrolytic liquid reached 18.93 g/L, which was close to the yield of fermenting 80 g/L glucose. This result indicated that the commonly used carbon resource glucose could to some extent be replaced by processed hydrolytic liquid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterization of Natural Organic Matter in Conventional Water Treatment Processes and Evaluation of THM Formation with Chlorine

    PubMed Central

    Özdemır, Kadir

    2014-01-01

    This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323

  11. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  12. 40 CFR 63.3965 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mass fraction of TVH liquid input from each coating, thinner and/or other additive, and cleaning... efficiency test run, kg. TVHi = Mass fraction of TVH in coating, thinner and/or other additive, or cleaning...-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the coating operation to the...

  13. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  14. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  15. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part 51 to determine the mass fraction of TVH liquid input from each regulated material used in the web.... TVHi = Mass fraction of TVH in regulated material, i, that is applied in the web coating/printing or... the mass of liquid TVH in regulated materials applied in the web coating/printing or dyeing/finishing...

  16. 40 CFR 63.3965 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mass fraction of TVH liquid input from each coating, thinner and/or other additive, and cleaning... efficiency test run, kg. TVHi = Mass fraction of TVH in coating, thinner and/or other additive, or cleaning...-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the coating operation to the...

  17. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating, thinner, and... operation during the capture efficiency test run, kg. TVHi = mass fraction of TVH in coating, thinner, or... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  18. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  19. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating, thinner, and... operation during the capture efficiency test run, kg. TVHi = mass fraction of TVH in coating, thinner, or... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  20. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  1. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  2. Key Reliability Drivers of Liquid Propulsion Engines and A Reliability Model for Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.

    2005-01-01

    This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).

  3. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes.

    PubMed

    Oliveira, Luciana A; Porto, Ana L F; Tambourgi, Elias B

    2006-04-01

    Five agricultural wastes were evaluated in submerged fermentation for xylanolytic enzymes production by Penicillium janthinellum. The wastes were hydrolyzed in acid medium and the liquid fraction was used for cultivation. Corn cob (55.3 U/mL) and oat husk (54.8 U/mL) were the best inducers of xylanase. Sugar cane bagasse (23.0 U/mL) and corn husk (23.8 U/mL) were moderately good, while cassava peel was negligible. Protease production was very low in all agro-industrial residues. The maximum biomass yields were 1.30 and 1.17 g/L for cassava peel and corn husk after 180 h, respectively. Xylanolytic activity showed a cell growth associated profile.

  4. Dynamics and structure of an aging binary colloidal glass

    NASA Astrophysics Data System (ADS)

    Lynch, Jennifer M.; Cianci, Gianguido C.; Weeks, Eric R.

    2008-09-01

    We study aging in a colloidal suspension consisting of micron-sized particles in a liquid. This system is made glassy by increasing the particle concentration. We observe samples composed of particles of two sizes, with a size ratio of 1:2.1 and a volume fraction ratio 1:6, using fast laser scanning confocal microscopy. This technique yields real-time, three-dimensional movies deep inside the colloidal glass. Specifically, we look at how the size, motion, and structural organization of the particles relate to the overall aging of the glass. Particles move in spatially heterogeneous cooperative groups. These mobile regions tend to be richer in small particles, and these small particles facilitate the motion of nearby particles of both sizes.

  5. Microalgal growth enhancement by levoglucosan isolated from the green seaweed Monostroma nitidum

    PubMed Central

    Luyen, Hai Quoc; Cho, Ji-Young; Shin, Hyun-Woung; Park, Nam Gyu

    2006-01-01

    Microalgal growth was enhanced by the addition of levoglucosan to the culture medium. The growth-enhancing compound levoglucosan was isolated from the green seaweed Monostroma nitidum using water extraction, molecular fractionation, DEAE-cellulose column chromatography, and high-performance liquid chromatography. Yield of the compound from seaweed powder was 5 × 10−3% (w/w). At 10 mM concentration, levoglucosan enhanced cell growth and the specific growth rate of all feed microalgal species tested (Chaetoceros gracilis, Chlorella ellipsoidea, Dunaliella salina, Isochrysis galbana, Nannochloris oculata, Navicula incerta, Pavlova lutheri, Tetraselmis suecica) in most culture media by approximately 150%. Cellular fatty acid profiles and cell size differed marginally between cultures with and without levoglucosan. PMID:19396355

  6. High-speed countercurrent chromatographic recovery and off-line electrospray ionization mass spectrometry profiling of bisdesmodic saponins from Saponaria officinalis possessing synergistic toxicity enhancing properties on targeted antitumor toxins.

    PubMed

    Thakur, Mayank; Jerz, Gerold; Tuwalska, Dorota; Gilabert-Oriol, Roger; Wybraniec, Sławomir; Winterhalter, Peter; Fuchs, Hendrik; Weng, Alexander

    2014-04-01

    Saponaria officinalis L. (Caryophyllaceae), also known as fuller's herb or soapwort is a medicinal plant, which grows from Europe to Central Asia. Medicinal properties attributed to this plant include its antitussive and galactogogue properties. Recently, bisdesmodic saponins with very specific structural features from S. officinalis have been shown to strongly enhance the efficacy of specific targeted toxins (anti-tumor antibodies connected to protein toxins) in-vitro and in-vivo in a synergistic manner. In the presently reported novel approach we used preparative all-liquid high-speed countercurrent chromatography (HSCCC) to recover a total of 22 fractions using biphasic solvent system tert-butylmethylether/n-butanol/acetonitrile/water 1:3:1:5 (v/v/v/v) from a complex precipitated crude saponin mixture. Out of these 22 fractions, 3 fractions had the enhancer effect on anti-tumor toxins out of which one fraction (F7) was further tested elaborately in different cell lines. The molecular weight distribution and compound profiles of separated saponins were monitored by off-line injections of the sequentially collected fractions to an electrospray ion-trap mass-spectrometry system (ESI-IT-MS). The functional saponin fractions were mainly bisdesmosidc and contained saponin m/z 1861 amongst other. Using the bio-assay guided monitoring, the highly active fractions containing 2 to 3 bisdesmodic saponins (5μg/mL) were screened for their effectiveness in enhancing the anti-tumor activity of targeted toxin Sap3-EGF, which was determined using the impedance based real-time cell cytotoxicity evaluation. This novel combination of HSCCC fractionation, MS-target-guided profiling procedure and bio-assay guided fractionation yielded 100mg of functional saponins from a 60g crude drug powder in a rapid and convenient manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying, E-mail: xiying.hao@agr.gc.ca

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH{sub 4} yield and high CH{sub 4} productivity was obtained at an OLR of 2.8 g VS L{sup −1} day{sup −1.} • Post-digestion of the digestate resulted in a CH{sub 4} yield of 0.067 L g{sup −1} VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L{sup −1} day{supmore » −1} with a 30-day hydraulic retention time (HRT), a CH{sub 4} yield of 0.213 L g{sup −1} VS and CH{sub 4} production rate of 0.600 L L{sup −1} day{sup −1} were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g{sup −1} VS as CH{sub 4}, which was 21% of the batch CH{sub 4} potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K{sup +}, Ca{sup 2+} and Mg{sup 2+} were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.« less

  8. Predicting the apparent viscosity and yield stress of mixtures of primary, secondary and anaerobically digested sewage sludge: Simulating anaerobic digesters.

    PubMed

    Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky

    2016-09-01

    Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    PubMed

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic and molecular fractionations, and this fractionation by molecular sieves can be corrected by the amount of molecular sieve used in the experiment. The reproducibility of the method was tested by the measurement of the oxygen isotope ratios of dissolved oxygen at equilibrium with atmospheric air. We confirmed that the choice of methods for making air-equilibrated water was not related to the magnitude of isotope fractionation, whereas there was a difference between seawater and deionized water. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco

    2014-06-01

    The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in the investigated system.

  11. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    NASA Astrophysics Data System (ADS)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2018-01-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  12. Creation of energetic biothermite inks using ferritin liquid protein

    NASA Astrophysics Data System (ADS)

    Slocik, Joseph M.; McKenzie, Ruel; Dennis, Patrick B.; Naik, Rajesh R.

    2017-04-01

    Energetic liquids function mainly as fuels due to low energy densities and slow combustion kinetics. Consequently, these properties can be significantly increased through the addition of metal nanomaterials such as aluminium. Unfortunately, nanoparticle additives are restricted to low mass fractions in liquids because of increased viscosities and severe particle agglomeration. Nanoscale protein ionic liquids represent multifunctional solvent systems that are well suited to overcoming low mass fractions of nanoparticles, producing stable nanoparticle dispersions and simultaneously offering a source of oxidizing agents for combustion of reactive nanomaterials. Here, we use iron oxide-loaded ferritin proteins to create a stable and highly energetic liquid composed of aluminium nanoparticles and ferritin proteins for printing and forming 3D shapes and structures. In total, this bioenergetic liquid exhibits increased energy output and performance, enhanced dispersion and oxidation stability, lower activation temperatures, and greater processability and functionality.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Xiao, Y.; Xu, S.

    A co-production system based on Fischer-Tropsch (FT) synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of the low-temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline, and liquid petrol gas (LPG). Tail gas composed of unconverted syngas and FT light components was fed to the gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. Amore » correlation model based on Mobil's two step pilot plant was applied. User models that can predict product yields and cooperate with other units were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. Various cases were investigated to match the FT synthesis island, power island, and gasification island in co-production systems. Effects of CO{sub 2} removal/LPG recovery, co-firing, and CH{sub 4} content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel, and LPG was 136-155 g/N m{sup 3} (CO+H{sub 2}). At coal feed of 21.9 kg/s, net electricity exported to the grid was higher than 100 MW. Total production of diesel and gasoline (and LPG) was 118,000 t (134,000 t)/year. Under the economic analysis conditions assumed in this paper the co-production system was economically feasible.« less

  14. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  15. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  16. Nitrate radical oxidation of γ-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields

    NASA Astrophysics Data System (ADS)

    Slade, Jonathan H.; de Perre, Chloé; Lee, Linda; Shepson, Paul B.

    2017-07-01

    Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield = 4(+1/-3) %, total ON yield = 14(+3/-2) %, and SOA yield ≤ 10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography-mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest.

  17. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating... materials used in the coating operation during the capture efficiency test run, kg. TVHi = mass fraction of... compares the mass of liquid TVH in materials used in the coating operation, to the mass of TVH emissions...

  18. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating... materials used in the coating operation during the capture efficiency test run, kg. TVHi = mass fraction of... compares the mass of liquid TVH in materials used in the coating operation, to the mass of TVH emissions...

  19. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input... the capture efficiency test run, kg. TVHi = Mass fraction of TVH in regulated material, i, that is... protocol compares the mass of liquid TVH in regulated materials applied in the web coating/printing or...

  20. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input... the capture efficiency test run, kg. TVHi = Mass fraction of TVH in regulated material, i, that is... protocol compares the mass of liquid TVH in regulated materials applied in the web coating/printing or...

  1. Modeling the Spray Forming of H13 Steel Tooling

    NASA Astrophysics Data System (ADS)

    Lin, Yaojun; McHugh, Kevin M.; Zhou, Yizhang; Lavernia, Enrique J.

    2007-07-01

    On the basis of a numerical model, the temperature and liquid fraction of spray-formed H13 tool steel are calculated as a function of time. Results show that a preheated substrate at the appropriate temperature can lead to very low porosity by increasing the liquid fraction in the deposited steel. The calculated cooling rate can lead to a microstructure consisting of martensite, lower bainite, retained austenite, and proeutectoid carbides in as-spray-formed material. In the temperature range between the solidus and liquidus temperatures, the calculated temperature of the spray-formed material increases with increasing substrate preheat temperature, resulting in a very low porosity by increasing the liquid fraction of the deposited steel. In the temperature region where austenite decomposition occurs, the substrate preheat temperature has a negligible influence on the cooling rate of the spray-formed material. On the basis of the calculated results, it is possible to generate sufficient liquid fraction during spray forming by using a high growth rate of the deposit without preheating the substrate, and the growth rate of the deposit has almost no influence on the cooling rate in the temperature region of austenite decomposition.

  2. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  3. [The extracellular proteases of the phytopathogenic bacterium Xanthomonas campestris].

    PubMed

    Kalashnikova, E E; Chernyshova, M P; Ignatov, V V

    2003-01-01

    The culture liquids of three Xanthomonas campestris pv. campestris strains were found to possess proteolytic activity. The culture liquid of strain B-611 with the highest proteolytic activity was fractionated by salting-out with ammonium sulfate, gel filtration, and ion-exchange chromatography. The electrophoretic analysis of active fractions showed the presence of two proteases in the culture liquid of strain B-611, the major of which being serine protease. The treatment of cabbage seedlings with the proteases augmented the activity of peroxidase in the cabbage roots by 28%.

  4. Effect of low electric fields on alpha scintillation light yield in liquid argon

    DOE PAGES

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...

    2017-01-24

    Measurements were made of scintillation light yield of alpha particles from themore » $$^{222}$$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. Furthermore, the light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.« less

  5. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    NASA Astrophysics Data System (ADS)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  6. Aqueous fractionation of biomass based on novel carbohydrate hydrolysis kinetics

    DOEpatents

    Torget, Robert W.

    2001-01-01

    A multi-function process for hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components comprising extractives and proteins; a portion of a solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising: a) introducing either solid fresh biomass or partially fractioned lignocellulosic biomass material with entrained acid or water into a reactor and heating to a temperature of up to about 185.degree. C.-205.degree. C. b) allowing the reaction to proceed to a point where about 60% of the hemicellulose has been hydrolyzed in the case of water or complete dissolution in case of acid; c) adding a dilute acid liquid at a pH below about 5 at a temperature of up to about 205.degree. C. for a period ranging from about 5 to about 10 minutes; to hydrolyze the remaining 40% of hemicellulose if water is used. d) quenching the reaction at a temperature of up to about 140.degree. C. to quench all degradation and hydrolysis reactions; and e) introducing into said reaction chamber and simultaneously removing from said reaction chamber, a volumetric flow rate of dilute acid at a temperature of up to about 140.degree. C. to wash out the majority of the solubilized biomass components, to obtain improved hemicellosic sugar yields.

  7. Protease and Hemicellulase Assisted Extraction of Dietary Fiber from Wastes of Cynara cardunculus

    PubMed Central

    Santo Domingo, Cinthia; Soria, Marcelo; Rojas, Ana M.; Fissore, Eliana N.; Gerschenson, Lía N.

    2015-01-01

    The action of protease and hemicellulase for the extraction of fractions enriched in soluble fiber from bracts and stems of Cynara cardunculus was evaluated. Using a two-factor simplex design comprising protease amounts of 0–200 μL and hemicellulase amounts of 0–200 mg for 5 g of material, we explored the effect of a 5 h enzymatic treatment at 40 °C on the chemical composition and yield of the fractions isolated. The fractions contained inulin and pectin. In general, the protein, inulin, and polyphenol contents and also the yields were higher for fractions obtained from stems. The most marked effects were observed when enzymes were used at higher concentrations, especially for hemicellulase. The inclusion of a pre-heating step increased the yield and the inulin content for fractions isolated from bracts and stems and decreased the protein and polyphenol contents, and the galacturonic acid for bracts. These fractions, in general, contained the polyphenolic compounds monocaffeoylquinic acid, apigenin, and pinoresinol. PMID:25809605

  8. Chemical variation and fractionation of KREEP basalt magmas

    NASA Technical Reports Server (NTRS)

    Irving, A. J.

    1977-01-01

    The fact that 53 Apollo 15 igneous KREEP basalts show a range of 100 Mg/(Mg + Fe) from 73 to 35, and that there are systematic variations in K2O and trace element abundances with the Mg/(Mg + Fe) ratio, suggests that the KREEP basalts are a magma series generated by fractional crystallization processes. Experimental and chemical evidence indicate that this magma series results from low-pressure, possibly subvolcanic, fractional crystallization of a magnesian parental liquid (100 Mg/(Mg + Fe) equal to approximately 72) by removal of low-Ca pyroxene and plagioclase, with eventual production of liquids similar in composition to 15405 quartz-monozodiorites. One soil sample, SAO 465-11, corresponds to the postulated parental liquid, which might have been a direct partial melt of troctolitic materials in the deep lunar crust.

  9. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.

    PubMed

    Miandad, R; Nizami, A S; Rehan, M; Barakat, M A; Khan, M I; Mustafa, A; Ismail, I M I; Murphy, J D

    2016-12-01

    This paper aims to investigate the effect of temperature and reaction time on the yield and quality of liquid oil produced from a pyrolysis process. Polystyrene (PS) type plastic waste was used as a feedstock in a small pilot scale batch pyrolysis reactor. At 400°C with a reaction time of 75min, the gas yield was 8% by mass, the char yield was 16% by mass, while the liquid oil yield was 76% by mass. Raising the temperature to 450°C increased the gas production to 13% by mass, reduced the char production to 6.2% and increased the liquid oil yield to 80.8% by mass. The optimum temperature and reaction time was found to be 450°C and 75min. The liquid oil at optimum conditions had a dynamic viscosity of 1.77mPas, kinematic viscosity of 1.92cSt, a density of 0.92g/cm 3 , a pour point of -60°C, a freezing point of -64°C, a flash point of 30.2°C and a high heating value (HHV) of 41.6MJ/kg this is similar to conventional diesel. The gas chromatography with mass spectrophotometry (GC-MS) analysis showed that liquid oil contains mainly styrene (48%), toluene (26%) and ethyl-benzene (21%) compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields.

    PubMed

    Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack

    2006-08-05

    An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.

  11. Fractional Brownian motion of an Al nanosphere in liquid Al-Si alloy under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Yokota, Takeshi; Howe, J. M.; Jesser, W. A.; Murayama, M.

    2004-05-01

    Fractional forces and Brownian motion are expected to govern the behavior of nanoscale metallic solids in liquids, but such systems have not been studied. We investigated the motion of a crystalline Al nanosphere inside a partially molten Al-Si alloy particle, using an electron beam to both stimulate and observe the motion of the nanosphere. The irregular motion observed was quantified as antipersistant fractional Brownian motion. Analysis of possible phenomena contributing to the motion demonstrates that the incident electrons provide the fractional force that moves the Al nanosphere and that gravity and the oxide shell on the partially molten particle cause the antipersistant behavior.

  12. Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.

  13. Comparison of super-high-energy-propulsion-systems based on metallic hydrogen propellant for ES to LEO space transportation

    NASA Technical Reports Server (NTRS)

    Thierschmann, M.

    1990-01-01

    The application is studied of metallic H2 as a rocket propellant, which contains a specific energy of about 52 kcal/g in theory yielding a maximum specific impulse of 1700 s. With the convincing advantage of having a density 14 times that of conventional liquid H2/liquid O2 propellants, metallic H2 could satisfy the demands of advanced launch vehicle propulsion for the next millennium. Provided that there is an atomic metallic state of H2, and that this state is metastable at ambient pressure, which still is not proven, the results are given of the study of some important areas, which concern the production of metallic H2, the combustion, chamber cooling, and storage. The results show that the use of metallic H2 as rocket propellant could lead to revolutionary changes in space vehicle philosophy toward small size, small weight, and high performance single stage to orbit systems. The use of high metallic H2 mass fractions results in a dramatic reduction of required propellant volume, while gas temperatures in the combustion chamber exceed 5000 K. Furthermore, it follows, that H2 (liquid or slush) is the most favorable candidate as working fluid. Jet generated noise due to high exhaust velocities could be a problem.

  14. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels.

    PubMed

    Aysu, Tevfik

    2015-09-01

    Pyrolysis of Alcea pallida stems was performed in a fixed-bed tubular reactor with and without catalyst at three different temperatures. The effects of pyrolysis parameters including temperature and catalyst on the product yields were investigated. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts had different effects on product yields and composition of bio-oils. Liquid yields were increased in the presence of zinc chloride and alumina but decreased with calcium hydroxide, tincal and ulexite. The highest bio-oil yield (39.35%) by weight including aqueous phase was produced with alumina catalyst at 500 °C. The yields of bio-char, bio-oil and gas produced, as well as the compositions of the resulting bio-oils were determined by elemental analysis, TGA, FT-IR and GC-MS. 160 different compounds were identified by GC-MS in the bio-oils obtained at 500 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Boundary layer charge dynamics in ionic liquid-ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2011-01-01

    Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an optimal electromechanical conversion efficiency for bending actuation is achieved by using an ionic liquid where only a relatively small fraction of the ionic liquid ions exist as free ions. Conversely, if it is desired to increase the overall amount of charge transferred, an ionic liquid with a large fraction of free ions should be used. These theoretical considerations are found to be in good qualitative agreement with recent experimental results.

  16. Methods for estimating properties of hydrocarbons comprising asphaltenes based on their solubility

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.

    2016-10-04

    Disclosed herein is a method of estimating a property of a hydrocarbon comprising the steps of: preparing a liquid sample of a hydrocarbon, the hydrocarbon having asphaltene fractions therein; precipitating at least some of the asphaltenes of a hydrocarbon from the liquid sample with one or more precipitants in a chromatographic column; dissolving at least two of the different asphaltene fractions from the precipitated asphaltenes during a successive dissolution protocol; eluting the at least two different dissolved asphaltene fractions from the chromatographic column; monitoring the amount of the fractions eluted from the chromatographic column; using detected signals to calculate a percentage of a peak area for a first of the asphaltene fractions and a peak area for a second of the asphaltene fractions relative to the total peak areas, to determine a parameter that relates to the property of the hydrocarbon; and estimating the property of the hydrocarbon.

  17. Comparison of Mycobacterium tuberculosis culture using liquid culture medium and Lowenstein Jensen medium in abdominal tuberculosis.

    PubMed

    Shah, Sudeep R; Shenai, Shubhada; Desai, Devendra C; Joshi, Anand; Abraham, Philip; Rodrigues, Camilla

    2010-11-01

    Traditionally, the Lowenstein Jensen (LJ) medium has been used for culturing Mycobacterium tuberculosis. In abdominal tuberculosis (TB), the reported yield from tissue culture is between 20% and 60%. Liquid cultures are reported to give a higher yield but there is little data available in abdominal TB. To compare the yield of TB culture with BACTEC 460TB liquid medium and LJ medium for patients with suspected abdominal TB and determine cost effectiveness. This prospective study was done in consecutive cases with clinical, radiological, endoscopic/surgical, and histological suspicion of abdominal TB. Tissue biopsies obtained at colonoscopy or surgery were processed and plated on LJ medium as well as the BACTEC 460TB system. NAP (ρ-nitro-α-acetylamino-β-hydroxy-propiophenone) differentiation was carried out to determine species. The cost of each method and cost per yield were calculated. Of the 29 cases, 22 cases (76%) were positive on BACTEC 460TB culture while 14 (48%) were positive on LJ medium giving a 64% increment in yield. However, the culture of one patient grew on LJ medium, where the BACTEC 460TB was negative. The additional cost of BACTEC 460TB is Rs. 460 and LJ is Rs. 40. Samples from patients with abdominal TB should be processed on both liquid and LJ medium. For high yield, the use of a liquid culture medium system is essential.

  18. Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections

    NASA Astrophysics Data System (ADS)

    Hermanns, M.; Kimchi, I.; Knolle, J.

    2018-03-01

    Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking, the topological order underlying quantum spin liquids is hard to detect experimentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tricoordinated lattices are chief counterexamples - they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including two-dimensional and three-dimensional fractionalization as well as dynamic correlations and behavior at finite temperatures. We discuss the different materials and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures.

  19. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  20. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja.

    PubMed

    Jing, Changliang; Yuan, Yuan; Tang, Qi; Zou, Ping; Li, Yiqiang; Zhang, Chengsheng

    2017-10-01

    Single-factor experiment and Central Composite Design (CCD) was applied to optimize the ultrasound-assisted extraction (UAE) conditions of polysaccharides from Glycine soja (CGPS), and a preliminary characterization of three polysaccharide fractions (CGPS, GPS-1, and GPS-2) and their antioxidant activities were investigated. Under the optimal conditions: ratio of liquid to solid 42.7mL/g, extraction power 293.7W, extraction temperature 68.9°C, and extraction time 34.7min, the experimental CGPS yield was 6.04mg/g. CGPS was further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions (GPS-1 and GPS-2), and their monosaccharides compositions were characterized by HPLC. Fourier-transform infrared spectra (FT-IR) indicated the chemical structures of them. Moreover, they exhibited high antioxidant activities in a concentration-dependent manner in vitro. In summary, the present study suggested that UAE was a very effective method to extract polysaccharides from Glycine soja and the polysaccharides could be explored as potential antioxidant agents for medicine and function food. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Galactomannans from Brazilian seeds: characterization of the oligosaccharides produced by mild acid hydrolysis.

    PubMed

    Ganter, J L; Heyraud, A; Petkowicz, C L; Rinaudo, M; Reicher, F

    1995-02-01

    Galactomannans with Man:Gal ratios ranging from 1.1:1 to 3:1, obtained from the seeds of Mimosa scabrella, Stryphnodendron barbatiman, Schizolobium parahybum and Schizolobium amazonicum, were submitted to mild acid hydrolysis. The products were fractionated by gel permeation chromatography on BioGel P2 yielding fractions with degrees of polymerization (DP) of 1 to 6. Those with DP 2 to 6 from each species were analysed by ion-exchange high-performance liquid chromatography and characterized by 13C- and 1H-nuclear magnetic resonance (NMR) spectroscopy. The distribution of the oligosaccharides of each degree of polymerization was very similar for the products from S. parahybum and S. amazonicum, indicating the same D-galactosyl distribution on the D-mannan backbone, in agreement with the 13C-NMR splitting in the C4 region of the D-mannosyl units in the original polymers. The hydrolytic conditions adopted allowed characterization of compounds that are not generally produced by enzymatic treatments. The results show that the structures of the oligosaccharides, even if there is a preferential hydrolysis of Gal-Man linkages, reflect the composition of the parent polymer.

  2. Separation and IR Analysis of a Mixture of Organic Compounds.

    ERIC Educational Resources Information Center

    Thompson, Evan M.; Almy, John

    1982-01-01

    Presents an experiment which includes fractional distillation with gas-liquid chromatography (GLC) and infrared analysis. Objectives are to introduce students to fractional distillation and analysis of each fraction by GLC, to induce them to decide if each fraction is sufficient for infrared analysis, and to identify unknowns. (Author/JN)

  3. Creation of energetic biothermite inks using ferritin liquid protein

    PubMed Central

    Slocik, Joseph M.; McKenzie, Ruel; Dennis, Patrick B.; Naik, Rajesh R.

    2017-01-01

    Energetic liquids function mainly as fuels due to low energy densities and slow combustion kinetics. Consequently, these properties can be significantly increased through the addition of metal nanomaterials such as aluminium. Unfortunately, nanoparticle additives are restricted to low mass fractions in liquids because of increased viscosities and severe particle agglomeration. Nanoscale protein ionic liquids represent multifunctional solvent systems that are well suited to overcoming low mass fractions of nanoparticles, producing stable nanoparticle dispersions and simultaneously offering a source of oxidizing agents for combustion of reactive nanomaterials. Here, we use iron oxide-loaded ferritin proteins to create a stable and highly energetic liquid composed of aluminium nanoparticles and ferritin proteins for printing and forming 3D shapes and structures. In total, this bioenergetic liquid exhibits increased energy output and performance, enhanced dispersion and oxidation stability, lower activation temperatures, and greater processability and functionality. PMID:28447665

  4. Characterization of taste-active fractions in red wine combining HPLC fractionation, sensory analysis and ultra performance liquid chromatography coupled with mass spectrometry detection.

    PubMed

    Sáenz-Navajas, María-Pilar; Ferreira, Vicente; Dizy, Marta; Fernández-Zurbano, Purificación

    2010-07-19

    Five Tempranillo wines exhibiting marked differences in taste and/or astringency were selected for the study. In each wine the non-volatile extract was obtained by freeze-drying and further liquid extraction in order to eliminate remaining volatile compounds. This extract was fractionated by semipreparative C18-reverse phase-high performance liquid chromatography (C18-RP-HPLC) into nine fractions which were freeze-dried, reconstituted with water and sensory assessed for taste attributes and astringency by a specifically trained sensory panel. Results have shown that wine bitterness and astringency cannot be easily related to the bitter and astringent character of the HPLC fractions, what can be due to the existence of perceptual and physicochemical interactions. While the bitter character of the bitterest fractions may be attributed to some flavonols (myricetin, quercetin and their glycosides) the development of a sensitive UPLC-MS method to quantify astringent compounds present in wines has made it possible to demonstrate that proanthocyanidins monomers, dimers, trimers and tetramers, both galloylated or non-galloylated are not relevant compounds for the perceived astringency of the fractions, while cis-aconitic acid, and secondarily vainillic, and syringic acids and ethyl syringate, are the most important molecules driving astringency in two of the fractions (F5 and F6). The identity of the chemicals responsible for the astringency of the third fraction could be assigned to some proanthocyanidins (higher than the tetramer) capable to precipitate with ovalbumin. 2010 Elsevier B.V. All rights reserved.

  5. Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars.

    PubMed

    Michelin, Michele; Ruiz, Héctor A; Polizeli, Maria de Lourdes T M; Teixeira, José A

    2018-01-01

    This work presents an integrated and multi-step approach for the recovery and/or application of the lignocellulosic fractions from corncob in the production of high value added compounds as xylo-oligosaccharides, enzymes, fermentable sugars, and lignin in terms of biorefinery concept. For that, liquid hot water followed by enzymatic hydrolysis were used. Liquid hot water was performed using different residence times (10-50min) and holding temperature (180-200°C), corresponding to severities (log(R 0 )) of 3.36-4.64. The most severe conditions showed higher xylo-oligosaccharides extraction (maximum of 93%) into the hydrolysates and higher recovery of cellulose on pretreated solids (maximum of 65%). Subsequently, hydrolysates and solids were used in the production of xylanases and cellulases, respectively, as well as, pretreated solids were also subjected to enzymatic hydrolysis for the recovery of lignin and fermentable sugars from cellulose. Maximum glucose yield (100%) was achieved for solids pretreated at log(R 0 ) of 4.42 and 5% solid loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment.

    PubMed

    Peleteiro, Susana; Rivas, Sandra; Alonso, José L; Santos, Valentín; Parajó, Juan C

    2015-09-23

    Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.

  7. Characterization of Lignin Streams during Bionic Liquid-Based Pretreatment from Grass, Hardwood, and Softwood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Tanmoy; Papa, Gabriella; Wang, Eileen

    Delignification as a function of ionic liquid (IL) pretreatment has potential in terms of recovering and converting the fractionated lignin streams to renewable products. Renewable biogenic ionic liquids, or bionic liquids (eg. cholinium lysinate, ([Ch][Lys])), provide opportunities in terms of effective, economic and sustainable lignocellulosic biomass pretreatment. We have evaluated [Ch][Lys] pretreatment in terms of sugar and lignin yields for three different feedstocks: switchgrass, eucalyptus, and pine. Four lignin streams isolated during [Ch][Lys] pretreatment and enzymatic hydrolysis were comprehensively analyzed, tracking their changes in physical-chemical structures. We observed changes in major lignin linkages and lignin aromatics units (p-hydroxyphenyl (H), guaiacylmore » (G), and syringil (S)) that occurred during pretreatment. A compositional analysis of the different process streams and a comprehensive mass balance in conjunction with multiple analytical techniques (Nuclear Magnetic Resonance (NMR), Mass Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Gel Permeation Chromatography (GPC)) is presented. Qualitative and quantitative analyses indicates that there are significantly more lignin-carbohydrate interactions for G-rich lignin in pine. The lignin removal and extent of lignin depolymerization for switchgrass and eucalyptus were higher than pine, and follows the order of switchgrass > eucalyptus > pine. The recovered lignin from pretreated liquid contained a lower relative amount of carbohydrate signals than raw biomass, indicating a high degree of dissociation of lignin carbohydrate complex (LCC) linkages for all samples analyzed. The insights gained from this work contribute to better understanding of physiochemical properties of lignin streams generated during [Ch][Lys] pretreatment, offering a starting point for lignin valorization strategies.« less

  8. 40 CFR 98.230 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gas liquids (NGLs) and/or other non-methane gases and liquids from a stream of produced natural gas... removal, separation of natural gas liquids, sulfur and carbon dioxide removal, fractionation of NGLs, or... include equipment for liquids separation, natural gas dehydration, and tanks for the storage of water and...

  9. Solubility of CO2 and N2O in an Imidazolium-Based Lipidic Ionic Liquid.

    PubMed

    Langham, Jacob V; O'Brien, Richard A; Davis, James H; West, Kevin N

    2016-10-13

    Imidazolium-based ionic liquids have been extensively studied for their ability to dissolve a wide variety of gases and for their potential to be used as separation agents in industrial processes. For many short chain 1-alkyl-3-methylimidazolium bistriflimde salts, CO 2 and N 2 O solublities are very similar. In this work, the solubility of CO 2 and N 2 O has been measured in the lipidic ionic liquid 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide ([oleyl-mim][NTf 2 ]) at 298 K, 310 and 323 K up to ∼2 MPa. N 2 O was found to have higher solubility than CO 2 under the same conditions, similar to the behavior observed when olive oil, a natural lipid, was the liquid solvent. However, the solubility of each gas on a mole fraction basis is lower in the ionic liquid than in olive oil. Comparison of the gas solubilities on a mass fraction basis demonstrates that CO 2 solubility is nearly identical in both liquids; N 2 O solubility is higher than CO 2 for both liquids, but more so in the olive oil. The difference is attributed to the high mass fraction of the olive oil that is lipid-like in character. The differential solubility of N 2 O/CO 2 in this ionic liquid, in contrast to that of shorter chain 1-alkyl-3-methylimidazolium bistriflimide salts, gives physical insight into the solvent properties of this class of ionic liquids and provides further support for their lipid-like character.

  10. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity.

    PubMed

    Wang, Huizhu; Li, Yan; Ren, Zhihui; Cong, Zhongcheng; Chen, Mengjie; Shi, Lin; Han, Xu; Pei, Jin

    2018-06-01

    An extraction assay applying microwave-assisted enzymatic treatment for polysaccharides in Rosa roxburghii was developed using response surface methodology. The process parameters were optimized using Plackett-Burman (PB) design and central composite design to enhance the Rosa roxburghii polysaccharide extraction yield. Specific conditions (microwave power, 575W; microwave time, 18min; liquid-to-material ratio, 13.5:1mL/g; and enzyme dose, 6.5g/mL) generated an experimental yield of 36.21±0.62%, which closely agreed with the predicted value of 35.75%. Purification with a DEAE-52 cellulose column generated two fractions, PR-1 (from 6.2×10 3 to 7.4KDa) and PR-2 (from 559.8 to 106.6KDa). Subsequently, the antioxidant activity and α-d-glucosidase inhibitory activity of the two polysaccharide fractions were assessed; PR-1 exhibited stronger antioxidant activity and α-d-glucosidase inhibitory activity than PR-2. Finally, the monosaccharide composition of PR-1 was determined by HPLC using a 1-phenyl-3-methyl-5-pyrazolone precolumn derivatization method. The result showed that PR-1 contained mannose, ribose, rhamnose, glucosamine hydrochloride, glucuronic acid, galacturonic acid, glucose, galactose, arabinose and fucose with molar percentages of 2.1%, 0.54%, 2.1%, 0.26%, 1.5%, 22.7%, 24.0%, 26.4%, 19.6% and 0.89%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  12. Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.

    2007-04-01

    The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5-10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.

  13. Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.

    2006-11-01

    The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (drops and ice particles) as well as interstitial aerosol particles; an interstitial inlet which collected only interstitial (unactivated) aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the cloud phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~10% in mixed-phase clouds with IMF>0.2. This is explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.

  14. An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Hare, J. E.; Snider, J. B.

    1990-08-01

    As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.

  15. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm - Agronomical and environmental implications.

    PubMed

    Sáez, José A; Clemente, Rafael; Bustamante, M Ángeles; Yañez, David; Bernal, M Pilar

    2017-05-01

    The changes in livestock production systems towards intensification frequently lead to an excess of manure generation with respect to the agricultural land available for its soil application. However, treatment technologies can help in the management of manures, especially in N-surplus areas. An integrated slurry treatment system based on solid-liquid separation, aerobic treatment of the liquid and composting the solid fraction was evaluated in a pig farm (sows and piglets) in the South of Spain. Solid fraction separation using a filter band connected to a screw press had low efficiency (38%), which was greatly improved incorporating a rotatory sieve (61%). The depuration system was very efficient for the liquid, with total removal of 84% total solids, 87% volatile solids, and 98% phosphorus. Two composting systems were tested through mechanical turning of: 1- a mixture of solid fraction stored for 1 month after solid-liquid separation and cereal straw; 2- recently-separated solid fraction mixed with cotton gin waste. System 2 was recommended for the farm, as it exhibited a fast temperature rise and a long thermophilic phase to ensure compost sanitisation, and high recovery of nutrients (TN 77%, P and K > 85%) and organic matter (45%). The composts obtained were mature, stable and showed a high degree of humification of their organic matter, absence of phytotoxicity and concentrations of nutrients similar to other composts from pig manure or separated slurry solids. However, the introduction of slurry from piglets into the solid-liquid separation system should be avoided in order to reduce the content of Zn in the compost, which lowers its quality. The slurry separation followed by composting of the solid fraction using a passive windrow system, and aeration of the liquid phase, was the most recommendable procedure for the reduction of GHG emissions on the farm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. One-Step Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1984-01-01

    Steam injection improves yield and quality of product. Single step process for liquefying coal increases liquid yield and reduces hydrogen consumption. Principal difference between this and earlier processes includes injection of steam into reactor. Steam lowers viscosity of liquid product, so further upgrading unnecessary.

  17. Role of foam drainage in producing protein aggregates in foam fractionation.

    PubMed

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The use of liquid latex for soot removal from fire scenes and attempted fingerprint development with Ninhydrin.

    PubMed

    Clutter, Susan Wright; Bailey, Robert; Everly, Jeff C; Mercer, Karl

    2009-11-01

    Throughout the United States, clearance rates for arson cases remain low due to fire's destructive nature, subsequent suppression, and a misconception by investigators that no forensic evidence remains. Recent research shows that fire scenes can yield fingerprints if soot layers are removed prior to using available fingerprinting processes. An experiment applying liquid latex to sooted surfaces was conducted to assess its potential to remove soot and yield fingerprints after the dried latex was peeled. Latent fingerprints were applied to glass and drywall surfaces, sooted in a controlled burn, and cooled. Liquid latex was sprayed on, dried, and peeled. Results yielded usable prints within the soot prior to removal techniques, but no further fingerprint enhancement was noted with Ninhydrin. Field studies using liquid latex will be continued by the (US) Virginia Fire Marshal Academy but it appears that liquid latex application is a suitable soot removal method for forensic applications.

  19. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    NASA Astrophysics Data System (ADS)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  20. Detection of radiation-induced hydrocarbons in baked sponged cake prepared with irradiated liquid egg

    NASA Astrophysics Data System (ADS)

    Schulzki, G.; Spiegelberg, A.; Bögl, K. W.; Schreiber, G. A.

    1995-02-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg.

  1. Branching fractions for transitions of {psi}(2S) to J/{psi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez, H.; Ge, J. Y.; Miller, D. H.

    2008-07-01

    We report determination of branching fractions for the decays {psi}(2S){yields}h+J/{psi}, where h=any, {pi}{sup +}{pi}{sup -}, {pi}{sup 0}{pi}{sup 0}, {eta}, {pi}{sup 0}, and {gamma}{gamma} through {chi}{sub c0,1,2}. These measurements use 27M {psi}(2S) decays produced in e{sup +}e{sup -} collision data collected with the CLEO detector. The resulting branching fractions and ratios thereof improve upon previously achieved precision in all cases, and in combination with other measurements permit determination of B({chi}{sub cJ}{yields}{gamma}J/{psi}) and B({psi}(2S){yields}light hadrons)

  2. An insight into Newton's cooling law using fractional calculus

    NASA Astrophysics Data System (ADS)

    Mondol, Adreja; Gupta, Rivu; Das, Shantanu; Dutta, Tapati

    2018-02-01

    For small temperature differences between a heated body and its environment, Newton's law of cooling predicts that the instantaneous rate of change of temperature of any heated body with respect to time is proportional to the difference in temperature of the body with the ambient, time being measured in integer units. Our experiments on the cooling of different liquids (water, mustard oil, and mercury) did not fit the theoretical predictions of Newton's law of cooling in this form. The solution was done using both Caputo and Riemann-Liouville type fractional derivatives to check if natural phenomena showed any preference in mathematics. In both cases, we find that cooling of liquids has an identical value of the fractional derivative of time that increases with the viscosity of the liquid. On the other hand, the cooling studies on metal alloys could be fitted exactly by integer order time derivative equations. The proportionality constant between heat flux and temperature difference was examined with respect to variations in the depth of liquid and exposed surface area. A critical combination of these two parameters signals a change in the mode of heat transfer within liquids. The equivalence between the proportionality constants for the Caputo and Riemann-Liouville type derivatives is established.

  3. The effects of sulfur on carbon partitioning and solubility in high pressure-temperature alloy-silicate systems: Implications for fractionation of carbon and sulfur during accretion and core formation of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Tsuno, K.; Dasgupta, R.; Grewal, D. S.

    2017-12-01

    Constraining the carbon (C) fractionation between the silicate magma ocean (MO) and core-forming alloy liquid is required to determine the origin and evolution of C between reservoirs such as atmosphere, crust, mantle, and core of terrestrial planets. [1]. Alloy-silicate partitioning experiments of C have shown that preferential fractionation of C into the alloy liquid would have left the bulk silicate Earth (BSE) devoid of C [2-4]. Merger of a sulfur (S)-rich differentiated planetary embryo into the proto-Earth could have supplied almost the entire C budget of the present-day BSE [5], however, experimental data on the systematic effect of S on C solubility in Fe-Ni alloy liquid and its partitioning between the alloy liquid and silicate melt are lacking. We have performed multi anvil experiments with alloy-silicate±glassy carbon mixtures at 6-13 GPa and 1800-2000 °C, fO2 of ΔIW of -0.4 to -2.3, using graphite or MgO capsules and varying alloy S content from 10 to 36 wt.%. We find that C content of the alloy liquid decreases from 4.6 to 0.2 wt.% with increasing alloy S content of 10 to 36 wt.%. Temperature has a small positive effect and pressure has little effect on alloy C solubility. Alloy-silicate partition coefficient of C also decreases with increasing alloy S content at a given P-T-fO2. We used the data to quantify the distribution of C between the silicate MO and core-forming alloy liquid of an S-rich planetary embryo. The model calculations using our data suggest that the addition of a relatively oxidized, C-poor ( 0.3 wt.%) and S-rich ( 3 wt.%) large embryo (6-20% of the present-day Earth mass) to a volatile-poor growing Earth can establish the C and S contents [6, 7] and C/S ratio [8] in BSE. The resulting core composition after the accretion and core formation process is estimated to be C- and S-poor ( 0.05 wt.% and 0.6 wt.%, respectively). On the other hand, a single stage core formation on Mars that results in a core with 8-10 wt.% S can yield a mantle with terrestrial-mantle like carbon abundance if the bulk Mars contains 0.6 wt.% C and 1.5-1.7 wt.% S. [1] Dasgupta (2013) RiMG. [2] Dasgupta et al. (2013) GCA. [3] Chi et al. (2014) GCA. [4] Li et al. (2015) EPSL. [5] Li et al. (2016) Nat. Geo. [6] Dasgupta & Hirschmann (2010) EPSL. [7] Palme & O'Neill (2013), Treat. Geochem. [8] Hirschmann (2016) Am Min.

  4. 19 CFR 159.3 - Rounding of fractions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Rounding of fractions. 159.3 Section 159.3 Customs... (CONTINUED) LIQUIDATION OF DUTIES General Provisions § 159.3 Rounding of fractions. (a) Value. In the... cents or more, the lower fractions shall be dropped, and if it is necessary to take up as whole dollars...

  5. Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.

    PubMed

    Carrier, Marion; Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony

    2017-08-24

    The transformation of lignocellulosic biomass into bio-based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic-rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio-compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13 C-enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of "primary" fast pyrolysis volatiles detected by using GC-MS between two small-scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid-state 13 C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull.) Persoon (Lion's Mane Mushroom)

    PubMed Central

    Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases. PMID:24959591

  7. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion's mane mushroom).

    PubMed

    Rahman, Mohammad Azizur; Abdullah, Noorlidah; Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  8. Purification and identification of corn peptides that facilitate alcohol metabolism by semi-preparative high-performance liquid chromatography and nano liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Ma, Zhi-Li; Hou, Tao; Shi, Wen; Liu, Wei-Wei; Ibrahim, Salam A; He, Hui

    2016-11-01

    In this study, peptides that facilitate alcohol metabolism were purified and identified from corn protein hydrolysates. The ultra-filtered fraction with a molecular weight < 3 kDa (F3) potential activity was separated into six fractions (F3-H1-F3-H6) by semi-preparative high-performance liquid chromatography. Among the resultant six fractions, F3-H4 and F3-H5 exhibited the highest ability to eliminate alcohol in vivo. A total of 16 peptides with strong signal values were identified from F3-H4 and F3-H5 fractions by nano liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Several identified peptides were then selected and synthesized to determine their potential to facilitate alcohol metabolism. We found that Leu-Leu and Pro-Phe were the key structure units in Gln-Leu-Leu-Pro-Phe responsible for this peptide's ability to facilitate alcohol metabolism. However, the role of Leu-Leu and Pro-Phe may be affected by peptide chain length and hydrophobic properties. Our results have thus provided some insight into the study of the structure-activity relationships of corn peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Estimation of liquid volume fraction using ultrasound transit time spectroscopy

    NASA Astrophysics Data System (ADS)

    Al-Qahtani, Saeed M.; Langton, Christian M.

    2016-12-01

    It has recently been proposed that the propagation of an ultrasound wave through complex structures, consisting of two-materials of differing ultrasound velocity, may be considered as an array of parallel ‘sonic rays’, the transit time of each determined by their relative proportion; being a minimum (t min) in entire higher velocity material, and a maximum (t max) in entire lower velocity material. An ultrasound transit time spectrum (UTTS) describes the proportion of sonic rays at an individual transit time. It has previously been demonstrated that the solid volume fraction of a solid:liquid composite, specifically acrylic step-wedges immersed in water, may be reliably estimated from the UTTS. The aim of this research was to investigate the hypothesis that the volume fraction of a two-component liquid mixture, of unequal ultrasound velocity, may also be estimated by UTTS. A through-transmission technique incorporating two 1 MHz ultrasound transducers within a horizontally-aligned cylindrical tube-housing was utilised, the proportion of silicone oil to water being varied from 0% to 100%. The liquid volume fraction was estimated from the UTTS at each composition, the coefficient of determination (R 2%) being 98.9  ±  0.7%. The analysis incorporated a novel signal amplitude normalisation technique to compensate for absorption within the silicone oil. It is therefore envisaged that the parallel sonic ray concept and the derived UTTS may be further applied to the quantification of liquid mixture composition assessment.

  10. Analysis of major antioxidants from extracts of Myrmecodia pendans by UV/visible spectrophotometer, liquid chromatography/tandem mass spectrometry, and high-performance liquid chromatography/UV techniques.

    PubMed

    Engida, Adam Mekonnen; Faika, Sitti; Nguyen-Thi, Bich Thuyen; Ju, Yi-Hsu

    2015-06-01

    In the present work, heat reflux extraction with ethanol/water (80:20; v/v) as the solvent was used to extract antioxidants from Myrmecodia pendans. The crude extract (CE) was fractionated using hexane and ethyl acetate. Ethyl acetate fraction (EAF) and aqueous fraction were collected. Antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl-radical radical and ferric reducing power of the CE, EAF, and aqueous fraction were evaluated. EAF showed comparable antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl-radical radical and ferric reducing power to those of the CE. UV/visible, liquid chromatography/electrospray ionization/tandem mass spectrometry, and high-performance liquid chromatography were employed for identifying the major antioxidant compounds in the EAF. Three major phenolic compounds (rosmarinic acid, procyanidin B1, and polymer of procyanidin B1) were identified. The first two compounds were confirmed and quantified by high-performance liquid chromatography using authentic standards, but confirmation of the third compound was hampered by a lack of commercial standard. Concentrations of rosmarinic acid and procyanidin B1 in the EAF were found to be 20.688 ± 1.573 mg/g dry sample and 3.236 ± 0.280 mg/g dry sample, respectively. All these three compounds are reported for the first time in sarang semut. Copyright © 2014. Published by Elsevier B.V.

  11. Identification of Antidiabetic Compounds from Polyphenolic-rich Fractions of Bulbine abyssinica A. Rich Leaves

    PubMed Central

    Odeyemi, Samuel Wale; Afolayan, Anthony Jiede

    2018-01-01

    Background: Bulbine abyssinica has been reported to possess a variety of pharmacological activities traditionally. Previous work suggested its antidiabetic properties, but information on the antidiabetic compounds is still lacking. Objective: The present research exertion was aimed to isolate and identify biologically active polyphenols from B. abyssinica leaves and to evaluate their efficacy on carbohydrate digesting enzymes. Materials and Methods: Fractionation of the polyphenolic contents from the methanolic extract of B. abyssinica leaves was executed by the silica gel column chromatography to yield different fractions. The antioxidant activities of these fractions were carried out against 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl radicals, and ferric ion-reducing antioxidant power (FRAP). In vitro antidiabetic experimentation was performed by evaluating the α-amylase and α-glucosidase inhibitory capacity. The isolated polyphenols were then identified using liquid chromatography and mass spectroscopy (LC/MS). Results: Out of the eight polyphenolic fractions (BAL 1–8), BAL-4 has the highest inhibitory activity against ABTS radicals whereas BAL-6 showed potent ferric ion-reducing capacity. BAL-5 was the most effective fraction with antidiabetic activity with IC50of 140.0 and 68.58 ± 3.2 μg/ml for α-amylase and α-glucosidase inhibitory activities, respectively. All the fractions competitively inhibited α-amylase, BAL-5 and BAL-6 also inhibited α-glucosidase competitively, while BAL-4 and BAL-1 exhibited noncompetitive and near competitive inhibitions against α-glucosidase, respectively. The LC/MS analysis revealed the presence of carvone in all the fractions. Conclusions: The present study demonstrates the antioxidant and antidiabetic activities of the isolated polyphenols from B. abyssinica. SUMMARY Polyphenols were successfully isolated and identified from Bulbine abyssinica leavesThe isolated polyphenols are biologically active with high antioxidant as well as inhibitor of carbohydrate-digesting enzymesB. abyssinica can be a good source of amylase and glucosidase inhibitorsB. abyssinica can be used as complementary or alternative therapeutic agents especially for the treatment of diabetesCarvone, quercetin, and psoralen could be the compounds responsible for the α-amylase and α-glucosidase inhibitory activities. Abbreviations Used: ABTS: 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), DPPH: 2,2-diphenyl-1-picrylhydrazyl, FRAP: Ferric ion-reducing antioxidant power, LC/MS: Liquid chromatography and mass spectroscopy, AGEs: Advanced glycation end products, TLC: Thin-layer chromatography, MeOH: Methanol, PNP-G: ρ-Nitrophenyl-α-D-Glucoside, R2: Coefficient of determination, mgQE: Milligram quercetin equivalent, mgTAE: Milligram tannic acid equivalent, mgCE: Milligram catechin equivalent, g: Gram PMID:29568191

  12. Molecularly imprinted composite cryogels for hemoglobin depletion from human blood.

    PubMed

    Baydemir, Gözde; Andaç, Müge; Perçin, Işιk; Derazshamshir, Ali; Denizli, Adil

    2014-09-01

    A molecularly imprinted composite cryogel (MICC) was prepared for depletion of hemoglobin from human blood prior to use in proteome applications. Poly(hydroxyethyl methacrylate) based MICC was prepared with high gel fraction yields up to 90%, and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, swelling studies, flow dynamics and surface area measurements. MICC exhibited a high binding capacity and selectivity for hemoglobin in the presence of immunoglobulin G, albumin and myoglobin. MICC column was successfully applied in fast protein liquid chromatography system for selective depletion of hemoglobin for human blood. The depletion ratio was highly increased by embedding microspheres into the cryogel (93.2%). Finally, MICC can be reused many times with no apparent decrease in hemoglobin adsorption capacity. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Gaalas/Gaas Solar Cell Process Study

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K. I.

    1980-01-01

    Available information on liquid phase, vapor phase (including chemical vapor deposition) and molecular beam epitaxy growth procedures that could be used to fabricate single crystal, heteroface, (AlGa) As/GaAs solar cells, for space applications is summarized. A comparison of the basic cost elements of the epitaxy growth processes shows that the current infinite melt LPE process has the lower cost per cell for an annual production rate of 10,000 cells. The metal organic chemical vapor deposition (MO-CVD) process has the potential for low cost production of solar cells but there is currently a significant uncertainty in process yield, i.e., the fraction of active material in the input gas stream that ends up in the cell. Additional work is needed to optimize and document the process parameters for the MO-CVD process.

  14. Microbial screening test for lignite degradation. Quarterly progress report No. 4, October-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Chemical oxidation of lignite by means of hydrogen peroxide - acetic acid was executed. Methanol fractionation of the oxidized product yielded 76.4% methanol solubles, 9.3% methanol insolubles and 11.2% CO/sub 2/. Biodegradation of the methanol fraction by soil bacteria was found to be positive as demonstrated by gel permeation chromatography (GPC). The shift of the average molecular weight throughout biodegradation was estimated to be from 310 g/mole, to 243 g/mole, zero day and four weeks respectively. Biodegradation of lignitic substrates, benzene - methanol fraction (A - 1), aqueous alkaline fraction (A - 2), clean lignite residue (A - 3), rawmore » lignite, and methanol soluble fraction after oxidation, by means of oil - field soil bacteria and Polyporus versicolor ATCC 12679 was attempted. All previous mentioned lignitic substrates yielded positive results for oil-field soil bacteria, while A - 2 fraction and raw lignite yielded positive results for P. versicolor. Unidentified fungi strains, N 1, L 1, and L 2 were also tested on lignitic substrates. Mild growth was observed in these cases.« less

  15. 40 CFR 60.5430 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... natural gas liquids from field gas, the fractionation of the liquids into natural gas products, or other... gas unit means a unit used to cool natural gas to the point at which it is condensed into a liquid... pressurized natural gas. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and...

  16. Preparative isolation, fast centrifugal partition chromatography purification and biological activity of cajaflavanone from Derris ferruginea stems.

    PubMed

    Morel, Sylvie; Landreau, Anne; Nguyen, Van Hung; Derbré, Séverine; Grellier, Philippe; Pape, Patrice Le; Pagniez, Fabrice; Litaudon, Marc; Richomme, Pascal

    2012-01-01

    The Derris genus is known to contain flavonoid derivatives, including prenylated flavanones and isoflavonoids such as rotenoids, which are generally associated with significant biological activity. To develop an efficient preparative isolation procedure for bioactive cajaflavanone. Fast centrifugal partition chromatography (FCPC) was optimised to purify cajaflavanone from Derris ferruginea stems in a single step as compared to fractionation from the cyclohexane extract by successive conventional solid-liquid chromatography procedures. The purification yield, purity, time and solvent consumption per procedure are described. The anti-fungal, anti-bacterial, anti-leishmanial, anti-plasmodial, anti-oxidant activities and the inhibition of advanced glycation end-products (AGEs) by cajaflavanone accumulation are described. FCPC enabled cajaflavanone purification in a single separation step, yielding sufficient quantities to perform in vitro biological screening. Interestingly, cajaflavanone had an inhibitory effect on the formation of AGEs, without displaying any in vitro anti-oxidant activity. A simple and efficient procedure, in comparison with other preparative methods, for bioactive cajaflavone purification has been developed using FCPC. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Boiling of an emulsion in a yield stress fluid.

    PubMed

    Guéna, Geoffroy; Wang, Ji; d'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence

    2010-11-01

    We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.

  18. Process Design and Economics of On-Site Cellulase Production on Various Carbon Sources in a Softwood-Based Ethanol Plant

    PubMed Central

    Barta, Zsolt; Kovacs, Krisztina; Reczey, Kati; Zacchi, Guido

    2010-01-01

    On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5–16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60–78% of the enzyme production cost, which was in the range of 0.42–0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative. PMID:21048869

  19. Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant.

    PubMed

    Barta, Zsolt; Kovacs, Krisztina; Reczey, Kati; Zacchi, Guido

    2010-06-28

    On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO(2)-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5-16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60-78% of the enzyme production cost, which was in the range of 0.42-0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative.

  20. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.

    PubMed

    Hernández, D; Riaño, B; Coca, M; García-González, M C

    2013-05-01

    Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 24±2.7 °C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Direct Contact Heat Exchange Interfacial Phenomena for Liquid Metal Reactors: Part II - Void Fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, S.; Liu, X.; Anderson, M.H.

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area can give rise to large heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In order to investigate the interfacial transport phenomena, heat transfer and operational stability of direct liquid-liquid contact, amore » series of experiments are being performed in a 1-d test facility at Argonne National Laboratory and a 2-d experimental facility at UW-Madison. Each of the experimental facilities primarily consist of a liquid-metal melt chamber, heated test section (10 cm diameter tube for 1-d facility and 10 cm 50 cm rectangle for 2-d facility), water injection system and steam suppression tank. This paper is part II which, primarily addresses results and analysis of a set of preliminary experiments and void fraction measurements conducted in the 2-d facility at UW-Madison, part I deals with the heat transfer in the 1-d test facility at Argonne National Laboratory. A real-time high energy X-ray imaging system was developed and utilized to visualize the multiphase flow and measure line-average local void fractions, time-dependent void fraction distribution as well as estimates of the vapor bubble sizes and velocities. These measurements allowed us to determine the volumetric heat transfer coefficient and gain insight into the local heat transfer mechanisms. In this study, the images were captured at frame rates of 100 fps with spatial resolution of about 7 mm with a full-field view of a 15 cm square and five different positions along the test section height. The full-field average void fraction increases rapidly to about 15% in these preliminary tests, with the apparent boiling length of less than 20 cm. The volumetric heat transfer coefficient between the liquid metal and water are compared to the CRIEPI data, the only prior data for direct contact heat exchange for these liquid metal/water systems. (authors)« less

  2. Disintegration of the agricultural by-product wheat bran under subcritical conditions.

    PubMed

    Reisinger, Michael; Tirpanalan, Özge; Pruksasri, Suwattana; Kneifel, Wolfgang; Novalin, Senad

    2018-02-10

    The disintegration of destarched wheat bran in water and sulfuric acid (pH 3) under subcritical conditions (275-300 °C) and at short reaction times (1-4 min) was investigated. A cascade process comprising a stepwise separation of the liquid was applied to reduce the formation of undesired degradation products. The highest degree of biomass disintegration (67% dry mass solubilization) was achieved by application of a cascade process at 275 °C (pH 3). Regarding the dissolution of carbohydrates (monomeric and oligomeric form), the total glucose yields remained below 60%, while the total xylose and arabinose yields were about 76% and 67%. Approximately 74% of the protein and 95% of the mineral fraction could be extracted. The application of the cascade process enabled a substantially reduced formation of degradation products. When operating hydrothermally and subcritically in order to avoid some problematic aspects of a biorefinery, an extensive disintegration and monomerization of wheat bran and its constituents remains difficult even under the tested conditions (300 °C, pH 3). However, the applied cascade process proved to be useful to increase the yields and to substantially reduce the formation of undesired degradation products. Despite this fact, increased water consumption has to be conceded. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. First measurement of the ratio of branching fractions B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; Maki, T.; Mehtala, P.

    2009-02-01

    This article presents the first measurement of the ratio of branching fractions B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -}). Measurements in two control samples using the same technique B(B{sup 0}{yields}D{sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D{sup +}{pi}{sup -}) and B(B{sup 0}{yields}D*(2010){sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D*(2010){sup +}{pi}{sup -}) are also reported. The analysis uses data from an integrated luminosity of approximately 172 pb{sup -1} of pp collisions at {radical}(s)=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The relative branching fractions are measured to be (B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{supmore » +}{pi}{sup -}))=16.6{+-}3.0(stat){+-}1.0(syst)(+2.6/-3.4)(PDG){+-}0.3 (EBR), (B(B{sup 0}{yields}D{sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D{sup +}{pi}{sup -}))9.9{+-}1.0(stat){+-}0.6(syst){+-}0.4(PDG){+-}0.5(EBR), and (B(B{sup 0}{yields}D*(2010){sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D*(2010){sup +}{pi}{sup -}))=16.5{+-}2.3(stat){+-} 0.6(syst){+-}0.5(PDG){+-}0.8(EBR). The uncertainties are from statistics (stat), internal systematics (syst), world averages of measurements published by the Particle Data Group or subsidiary measurements in this analysis (PDG), and unmeasured branching fractions estimated from theory (EBR), respectively. This article also presents measurements of the branching fractions of four new {lambda}{sub b}{sup 0} semileptonic decays: {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}(2595){sup +}{mu}{sup -}{nu}{sub {mu}}, {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}(2625){sup +}{mu}{sup -}{nu}{sub {mu}}, {lambda}{sub b}{sup 0}{yields}{sigma}{sub c}(2455){sup 0}{pi}{sup +}{mu}{sup -}{nu}{sub {mu}}, and {lambda}{sub b}{sup 0}{yields}{sigma}{sub c}(2455){sup ++}{pi}{sup -}{mu}{sup -}{nu}{sub {mu}}, relative to the branching fraction of the {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}} decay. Finally, the transverse-momentum distribution of {lambda}{sub b}{sup 0} baryons produced in pp collisions is measured and found to be significantly different from that of B{sup 0} mesons, which results in a modification in the production cross-section ratio {sigma}{sub {lambda}{sub b}{sup 0}}/{sigma}{sub B{sup 0}} with respect to the CDF I measurement.« less

  4. Measurement of light and charge yield of low-energy electronic recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Goetzke, L. W.; Aprile, E.; Anthony, M.; Plante, G.; Weber, M.

    2017-11-01

    The dependence of the light and charge yield of liquid xenon on the applied electric field and recoil energy is important for dark matter detectors using liquid xenon time projections chambers. Few measurements have been made of this field dependence at recoil energies less than 10 keV. In this paper, we present results of such measurements using a specialized detector. Recoil energies are determined via the Compton coincidence technique at four drift fields relevant for liquid xenon dark matter detectors: 0.19, 0.48, 1.02, and 2.32 kV /cm . Mean recoil energies down to 1 keV were measured with unprecedented precision. We find that the charge and light yield are anticorrelated above ˜3 keV and that the field dependence becomes negligible below ˜6 keV . However, below 3 keV, we find a charge yield significantly higher than expectation and a reconstructed energy deviating from linearity.

  5. Branching fractions for {chi}{sub cJ{yields}}pp{pi}{sup 0}, pp{eta}, and pp{omega}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.

    2010-07-01

    Using a sample of 25.9x10{sup 6} {psi}(2S) decays acquired with the CLEO-c detector at the CESR e{sup +}e{sup -} collider, we report branching fractions for the decays {chi}{sub cJ{yields}}pp{pi}{sup 0}, pp{eta}, and pp{omega}, with J=0, 1, 2. Our results for B({chi}{sub cJ{yields}}pp{pi}{sup 0}) and B({chi}{sub cJ{yields}}pp{eta}) are consistent with, but more precise than, previous measurements. Furthermore, we include the first measurement of B({chi}{sub cJ{yields}}pp{omega}).

  6. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates.

    PubMed

    Holzammer, Christine; Schicks, Judith M; Will, Stefan; Braeuer, Andreas S

    2017-09-07

    We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO 2 ) gas hydrates using Raman spectroscopy. The CO 2 hydrates were formed from sodium chloride/water solutions with salinities of 0-10 wt %, which were pressurized with liquid CO 2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO 2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, x H , and the fraction of the dispersed liquid water-rich phase, x L , from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate x H contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO 2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO 2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO 2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect.

  7. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.

    PubMed

    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun

    2015-12-01

    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Oxygen quenching in a LAB based liquid scintillator and the nitrogen bubbling model

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Lin; Deng, Jing-Shan; Wang, Nai-Yan

    2010-05-01

    The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as the λ-shifter) is studied by measuring the light yield as a function of the nitrogen bubbling time. It is shown that the light yield of the fully purged liquid scintillator is increased by 11% at room temperature and the room atmospheric pressure. A simple nitrogen bubbling model is proposed to describe the relationship between the relative light yield (oxygen quenching factor) and the bubbling time.

  9. Study of the physicochemical effects on the separation of the non-metallic fraction from printed circuit boards by inverse flotation.

    PubMed

    Flores-Campos, R; Estrada-Ruiz, R H; Velarde-Sánchez, E J

    2017-11-01

    Recycling printed circuit boards using green technology is increasingly important due to the metals these contain and the environmental care that must be taken when separating the different materials. Inverse flotation is a process that can be considered a Green Technology, which separates metallic from non-metallic fractions. The degree of separation depends on how much material is adhered to air bubbles. The contact angle measurement allows to determine, in an easy way, whether the flotation process will occur or not and thus establish a material as hydrophobic or not. With the material directly obtained from the milling process, it was found that the contact angle of the non-metallic fraction-liquid-air system increases as temperature increases. In the same way, the increments in concentration of frother in the liquid increase the contact angle of the non-metallic fraction-liquid-air system. 10ppm of Methyl Isobutyl Carbinol provides the highest contact angle as well as the highest material charging in the bubble. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies.

    PubMed

    Hargreaves, Paulo Iiboshi; Barcelos, Carolina Araújo; da Costa, Antonio Carlos Augusto; Pereira, Nei

    2013-04-01

    This study evaluated the potential of Kappaphycus alvarezii as feedstock for ethanol production, i.e. ethanol 3G. First, aquatic biomass was subjected to a diluted acid pretreatment. This acid pretreatment generated two streams--a galactose-containing liquid fraction and a cellulose-containing solid fraction, which were investigated to determine their fermentability with the following strategies: a single-stream process (simultaneous saccharification and co-fermentation (SSCF) of both fractions altogether), which achieved 64.3 g L(-1) of ethanol, and a two-stream process (fractions were fermented separately), which resulted in 38 g L(-1) of ethanol from the liquid fraction and 53.0 g L(-1) from the simultaneous saccharification and fermentation (SSF) of the solid fraction. Based on the average fermentable carbohydrate concentration, it was possible to obtain 105 L of ethanol per ton of dry seaweed. These preliminaries results indicate that the use of the macro-algae K. alvarezii has a good potential feedstock for bioethanol production. Copyright © 2013. Published by Elsevier Ltd.

  11. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2015-06-30

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  12. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2014-01-07

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  13. Proteolytic fragmentation and peptide mapping of human carboxyamidomethylated tracheobronchial mucin.

    PubMed

    Rose, M C; Kaufman, B; Martin, B M

    1989-05-15

    Human tracheobronchial mucin was isolated from lung mucosal gel by chromatography on Sepharose 4B in the presence of dissociating and reducing agents, and its thiol residues were carboxyamidomethylated with iodo[1(-14)C]acetamide. The 14C-carboxyamido-methylated mucin was purified by chromatography on Sepharose 2B. No low molecular weight components were detected by molecular sieve chromatography or polyacrylamide gel electrophoresis in the presence of dissociating and reducing agents or by analytical density centrifugation in CsCl/guanidinium chloride. After digestion of the purified 14C-mucin with trypsin-L-1-tosylamido-2-phenylethyl chloromethyl ketone, three fractions (TR-1, TR-2, and TR-3) were observed by chromatography on Sepharose 4B. TR-1, a 260-kDa mucin glycopeptide fragment, contained all of the neutral hexose and blood group activity and 20% of the radioactivity in the undigested mucin. TR-1 was refractory to a second incubation with trypsin but could be digested by papain or Pronase to a smaller mucin glycopeptide fraction, as judged by the slight decrease in apparent molecular weight on Sepharose CL-4B. These mucin glycopeptides contained approximately 50% of the radioactivity in the TR-1 fraction, indicating that the glycosylated domains of carboxyamidomethylated tracheobronchial mucin contained thiol residues. The remainder of the radioactivity from papain or Pronase digests of TR-1 eluted, like the TR-3 fractions, in the salt fraction on Sepharose CL-4B. Peptide mapping of the nonglycosylated TR-3 fraction by TLC and high voltage electrophoresis yielded six principal and several less intensely stained ninhydrin reactive components, with the radiolabel concentrated in one of the latter peptides. Peptide purification of the TR-3 fraction by high pressure liquid chromatography on a C18 reverse phase column demonstrated the presence of four major peptides, with TR-3A being the dominant component. The TR-3D peptide contained S-carboxy-aminomethylcysteine and had 69% sequence similarity to the sgs-7 salivary glue protein of Drosophila.

  14. Anomalous dynamic arrest of non-interacting spheres ("polymer") diluted in a hard-sphere ("colloid") liquid

    NASA Astrophysics Data System (ADS)

    Lázaro-Lázaro, E.; Moreno-Razo, J. A.; Medina-Noyola, M.

    2018-03-01

    Upon compression, the equilibrium hard-sphere liquid [pair potential uHS(r)] freezes at a packing fraction ϕf = 0.494 or, if crystallization is prevented, becomes metastable up to its glass transition at ϕg ≈ 0.58. Throughout the fluid regime (ϕ < ϕg), we are, thus, certain that this model liquid does not exhibit any form of kinetic arrest. If, however, a small portion of these spheres (packing fraction ϕ2 ≪ ϕ) happen to ignore each other [u22(r) = 0] but do not ignore the remaining "normal" hard spheres [u12(r) = u21(r) = u11(r) = uHS(r)], whose packing fraction is thus ϕ1 = ϕ - ϕ2, they run the risk of becoming dynamically arrested before they demix from the "normal" particles. This unexpected and counterintuitive scenario was first theoretically predicted and then confirmed by simulations.

  15. Contemporary Carbon Content of Bis (2-ethylhexyl) Phthalate in Butter

    PubMed Central

    Tong, T.; Ondov, J. M.; Buchholz, B. A.; VanDerveer, M. C.

    2016-01-01

    The fraction of naturally produced Bis (2-ethylhexyl) phthalate (DEHP), a ubiquitous plasticizer known to contaminate packaged foods, was determined for each of five 1.10 kg samples of unsalted market butter by accelerator mass spectrometry (AMS). After extraction and concentration enrichment with liquid-liquid extraction, flash column chromatography, and preparative-scale high performance liquid chromatography, each sample provided ≈250 µg extracts of DEHP with carbon purity ranging from 92.5±1.2% (n=3, 1σ) to 97.1±0.8% (n=3, 1σ) as measured with gas chromatography mass spectrometry (GC-MS). After corrections for method blank DEHP, co-eluting compounds, and unidentified carbon, the mean fraction of naturally produced DEHP in butter was determined to be 0.16±0.12 (n=5, 1σ). To our knowledge, this is the first report of the contemporary fraction of DEHP isolated from market butter in the U.S. PMID:26213077

  16. [Optimization of Polysaccharide Extraction from Spirodela polyrrhiza by Plackett-Burman Design Combined with Box-Behnken Response Surface Methodology].

    PubMed

    Jiang, Zheng; Wang, Hong; Wu, Qi-nan

    2015-06-01

    To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.

  17. Diesel production from lignocellulosic feed: the bioCRACK process

    PubMed Central

    Ritzberger, J.; Schwaiger, N.; Pucher, P.; Siebenhofer, M.

    2017-01-01

    The bioCRACK process is a promising technology for the production of second generation biofuels. During this process, biomass is pyrolized in vacuum gas oil and converted into gaseous, liquid and solid products. In cooperation with the Graz University of Technology, the liquid phase pyrolysis process was investigated by BDI – BioEnergy International AG at an industrial pilot plant, fully integrated in the OMV refinery in Vienna/Schwechat. The influence of various biogenous feedstocks and the influence of the temperature on the product distribution in the temperature range of 350°C to 390°C was studied. It was shown that the temperature has a major impact on the product formation. With rising temperature, the fraction of liquid products, namely liquid CHO-products, reaction water and hydrocarbons, increases and the fraction of biochar decreases. At 390°C, 39.8 wt% of biogenous carbon was transferred into a crude hydrocarbon fractions. The type of lignocellulosic feedstock has a minor impact on the process. The biomass liquefaction concept of the bioCRACK process was in pilot scale compatible with oil refinery processes. PMID:29291098

  18. Comparing volume of fluid and level set methods for evaporating liquid-gas flows

    NASA Astrophysics Data System (ADS)

    Palmore, John; Desjardins, Olivier

    2016-11-01

    This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.

  19. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOEpatents

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  20. Experimental determination of U and Th partitioning between clinopyroxene and natural and synthetic basaltic liquid

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Burnett, D. S.

    1992-01-01

    Experimental measurements of U and the partition coefficients between clinopyroxene and synthetic and natural basaltic liquid are presented. The results demonstrate that crystal-liquid U-Th fractionation is fO2-dependent and that U in terrestrial magmas is not entirely tetravalent. During partial melting, the liquid will have a Th/U ratio less than the clinopyroxene in the source. The observed U-238 - Th-230 disequilibrium in MORB requires that the partial melt should have a U/Th ratio greater than the bulk source and therefore cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant U-Th fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in the MORB source, the results indicate that U-238 - Th-230 disequilibrium in MORB may not be caused by partial melting at all.

  1. Enrichment desired quality chitosan fraction and advance yield by sequential static and static-dynamic supercritical CO2.

    PubMed

    Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang

    2015-11-20

    This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Longitudinal shifts in bacterial diversity and fermentation pattern in the rumen of steers grazing wheat pasture.

    PubMed

    Pitta, D W; Pinchak, W E; Dowd, S; Dorton, K; Yoon, I; Min, B R; Fulford, J D; Wickersham, T A; Malinowski, D P

    2014-12-01

    Grazing steers on winter wheat forage is routinely practiced in the Southern Great Plains of the US. Here, we investigated the dynamics in bacterial populations of both solid and liquid ruminal fractions of steers grazing on maturing wheat forage of changing nutritive quality. The relationship between bacterial diversity and fermentation parameters in the liquid fraction was also investigated. During the first 28 days, the wheat was in a vegetative phase with a relatively high crude protein content (CP; 21%), which led to the incidence of mild cases of frothy bloat among steers. Rumen samples were collected on days 14, 28, 56 and 76, separated into solid and liquid fractions and analyzed for bacterial diversity using 16S pyrotag technology. The predominant phyla identified were Bacteroidetes (59-77%) and Firmicutes (20-33%) across both ruminal fractions. Very few differences were observed in the rumen bacterial communities within solid and liquid fractions on day 14. However, by day 28, the relatively high CP content complemented a distinct bacterial and chemical composition of the rumen fluid that was characterized by a higher ratio (4:1) of Bacteroidetes:Firmicutes and a corresponding lower acetate:propionate (3:1) ratio. Further, a greater accumulation of biofilm (mucopolysaccharide complex) on day 28 was strongly associated with the abundance of Firmicutes lineages such as Clostridium, Ruminococcus, Oscillospira and Moryella (P<0.05) in the fiber fraction. Such changes were diminished as the CP concentration declined over the course of the study. The abundance of Firmicutes was noticeable by 76 d in both fractions which signifies the development of a core microbiome associated with digestion of a more recalcitrant fiber in the mature wheat. This study demonstrates dynamics in the rumen microbiome and their association with fermentation activity in the rumen of steers during the vegetative (bloat-prone) and reproductive stages of wheat forage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K; Kita, N; Mendybaev, R

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquidsmore » (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.« less

  4. 40 CFR 68.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...

  5. 40 CFR 68.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...

  6. 40 CFR 68.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...

  7. 40 CFR 68.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...

  8. 40 CFR 68.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...

  9. Yield Hardening of Electrorheological Fluids in Channel Flow

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.

    2016-06-01

    Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.

  10. Aerosol Liquid Water Driven by Anthropogenic inorganic salts: Playing a key role in the winter haze formation over North China Plain

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Liu, Y.; Tan, T.; Wang, Y.; Shang, D.; Xiao, Y.; Li, M.; Zeng, L.; Hu, M.

    2017-12-01

    Aerosol liquid water influences ambient particulate matter mass concentrations and aerosol optical properties, and can serve as a reactor for multiphase reactions that perturb local photochemistry1. Our observations revealed that ambient relative humidity, inorganic fraction (sulfate, ammonium, nitrate), and PM2.5 mass concentration generally simultaneously elevated during haze episodes, resulting in the abundant anthropogenic aerosol water in the atmosphere of Beijing. The enrichment of aerosol liquid water may significantly affect the particle phase, which plays a key role in determining the reactive uptake, gas-particle partitioning, and heterogeneous chemical reactivity2. A newly-built three-arm impactor was used to detect the particle rebound fraction. The observations showed the increased RH and inorganic-rich particulate matter led to an increased aerosol liquid water content, and thus a liquid phase state during haze episode during wintertime. Here, we proposed that the transition to a liquid phase state marked the beginning of the haze episode and kicked off a positive feedback loop, wherein the liquid particles readily uptake pollutants that could react to form inorganics which could then uptake more water. The strict controlling strategy of sulfur emissions in China might lead to a decreased sulfate fraction and increased nitrate fraction in PM1. As a result, due to the lower deliquescence RH of nitrate, the feedback loop proposed could start at an even lower RH in the future. Reference1 Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto (2015), Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chemical Reviews, 115(10), 4259-4334.2 M. Kuwata, S. T. Martin (2012), Phase of atmospheric secondary organic material affects its reactivity, Proceedings of the National Academy of Sciences of the United States of America, 109(43):17354-17359

  11. Piper betel leaf extract: anticancer benefits and bio-guided fractionation to identify active principles for prostate cancer management.

    PubMed

    Paranjpe, Rutugandha; Gundala, Sushma R; Lakshminarayana, N; Sagwal, Arpana; Asif, Ghazia; Pandey, Anjali; Aneja, Ritu

    2013-07-01

    Plant extracts, a concoction of bioactive non-nutrient phytochemicals, have long served as the most significant source of new leads for anticancer drug development. Explored for their unique medicinal properties, the leaves of Piper betel, an evergreen perennial vine, are a reservoir of phenolics with antimutagenic, antitumor and antioxidant activities. Here, we show that oral feeding of betel leaf extract (BLE) significantly inhibited the growth of human prostate xenografts implanted in nude mice compared with vehicle-fed controls. To gain insights into the 'active principles', we performed a bioactivity-guided fractionation of methanolic BLE employing solvents of different polarity strengths using classical column chromatography. This approach yielded 15 fractions, which were then pooled to 10 using similar retention factors on thin-layer chromatographs. Bioactivity assays demonstrated that one fraction in particular, F2, displayed a 3-fold better in vitro efficacy to inhibit proliferation of prostate cancer cells than the parent BLE. The presence of phenols, hydroxychavicol (HC) and chavibetol (CHV), was confirmed in F2 by nuclear magnetic resonance, high-performance liquid chromatography and mass spectroscopy. Further, the HC containing F2 subfraction was found to be ~8-fold more potent than the F2 subfraction that contained CHV, in human prostate cancer PC-3 cells as evaluated by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay. Removing CHV from F2 remarkably decreased the IC50 of this fraction, indicating that HC is perhaps the major bioactive constituent, which is present to an extent of 26.59% in BLE. These data provide evidence that HC is a potential candidate for prostate cancer management and warrants further preclinical evaluation.

  12. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis.

    PubMed

    Puttipan, Rinrampai; Wanachantararak, Penpicha; Khongkhunthian, Sakornrat; Okonogi, Siriporn

    2017-01-01

    The present study explores antimicrobial activities of Caesalpinia sappan extracts against three strains of oral pathogenic bacteria; Streptococcus mutans DMST9567 (Smu9), Streptococcus mutans DMST41283 (Smu4), and Streptococcus intermedius DMST42700 (Si). Ethanol crude extract of C. sappan (Cs-EtOH) was firstly compared to that of other medicinal plants using disc diffusion method. Cs-EtOH showed significantly higher effective inhibition against all tested strains than other extracts and 0.12% chlorhexidine with the inhibition zone of 17.5 ± 0.5, 18.5 ± 0.0, and 17.0 ± 0.0 mm against Smu9, Smu4, and Si, respectively. Three fractionated extracts of C. sappan using hexane, ethyl acetate, and ethanol, respectively, were further investigated. The fractionated extract from ethanol (F-EtOH) presented the strongest activities with the minimum bactericidal concentration (MBC) of 125-250 µg/mL. Killing kinetics of F-EtOH was depended on the bacterial species and the concentration of F-EtOH. Two-fold MBC of F-EtOH could kill all tested strains within 12 h whereas its 4-fold MBC showed killing effect against Si within 6 h. Separation of F-EtOH by column chromatography using chloroform/methanol mixture as an eluent yielded 11 fractions (F1-F11). The fingerprints of these fractions by high-performance liquid chromatography at 280 nm revealed that F-EtOH consisted of at least 5 compounds. F6 possessed the significantly highest antimicrobial activity among 11 fractions, however less than F-EtOH. It is considered that F-EtOH is the promising extract of C. sappan for inhibiting oral pathogenic bacteria and appropriate as natural antiseptic for further develop of oral hygiene products.

  13. Valorization of Lignin to Simple Phenolic Compounds over Tungsten Carbide: Impact of Lignin Structure.

    PubMed

    Guo, Haiwei; Zhang, Bo; Qi, Zaojuan; Li, Changzhi; Ji, Jianwei; Dai, Tao; Wang, Aiqin; Zhang, Tao

    2017-02-08

    Lignins isolated from representative hardwood, softwood, and grass materials were effectively hydrocracked to aromatics catalyzed by tungsten carbide over activated carbon (W 2 C/AC). The effects of botanical species and fractionation methods on lignin structure and the activity of W 2 C/AC were studied in detail. Gas permeation chromatography (GPC), FTIR, elemental analysis, and 2 D HSQC NMR showed that all the extracted samples shared the basic skeleton of lignin, whereas the fractionation method significantly affected the structure. The organosolv process provided lignin with a structure more similar to the native lignin, which was labile to be depolymerized by W 2 C/AC. Softwood lignins (i.e., spruce and pine) possessed higher molecular weights than hardwood lignins (i.e., poplar and basswood); whereas corn stalk lignin that has noncanonical subunits and exhibited the lowest molecular weight owing to its shorter growth period. β-O-4 bonds were the major linkages in all lignin samples, whereas softwood lignins contained more resistant linkages of β-5 and less β-β than corn stalk and hardwood lignins; as a result, lowest hydrocracking efficiency was obtained in softwood lignins, followed by corn stalk and hardwood lignins. 2 D HSQC NMR spectra of lignin and the liquid oil as well as the solid residue showed that W 2 C/AC exhibited high activity not only in β-O-4 cleavage, but also in deconstruction of other ether linkages between aromatic units, so that high yield of liquid oil was obtained from lignin. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass?

    PubMed

    Wang, Dou; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Luo, Tao; Mei, Zili

    2018-02-01

    Hydrothermally-pretreated rice straw (HPRS) from various pretreatment temperatures was anaerobically-digested in whole slurry. Results indicated promoting pretreatment temperature significantly deconstructed rice straw, and facilitated the conversion of insoluble fractions to soluble fractions. Although 306.6 mL/g TS biogas was maximally yielded in HPRS-90 and HPRS-180, respectively, via digestion in whole slurry, it was only 3% promotion compared to the unpretreated rice straw. HPRS-210 yielded 208.5 mL/g TS biogas, which was 30% reduction with longer lag period of 19.8 d, suggesting serious inhibitions happened. Through slightly increasing organic loading, more serious acidification and reduction on biogas yield, especially at higher pretreatment temperatures, indicated the soluble fractions controlled digestion performances. Pearson correlation analysis suggested negative relationship existed between methane yield and the soluble fractions including soluble carbohydrates, formic acid and furfural. Hydrothermal pretreatment, especially at higher temperature, did not improve anaerobic digestion, thereby, was not recommended, however, lower temperature can be considered potentially. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia)

    USGS Publications Warehouse

    Duran, C.J.; Barnes, S-J.; Pleše, P.; Prašek, M. Kudrna; Zientek, Michael L.; Pagé, P.

    2017-01-01

    The distribution of platinum-group elements (PGE) within zoned magmatic ore bodies has been extensively studied and appears to be controlled by the partitioning behavior of the PGE during fractional crystallization of magmatic sulfide liquids. However, other chalcophile elements, especially TABS (Te, As, Bi, Sb, and Sn) have been neglected despite their critical role in forming platinum-group minerals (PGM). TABS are volatile trace elements that are considered to be mobile so investigating their primary distribution may be challenging in magmatic ore bodies that have been somewhat altered. Magmatic sulfide ore bodies from the Noril’sk-Talnakh mining district (polar Siberia, Russia) offer an exceptional opportunity to investigate the behavior of TABS during fractional crystallization of sulfide liquids and PGM formation as the primary features of the ore bodies have been relatively well preserved. In this study, new petrographic (2D and 3D) and whole-rock geochemical data from Cu-poor to Cu-rich sulfide ores of the Noril’sk-Talnakh mining district are integrated with published data to consider the role of fractional crystallization in generating mineralogical and geochemical variations across the different ore types (disseminated to massive). Despite textural variations in Cu-rich massive sulfides (lenses, veins, and breccias), these sulfides have similar chemical compositions, which suggests that Cu-rich veins and breccias formed from fractionated sulfide liquids that were injected into the surrounding rocks. Numerical modeling using the median disseminated sulfide composition as the initial sulfide liquid composition and recent DMSS/liq and DISS/liq predicts the compositional variations observed in the massive sulfides, especially in terms of Pt, Pd, and TABS. Therefore, distribution of these elements in the massive sulfides was likely controlled by their partitioning behavior during sulfide liquid fractional crystallization, prior to PGM formation. Our observations indicate that in the Cu-poor massive sulfides the PGM formed as the result of exsolution from sulfide minerals whereas in the Cu-rich massive sulfides the PGM formed by crystallization from late-stage fractionated sulfide liquids. We suggest that the significant amount of Sn-bearing PGM may be related to crustal contamination from granodiorite, whereas As, Bi, Te, and Sb were likely added to the magma along with S from sedimentary rocks. Large PGM that are scarce and randomly distributed may account for most of the whole-rock Pt budget. Based on our results, we propose a holistic genetic model for the formation of the magmatic sulfide ore bodies of the Noril’sk-Talnakh mining district.

  16. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination

    NASA Astrophysics Data System (ADS)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges

    2012-07-01

    Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo and Co because Fe-rich MSS is absent. The concentrations of Sn and Pb, which are incompatible with Fe-rich MSS, are highest in magnetite that formed from the fractionated Cu-rich liquid. At subsolidus temperatures, ilmenite exsolved from titanomagnetite whereas Al-spinel exsolved from the cores of some magnetite, locally redistributing the trace elements. However, during laser ablation ICP-MS analysis of these Fe-oxides both the magnetite and its exsolution products are ablated so that the analysis represents the original magmatic composition of the Fe-oxide that crystallized from the sulfide melt.

  17. On-line hydrogen-isotope measurements of organic samples using elemental chromium: An extension for high temperature elemental-analyzer techniques

    USGS Publications Warehouse

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A.J.; Brand, Willi A.; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ2H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ2H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while handling water as a bulk sample. The calibration of organic samples, commonly having high δ2H values, will benefit from the availability of suitably 2H-enriched reference waters, extending the VSMOW-SLAP scale above zero.

  18. Process for the physical segregation of minerals

    DOEpatents

    Yingling, Jon C.; Ganguli, Rajive

    2004-01-06

    With highly heterogeneous groups or streams of minerals, physical segregation using online quality measurements is an economically important first stage of the mineral beneficiation process. Segregation enables high quality fractions of the stream to bypass processing, such as cleaning operations, thereby reducing the associated costs and avoiding the yield losses inherent in any downstream separation process. The present invention includes various methods for reliably segregating a mineral stream into at least one fraction meeting desired quality specifications while at the same time maximizing yield of that fraction.

  19. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    PubMed

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Origin of mantle peridotite: Constraints from melting experiments to 16.5 GPa

    NASA Astrophysics Data System (ADS)

    Herzberg, Claude; Gasparik, Tibor; Sawamoto, Hiroshi

    1990-09-01

    Experimental data are reported for the melting of komatiite, peridotite, and chondrite compositions in the pressure range 5-16.5 GPa. All experiments were run using the multiple-anvil apparatus facilities at Nagoya and Stony Brook. Equilibrium between coexisting crystals and liquid is demonstrated to occur in less than 3 min in the 2100°C range. The anhydrous solidus in CaO-MgO-Al2O3-SiO2 has been calibrated and is shown to be about 100° higher than that for naturally occurring peridotite (KLB1). All melting curves have positive dT/dP. The effect of pressure is to expand the crystallization field of garnet at the expense of all other phases, resulting in a change in the liquidus phase from olivine to garnet at high pressures. The melting of rocks which contain the four crystalline phases olivine, orthopyroxene, clinopyroxene, and garnet is restricted to enstatite-rich compositions such as chondrite. For these it is demonstrated that melting is peritectic, rather than eutectic, and takes the form L+Opx = Ol+Cpx+Gt. Partial melting yields liquids with the following properties: 5 GPa for komatiite; and 10-15 GPa for liquid peridotite with about 40% MgO, but one that is unlike mantle peridotite in that it is distinctly enriched in silica. These results provide a test and refutation of the model that upper mantle peridotite originated by direct initial melting of a chondritic mantle (Herzberg and O'Hara, 1985). Unlike chondrite, partial melting of peridotite does not usually involve orthopyroxene. Instead, it occurs by the generation of ultrabasic liquids along a cotectic involving L+Ol+Cpx+Gt. Although the thermal and compositional characteristics of this cotectic have not been fully calibrated, it is very likely that it will degenerate into a thermal minimum (L+Ol+Cpx+Gt), compositionally similar to komatiite at 5 GPa and mantle peridotite at 10-15 GPa. Peridotite liquids that occupy a thermal minimum can be derived from those formed from the melting of chondrite by removal of orthopyroxene, followed by fractional crystallization of olivine, clinopyroxene, and garnet. The possibility exists that the thermal minimum is compositionally identical to mantle peridotite in the 10-15 GPa range. If this can be confirmed by experiment, the upper mantle can be understood as having originated by the fractional crystallization of peridotite liquids in a large-scale differentiation event, consistent with magma ocean models for an early Earth.

  1. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  2. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  3. Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil.

    PubMed

    Sunitha, S; Kanjilal, S; Reddy, P S; Prasad, R B N

    2007-12-01

    Ionic liquids, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIm][PF(6)]) and 1-ethyl-3-methyl imidazolium hexafluorophosphate ([EMIm][PF(6)]), were used for the methanolysis of sunflower oil using Candida antarctica lipase (Novozyme 435) and gave yields of fatty acid methyl esters at 98-99% within 10 h. The optimum conditions of methanolysis in hydrophobic ionic liquids are 2% (w/w) lipase, 1:1 (w/w) oil/ionic liquid and 1:8 (mol/mol) oil/methanol at 58-60 degrees C. Methanolysis using hydrophilic ionic liquids, 3-methyl imidazolium tetrafluoroborate ([HMIm][BF(4)]) and 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm][BF(4)]), gave very poor yields. A hydrophobic ionic liquid thus protects the lipase from methanol. Recovered ionic liquids and lipase were used for four successive reaction cycles without any significant loss of activity.

  4. Real-space imaging of fractional quantum Hall liquids

    NASA Astrophysics Data System (ADS)

    Hayakawa, Junichiro; Muraki, Koji; Yusa, Go

    2013-01-01

    Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.

  5. On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs

    DOE PAGES

    McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.; ...

    2016-05-06

    In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water wouldmore » also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble.« less

  6. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber.

    PubMed

    Touriño, Sonia; Fuguet, Elisabet; Jáuregui, Olga; Saura-Calixto, Fulgencio; Cascante, Marta; Torres, Josep Lluís

    2008-11-01

    Grape antioxidant dietary fiber (GADF) is a dietary supplement that combines the benefits of both fiber and antioxidants that help prevent cancer and cardiovascular diseases. The antioxidant polyphenolic components in GADF probably help prevent cancer in the digestive tract, where they are bioavailable. Mass spectrometry coupled to liquid chromatography is a powerful tool for the analysis of complex plant derivatives such as GADF. We use a combination of MS techniques, namely liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) on a triple quadrupole, for the identification of the polyphenolic constituents of the soluble fraction of GADF. First, we separated the mixture into four fractions which were tested for phenolic constituents using the TOF system in the full scan mode. The high sensitivity and resolution of the TOF detector over the triple quadrupole facilitate the preliminary characterization of the fractions. Then we used LC/ESI-MS/MS to identify the individual phenols through MS/MS experiments (product ion scan, neutral loss scan, precursor ion scan). Finally, most of the identities were unequivocally confirmed by accurate mass measurements on the TOF spectrometer. LC/ESI-TOF-MS combined with MS/MS correctly identifies the bioactive polyphenolic components from the soluble fraction of GADF. High-resolution TOF-MS is particularly useful for identifying the structure of compounds with the same LC/ESI-MS/MS fragmentation patterns.

  7. Enantiomeric high-performance liquid chromatography resolution and absolute configuration of 6β-benzoyloxy-3α-tropanol.

    PubMed

    Muñoz, Marcelo A; González, Natalia; Joseph-Nathan, Pedro

    2016-07-01

    The absolute configuration of the naturally occurring isomers of 6β-benzoyloxy-3α-tropanol (1) has been established by the combined use of chiral high-performance liquid chromatography with electronic circular dichroism detection and optical rotation detection. For this purpose (±)-1, prepared in two steps from racemic 6-hydroxytropinone (4), was subjected to chiral high-performance liquid chromatography with electronic circular dichroism and optical rotation detection allowing the online measurement of both chiroptical properties for each enantiomer, which in turn were compared with the corresponding values obtained from density functional theory calculations. In an independent approach, preparative high-performance liquid chromatography separation using an automatic fraction collector, yielded an enantiopure sample of OR (+)-1 whose vibrational circular dichroism spectrum allowed its absolute configuration assignment when the bands in the 1100-950 cm(-1) region were compared with those of the enantiomers of esters derived from 3α,6β-tropanediol. In addition, an enantiomerically enriched sample of 4, instead of OR (±)-4, was used for the same transformation sequence, whose high-performance liquid chromatography follow-up allowed their spectroscopic correlation. All evidences lead to the OR (+)-(1S,3R,5S,6R) and OR (-)-(1R,3S,5R,6S) absolute configurations, from where it follows that samples of 1 isolated from Knightia strobilina and Erythroxylum zambesiacum have the OR (+)-(1S,3R,5S,6R) absolute configuration, while the sample obtained from E. rotundifolium has the OR (-)-(1R,3S,5R,6S) absolute configuration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.

    PubMed

    Miandad, R; Barakat, M A; Rehan, M; Aburiazaiza, A S; Ismail, I M I; Nizami, A S

    2017-11-01

    This study aims to examine the catalytic pyrolysis of various plastic wastes in the presence of natural and synthetic zeolite catalysts. A small pilot scale reactor was commissioned to carry out the catalytic pyrolysis of polystyrene (PS), polypropylene (PP), polyethylene (PE) and their mixtures in different ratios at 450°C and 75min. PS plastic waste resulted in the highest liquid oil yield of 54% using natural zeolite and 50% using synthetic zeolite catalysts. Mixing of PS with other plastic wastes lowered the liquid oil yield whereas all mixtures of PP and PE resulted in higher liquid oil yield than the individual plastic feedstocks using both catalysts. The GC-MS analysis revealed that the pyrolysis liquid oils from all samples mainly consisted of aromatic hydrocarbons with a few aliphatic hydrocarbon compounds. The types and amounts of different compounds present in liquid oils vary with some common compounds such as styrene, ethylbenzene, benzene, azulene, naphthalene, and toluene. The FT-IR data also confirmed that liquid oil contained mostly aromatic compounds with some alkanes, alkenes and small amounts of phenol group. The produced liquid oils have high heating values (HHV) of 40.2-45MJ/kg, which are similar to conventional diesel. The liquid oil has potential to be used as an alternative source of energy or fuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Process for separating coal synthesized methane from unreacted intermediate and contaminant gases

    DOEpatents

    Barker, Ray E.; Scott, Charles D.; Ryon, Allen D.

    1982-01-01

    Gas produced from coal and containing CH.sub.4, CO, CO.sub.2, H.sub.2 and H.sub.2 S is contacted with CO.sub.2 scrub liquid to form (1) a liquid CO.sub.2 stream containing as solutes CH.sub.4, H.sub.2 S and minor portions of the CO and H.sub.2, and (2) a gas stream containing CO.sub.2 and major portions of the CO and H.sub.2, the CO and H.sub.2 in this stream being recycled to the means which produces gas from coal, and CO.sub.2 in the stream being recycled to the scrub liquid. The solute-bearing liquid CO.sub.2 stream is fractionated into (1) a liquid CO.sub.2 stream containing CH.sub.4 and H.sub.2 S, and (2) a H.sub.2 /CO gas stream which is recycled into contact with the scrub liquid. The last-mentioned liquid CO.sub.2 stream is fractionated into (1) a CH.sub.4 /CO.sub.2 gas stream the CO.sub.2 of which is recycled to the scrub liquid, and (2) a liquid CO.sub.2 stream containing H.sub.2 S, and CO.sub.2 of this stream is also recycled to the scrub liquid.

  10. Process for separating coal synthesized methane from unreacted intermediate and contaminant gases. [Patent application

    DOEpatents

    Barker, R.E.; Scott, C.D.; Ryon, A.D.

    1980-10-27

    Gas produced from coal and containing CH/sub 4/, CO, CO/sub 2/, H/sub 2/ and H/sub 2/S is contacted with CO/sub 2/ scrub liquid to form (1) a liquid CO/sub 2/ stream containing as solutes CH/sub 4/, H/sub 2/S and minor portions of the CO and H/sub 2/, and (2) a gas stream containing CO/sub 2/ and major portions of the CO and H/sub 2/, the CO and H/sub 2/ in this stream being recycled to the means which produces gas from coal, and CO/sub 2/ in the stream being recycled to the scrub liquid. The solute-bearing liquid CO/sub 2/ stream is fractionated into (1) a liquid CO/sub 2/ stream containing CH/sub 4/ and H/sub 2/S, and (2) a H/sub 2//CO gas stream which is recycled into contact with the scrub liquid. The last-mentioned liquid CO/sub 2/ stream is fractionated into (1) a CH/sub 4//CO/sub 2/ gas stream the CO/sub 2/ of which is recycled to the scrub liquid, and (2) a liquid CO/sub 2/ stream containing H/sub 2/S, and CO/sub 2/ of this stream is also recycled to the scrub liquid.

  11. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The dynamic behavior of an insoluble surfactant monolayer spreading on a thin liquid film

    NASA Astrophysics Data System (ADS)

    Matar, Omar Kamal

    The spreading of surface active material on thin liquid films is studied by investigating the dynamics of a finite reservoir of insoluble surfactant spreading on a thin layer of Newtonian liquid. The first part of this thesis examines the unperturbed spreading process. It is shown that Marangoni dominated spreading leads to large deformations in the underlying liquid layer which diminish when the relative contribution of surface diffusion, capillary and gravitational forces is increased. A comparison between experimental measurements of the film deformation obtained by Moiré topography with theoretical predictions, performed for the first time, reveals excellent agreement. This study also shows that the mass of surfactant that participates in the spreading is a miniscule fraction of the total mass deposited. Simulations of surfactant delivery in model pulmonary airways demonstrate the adverse effect of a non-uniform field of pre-existing contaminants on the spreading and the importance of its inclusion in determining an optimal set of conditions for rapid and efficacious spreading. The second part describes efforts aimed at identifying the physical mechanisms responsible for some unusual fingered spreading patterns observed experimentally. A linear stability analysis of self-similar solutions governing Marangoni dominated spreading in rectilinear geometry, conducted in the quasi-steady-state- approximation, predicts stable modes. A similar analysis including effects of surface diffusion and capillarity also yields asymptotically stable flow. A transient growth analysis of the non-normal operators governing the evolution of disturbances yields amplification of initially infinitesimal perturbations by orders of magnitude on time scales comparable to Marangoni shear times. Disturbances of all wavenumbers eventually decay in agreement with the long time analyses. Numerical simulations of the nonlinear governing equations, however, show that, for the parameter values considered, the large amplification is insufficient to drive sustained finger formation and unstable flow in the nonlinear regime. Simulations of mode coupling interactions reveal that coalescence of adjacent fingers leads to an overall shift of the fingering patterns to longer transverse length scales. Preliminary results also indicate that van der Waals forces can enhance the growth of transverse disturbances in the thinning region of the film leading to possible asymptotic growth.

  13. Analysis of consecutively sampled headspace and liquid fractions by gas chromatography/mass spectrometry.

    PubMed

    Treble, Ronald G; Johnson, Keith E; Xiao, Li; Thompson, Thomas S

    2002-07-01

    An existing gas chromatograph/mass spectrometer (GC/MS) can be used to analyze gas and liquid fractions from the same system within a few minutes. The technique was applied to (a) separate and identify the gaseous components of the products of cracking an alkane, (b) measure trace levels of acetone in ethyl acetate, (c) determine the relative partial pressures over a binary mixture, and (d) identify nine unknown compounds for the purpose of disposal.

  14. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    DOE PAGES

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; ...

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from themore » fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.« less

  15. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins.

    PubMed

    Schalk, Kathrin; Koehler, Peter; Scherf, Katharina Anne

    2018-01-01

    Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods.

  16. Coupling flash liquid chromatography with mass spectrometry for enrichment and isolation of milk oligosaccharides for functional studies.

    PubMed

    Strum, John S; Aldredge, Danielle; Barile, Daniela; Lebrilla, Carlito B

    2012-05-15

    Mass spectrometry has been coupled with flash liquid chromatography to yield new capabilities for isolating nonchromophoric material from complicated biological mixtures. A flash liquid chromatography/tandem mass spectrometry (LC/MS/MS) method enabled fraction collection of milk oligosaccharides from biological mixtures based on composition and structure. The method is compatible with traditional gas pressure-driven flow flash chromatography widely employed in organic chemistry laboratories. The online mass detector enabled real-time optimization of chromatographic parameters to favor separation of oligosaccharides that would otherwise be indistinguishable from coeluting components with a nonspecific detector. Unlike previously described preparative LC/MS techniques, we have employed a dynamic flow connection that permits any flow rate from the flash system to be delivered from 1 to 200 ml/min without affecting the ionization conditions of the mass spectrometer. A new way of packing large amounts of graphitized carbon allowed the enrichment and separation of milligram quantities of structurally heterogeneous mixtures of human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). Abundant saccharide components in milk, such as lactose and lacto-N-tetraose, were separated from the rarer and less abundant oligosaccharides that have greater structural diversity and biological functionality. Neutral and acidic HMOs and BMOs were largely separated and enriched with a dual binary solvent system. Published by Elsevier Inc.

  17. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    DOEpatents

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2012-04-03

    Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

  18. Where's the Water in (Salty) Ice?

    NASA Astrophysics Data System (ADS)

    Kahan, T.; Malley, P.

    2017-12-01

    Solutes can have large effects on reactivity in ice and at ice surfaces. Freeze concentration ("the salting out effect") forms liquid regions containing high solute concentrations surrounded by relatively solute-free ice. Thermodynamics can predict the fraction of ice that is liquid for a given temperature and (pre-frozen) solute concentration, as well as the solute concentration within these liquid regions, but they do not inform on the spatial distribution of the solutes and the liquid regions within the ice. This leads to significant uncertainty in predictions of reaction kinetics in ice and at ice surfaces. We have used Raman microscopy to determine the location of liquid regions within ice and at ice surface in the presence of sodium chloride (NaCl). Under most conditions, liquid channels are observed at the ice surface and throughout the ice bulk. The fraction of the ice that is liquid, as well as the widths of these channels, increases with increasing temperature. Below the eutectic temperature (-21.1 oC), no liquid is observed. Patches of NaCl.2H2O ("hydrohalite") are observed at the ice surface under these conditions. These results will improve predictions of reaction kinetics in ice and at ice surfaces.

  19. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates

    PubMed Central

    2017-01-01

    We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO2) gas hydrates using Raman spectroscopy. The CO2 hydrates were formed from sodium chloride/water solutions with salinities of 0–10 wt %, which were pressurized with liquid CO2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, xH, and the fraction of the dispersed liquid water-rich phase, xL, from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate xH contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect. PMID:28817275

  20. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  1. Measurements of J/{psi} and {psi}(2S) decays into {lambda}{lambda}{pi}{sup 0} and {lambda}{lambda}{eta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; Bai, J. Z.; Cai, X.

    2007-11-01

    Using 58x10{sup 6} J/{psi} and 14x10{sup 6} {psi}(2S) events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays J/{psi} and {psi}(2S){yields}{lambda}{lambda}{pi}{sup 0} and {lambda}{lambda}{eta} are measured. For the isospin violating decays, the upper limits are determined to be B(J/{psi}{yields}{lambda}{lambda}{pi}{sup 0})<6.4x10{sup -5} and B[{psi}(2S){yields}{lambda}{lambda}{pi}{sup 0}]<4.9x10{sup -5} at the 90% confidence level. The isospin conserving process J/{psi}{yields}{lambda}{lambda}{eta} is observed for the first time, and its branching fraction is measured to be B(J/{psi}{yields}{lambda}{lambda}{eta})=(2.62{+-}0.60{+-}0.44)x10{sup -4}, where the first error is statistical and the second one is systematic. No {lambda}{lambda}{eta} signal is observed in {psi}(2S) decays, and B[{psi}(2S){yields}{lambda}{lambda}{eta}]<1.2x10{supmore » -4} is set at the 90% confidence level. Branching fractions of J/{psi} decays into {sigma}{sup +}{pi}{sup -}{lambda} and {sigma}{sup -}{pi}{sup +}{lambda} are also reported, and the sum of these branching fractions is determined to be B(J/{psi}{yields}{sigma}{sup +}{pi}{sup -}{lambda}+c.c.)=(1.52{+-}0.08{+-}0.16)x10{sup -3}.« less

  2. IMPACT OF AEROSOL LIQUID WATER ON SECONDARY ORGANIC AEROSOL YIELDS OF IRRADIATED TOLUENE/PROPYLENE/NOX/(NH4)2SO4/AIR MIXUTRES

    EPA Science Inventory

    Laboratory experiments were conducted to assess whether the presence of liquid water on pre-existing submicron ammonium sulfate aerosols affects yields of condensible organic compounds. Toluene/propylene/NOX/air mixtures were irradiated in the presence of submicron ammonium su...

  3. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.

    PubMed

    Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M

    2016-01-01

    Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.

  4. Processing of Janina coal at 600 atm. to gasoline and middle oil. Second progress report (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupfer, H.; Leonhardt

    1944-03-13

    The experiments described here were run in a 10-liter hydrogenation oven which was fitted with an outlet for desanding the reaction mixture to keep down the formation of caviar deposits in the oven. The experiments proceeded very well, and the Janina coal proved to be one that was very well suited to hydrogenation because of its relatively low carbon content. The coal gave high yields of products (0.35 kg/liter/hour), low losses to gases (18.6%), and low levels of asphalt formation. Although the fact needed further confirmation in full-scale operations, it seemed that the Janina coal did not require as highmore » a temperature from the preheater as did other coals in order to initiate the reaction (about 400/sup 0/C vs. about 425/sup 0/C). One of the disadvantages of the Janina coal was the fact that its rather large yield of liquid-phase gasoline had lower octane number than that from some other coals (Heinitz coal, for example - about 71 vs. 74). The gasoline contained 33% paraffins, 35% naphthenes, 23% aromatics, and 9% unsaturated compounds. The gasoline contained 11% phenol, whereas the middle oil contained 20.5% phenols. The aniline point of the various dephenolized fractions of gasoline varied from 18.2 to 36.0/sup 0/, whereas the aniline point of the various dephenolized fractions of middle oil varied from -24.5 to -14.0/sup 0/. The solidifying point of the heavy oil was 9/sup 0/C. 7 tables.« less

  5. An analytical method to screen for six thyreostatic drug residues in the thyroid gland and muscle tissues of food producing animals by liquid chromatography with ultraviolet absorption detection and liquid chromatography/mass spectrometry.

    PubMed

    Asea, Philip E; MacNeil, James D; Boison, Joe O

    2006-01-01

    A method was developed and validated to screen for residues of the thyreostatic drugs, tapazole (TAP), mercaptobenzimidazole (MBI), thiouracil (TU), methylthiouracil (MTU), propylthiouracil (PrTU), and phenylthiouracil (PhTU) in bovine, equine, ovine, and porcine thyroid and muscle tissues at concentrations > or = 5 ng/g using 2-methoxy-mercaptobenzimidazole (MeMBI) and dimethylthiouracil (DMTU) as internal standards. In this method, the drugs were solvent extracted from thyroid and muscle tissue and cleaned up on an amino-propyl solid-phase extraction (SPE) cartridge. The unretained fraction containing TAP and MBI and the internal standard, MeMBI, was collected as Fraction 1. The retained fraction containing TU, MTU, PrTU, PhTU, and the internal standard, DMTU, was eluted with 3% acetic acid-isopropanol as Fraction 2. Fraction 1 was further cleaned up on an alumina B SPE cartridge and analyzed by gradient elution on a C18 high-performance liquid chromatography (HPLC) column with ultraviolet detection at wavelengths of 255 and 300 nm. Fraction 2 was taken to dryness, derivatized with 4-chloro-7-nitrobenzo-2-furazan at pH 8, and analyzed by gradient elution on a C18 LC column with mass spectrometry (MS) detection. Any "presumptive positive" test results were submitted for further analysis by LC/MS/MS. The validated method was applied to the analysis of over 300 thyroid tissue samples.

  6. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Widom Delta of Supercritical Gas-Liquid Coexistence.

    PubMed

    Ha, Min Young; Yoon, Tae Jun; Tlusty, Tsvi; Jho, Yongseok; Lee, Won Bo

    2018-04-05

    Density fluctuations and the Widom line are of great importance in understanding the critical phenomena and the behaviors of supercritical fluids (SCFs). We report on the direct classification of liquid-like and gas-like molecules coexisting in the SCF, identified by machine learning analysis on simulation data. The deltoid coexistence region encloses the Widom line and may therefore be termed the Widom delta. Number fractions of gas-like and liquid-like particles are found to undergo continuous transition across the delta, following a simplified two-state model. These fractions are closely related to the magnitude of supercritical anomaly, which originates from the fluctuation between the two types. This suggests a microscopic view of the SCF as a mixture of liquid-like and gas-like structures, providing an integrative explanation to the anomalous behaviors near the critical point and the Widom line.

  8. Propagation of Pressure Waves, Caused by a Thermal Shock, in Liquid Metals Containing Gas Bubbles

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Takagi, Shu; Matsumoto, Yoichiro

    The propagation of pressure waves caused by a thermal shock in liquid mercury containing micro gas bubbles has been simulated numerically. In the present study, we clarify the influences of the introduced bubble size and void fraction on the absorption of thermal expansion of liquid mercury and attenuation of pressure waves. The mass, momentum and energy conservation equations for both bubbly mixture and gas inside each bubble are solved, in which the bubble dynamics is represented by the Keller equation. The results show that when the initial void fraction is larger than the rate of the thermal expansion of liquid mercury, the pressure rise caused by the thermal expansion decreases with decreasing the bubble radius, because of the increase of the natural frequency of bubbly mixture. On the other hand, as the bubble radius increases, the peak of pressure waves which propagate at the sound speed of mixture decreases gradually due to the dispersion effect of mixture. When the natural frequency of the mixture with large bubbles is lower than that of the thremal shock, the peak pressure at the wall increases because the pressure waves propagate through the mixture at the sound speed of liquid mercury. The comparison of the results with and without heat transfer through the gas liquid interface shows that the pressure waves are attenuated greatly by the thermal damping effect with the decrease of the void fraction which enhances the nonlinearity of bubble oscillation.

  9. Quantum-state resolved reactive scattering at the gas-liquid interface: F+squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J).

    PubMed

    Zolot, Alexander M; Dagdigian, Paul J; Nesbitt, David J

    2008-11-21

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [E(com)=0.7(3) kcalmol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v

  10. Quantum-state resolved reactive scattering at the gas-liquid interface: F +squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.; Dagdigian, Paul J.; Nesbitt, David J.

    2008-11-01

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [Ecom=0.7(3)kcal/mol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v ⩽3) products are formed in a highly nonequilibrium (inverted) vibrational distribution [⟨Evib⟩=13.2(2)kcal/mol], reflecting insufficient time for complete thermal accommodation with the surface prior to desorption. Colder, but still non-Boltzmann, rotational state populations [⟨Erot⟩=1.0(1)kcal/mol] indicate that some fraction of molecules directly scatter into the gas phase without rotationally equilibrating with the surface. Nascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F +hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  11. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization.

    PubMed

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H; Hao, Xiying

    2015-09-01

    A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8gVSL(-1)day(-1) with a 30-day hydraulic retention time (HRT), a CH4 yield of 0.213Lg(-1)VS and CH4 production rate of 0.600LL(-1)day(-1) were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30days at 40°C recovered 0.067Lg(-1)VS as CH4, which was 21% of the batch CH4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K(+), Ca(2+) and Mg(2+) were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  12. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics

    NASA Astrophysics Data System (ADS)

    Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.

    2017-07-01

    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.

  13. Isolation of essential oil from different plants and herbs by supercritical fluid extraction.

    PubMed

    Fornari, Tiziana; Vicente, Gonzalo; Vázquez, Erika; García-Risco, Mónica R; Reglero, Guillermo

    2012-08-10

    Supercritical fluid extraction (SFE) is an innovative, clean and environmental friendly technology with particular interest for the extraction of essential oil from plants and herbs. Supercritical CO(2) is selective, there is no associated waste treatment of a toxic solvent, and extraction times are moderate. Further, supercritical extracts were often recognized of superior quality when compared with those produced by hydro-distillation or liquid-solid extraction. This review provides a comprehensive and updated discussion of the developments and applications of SFE in the isolation of essential oils from plant matrices. SFE is normally performed with pure CO(2) or using a cosolvent; fractionation of the extract is commonly accomplished in order to isolate the volatile oil compounds from other co-extracted substances. In this review the effect of pressure, temperature and cosolvent on the extraction and fractionation procedure is discussed. Additionally, a comparison of the extraction yield and composition of the essential oil of several plants and herbs from Lamiaceae family, namely oregano, sage, thyme, rosemary, basil, marjoram and marigold, which were produced in our supercritical pilot-plant device, is presented and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Application of a liquid chromatography detector to time-resolved RYDMR spectroscopy: a comparison of in situ and ex post facto measurements

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Yoshio

    2001-09-01

    A photodiode-array (PDA) UV-VIS detector for liquid chromatography is applied to time-resolved reaction yield detected magnetic resonance (RYDMR) measurements. The results derived from the yields of cage and escape products in the photoreaction of 2-methyl-1, 4-naphtnoquinone in a sodium dodecylsulfate micelle are found to be identical with those derived from the yield of escaping semiquinone radical detected by transient optical absorption. This implies practical linearity between the yields of escaping radicals and escape products. High sensitivity of the PDA detector enables application of escape product yields for kinetic analysis by reducing microwave-induced perturbation.

  15. Normal Gravity Testing of a Microchannel Phase Separator for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; McQuillen, John (Technical Monitor)

    2001-01-01

    A microchannel separator, with 2.7 millimeters as the smallest dimension, was tested, and a pore throat structure captured and removed liquid from a gas-liquid stream. The microchannel device was tested over a of gas and liquid flow rates ranging from 0.0005 up to 0. 14 volume fraction of liquid. Four liquids were tested with air. The biggest factor affecting the throughput is the capacity of liquid flow through the pore throat, which is dictated by permeability, liquid viscosity, flow area, pore throat thickness, and pressure difference across the pore throat. Typically, complete separation of gas and liquid fractions was lost when the liquid flow rate reached about 40 to 60% of the pore throat capacity. However, this could occur over a range of 10 to 90% utilization of pore throat capacity. Breakthrough occurs in the microchannel phase separator at conditions similar to the annular to plug flow transition of two-phase microgravity pipe flow implying that operating in the proper flow regime is crucial. Analysis indicates that the Bond number did not affect performance, supporting the premise that hydrodynamic, interfacial, and capillary forces are more important than gravity. However, the relative importance of gravity is better discerned through testing under reduced gravity conditions.

  16. Investigation on the phenolic constituents in Hamamelis virginiana leaves by HPLC-DAD and LC-MS/MS.

    PubMed

    Duckstein, Sarina M; Stintzing, Florian C

    2011-08-01

    Aqueous and acetone/water extracts from Hamamelis virginiana leaves were investigated to obtain a thorough insight into their phenolic composition. To secure compound integrity, a gentle extraction method including the exclusion of light was used. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses yielded a fingerprint including 27 phenolic constituents. Quantification of the key compounds on an equivalent basis by high-performance liquid chromatography diode-array detection (HPLC-DAD) showed that gallotannins consisting of six to 11 galloyl units constitute the main fraction, whereas procyanidins and catechin represented only a minor part. Closer inspection revealed that both extracts possess virtually the same galloyl hexose distribution, and the octagalloyl hexose represents the major tannin constituent. Additionally, eight flavonol glycosides and their corresponding aglycones quercetin and kaempferol, as well as three chlorogenic acid isomers and other hydroxycinnamic acids, were identified. Moreover, stability studies on the aqueous extract (5 °C, dark; room temperature, dark; room temperature, light) revealed that the phenolic profile underwent changes when exposed to light. Especially the gallotannins proved to be considerably unstable which may result in phytochemically altered Hamamelis leaf extracts upon transport and storage.

  17. Isolation of xanthone and benzophenone derivatives from Cyclopia genistoides (L.) Vent. (honeybush) and their pro-apoptotic activity on synoviocytes from patients with rheumatoid arthritis.

    PubMed

    Kokotkiewicz, Adam; Luczkiewicz, Maria; Pawlowska, Justyna; Luczkiewicz, Piotr; Sowinski, Pawel; Witkowski, Jacek; Bryl, Ewa; Bucinski, Adam

    2013-10-01

    A fast and efficient method for the isolation of the C-glucosidated xanthones mangiferin and isomangiferin from the South-African plant Cyclopia genistoides was developed for the first time. The procedure involved extraction, liquid-liquid partitioning with ethyl acetate and subsequent precipitation of mangiferin and isomangiferin from methanol and acetonitrile-water fractions, respectively. Additionally, two benzophenone derivatives: 3-C-β-glucosides of maclurin and iriflophenone, were isolated from C. genistoides extracts using semi-preparative HPLC. Apart from the above, the isolation procedure also yielded hesperidin and small amounts of luteolin. The structures of the compounds were determined by 1D and 2D NMR experiments and/or LC-DAD-ESI-MS. The selected Cyclopia constituents were screened for pro-apoptotic activity on TNF-α-stimulated synovial cells isolated from rheumatoid arthritis patients. The strongest effect, measured as percent of apoptotic cells, was recorded for isomangiferin (75%), followed by iriflophenone 3-C-β-glucoside (71%), hesperidin (67%) and mangiferin (65%). The results are encouraging for further studies on the use of the above compounds in the treatment of rheumatoid arthritis. © 2013.

  18. Observation of B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} at Belle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.-W.; Wang, M.-Z.; Chao, Y.

    2009-03-01

    We study the charmless decays B{yields}{lambda}{lambda}h, where h stands for {pi}{sup +}, K{sup +}, K{sup 0},K*{sup +}, or K*{sup 0}, using a 605 fb{sup -1} data sample collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric energy e{sup +}e{sup -} collider. We observe B{sup 0}{yields}{lambda}{lambda}K{sup 0} and B{sup 0}{yields}{lambda}{lambda}K*{sup 0} with branching fractions of (4.76{sub -0.68}{sup +0.84}(stat){+-}0.61(syst))x10{sup -6} and (2.46{sub -0.72}{sup +0.87}{+-}0.34)x10{sup -6}, respectively. The significances of these signals in the threshold-mass enhanced mass region, M{sub {lambda}}{sub {lambda}}<2.85 GeV/c{sup 2}, are 12.4{sigma} and 9.3{sigma}, respectively. We also update the branching fraction B(B{sup +}{yields}{lambda}{lambda}K{sup +})=(3.38{sub -0.36}{sup +0.41}{+-}0.41)x10{supmore » -6} with better accuracy, and report the following measurement or 90% confidence level upper limit in the threshold-mass-enhanced region: B(B{sup +}{yields}{lambda}{lambda}K*{sup +})=(2.19{sub -0.88}{sup +1.13}{+-}0.33)x10{sup -6} with 3.7{sigma} significance; B(B{sup +}{yields}{lambda}{lambda}{pi}{sup +})<0.94x10{sup -6}. A related search for B{sup 0}{yields}{lambda}{lambda}D{sup 0} yields a branching fraction B(B{sup 0}{yields}{lambda}{lambda}D{sup 0})=(1.05{sub -0.44}{sup +0.57}{+-}0.14)x10{sup -5}. This may be compared with the large, {approx}10{sup -4}, branching fraction observed for B{sup 0}{yields}ppD{sup 0}. The M{sub {lambda}}{sub {lambda}} enhancements near threshold and related angular distributions for the observed modes are also reported.« less

  19. DENSITY FRACTIONATION OF FOREST SOILS: METHODOLOGICAL QUESTIONS AND INTERPRETATION OF INCUBATION RESULTS AND TURNOVER TIME IN AN ECOSYSTEM CONTEXT

    EPA Science Inventory

    Soil organic matter (SOM) is often separated by physical means to simplify a complex matrix into discrete fractions. A frequent approach to isolating two or more fractions is based on differing particle densities and uses a high density liquid such as sodium polytungstate (SPT). ...

  20. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    PubMed

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synthesis, liquid chromatographic fractionation and partial characterization of polybrominated dibenzofuran congeners.

    PubMed

    Gallistl, Christoph; Vetter, Walter

    2016-04-15

    Polybrominated dibenzofurans (PBDFs) are a class of highly toxic environmental contaminants which comprises 135 structurally different congeners. While the gas chromatographic separation and analysis of the most polychlorinated dibenzofurans (PCDFs) are well-documented, comparably little data is currently available in the case of PBDFs. In this study dibenzofuran was brominated to give a mixture of ∼40 PBDFs with one to seven bromine atoms. This synthesis mixture was fractionated by both countercurrent chromatography (CCC) with the solvent system n-hexane/toluene/acetonitrile and non-aqueous reversed-phase high performance liquid chromatography (RP-HPLC) with acetonitrile as the mobile phase. All together 80 consecutive CCC fractions and 40 HPLC fractions were taken and analyzed for PBDFs by gas chromatography coupled to mass spectrometry (GC/MS). CCC and RP-HPLC offered orthogonal separation of the PBDF mixture. As a consequence, selected CCC fractions were further fractionated by RP-HPLC. In this way, eight PBDFs could be isolated and the structures of twelve PBDFs were elucidated by proton magnetic resonance spectroscopy ((1)H NMR). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. [Identification of components of the milky juice of Lactarius pergamenus (Fr.)Fr fungi by gas-liquid chromatography/mass spectrometry].

    PubMed

    Tsyvins'ka, M V; Panchak, L V; Stoĭka, R S; Antoniuk, V O

    2013-01-01

    The authors have proposed method of separation of methanol extract of Lactarius pergamenus basidiomes and investigation of fractions extracted with hexane which, according to our previous studies, possess the highest antiproliferative and antifungal activity. Main attention was given to fractionation and analysis by gas-liquid chromatography-mass spectrometry (GLC/MS) of the fraction 1.4 extracted with hexane. The key role in separation of this fraction was played by the use of dioxane which mixes well with both polar and nonpolar solvents (hexane, chloroform, methanol, water). Chemical composition of hexanoic fraction of methanol extract of dried basidomes Lactarius pergamenus fungi were completely characterized. It was found that this fraction consisted of 38% of fatty acids and their derivatives, 29%--of the phthalates, 13%--of the sesquiterpene, 2%--of aldehydes and 18%--of other compounds (hydrocarbons, alcohols, hydrazine derivatives and unidentified substances). Such combination of constituents allows forming a stable emulsion of milky juice which protects the mushroom fruit body from the bacterial and fungal infections and from eating by the mammalians and insects.

  3. A multiresidue method by high performance liquid chromatography-based fractionation and gas chromatographic determination of trace levels of pesticides in air and water.

    PubMed

    Seiber, J N; Glotfelty, D E; Lucas, A D; McChesney, M M; Sagebiel, J C; Wehner, T A

    1990-01-01

    A multiresidue analytical method is described for pesticides, transformation products, and related toxicants based upon high performance liquid chromatographic (HPLC) fractionation of extracted residue on a Partisil silica gel normal phase column followed by selective-detector gas chromatographic (GC) determination of components in each fraction. The HPLC mobile phase gradient (hexane to methyl t-butyl ether) gave good chromatographic efficiency, resolution, reproducibility and recovery for 61 test compounds, and allowed for collection in four fractions spanning polarities from low polarity organochlorine compounds (fraction 1) to polar N-methylcarbamates and organophosphorus oxons (fraction 4). The multiresidue method was developed for use with air samples collected on XAD-4 and related trapping agents, and water samples extracted with methylene chloride. Detection limits estimated from spiking experiments were generally 0.3-1 ng/m3 for high-volume air samples, and 0.01-0.1 microgram/L for one-liter water samples. Applications were made to determination of pesticides in fogwater and air samples.

  4. A new hydrodynamic prediction of the peak heat flux from horizontal cylinders in low speed upflow

    NASA Technical Reports Server (NTRS)

    Ungar, E. K.; Eichhorn, R.

    1988-01-01

    Flow-boiling data have been obtained for horizontal cylinders in saturated acetone, isopropanol, and water, yielding heat flux vs. wall superheat boiling curves for the organic liquids. A region of low speed upflow is identified in which long cylindrical bubbles break off from the wake with regular frequency. The Strouhal number of bubble breakoff is a function only of the Froude number in any liquid, and the effective wake thickness in all liquids is a function of the density ratio and the Froude number. A low speed flow boiling burnout prediction procedure is presented which yields accurate results in widely dissimilar liquids.

  5. Variation in pH of Model Secondary Organic Aerosol during Liquid-Liquid Phase Separation.

    PubMed

    Dallemagne, Magda A; Huang, Xiau Ya; Eddingsaas, Nathan C

    2016-05-12

    The majority of atmospheric aerosols consist of both organic and inorganic components. At intermediate relative humidity (RH), atmospheric aerosol can undergo liquid-liquid phase separation (LLPS) in which the organic and inorganic fractions segregate from each other. We have extended the study of LLPS to the effect that phase separation has on the pH of the overall aerosols and the pH of the individual phases. Using confocal microscopy and pH sensitive dyes, the pH of internally mixed model aerosols consisting of polyethylene glycol 400 and ammonium sulfate as well as the pH of the organic fraction during LLPS have been directly measured. During LLPS, the pH of the organic fraction was observed to increase to 4.2 ± 0.2 from 3.8 ± 0.1 under high RH when the aerosol was internally mixed. In addition, the high spatial resolution of the confocal microscope allowed us to characterize the composition of each of the phases, and we have observed that during LLPS the organic shell still contains large quantities of water and should be characterized as an aqueous organic-rich phase rather than simply an organic phase.

  6. Coal liquefaction process

    DOEpatents

    Maa, Peter S.

    1978-01-01

    A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.

  7. Measurement of the branching fraction $${\\mathcal{B}}(\\Lambda^0_b\\rightarrow \\Lambda^+_c\\pi^-\\pi^+\\pi^-)$$ at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.

    We report an analysis of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay in a data sample collected by the CDF II detector at the Fermilab Tevatron corresponding to 2.4 fb{sup -1} of integrated luminosity. We reconstruct the currently largest samples of the decay modes {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} (with {Lambda}{sub c}(2595){sup +} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}{pi}{sup -}), {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} (with {Lambda}{sub c}(2625){sup +} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}{pi}{sup -}), {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} (with {Sigma}{sub c}(2455){sup ++} {yields} {Lambda}{submore » c}{sup +}{pi}{sup +}), and {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455)0{pi}{sup +}{pi}{sup -} (with {Sigma}{sub c}(2455)0 {yields} {Lambda}{sub c}{sup +}{pi}{sup -}) and measure the branching fractions relative to the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -} branching fraction. We measure the ratio {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})/ {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -})=3.04 {+-} 0.33(stat){sub -0.55}{sup +0.70}(syst) which is used to derive {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})=(26.8{sub -11.2}{sup +11.9}) x 10{sup -3}.« less

  8. CARd-3D: Carbon Distribution in 3D Structure Program for Globular Proteins

    PubMed Central

    Ekambaram, Rajasekaran; Kannaiyan, Akila; Marimuthu, Vijayasarathy; Swaminathan, Vinobha Chinnaiah; Renganathan, Senthil; Perumal, Ananda Gopu

    2014-01-01

    Spatial arrangement of carbon in protein structure is analyzed here. Particularly, the carbon fractions around individual atoms are compared. It is hoped that it follows the principle of 31.45% carbon around individual atoms. The results reveal that globular protein's atoms follow this principle. A comparative study on monomer versus dimer reveal that carbon is better distributed in dimeric form than in its monomeric form. Similar study on solid versus liquid structures reveals that the liquid (NMR) structure has better carbon distribution over the corresponding solid (X-Ray) structure. The carbon fraction distributions in fiber and toxin protein are compared. Fiber proteins follow the principle of carbon fraction distribution. At the same time it has another broad spectrum of carbon distribution than in globular proteins. The toxin protein follows an abnormal carbon fraction distribution. The carbon fraction distribution plays an important role in deciding the structure and shape of proteins. It is hoped to help in understanding the protein folding and function. PMID:24748753

  9. Branching fraction measurements of {chi}{sub c0} and {chi}{sub c2} to {pi}{sup 0{pi}0} and {eta}{eta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablikim, M.; An, Z. H.; Bai, J. Z.

    2010-03-01

    Using a sample of 1.06x10{sup 8} {psi}{sup '} decays collected by the BESIII detector, {chi}{sub c0} and {chi}{sub c2} decays into {pi}{sup 0{pi}0} and {eta}{eta} are studied. The branching fraction results are Br({chi}{sub c0{yields}{pi}}{sup 0{pi}0})=(3.23{+-}0.03{+-}0.23{+-}0.14)x10{sup -3}, Br({chi}{sub c2{yields}{pi}}{sup 0{pi}0})=(8.8{+-}0.2{+-}0.6{+-}0.4)x10{sup -4}, Br({chi}{sub c0{yields}{eta}{eta}})=(3.44{+-}0.10{+-}0.24{+-}0.2)x10{sup -3}, and Br({chi}{sub c2{yields}{eta}{eta}})=(6.5{+-}0.4{+-}0.5{+-}0.3)x10{sup -4}, where the uncertainties are statistical, systematic due to this measurement, and systematic due to the branching fractions of {psi}{sup '{yields}{gamma}{chi}}{sub cJ}. The results provide information on the decay mechanism of {chi}{sub c} states into pseudoscalars.

  10. Surface-active ionic liquids for palladium-catalysed cross coupling in water: effect of ionic liquid concentration on the catalytically active species† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07757b

    PubMed Central

    Taskin, Meltem; Cognigni, Alice; Zirbs, Ronald; Reimhult, Erik

    2017-01-01

    We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed. PMID:29308189

  11. Thermodynamics of H-bonding in alcohols and water. The mobile order theory as opposed to the classical multicomponent order theories

    NASA Astrophysics Data System (ADS)

    Huyskens, P.; Kapuku, F.; Colemonts-Vandevyvere, C.

    1990-09-01

    In liquids the partners of H bonds constantly change. As a consequence the entities observed by IR spectroscopy are not the same as those considered for thermodynamic properties. For the latter, the H-bonds are shared by all the molecules. The thermodynamic "monomeric fraction", γ, the time fraction during which an alcohol molecule is vaporizable, is the square root of the spectroscopic monomeric fraction, and is the fraction of molecules which, during a time interval of 10 -14 s, have their hydroxylic proton and their lone pairs free. The classical thermodynamic treatments of Mecke and Prigogine consider the spectroscopic entities as real thermodynamic entities. Opposed to this, the mobile order theory considers all the formal molecules as equal but with a reduction of the entropy due to the fact that during a fraction 1-γ of the time, the OH proton follows a neighbouring oxygen atom on its journey through the liquid. Mobile order theory and classic multicomponent treatment lead, in binary mixtures of the associated substance A with the inert substance S, to expressions of the chemical potentials μ A and μ S that are fundamentally different. However, the differences become very important only when the molar volumes overlineVS and overlineVA differ by a factor larger than 2. As a consequence the equations of the classic theory can still fit the experimental vapour pressure data of mixtures of liquid alcohols and liquid alkanes. However, the solubilities of solid alkanes in water for which overlineVS > 3 overlineVA are only correctly predicted by the mobile order theory.

  12. A protocol for pressurized liquid extraction and processing methods to isolate modern and ancient bone cholesterol for compound-specific stable isotope analysis.

    PubMed

    Laffey, Ann O; Krigbaum, John; Zimmerman, Andrew R

    2017-02-15

    Bone lipid compound-specific isotope analysis (CSIA) and bone collagen and apatite stable isotope ratio analysis are important sources of ecological and paleodietary information. Pressurized liquid extraction (PLE) is quicker and utilizes less solvent than traditional methods of lipid extraction such as soxhlet and ultrasonication. This study facilitates dietary analysis by optimizing and testing a standardized methodology for PLE of bone cholesterol. Modern and archaeological bones were extracted by PLE using varied temperatures, solvent solutions, and sample weights. The efficiency of PLE was assessed via quantification of cholesterol yields. Stable isotopic ratio integrity was evaluated by comparing isotopic signatures (δ 13 C and δ 18 O values) of cholesterol derived from whole bone, bone collagen and bone apatite. Gas chromatography/mass spectrometry (GC/MS) and gas chromatography isotope ratio mass spectrometry (GC/IRMS) were conducted on purified collagen and lipid extracts to assess isotopic responses to PLE. Lipid yield was optimized at two PLE extraction cycles of 75 °C using dichloromethane/methanol (2:1 v/v) as a solvent with 0.25-0.75 g bone sample. Following lipid extraction, saponification combined with the derivatization of the neutral fraction using trimethylsilylation yielded nearly twice the cholesterol of non-saponified or non-derivatized samples. It was also found that lipids extracted from purified bone collagen and apatite could be used for cholesterol CSIA. There was no difference in the bulk δ 13 C values of collagen extracted from bone with or without lipid. However, there was a significant depletion in 18 O of bone apatite due to lipid presence or processing. These results should assist sample selection and provide an effective, alternative extraction method for bone cholesterol that may be used for isotopic and paleodietary analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Solubility of K in Fe-S liquid, silicate-K/Fe-S/liq equilibria, and their planetary implications

    NASA Technical Reports Server (NTRS)

    Gangully, J.; Kennedy, G. C.

    1977-01-01

    Potassium has been found to have extremely limited absolute solubility in Fe-S liquid in the pressure-temperature range of 18 to 40 kbars, 1050 to 1150 C, and fO2 within the field of metallic iron. It also partitioned into a certain silicate phase highly in preference to Fe-S liquid at 30 kbar and 1100 C. The dependence of the partitioning of K between solid silicate and Fe-S liquid on fO2 and compositions of mineral solid solutions have been analyzed. These experimental data, along with those of others, limit the amount of K that could fractionate in Fe-S liquid layers or a core in the early history of the moon and, thus, act as localized heat sources in its thermal history models; the data also seem to argue against a chondritic abundance of potassium for earth. The question of fractionation of enough K-40 in an Fe-S liquid outer core of earth to provide the necesary thermal energy for the geomagnetic dynamo remains unresolved.

  14. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy

    PubMed Central

    Eom, Seunghyun; Memon, Muhammad Usman; Lim, Sungjoon

    2017-01-01

    In this paper, we have proposed a frequency-switchable complementary split-ring resonator (CSRR)-loaded quarter-mode substrate-integrated-waveguide (QMSIW) band-pass filter. For frequency switching, a microfluidic channel and liquid metal are used. The liquid metal used is eutectic gallium-indium (EGaIn), consisting of 24.5% indium and 75.5% gallium. The microfluidic channels are built using the elastomer polydimethylsiloxane (PDMS) and three-dimensional-printed microfluidic channel frames. The CSRR-loaded QMSIW band-pass filter is designed to have two states. Before the injection of the liquid metal, the measured center frequency and fractional bandwidths are 2.205 GHz and 6.80%, respectively. After injection, the center frequency shifts from 2.205 GHz to 2.56 GHz. Although the coupling coefficient is practically unchanged, the fractional bandwidth changes from 6.8% to 9.38%, as the CSRR shape changes and the external quality factor decreases. After the removal of the liquid metal, the measured values are similar to the values recorded before the liquid metal was injected. The repeatability of the frequency-switchable mechanism is, therefore, verified. PMID:28350355

  15. Luttinger liquid behavior in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy Patricia

    The purpose of this thesis is the study of different low-dimensional systems displaying the physical properties of Luttinger liquids (LL). In recent years, the LL model has been successfully applied to understand the transport properties, and recently noise measurements, of low-dimensional electronic systems. In this thesis, I focus on quantum wires (QW) and two-dimensional systems exhibiting the fractional quantum Hall effect (FQHE) as two different examples of systems showing Luttinger liquid behavior. In the case of QW, I analyze the effect of the dimensionality crossover on the finite temperature conductance in weakly disordered quantum wires. I show that although the quasi-one-dimensional QW exhibits a typical Luttinger liquid behavior for a small number of channels in the wire, the well-established Fermi liquid picture sets in when the number of channels increases. As another example of LL behavior, I study junctions between fractional quantum Hall (FQH) systems with different filling fractions. These junctions display a rich and interesting array of new physics. For example, I show that, by analyzing the scattering processes at the junction site, processes analogous to Andreev reflection present in superconductor/normal metal junctions are also present in the FQH junctions. I also analyze the noise spectrum of FQH junctions, and show that the scale of the noise spectrum is determined by the conductance of the junction. Furthermore, I discuss the implications of these results on the interpretation of recent experiments in terms of quasiparticles with fractional charge. Finally, I introduce the concept of generalized noise Wilson ratios as universal quotients between noise amplitudes in the thermal and shot noise regimes and discuss their experimental consequences.

  16. Supercritical Fluid: Liquid, Gas, Both or Neither? A Different Approach.

    ERIC Educational Resources Information Center

    Meyer, Edwin F.; Meyer, Thomas P.

    1986-01-01

    Presents a laboratory experiment which determines critical temperature and density of carbon dioxide. Discusses critical point and provides equations to estimate liquid volume fraction. Analyzes experimental results in terms of variables. (JM)

  17. Coper Isotope Fractionation in Porphyry Copper Deposits: A Controlled Experiment

    NASA Astrophysics Data System (ADS)

    Ruiz, J.; Mathur, R.; Uhrie, J. L.; Hiskey, B.

    2001-12-01

    Previous studies have shown that copper is fractionated in the environment. However, the mechanisms for isotope fractionation and the role of organic and inorganic processes in the fractionation are not well understood. Here we used the well controlled experiments used by Phelps Dodge Corporation aimed at leaching copper from their ore deposits to constrain the mechanism of copper isotope fractionation in natural systems. The isotope data were collected on a Micromass Isoprobe. High temperature copper sulfides from ore deposits in Chile and Arizona yield delta 65Cu near 0 permil. The reproducibility of the data is better that 0.1 permil. Controlled experiments consisting of large columns of rocks were fed solutions containing bacteria such as Thiobacillus ferroxidans and Leptospirrilium ferroxidan. Solutions fom the columns were sampled for sixty days and analyzed for copper concentrations, oxidation potential, ferrous/ferric ratios and pH. The results indicate that the bacterially aided dissolution of copper fractionated copper. Preliminary experiments of copper dissolution not using bacteria show no isotope fractionation The original rock in the experiment has a delta 65Cu of -2.1. The first solutions that were collected from the columns had a delta 65Cu of -5.0 per mil. The liquid changed its isotopic composition from -50 to -10 during the sixty days of sampling. The greatest shift in the isotope ratios occurred the first 30 days when the copper recovered was less than 40% and the ferrous/ferric ratios were somewhat constant. At approximately 35 days after the start of the experiments, the copper recovery increases the ferrousferric ratio decreased and the copper isotope ratio of the fluids remained fairly constant. The data suggest that the bacteria are required to effectively fractionate copper isotopes in natural systems and that the mechanisms of bacterial aided copper dissolution may include a direct dissolution of the sulfides by the bacteria. Experiments underway with enzimes without the bacteria may confirm this hypothesis. The data obtained in these experiments will provide some constraints in the use of copper isotopes as proxy for life in the rock record.

  18. Magma oceanography. II - Chemical evolution and crustal formation. [lunar crustal rock fractional crystallization model

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1977-01-01

    A description is presented of an empirical model of fractional crystallization which predicts that slightly modified versions of certain of the proposed whole moon compositions can reproduce the major-element chemistry and mineralogy of most of the primitive highland rocks through equilibrium and fractional crystallization processes combined with accumulation of crystals and trapping of residual liquids. These compositions contain sufficient Al to form a plagioclase-rich crust 60 km thick on top of a magma ocean that was initially no deeper than about 300 km. Implicit in the model are the assumptions that all cooling and crystallization take place at low pressure and that there are no compositional or thermal gradients in the liquid. Discussions of the cooling and crystallization of the proposed magma ocean show these assumptions to be disturbingly naive when applied to the ocean as a whole. However, the model need not be applied to the whole ocean, but only to layers of cooling liquid near the surface.

  19. Contemporary carbon content of bis (2-ethylhexyl) phthalate in butter.

    PubMed

    Tong, T; Ondov, J M; Buchholz, B A; VanDerveer, M C

    2016-01-01

    The fraction of naturally produced bis (2-ethylhexyl) phthalate (DEHP), a ubiquitous plasticizer known to contaminate packaged foods, was determined for each of five 1.10 kg samples of unsalted market butter by accelerator mass spectrometry (AMS). After extraction and concentration enrichment with liquid-liquid extraction, flash column chromatography, and preparative-scale high performance liquid chromatography, each sample provided ≈ 250 μg extracts of DEHP with carbon purity ranging from 92.5 ± 1.2% (n = 3, 1σ) to 97.1 ± 0.8% (n = 3, 1σ) as measured with gas chromatography mass spectrometry (GC-MS). After corrections for method blank DEHP, co-eluting compounds, and unidentified carbon, the mean fraction of naturally produced DEHP in butter was determined to be 0.16 ± 0.12 (n = 5, 1σ). To our knowledge, this is the first report of the contemporary fraction of DEHP isolated from market butter in the U.S. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Min; Khatun, Sufia; Castner, Edward W., E-mail: ecastner@rci.rutgers.edu

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C{sub 6}D{sub 14} with this ionic liquid. High-energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C{sub 6}D{sub 14}. Nuclear magnetic resonance self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C{sub 6}D{sub 14}more » is on average a factor of 21 times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less

  1. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    DOE PAGES

    Liang, Min; Khatun, Sufia; Castner, Edward W.

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C 6D 14 with this ionic liquid. High- energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C 6D 14. NMR self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C 6D 14 ismore » on average a factor of 21 times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less

  2. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  3. Field experiment with liquid manure and enhanced biochar

    NASA Astrophysics Data System (ADS)

    Dunst, Gerald

    2017-04-01

    Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.

  4. Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context

    Treesearch

    Susan E. Crow; Christopher W. Swanston; Kate Lajtha; J. Renee Brooks; Heath Keirstead

    2007-01-01

    Soil organic matter (SOM) is often separated by physical means to simplify a complex matrix into discrete fractions. A frequent approach to isolating two or more fractions is based on differing particle densities and uses a high density liquid such as sodium polytungstate (SPT). Soil density fractions are often interpreted as organic matter pools with different carbon...

  5. Preliminary evaluation of in vitro cytotoxicity and in vivo antitumor activity of Xanthium strumarium in transplantable tumors in mice.

    PubMed

    Aranjani, Jesil Mathew; Manuel, Atulya; Mallikarjuna Rao, Chamallamudi; Udupa, Nayanabhirama; Rao, Josyula Venkata; Joy, Ann Mary; Gandhi, Prajay; Radhakrishnan, Ethiraj Kannat

    2013-01-01

    In the present study, active fractions of the methanolic extract of Xanthium strumarium (XS) showing potent cytotoxicity were determined using microculture tetrazolium (MTT) and sulforhodamine B (SRB) assays in selected cancer cell lines. The active fractions viz., chloroform soluble fraction of root (CEXSR), hexane soluble fraction of leaf (HEXSL), hexane soluble fraction of fruits (HEXSF) and chloroform soluble fraction of fruits (CEXSF) of XS were tested in transplantable animal tumor models for their antitumor potential. Dalton's ascitic lymphoma (DLA) cells were used to induce solid and liquid (ascites) tumor in mice. The tumor bearing animals were treated with active fractions at two dose levels (100 and 200 mg/kg). The antitumor activities of the active fractions in tumor bearing animals were monitored with parameters such as body weight and increase in life-span as well as biochemical and hematological modalities (in the case of liquid tumor). Tumor incidence and tumor volume were the parameters monitored in the case of the solid tumor model. The results were analyzed by one-way ANOVA followed by Tukey's post hoc test. The extracts were found to increase the life-span of tumor bearing animals and restore the altered hematological and biochemical parameters significantly.

  6. Experimental study on the void fraction of air-water two-phase flow in a horizontal circular minichannel

    NASA Astrophysics Data System (ADS)

    Sudarja, Indarto, Deendarlianto, Haq, Aqli

    2016-06-01

    Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.

  7. Diffusion of multi-isotopic chemical species in molten silicates

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.

    2014-08-01

    Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our results show that (1) diffusive isotopic fractionations depend on the direction of diffusion in composition space, (2) diffusive isotopic fractionations scale with effective binary diffusion coefficient, as previously noted by Watkins et al. (2011), (3) self-diffusion is not decoupled from chemical diffusion, (4) self diffusion can be faster than or slower than chemical diffusion and (5) off-diagonal terms in the chemical diffusion matrix have isotopic mass-dependence. The results imply that relatively large isotopic fractionations can be generated by multicomponent diffusion even in the absence of large concentration gradients of the diffusing element. The new formulations for isotope diffusion can be tested with further experimentation and provide an improved framework for interpreting mass-dependent isotopic variations in natural liquids.

  8. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Adam P.; Gong, Zhaoheng; Harder, Tristan H.

    The occurrence of non-liquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two Intensive Operating Periods (IOP1 and IOP2) that took place during the wet and dry seasons, respectively, of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional and continental scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, which is an indicator of the mix of physical states in a sampled particle population, was measured in real time atmore » ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered while non-liquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95% of the particles were liquid as a campaign average, although this percentage dropped to as low as 60% during periods of anthropogenic influence. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, was the largest source of liquid PM. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of non-liquid PM correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70% of the variance in the observed rebound fractions. Lastly, anthropogenic influences appear to favor non-liquid PM by providing molecular species that increase viscosity when internally mixed with background PM, by contributing non-liquid particles in external mixtures of PM, and a by combination of these effects under real-world conditions.« less

  9. Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest

    DOE PAGES

    Bateman, Adam P.; Gong, Zhaoheng; Harder, Tristan H.; ...

    2016-08-17

    The occurrence of non-liquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two Intensive Operating Periods (IOP1 and IOP2) that took place during the wet and dry seasons, respectively, of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional and continental scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, which is an indicator of the mix of physical states in a sampled particle population, was measured in real time atmore » ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered while non-liquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95% of the particles were liquid as a campaign average, although this percentage dropped to as low as 60% during periods of anthropogenic influence. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, was the largest source of liquid PM. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of non-liquid PM correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70% of the variance in the observed rebound fractions. Lastly, anthropogenic influences appear to favor non-liquid PM by providing molecular species that increase viscosity when internally mixed with background PM, by contributing non-liquid particles in external mixtures of PM, and a by combination of these effects under real-world conditions.« less

  10. Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Verheggen, Bart; Cozic, Julie; Weingartner, Ernest; Bower, Keith; Mertes, Stephan; Connolly, Paul; Gallagher, Martin; Flynn, Michael; Choularton, Tom; Baltensperger, Urs

    2007-12-01

    The partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE-3, CLACE-3? and CLACE-4) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the activated fraction of aerosol particles, FN, defined as the fraction of the total aerosol number concentration (with particle diameter dp > 100 nm) that has been incorporated into cloud particles. The liquid and ice water content of mixed-phase clouds were characterized by analyzing multiple cloud probes. The dependence of the activated fraction on several environmental factors is discussed on the basis of more than 900 h of in-cloud observations and parameterizations for key variables are given. FN is found to increase with increasing liquid water content and to decrease with increasing particle number concentration in liquid clouds. FN also decreases with increasing cloud ice mass fraction and with decreasing temperature from 0 to -25°C. The Wegener-Bergeron-Findeisen process probably contributed to this trend, since the presence of ice crystals causes liquid droplets to evaporate, thus releasing the formerly activated particles back into the interstitial phase. Ice nucleation could also have prevented additional cloud condensation nuclei from activating. The observed activation behavior has significant implications for our understanding of the indirect effect of aerosols on climate.

  11. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    PubMed

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique.

  12. Effects of solid/liquid phase fractionation on pH and aqueous species molality in subduction zone fluids

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Galvez, M. E.

    2017-12-01

    Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.

  13. Evaluation of Hypolipidemic and Antioxidant Effects in Phenolrich Fraction of Crataegus pinnatifida Fruit in Hyperlipidemia Rats and Identification of Chemical Composition by Ultra-performance Liquid Chromatography Coupled with Quadropole Time-of-flight Mass Spectrometry

    PubMed Central

    Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Chen, Lanying; Yang, Ming

    2017-01-01

    Background: Hawthorn (Crataegus pinnatifida) fruit has enjoyed a great popularity as a pleasant-tasting food associated with hypolipidemic and antioxidant effects. Objective: Our aim was to screen the effective fraction of hawthorn fruit in the treatment of hyperlipidemia rats. Materials and Methods: In this study, ethanol extract of hawthorn fruit (Fr.1) and four fractionated extracts (Fr.2, Fr.3, Fr.4, and Fr.5) were compared to total phenol content evaluated using Folin–Ciocalteu method, and hypolipidemic and antioxidant effects were assessed in hyperlipidemic rats. Results: Total phenol content of Fr.4 was higher than other fractions by at least 2 fold. Furthermore, this fraction possessed the strongest hypolipidemic and antioxidant effects in hyperlipidemic rats. On this basis, 15 phenolic compounds and four organic acids in Fr.4 were positively or tentatively identified using ultra-performance liquid chromatography coupled with quadropole time-of-flight mass spectrometry. In addition, 5-O-caffeoyl quinic acid butyl ester was first reported in hawthorn fruit. Conclusion: Phenol-rich fraction in hawthorn fruit exhibited satisfactory hypolipidemic and antioxidant effects, and this could be exploited for further promotion of functional foods. SUMMARY Phenol-rich fraction in hawthorn fruit possesses most potent hypolipidemic and antioxidant effects in hyperlidemia rats. Abbreviations used: UPLC-Q-TOF-MS/MS: Ultra performance liquid chromatography coupled with quadropole time-of-flight mass spectrometry; TC: Total cholesterol; TG: Triglyceride; LDL-C: Low-density lipoprotein-cholesterol; HDL-C: High-density lipoprotein-cholesterol; GSH-Px: Glutathione peroxidase; SOD: Superoxide dismutase; MDA: Malondialdehyde; CAT: Catalase; NO: Nitric oxide; NOS: Nitric oxide synthase; ROS: Reactive oxygen species; •OOH: Superoxide anions, •OH: Hydroxyl radicals. PMID:29200740

  14. Evaluation of Hypolipidemic and Antioxidant Effects in Phenolrich Fraction of Crataegus pinnatifida Fruit in Hyperlipidemia Rats and Identification of Chemical Composition by Ultra-performance Liquid Chromatography Coupled with Quadropole Time-of-flight Mass Spectrometry.

    PubMed

    Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Chen, Lanying; Yang, Ming

    2017-01-01

    Hawthorn ( Crataegus pinnatifida ) fruit has enjoyed a great popularity as a pleasant-tasting food associated with hypolipidemic and antioxidant effects. Our aim was to screen the effective fraction of hawthorn fruit in the treatment of hyperlipidemia rats. Materials and Methods: In this study, ethanol extract of hawthorn fruit (Fr.1) and four fractionated extracts (Fr.2, Fr.3, Fr.4, and Fr.5) were compared to total phenol content evaluated using Folin-Ciocalteu method, and hypolipidemic and antioxidant effects were assessed in hyperlipidemic rats. Total phenol content of Fr.4 was higher than other fractions by at least 2 fold. Furthermore, this fraction possessed the strongest hypolipidemic and antioxidant effects in hyperlipidemic rats. On this basis, 15 phenolic compounds and four organic acids in Fr.4 were positively or tentatively identified using ultra-performance liquid chromatography coupled with quadropole time-of-flight mass spectrometry. In addition, 5-O-caffeoyl quinic acid butyl ester was first reported in hawthorn fruit. Phenol-rich fraction in hawthorn fruit exhibited satisfactory hypolipidemic and antioxidant effects, and this could be exploited for further promotion of functional foods. Phenol-rich fraction in hawthorn fruit possesses most potent hypolipidemic and antioxidant effects in hyperlidemia rats. Abbreviations used: UPLC-Q-TOF-MS/MS: Ultra performance liquid chromatography coupled with quadropole time-of-flight mass spectrometry; TC: Total cholesterol; TG: Triglyceride; LDL-C: Low-density lipoprotein-cholesterol; HDL-C: High-density lipoprotein-cholesterol; GSH-Px: Glutathione peroxidase; SOD: Superoxide dismutase; MDA: Malondialdehyde; CAT: Catalase; NO: Nitric oxide; NOS: Nitric oxide synthase; ROS: Reactive oxygen species; •OOH: Superoxide anions, •OH: Hydroxyl radicals.

  15. Measurements of the branching fractions for B{sub (s)}{yields}D{sub (s)}{pi}{pi}{pi} and {Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{pi}{pi}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaij, R.; Bauer, Th.; Beuzekom, M. van

    Branching fractions of the decays H{sub b}{yields}H{sub c}{pi}{sup -}{pi}{sup +}{pi}{sup -} relative to H{sub b}{yields}H{sub c}{pi}{sup -} are presented, where H{sub b} (H{sub c}) represents B{sup 0} (D{sup +}), B{sup -} (D{sup 0}), B{sub s}{sup 0} (D{sub s}{sup +}), and {Lambda}{sub b}{sup 0} ({Lambda}{sub c}{sup +}). The measurements are performed with the LHCb detector using 35 pb{sup -1} of data collected at {radical}(s)=7 TeV. The ratios of branching fractions are measured to be [B(B{sup 0}{yields}D{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{sup 0}{yields}D{sup +}{pi}{sup -})]=2.38{+-}0.11{+-}0.21, [B(B{sup -}{yields}D{sup 0}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{sup -}{yields}D{sup 0}{pi}{sup -})]= 1.27{+-}0.06{+-}0.11, [B(B{sub s}{sup 0}{yields}D{sub s}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})]/[B(B{submore » s}{sup 0}{yields}D{sub s}{sup +}{pi}{sup -})]=2.01{+-}0.37{+-}0.20, [B({Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{sup -} {pi}{sup +}{pi}{sup -})]/[B({Lambda}{sub b}{sup 0}{yields}{Lambda}{sub c}{sup +}{pi}{sup -})]=1.43{+-}0.16{+-}0.13 We also report measurements of partial decay rates of these decays to excited charm hadrons. These results are of comparable or higher precision than existing measurements.« less

  16. Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants

    PubMed Central

    Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.

    2017-01-01

    This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463

  17. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  18. GC/MS analysis of high-performance liquid chromatography fractions from Sophora flavescens and Torilis japonica extracts and their in vitro anti-neosporal effects on Neospora caninum.

    PubMed

    Seo, Hun-Su; Kim, Kyoung Hee; Kim, Dae-Yong; Park, Bong-Kyun; Shin, Nam-Shik; Kim, Jae-Hoon; Youn, Heejeong

    2013-01-01

    We analyzed alcoholic extracts of herbs possessing anti-neosporal activity against Neospora (N.) caninum. To identify the chemical components of Sophora (S.) flavescens and Torilis (T.) japonica associated with anti-neosporal activity, specific fractions were isolated by high-performance liquid chromatography (HPLC). In vitro activity of the fractions against N. caninum was then assessed. Gas chromatography/ mass spectrometry (GC/MS) was used to identify and quantify specific anti-neosporal molecules in the herbal extracts. Almost all HPLC fractions of S. flavescens and T. japonica had higher levels of anti-neosporal activity compared to the not treated control. Active constituents of the extracts were sophoridane, furosardonin A, and tetraisopropylidene-cyclobutane in S. flavescens; 5,17-β-dihydroxy-de-A-estra-5,7,9,14-tetraene, furanodiene, and 9,12-octadecadienoic acid (Z,Z)-(CAS,1) in T. japonica.

  19. GC/MS analysis of high-performance liquid chromatography fractions from Sophora flavescens and Torilis japonica extracts and their in vitro anti-neosporal effects on Neospora caninum

    PubMed Central

    Seo, Hun-Su; Kim, Kyoung Hee; Kim, Dae-Yong; Park, Bong-Kyun; Shin, Nam-Shik; Kim, Jae-Hoon

    2013-01-01

    We analyzed alcoholic extracts of herbs possessing anti-neosporal activity against Neospora (N.) caninum. To identify the chemical components of Sophora (S.) flavescens and Torilis (T.) japonica associated with anti-neosporal activity, specific fractions were isolated by high-performance liquid chromatography (HPLC). In vitro activity of the fractions against N. caninum was then assessed. Gas chromatography/mass spectrometry (GC/MS) was used to identify and quantify specific anti-neosporal molecules in the herbal extracts. Almost all HPLC fractions of S. flavescens and T. japonica had higher levels of anti-neosporal activity compared to the not treated control. Active constituents of the extracts were sophoridane, furosardonin A, and tetraisopropylidene-cyclobutane in S. flavescens; 5,17-β-dihydroxy-de-A-estra-5,7,9,14-tetraene, furanodiene, and 9,12-octadecadienoic acid (Z,Z)-(CAS,1) in T. japonica. PMID:23820198

  20. Sterilization in a liquid of a specific starch makes it slowly digestible in vitro and low glycemic in rats.

    PubMed

    Severijnen, Chantal; Abrahamse, Evan; van der Beek, Eline M; Buco, Amra; van de Heijning, Bert J M; van Laere, Katrien; Bouritius, Hetty

    2007-10-01

    Diabetics are recommended to eat a balanced diet containing normal amounts of carbohydrates, preferably those with a low glycemic index. For solid foods, this can be achieved by choosing whole-grain, fiber-rich products. For (sterilized) liquid products, such as meal replacers, the choices for carbohydrate sources are restricted due to technological limitations. Starches usually have a high glycemic index after sterilization in liquids, whereas low glycemic sugars and sugar replacers can only be used in limited amounts. Using an in vitro digestion assay, we identified a resistant starch (RS) source [modified high amylose starch (mHAS)] that might enable the production of a sterilized liquid product with a low glycemic index. Heating mHAS for 4-5 min in liquid increased the slowly digestible starch (SDS) fraction at the expense of the RS portion. The effect was temperature dependent and reached its maximum above 120 degrees C. Heating at 130 degrees C significantly reduced the RS fraction from 49 to 22%. The product remained stable for at least several months when stored at 4 degrees C. To investigate whether a higher SDS fraction would result in a lower postprandial glycemic response, the sterilized mHAS solution was compared with rapidly digestible maltodextrin. Male Wistar rats received an i.g. bolus of 2.0 g available carbohydrate/kg body weight. Ingestion of heat-treated mHAS resulted in a significant attenuation of the postprandial plasma glucose and insulin responses compared with maltodextrin. mHAS appears to be a starch source which, after sterilization in a liquid product, acquires slow-release properties. The long-term stability of mHAS solutions indicates that this may provide a suitable carbohydrate source for low glycemic index liquid products for inclusion in a diabetes-specific diet.

  1. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2014-01-01

    Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass. The present study concerns the fractionation of wheat straw using steam explosion, coupled with ethanol extraction, and that this facilitates the establishment of sugars and lignin platform and enables the production of regenerated cellulose films. The results showed that the hemicellulose fractionation yield was 73% under steam explosion at 1.6 MPa for 5.2 minutes, while the lignin fractionation yield was 90% by ethanol extraction at 160°C for 2 hours and with 60% ethanol (v/v). The cellulose yield reached up to 93% after steam explosion coupled with ethanol extraction. Therefore, cellulose sugar, hemicellulose sugar, and lignin platform were established effectively in the present study. Long fibers (retained by a 40-mesh screening) accounted for 90% of the total cellulose fibers, and the glucan conversion of short fibers was 90% at 9.0 hours with a cellulase loading of 25 filter paper units/g cellulose in enzymatic hydrolysis. Regenerated cellulose film was prepared from long fibers using [bmim]Cl, and the tensile strength and breaking elongation was 120 MPa and 4.8%, respectively. The cross-section of regenerated cellulose film prepared by [bmim]Cl displayed homogeneous structure, which indicated a dense architecture and a better mechanical performance. Multilevel composition fractionation process using steam explosion followed by ethanol extraction was shown to be an effective process by which wheat straw could be fractionated into different polymeric fractions with high yields. High-value utilization of wheat straw cellulose was achieved by preparing regenerated cellulose film using [bmim]Cl.

  2. Coal liquefaction with subsequent bottoms pyrolysis

    DOEpatents

    Walchuk, George P.

    1978-01-01

    In a coal liquefaction process wherein heavy bottoms produced in a liquefaction zone are upgraded by coking or a similar pyrolysis step, pyrolysis liquids boiling in excess of about 1000.degree. F. are further reacted with molecular hydrogen in a reaction zone external of the liquefaction zone, the resulting effluent is fractionated to produce one or more distillate fractions and a bottoms fraction, a portion of this bottoms fraction is recycled to the reaction zone, and the remaining portion of the bottoms fraction is recycled to the pyrolysis step.

  3. What are the associated parameters and temporal coverage?

    Atmospheric Science Data Center

    2014-12-08

    ... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...

  4. Fractionation of Mastic Gum in Relation to Antimicrobial Activity.

    PubMed

    Sharif Sharifi, Mohammad; Hazell, Stuart Loyd

    2009-04-01

    Mastic gum is a viscous light-green liquid obtained from the bark of Pistacia lentiscus var. chia. which belongs to the Anacardiaceae family. The gum has been fractionated to investigate the antimicrobial activity of the whole gum and its fractions against various strains of Helicobacter pylori. The polymeric gum fraction was separated from the essential oil and the resin (trunk exudates without essential oil) to assess and compare the anti-H. pylori activity of the polymer fraction against lower molecular weight fractions, the gum itself and masticated gum. The polymer fraction was also oxidized and assessed for antimicrobial activity.

  5. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    PubMed

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Corresponding-states laws for protein solutions.

    PubMed

    Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G

    2006-09-07

    The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.

  7. Microbial communities in liquid and fiber fractions of food waste digestates are differentially resistant to inhibition by ammonia.

    PubMed

    Peng, Wei; Lü, Fan; Shao, Liming; He, Pinjing

    2015-04-01

    The effect of different concentrations of ammonia (1.0-7.0 g/L) during mesophilic anaerobic digestion with fiber or liquid digestate as inoculum was examined. Evolution of microbial community within fiber and liquid digestates was quantitatively assessed by the intact lipid analysis methods and qualitatively by DNA fingerprint methods in order to determine their resistance to ammonia inhibition. The results showed that an increased level of total ammonia nitrogen prolonged the lag phase of fiber digestates while reduced the metabolic rate of liquid digestates. Fiber digestates had 19.6-50.9-fold higher concentrations of phospholipid fatty acids (PLFA) compared to liquid digestates, whereas concentrations of phospholipid ether lipids (PLEL) in the fiber digestates were only 2.91-17.6-fold higher compared to liquid digestates. Although the cell concentration in liquid fraction was far lower than that in the fiber one, the ammonia-resistant ability and the methanization efficiency of the liquid digestate was superior to the fiber digestate. The bacterial profiles were affected more by the type of digestate inoculum compared to the concentration of ammonia. Principal component analysis indicated that the lipids technique was superior to the DNA technique for bacterial quantification but detected less archaeal diversity.

  8. Charge Fractionalization in the Two-Channel Kondo Effect

    NASA Astrophysics Data System (ADS)

    Landau, L. Aviad; Cornfeld, Eyal; Sela, Eran

    2018-05-01

    The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015), 10.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e*/e =1 /2 . This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.

  9. High performance liquid chromatographic hydrocarbon group-type analyses of mid-distillates employing fuel-derived fractions as standards

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Otterson, D. A.

    1983-01-01

    Two high performance liquid chromatographic (HPLC) methods have been developed for the determination of saturates, olefins and aromatics in petroleum and shale derived mid-distillate fuels. In one method the fuel to be analyzed is reacted with sulfuric acid, to remove a substantial portion of the aromatics, which provides a reacted fuel fraction for use in group type quantitation. The second involves the removal of a substantial portion of the saturates fraction from the HPLC system to permit the determination of olefin concentrations as low as 0.3 volume percent, and to improve the accuracy and precision of olefins determinations. Each method was evaluated using model compound mixtures and real fuel samples.

  10. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    PubMed

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  11. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.

    PubMed

    Zaafouri, Kaouther; Ben Hassen Trabelsi, Aida; Krichah, Samah; Ouerghi, Aymen; Aydi, Abdelkarim; Claumann, Carlos Alberto; André Wüst, Zibetti; Naoui, Silm; Bergaoui, Latifa; Hamdi, Moktar

    2016-05-01

    Energy recovery from lignocellulosic solid marine wastes, Posidonia oceanica wastes (POW) with slow pyrolysis responds to the growing trend of alternative energies as well as waste management. Physicochemical, thermogravimetric (TG/DTG) and spectroscopic (FTIR) characterizations of POW were performed. POW were first converted by pyrolysis at different temperatures (450°C, 500°C, 550°C and 600°C) using a fixed-bed reactor. The obtained products (bio-oil, syngas and bio char) were analyzed. Since the bio-oil yield obtained from POW pyrolysis is low (2wt.%), waste frying oil (WFO) was added as a co-substrate in order to improve of biofuels production. The co-pyrolysis gave a better yield of liquid organic fraction (37wt.%) as well as syngas (CH4,H2…) with a calorific value around 20MJ/kg. The stoichiometric models of both pyrolysis and co-pyrolysis reactions were performed according to the biomass formula: CαHβOγNδSε. The thermal kinetic decomposition of solids was validated through linearized Arrhenius model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga.

    PubMed

    Mendiola, Jose A; Marín, Francisco R; Hernández, S Francisco; Arredondo, Bertha O; Señoráns, F Javier; Ibañez, Elena; Reglero, Guillermo

    2005-06-01

    Spirulina platensis microalga has been extracted on a pilot scale plant using supercritical fluid extraction (SFE) under various extraction conditions. The extraction yield and the antioxidant activity of the extracts were evaluated in order to select those extracts with both the highest antioxidant capacity and a good extraction yield. These extracts were characterized using LC coupled to diode array detection (DAD) and LC coupled to mass spectrometry (MS) with two different interfaces, atmospheric pressure chemical ionization (APCI) and electrospray (ESI) which allowed us to perform tandem MS by using an ion trap analyzer. The best extraction conditions were as follows: CO2 with 10% of modifier (ethanol) as extraction solvent, 55 degrees C (extraction temperature) and 220 bar (extraction pressure). Fractionation was achieved by cascade depressurization providing two extracts with different activity and chemical composition. Several compounds have been identified in the extracts, corresponding to different carotenoids previously identified in Spirulina platensis microalga along with chlorophyll a and some degradation products. Also, the structure of some phenolic compounds could be tentatively identified. The antioxidant activity of the extracts could be attributed to some of the above mentioned compounds.

  13. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level: I. Fractionation procedure and characterization of the subcellular fractions

    PubMed Central

    Noe, BD; Baste, CA; Bauer, GE

    1977-01-01

    Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517

  14. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    DOE PAGES

    Foxe, M.; Hagmann, C.; Jovanovic, I.; ...

    2015-03-27

    Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less

  15. Spreading of nanofluids driven by the structural disjoining pressure gradient.

    PubMed

    Chengara, Anoop; Nikolov, Alex D; Wasan, Darsh T; Trokhymchuk, Andrij; Henderson, Douglas

    2004-12-01

    This paper discusses the role of the structural disjoining pressure exerted by nanoparticles on the spreading of a liquid film containing these particles. The origin of the structural disjoining pressure in a confined geometry is due to the layering of the particles normal to the confining plane and has already been traced to the net increase in the entropy of the system in previous studies. In a recent paper, Wasan and Nikolov (Nature, 423 (2003) 156) pointed out that the structural component of the disjoining pressure is strong enough to move a liquid wedge; this casts a new light on many applications-most notably, detergency. While the concept of spreading driven by the disjoining pressure is not new, the importance of the structural disjoining pressure arises from its long-range nature (as compared to the van der Waals' force), making it an important component of the overall force balance near the contact line. In this paper, we report on a parametric study of the spreading phenomena by examining the effects of nanoparticle size, concentration and polydispersity on the displacement of an oil-aqueous interface with the aqueous bulk containing nanoparticles. The solution of the extended Laplace-Young equations for the profile of the meniscus yields the position of the nominal contact line under the action of the structural disjoining pressure. Simulations show that the displacement of the contact line is greater with a high nanoparticle volume fraction, small particles for the same volume fraction, monodispersed (in size) particles rather than polydispersed particles and when the resisting capillary pressure is small, i.e., when the interfacial tension is low and/or the radius of the dispersed phase drop/bubble is large.

  16. Conversion of polycyclic aromatic hydrocarbons on diesel particulate matter upon exposure to ppm levels of ozone

    NASA Astrophysics Data System (ADS)

    Van Vaeck, L.; Van Cauwenberghe, K.

    Diesel exhaust particlulate matter samples were collected from a dilution tunnel using a Hi-Vol cascade impactor. The fraction of the aerosol with aerodynamic diameter below 0.5 μm, retained on the glass fiber back-up filter, was exposed to a flow of ozonised particle free air for periods of 0.5-4 h (1.5 ppm of O 3, flow rate about 40 m 3 h -1). Both exposed and non-exposed reference niters were Soxhlet-extracted with benzene and methanol, and the polycyclic aromatic hydrocarbon fraction (PAH) was isolated by a liquid-liquid partition procedure described in the literature, using cyclohexane and dimethylformamid-water as solvents, modified for quantitative recovery of PAH. The conversion yields of PAH upon exposure to O 3 were determined by single ion monitoring mass spectrometry using a fused silica capillary column for their separation. Significant conversion was observed for PAH from molecular weight 226 to 276. Approximate half lives are of the order of 0.5-1 h for most PAH measured. This high reactivity of PAH on a carbonaceous matrix is probably related to the large specific surface of soot particles as well as to their high adsorptive capacity for gaseous compounds. Lower molecular weight PAH up to chrysene also undergo important physical losses by volatilisation and the extent to which chemical transformations occurred could not be determined accurately. Different reactivities are observed for several isomeric pairs of PAH: benzo(a)pyrene is much faster converted than benzo(e)pyrene, benz(a)anthracene reacts faster than chrysene. The benzo-fluoranthenes are most resistant toward O 3 attack. The implications of these results with respect to atmospheric degradation of PAH, as well as to the occurrence of artefactual conversion upon Hi-Vol sampling are discussed.

  17. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years.

    PubMed

    Sigurnjak, I; Vaneeckhaute, C; Michels, E; Ryckaert, B; Ghekiere, G; Tack, F M G; Meers, E

    2017-12-01

    Following changes over recent years in fertilizer legislative framework throughout Europe, phosphorus (P) is taking over the role of being the limiting factor in fertilizer application rate of animal manure. This results in less placement area for spreading animal manure. As a consequence, more expensive and energy demanding synthetic fertilizers are required to meet crop nutrient requirements despite existing manure surpluses. Anaerobic digestion followed by mechanical separation of raw digestate, results in liquid fraction (LF) of digestate, a product poor in P but rich in nitrogen (N) and potassium (K). A 3-year field experiment was conducted to evaluate the impact of using the LF of digestate as a (partial) substitute for synthetic N fertilizer. Two different fertilization strategies, the LF of digestate in combination with respectively animal manure and digestate, were compared to the conventional fertilization regime of raw animal manure with synthetic fertilizers. Results from the 3-year trial indicate that the LF of digestate may substitute synthetic N fertilizers without crop yield losses. Through fertilizer use efficiency assessment it was observed that under-fertilization of soils with a high P status could reduce P availability and consequently the potential for P leaching. Under conditions of lower K application, more sodium was taken up by the crop. In arid regions, this effect might reduce the potential risk of salt accumulation that is associated with organic fertilizer application. Finally, economic and ecological benefits were found to be higher when LF of digestate was used as a synthetic N substitute. Future perspectives indicate that nutrient variability in bio-based fertilizers will be one of the greatest challenges to address in the future utilization of these products. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Assessing the influence of NOx concentrations and relative humidity on secondary organic aerosol yields from α-pinene photo-oxidation through smog chamber experiments and modelling calculations

    NASA Astrophysics Data System (ADS)

    Stirnweis, Lisa; Marcolli, Claudia; Dommen, Josef; Barmet, Peter; Frege, Carla; Platt, Stephen M.; Bruns, Emily A.; Krapf, Manuel; Slowik, Jay G.; Wolf, Robert; Prévôt, Andre S. H.; Baltensperger, Urs; El-Haddad, Imad

    2017-04-01

    Secondary organic aerosol (SOA) yields from the photo-oxidation of α-pinene were investigated in smog chamber (SC) experiments at low (23-29 %) and high (60-69 %) relative humidity (RH), various NOx / VOC ratios (0.04-3.8) and with different aerosol seed chemical compositions (acidic to neutralized sulfate-containing or hydrophobic organic). A combination of a scanning mobility particle sizer and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer was used to determine SOA mass concentration and chemical composition. We used a Monte Carlo approach to parameterize smog chamber SOA yields as a function of the condensed phase absorptive mass, which includes the sum of OA and the corresponding bound liquid water content. High RH increased SOA yields by up to 6 times (1.5-6.4) compared to low RH. The yields at low NOx / VOC ratios were in general higher compared to yields at high NOx / VOC ratios. This NOx dependence follows the same trend as seen in previous studies for α-pinene SOA. A novel approach of data evaluation using volatility distributions derived from experimental data served as the basis for thermodynamic phase partitioning calculations of model mixtures in this study. These calculations predict liquid-liquid phase separation into organic-rich and electrolyte phases. At low NOx conditions, equilibrium partitioning between the gas and liquid phases can explain most of the increase in SOA yields observed at high RH, when in addition to the α-pinene photo-oxidation products described in the literature, fragmentation products are added to the model mixtures. This increase is driven by both the increase in the absorptive mass and the solution non-ideality described by the compounds' activity coefficients. In contrast, at high NOx, equilibrium partitioning alone could not explain the strong increase in the yields with RH. This suggests that other processes, e.g. reactive uptake of semi-volatile species into the liquid phase, may occur and be enhanced at higher RH, especially for compounds formed under high NOx conditions, e.g. carbonyls.

  19. Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3 catalyst.

    PubMed

    Krár, Márton; Kovács, Sándor; Kalló, Dénes; Hancsók, Jeno

    2010-12-01

    The importance of the economical production and usage of new generation biofuels, the so-called bio gas oil (paraffins from triglycerides) and the results of the investigation for their productability on the CoMo/Al(2)O(3) catalyst, which was activated by reduction, are presented. The conversion of triglycerides, the yield of total organic fractions and the target product, furthermore the type and ratio of deoxygenation reactions were determined as a function of process parameters. The advantageous process parameters were found (380 degrees C, 40-60 bar, 500-600 Nm(3)/m(3) H(2)/sunflower oil ratio, 1.0 h(-1)), where the conversion of triglycerides was 100% and the yield of the target fraction [high paraffin containing (>99%) gas oil boiling range product] was relatively high (73.7-73.9%). The deoxygenation of triglycerides the reduction as well as the decarboxylation/decarbonylation reactions took place. The yield of the target fractions did not achieve the theoretical values (81.4-86.5%). That is why it is necessary to separate the target fraction and recirculate the heavy fraction. 2010 Elsevier Ltd. All rights reserved.

  20. FRACTIONAL PENETRATION OF PAINT OVERSPRAY ARRESTORS

    EPA Science Inventory

    The report describes the development of fractional penetration curves for liquid droplet penetration of overspray arrestors for discrete droplet diameters from 0.3 to 10 micrometers. (NOTE: Fine particulates are particles with diameters of 10 micrometers or less.) These data poin...

Top