Science.gov

Sample records for liquid hydrogen systems

  1. Slush hydrogen liquid level system

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F.; Adams, R. G.

    1972-01-01

    A discrete capacitance liquid level system developed is specifically for slush hydrogen, but applicable to LOX, LN2, LH2, and RP1 without modification is described. The signal processing portion of the system is compatible with conventional liquid level sensors. Compatibility with slush hydrogen was achieved by designing the sensor with adequate spacing, while retaining the electrical characteristics of conventional sensors. Tests indicate excellent stability of the system over a temperature range of -20 C to 70 C for the circuit and to cryogenic temperatures of the sensor. The sensor was tested up to 40 g's rms random vibration with no damage to the sensor. Operation with 305 m of cable between the sensor and signal processor was demonstrated. It is concluded that this design is more than adequate for most flight and ground applications.

  2. Development of Automotive Liquid Hydrogen Storage Systems

    NASA Astrophysics Data System (ADS)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  3. Modeling leaks from liquid hydrogen storage systems.

    SciTech Connect

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  4. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation

    PubMed Central

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David

    2015-01-01

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system. PMID:25882348

  5. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation.

    PubMed

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A; Milstein, David

    2015-04-17

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system.

  6. Molecular absorption cryogenic cooler for liquid hydrogen propulsion systems

    NASA Technical Reports Server (NTRS)

    Klein, G. A.; Jones, J. A.

    1982-01-01

    A light weight, long life molecular absorption cryogenic cooler (MACC) system is described which can use low temperature waste heat to provide cooling for liquid hydrogen propellant tanks for interplanetary spacecraft. Detailed tradeoff studies were made to evaluate the refrigeration system component interactions in order to minimize the mass of the spacecraft cooler system. Based on this analysis a refrigerator system mass of 31 kg is required to provide the .48 watts of cooling required by a 2.3 meter diameter liquid hydrogen tank.

  7. Liquid oxygen/liquid hydrogen auxiliary power system thruster investigation

    NASA Technical Reports Server (NTRS)

    Eberle, E. E.; Kusak, L.

    1979-01-01

    The design, fabrication, and demonstration of a 111 newton (25 lb) thrust, integrated auxiliary propulsion system (IAPS) thruster for use with LH2/LO2 propellants is described. Hydrogen was supplied at a temperature range of 22 to 33 K (40 to 60 R), and oxygen from 89 to 122 K (160 to 220 R). The thruster was designed to operate in both pulse mode and steady-state modes for vehicle attitude control, space maneuvering, and as an abort backup in the event of failure of the main propulsion system. A dual-sleeve, tri-axial injection system was designed that utilizes a primary injector/combustor where 100 percent of the oxygen and 8 percent of the hydrogen is introduced; a secondary injector/combustor where 45 percent of the hydrogen is introduced to mix with the primary combustor gases; and a boundary layer injector that uses the remaining 45 percent of the hydrogen to cool the thrust throat/nozzle design. Hot-fire evaluation of this thruster with a BLC injection distance of 2.79 cm (1.10 in.) indicated that a specific impulse value of 390 sec can be attained using a coated molybdenum thrust chamber. Pulse mode tests indicated that a chamber pressure buildup to 90 percent thrust can be achieved in a time on the order of 48 msec. Some problems were encountered in achieving ignition of each pulse during pulse trains. This was interpreted to indicate that a higher delivered spark energy level ( 100 mJ) would be required to maintain ignition reliability of the plasma torch ignition system under the extra 'cold' conditions resulting during pulsing.

  8. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  9. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-07-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  10. Liquid oxygen/liquid hydrogen boost/vane pump for the advanced orbit transfer vehicles auxiliary propulsion system

    NASA Technical Reports Server (NTRS)

    Gluzek, F.; Mokadam, R. G.; To, I. H.; Stanitz, J. D.; Wollschlager, J.

    1979-01-01

    A rotating, positive displacement vane pump with an integral boost stage was designed to pump saturated liquid oxygen and liquid hydrogen for auxiliary propulsion system of orbit transfer vehicle. This unit is designed to ingest 10% vapor by volume, contamination free liquid oxygen and liquid hydrogen. The final pump configuration and the predicted performance are included.

  11. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  12. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Technicians with Praxair pressurize the hydrogen trailer before offloading liquid hydrogen during a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  13. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Inside a control building at NASA's Kennedy Space Center in Florida, Adam Swinger, cryogenic research engineer in the Exploration Research and Technology Directorate, communicates with team members during a test of the Ground Operations Demo Unit for liquid hydrogen. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  14. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Engineers complete a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  15. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  16. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  17. Study of liquid oxygen/liquid hydrogen auxiliary propulsion systems for the space tug

    NASA Technical Reports Server (NTRS)

    Nichols, J. F.

    1975-01-01

    Design concepts are considered that permit use of a liquid-liquid (as opposed to gas-gas) oxygen/hydrogen thrust chamber for attitude control and auxiliary propulsion thrusters on the space tug. The best of the auxiliary propulsion system concepts are defined and their principal characteristics, including cost as well as operational capabilities, are established. Design requirements for each of the major components of the systems, including thrusters, are developed at the conceptual level. The competitive concepts considered use both dedicated (separate tanks) and integrated (propellant from main propulsion tanks) propellant supply. The integrated concept is selected as best for the space tug after comparative evaluation against both cryogenic and storable propellant dedicated systems. A preliminary design of the selected system is established and recommendations for supporting research and technology to further the concept are presented.

  18. Development of a liquid hydrogen transfer pump system with MgB2 wires

    NASA Astrophysics Data System (ADS)

    Kajikawa, Kazuhiro; Kuga, Hirotsugu; Inoue, Takuro; Watanabe, Kazuki; Uchida, Yushi; Nakamura, Taketsune; Kobayashi, Hiroaki; Hongo, Motoyuki; Kojima, Takayuki; Taguchi, Hideyuki; Naruo, Yoshihiro; Wakuda, Tsuyoshi; Tanaka, Kazuhide

    An electric pump composed of an MgB2 motor is combined with superconducting level sensors using thin CuNi-sheathed MgB2 wires to transfer liquid hydrogen. An impeller is attached to the lower end of a rotating shaft on the MgB2 motor and covered with an outer casing to form a centrifugal pump. Then, the MgB2 motor and impeller are placed vertically inside a cryostat with an infill of liquid hydrogen. A glass Dewar vessel is prepared to receive the liquid hydrogen transferred from the cryostat containing the MgB2 motor. The MgB2 sensors are used not only to detect the level of liquid hydrogen but also to control the electric pump on the basis of their pre-estimated calibration curves. By using the assembled pump system, the liquid hydrogen is successfully transferred from the cryostat to the glass Dewar vessel via a transfer tube.

  19. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    SciTech Connect

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-25

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  20. The Liquid Hydrogen System for the MuCool Test Area

    NASA Astrophysics Data System (ADS)

    Darve, C.; Klebaner, A.; Martinez, A.; Norris, B.; Pei, L.; Lau, W.; Yang, S.

    2004-06-01

    A new MuCool test area (MTA) is under construction at Fermi National Accelerator Laboratory. This facility will house a cryo-system composed of a liquid hydrogen absorber enclosed in a 5 Tesla magnet. The total volume of liquid hydrogen in the system is 25 liters. Helium gas at 14 K is provided by an in-house refrigerator and will sub-cool the hydrogen system to 17 K. Liquid hydrogen temperature in the absorber is chosen to satisfy the requirement of a density change smaller than +/- 2.5 %. To accommodate this goal and to remove the heat deposited by a beam, a pump will circulate liquid hydrogen at a rate of 450 g/s. The cooling loop was optimized with respect to the heat transport in liquid hydrogen and the pressure drop across the pump. Specific instrumentation will permit an intrinsically safe monitoring and control of the cryo-system. Safety issues are the main driver of the cryo-design. This paper describes the implementation of the liquid hydrogen system at MTA and the preliminary results of a finite element analysis used to size the LH2 absorber force-flow.

  1. Development of No-Vent™ liquid hydrogen storage system for space applications

    NASA Astrophysics Data System (ADS)

    Haberbusch, Mark S.; Nguyen, Chinh T.; Stochl, Robert J.; Hui, Terry Y.

    2010-09-01

    A number of technological advances required to store and maintain normal-boiling-point and densified cryogenic liquids, including liquid hydrogen, under zero boil-off conditions in-space, for long periods of time, have been developed. These technologies include (1) thermally optimized compact cryogen storage systems that reduce environmental heat leak to the lowest-temperature cryogen, which minimizes cryocooler size and input power, and (2) actively-cooled shields that surround the storage systems and intercept heat leak. The processes and tools used to develop these technologies are discussed. A zero boil-off liquid hydrogen storage system technology demonstrator for validating the actively-cooled shield technology is presented.

  2. A Bacterial Hydrogen Production Test System for Measuring H2 Concentrations in Liquids and Gases

    NASA Astrophysics Data System (ADS)

    Klepere, I.; Muiznieks, I.; Kleperis, J.

    2010-01-01

    The hydrogen production by biological processes using fermentative micro-organisms is an environment-friendly way for storage and use of energy. A laboratory-scale model of the fermentation system was developed and tested, which allows studying the kinetics of hydrogen production by a standard Escherichia coli MSCL (Microbial Strain Collection of Latvia) strain 332 used as indicator at the sanitary analyses of water. In this work, we compared the hydrogen concentrations in liquid (the cultivation media) and gaseous environments. During the anaerobic growth of E. coli MSCL332 bacteria in glucose-containing media a hydrogen over-saturation in the liquid phase was observed. The maximum of dissolved hydrogen concentration (2481 μmol/l) was reached by the fourth hour of fermentation, while for gaseous phase the mass-spectrometric analysis showed that hydrogen of the highest concentration occupied only 0.4% volume.

  3. Investigative techniques used to locate the liquid hydrogen leakage on the Space Shuttle Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Hammock, William R., Jr.; Cota, Phillip E., Jr.; Rosenbaum, Bernard J.; Barrett, Michael J.

    1991-01-01

    Standard leak detection methods at ambient temperature have been developed in order to prevent excessive leakage from the Space Shuttle liquid oxygen and liquid hydrogen Main Propulsion System. Unacceptable hydrogen leakage was encountered on the Columbia and Atlantis flight vehicles in the summer of 1990 after the standard leak check requirements had been satisfied. The leakage was only detectable when the fuel system was exposed to subcooled liquid hydrogen during External Tank loading operations. Special instrumentation and analytical tools were utilized during a series of propellant tanking tests in order to identify the sources of the hydrogen leakage. After the leaks were located and corrected, the physical characteristics of the leak sources were analyzed in an effort to understand how the discrepancies were introduced and why the leakage had evaded the standard leak detection methods. As a result of the post-leak analysis, corrective actions and leak detection improvements have been implemented in order to preclude a similar incident.

  4. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  5. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    SciTech Connect

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J. -K; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-06-21

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

  6. Performance Tests of a Liquid Hydrogen Propellant Densification Ground System for the X33/RLV

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    1997-01-01

    A concept for improving the performance of propulsion systems in expendable and single-stage-to-orbit (SSTO) launch vehicles much like the X33/RLV has been identified. The approach is to utilize densified cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants to fuel the propulsion stage. The primary benefit for using this relatively high specific impulse densified propellant mixture is the subsequent reduction of the launch vehicle gross lift-off weight. Production of densified propellants however requires specialized equipment to actively subcool both the liquid oxygen and liquid hydrogen to temperatures below their normal boiling point. A propellant densification unit based on an external thermodynamic vent principle which operates at subatmospheric pressure and supercold temperatures provides a means for the LH2 and LOX densification process to occur. To demonstrate the production concept for the densification of the liquid hydrogen propellant, a system comprised of a multistage gaseous hydrogen compressor, LH2 recirculation pumps and a cryogenic LH2 heat exchanger was designed, built and tested at the NASA Lewis Research Center (LeRC). This paper presents the design configuration of the LH2 propellant densification production hardware, analytical details and results of performance testing conducted with the hydrogen densifier Ground Support Equipment (GSE).

  7. A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)

    2001-01-01

    The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.

  8. Molecular Simulations of Hydrogen Bond Cluster Size and Reorientation Dynamics in Liquid and Glassy Azole Systems.

    PubMed

    Sun, Qinfang; Harvey, Jacob A; Greco, Katharine V; Auerbach, Scott M

    2016-10-06

    We simulated the dynamics of azole groups (pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, and tetrazole) as neat liquids and tethered via linkers to aliphatic backbones to determine how tethering and varying functional groups affect hydrogen bond networks and reorientation dynamics, both factors which are thought to influence proton conduction. We used the DL_Poly_2 molecular dynamics code with the GAFF force field to simulate tethered systems over the temperature range 200-900 K and the corresponding neat liquids under liquid state temperatures at standard pressure. We computed hydrogen bond cluster sizes; orientational order parameters; orientational correlation functions associated with functional groups, linkers, and backbones; time scales; and activation energies associated with orientational randomization. All tethered systems exhibit a liquid to glassy-solid transition upon cooling from 600 to 500 K, as evidenced by orientational order parameters and correlation functions. Tethering the azoles was generally found to produce hydrogen bond cluster sizes similar to those in untethered liquids and hydrogen bond lifetimes longer than those in liquids. The simulated rates of functional group reorientation decreased dramatically upon tethering. The activation energies associated with orientational randomization agree well with NMR data for tethered imidazole systems at lower temperatures and for tethered 1,2,3-triazole systems at both low- and high-temperature ranges. Overall, our simulations corroborate the notion that tethering functional groups dramatically slows the process of reorientation. We found a linear correlation between gas-phase hydrogen bond energies and tethered functional group reorientation barriers for all azoles except for imidazole, which acts as an outlier because of both atomic charges and molecular structure.

  9. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Makida, Yasuhiro; Shintomi, Takakazu; Asami, Takuya; Suzuki, Goro; Takao, Tomoaki; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Munakata, Kouhei; Kajiwara, Masataka

    2013-11-01

    From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB2 conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented.

  10. Liquid Hydrogen Fuel System for Small Unmanned Air Vehicles

    DTIC Science & Technology

    2013-01-07

    Additionally the tank requires practical features, such as filling and vent ports, plus pressure relief valves. We opted to pursue nested...heater turns on (bottom), the tank pressure increases from the build up of GH2. When the heater turns off, the tank pressure drops as the GH2 is...X-Y.J. Wang, J.E. Hunter, “Engineering Analysis Studies for Preliminary Design of Lightweight Cryogenic Hydrogen Tanks in UAV Applications,” NASA

  11. Application of Proton Conductors to Hydrogen Monitoring for Liquid Metal and Molten Salt Systems

    NASA Astrophysics Data System (ADS)

    Kondo, Masatoshi; Muroga, Takeo; Katahira, Koji; Oshima, Tomoko

    The chemical control of impurity such as hydrogen and oxygen in coolants is one of the critical issues for the development of liquid metal cooled fast reactors and self-cooled liquid breeder blankets for fusion reactors. Especially, hydrogen (isotopes) level is the key parameter for corrosion and mechanical properties of the in-reactor components. For fission reactors, the monitor of hydrogen level in the melt is important for safety operation. The control of tritium is essential for the tritium breeding performance of the fusion reactors. Therefore, on-line hydrogen sensing is a key technology for these systems. In the present study, conceptual design for the on-line hydrogen sensor to be used in liquid sodium (Na), lead (Pb), lead-bismuth (Pb-Bi), lithium (Li), lead-lithium (Pb-17Li) and molten salt LiF-BeF2 (Flibe) was performed. The cell of hydrogen sensor is made of a solid electrolyte. The solid electrolyte proposed in this study is the CaZrO3-based ceramics, which is well-known as proton conducting ceramics. In this concept, the cell is immersed into the melt which is containing the hydrogen at the activity of PH1 of ambient atmosphere. Then, the cell is filled with Ar-H2 mixture gas at regulated hydrogen activity of PH2. The electromotive force (EMF) is obtained by the proton conduction in the electro chemical system expressed as Pt, Melt(PH1) | Proton conductor | PH2, Pt. The Nernst equation is used for the evaluation of the hydrogen activity from the obtained EMF. The evaluations of expected performance of the sensor in liquid Na, Pb, Pb-Bi, Pb-17Li, Li and Flibe were carried out by means of the measurement test in gas atmosphere at hydrogen activities equivalent to those for the melts in the reactor conditions. In the test, the hydrogen activity in the gas varied from 2.2x10-14 to 1. The sensor exhibited good response, stability and reproducibility.

  12. Reference Gauging System for a Small-Scale Liquid Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Siegwarth, James D.

    2003-01-01

    A system to accurately weigh the fluid contents of a small-scale liquid hydrogen test tank has been experimentally verified. It is intended for use as a reference or benchmark system when testing lowgravity liquid quantity gauging concepts in the terrestrial environment. The reference gauging system has shown a repeatable measurement accuracy of better than 0.5 percent of the full tank liquid weight. With further refinement, the system accuracy can be improved to within 0.10 percent of full scale. This report describes the weighing system design, calibration, and operational results. Suggestions are given for further refinement of the system. An example is given to illustrate additional sources of uncertainty when mass measurements are converted to volume equivalents. Specifications of the companion test tank and its multi-layer insulation system are provided.

  13. Liquid hydrogen sphere project

    NASA Image and Video Library

    2011-06-22

    A 107,000-gallon liquid hydrogen sphere no longer needed at Stennis Space Center is barged through the facility locks June 21. The rocket engine test facility has teamed with the Mississippi Department of Marine Resource to place the sphere in offshore waters as an artificial reef.

  14. Liquid Hydrogen: Target, Detector

    SciTech Connect

    Mulholland, G.T.; Harigel, G.G.

    2004-06-23

    In 1952 D. Glaser demonstrated that a radioactive source's radiation could boil 135 deg. C superheated-diethyl ether in a 3-mm O glass vessel and recorded bubble track growth on high-speed film in a 2-cm3 chamber. This Bubble Chamber (BC) promised improved particle track time and spatial resolution and cycling rate. Hildebrand and Nagle, U of Chicago, reported Liquid Hydrogen minimum ionizing particle boiling in August 1953. John Wood created the 3.7-cm O Liquid Hydrogen BC at LBL in January 1954. By 1959 the Lawrence Berkley Laboratory (LBL) Alvarez group's '72-inch' BC had tracks in liquid hydrogen. Within 10 years bubble chamber volumes increased by a factor of a million and spread to every laboratory with a substantial high-energy physics program. The BC, particle accelerators and special separated particle beams created a new era of High Energy Physics (HEP) experimentation. The BC became the largest most complex cryogenic installation at the world's HEP laboratories for decades. The invention and worldwide development, deployment and characteristics of these cryogenic dynamic target/detectors and related hydrogen targets are described.

  15. Development of a thermal-hydraulics experimental system for high Tc superconductors cooled by liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.; Kato, T.; Futakawa, M.; Kinoshita, K.

    2010-06-01

    A thermal-hydraulics experimental system of liquid hydrogen was developed in order to investigate the forced flow heat transfer characteristics in the various cooling channels for wide ranges of subcoolings, flow velocities, and pressures up to supercritical. A main tank is connected to a sub tank through a hydrogen transfer line with a control valve. A channel heater is located at one end of the transfer line in the main tank. Forced flow through the channel is produced by adjusting the pressure difference between the tanks and the valve opening. The mass flow rate is measured from the weight change of the main tank. For the explosion protection, electrical equipments are covered with a nitrogen gas blanket layer and a remote control system was established. The first cryogenic performance tests confirmed that the experimental system had satisfied with the required performances. The forced convection heat transfer characteristics was successfully measured at the pressure of 0.7 MPa for various flow velocities.

  16. Thermal Performance Comparison of Glass Microsphere and Perlite Insulation Systems for Liquid Hydrogen Storage Tanks

    NASA Astrophysics Data System (ADS)

    Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2008-03-01

    A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.

  17. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  18. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  19. The impact of iron on the bleaching efficacy of hydrogen peroxide in liquid whey systems.

    PubMed

    Jervis, Suzanne M; Drake, MaryAnne

    2013-02-01

    Whey is a value-added product that is utilized in many food and beverage applications for its nutritional and functional properties. Whey and whey products are generally utilized in dried ingredient applications. One of the primary sources of whey is from colored Cheddar cheese manufacture that contains the pigment annatto resulting in a characteristic yellow colored Cheddar cheese. The colorant is also present in the liquid cheese whey and must be bleached so that it can be used in ingredient applications without imparting a color. Hydrogen peroxide and benzoyl peroxide are 2 commercially approved chemical bleaching agents for liquid whey. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been previously reported for whey bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how bleaching can impact flavor and functionality of dried ingredients. Currently, the precise mechanisms of off-flavor development and functionality changes are not entirely understood. Iron reactions in a bleached liquid whey system may play a key role. Reactions between iron and hydrogen peroxide have been widely studied since the reaction between these 2 relatively stable species can cause great destruction in biological and chemical systems. The actual mechanism of the reaction of iron with hydrogen peroxide has been a controversy in the chemistry and biological community. The precise mechanism for a given reaction can vary greatly based upon the concentration of reactants, temperature, pH, and addition of biological material. In this review, some hypotheses for the mechanisms of iron reactions that may occur in fluid whey that may impact bleaching efficacy, off-flavor development, and changes in functionality are presented. Cheese whey is bleached to remove residual carotenoid cheese colorant. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have

  20. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S.

    2008-03-01

    In support of the development of a micro-gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center (MSFC) with the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray-bar thermodynamic vent system (TVS). The testing, with an ambient heat leak of about 70 W and tank fill levels of 90, 50, and 25%, was performed for 14 days during August and September 2005. The TVS successfully controlled the tank pressure within a ±3.45 kPa band with various gaseous helium (GHe) masses in the ullage. Relative to pressure control with an "all hydrogen" ullage, the GHe presence resulted in 37 to 68% longer pressure reduction cycle durations, depending on the fill level, during the mixing/venting phase of the control cycle. Testing was also conducted to evaluate thermodynamic venting without the recirculation pump operating, at a very low fill level. Although ullage stratification was present, the ullage pressure was successfully controlled without the pump. It was evident that the spray-bar and heat exchanger configuration, which extended almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the pump operating.

  1. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  2. Reduction of liquid hydrogen boiloff: Optimal reliquefaction system design and cost study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A preliminary design and economic analysis of candidate hydrogen reliquefaction systems was performed. All candidate systems are of the same general type; differences and size, compressor arrangement, and amount of hydrogen venting. The potential application of the hydrogen reliquefaction will be to reduce the boil-off from the 850,000 gallon storage dewars at LC-39.

  3. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  4. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  5. A new vapor-liquid equilibrium apparatus for hydrogen fluoride containing systems

    SciTech Connect

    Jongcheon Lee; Hwayong Kim; Jong Sung Lim; Jae-Duck Kim; Youn Yong Lee

    1996-12-31

    A new circulating type apparatus has been constructed to obtain reliable equilibrium PTxy data for hydrogen fluoride (HF) containing system. Equilibrium cell with Pyrex windows protected by Teflon PFA sheets to prevent the corrosion was used. Isothermal vapor-liquid equilibrium data for the 1,1-difluoroethane (HFC-152a) + HF system at 288.23 and 298.35 K were obtained, and compared with PTx measurement results. Experimental data were correlated using Lencka and Anderko equation of state for HF with the Wong-Sandler mixing rule as well as the van der Waals one fluid mixing rule. The Wong-Sandler mixing rule gives better results. 5 refs., 3 figs.

  6. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  7. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    SciTech Connect

    Tazhibayeva, I. L. Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S.; Kenzhin, Ye. A.

    2015-12-15

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of {sup 6}Li with neutron) with a surface hydride film.

  8. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  9. Hydrogen systems

    SciTech Connect

    Veziroglu, T.N.; Zhu, Y.; Bao, D.

    1985-01-01

    This book presents the papers given at a symposium on hydrogen fuels. Topics considered at the symposium included hydrogen from fossil fuels, electrolysis, photolytic hydrogen generation, thermochemical and photochemical methods of hydrogen production, catalysts, hydrogen biosynthesis, novel and hybrid methods of hydrogen production, storage and handling, metal hydrides and their characteristics, utilization, hydrogen fueled internal combustion engines, hydrogen gas turbines, hydrogen flow and heat transfer, fuel cells, synthetic hydrocarbon fuels, thermal energy transfer, hydrogen purification, research programs, economics, primary energy sources, environmental impacts, and safety.

  10. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    1999-10-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

  11. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    1999-11-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

  12. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    2000-02-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

  13. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    1998-08-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through July 1999.

  14. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    2000-01-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

  15. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect

    1998-05-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  16. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    1999-12-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  17. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect

    1998-07-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

  18. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    1999-03-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

  19. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  20. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  1. Crash test of a liquid hydrogen automobile

    NASA Technical Reports Server (NTRS)

    Finegold, J. G.; Van Vorst, W. D.

    1976-01-01

    Details of the conversion of a U.S. Postal Service mail truck to hydrogen-fueled operation are given. Specific reference is made to design safety considerations. A traffic accident is described that caused the mail truck (mounted on a trailer) to turn on its side at approximately 20 mph and to finally slide to a stop and turn upside down. No one was injured, and there was essentially no damage to the liquid hydrogen fuel system. The mail truck was driven away from the scene of the accident. Suggestions to insure the safety of hydrogen-fueled experimental vehicles are made.

  2. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    PubMed

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO2 or N2, hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  3. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    NASA Technical Reports Server (NTRS)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  4. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Technical Reports Server (NTRS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-01-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  5. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Technical Reports Server (NTRS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-01-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  6. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Technical Reports Server (NTRS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-01-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  7. Study of Systems and Technology for Liquid Hydrogen Production Independent of Fossil Fuels

    NASA Technical Reports Server (NTRS)

    Sprafka, R. J.; Escher, W. J. D.; Foster, R. W.; Tison, R. R.; Shingleton, J.; Moore, J. S.; Baker, C. R.

    1983-01-01

    Based on Kennedy Space Center siting and logistics requirements and the nonfossil energy resources at the Center, a number of applicable technologies and system candidates for hydrogen production were identified and characterized. A two stage screening of these technologies in the light of specific criteria identified two leading candidates as nonfossil system approaches. Conceptual design and costing of two solar-operated, stand alone systems, one photovoltaic based on and the other involving the power tower approach reveals their technical feasibility as sited as KSC, and the potential for product cost competitiveness with conventional supply approaches in the 1990 to 1210 time period. Conventional water hydrolysis and hydrogen liquefaction subsystems are integrated with the solar subsystems.

  8. Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.

    2003-01-01

    To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.

  9. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  10. Characterization of Pump-Induced Acoustics in Space Launch System Main Propulsion System Liquid Hydrogen Feedline Using Airflow Test Data

    NASA Technical Reports Server (NTRS)

    Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.

    2015-01-01

    High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.

  11. Liquid Hydrogen Sensor Considerations for Space Exploration

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  12. Nonaqueous System of Iron-Based Ionic Liquid and DMF for the Oxidation of Hydrogen Sulfide and Regeneration by Electrolysis.

    PubMed

    Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang

    2015-05-05

    To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.

  13. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOEpatents

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  14. Liquid hydrogen flow problems in Kiwi reactors

    SciTech Connect

    Thurston, R.S.

    1992-09-01

    The Kiwi series of reactors were the first ones tested in the US Rover Program in the development of nuclear rocket engines for space propulsion. The early experiments with liquid hydrogen showed that parallel flow systems were prone to uneven flow distributions and violent fluctuations in pressure and flow that were capable of destroying a reactor core. Kiwi flow distribution problems were solved by using multiple feed lines into the nozzle cooling system and carefully balancing impedance among them. The violent pressure and flow fluctuations were eliminated after their cause was identified as resonance phenomena driven by the response to flow disturbances of heat transfer through a superheated hydrogen layer. Smooth flow operations were assured by rapidly bringing operating pressures beyond several times the critical pressure of hydrogen. After this initial rough start, solid core nuclear rocket engines successfully passed milestones of achievements during the remainder of the Rover program.

  15. Turbine engine altitude chamber and flight testing with liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Conrad, E. W.

    1979-01-01

    In the late fifties the Lewis Research Center evaluated experimentally the use of hydrogen using three different turbojet engines in altitude test chambers. One of these engines was later flown experimentally using liquid hydrogen fuel. This paper is a brief overview of the significant aspects of this exploratory research and gives a few implications of the results to modern turbine engines. A subsequent contract dealing with a positive displacement pump operating on liquid hydrogen is discussed and some aspects of liquid hydrogen propellant systems, reflected by rocket booster experience are treated briefly. Areas requiring further research and technology effort are delineated.

  16. Mixing of Liquid Cryogens in the Simulation of Liquid Hydrogen/Liquid Oxygen Explosion Hazards

    DTIC Science & Technology

    1990-08-01

    properties of all of the fluids used in the experiments are listed in Table 1. More information caa cryogenic fluid properties can be found in Barron 161...MIXING OF LIQUID CRYOGENS IN THE SIMULATION OF LIQUID HYDROGEN/LIQUID OXYGEN EXPLOSION HAZARDS T.S. Luchik, K.M. Aaron, E.Y. Kwack, P. Shakkottai...planetary missions at the Jet Propulsion Laboratory (JPL) use Radioisotope Thermoelectric Generators (RTGs) as part of the spacecraft’s power system

  17. Demonstration of a pulsing liquid hydrogen/liquid oxygen thruster

    NASA Technical Reports Server (NTRS)

    Herr, P. N.; Choenman, L.

    1973-01-01

    Successful operation of a pulsing liquid hydrogen/liquid oxygen attitude control propulsion system thruster (1250 lb sub f) at cryogenic inlet conditions while maintaining high specific impulse and low impulse bit capability was demonstrated. Significant technical advances and departures from conventional injector design practices were necessary in order to achieve an operable thruster. These advancements were achieved through extensive analyses of heat transfer and injector manifold priming that established the baseline feasibility for an actual hardware design. The primary subject of this paper is the result of experimental evaluation of the 45 R hydrogen inlet temperature injector concept. The test matrix consisted of 66 hot firing tests in a heat sink thrust chamber.

  18. Modeling hydrogen sulfide emissions across the gas-liquid interface of an anaerobic swine waste treatment storage system

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica; Aneja, Viney P.; Overton, John H.

    Hydrogen sulfide (H 2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" smell and is considered a toxic manure gas. In the southeastern United States, anaerobic waste treatment lagoons are widely used to store and treat hog excreta at commercial hog farms. Hydrogen sulfide is produced as manure decomposes anaerobically, resulting from the mineralization of organic sulfur compounds as well as the reduction of oxidized inorganic sulfur compounds by sulfur-reducing bacteria. The process of H 2S emissions from anaerobic waste treatment lagoons are investigated utilizing a two-film model with three different modeling approaches: Coupled Mass Transfer with Chemical Reactions Model with the assumption (1) pH remains constant in the liquid film (MTCR Model I) and (2) pH may change throughout the liquid film due to diffusion processes that occur within the film (MTCR Model II); and (3) a Mass Transfer Model which neglects chemical reactions (MTNCR Model) in the gas and liquid films. Results of model predictions are consistent with previous works, which show that flux is largely dependent on the physicochemical lagoon properties including sulfide concentration, pH, and lagoon temperature. Air temperature and low wind velocities (e.g., <3.25 m s -1) have negligible impact on flux. Results also indicate that flux values decrease with increased film thickness. The flux was primarily influenced by variations in the liquid film thickness, signifying that the H 2S flux is driven by liquid-phase parameters. Model results were compared with H 2S flux measurements made at a swine waste treatment storage lagoon in North Carolina using a dynamic emission flux chamber system in order to evaluate model accuracy in calculating lagoon H 2S emissions. The MTCR Model II predicted the highest increase in emission rates as aqueous sulfide concentration was increased. The MTNCR Model showed the highest dependence on pH. All three models

  19. Structural and microscopic relaxation processes in liquid hydrogen fluoride.

    PubMed

    Angelini, R; Giura, P; Monaco, G; Ruocco, G; Sette, F; Verbeni, R

    2002-06-24

    The high frequency collective dynamics of liquid hydrogen fluoride is studied by inelastic x-ray scattering on the coexistence curve at T = 239 K. The comparison with existing molecular dynamics simulations shows the existence of two active relaxation processes with characteristic time scales in the subpicosecond range. The observed scenario is very similar to that found in liquid water. This suggests that hydrogen bonded liquids behave similarly to other very different systems as simple and glass forming liquids, thus indicating that these two relaxation processes are universal features of the liquid state.

  20. Hydrogen bonding behaviors of binary systems containing the ionic liquid 1-butyl-3-methylimidazolium trifluoroacetate and water/methanol.

    PubMed

    Zhang, Qing-Guo; Wang, Nan-Nan; Wang, Shuang-Long; Yu, Zhi-Wu

    2011-09-29

    The hydrogen-bonding properties of binary systems consisting of a representative Brønsted acidic hydrophilic ionic liquid (IL) 1-butyl-3-methylimidazolium trifluoroacetate ([Bmim][CF(3)CO(2)]) and a cosolvent, water or methanol, over the entire concentration range have been investigated by methods of attenuated total reflectance infrared spectroscopy, (1)H NMR spectroscopy, and quantum chemical calculations. It has been found that the hydrogen-bonding interactions between the anion [CF(3)CO(2)](-), rather than the cation, and the cosolvent molecules are dominant at low concentration of cosolvent. The H-bond interaction site between the IL anion and water/methanol is the O atom in the -COO group, while the -CF(3) group makes a positive contribution by donating electron to the carboxylic group, forming a cooperative hydrogen-bonding system. For the cation [Bmim](+), although the C2-H is the favorable proton donor in H-bonding interactions, the water/methanol molecules form H-bonds with the alkyl C-H at low water/methanol concentration due to the stronger interaction between C2-H and [CF(3)CO(2)](-). Interestingly, we found that the interaction between methanol and the IL is stronger than that between water and the IL because the methyl group in methanol has a positive contribution to the formation of H-bonds. The following sequential order of interaction strength is established: [Bmim](+)-methanol-[CF(3)CO(2)](-) > [Bmim](+)-water-[CF(3)CO(2)](-) > [Bmim](+)-[CF(3)CO(2)](-) > [CF(3)CO(2)](-)-methanol > [CF(3)CO(2)] (-)-water > [Bmim](+)-methanol > [Bmim] (+)-water.

  1. Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems -- Part 2: Model results and conclusions

    SciTech Connect

    Gursu, S.; Veziroglu, T.N. . Clean Energy Research Inst.); Sherif, S.A. . Dept. of Mechanical Engineering); Sheffield, J.W. . Dept. of Mechanical and Aerospace Engineering and Engineering Mechanics)

    1993-09-01

    Three models capable of predicting the phenomena of thermal stratification and self-pressurization in liquid hydrogen storage systems were presented in Part 1 of this paper. In order to be able to evaluate the performance of the different pressure rise models, the results are compared with experimental data obtained from different tests. The set of experimental data obtained from the Plum Brook B-2 test, in the NASA-Lewis Research Center, represents a very accurately instrumented and closely controlled experimental work performed on the liquid hydrogen storage tank. Another set of data is taken from the experimental study conducted again in the NASA-Lewis Research Center to obtain a correlating parameter which relates the rate of pressure rise to the volume of spherical liquid hydrogen tank. In this paper model results are presented and discussed and general conclusions are reached.

  2. A superconductor to superfluid phase transition in liquid metallic hydrogen.

    PubMed

    Babaev, Egor; Sudbø, Asle; Ashcroft, N W

    2004-10-07

    Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report a topological analysis of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.

  3. Nuclear quantum effects and hydrogen bonding in liquids.

    PubMed

    Raugei, Simone; Klein, Michael L

    2003-07-30

    We have employed ab initio path integral molecular dynamics simulations to investigate the role of nuclear quantum effects on the strength of hydrogen bonds in liquid hydrogen fluoride. Nuclear quantum effects are shown to be responsible for a stronger hydrogen bond and an enhanced dipole-dipole interaction, which lead, in turn, to a shortening of the H...F intrachain distance. The simulation results are analyzed in terms of the electronic density shifts with respect to a purely classical treatment of the nuclei. The observed enhanced hydrogen-bond interaction, which arises from a coupling of intra- and intermolecular effects, should be a general phenomenon occurring in all hydrogen-bonded systems.

  4. Screen channel liquid acquisition device outflow tests in liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Chato, D. J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2014-11-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325 × 2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3-24.2 K), pressures (100-350 kPa), and flow rates (0.010-0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  5. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2013-01-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  6. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  7. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  8. Controlling the Formation of Ionic-Liquid-based Aqueous Biphasic Systems by Changing the Hydrogen-Bonding Ability of Polyethylene Glycol End Groups.

    PubMed

    Pereira, Jorge F B; Kurnia, Kiki A; Freire, Mara G; Coutinho, João A P; Rogers, Robin D

    2015-07-20

    The formation of aqueous biphasic systems (ABS) when mixing aqueous solutions of polyethylene glycol (PEG) and an ionic liquid (IL) can be controlled by modifying the hydrogen-bond-donating/-accepting ability of the polymer end groups. It is shown that the miscibility/immiscibility in these systems stems from both the solvation of the ether groups in the oxygen chain and the ability of the PEG terminal groups to preferably hydrogen bond with water or the anion of the salt. The removal of even one hydrogen bond in PEG can noticeably affect the phase behavior, especially in the region of the phase diagram in which all the ethylene oxide (EO) units of the polymeric chain are completely solvated. In this region, removing or weakening the hydrogen-bond-donating ability of PEG results in greater immiscibility, and thus, in a higher ability to form ABS, as a result of the much weaker interactions between the IL anion and the PEG end groups.

  9. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  10. Hydrogen supply system

    SciTech Connect

    Teitel, R.J.

    1981-11-24

    A system for supplying hydrogen to an apparatus which utilizes hydrogen contains a metal hydride hydrogen supply component and a microcavity hydrogen storage hydrogen supply component which in tandem supply hydrogen for the apparatus. The metal hydride hydrogen supply component includes a first storage tank filled with a composition which is capable of forming a metal hydride of such a nature that the hydride will release hydrogen when heated but will absorb hydrogen when cooled. This first storage tank is equipped with a heat exchanger for both adding heat to and extracting heat from the composition to regulate the absorption/deabsorption of hydrogen from the composition. The microcavity hydrogen storage hydrogen supply component includes a second tank containing the microcavity hydrogen supply. The microcavity hydrogen storage contains hydrogen held under high pressure within individual microcavities. The hydrogen is released from the microcavities by heating the cavities. This heating is accomplished by including within the tank for the microcavity hydrogen storage a heating element.

  11. Thermal properties of hydrogenated liquid natural rubber

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  12. Thermal properties of hydrogenated liquid natural rubber

    SciTech Connect

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-25

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  13. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility insert the liquid oxygen feedline for the 17-inch disconnect in the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility insert the liquid oxygen feedline for the 17-inch disconnect in the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  14. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers install the liquid oxygen feedline for the 17-inch disconnect on orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers install the liquid oxygen feedline for the 17-inch disconnect on orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  15. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers lift the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers lift the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers raise the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers raise the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  17. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers move the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers move the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  18. KENNEDY SPACE CENTER, FLA. - Viewed from inside the aft section of the orbiter Discovery, a worker installs the liquid oxygen feedline for the 17-inch disconnect, coming up from below. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - Viewed from inside the aft section of the orbiter Discovery, a worker installs the liquid oxygen feedline for the 17-inch disconnect, coming up from below. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  19. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility oversee installation of the liquid oxygen feedline for the 17-inch disconnect on the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility oversee installation of the liquid oxygen feedline for the 17-inch disconnect on the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  20. Hydrogen slush density reference system

    NASA Technical Reports Server (NTRS)

    Weitzel, D. H.; Lowe, L. T.; Ellerbruch, D. A.; Cruz, J. E.; Sindt, C. F.

    1971-01-01

    A hydrogen slush density reference system was designed for calibration of field-type instruments and/or transfer standards. The device is based on the buoyancy principle of Archimedes. The solids are weighed in a low-mass container so arranged that solids and container are buoyed by triple-point liquid hydrogen during the weighing process. Several types of hydrogen slush density transducers were developed and tested for possible use as transfer standards. The most successful transducers found were those which depend on change in dielectric constant, after which the Clausius-Mossotti function is used to relate dielectric constant and density.

  1. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  2. Hydrogen meter for service in liquid sodium

    SciTech Connect

    McCown, J J

    1983-11-01

    This standard establishes the requirements for the design, materials, fabrication, quality assurance, examination, and acceptance testing of a hydrogen meter and auxiliary equipment for use in radioactive or nonradioactive liquid sodium service. The meter shall provide a continuous and accurate indication of the hydrogen impurity concentration over the range 0.03 to 10 ppM hydrogen in sodium at temperatures between 800 and 1000/sup 0/F (427 and 538/sup 0/C). The meter may also be used to rapidly monitor changes in hydrogen concentration, over the same concentration range, and, therefore can be used as a sensor for sodium-water reactions in LMFBR steam generators.

  3. DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, SIXTH LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  4. A Low Cost, Self-Acting, Liquid Hydrogen Boil-Off Recovery System

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joy w.

    2000-01-01

    PROJECT SUMMARY. 1 PROJECT OBJECTIVES. Detail Design. Final Analysis. Hardware Procurement. Component Tests. System Tests..Prototype Tests. 2. WORK PERFORMED. Detail Design. Final Analysis. Hardware Procurement. Component Tests. System Tests. Prototype Tests. 3. Results obtained. Detail Design. Final Analysis. Hardware Procurement. Component Tests. System Tests. Prototype Tests. 5. TECHNICAL MERIT AND FEASIBILITY ASSESSMENT. 6. APPENDIX A: SIZE DETAIL DRAWINGS. 7. APPENDIX B: CONSULTANTS SENSITIVITY STUDY. 8. APPENDIX C: CONSULTANTS REPORT. ROTORDYNAMIC ANALYSIS 9. SF298 REPORT DOCUMENTATION PAGE.

  5. Gas Requirements in Pressurized Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Gluck, D. F.; Kline, J. F.

    1961-01-01

    Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper.

  6. Hydrogen-Bonded Liquid Crystal Nanocomposites.

    PubMed

    Roohnikan, Mahdi; Toader, Violeta; Rey, Alejandro; Reven, Linda

    2016-08-23

    Nanoparticle-liquid crystal (NP-LC) composites based on hydrogen bonding were explored using a model system. The ligand shells of 3 nm diameter zirconium dioxide nanoparticles (ZrO2 NPs) were varied to control their interaction with 4-n-hexylbenzoic acid (6BA). The miscibility and effect of the NPs on the nematic order as a function of particle concentration was characterized by polarized optical microscopy (POM), fluorescence microscopy and (2)H NMR spectroscopy. Nonfunctionalized ZrO2 NPs have the lowest miscibility and strongest effect on the LC matrix due to irreversible binding of 6BA to the NPs via a strong zirconium carboxylate bond. The ZrO2 NPs were functionalized with 6-phosphonohexanoic acid (6PHA) or 4-(6-phosphonohexyloxy)benzoic acid (6BPHA) which selectively bind to the ZrO2 NP surface via the phosphonic acid groups. The miscibility was increased by controlling the concentration of the pendant CO2H groups by adding hexylphosphonic acid (HPA) to act as a spacer group. Fluorescence microscopy of lanthanide doped ZrO2 NPs showed no aggregates in the nematic phase below the NP concentration where aggregates are observed in the isotropic phase. The functionalized NPs preferably concentrate into LC defects and any remaining isotropic liquid but are still present throughout the nematic liquid at a lower concentration.

  7. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    SciTech Connect

    H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

    2006-05-01

    Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  8. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    NASA Astrophysics Data System (ADS)

    Londer, H.; Myneni, G. R.; Adderley, P.; Bartlok, G.; Setina, J.; Knapp, W.; Schleussner, D.

    2006-05-01

    Current "Non evaporable getters" (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 °C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  9. Hydrogen bonded network properties in liquid formamide

    NASA Astrophysics Data System (ADS)

    Bakó, Imre; Megyes, Tünde; Bálint, Szabolcs; Chihaia, Viorel; Bellissent-Funel, Marie-Claire; Krienke, Hartmut; Kopf, Andreas; Suh, Soong-Hyuck

    2010-01-01

    Molecular dynamics simulations have been performed for liquid formamide using two different types of potential model (OPLS, Cordeiro). The structural results obtained from simulation were compared to experimental (x-ray and neutron diffraction measurements) outcomes. A generally good agreement for both models examined has been found, but in the hydrogen bonded region (2.9 Å) the Cordeiro model shows a slightly better fit. Besides the evaluation of partial radial distribution functions, orientational correlation functions and energy distribution functions, describing the hydrogen bonded structure, have been calculated based on the statistical analysis of configurations, resulting into a new insight in the clustering properties and topology of hydrogen bonded network. It has been shown that in liquid formamide exists a continuous hydrogen bonded network and from the analysis of the distribution of small rings revealed the ring size distribution in liquid formamide. Our study resulted that the ring size distribution of the hydrogen bonded liquid formamide shows a broad distribution with a maximum around 11. It has been found that the topology in formamide is significantly different than in water.

  10. The Ursinus College Liquid Hydrogen Target

    NASA Astrophysics Data System (ADS)

    Palardy, Jessica; Ferrante, Nicholas; Riley, Lewis; Zegers, Remco

    2010-11-01

    The Ursinus College Liquid Hydrogen Target has been constructed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University, for the purpose of eliminating unwanted gamma-rays from carbon in polyethylene or deuterated polyethylene targets that are commonly used in experiments requiring thick proton targets. Existing geant4 simulations of the Segmented Germanium Array (SeGA) and the CAESium iodide ARray (CAESAR) have been modified to incorporate the liquid hydrogen target. The impact of the target on gamma-ray detection efficiencies and the use of the simulations to plan experiments with the target are discussed.

  11. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  12. Liquid hydrogen in protonic chabazite.

    PubMed

    Zecchina, Adriano; Bordiga, Silvia; Vitillo, Jenny G; Ricchiardi, Gabriele; Lamberti, Carlo; Spoto, Giuseppe; Bjørgen, Morten; Lillerud, Karl Petter

    2005-05-04

    Due to its fully reversible nature, H(2) storage by molecular adsorption could represent an advantage with respect to dissociative processes, where kinetic effects during the charging and discharging processes are present. A drawback of this strategy is represented by the extremely weak interactions that require low temperature and high pressure. High surface area materials hosting polarizing sites can represent a viable way toward more favorable working conditions. Of these, in this contribution, we have studied hydrogen adsorption in a series of zeolites using volumetric techniques and infrared spectroscopy at 15 K. We have found that in H-SSZ-13 zeolite the cooperative role played by high surface area, internal wall topology, and presence of high binding energy sites (protons) allows hydrogen to densify inside the nanopores at favorable temperature and pressure conditions.

  13. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  14. Aerogel insulation applications for liquid hydrogen launch vehicle tanks

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Sass, J. P.

    2008-05-01

    Solutions to thermal insulation problems using aerogel beads were demonstrated for space launch vehicles using a model of the space shuttle external tank's liquid hydrogen (LH 2) intertank. Test results using liquid helium show that with aerogel, the nitrogen mass inside the intertank is greatly reduced and free liquid nitrogen is eliminated. Physisorption within the aerogel was also investigated, showing that the sorption ratio (liquid nitrogen to aerogel beads) is about 62%. The insulating effectiveness of the aerogel shows that cryopumping is driven by thermal communication between warm and cold surfaces. This technology can solve heat transfer problems and augment existing thermal protection systems on launch vehicles.

  15. Critical fields of liquid superconducting metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Jaffe, J.; Ashcroft, N. W.

    1983-01-01

    Liquid metallic hydrogen, in a fully dissociated state, is predicted at certain densities to pass from dirty to clean and from type II to type I superconducting behavior as temperature is lowered. Previously announced in STAR as N82-29374

  16. Liquid Hydrogen Consumption During Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  17. Small, high-pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A high pressure, liquid hydrogen turbopump was designed, fabricated, and tested to a maximum speed of 9739 rad/s and a maximum pump discharge pressure of 2861 N/sq. cm. The approaches used in the analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  18. Ground operations demonstration unit for liquid hydrogen initial test results

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-12-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  19. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  20. Eddy Current Loss Induced in Aluminum Thermal Conduction Strips for ASPCS Coils Indirectly Cooled by Liquid Hydrogen through Thermo-siphon System

    NASA Astrophysics Data System (ADS)

    Ota, Narumi; Katsura, Masashi; Ando, Kennosuke; Takao, Tomoaki; Shintomi, Takakazu; Makida, Yasuhiro; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Tsujigami, Hiroshi; Fujikawa, Shizuichi; Semba, Toshiaki; Iwaki, Katsuya

    To promote renewable energy sources, we proposed a new system called the Advanced Superconducting Power Conditioning System (ASPCS), which consists of Superconducting Magnetic Energy Storage-system (SMES), Electrolyzer, and Fuel Cell, and is also combined with a liquid hydrogen station for vehicles. The SMES plays a role to compensate the fast fluctuations generated by the renewable energies. In case of the ASPCS with a capacity of 5 MW, we designed the 50 MJ-class SMES composed of 4 solenoid coils. The winding of the solenoid coils is double pancake and a basic coil is 2 m in diameter and 0.5 m in height. Each SMES coil is wound with MgB2 conductor and indirectly cooled at 20 K by liquid hydrogen flowing through a thermo-siphon cooling system. Pure aluminum strips are inserted between the double-pancake coils and the pure aluminum plates gathering the strips lead to liquid hydrogen pipes. This scheme enables the strips and the plates to transfer the heat load in the coils to the cooling pipes and keep the coils at low temperature. On the other hand, we must consider that the strips generate eddy current loss which is strongly affected by a width of the strips. At the same time as the primary study of the SMES coils, we experimented on the thermo-siphon cooling system and investigated the relationship between the heat load and the heat extraction ability of the cooling system. The experiments showed that the cooling system could proficiently function. The estimation of eddy current loss from the particular cooling aluminum strips for the SMES in the ASPCS is reported with the results of the thermo-siphon driving experiment.

  1. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  2. Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Webeler, R.; Bedard, F.

    1961-01-01

    The absence of experimental data in the literature concerning a viscosity difference for normal and equilibrium liquid hydrogen may be attributed to the limited reproducibility of "oscillating disk" measurements in a liquid-hydrogen environment. Indeed, there is disagreement over the viscosity values for equilibrium liquid hydrogen even without proton spin considerations. Measurements presented here represent the first application of the piezoelectric alpha quartz torsional oscillator technique to liquid-hydrogen viscosity measurements.

  3. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17... Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride, refrigerated liquid must comply with the following special requirements: (a) The tank car must comply with...

  4. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17... Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride, refrigerated liquid must comply with the following special requirements: (a) The tank car must comply with...

  5. Small, high pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Warren, D. J.

    1980-01-01

    A high pressure, low capacity, liquid hydrogen turbopump was designed, fabricated, and tested. The design configuration of the turbopump is summarized and the results of the analytical and test efforts are presented. Approaches used to pin point the cause of poor suction performance with the original design are described and performance data are included with an axial inlet design which results in excellent suction capability.

  6. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  7. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    NASA Astrophysics Data System (ADS)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  8. Stabilized rhodium(0) nanoparticles: a reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system.

    PubMed

    Schulz, J; Roucoux, A; Patin, H

    2000-02-18

    A colloidal system based on an aqueous suspension of rhodium(o) nanoparticles proved to be an efficient catalyst for the hydrogenation of arene derivatives under biphasic conditions. The rhodium nanoparticles (2-2.5 nm) were synthesized by the reduction of RhCl3 x 3H2O with sodium borohydride and were stabilized by highly water-soluble N-alkyl-N-(2-hydroxyethyl)ammonium salts (HEA-Cn). These surfactant molecules were characterized by measurements of the surface tension and the aqueous dispersions with rhodium were observed by transmission electron cryomicroscopy. The catalytic system is efficient under ultramild conditions, namely room temperature and 1 atm H2 pressure. The aqueous phase which contains the protected rhodium(0) colloids can be reused without significant loss of activity. The microheterogeneous behavior of this catalytic system was confirmed on a mercury poisoning experiment.

  9. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  10. Character and Structure of Hydrogen Bonding in Liquid Water

    NASA Astrophysics Data System (ADS)

    Guo, Jinghua; Luo, Yi; Augustsson, Andreas; Rubensson, Jan-Erik; Sathe, Conny; Agren, Hans; Siegbahn, Hans; Nordgren, Joseph

    2003-03-01

    Pauling stated in the 50s that electron sharing between water molecules results in a covalency in the hydrogen bond. Many attempts have been made in the past to verify PaulingÂ's prediction, but without much success due to the limitation of experimental access to the electronic structure of liquids. We reported the first X-ray emission spectra of liquid water. X-ray emission is a direct probe of the local electronic structure of complex systems. Our experimental and theoretical studies on liquid water provide clear evidence that an electron sharing takes place between water molecules. Such a sharing mainly involves the so-called 3a1 orbital, which is a mixing of oxygen 2p and hydrogen 2s atomic orbitals. The outermost "lone pair" orbital (1b_1), however, hardly shows any change upon solvation, which is in contradiction with the normal definition of so-called coordinate-covalent bonding (also called donor-acceptor or Lewis acid-base bonding). Moreover, the X-ray emission spectra of liquid water nicely show the origin for the increasing of dipole moment in liquid water, and they have also been used to separately determine a particular structure with broken hydrogen bonding.

  11. Experiments on microjets of undercooled liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Fernández, José M.; Kühnel, Matthias; Tejeda, Guzmán; Kalinin, Anton; Grisenti, Robert E.; Montero, Salvador

    2012-11-01

    Novel experiments on liquid microjets (filaments) of hydrogen and deuterium, carried out at the Laboratory of Molecular Fluid Dynamics of the IEM, are reported. These filaments, less than 10 microns in diameter, are an ideal medium to produce highly undercooled liquid samples and to investigate the homogeneous solidification process, free from wall effects. The filaments exit from cryogenic capillary nozzles into a vacuum chamber, to cool down very fast by surface evaporation. Finite size radius leads to a temperature gradient across the filament, determined by thermal conductivity, and, possibly, to a velocity gradient as well. The filaments are monitored by laser shadowgraphy, and analyzed by means of high performance Raman spectroscopy. Real-time measurements in the rotational and vibrational spectral regions reveal the structure and temperature along the filaments, allowing to track the crystal growth process. The high spatial resolution of Raman spectroscopy allows observing in situ the structural changes of the liquid microjets, with a time resolution of ˜ 10 ns. The filaments of pure para-H2 can be cooled down to 9 K (65% of its melting point at 13.8 K), while staying liquid, before eventually solidifying into a metastable polymorph. Crystallization kinetics revealed a growth rate of 33 cm/s, much higher than expected for a thermally activated process. The time and spatial control attained in these experiments offers new opportunities for investigating the processes of nonequilibrium phase transformations in undercooled fluids, as well as the propagation of liquid jets into a rarefied gas media.

  12. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  13. The hydrogen-bond collective dynamics in liquid methanol

    NASA Astrophysics Data System (ADS)

    Bellissima, Stefano; de Panfilis, Simone; Bafile, Ubaldo; Cunsolo, Alessandro; González, Miguel Angel; Guarini, Eleonora; Formisano, Ferdinando

    2016-12-01

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HB dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.

  14. The hydrogen-bond collective dynamics in liquid methanol

    DOE PAGES

    Bellissima, Stefano; Cunsolo, Alessandro; DePanfilis, Simone; ...

    2016-12-20

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HBmore » dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.« less

  15. The hydrogen-bond collective dynamics in liquid methanol

    SciTech Connect

    Bellissima, Stefano; Cunsolo, Alessandro; DePanfilis, Simone; Bafile, Ubaldo; Gonzalez, Miguel Angel; Guarini, Eleonora; Formisano, Ferdinando

    2016-12-20

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HB dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.

  16. The hydrogen-bond collective dynamics in liquid methanol

    PubMed Central

    Bellissima, Stefano; De Panfilis, Simone; Bafile, Ubaldo; Cunsolo, Alessandro; González, Miguel Angel; Guarini, Eleonora; Formisano, Ferdinando

    2016-01-01

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HB dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature. PMID:27996056

  17. Liquid hydrogen densitometer utilizes open-ended microwave cavity

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Wenger, N. C.

    1967-01-01

    Open-ended microwave cavity directly measures the density of flowing liquid, gaseous, or two-phase hydrogen. Its operation is based on derived relations between the cavity resonant frequency and the dielectric constant and density of hydrogen.

  18. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  19. Concept for on orbit liquid hydrogen test bed

    NASA Astrophysics Data System (ADS)

    Frank, D.; Nast, T.; Mix, J.

    2012-04-01

    There is growing interest in the utilization of cryogenic propellants for future space missions. The utilization of these propellants for long duration in space presents substantial challenges in fluid management in the low g environment. Lockheed Martin (LM) is developing the concept for a space borne system for demonstration of long term storage, various fluid management tests involving control of tank pressure, location and identification of vapor and liquid phases, venting in low g, mass gauging, and extension of life with cryocoolers and location of liquid for transfer. In addition the concept includes autonomous coupling and hydrogen transfer from tank to tank. The concept is based on a flight qualified flight proven hydrogen Dewar design from a previous program The concept for this system is described.

  20. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  1. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  2. Second virial coefficient of helium adsorbed on liquid hydrogen

    SciTech Connect

    Paine, C.G.; Seidel, G.M. )

    1994-08-01

    The nonlinear dependence of the surface energy of liquid hydrogen as a function of the density of helium gas in equilibrium with the liquid surface has been used to determine the second virial coefficient of the two-dimensional gas of helium atoms adsorbed on the surface. The surface energy of both liquid hydrogen and liquid deuterium has been measured in the presence of [sup 4]He and [sup 3]He. The experimental results are in rough agreement with theoretical prediction.

  3. Hydrogen production from liquid hydrocarbons demonstration program

    NASA Astrophysics Data System (ADS)

    Ohara, J. B.; Chow, T. K.; Ling, J. K.

    1986-09-01

    The Air Force now uses diesel engine generators as sources of heat and electricity at selected remote sites. Simultaneously, it has investigated alternative cogeneration candidates that offer improved reliability, maintain ability, and economics. One system that shows high potential is a phosphoric acid fuel cell (PAFC) power plant consisting of a fuel conditioner to convert logistic fuels such as DEF-2, DF-a and JP-4 to a hydrogen-rich gas, and a power conditioner to convert the direct current power to alternating current. The objective was to define, and demonstrate, a fuel conditioner to meet performance criteria estabilished for the Air Force Remote Site Fuel Cell Power Plant program. Key criteria included high fuel-to-hydrogen conversion efficiency, rapid startup and load following capability, and minimum water consumption during operations. A process configuration which has the potential to produce a minimum of 0.365 pound of hydrogen per pound of feed diesel consumed is described. The hydrogen-containing product is suitable for phosphoric acid fuel 1 cell power plant. A 2 mole per hour (hydrogen) demonstration plant was designed, constructed and started up.

  4. Hydrogen storage in metal-hydrogen systems and their derivatives

    NASA Astrophysics Data System (ADS)

    Eberle, U.; Arnold, G.; von Helmolt, R.

    During the last years, the power densities of automotive fuel cell systems have been raised dramatically. However, a major technology improvement is still needed for the on-board fuel storage system since hydrogen exhibits a rather low volumetric energy density (regardless whether it is stored as a liquid at cryogenic temperatures or as a compressed gas). Furthermore, the cost for current hydrogen containers is far from what gasoline tanks cost. Therefore, alternatives like solid-state absorbers of hydrogen (e.g. metal hydrides or complex hydrides) are investigated for their feasibility by the car industry. These kinds of systems show very high volumetric storage densities on a materials basis. Unfortunately, the host compounds are usually quite heavy and thus possess a low gravimetric storage density. Also, the thermodynamics and kinetics of the absorption/desorption reactions and their impact on the tank design in general (and on the heat management in particular) have to be considered. Within the framework of this paper, the properties of the most promising solid-state storage systems are discussed and compared to those of the liquid and compressed gaseous hydrogen technologies.

  5. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft

    NASA Astrophysics Data System (ADS)

    Mills, Gary L.; Buchholtz, Brian; Olsen, Al

    2012-06-01

    Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells, turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However, the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper, we report on the design, fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry, tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked, helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

  6. System for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Lin, Jenshan; Norton, David P.; Pearton, Stephen J.; Ren, Fan

    2010-01-01

    A low-power, wireless gas-sensing system is designed to safeguard the apparatus to which it is attached, as well as associated personnel. It also ensures the efficiency and operational integrity of the hydrogen-powered apparatus. This sensing system can be operated with lower power consumption (less than 30 nanowatts), but still has a fast response. The detecting signal can be wirelessly transmitted to remote locations, or can be posted on the Web. This system can also be operated by harvesting energy.

  7. Ordered pairing in liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Carlsson, A. E.; Ashcroft, N. W.

    1983-01-01

    We study two possible types of pairing involving the protons of a proposed low-temperature liquid phase metallic hydrogen. Electron-proton pairing, which can result in an insulating phase, is investigated by using an approximate solution of an Eliashberg-type equation for the anomalous self-energy. A very low estimate of the transition temperature is obtained by including proton correlations in the effective interaction. For proton-proton pairing, we derive a new proton pair potential based on the Abrikosov wave function. This potential includes the electron-proton interaction to all orders and has a much larger well depth than is obtained with linear screening methods. This suggests the possibility of either a superfluid paired phase analogous to that in He-3, or alternatively a phase with true molecular pairing.

  8. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  9. Rapid Chill and Fill of a Liquid Hydrogen Tank Demonstrated

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.

    1999-01-01

    The NASA Lewis Research Center, in conjunction with Boeing North American, has been supporting the High Energy Upper Stage (HEUS) program by performing feasibility studies at Lewis Supplemental Multilayer Insulation Research Facility (SMIRF). These tests were performed to demonstrate the feasibility of chilling and filling a tank with liquid hydrogen in under 5 minutes. The goal of the HEUS program is to release a satellite from the shuttle cargo bay and then use a cryogenic (high-energy) upper stage to allow the satellite to achieve final orbit. Because of safety considerations, the propellant tanks for the upper stage will be launched warm and dry. They will be filled from the shuttle's external tank during the mission phase after the solid rocket boosters have jettisoned and prior to jettison of the external tank. Data from previous shuttle missions have been analyzed to ensure that sufficient propellant would be available in the external tank to fill the propellant tank of the proposed vehicle upper stage. Because of mission time-line considerations, the propellant tanks for the upper stage will have to be chilled down and filled in approximately 5 minutes. An existing uninsulated flight weight test tank was installed inside the vacuum chamber at SMIRF, and the chamber was evacuated to the 10(exp -5) torr range to simulate space vacuum conditions in the cargo bay with the doors open. During prerun operations, the facility liquid hydrogen (LH2) supply piping was prechilled with the vent gas bypassing the test article. The liquid hydrogen supply dewar was saturated at local ambient pressure and then pressurized with ambient temperature gaseous helium to the test pressure. A control system was used to ensure that the liquid hydrogen supply pressure was maintained at the test pressure.

  10. Aircraft-Fuel-Tank Design for Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Reynolds, T W

    1955-01-01

    Some of the considerations involved in the design of aircraft fuel tanks for liquid hydrogen are discussed herein. Several of the physical properties of metals and thermal insulators in the temperature range from ambient to liquid-hydrogen temperatures are assembled. Calculations based on these properties indicate that it is possible to build a large-size liquid-hydrogen fuel tank which (1) will weigh less then 15 percent of the fuel weight, (2) will have a hydrogen vaporization rate less than 30 percent of the cruise fuel-flow rate, and (3) can be held in a stand-by condition and readied for flight in a short time.

  11. The nature of hydrogen bonding in protic ionic liquids.

    PubMed

    Hayes, Robert; Imberti, Silvia; Warr, Gregory G; Atkin, Rob

    2013-04-22

    The size, direction, strength, and distribution of hydrogen bonds in several protic ionic liquids (PILs) has been elucidated using neutron diffraction and computer simulation. There is significant variation in PIL hydrogen bond interactions ranging from short and linear to long and bi-/trifurcated. The nature of the PIL's hydrogen bonds reflects its macroscopic properties.

  12. Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950

    NASA Technical Reports Server (NTRS)

    Osborn, G. H.; Gordon, R.; Coplen, H. L.; James, G. S.

    1977-01-01

    This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants.

  13. A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO(2) as the mobile phase.

    PubMed

    Hintermair, Ulrich; Franciò, Giancarlo; Leitner, Walter

    2013-04-02

    A continuous-flow process based on a chiral transition-metal complex in a supported ionic liquid phase (SILP) with supercritical carbon dioxide (scCO(2)) as the mobile phase is presented for asymmetric catalytic transformations of low-volatility organic substrates at mild reaction temperatures. Enantioselectivity of >99% ee and quantitative conversion were achieved in the hydrogenation of dimethylitaconate for up to 30 h, reaching turnover numbers beyond 100000 for the chiral QUINAPHOS-rhodium complex. By using an automated high-pressure continuous-flow setup, the product was isolated in analytically pure form without the use of any organic co-solvent and with no detectable catalyst leaching. Phase-behaviour studies and high-pressure NMR spectroscopy assisted the localisation of optimum process parameters by quantification of substrate partitioning between the IL and scCO(2). Fundamental insight into the molecular interactions of the metal complex, ionic liquid and the surface of the support in working SILP catalyst materials was gained by means of systematic variations, spectroscopic studies and labelling experiments. In concert, the obtained results provided a rationale for avoiding progressive long-term deactivation. The optimised system reached stable selectivities and productivities that correspond to 0.7 kgL(-1)h(-1) space-time yield and at least 100 kg product per gram of rhodium, thus making such processes attractive for larger-scale application.

  14. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    NASA Astrophysics Data System (ADS)

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-11-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

  15. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    PubMed Central

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-01-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of −20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of −0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production. PMID:26541371

  16. Behavior of liquid hydrogen inside an ICF target

    NASA Technical Reports Server (NTRS)

    Kim, K.; Mok, L.; Bernat, T.

    1982-01-01

    The configuration of liquid hydrogen inside spherical glass shell ICF target was studied both theoretically and experimentally. Because of the zero contact angle between the .D2 liquid and glass substrate and the limited wetting surface that is continuous, the liquid hydrogen completely covers the interior of the glass shell, resulting in the formation of a void at the center. For this reason, the present problem distinguishes itself from that for a sessile drop sitting on a flat surface. A theory was formulated to calculate the liquid hydrogen configuration by including the London-dispersion force between the liquid and the substrate molecules. The net result is an augmented Bashforth-Adams equation appropriate to a spherical substrate, which is considered to be the major contribution of the present work. Preliminary calculations indicate that this equation accurately models the liquid hydrogen behavior inside a spherical microshell.

  17. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  18. Supercritical phenomenon of hydrogen beyond the liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Li, Renzhong; Chen, Ji; Li, Xinzheng; Wang, Enge; Xu, Limei

    2015-06-01

    Using ab initio molecular dynamics simulation, we investigate the supercritical phenomenon associated with the liquid-liquid phase transition of hydrogen by studying the isothermal response functions, such as electric conductivity, molecular dissociation coefficient and isothermal compressibility, with respect to pressure. We find that, along each isotherm in the supercritical region, each of these response functions shows a maximum, the location of which is different for different response functions. As temperature decreases, the loci of these maxima asymptotically converge to a line of zero ordering field, known as the Widom line along which the magnitude of the response function maxima becomes larger and larger until it diverges as the critical point is approached. Thus, our study provides a possible way to locate the liquid-liquid critical point of hydrogen from the supercritical region at lower pressures. It also indicates that the supercritical phonomenon near the critical point of hydrogen is a rather general feature of second-order phase transition, it is not only true for classical systems with weak interactions but also true for highly condensed system with strong inter-atomic interactions.

  19. An experiment to evaluate liquid hydrogen storage in space

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.

    1981-01-01

    The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.

  20. An experiment to evaluate liquid hydrogen storage in space

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.

    1981-01-01

    The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.

  1. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  2. Vapor ingestion in Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1977-01-01

    Vapor ingestion phenomena were investigated using scale models of the Centaur liquid hydrogen tank to determine the height of the free surface of the liquid when vapor is intially ingested into the tank outlet. Data are compared with an analysin and, is general the agreement is very good. Predictions are presented for minimum liquid levels required in the Centaur liquid hydrogen tank in order to prevent vapor ingestion when restarting the engines in space and the quantities of liquid remaining in the tank at vapor ingestion during main engine firing.

  3. Guide for Hydrogen Hazards Analysis on Components and Systems

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Woods, Stephen

    2003-01-01

    The physical and combustion properties of hydrogen give rise to hazards that must be considered when designing and operating a hydrogen system. One of the major concerns in the use of hydrogen is that of fire or detonation because of hydrogen's wide flammability range, low ignition energy, and flame speed. Other concerns include the contact and interaction of hydrogen with materials, such as the hydrogen embrittlement of materials and the formation of hydrogen hydrides. The low temperature of liquid and slush hydrogen bring other concerns related to material compatibility and pressure control; this is especially important when dissimilar, adjoining materials are involved. The potential hazards arising from these properties and design features necessitate a proper hydrogen hazards analysis before introducing a material, component, or system into hydrogen service. The objective of this guide is to describe the NASA Johnson Space Center White Sands Test Facility hydrogen hazards analysis method that should be performed before hydrogen is used in components and/or systems. The method is consistent with standard practices for analyzing hazards. It is recommended that this analysis be made before implementing a hydrogen component qualification procedure. A hydrogen hazards analysis is a useful tool for hydrogen-system designers, system and safety engineers, and facility managers. A hydrogen hazards analysis can identify problem areas before hydrogen is introduced into a system-preventing damage to hardware, delay or loss of mission or objective, and possible injury or loss of life.

  4. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  5. Hydrogen engines based on liquid fuels, a review

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Voecks, G. E.

    1981-01-01

    The concept of storing hydrogen as part of a liquid fuel, such as gasoline or methanol, and subsequent onboard generation of the hydrogen from such liquids, is reviewed. Hydrogen generation processes, such as steam reforming, partial oxidation, and thermal decomposition are evaluated in terms of theoretical potential and practical limitations, and a summary is presented on the major experimental work on conversion of gasoline and methanol. Results of experiments indicate that onboard hydrogen generation from methanol is technically feasible and will yield substantial improvements in fuel economy and emissions, especially if methanol decomposition is brought about by the use of engine exhaust heat; e.g., a methanol decomposition reactor of 3.8 provides hydrogen-rich gas for a 4 cylinder engine (1.952), and 80% of the methanol is converted, engine exhaust gas being the only heat supply. A preliminary outline of the development of a methanol-based hydrogen engine and a straight hydrogen engine is presented.

  6. Hydrogen engines based on liquid fuels, a review

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Voecks, G. E.

    1981-01-01

    The concept of storing hydrogen as part of a liquid fuel, such as gasoline or methanol, and subsequent onboard generation of the hydrogen from such liquids, is reviewed. Hydrogen generation processes, such as steam reforming, partial oxidation, and thermal decomposition are evaluated in terms of theoretical potential and practical limitations, and a summary is presented on the major experimental work on conversion of gasoline and methanol. Results of experiments indicate that onboard hydrogen generation from methanol is technically feasible and will yield substantial improvements in fuel economy and emissions, especially if methanol decomposition is brought about by the use of engine exhaust heat; e.g., a methanol decomposition reactor of 3.8 provides hydrogen-rich gas for a 4 cylinder engine (1.952), and 80% of the methanol is converted, engine exhaust gas being the only heat supply. A preliminary outline of the development of a methanol-based hydrogen engine and a straight hydrogen engine is presented.

  7. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Shintomi, T.; Hamajima, T.; Ota, N.; Katsura, M.; Ando, K.; Takao, T.; Tsuda, M.; Miyagi, D.; Tsujigami, H.; Fujikawa, S.; Hirose, J.; Iwaki, K.; Komagome, T.

    2015-12-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured.

  8. An exploratory study to determine the integrated technological air transportation system ground requirements of liquid-hydrogen-fueled subsonic, long-haul civil air transports

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A baseline air terminal concept was developed which permitted airlines and the airport to operate JP- or LH2-fueled aircraft at common terminal gates. The concept included installation of a hydrogen liquefaction and storage facility on airport property, as well as the fuel distribution system. The capital investment and hydrogen-related operating costs to the airlines were estimated.

  9. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  10. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  11. Safe Use of Hydrogen and Hydrogen Systems

    NASA Technical Reports Server (NTRS)

    Maes, Miguel

    2006-01-01

    This is a viewgraph presentation that is a course for teaching the safe use of hydrogen. The objectives of the course are 1. To familiarize the student with H2 safety properties 2. To enable the identification, evaluations and addressing of H2 system hazards 3. To teach: a. Safe practices for, b. Design, c. Materials selection, d. H2 system operation, e. Physical principles and empirical observations on which these safe practices are based, f. How to respond to emergency situations involving H2, g How to visualize safety concepts through in-class exercises, h. Identify numerous parameters important to H2 safety.

  12. Hydrogen gettering the overpressure gas from highly radioactive liquids

    SciTech Connect

    Riley, D.L.; McCoy, J.C.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined.

  13. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  14. Liquid hydrogen as a propulsion fuel, 1945-1959

    NASA Technical Reports Server (NTRS)

    Sloop, J. L.

    1978-01-01

    A historical review is presented on the research and development of liquid hydrogen for use as a propulsion fuel. The document is divided into three parts: Part 1 (1945-1950); Part 2 (1950-1957); and Part 3 (1957-1958), encompassing eleven topics. Two appendixes are included. Hydrogen Technology Through World War 2; and Propulsion Primer, Performance Parameters and Units.

  15. Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Kamiya, Shoji; Nishimura, Motohiko; Harada, Eichi

    In Japan, both CO2(Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand, FCV (Fuel Cell Vehicle)using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications, or solution to energy issues of Japan.And then,the Japanese government announced the road map for introducing hydrogen energy supply chain in this June,2014. Under these circumstances, imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction, if the hydrogen price is affordable. To achieve this, Kawasaki Heavy Industries, Ltd. (KHI) performed a feasibility studyon CO2-free hydrogen energy supply chainfrom Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study, hydrogen production systems utilizing brown coal gasificationandLH2 (liquid hydrogen)systems as storing and transporting hydrogen are examined.This paper shows the possibilityof realizingthe CO2 free hydrogen supply chain, the cost breakdown of imported hydrogen cost, its cost competitiveness with conventionalfossil, andLH2systems as key technologies of the hydrogen energy chain.

  16. Liquid hydrogen turbopump rapid start program. [thermal preconditioning using coatings

    NASA Technical Reports Server (NTRS)

    Wong, G. S.

    1973-01-01

    This program was to analyze, test, and evaluate methods of achieving rapid-start of a liquid hydrogen feed system (inlet duct and turbopump) using a minimum of thermal preconditioning time and propellant. The program was divided into four tasks. Task 1 includes analytical studies of the testing conducted in the other three tasks. Task 2 describes the results from laboratory testing of coating samples and the successful adherence of a KX-635 coating to the internal surfaces of the feed system tested in Task 4. Task 3 presents results of testing an uncoated feed system. Tank pressure was varied to determine the effect of flowrate on preconditioning. The discharge volume and the discharge pressure which initiates opening of the discharge valve were varied to determine the effect on deadhead (no through-flow) start transients. Task 4 describes results of testing a similar, internally coated feed system and illustrates the savings in preconditioning time and propellant resulting from the coatings.

  17. Hydrogen-methane fuel control systems for turbojet engines

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. S.; Bennett, G. W.

    1973-01-01

    Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.

  18. Hydrogen Production from Liquid Hydrocarbons Demonstration Program.

    DTIC Science & Technology

    1986-09-01

    Production Syngas Production Fuel Cell Power Plant Diesel Feedstock Phosphoric Acid Fuel Cell-_ 89 INIC auat ama o"Go".o a" in#* of move** some"U Thi-s...to naphtha. These hydrogen plant feedstocks have nil sulfur content. End uses for hydrogen include ammonia and methanol manufacture, hydrocracking...Hydrogen 54.9 Carbon monoxide 0.6 Carbon dioxide 22.4 Methane 0.1 Argon 0.3 Nitrogen 21.8 Hydrogen sulfide 1.6 ppmv Carbonyl sulfide 0.5 ppmv Ammonia 0.5

  19. Hydrogen bonding in protic ionic liquids: reminiscent of water.

    PubMed

    Fumino, Koichi; Wulf, Alexander; Ludwig, Ralf

    2009-01-01

    Similarities and differences: Far-infrared spectra of protic ionic liquids could be assigned to intermolecular bending and stretching modes of hydrogen bonds. The characteristics of the low-frequency spectra resemble those of water. Both liquids form three-dimensional network structures, but only water is capable of building tetrahedral configurations. EAN: ethylammonium nitrate, PAN: propylammonium nitrate, DMAN: dimethylammonium nitrate.

  20. The contribution of hydrogen peroxide to atmospheric liquid phase chemistry

    SciTech Connect

    Klockow, D.; Jacob, P.; Bambauer, A.

    1986-04-01

    The most frequently investigated and best understood atmospheric liquid phase process is the oxidation of dissolved sulfur dioxide. The relevant reactions are controlled either by restricted solubilities of the respective species or by high activation energies. The most favorable properties as an oxidant for SO/sub 2/ (aq) under atmospheric conditions are exhibited by hydrogen peroxide: It is highly soluble in water and reacts fast with dissolved sulfur dioxide even at low pH values. In this talk new methodology for determination of hydrogen peroxide in liquid and gas phase is presented. Furthermore results of measurement of hydrogen peroxide in condensed phases (rain, snow, polar ice) as well as in the gas phase are discussed. Finally laboratory and field studies related to formation of hydrogen peroxide in the liquid phase and its reaction with dissolved reduced species ((HSO/sub 3/, NO/sub 2/) under the influence of light are described.

  1. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored... Responsibilities of a Licensee § 420.66 Separation distance requirements for storage of hydrogen peroxide... section for each explosive hazard facility storing: (1) Hydrogen peroxide in concentrations of greater...

  2. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored... Responsibilities of a Licensee § 420.66 Separation distance requirements for storage of hydrogen peroxide... section for each explosive hazard facility storing: (1) Hydrogen peroxide in concentrations of greater...

  3. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  4. A single-component liquid-phase hydrogen storage material.

    PubMed

    Luo, Wei; Campbell, Patrick G; Zakharov, Lev N; Liu, Shih-Yuan

    2011-12-07

    The current state-of-the-art for hydrogen storage is compressed H(2) at 700 bar. The development of a liquid-phase hydrogen storage material has the potential to take advantage of the existing liquid-based distribution infrastructure. We describe a liquid-phase hydrogen storage material that is a liquid under ambient conditions (i.e., at 20 °C and 1 atm pressure), air- and moisture-stable, and recyclable; releases H(2) controllably and cleanly at temperatures below or at the proton exchange membrane fuel cell waste-heat temperature of 80 °C; utilizes catalysts that are cheap and abundant for H(2) desorption; features reasonable gravimetric and volumetric storage capacity; and does not undergo a phase change upon H(2) desorption. © 2011 American Chemical Society

  5. Compression mass gauge testing in a liquid hydrogen dewar

    NASA Technical Reports Server (NTRS)

    Jurns, J. M.; Rogers, A. C.

    1995-01-01

    This paper describes testing that was conducted using a mass gauge in a liquid hydrogen environment. The mass gauge, herein referred to as the 'compressibility gauge,' is being developed as a means to accurately determine the mass of liquid contained in a tank in a low-gravity environment. The concept is based on the thermodynamic principle that the pressure of gas or vapor changes when its volume changes. Previous work has been conducted by Southwest Research Institute in collaboration with NASA Lewis Research Center. This consisted of testing the concept with water and other cryogenic simulant fluids. The purpose of conducting liquid hydrogen tests is to test the concept in actual cryogenic conditions, and address hardware issues that arise in fabricating a test article for use in liquid hydrogen.

  6. Overview of interstate hydrogen pipeline systems.

    SciTech Connect

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  7. Liquid Level Control System.

    DTIC Science & Technology

    A system for controlling liquid flow from an inlet into a tank comprising a normally closed poppet valve controlled by dual pressure chambers each...containing a diaphragm movable by the pressure of the liquid in the inlet to cause the valve to close. Pressure against the diaphragms is relieved by

  8. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  9. The influence of hydrogen bonding on the physical properties of ionic liquids.

    PubMed

    Fumino, Koichi; Peppel, Tim; Geppert-Rybczyńska, Monika; Zaitsau, Dzmitry H; Lehmann, Jochen K; Verevkin, Sergey P; Köckerling, Martin; Ludwig, Ralf

    2011-08-21

    Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.

  10. Hydrogen storage and delivery system development

    SciTech Connect

    Handrock, J.L.; Wally, K.; Raber, T.N.

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  11. Low-cost industrially available molybdenum boride and carbide as "platinum-like" catalysts for the hydrogen evolution reaction in biphasic liquid systems.

    PubMed

    Scanlon, Micheál D; Bian, Xiaojun; Vrubel, Heron; Amstutz, Véronique; Schenk, Kurt; Hu, Xile; Liu, BaoHong; Girault, Hubert H

    2013-02-28

    Rarely reported low-cost molybdenum boride and carbide microparticles, both of which are available in abundant quantities due to their widespread use in industry, adsorb at aqueous acid-1,2-dichloroethane interfaces and efficiently catalyse the hydrogen evolution reaction in the presence of the organic electron donor - decamethylferrocene. Kinetic studies monitoring biphasic reactions by UV/vis spectroscopy, and further evidence provided by gas chromatography, highlight (a) their superior rates of catalysis relative to other industrially significant transition metal carbides and silicides, as well as a main group refractory compound, and (b) their highly comparable rates of catalysis to Pt microparticles of similar dimensions. Insight into the catalytic processes occurring for each adsorbed microparticle was obtained by voltammetry at the liquid-liquid interface.

  12. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    PubMed

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  13. ALS liquid hydrogen turbopump: Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Shimp, Nancy R.; Claffy, George J.

    1989-01-01

    The point of departure (POD) turbopump concept was reviewed and finalized. The basis for the POD was the configuration presented in the Aerojet proposal. After reviewing this proposal concept, several modifications were made. These modifications include the following: (1) the dual pump discharge arrangement was changed to a single discharge; (2) commonality of the turbine inlet manifold with the advanced launch system (ALS) liquid oxygen (LOX) TPA was dropped for this program; (3) the turbine housing flange arrangement was improved by relocating it away from the first stage nozzles; (4) a ten percent margin (five percent diameter increase) was built into the impeller design to ensure meeting the required discharge pressure without the need for increasing speed; (5) a ten percent turbine power margin was imposed which is to be obtained by increasing turbine inlet pressure if required; and (6) the backup concept, as an alternative to the use of cast impellers, now incorporates forged/machined shrouded impellers, rather than the unshrouded type originally planned.

  14. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  15. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  16. Liquid hydrogen production and economics for NASA Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Block, D. L.

    1985-12-01

    Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.

  17. The Ammonia-Hydrogen System under Pressure

    SciTech Connect

    Chidester, Bethany A; Strobel, Timothy A

    2012-01-20

    Binary mixtures of hydrogen and ammonia were compressed in diamond anvil cells to 15 GPa at room temperature over a range of compositions. The phase behavior was characterized using optical microscopy, Raman spectroscopy, and synchrotron X-ray diffraction. Below 1.2 GPa we observed two-phase coexistence between liquid ammonia and fluid hydrogen phases with limited solubility of hydrogen within the ammonia-rich phase. Complete immiscibility was observed subsequent to the freezing of ammonia phase III at 1.2 GPa, although hydrogen may become metastably trapped within the disordered face-centered-cubic lattice upon rapid solidification. For all compositions studied, the phase III to phase IV transition of ammonia occurred at ~3.8 GPa and hydrogen solidified at ~5.5 GPa, transition pressures equivalent to those observed for the pure components. A P-x phase diagram for the NH3-H2 system is proposed on the basis of these observations with implications for planetary ices, molecular compound formation, and possible hydrogen storage materials.

  18. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  19. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  20. Advantages of cryopumping with liquid hydrogen instead of helium refrigerators

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Tueller, J. E.

    1972-01-01

    Open loop hydrogen vaporizers and helium refrigerators are compared for operational complexity, installation and operating cost, and safety requirements. Data from two vacuum chambers using helium refrigerators are used to provide comparative data. In general, the use of hydrogen is attractive in the larger systems, even when extra safety precautions are taken. Emotional resistance to the use of hydrogen because of safety requirements is considered great. However, the experience gained in the handling of large quantities of cryogenics, particularly hydrogen and liquefied natural gases, should be considered in the design of open loop hydrogen cooling systems.

  1. Nanoparticulate gellants for metallized gelled liquid hydrogen with aluminum

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Starkovich, John; Adams, Scott

    1996-01-01

    Gelled liquid hydrogen was experimentally formulated using sol-gel technology. As a follow-on to work with cryogenic simulants, hydrogen was gelled with an alkoxide material: BTMSE. Initial results demonstrated that gellants with a specific surface area of 1000 m(exp 2)/g could be repeatably fabricated. Gelled hexane and metallized gelled hexane (with 13.8-wt% Al) were produced. Propellant settling testing was conducted for acceleration levels of 2 to 10 times normal gravity and a minimum gellant percentage was determined for stable gelled hexane and metalized gelled hexane. A cryogenic capillary rheometer was also designed, constructed, and used to determine the viscosity of gelled hydrogen. Small volumes of liquid hydrogen were gelled with a 7- to 8-wt% gellant level. The gelled H2 viscosity was 1.5 to 3.7 times that of liquid hydrogen: 0.048 to 0.116 mPa-s versus 0.03 mPa-s for liquid H2 (at 16 K and approximately 1 atm pressure).

  2. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  3. Autothermal hydrogen storage and delivery systems

    SciTech Connect

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  4. Hydrogen permeation resistant layers for liquid metal reactors

    SciTech Connect

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented.

  5. Experimental study of liquid level gauge for liquid hydrogen using Helmholtz resonance technique

    NASA Astrophysics Data System (ADS)

    Nakano, Akihiro; Nishizu, Takahisa

    2016-07-01

    The Helmholtz resonance technique was applied to a liquid level gauge for liquid hydrogen to confirm the applicability of the technique in the cryogenic industrial field. A specially designed liquid level gauge that has a Helmholtz resonator with a small loudspeaker was installed in a glass cryostat. A swept frequency signal was supplied to the loudspeaker, and the acoustic response was detected by measuring the electrical impedance of the loudspeaker's voice coil. The penetration depth obtained from the Helmholtz resonance frequency was compared with the true value, which was read from a scale. In principle, the Helmholtz resonance technique is available for use with liquid hydrogen, however there are certain problems as regards practical applications. The applicability of the Helmholtz resonance technique to liquid hydrogen is discussed in this study.

  6. Hydrogen bonding definitions and dynamics in liquid water.

    PubMed

    Kumar, R; Schmidt, J R; Skinner, J L

    2007-05-28

    X-ray and neutron diffractions, vibrational spectroscopy, and x-ray Raman scattering and absorption experiments on water are often interpreted in terms of hydrogen bonding. To this end a number of geometric definitions of hydrogen bonding in water have been developed. While all definitions of hydrogen bonding are to some extent arbitrary, those involving one distance and one angle for a given water dimer are unnecessarily so. In this paper the authors develop a systematic procedure based on two-dimensional potentials of mean force for defining cutoffs for a given pair of distance and angular coordinates. They also develop an electronic structure-based definition of hydrogen bonding in liquid water, related to the electronic occupancy of the antibonding OH orbitals. This definition turns out to be reasonably compatible with one of the distance-angle geometric definitions. These two definitions lead to an estimate of the number of hydrogen bonds per molecule in liquid simple point charge/extended (SPC/E) water of between 3.2 and 3.4. They also used these and other hydrogen-bond definitions to examine the dynamics of local hydrogen-bond number fluctuations, finding an approximate long-time decay constant for SPC/E water of between 0.8 and 0.9 ps, which corresponds to the time scale for local structural relaxation.

  7. Hydrogen bonding in 1-butyl- and 1-ethyl-3-methylimidazolium chloride ionic liquids.

    PubMed

    Skarmoutsos, Ioannis; Dellis, Dimitris; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2012-04-26

    A detailed investigation of hydrogen bonding in the pure ionic liquids [C4C1im]Cl and [C2C1im]Cl has been carried out using primarily molecular dynamics techniques. Analyses of the individual atom-atom pair radial distribution functions, and in particular those for C···Cl(-), have revealed that hydrogen bonding to the first methylene or methyl units of the substituent groups is important. Multiple geometric criteria for defining a hydrogen bond have been applied, and in particular the choice of the cutoff angle has been carefully examined. The interpretation of hydrogen bonding within these ionic liquids is highly angle dependent, and justification is provided for why it may be appropriate to employ a wider angle criteria than the 30° used for water or alcohol systems. The different types of hydrogen bond formed are characterized, and "top" conformations where the Cl anion resides above (or below) the imidazolium ring are investigated. The number of hydrogen bonds undertaken by each hydrogen atom (and the chloride anion) is quantified, and the propensity to form zero, one, or two hydrogen bonds is established. The effects of an increase in temperature on the static hydrogen bonding are also briefly examined.

  8. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  9. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  10. The Liquid Hydrogen Option for the Subsonic Transport: A status report

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.

    1977-01-01

    Continued subsonic air transport design studies include the option for a liquid hydrogen fuel system as an aircraft fuel conservation measure. Elements of this option discussed include: (1) economical production of hydrogen; (2) efficient liquefaction of hydrogen; (3) materials for long service life LH2 fuel tanks; (4) insulation materials; (5) LH2 fuel service and installations at major air terminals; (6) assessment of LH2 hazards; and (7) the engineering definition of an LH2 fuel system for a large subsonic passenger air transport.

  11. Two-phase flow of solid hydrogen particles and liquid helium

    NASA Astrophysics Data System (ADS)

    Xu, J.; Rouelle, A.; Smith, K. M.; Celik, D.; Hussaini, M. Y.; Van Sciver, S. W.

    2004-06-01

    Atomic hydrogen propellant feed systems may require transporting solid hydrogen particles containing atomic species from storage tanks to the engines using liquid helium as the carrier fluid. In this paper, a three-dimensional two-phase mixture model, along with the standard k- ɛ mixture turbulence model is employed to study the turbulent mixing of the fluid-particle slurry system. Numerical results show that turbulent flow is required to keep the hydrogen particles in suspension, which otherwise form a sliding layer of particles on top of the helium layer. Hydrogen particle concentration profiles in the slurry system are functions of particle size, flow velocity, and influx volume fraction of hydrogen particles. Particle dispersion at different Stokes numbers, different Kolmogorov length scales, and different time scales are discussed.

  12. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  13. Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content.

    PubMed

    Rabideau, Brooks D; Ismail, Ahmed E

    2015-02-28

    We study the dynamics of the formation of multiple hydrogen bonds between ionic liquid anions and cellulose using molecular dynamics simulations. We examine fifteen different ionic liquids composed of 1-alkyl-3-methylimidazolium cations ([Cnmim], n = 1, 2, 3, 4, 5) paired with either chloride, acetate or dimethylphosphate. We map the transitions of anions hydrogen bonded to cellulose into different bonding states. We find that increased tail length in the ionic liquids has only a very minor effect on these transitions, tending to slow the dynamics of the transitions and increasing the hydrogen bond lifetimes. Each anion can form up to four hydrogen bonds with cellulose. We find that this hydrogen bond "redundancy" leads to multiply bonded anions having lifetimes three to four times that of singly bound anions. Such redundant hydrogen bonds account for roughly half of all anion-cellulose hydrogen bonds. Additional simulations for [C2mim]Cl, [C2mim]Ac and [C2mim]DMP were performed at different water concentrations between 70 mol% and 90 mol%. It was found that water crowds the hydrogen bond-accepting sites of the anions, preventing interactions with cellulose. The more water that is present in the system, the more crowded these sites become. Thus, if a hydrogen bond between an anion and cellulose breaks, the likelihood that it will be replaced by a nearby water molecule increases as well. We show that the formation of these "redundant" hydrogen bonding states is greatly affected by the presence of water, leading to steep drops in hydrogen bonding between the anions and cellulose.

  14. Clogging of Joule-Thomson Devices in Liquid Hydrogen Handling

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Lekki, John D.

    2009-01-01

    Experiments conducted at the NASA Glenn Research Center indicate that Joule-Thomson devices become clogged when transferring liquid hydrogen (LH2), operating at a temperature range from 20.5 to 24.4 K. Blockage does not exist under all test conditions but is found to be sensitive to the inlet temperature of the LH2. At a subcooled inlet temperature of 20.5 K blockage consistently appears but is dissipated when the fluid temperature is raised above 24.5 K. Clogging steadily reduced flow rate through the orifices, eventually resulting in complete blockage. This tendency poses a threat to spacecraft cryogenic propulsion systems that would utilize passive thermal control systems. We propose that this clogging is due to trace amounts of neon in the regular LH2 supply. Neon freezes at 24.5 K at one atmosphere pressure. It is postulated that between 20.5 and 24.5 K, neon remains in a meta-stable, supercooled liquid state. When impacting the face of an orifice, liquid neon droplets solidify and accumulate, blocking flow over time. The purpose of this test program was to definitively quantify the phenomena experimentally by obtaining direct visual evidence of orifice clogging by accretion from neon contaminates in the LH2 flow stream, utilizing state of the art imaging technology. Tests were conducted with LH2 flowing in the temperature range of 20.5 to 24.4 K. Additional imaging was also done at LH2 temperatures with no flow to verify clear view through the orifice.

  15. Comparison of alternate fuels for aircraft. [liquid hydrogen, liquid methane, and synthetic aviation kerosene

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1979-01-01

    Liquid hydrogen, liquid methane, and synthetic aviation kerosene were assessed as alternate fuels for aircraft in terms of cost, capital requirements, and energy resource utilization. Fuel transmission and airport storage and distribution facilities are considered. Environmental emissions and safety aspects of fuel selection are discussed and detailed descriptions of various fuel production and liquefaction processes are given. Technological deficiencies are identified.

  16. A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter

    NASA Astrophysics Data System (ADS)

    Signorelli, G.; Baldini, A. M.; Bemporad, C.; Cei, F.; Nicolò, D.; Galli, L.; Gallucci, G.; Grassi, M.; Papa, A.; Sergiampietri, F.; Venturini, M.

    2016-07-01

    We designed, built and operated a liquid hydrogen target for the calibration of the liquid xenon calorimeter of the MEG experiment. The target was used throughout the entire data taking period, from 2008 to 2013 and it is being refurbished and partly re-designed to be integrated and used in the MEG-II experiment.

  17. 20. DECOMMISIONED HYDROGEN TANK IN FORMER LIQUID OXYGEN STORAGE AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DECOMMISIONED HYDROGEN TANK IN FORMER LIQUID OXYGEN STORAGE AREA, BETWEEN TEST STAND 1-A AND INSTRUMENTATION AND CONTROL BUILDING. Looking northwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  18. The total neutron cross section of liquid para-hydrogen

    NASA Astrophysics Data System (ADS)

    Celli, M.; Rhodes, N.; Soper, A. K.; Zoppi, M.

    1999-12-01

    We have measured, using the pulsed neutron source ISIS, the total neutron cross section of liquid para-hydrogen in the vicinity of the triple point. The experimental results compare only qualitatively with the results of the Young and Koppel theory. However, a much better agreement is found once modifications are included in the model which effectively take into account the intermolecular interactions.

  19. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  20. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  1. Hydrogen-bonding molecular ruler surfactants as probes of specific solvation at liquid/liquid interfaces.

    PubMed

    Siler, A Renee; Brindza, Michael R; Walker, Robert A

    2009-10-01

    Resonance-enhanced, second harmonic generation (SHG) is used to measure the electronic structure of solutes sensitive to specific solvation adsorbed to liquid/liquid and liquid/solid interfaces. Here, specific solvation refers to solvent-solute interactions that are directional and localized. N-methyl-p-methoxyaniline (NMMA) is a solute whose first allowed electronic transition wavelength remains almost constant (approximately 315 nm) in non-hydrogen-bonding solvents regardless of solvent polarity. However, in hydrogen-bond-accepting solvents such as dimethylsulfoxide, NMMA's absorbance shifts to longer wavelengths (320 nm), whereas in hydrogen-bond-donating solvents (e.g., water), the absorbance shifts to shorter wavelengths (approximately 300 nm). SHG experiments show that at alkane/silica interfaces, surface silanol groups serve as moderately strong hydrogen-bond donors as evidenced by NMMA's absorbance of 307 nm. At the carbon tetrachloride/water interface, NMMA absorbance also shifts to slightly shorter wavelengths (298 nm) implying that water molecules at this liquid/liquid interface are donating strong hydrogen bonds to the adsorbed NMMA solutes. In contrast, experiments using newly developed molecular ruler surfactants with NMMA as a model hydrophobic solute and a hydrophilic, cationic headgroup imply that, as NMMA migrates across an aqueous/alkane interface, it carries with it water that functions as a hydrogen-bond-accepting partner.

  2. Spectra and pulse shapes of a decoupled liquid hydrogen moderator

    SciTech Connect

    Brun, T. O.

    1997-09-01

    The neutron leakage current and time distributions have been determined experimentally for the decoupled liquid para-hydrogen moderator installed at the LANSCE pulsed spallation neutron source. The current measurements were performed using an ORDELA Neutron Beam Monitor (Model 4100N). The time distribution was measured with a time focused diffractometer using 'perfect' single crystals of silicon. In this report, a short discussion of the ortho-para hydrogen problem and an estimate of the ortho-para concentration in the circulating liquid hydrogen loop will be presented. This will be followed by a discussion of the neutron scattering cross sections and the empirical model used to fit the data. The results for the neutron leakage and the time distributions will be presented. (auth)

  3. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    SciTech Connect

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  4. Sloshing in the Liquid Hydrogen and Liquid Oxygen Propellant Tanks After Main Engine Cut Off

    NASA Technical Reports Server (NTRS)

    Kim, Sura; West, Jeff

    2011-01-01

    NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. Propellant sloshing in the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there is substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up through the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted to be less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.

  5. Trade study: Liquid hydrogen transportation - Kennedy Space Center. [cost and operational effectivenss of shipping methods.

    NASA Technical Reports Server (NTRS)

    Gray, D. J.

    1978-01-01

    Cryogenic transportation methods for providing liquid hydrogen requirements are examined in support of shuttle transportation system launch operations at Kennedy Space Center, Florida, during the time frames 1982-1991 in terms of cost and operational effectiveness. Transportation methods considered included sixteen different options employing mobile semi-trailer tankers, railcars, barges and combinations of each method. The study concludes that the most effective method of delivering liquid hydrogen from the vendor production facility in New Orleans to Kennedy Space Center includes maximum utilization of existing mobile tankers and railcars supplemented by maximum capacity mobile tankers procured incrementally in accordance with shuttle launch rates actually achieved.

  6. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  7. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept

  8. Space shuttle auxiliary propulsion system design study. Phase D report: Oxygen-hydrogen special RCS studies

    NASA Technical Reports Server (NTRS)

    Baumann, T. L.; Pattern, T. C.; Mckee, H. B.

    1972-01-01

    Two alternate oxygen-hydrogen auxiliary propulsion system concepts for use with the space shuttle vehicle were evaluated. The two concepts considered were: (1) gaseous oxygen-hydrogen systems with electric or hydraulic motor driven pumps to provide system pressure and (2) liquid oxygen-hydrogen systems which delivered propellants to the engines in a liquid state without the need for pumps. The various means of implementing each of the concepts are compared on the basis of weight, technology requirements, and operational considerations. It was determined that the liquid oxygen-hydrogen system concepts have the potential to produce substantial weight reductions in the space shuttle orbiter total impulse range.

  9. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    SciTech Connect

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  10. Fuel cell using a hydrogen generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  11. Distinct metallization and atomization transitions in dense liquid hydrogen.

    PubMed

    Mazzola, Guglielmo; Sorella, Sandro

    2015-03-13

    We perform molecular dynamics simulations driven by accurate quantum Monte Carlo forces on dense liquid hydrogen. There is a recent report of a complete atomization transition between a mixed molecular-atomic liquid and a completely dissociated fluid in an almost unaccessible pressure range [Nat. Commun. 5, 3487 (2014)]. Here, instead, we identify a different transition between the fully molecular liquid and the mixed-atomic fluid at ∼400  GPa, i.e., in a much more interesting pressure range. We provide numerical evidence supporting the metallic behavior of this intermediate phase. Therefore, we predict that the metallization at finite temperature occurs in this partially dissociated molecular fluid, well before the complete atomization of the liquid. At high temperature this first-order transition becomes a crossover, in very good agreement with the experimental observation. Several systematic tests supporting the quality of our large scale calculations are also reported.

  12. External insulator for liquid hydrogen tanks

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.

    1978-01-01

    With optimized insulation thickness, tank temperatures were always below 311 K (100 F). This conclusion indicated that an aluminum tank could be used with an optimized insulation system if desired. The N2 purged systems were always lighter than CO2 purged systems. The lower condensation temperature was the controlling factor. Closed cell foam systems were lightest. Closed cell foams, in spite of their need for protective outer insulation, produced insulation systems which were lighter than systems which allowed cryodeposition. Foam system durability established for TMAX = 316 K (110 F). Tests for a subsonic application established this durability; higher temperature limit foam durability was unknown at this. An increase in foam TMAX from 316 K (110 F) to 450 K (350 F) potentially decreased TPS mass by 25 percent.

  13. Complementary system vaporizes subcooled liquid, improves transformer efficiency

    NASA Technical Reports Server (NTRS)

    Ketaily, E. C.

    1966-01-01

    Complementary system converts subcooled liquid hydrogen or nitrogen to gas. The inherent induction heat losses of an electrical transformer are used in the vaporizing process. Transformer efficiency is improved in the process.

  14. Liquid air mixing system

    NASA Technical Reports Server (NTRS)

    Martin, Robert B. (Inventor)

    1997-01-01

    A device for mixing liquid nitrogen and liquid oxygen to form liquid air. The mixing device consists of a tube for transferring liquid oxygen positioned within a tube for transferring liquid nitrogen. Supply vessels for liquid oxygen and liquid nitrogen are equally pressurized and connected to the appropriate tubes. Liquid oxygen and nitrogen flow from the supply vessels through the respective tubes and are mixed to form liquid air upon exiting the outlets of the tube. The resulting liquid air is transferred to a holding vessel.

  15. The Liquid Annular Reactor System (LARS) propulsion

    NASA Technical Reports Server (NTRS)

    Powell, James; Ludewig, Hans; Horn, Frederick; Lenard, Roger

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5).

  16. Nickel Hydrogen Battery Expert System

    NASA Technical Reports Server (NTRS)

    Johnson, Yvette B.; Mccall, Kurt E.

    1992-01-01

    The Nickel Cadmium Battery Expert System-2, or 'NICBES-2', which was used by the NASA HST six-battery testbed, was subsequently converted into the Nickel Hydrogen Battery Expert System, or 'NICHES'. Accounts are presently given of this conversion process and future uses being contemplated for NICHES. NICHES will calculate orbital summary data at the end of each orbit, and store these files for trend analyses and rules-generation.

  17. Liquid hydrogen production and commercial demand in the United States

    NASA Technical Reports Server (NTRS)

    Heydorn, Barbara

    1990-01-01

    Kennedy Space Center, the single largest purchaser of liquid hydrogen (LH2) in the United States, evaluated current and anticipated hydrogen production and consumption in the government and commercial sectors. Specific objectives of the study are as follows: (1) identify LH2 producers in the United States and Canada during 1980-1989 period; (2) compile information in expected changes in LH2 production capabilities over the 1990-2000 period; (3) describe how hydrogen is used in each consuming industry and estimate U.S. LH2 consumption for the chemicals, metals, electronics, fats and oil, and glass industries, and report data on a regional basis; (4) estimate historical and future consumption; and (5) assess the influence of international demands on U.S. plants.

  18. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  19. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  20. Bicontinuity and multiple length scale ordering in triphilic hydrogen-bonding ionic liquids.

    PubMed

    Hettige, Jeevapani J; Araque, Juan Carlos; Margulis, Claudio J

    2014-11-06

    Triphilic ionic liquids (containing polar, apolar, and fluorinated components) that can hydrogen bond present a new paradigm in ionic liquid structural morphology. In this study we show that butylammonium pentadecafluorooctanoate and its nonfluorinated analogue butylammonium octanoate form disordered bicontinuous phases where a network of charge alternating hydrogen bonds continuously percolate through the whole liquid. These systems show order on multiple length scales, the largest length scale given by the percolating network. Separation between filaments in the network gives rise to a prepeak or first sharp diffraction peak. In the case of the fluorinated system, shorter range order occurs due to apolar-fluorinated alternation that decorates the surface of each individual filament. The backbone of the filaments is the product of the shortest organized length scale, namely, charge alternating hydrogen bonds. Liquid structure obtained via molecular dynamics simulations is used to compute coherent X-ray scattering intensities, and a full picture of the liquid landscape is developed. A careful mathematical analysis of the simulation data proposed here reveals individual molecular correlations that importantly contribute to each feature of the experimental structure function.

  1. Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.

  2. 15 K liquid hydrogen thermal Energy Storage Unit for future ESA science missions

    NASA Astrophysics Data System (ADS)

    Borges de Sousa, P.; Martins, D.; Tomás, G.; Barreto, J.; Noite, J.; Linder, M.; Fruchart, D.; de Rango, P.; Haettel, R.; Catarino, I.; Bonfait, G.

    2015-12-01

    A thermal Energy Storage Unit (ESU) using liquid hydrogen has been developed as a solution for absorbing the heat peaks released by the recycling phase of a 300 mK cooler that is a part of the cryogenic chain of one of ESA's new satellites for science missions. This device is capable of storing 400 J of thermal energy between 15 and 16 K by taking advantage of the liquid-to-vapor latent heat of hydrogen in a closed system. This paper describes some results obtained with the development model of the ESU under different configurations and using two types of hydrogen storage: a large expansion volume for ground testing and a much more compact unit, suitable for space applications and that can comply with ESA's mass budget.

  3. INTEGRATED HYDROGEN STORAGE SYSTEM MODEL

    SciTech Connect

    Hardy, B

    2007-11-16

    Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride

  4. Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge

    2013-03-01

    Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.

  5. Hydrogen peroxide-sodium hydrosulfite chemiluminescence system combined with high-performance liquid chromatography for determination of 1-hydroxypyrene in airborne particulates.

    PubMed

    Li, Ruibo; Kameda, Takayuki; Li, Ying; Toriba, Akira; Tang, Ning; Hayakawa, Kazuichi; Lin, Jin-Ming

    2011-10-15

    In this research, a highly sensitive chemiluminescence method based on a sodium hydrosulfite (NaHSO(3))-hydrogen peroxide (H(2)O(2)) reaction for the determination of 1-hydroxypyrene (1-OHP) was developed. The response of this system was linear in the range from 0.5 to 50 pmol (R(2)=0.9983). The limit of detection for 1-OHP was 100 fmol (S/N=3). 1-OHP in airborne particulates was well separated from interfering compounds using an ODS column with 75% methanol as the mobile phase in isocratic mode. The proposed method was successfully applied to determine the 1-OHP in airborne particulates collected in Kanazawa, Japan. The average concentration of 1-OHP in the atmosphere was 2.0 pg/m(3) (9.2 fmol/m(3)). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    SciTech Connect

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  7. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  8. Hydrogen isotope separation by catalyzed exchange between hydrogen and liquid water

    SciTech Connect

    Butler, J.P.

    1980-04-01

    The discovery, at Chalk River Nuclear Laboratories, of a simple method of wetproofing platinum catalysts so that they retain their activity in liquid water stimulated a concentrated research program for the development of catalysts for the hydrogen-water isotopic exchange reaction. This paper reviews 10 years of study which have resulted in the development of highly active platinum catalysts which remain effective in water for periods greater than a year. The most efficient way to use these catalysts for the separation of hydrogen isotopes is in a trickle bed reactor which effects a continuous separation. The catalyst is packed in a column with hydrogen and water flowing countercurrently through the bed. The overall isotope transfer rate measured for the exchange reaction is influenced by various parameters, such as hydrogen and water flow rates, temperature, hydrogen pressure, and platinum metal loading. The effect of these parameters as well as the improved performance obtained by diluting the hydrophobic catalyst with inert hydrophilic packing are discussed. The hydrophobic catalysts can be effectively used in a variety of applications of particular interest in the nuclear industry. A Combined Electrolysis Catalytic Exchange - Heavy Water Process (CECE-HWP) is being developed at Chalk River with the ultimate aim of producing parasitic heavy water from electrolytic hydrogen streams. Other more immediate applications include the final enrichment of heavy water and the extraction of tritium from light and heavy water. Pilot plant studies on these latter processes are currently in progress.

  9. Parametric analysis of the liquid hydrogen and nitrogen bubble point pressure for cryogenic liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Adin Mann, Jay; Darr, Samuel R.

    2014-09-01

    This paper presents the parametric investigation of the factors which govern screen channel liquid acquisition device bubble point pressure in a low pressure propellant tank. The five test parameters that were varied included the screen mesh, liquid cryogen, liquid temperature and pressure, and type of pressurant gas. Bubble point data was collected using three fine mesh 304 stainless steel screens in two different liquids (hydrogen and nitrogen), over a broad range of liquid temperatures and pressures in subcooled and saturated liquid states, using both a noncondensible (helium) and autogenous (hydrogen or nitrogen) gas pressurization scheme. Bubble point pressure scales linearly with surface tension, but does not scale inversely with the fineness of the mesh. Bubble point pressure increases proportional to the degree of subcooling. Higher bubble points are obtained using noncondensible pressurant gases over the condensable vapor. The bubble point model is refined using a temperature dependent pore diameter of the screen to account for screen shrinkage at reduced liquid temperatures and to account for relative differences in performance between the two pressurization schemes. The updated bubble point model can be used to accurately predict performance of LADs operating in future cryogenic propellant engines and cryogenic fuel depots.

  10. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  11. Quantum simulation of low-temperature metallic liquid hydrogen.

    PubMed

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew I J; Pickard, Chris J; Needs, Richard J; Michaelides, Angelos; Wang, Enge

    2013-01-01

    The melting temperature of solid hydrogen drops with pressure above ~65 GPa, suggesting that a liquid state might exist at low temperatures. It has also been suggested that this low-temperature liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Here we report results for hydrogen at high pressures using ab initio methods, which include a description of the quantum motion of the protons. We determine the melting temperature as a function of pressure and find an atomic solid phase from 500 to 800 GPa, which melts at <200 K. Beyond this and up to 1,200 GPa, a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature reported, as simulations with classical nuclei lead to considerably higher melting temperatures of ~300 K across the entire pressure range considered.

  12. A statistical model of hydrogen bond networks in liquid alcohols

    NASA Astrophysics Data System (ADS)

    Sillrén, Per; Bielecki, Johan; Mattsson, Johan; Börjesson, Lars; Matic, Aleksandar

    2012-03-01

    We here present a statistical model of hydrogen bond induced network structures in liquid alcohols. The model generalises the Andersson-Schulz-Flory chain model to allow also for branched structures. Two bonding probabilities are assigned to each hydroxyl group oxygen, where the first is the probability of a lone pair accepting an H-bond and the second is the probability that given this bond also the second lone pair is bonded. The average hydroxyl group cluster size, cluster size distribution, and the number of branches and leaves in the tree-like network clusters are directly determined from these probabilities. The applicability of the model is tested by comparison to cluster size distributions and bonding probabilities obtained from Monte Carlo simulations of the monoalcohols methanol, propanol, butanol, and propylene glycol monomethyl ether, the di-alcohol propylene glycol, and the tri-alcohol glycerol. We find that the tree model can reproduce the cluster size distributions and the bonding probabilities for both mono- and poly-alcohols, showing the branched nature of the OH-clusters in these liquids. Thus, this statistical model is a useful tool to better understand the structure of network forming hydrogen bonded liquids. The model can be applied to experimental data, allowing the topology of the clusters to be determined from such studies.

  13. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  14. Thermo-physical performance prediction of the KSC Ground Operation Demonstration Unit for liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Baik, J. H.; Notardonato, W. U.; Karng, S. W.; Oh, I.

    2015-12-01

    NASA Kennedy Space Center (KSC) researchers have been working on enhanced and modernized cryogenic liquid propellant handling techniques to reduce life cycle costs of propellant management system for the unique KSC application. The KSC Ground Operation Demonstration Unit (GODU) for liquid hydrogen (LH2) plans to demonstrate integrated refrigeration, zero-loss flexible term storage of LH2, and densified hydrogen handling techniques. The Florida Solar Energy Center (FSEC) has partnered with the KSC researchers to develop thermal performance prediction model of the GODU for LH2. The model includes integrated refrigeration cooling performance, thermal losses in the tank and distribution lines, transient system characteristics during chilling and loading, and long term steady-state propellant storage. This paper will discuss recent experimental data of the GODU for LH2 system and modeling results.

  15. Liquid hydrogen testing of silicon nitride bearings for use in high speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Moore, Chip; Gibson, Howard; Thom, Robert

    1998-01-01

    Hybrid ceramic rolling element bearings are being tested in liquid hydrogen at Marshall Space Flight Center. The testing will evaluate their long term durability for use at high speeds in cryogenic rocket engine turbomachinery. The use of hybrid ceramic bearings in liquid hydrogen follows successful development and flight in liquid oxygen turbopumps.

  16. Liquid Hydrogen Testing of Silicon Nitride Bearings for Use In High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    Moore, Lewis; Gibson, Howard G.; Thom, Robert L.

    1998-01-01

    Hybrid ceramic rolling element bearings are being tested in liquid hydrogen at Marshall Space Flight Center. The testing will evaluate their long term durability for use at high speeds in cryogenic rocket engine turbomachinery. The use of hybrid ceramic bearings in liquid hydrogen follows successful development and flight in liquid oxygen turbopumps.

  17. Liquid Hydrogen Testing of Silicon Nitride Bearings for Use In High Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    Moore, Lewis; Gibson, Howard G.; Thom, Robert L.

    1998-01-01

    Hybrid ceramic rolling element bearings are being tested in liquid hydrogen at Marshall Space Flight Center. The testing will evaluate their long term durability for use at high speeds in cryogenic rocket engine turbomachinery. The use of hybrid ceramic bearings in liquid hydrogen follows successful development and flight in liquid oxygen turbopumps.

  18. Liquid hydrogen testing of silicon nitride bearings for use in high speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Moore, Chip; Gibson, Howard; Thom, Robert

    1998-01-01

    Hybrid ceramic rolling element bearings are being tested in liquid hydrogen at Marshall Space Flight Center. The testing will evaluate their long term durability for use at high speeds in cryogenic rocket engine turbomachinery. The use of hybrid ceramic bearings in liquid hydrogen follows successful development and flight in liquid oxygen turbopumps.

  19. Hydrogen fueled-hydrogen transport rail system - A NASA proposal

    NASA Technical Reports Server (NTRS)

    Bain, A. L.; Tison, R. R.; Spafka, R. J.

    1984-01-01

    The technical possibility of fueling motive power equipment with hydrogen as an alternative to petroleum is studied, and the economics of operating hydrogen-fueled systems are evaluated. Technical considerations include the areas of fuel storage and distribution systems, engine design changes, and a test and evaluation program. A conversion methodology, which conforms to the scheme of high-pressure injection of hydrogen directly into the cylinder late in the compresssion stroke and injection of pilot diesel fuel for ignition, is illustrated with detailed diagrams.

  20. Capture of liquid hydrogen boiloff with metal hydride absorbers

    NASA Technical Reports Server (NTRS)

    Rosso, M. J.; Golben, P. M.

    1984-01-01

    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.

  1. Minimum energy, liquid hydrogen supersonic cruise vehicle study

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization.

  2. Controlling hydrolysis reaction rates with binary ionic liquid mixtures by tuning hydrogen-bonding interactions.

    PubMed

    Weber, Cameron C; Masters, Anthony F; Maschmeyer, Thomas

    2012-02-16

    The ability of a binary ionic liquid (IL) system consisting of a phosphonium transition state analogue (TSA) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][NTf(2)]) to accelerate the rate of the well-studied hydrolysis of a tert-alkyl picolinium salt by influencing the solvent structure was investigated. A significant rate enhancement was observed in the presence of the TSA; however, comparison with other cations illustrated that this enhancement was not unique to the chosen TSA. Instead, the rate enhancements were correlated with the dilution of hydrogen bonding by the added cations. This phenomenon was further examined by the use of 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([BMMIM][NTf(2)]) as a cosolvent and the use of Reichardt's dye to measure the extent of hydrogen bonding on solutes in these systems. The rate increases are rationalized in terms of weaker hydrogen bonding from the solvent system to water.

  3. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  4. Ab initio molecular dynamics of liquid hydrogen chloride

    NASA Astrophysics Data System (ADS)

    Dubois, Vincent; Pasquarello, Alfredo

    2005-03-01

    We carried out an ab initio molecular dynamics simulation of liquid hydrogen chloride (ℓ-HCl) at a temperature of 313 K. Comparison with inelastic neutron scattering data shows that the simulation achieves an overall good description of the structural correlations, improving significantly upon a description based on classical interaction potentials. Despite some minor differences between theory and experiment in the H-H partial structure factor, the simulation gives a description of the hydrogen bonding in impressive agreement with experiment, for both the amount and the bond-length distribution of the bonds. In the simulation, 40% of the molecules are nonbonded, while the hydrogen-bonded chains are short, principally consisting of dimers (25%) and trimers (15%). Neighboring molecules in the simulation are found to form L-shaped arrangements, like in the isolated (HCl)2 dimer and in crystalline phases of HCl. The time correlation of the molecular-axis orientation is found to be characterized by a very short decay time (0.13 ps), consistent with the short length of the hydrogen-bonded chains. Other dynamical properties investigated in this work include the diffusion coefficient and the vibrational density of states. We evaluated the molecular dipole of the HCl molecule in the liquid using a definition based on the coupling of rotational modes to an external electric field. The average dipole moment (1.53 D) derived in this way is found to be considerably larger than for the isolated molecule (1.11 D). Our results show that the dipole moment in ℓ-HCl undergoes large fluctuations, both in orientation and in modulus. Upon the onset of an external field, such dipole fluctuations concur to reduce the fluctuations of the dielectric response.

  5. Pressurization and expulsion of a flightweight liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Van Dresar, N. T.; Stochl, R. J.

    1993-01-01

    Experimental results are presented for pressurization and expulsion of a flightweight 4.89 cu m liquid hydrogen storage tank under normal gravity conditions. Pressurization and expulsion times were parametrically varied to study the effects of longer transfer times expected in future space flight applications. It was found that the increase in pressurant consumption with increased operational time is significant at shorter pressurization or expulsion durations and diminishes as the duration lengthens. Gas-to-wall heat transfer in the ullage was the dominant mode of energy exchange, with more than 50 percent of the pressurant energy being lost to tank wall heating in expulsions and the long duration pressurizations. Advanced data analysis will require a multidimensional approach combined with improved measurement capabilities of liquid-vapor interfacial transport phenomena.

  6. Pressurization and expulsion of a flightweight liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.; Stochl, R. J.

    1993-01-01

    Experimental results are presented for pressurization and expulsion of a flight-weight 4.89 cu m liquid hydrogen storage tank under normal gravity conditions. Pressurization and expulsion times are parametrically varied to study the effects of longer transfer times expected in future space flight applications. It is found that the increase in pressurant consumption with increased operational time is significant at shorter pressurization or expulsion durations and diminishes as the duration lengthens. Gas-to-wall heat transfer in the ullage is the dominant mode of energy exchange, with more than 50 percent of the pressurant energy being lost to tank wall heating in expulsions and the long duration pressurizations. Advanced data analysis will require a multidimensional approach combined with improved measurement capabilities of liquid-vapor interfacial transport phenomena.

  7. Prediction of pressurant mass requirements for axisymmetric liquid hydrogen tanks

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.

    1995-01-01

    Experimental data from several test series are compared to an existing correlation that predicts the amount of pressurant gas mass required to expel liquid hydrogen from axisymmetric tanks. It was necessary to use an alternate definition of the tank equivalent diameter to accommodate thermal mass in the tank wall that is initially warm and to accommodate liquid residuals in the tank after expulsion is stopped. With this modification, the existing correlation predicted mass requirements to within 14 percent of experimental results. Revision of the correlation constants using a nonlinear least-squares fit of the current experimental data has a minor effect, thus supporting the validity of the original correlation's form, its fitted constants, and the alternate definition of the tank equivalent diameter.

  8. Helium refrigeration system for hydrogen liquefaction applications

    NASA Astrophysics Data System (ADS)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  9. Cooperative effects in catalytic hydrogenation regulated by both the cation and anion of an ionic liquid.

    PubMed

    Zhu, Wenwen; Yu, Yinyin; Yang, Hanmin; Hua, Li; Qiao, Yunxiang; Zhao, Xiuge; Hou, Zhenshan

    2013-02-04

    The use of transition-metal nanoparticles/ionic liquid (IL) as a thermoregulated and recyclable catalytic system for hydrogenation has been investigated under mild conditions. The functionalized ionic liquid was composed of poly(ethylene glycol)-functionalized alkylimidazolium as the cation and tris(meta-sulfonatophenyl)phosphine ([P(C(6)H(4)-m-SO(3))(3)](3-)) as the anion. Ethyl acetate was chosen as the thermomorphic solvent to avoid the use of toxic organic solvents. Due to a cooperative effect regulated by both the cation and anion of the ionic liquid, the nanocatalysts displayed distinguished temperature-dependent phase behavior and excellent catalytic activity and selectivity, coupled with high stability. In the hydrogenation of α,β-unsaturated aldehydes, the ionic-liquid-stabilized palladium and rhodium nanoparticles exhibited higher selectivity for the hydrogenation of the C=C bonds than commercially available catalysts (Pd/C and Rh/C). We believe that the anion of the ionic liquid, [P(C(6)H(4)-m-SO(3))(3)](3-), plays a role in changing the surrounding electronic characteristics of the nanoparticles through its coordination capacity, whereas the poly(ethylene glycol)-functionalized alkylimidazolium cation is responsible for the thermomorphic properties of the nanocatalyst in ethyl acetate. The present catalytic systems can be employed for the hydrogenation of a wide range of substrates bearing different functional groups. The catalysts could be easily separated from the products by thermoregulated phase separation and efficiently recycled ten times without significant changes in their catalytic activity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Design and development of liquid hydrogen mixer unit

    NASA Technical Reports Server (NTRS)

    Morgan, R. W.; Wuertz, K.; Rudich, R. R.

    1973-01-01

    A dc brushless motor driven mixer unit (a vaneaxial fan) was designed and evaluated for use in cryogenic fluids (liquids and gases). It was found to operate well in all fluids in which it was tested. The test fluids were liquid and gaseous helium, hydrogen in the liquid phase gas phase and mixtures of the two phases, and liquid nitrogen. It operated for over 100 hr at cryogenic temperatures without damage to the bearings and at the conclusion of testing the condition of the bearings was such that an operational life of 5000 hr appeared possible. The unit demonstrated that (with the brushless dc motor principle) useful pumping of cryogenic fluids could be accomplished with very small power inputs to the mixer motor. During test, the motor input power varied from approximately 0.5 W to 2.5 W, depending on fluid density. The high power input produced a mixer efficiency of over 49 percent. In an earlier program (see NASA Report CR-72365), a mixer using an ac induction motor demonstrated an efficiency of 17.7 percent under the same conditions, illustrating the advantage of the dc brushless motor driven unit. The mixer also demonstrated its ability to automatically vary speed as a function of the density of the fluid being pumped. This causes the unit to deliver higher volumetric flow rates as fluid density decreases.

  11. Modeling Free Convection Flow of Liquid Hydrogen within a Cylindrical Heat Exchanger Cooled to 14 K

    SciTech Connect

    Green, Michael A.; Oxford U.; Yang, S.W.; Green, M.A.; Lau, W.

    2004-05-08

    A liquid hydrogen in a absorber for muon cooling requires that up to 300 W be removed from 20 liters of liquid hydrogen. The wall of the container is a heat exchanger between the hydrogen and 14 K helium gas in channels within the wall. The warm liquid hydrogen is circulated down the cylindrical walls of the absorber by free convection. The flow of the hydrogen is studied using FEA methods for two cases and the heat transfer coefficient to the wall is calculated. The first case is when the wall is bare. The second case is when there is a duct some distance inside the cooled wall.

  12. Film boiling heat transfer from a wire to upward flow of liquid hydrogen and liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Shiotsu, M.; Shirai, Y.; Horie, Y.; Shigeta, H.; Higa, D.; Tatsumoto, H.; Hata, K.; Kobayashi, H.; Nonaka, S.; Naruo, Y.; Inatani, Y.

    2015-11-01

    Film boiling heat transfer coefficients in liquid hydrogen were measured for the heater surface superheats to 300 K under pressures from 0.4 to 1.1 MPa, liquid subcoolings to 11 K and flow velocities to 8 m/s. Two test wires were both 1.2 mm in diameter, 120 mm and 200 mm in lengths and were made of PtCo alloy. The test wires were located on the center of 8 mm and 5 mm diameter conduits of FRP (Fiber Reinforced Plastics). Furthermore film boiling heat transfer coefficients in liquid nitrogen were measured only for the 200 mm long wire. The film boiling heat transfer coefficients are higher for higher pressure, higher subcooling, and higher flow velocity. The experimental data were compared with a conventional equation for forced flow film boiling in a wide channel. The data for the 8 mm diameter conduit were about 1.7 times and those for the 5 mm conduit were about 1.9 times higher than the predicted values by the equation. A new equation was presented modifying the conventional equation based on the liquid hydrogen and liquid nitrogen data. The experimental data were expressed well by the equation.

  13. Hydrogen-bond acidity of ionic liquids: an extended scale.

    PubMed

    Kurnia, Kiki A; Lima, Filipa; Cláudio, Ana Filipa M; Coutinho, João A P; Freire, Mara G

    2015-07-15

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet-Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2](-))-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation-anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation-anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  14. Hydrogen-bond acidity of ionic liquids: an extended scale†

    PubMed Central

    Kurnia, Kiki A.; Lima, Filipa; Cláudio, Ana Filipa M.; Coutinho, João A. P.; Freire, Mara G.

    2015-01-01

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet–Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2]−)-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation–anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation–anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  15. A compact hydrogen recycling system using metal hydrides

    NASA Astrophysics Data System (ADS)

    Bertl, W.; Healey, D.; Zmeskal, J.; Hasinoff, M. D.; Blecher, M.; Wright, D. H.

    1995-02-01

    A gas recycling system to prevent losses of isotopically enriched hydrogen gas has been developed for the operation of a liquid target (2.7 l) used by the Radiative Muon Capture group at TRIUMF. The experimental requirements for high gas purity (chemical impurities below 10 -9), low operating pressure (below 1 bar abs) and high loading pressure (about 10 bar needed for a palladium purifier) together with the usual hydrogen safety requirements were satisfied with a metal hydride storage device in combination with a small pump/compressor system. A description of the complete system together with its characteristic operational data are given in this paper.

  16. Analysis of data from spilling experiments performed with liquid hydrogen.

    PubMed

    Statharas, J C; Venetsanos, A G; Bartzis, J G; Würtz, J; Schmidtchen, U

    2000-10-02

    This work describes the modelling of liquid hydrogen release experiments using the ADREA-HF 3-D time dependent finite volume code for cloud dispersion, jointly developed by DEMOKRITOS and JRC-Ispra. The experiments were performed by Batelle Ingenieurtechnik for BAM (Bundesanstalt fur Materialforschung und Prufung), Berlin, in the frame of the Euro-Quebec-Hydro-Hydrogen-Pilot-Project and they mainly deal with LH2 near ground releases between buildings. In the present study, the experimental trial #5 was assumed for simulation due to the fact that in this release the largest number of sensor readings were obtained. The simulations illustrated the complex behaviour of LH2 dispersion in presence of buildings, characterized by complicated wind patterns, plume back flow near the source, dense gas behaviour at near range and significant buoyant behaviour at the far range. The simulations showed the strong effect of ground heating in the LH2 dispersion. The model also revealed major features of the dispersion that had to do with the "dense" behaviour of the cold hydrogen and the buoyant behaviour of the "warming-up" gas as well as the interaction of the building and the release wake. Such a behaviour was in qualitative and even quantitative agreement with the experiment. The results are given in terms of concentration time series, scatter plots, contour plots, wind field vector plots and 3-D concentration wireframes. Given all experiment uncertainties, the model gives reasonable results on concentrations levels.

  17. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  18. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  19. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  20. Nature of hydrogen bonding in charged hydrogen-bonded complexes and imidazolium-based ionic liquids.

    PubMed

    Izgorodina, Ekaterina I; MacFarlane, Douglas R

    2011-12-15

    The nature of hydrogen bonding was compared in neutral complexes and negatively charged complexes consisting of either the HF molecule or the halide anion (fluoride and chloride) and the C-H bond in the methane molecule with a varying degree of fluorination (such as CH(4), CH(2)F(2), and CHF(3)). Both linear (C(3v) symmetry) and nonlinear (C(2v) symmetry) hydrogen-bonded complexes were studied. Symmetry-adapted perturbation theory was used to decompose interaction energies into fundamental components such as Coulomb, repulsion, induction and dispersion to analyze the interplay among these forces in stabilizing hydrogen bonding. In the linear charged complexes, both Coulomb attraction and induction significantly contributed to the stabilization of hydrogen bonding. In the nonlinear charged complexes, mainly Coulomb attraction contributed to the HB complex stabilization, with the inductive forces playing a less important role. Contrary to the neutral complexes, dispersion forces played only a marginal role in the charged complexes. Interplay between the fundamental forces was also investigated in the ion pairs of the imidazolium-based ionic liquid, [C(2)mim]Cl, that were categorized as either (1) typical ion-ion interaction, with the anion interacting from above or below the imidazolium plane; or (2) hydrogen-bonding interaction, with the anion interacting with the C2-H bond of the imidazolium cation. Both types of interactions were found to induce similar charge transfers, and the analysis of the energetic components revealed only a slight difference in the ion pairs studied: (1) both interactions were electrostatically driven, between 86% and 88% of the overall attractive energy, with the electrostatic component being slightly lower in the hydrogen-bonded ion pairs by ~8 kJ mol(-1); and (2) dispersion forces were found to be stronger in the typical ion-ion interactions by ~15 kJ mol(-1) and could be possible only due to the fact that the anion was able to move

  1. Method and system for hydrogen evolution and storage

    DOEpatents

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  2. Method and System for Hydrogen Evolution and Storage

    DOEpatents

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2008-10-21

    A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  3. Small Liquid Hydrogen Tank for Drop Tower Tests

    NASA Image and Video Library

    1964-11-21

    A researcher fills a small container used to represent a liquid hydrogen tank in preparation for a microgravity test in the 2.2-Second Drop Tower at the National Aeronautics and Space Administration (NASA) Lewis Research Center. For over a decade, NASA Lewis endeavored to make liquid hydrogen a viable propellant. Hydrogen’s light weight and high energy made it very appealing for rocket propulsion. One of the unknowns at the time was the behavior of fluids in the microgravity of space. Rocket designers needed to know where the propellant would be inside the fuel tank in order to pump it to the engine. NASA Lewis utilized sounding rockets, research aircraft, and the 2.2 Second Drop Tower to study liquids in microgravity. The drop tower, originally built as a fuel distillation tower in 1948, descended into a steep ravine. By early 1961 the facility was converted into an eight-floor, 100-foot tower connected to a shop and laboratory space. Small glass tanks, like this one, were installed in experiment carts with cameras to film the liquid’s behavior during freefall. Thousands of drop tower tests in the early 1960s provided an increased understanding of low-gravity processes and phenomena. The tower only afforded a relatively short experiment time but was sufficient enough that the research could be expanded upon using longer duration freefalls on sounding rockets or aircraft. The results of the early experimental fluid studies verified predictions made by Lewis researchers that the total surface energy would be minimized in microgravity.

  4. Liquid Mixtures Involving Hydrogenated and Fluorinated Alcohols: Thermodynamics, Spectroscopy, and Simulation.

    PubMed

    Morgado, Pedro; Garcia, Ana Rosa; Ilharco, Laura M; Marcos, João; Anastácio, Martim; Martins, Luís F G; Filipe, Eduardo J M

    2016-09-19

    This article reports a combined thermodynamic, spectroscopic, and computational study on the interactions and structure of binary mixtures of hydrogenated and fluorinated substances that simultaneously interact through strong hydrogen bonding. Four binary mixtures of hydrogenated and fluorinated alcohols have been studied, namely, (ethanol + 2,2,2-trifluoroethanol (TFE)), (ethanol + 2,2,3,3,4,4,4-heptafluoro-1-butanol), (1-butanol (BuOH) + TFE), and (BuOH + 2,2,3,3,4,4,4-heptafluoro-1-butanol). Excess molar volumes and vibrational spectra of all four binary mixtures have been measured as a function of composition at 298 K, and molecular dynamics simulations have been performed. The systems display a complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The combined analysis of the results from different approaches indicates that this results from a balance between preferential hydrogen bonding between the hydrogenated and fluorinated alcohols and the unfavorable dispersion forces between the hydrogenated and fluorinated chains. As the chain length increases, the contribution of dispersion increases and overcomes the contribution of H-bonds. In terms of the liquid structure, the simulations suggest the possibility of segregation between the hydrogenated and fluorinated segments, a hypothesis corroborated by the spectroscopic results. Furthermore, a quantitative analysis of the infrared spectra reveals that the presence of fluorinated groups induces conformational changes in the hydrogenated chains from the usually preferred all-trans to more globular arrangements involving gauche conformations. Conformational rearrangements at the CCOH dihedral angle upon mixing are also disclosed by the spectra.

  5. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  6. Linear and nonlinear waves on the charged surface of liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Brazhnikov, M. Yu.; Kolmakov, G. V.; Levchenko, A. A.; Mezhov-Deglin, L. P.

    2001-09-01

    The results of research on the properties of linear and nonlinear waves on the charged surface of liquid hydrogen in a cylindrical cell are reported. It is found that the spectrum of oscillations of linear waves softens with increasing applied electric field. Weak turbulence in a system of capillary waves on the charged surface of liquid hydrogen is investigated. The formation of a Kolmogorov cascade is observed in the inertial interval from 100 Hz to 10 kHz. It is found that the correlation function of the deviation of the surface from its flat equilibrium state can be described by a power-law function of the frequency, with an exponent m=-3.7±0.3 when the surface is excited at a single resonance frequency, and m=-3.0±0.3 in the case of two-frequency excitation. The results of these studies are in qualitative agreement with the theoretical predictions.

  7. Portable Liquid-Injecting System

    NASA Technical Reports Server (NTRS)

    Shuck, T.; Chin, F.; Hansen, M.

    1988-01-01

    Portable injecting-gun system dispenses predetermined amount of liquid at moderately high pressure. Tool belt holds components of liquid-injecting system. Pump and four-way valve combined in nylon housing. Connected to injecting nozzle and other components by polyvinyl tubing.

  8. Development of a Ground Operations Demonstration Unit for Liquid Hydrogen at Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project will design, assemble, and test a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives and will culminate with an operational demonstration of the loading of a simulated flight tank with densified propellants. The system will be unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. The integrated refrigerator is the critical feature enabling the testing of the following three functions: zero-loss storage and transfer, propellant densification/conditioning, and on-site liquefaction. This paper will discuss the test objectives, the design of the system, and the current status of the installation.

  9. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  10. Nickel-hydrogen bipolar battery systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1982-01-01

    Nickel-hydrogen cells are currently being manufactured on a semi-experimental basis. Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This has been stimulated by the currently emerging requirements related to large manned and unmanned low earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  11. Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation.

    PubMed

    Mitsumori, Makoto; Enishi, Osamu; Shinkai, Takumi; Higuchi, Koji; Kobayashi, Yosuke; Takenaka, Akio; Nagashima, Kyo; Mochizuki, Masami; Kobayashi, Yasuo

    2014-03-01

    Effect of cashew nut shell liquid (CNSL), a methane inhibitor, on bovine rumen fermentation was investigated through analysis of the metabolic hydrogen flow estimated from concentrations of short-chain fatty acids (SCFA) and methane. Three cows were fed a concentrate and hay diet without or with a CNSL-containing pellet. Two trials were conducted using CNSL pellets blended with only silica (trial 1) or with several other ingredients (trial 2). Methane production was measured in a respiration chamber system, and energy balance and nutrient digestibility were monitored. The estimated flow of metabolic hydrogen demonstrated that a part of metabolic hydrogen was used for hydrogen gas production, and a large amount of it flowed into production of methane and SCFA in both trial 1 and 2, when CNSL was administered to the bovine rumen. The results obtained by regression analyses showed that the effect of CNSL supply on methane reduction was coupled with a significant (P < 0.01) decrease of acetate and a significant (P < 0.01) increase of propionate and hydrogen gas. These findings reveal that CNSL is able to reduce methane and acetate production, and to increase hydrogen gas and propionate production in vivo. © 2013 Japanese Society of Animal Science.

  12. Liquid sampling system

    DOEpatents

    Larson, Loren L.

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  13. Liquid sampling system

    DOEpatents

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  14. Thermomorphic phase separation in ionic liquid-organic liquid systems--conductivity and spectroscopic characterization.

    PubMed

    Riisager, Anders; Fehrmann, Rasmus; Berg, Rolf W; van Hal, Roy; Wasserscheid, Peter

    2005-08-21

    Electrical conductivity, FT-Raman and NMR measurements are demonstrated as useful tools to probe and determine phase behavior of thermomorphic ionic liquid-organic liquid systems. To illustrate the methods, consecutive conductivity measurements of a thermomorphic methoxyethoxyethyl-imidazolium ionic liquid/1-hexanol system are performed in the temperature interval 25-80 degrees C using a specially constructed double-electrode cell. In addition, FT-Raman and 1H-NMR spectroscopic studies performed on the phase-separable system in the same temperature interval confirm the mutual solubility of the components in the system, the liquid-liquid equilibrium phase diagram of the binary mixture, and signify the importance of hydrogen bonding between the ionic liquid and the hydroxyl group of the alcohol.

  15. Despin System for Hydrogen Tank in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1962-04-21

    Mechanic Howard Wine inspects the setup of a spin isolator in Cell 2 of the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Photographer Al Jecko filmed the proceedings. This test was unique in that the chamber’s altitude system was used, but not its inlet air flow. The test was in preparation for an upcoming launch of modified liquid hydrogen propellant tank on a sounding rocket. This Weightlessness Analysis Sounding Probe (WASP) was part of Lewis investigation into methods for controlling partially filled liquid hydrogen fuel tanks during flight. Second-stage rockets, the Centaur in particular, were designed to stop their engines and coast, then restart them when needed. During this coast period, the propellant often shifted inside the tank. This movement could throw the rocket off course or result in the sloshing of fuel away from the fuel pump. Wine was one of only three journeymen mechanics at Lewis when he was hired in January 1954. He spent his first decade in the Propulsion Systems Laboratory and was soon named a section head. Wine went on to serve as Assistant Division Chief and later served as an assistant to the director. Jecko joined the center in 1947 as a photographer and artist. He studied at the Cleveland School or Art and was known for his cartoon drawing. He worked at the center for 26 years.

  16. Nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1991-01-01

    The Hubble Telescope Battery Testbed at MSFC uses the Nickel Cadmium (NiCd) Battery Expert System (NICBES-2) which supports the evaluation of performance of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort is summarized which was used to modify NICBES-2 to accommodate Nickel Hydrogen (NiH2) battery environment now in MSFC testbed. The NICBES-2 is implemented on a Sun Microsystem and is written in SunOS C and Quintus Prolog. The system now operates in a multitasking environment. NICBES-2 spawns three processes: serial port process (SPP); data handler process (DHP); and the expert system process (ESP) in order to process the telemetry data and provide the status and action advice. NICBES-2 performs orbit data gathering, data evaluation, alarm diagnosis and action advice and status and history display functions. The adaptation of NICBES-2 to work with NiH2 battery environment required modification to all of the three component processes.

  17. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  18. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  19. Design and testing of liquid hydrogen-cooled, ultrahigh-speed ball bearings

    NASA Technical Reports Server (NTRS)

    Butner, M. F.; Wagner, D. A.

    1969-01-01

    Large-bore, liquid hydrogen-cooled, ultrahigh-speed, rolling contact bearings of an optimum design allow optimization of large rocket engine turbopumps in which bearing speed is a limiting factor. Optimum design for the bearings resulted from an application of liquid hydrogen used as a coolant.

  20. Design, fabrication, assembly, and test of a liquid hydrogen acquisition subsystem

    NASA Technical Reports Server (NTRS)

    Blackman, J. B.

    1974-01-01

    The development of a cryogenic fluid system to supply liquid hydrogen to a turbopump at flowrates up to 7.5 pounds per second for a period of approximately 5 seconds before refill, is discussed. Refill is accomplished in less than 10 seconds, during which a constant flowrate can be maintained to the pumps. Diagrams are provided to show the configuration of the system. Subsystem acceptance and functional tests, including acquisition subsystem expulsion, pressurization, and refill were performed. The tests included: (1) thermodynamic vent system operation, (2) warm-gas pressurization effects, (3) hydraulic pressure surge effects, (4) screen device operational limitations, (5) feedline vapor control, and (6) two-phase refill.

  1. Ultrasonic and IR study of intermolecular association through hydrogen bonding in ternary liquid mixtures.

    PubMed

    Awasthi, Aashees; Shukla, J P

    2003-08-01

    Complex formation in ternary liquid mixtures of dimethylsulfoxide (DMSO) with phenol and o-cresol in carbontetrachloride has been studied by measuring ultrasonic velocity at 2 MHz, in the concentration range of 0.019-0.162 (in mole fraction of DMSO) at varying temperatures of 20, 30 and 40 degrees C. Using measured values of ultrasonic velocity, other parameters such as adiabatic compressibility, intermolecular free length, molar sound velocity, molar compressibility, specific acoustic impedance and molar volume have been evaluated. These parameters have been utilized to study the solute-solute interactions in these systems. The ultrasonic velocity shows a maxima and adiabatic compressibility a corresponding minima as a function of concentration for these mixtures. The results indicate the occurrence of complex formation between unlike molecules through intermolecular hydrogen bonding between oxygen atom of DMSO molecule and hydrogen atom of phenol and o-cresol molecules. The excess values of adiabatic compressibility and intermolecular free length have also been evaluated. The variation of both these parameters with concentration also indicates the possibility of the complex formation in these systems. Further, to investigate the presence of O-HO bond complexes and the strength of molecular association with concentrations, the infrared spectra of both the systems, DMSO-phenol and DMSO-o-cresol, have been recorded for various concentrations at room temperature (20 degrees C). The results obtained using infrared spectroscopy for both the systems also support the occurrence of complex formation through intermolecular hydrogen bonding in these ternary liquid mixtures.

  2. Homogeneous hydrogenation of CO₂ to methyl formate utilizing switchable ionic liquids.

    PubMed

    Yadav, Mahendra; Linehan, John C; Karkamkar, Abhijeet J; van der Eide, Edwin; Heldebrant, David J

    2014-09-15

    Combined capture of CO2 and subsequent hydrogenation allows for base/methanol-promoted homogeneous hydrogenation of CO2 to methyl formate. The CO2, captured as an amidinium methyl carbonate, reacts with H2 with no applied pressure of CO2 in the presence of a catalyst to produce sequentially amidinium formate, then methyl formate. The production of methyl formate releases the base back into the system, thereby reducing one of the flaws of catalytic hydrogenations of CO2: the notable consumption of one mole of base per mole of formate produced. The reaction proceeds under 20 atm of H2 with selectivity to formate favored by the presence of excess base and lower temperatures (110 °C), while excess alcohol and higher temperatures (140 °C) favor methyl formate. Known CO2 hydrogenation catalysts are active in the ionic liquid medium with turnover numbers as high as 5000. It is unclear as to whether the alkyl carbonate or CO2 is hydrogenated, as we show they are in equilibrium in this system. The availability of both CO2 and the alkyl carbonate as reactive species may result in new catalyst designs and free energy pathways for CO2 that may entail different selectivity or kinetic activity.

  3. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  4. Hydrogen Embrittlement and Its Control in Hydrogen-Fueled Engine Systems

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.

    1978-01-01

    The nature of hydrogen embrittlement by high pressure gaseous hydrogen is described and methods of designing SSME gaseous hydrogen systems, including techniques of hydrogen embrittlement prevention, are discussed. The effects of gaseous hydrogen environments are emphasized. Results of extensive investigations of gaseous hydrogen environments on metals conducted under the SSME program are presented.

  5. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  6. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect

    Qiu, Y. N.; Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y.; Zhang, P.; Wang, G. P.

    2014-01-29

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  7. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  8. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics.

    PubMed

    Jakse, N; Pasturel, A

    2014-09-07

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  9. Hydrogen Fire Detection System Features Sharp Discrimination

    NASA Technical Reports Server (NTRS)

    Bright, C. S.

    1966-01-01

    Hydrogen fire detection system discovers fires by detecting the flickering ultraviolet radiation emitted by the OH molecule, a short-lived intermediate combustion product found in hydrogen-air flames. In a space application, the system discriminates against false signals from sunlight and rocket engine exhaust plume radiation.

  10. Standard hydrogen monitoring system equipment installation instructions

    SciTech Connect

    Schneider, T.C.

    1996-09-27

    This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

  11. Microwave Plasma Hydrogen Recovery System

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  12. Low Temperature Regenerators for Zero Boil-Off Liquid Hydrogen Pulse Tube Cryocoolers

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kashani, Ali; Helvensteijn, Ben; Kittel, Peter; Arnoldm James O. (Technical Monitor)

    2002-01-01

    Recently, a great deal of attention has been focused on zero boil-off (ZBO) propellant storage as a means of minimizing the launch mass required for long-term exploration missions. A key component of ZBO systems is the cooler. Pulse tube coolers offer the advantage of zero moving mass at the cold head, and recent advances in lightweight, high efficiency cooler technology have paved the way for reliable liquid oxygen (LOx) temperature coolers to be developed which are suitable for flight ZBO systems. Liquid hydrogen (LH2) systems, however, are another matter. For ZBO liquid hydrogen systems, cooling powers of 1-5 watts are required at 20 K. The final development from tier for these coolers is to achieve high efficiency and reliability at lower operating temperatures. Most of the life-limiting issues of flight Stirling and pulse tube coolers are associated with contamination, drive mechanisms, and drive electronics. These problems are well in hand in the present generation coolers. The remaining efficiency and reliability issues reside with the low temperature regenerators. This paper will discuss advances to be made in regenerators for pulse tube LH2 ZBO coolers, present some historical background, and discuss recent progress in regenerator technology development using alloys of erbium.

  13. Optical Gauging of Liquid and Solid Hydrogen in Zero-g Environments for Space Applications

    NASA Astrophysics Data System (ADS)

    Caimi, F. M.; Kocak, D. M.; Justak, J. F.

    2006-04-01

    Knowledge of fuel reserve levels is required for propellant management systems and power considerations in many space applications. Although methods are known for gauging fuel amounts in gravitational environments, no simple passive method is known for quantifying fuel reserves in a zero-g environment. Current ground-based methods for cryogenic liquid quantification use wire resistance measurements or point sensors, combined with pressure and temperature measurements to arrive at the desired accuracy. This paper presents an optical sensor design based on existing radiometric and integrating sphere techniques that have the potential to provide quantification in both zero-g and ground based applications. The general approach relies upon optical absorption of liquid or solid hydrogen in a vibrational overtone spectral region. The cryogen storage tank is configured as an "Integrating Sphere." Inside the tank, in a zero-g environment, the liquid and/or gaseous fuel will be free-floating and/or attached to the walls. Incident light irradiates even the smallest portion of the sphere due to the integration. The amount of light absorbed in the tank will be proportional to the amount of fuel present. Therefore, regardless of scatter, all light passed through the medium in the sphere is contained and can be quantified. This paper presents simulations for various liquid hydrogen volumetric configurations and confirms utility of the method. Initial experimental results for a liquid hydrogen analyte in non-zero-g environments are provided. Using this sensor, it is possible to achieve a 10× increase in fuel measurement accuracy which can provide an increased orbit or payload capability.

  14. Hydrogen energy systems studies. Final technical report

    SciTech Connect

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  15. Quest for hydrogen environments in hydrogen-bonded systems

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun

    2017-03-01

    We performed proton high-resolution nuclear magnetic resonance (NMR) measurements on KH2PO4 ferroelectrics. The 1H high-resolution NMR measurements were performed using the magic-angle spinning technique, which removes the proton-proton dipolar coupling and the chemical shift anisotropy in solid-state materials. High-resolution magic-angle spinning 1H NMR spectroscopy provides information on the chemical structure in the KH2PO4 system. From the measured chemical shift data, we determined the oxygen separation distance of the O-H···O hydrogen bond. The localized hydrogen position of the environments near heavy atoms can be depicted using Morse potentials, which provide the wave function of the eigenstate and the probability distribution of hydrogen in the local structure based on the solutions of the Schr¨odinger equation.

  16. Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, C.

    1996-01-01

    The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

  17. Integrated photoelectrochemical cell and system having a liquid electrolyte

    DOEpatents

    Deng, Xunming; Xu, Liwei

    2010-07-06

    An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

  18. Investigation of the reaction of liquid hydrogen with liquid air in a pressure tube

    NASA Technical Reports Server (NTRS)

    Karb, Erich H.

    1987-01-01

    A pressure tube should protect the FR-2 reactor from the consequences of a hydrogen-air reaction, which is conceivable in the breakdown of several safety devices of the planned cold neutron source Project FR-2/16. The magnitudes and time pattern of the pressures to be expected were investigated. In the geometry used and the ignition mechanism selected, which is comparable to the strongest ignition process conceivable in the reactor, the reaction proceeds with greater probability than combustion. The combustion is possibly smaller if local limited partial detonations are superimposed. The magnitude of the pressure was determined by the masses of the reaction partners, liquid H2 and liquid air, and determines their ratio to each other.

  19. Theoretical Performance of Liquid Hydrogen with Liquid Oxygen as a Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; McBride, Bonnie J.

    1959-01-01

    Theoretical rocket performance for both equilibrium and frozen composition during expansion was calculated for the propellant combination liquid hydrogen and liquid oxygen at four chamber pressures (60, 150, 300, and 600 lb/sq in. abs) and a wide range of pressure ratios (1 to 4000) and oxidant-fuel ratios (1.190 to 39.683). Data are given to estimate performance parameters at chamber pressures other than those for which data are tabulated. The parameters included are specific impulse, specific impulse in vacuum, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivatives, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, thermal conductivity, Mach number, and equilibrium gas compositions.

  20. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  1. Liquid Fuels Systems Maintenance

    DTIC Science & Technology

    1992-10-01

    DEFENSE INFO SCHOOL 1 1 DEFENSE TECHNICAL INFORMATION CENTER 2 DET 1, HQ AFMWRA/MWHBR 1 HSD/DPI 1 1 HQ AFCESA/DMG 1 1 HQ ACC/DPATD 3 3 HQ AFSPACECOM...ENGINEERING 0 WATTS MUESCO 11 FUEL METERS MAINTAINED IST ENL A.O. SMITH 81 BENNET 6 BOWSER 13 BRODIE 50 GRANCO 19 LIQUID CONTROL 38 NEPTUNE 19 CAL

  2. Nickel-hydrogen bipolar battery system

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  3. Nickel-hydrogen bipolar battery system

    SciTech Connect

    Thaller, L.H.

    1982-09-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  4. Hydrogen bond network topology in liquid water and methanol: a graph theory approach.

    PubMed

    Bakó, Imre; Bencsura, Akos; Hermannson, Kersti; Bálint, Szabolcs; Grósz, Tamás; Chihaia, Viorel; Oláh, Julianna

    2013-09-28

    Networks are increasingly recognized as important building blocks of various systems in nature and society. Water is known to possess an extended hydrogen bond network, in which the individual bonds are broken in the sub-picosecond range and still the network structure remains intact. We investigated and compared the topological properties of liquid water and methanol at various temperatures using concepts derived within the framework of graph and network theory (neighbour number and cycle size distribution, the distribution of local cyclic and local bonding coefficients, Laplacian spectra of the network, inverse participation ratio distribution of the eigenvalues and average localization distribution of a node) and compared them to small world and Erdős-Rényi random networks. Various characteristic properties (e.g. the local cyclic and bonding coefficients) of the network in liquid water could be reproduced by small world and/or Erdős-Rényi networks, but the ring size distribution of water is unique and none of the studied graph models could describe it. Using the inverse participation ratio of the Laplacian eigenvectors we characterized the network inhomogeneities found in water and showed that similar phenomena can be observed in Erdős-Rényi and small world graphs. We demonstrated that the topological properties of the hydrogen bond network found in liquid water systematically change with the temperature and that increasing temperature leads to a broader ring size distribution. We applied the studied topological indices to the network of water molecules with four hydrogen bonds, and showed that at low temperature (250 K) these molecules form a percolated or nearly-percolated network, while at ambient or high temperatures only small clusters of four-hydrogen bonded water molecules exist.

  5. Chemical/hydrogen energy systems analysis

    NASA Astrophysics Data System (ADS)

    Beller, M.

    1982-12-01

    Four hydrogen energy technologies are addressed including: hydrogen recovery from hydrogen separation using hydride technology, photochemical hydrogen production, anode depolarization in electrolytic hydrogen production.

  6. Video of SLS Liquid Hydrogen Tank Qualification Structural Test Article Being Moved to Cell E at NASA’s Michoud Assembly Facility

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System liquid hydrogen tank structural qualification test article being moved to Building 110, Cell at NASA's Michoud Assembly Facility in New Orleans. The rocket's liquid hydrogen tank, which is the propellant tank that joins to the engine section of the 212-foot tall core stage, will carry cryogenic liquid hydrogen that propels the rocket. This test article build at Michoud is being prepared for testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.

  7. Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions.

    PubMed

    Konnerth, Hannelore; Prechtl, Martin H G

    2016-07-12

    A selective hydrogenation method for forming (Z)-alkenes from alkynes has been developed using a catalyst system of cheap Ni-NPs in a nitrile functionalised imidazolium based ionic liquid (IL) operating under very mild reaction conditions of 30-50 °C and 1-4 bar H2 pressure.

  8. Cryogenic liquid O2/H2 reaction control systems for Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Kelly, P. J.; Mckee, H. B.; Patten, T. C.

    1972-01-01

    A Space Shuttle liquid oxygen/hydrogen reaction control system design analysis has been performed. The system concept considered eliminates propellant conditioning equipment and delivers the propellants to the engines in a liquid rather than a gaseous state. This paper provides system design analyses results and compares various means of implementing the concept on the basis of weight, technology requirements, and operational considerations. Additionally, weight comparisons are made between cryogenic oxygen/hydrogen system requirements. These comparisons show that the liquid oxygen/hydrogen system concept could effect marked weight reductions in the Space Shuttle orbiter total impulse range.

  9. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ??? in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) ??2H reproducibility (1?? standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ??? to 0.58 ???. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  10. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  11. Thermochemical Energy Storage through De/Hydrogenation of Organic Liquids: Reactions of Organic Liquids on Metal Hydrides.

    PubMed

    Ulmer, Ulrich; Cholewa, Martin; Diemant, Thomas; Bonatto Minella, Christian; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2016-06-08

    A study of the reactions of liquid acetone and toluene on transition metal hydrides, which can be used in thermal energy or hydrogen storage applications, is presented. Hydrogen is confined in TiFe, Ti0.95Zr0.05Mn1.49V0.45Fe0.06 ("Hydralloy C5"), and V40Fe8Ti26Cr26 after contact with acetone. Toluene passivates V40Fe8Ti26Cr26 completely for hydrogen desorption while TiFe is only mildly deactivated and desorption is not blocked at all in the case of Hydralloy C5. LaNi5 is inert toward both organic liquids. Gas chromatography (GC) investigations reveal that CO, propane, and propene are formed during hydrogen desorption from V40Fe8Ti26Cr26 in liquid acetone, and methylcyclohexane is formed in the case of liquid toluene. These reactions do not occur if dehydrogenated samples are used, which indicates an enhanced surface reactivity during hydrogen desorption. Significant amounts of carbon-containing species are detected at the surface and subsurface of acetone- and toluene-treated V40Fe8Ti26Cr26 by X-ray photoelectron spectroscopy (XPS). The modification of the surface and subsurface chemistry and the resulting blocking of catalytic sites is believed to be responsible for the containment of hydrogen in the bulk. The surface passivation reactions occur only during hydrogen desorption of the samples.

  12. Controlling the subtle energy balance in protic ionic liquids: dispersion forces compete with hydrogen bonds.

    PubMed

    Fumino, Koichi; Fossog, Verlaine; Stange, Peter; Paschek, Dietmar; Hempelmann, Rolf; Ludwig, Ralf

    2015-02-23

    The properties of ionic liquids are determined by the energy-balance between Coulomb-interaction, hydrogen-bonding, and dispersion forces. Out of a set of protic ionic liquids (PILs), including trialkylammonium cations and methylsulfonate and triflate anions we could detect the transfer from hydrogen-bonding to dispersion-dominated interaction between cation and anion in the PIL [(C6 H13 )3 NH][CF3 SO3 ]. The characteristic vibrational features for both ion-pair species can be detected and assigned in the far-infrared spectra. Our approach gives direct access to the relative strength of hydrogen-bonding and dispersion forces in a Coulomb-dominated system. Dispersion-corrected density functional theory (DFT) calculations support the experimental findings. The dispersion forces could be quantified to contribute about 2.3 kJ mol(-1) per additional methylene group in the alkyl chains of the ammonium cation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOEpatents

    Shepodd, Timothy J.

    2006-02-21

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  14. Solar hydrogen system design considerations

    NASA Astrophysics Data System (ADS)

    Lin, S.; Parker, G. H.; Stella, M. E.

    Attention is given to the Sulfur Cycle, a hybrid thermochemical-electrochemical process for the production of hydrogen and oxygen from water. The process, in its most general form, consists of two chemical reactions. The net result of the process is the decomposition of water into hydrogen and oxygen. The sulfur oxides are involved solely as recycling intermediates. The electrical power needed is much smaller than the power required in conventional water electrolysis. A description of the pressurized test unit is provided, and an investigation is conducted of key process variables.

  15. Simulating Energy Relaxation in Pump-Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids.

    PubMed

    Dettori, Riccardo; Ceriotti, Michele; Hunger, Johannes; Melis, Claudio; Colombo, Luciano; Donadio, Davide

    2017-03-14

    We introduce a nonequilibrium molecular dynamics simulation approach, based on the generalized Langevin equation, to study vibrational energy relaxation in pump-probe spectroscopy. A colored noise thermostat is used to selectively excite a set of vibrational modes, leaving the other modes nearly unperturbed, to mimic the effect of a monochromatic laser pump. Energy relaxation is probed by analyzing the evolution of the system after excitation in the microcanonical ensemble, thus providing direct information about the energy redistribution paths at the molecular level and their time scale. The method is applied to hydrogen-bonded molecular liquids, specifically deuterated methanol and water, providing a robust picture of energy relaxation at the molecular scale.

  16. Supported liquid membrane system

    SciTech Connect

    Takigawa, D.Y.; Bush, H. Jr.

    1990-12-31

    A cell apparatus for a supported liquid membrane including opposing faceplates, each having a spirally configured groove, an inlet groove at a first end of the spirally configured groove, and an outlet groove at the other end of the spirally configured groove, within the opposing faces of the faceplates, a microporous membrane situated between the grooved faces of the faceplates, said microporous membrane containing an extractant mixture selective for a predetermined chemical species within the pores of said membrane, means for aligning the grooves of the faceplates in an directly opposing configuration with the porous membrane being situated therebetween, such that the aligned grooves form a pair of directly opposing channels, separate feed solution and stripping solution compartments connected to respective channels between the faceplates and the membrane, separate pumping means for passing feed solution and stripping solution through the channels is provided.

  17. Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics.

    PubMed

    Ziemecka, Iwona; Haut, Benoît; Scheid, Benoit

    2015-01-21

    Pervaporation in a microfluidic device is performed on liquid ternary solutions of hydrogen peroxide-water-methanol in order to concentrate hydrogen peroxide (H2O2) by removing methanol. The quantitative analysis of the pervaporation of solutions with different initial compositions is performed, varying the operating temperature of the microfluidic device. Experimental results together with a mathematical model of the separation process are used to understand the effect of the operating conditions on the microfluidic device efficiency. The parameters influencing significantly the performance of pervaporation in the microfluidic device are determined and the limitations of the process are discussed. For the analysed system, the operating temperature of the chip has to be below the temperature at which H2O2 decomposes. Therefore, the choice of an adequate reduced operating pressure is required, depending on the expected separation efficiency.

  18. Testing of Densified Liquid Hydrogen Stratification in a Scale Model Propellant Tank

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Tomsik, Thomas M.; Greene, William D.

    2001-01-01

    This paper describes a test program that was conducted at NASA to demonstrate the ability to load densified LH2 into a subscale propellant tank. This work was done through a collaborative effort between NASA Glenn Research Center and the Lockheed Martin Michoud Space Systems (LMMSS). The Multilobe tank, which was made from composite materials similar to that to be used on X-33, was formed from two lobes with a center septum. Test results are shown for data that was collected on filling the subscale tank with densified liquid hydrogen (DLH2) propellant that was produced at the NASA Plum Brook Station. Data is compared to analytical predictions. Data collected for this test series agrees well with analytical predictions of the environmental heat leak into the tank and the thermal stratification characteristics of the hydrogen propellant in the tank as it was filled with DLH2.

  19. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    NASA Technical Reports Server (NTRS)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  20. Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids.

    PubMed

    Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2014-02-21

    In this paper we have explored the structural and energetic landscape of potential π(+)-π(+) stacked motifs, hydrogen-bonding arrangements and anion-π(+) interactions for gas-phase ion pair (IP) conformers and IP-dimers of 1,3-dimethylimidazolium chloride, [C1C1im]Cl. We classify cation-cation ring stacking as an electron deficient π(+)-π(+) interaction, and a competitive anion on-top IP motif as an anion-donor π(+)-acceptor interaction. 21 stable IP-dimers have been obtained within an energy range of 0-126 kJ mol(-1). The structures have been found to exhibit a complex interplay of structural features. We have found that low energy IP-dimers are not necessarily formed from the lowest energy IP conformers. The sampled range of IP-dimers exhibits new structural forms that cannot be recovered by examining the ion-pairs alone, moreover the IP-dimers are recovering additional key features of the local liquid structure. Including dispersion is shown to impact both the relative energy ordering and the geometry of the IPs and IP-dimers, however the impact is found to be subtle and dependent on the underlying functional.

  1. Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids.

    PubMed

    Hunt, Patricia A

    2017-06-01

    Hydrogen bonding (H-bonding) is an important and very general phenomenon. H-bonding is part of the basis of life in DNA, key in controlling the properties of water and ice, and critical to modern applications such as crystal engineering, catalysis applications, pharmaceutical and agrochemical development. H-bonding also plays a significant role for many ionic liquids (IL), determining the secondary structuring and affecting key physical parameters. ILs exhibit a particularly diverse and wide range of traditional as well as non-standard forms of H-bonding, in particular the doubly ionic H-bond is important. Understanding the fundamental nature of the H-bonds that form within ILs is critical, and one way of accessing this information, that cannot be recovered by any other computational method, is through quantum chemical electronic structure calculations. However, an appropriate method and basis set must be employed, and a robust procedure for determining key structures is essential. Modern generalised solvation models have recently been extended to ILs, bringing both advantages and disadvantages. QC can provide a range of information on geometry, IR and Raman spectra, NMR spectra and at a more fundamental level through analysis of the electronic structure.

  2. Diagnosis of a poorly performing liquid hydrogen bulk storage sphere

    NASA Astrophysics Data System (ADS)

    Krenn, Angela Gray

    2012-06-01

    There are two 3,218 cubic meter (850,000 gallon) Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A, the other at Launch Pad B. The Sphere at Pad B had a high boiloff rate when brought into service in the 1960s. In 2001, the daily commodity loss was approximately double that of the Pad A sphere, and well above the maximum allowed by the specification. After being re-painted in the 1990s a "cold spot" appeared on the outer sphere that resulted in poor paint bonding and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of service, which provided a unique opportunity to perform a series of visual inspections of the insulation. Boroscope examinations revealed a large Perlite void in the region where the cold spot was apparent. Perlite was then trucked in and offloaded into the annular void region until full. The sphere has not yet been brought back into service.

  3. Study of thermal insulation for airborne liquid hydrogen fuel tanks

    NASA Technical Reports Server (NTRS)

    Ruccia, F. E.; Lindstrom, R. S.; Lucas, R. M.

    1978-01-01

    A concept for a fail-safe thermal protection system was developed. From screening tests, approximately 30 foams, adhesives, and reinforcing fibers using 0.3-meter square liquid nitrogen cold plate, CPR 452 and Stafoam AA1602, both reinforced with 10 percent by weight of 1/16 inch milled OCF Style 701 Fiberglas, were selected for further tests. Cyclic tests with these materials in 2-inch thicknesses bonded on a 0.6-meter square cold plate with Crest 7410 adhesive systems, were successful. Zero permeability gas barriers were identified and found to be compatible with the insulating concept.

  4. Hydrogen Bonding and Related Properties in Liquid Water: A Car-Parrinello Molecular Dynamics Simulation Study.

    PubMed

    Guardia, Elvira; Skarmoutsos, Ioannis; Masia, Marco

    2015-07-23

    The local hydrogen-bonding structure and dynamics of liquid water have been investigated using the Car-Parrinello molecular dynamics simulation technique. The radial distribution functions and coordination numbers around water molecules have been found to be strongly dependent on the number of hydrogen bonds formed by each molecule, revealing also the existence of local structural heterogeneities in the structure of the liquid. The results obtained have also revealed the strong effect of the local hydrogen-bonding network on the local tetrahedral structure and entropy. The investigation of the dynamics of the local hydrogen-bonding network in liquid water has shown that this network is very labile, and the hydrogen bonds break and reform very rapidly. Nevertheless, it has been found that the hydrogen-bonding states associated with the formation of four hydrogen bonds by a water molecule exhibit the largest survival probability and corresponding lifetime. The reorientational motions of water molecules have also been found to be strongly dependent on their initial hydrogen-bonding state. Finally, the dependence of the librational and vibrational modes of water molecules on the local hydrogen-bonding network has been carefully examined, revealing a significant effect upon the libration and bond-stretching peak frequencies. The calculated low frequency peaks come in agreement with previously reported interpretations of the experimental low-frequency Raman spectrum of liquid water.

  5. EDU liquid acquisition device outflow tests in liquid hydrogen: Experiments and analytical modeling

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; Meyerhofer, P.; Garces, R.

    2017-10-01

    This paper presents experiments and modeling of the most recent set of liquid acquisition device (LAD) vertical outflow tests conducted in liquid hydrogen. The Engineering Development Unit (EDU) was a relatively large tank (4.25 m3) used to mimic a storage tank for a cryogenic storage and transfer flight demonstration test. Six 1-g propellant tank outflow tests were conducted with a standard 325 × 2300 rectangular cross-section curved LAD channel conformal to the tank walls over a range of tank pressure (158-221 kPa), ullage temperature (22-39 K), and mass flow rate (0.0103-0.0187 kg/s) per arm. An analytical LAD channel solver, an exact solution to the Navier-Stokes equations, is used to model propellant outflow for the LAD channel. Results shows that the breakdown height of the LAD is dominated by liquid and ullage gas temperatures, with a secondary effect of flow rate. The best performance is always obtained by exposing the channel to cold pressurant gas and low flow rates, consistent with the cryogenic bubble point model. The model tracks the trends in the data and shows that the contribution of flow-through-screen pressure drop is minimized for bottom outflow in 1-g, versus the standard inverted outflow.

  6. Safe Detection System for Hydrogen Leaks

    SciTech Connect

    Lieberman, Robert A.; Beshay, Manal

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  7. Hydrogen storage and delivery system development: Fabrication

    SciTech Connect

    Handrock, J.L.; Malinowski, M.E.; Wally, K.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  8. Refinery hydrogen recovery with sepharex membrane systems

    SciTech Connect

    Schnell, W.J.; Houston, C.D.

    1985-03-01

    Gas separation by membranes is discussed, and presented to be an economically viable process. Commercial installation of membrane systems has been made for hydrogen recovery in refineries and ammonia plants and for CO/sub 2/ removal from various gas streams. The process described in this paper utilizes a flat-sheet cellulose acetate membrane fabricated into a spiral wound element configuration. An illustration of the membrane, named Separex, is provided. These membranes exhibit long-time stability in refinery H/sub 2/ recovery applications even under harsh operating conditions. The successful operation of this system demonstrates the commercial capability of Separex membranes. A comparison with PSA for hydrogen purification shows that membrane systems offer a substantially lower hydrogen production cost and an increase in hydrogen recovery.

  9. Interplay between Hydrogen Bonding and Vibrational Coupling in Liquid N-Methylacetamide

    PubMed Central

    2017-01-01

    Intrinsically disordered proteins play an important role in biology, and unraveling their labile structure presents a vital challenge. However, the dynamical structure of such proteins thwarts their study by standard techniques such as X-ray diffraction and NMR spectroscopy. Here, we use a neat liquid composed of N-methylacetamide molecules as a model system to elucidate dynamical and structural properties similar to those one can expect to see in intrinsically disordered proteins. To examine the structural dynamics in the neat liquid, we combine molecular dynamics, response-function-based spectral simulations, and two-dimensional polarization-resolved infrared spectroscopy in the amide I (CO stretch) region. The two-dimensional spectra reveal a delicate interplay between hydrogen bonding and intermolecular vibrational coupling effects, observed through a fast anisotropy decay. The present study constitutes a general platform for understanding the structure and dynamics of highly disordered proteins. PMID:28510458

  10. An assessment of the government liquid hydrogen requirements for the 1995-2005 time frame including addendum, liquid hydrogen production and commercial demand in the United States

    NASA Technical Reports Server (NTRS)

    Bain, Addison

    1990-01-01

    Liquid hydrogen will continue to be an integral element in virtually every major space program, and it has also become a significant merchant product for certain commercial markets. Liquid hydrogen is not a universally available commodity, and the number of supply sources historically have been limited to regions having concentrated consumption patterns. With the increased space program activity it becomes necessary to assess all future programs on a collective and unified basis. An initial attempt to identify projected requirements on a long range basis is presented.

  11. Hydrogen bonding in liquid methanol, methylamine, and methanethiol studied by molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kosztolányi, T.; Bakó, I.; Pálinkás, G.

    2003-03-01

    Molecular-dynamics computer simulations have been carried out on liquid methanol, methylamine, and methanethiol. The local structure of the liquids was studied based on radial distribution functions and the density projections of the neighboring molecules obtained on the basis of simulated molecular configurations. The extent of hydrogen bonding was investigated by direct analysis of the connectivity of molecules forming hydrogen-bonded clusters in these liquids. By this analysis, the methanol molecules were found to form linear chainlike structures. The local structure of hydrogen-bonded molecules of methylamine proved to be rather space filling due to the great extent of chain branching. Methanethiol molecules also proved to form hydrogen bonds forming small compact clusters. No evidence was found, however, for the clustering of hydrophobic methyl groups in any of the liquids. The quality of simulations was checked by derivation of neutron total and composite radial distribution functions and by comparison of those with available experimental data.

  12. Hydrogen Storage Technologies for Future Energy Systems.

    PubMed

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  13. Hydrogen storage and delivery system development: Analysis

    SciTech Connect

    Handrock, J.L.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  14. Liquid sodium dip seal maintenance system

    DOEpatents

    Briggs, Richard L.; Meacham, Sterling A.

    1980-01-01

    A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.

  15. Materials for Liquid Propulsion Systems. Chapter 12

    NASA Technical Reports Server (NTRS)

    Halchak, John A.; Cannon, James L.; Brown, Corey

    2016-01-01

    Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton's third law: for every action there is an equal and opposite reaction. Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned. They also have a considerably higher thrust to weigh ratio. Since liquid rocket engines can be tested several times before flight, they have the capability to be more reliable, and their ability to shut down once started provides an extra margin of safety. Liquid propellant engines also can be designed with restart capability to provide orbital maneuvering capability. In some instances, liquid engines also can be designed to be reusable. On the solid side, hybrid solid motors also have been developed with the capability to stop and restart. Solid motors are covered in detail in chapter 11. Liquid

  16. Hydrogen turbine power conversion system assessment

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.

    1978-01-01

    A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.

  17. Tuning the Liquid-Liquid Transition by Modulating the Hydrogen-Bond Angular Flexibility in a Model for Water

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Sciortino, Francesco

    2015-07-01

    We propose a simple extension of the well known ST2 model for water [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)] that allows for a continuous modification of the hydrogen-bond angular flexibility. We show that the bond flexibility affects the relative thermodynamic stability of the liquid and of the hexagonal (or cubic) ice. On increasing the flexibility, the liquid-liquid critical point, which in the original ST2 model is located in the no-man's land (i.e., the region where ice is the thermodynamically stable phase) progressively moves to a temperature where the liquid is more stable than ice. Our study definitively proves that the liquid-liquid transition in the ST2 model is a genuine phenomenon, of high relevance in all tetrahedral network-forming liquids, including water.

  18. Dispersion of flammable vapor clouds resulting from large spills of liquid hydrogen

    SciTech Connect

    Witcofski, R.D.

    1981-01-01

    The purpose of this paper is to report the preliminary findings of hydrogen vapor cloud dispersion experiments conducted by NASA. The experiments were performed to obtain basic information regarding the physical phenomena governing the dispersion of flammable clouds formed as the result of spills of large quantities of liquid hydrogen. 4 refs.

  19. High viscosity of imidazolium ionic liquids with the hydrogen sulfate anion: a Raman spectroscopy study.

    PubMed

    Ribeiro, Mauro C C

    2012-06-21

    Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO(4)(-), are much more viscous than ionic liquids with alkyl sulfates, RSO(4)(-). The structural origin of the high viscosity of HSO(4)(-) ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes ν(s)(S═O) of HSO(4)(-), the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO(4)(-) or RSO(4)(-) anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO(4)(-). If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.

  20. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  1. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  2. Composite material systems for hydrogen management

    NASA Technical Reports Server (NTRS)

    Pangborn, R. N.; Queeney, R. A.

    1991-01-01

    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  3. System for thermochemical hydrogen production

    SciTech Connect

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  4. Hydrogen storage systems from waste Mg alloys

    NASA Astrophysics Data System (ADS)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  5. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  6. Liquid-solid transition in fully ionized hydrogen at ultra-high pressures

    NASA Astrophysics Data System (ADS)

    Liberatore, Elisa; Pierleoni, Carlo; Ceperley, D. M.

    2011-05-01

    We study the phase diagram of an effective ion model of fully ionized hydrogen at ultra-high pressure. We assume that the protons interact with a screened Coulomb potential derived from a static linear response theory. This model accurately reproduces the physical properties of hydrogen for densities greater than ρ m=10 g/cm^3 corresponding to the range of the coupling parameter rs ≲ 0.6. The pressure range, P ≳ 20 TPa, is well beyond present experimental limitations. Assuming classical protons, we find that the zero temperature enthalpy of the perfect bcc crystal is slightly lower than for other structures at ρ m= 12.47 g/cm3 while the fcc structure gains stability at higher density. Using Monte Carlo calculations, we compute the free energy of various phases and locate the melting transition versus density. We find that on melting, bcc is energetically favored with respect to fcc over the entire range investigated. In the solid phase the system undergoes a structural transition from bcc at higher temperature to fcc at lower temperature. The free energy difference between these two structures is very small so that obtaining a quantitative estimate of this second transition line requires accuracy beyond that provided by our method. We estimate the effect of proton zero point motion on the bcc melting line for hydrogen, deuterium, and tritium by a path integral Monte Carlo method. Although zero point effects on hydrogen are large, since the two competing phases (bcc and liquid) have locally similar environments, the effect on the melting line is small; the melting temperature for hydrogen is lowered by about 10% with respect to the classical value.

  7. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  8. Isentropic compression of fused quartz and liquid hydrogen to several Mbar

    NASA Technical Reports Server (NTRS)

    Hawke, R. S.; Duerre, D. E.; Huebel, J. G.; Keeler, R. N.; Klapper, H.

    1972-01-01

    Models of the major planets are in part based on the equations of state of very compressible materials such as hydrogen and helium. A technique of isentropically compressing soft material to several Mbar and some preliminary results on fused quartz (silicon dioxide) and liquid hydrogen is described. Quartz was found to be an electrical non-conductor up to 5 Mbar and has a volume of about 0.15 cubic centimeters per gram at that pressure. Liquid hydrogen was found to have a volume of about 1 cm3/g at a pressure of about 2 Mbar. It was not determined if it was transformed into a metal.

  9. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    SciTech Connect

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-09-15

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  10. Isentropic compression of fused quartz and liquid hydrogen to several Mbar

    NASA Technical Reports Server (NTRS)

    Hawke, R. S.; Duerre, D. E.; Huebel, J. G.; Keeler, R. N.; Klapper, H.

    1972-01-01

    Models of the major planets are in part based on the equations of state of very compressible materials such as hydrogen and helium. A technique of isentropically compressing soft material to several Mbar and some preliminary results on fused quartz (silicon dioxide) and liquid hydrogen is described. Quartz was found to be an electrical non-conductor up to 5 Mbar and has a volume of about 0.15 cubic centimeters per gram at that pressure. Liquid hydrogen was found to have a volume of about 1 cm3/g at a pressure of about 2 Mbar. It was not determined if it was transformed into a metal.

  11. The use of infrared absorption to determine density of liquid hydrogen.

    NASA Technical Reports Server (NTRS)

    Unland, H. D.; Timmerhaus, K. D.; Kropschot, R. H.

    1972-01-01

    Experimental evaluation of the use of infrared absorption for determining the density of liquid hydrogen, and discussion of the feasibility of an airborne densitometer based on this concept. The results indicate that infrared absorption of liquid hydrogen is highly sensitive to the density of hydrogen, and, under the operating limitations of the equipment and experimental techniques used, the determined values proved to be repeatable to an accuracy of 2.7%. The desiderata and limitations of an in-flight density-determining device are outlined, and some of the feasibility problems are defined.

  12. Simulation of Liquid Level, Temperature and Pressure Inside a 2000 Liter Liquid Hydrogen Tank During Truck Transportation

    NASA Astrophysics Data System (ADS)

    Takeda, Minoru; Nara, Hiroyuki; Maekawa, Kazuma; Fujikawa, Shizuichi; Matsuno, Yu; Kuroda, Tsuneo; Kumakura, Hiroaki

    Hydrogen is an ultimate energy source because only water is produced after the chemical reaction of hydrogen and oxygen. In the near future, a large amount of hydrogen, produced using sustainable/renewable energy, is expected to be consumed. Since liquid hydrogen (LH2) has the advantage of high storage efficiency, it is expected to be the ultimate medium for the worldwide storage and transportation of large amounts of hydrogen. To make a simulation model of the sloshing of LH2 inside a 2000 liter tank, simulation analyses of LH2 surface oscillation, temperature and pressure inside the tank during a truck transportation have been carried out using a multipurpose software ANSYS CFX. Numerical results are discussed in comparison with experimental results.

  13. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water.

    PubMed

    Henchman, Richard H; Irudayam, Sheeba Jem

    2010-12-23

    A definition that equates a hydrogen bond topologically with a local energy well in the potential energy surface is used to study the structure and dynamics of liquid water. We demonstrate the robustness of this hydrogen-bond definition versus the many other definitions which use fixed, arbitrary parameters, do not account for variable molecular environments, and cannot effectively resolve transition states. Our topology definition unambiguously shows that most water molecules are double acceptors but sizable proportions are single or triple acceptors. Almost all hydrogens are found to take part in hydrogen bonds. Broken hydrogen bonds only form when two molecules try to form two hydrogen bonds between them. The double acceptors have tetrahedral geometry, lower potential energy, entropy, and density, and slower dynamics. The single and triple acceptors have trigonal and trigonal bipyramidal geometry and when considered together have higher density, potential energy, and entropy, faster dynamics, and a tendency to cluster. These calculations use an extended theory for the entropy of liquid water that takes into account the variable number of hydrogen bonds. Hydrogen-bond switching is shown to depend explicitly on the variable number of hydrogen bonds accepted and the presence of interstitial water molecules. Transition state theory indicates that the switching of hydrogen bonds is a mildly activated process, requiring only a moderate distortion of hydrogen bonds. Three main types of switching events are observed depending on whether the donor and acceptor are already sharing a hydrogen bond. The switch may proceed with no intermediate or via a bifurcated-oxygen or cyclic dimer, both of which have a broken hydrogen bond and symmetric and asymmetric forms. Switching is found to be strongly coupled to whole-molecule vibration, particularly for the more mobile single and triple acceptors. Our analysis suggests that even though water is heterogeneous in terms of the

  14. Novel, Ceramic Membrane System For Hydrogen Separation

    SciTech Connect

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  15. Hydrogen self-dynamics in liquid H2-D2 mixtures studied through inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Colognesi, Daniele; Bafile, Ubaldo; Celli, Milva; Neumann, Martin; Orecchini, Andrea

    2015-07-01

    We have measured the dynamic structure factor of liquid para-hydrogen mixed with normal deuterium (T =20 K ) at two different concentration levels using incoherent inelastic neutron scattering. This choice has been made since the presence of D2 modifies the self-dynamics of H2 in a highly nontrivial way, acting both on its pseudophononic and its diffusive parts in a tunable way. After an accurate data reduction, recorded neutron spectra were studied through the modified Young and Koppel model and the H2 center-of-mass self-dynamics structure factor was finally extracted for the two mixtures. Some physical quantities (i.e., self-diffusion coefficient and mean kinetic energy) were determined and compared with accurate quantum calculations, which, in addition, also provided estimates of the velocity autocorrelation function for the H2 centers of mass. These estimates, in conjunction with the Gaussian approximation, were used to simulate the H2 center-of-mass self-dynamics structure factor in the same range as the experimental one. The agreement between measured and calculated spectra was globally good, but some discrepancies proved the unquestionable breakdown of the Gaussian approximation in these semiquantum systems at a level comparable to that already observed in pure liquid para-hydrogen.

  16. Method of storing hydrogen using nonequilibrium materials and system

    SciTech Connect

    Kumar, K.

    1986-01-21

    A process is described for reversibly storing hydrogen in an amorphous rare earth-transition metal alloy material. The process consists of: supplying hydrogen to amorphous rare earth-transition metal alloy material in a closed system, cycling the hydrogen over the alloy material to cause hydrogen to be stored in the alloy material; and withdrawing hydrogen from the system to retrieve the stored hydrogen.

  17. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.

    1975-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.

  18. Initial Test Results of Laboratory Scale Hydrogen Liquefaction and Densification System

    NASA Astrophysics Data System (ADS)

    Baik, J. H.; Notardonato, W. U.

    2006-04-01

    Using densified liquid hydrogen as a cryogenic propellant for launch vehicle applications can reduce fuel tank volumes, decrease vapor pressures, and improve cooling capacity over the normal boiling point propellant. A densified liquid hydrogen test bed has been developed using Gifford-McMahon cryocooler to refrigerate hydrogen inside the 150L storage tank at the Florida Solar Energy Center (FSEC). This work is a collaborative effort amongst researchers at FSEC and NASA Kennedy Space Center. The test bed has an integrated refrigeration and storage system with multiple capabilities including hydrogen liquefaction, densification, and zero-boil-off (ZBO) storage test. This paper focuses on the design considerations, the detailed system descriptions, and the results obtained during initial hydrogen liquefaction and densification tests.

  19. Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid.

    PubMed

    Zhang, Zhaofu; Hu, Suqin; Song, Jinliang; Li, Wenjing; Yang, Guanying; Han, Buxing

    2009-01-01

    Amines to an end: The basic diamine-functionalized ionic liquid 1,3-di(N,N-dimethylaminoethyl)-2-methylimidazolium trifluoromethanesulfonate was prepared and used in the hydrogenation of CO(2) to formic acid. One mole of the ionic liquid coordinates two moles of formic acid to promote the reaction. Both the ionic liquid and catalyst can be reused directly after their separation from the formic acid produced.

  20. Dispersion of flammable vapor clouds resulting from large spills of liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1981-01-01

    The purpose of this paper is to report the preliminary findings of hydrogen vapor cloud dispersion experiments conducted by NASA. The experiments were performed to obtain basic information regarding the physical phenomena governing the dispersion of flammable clouds formed as the result of spills of large quantities of liquid hydrogen. The experiments consisted of ground spills of up to 5.7 cubic meters (1500 gal) of liquid hydrogen, with spill durations of approximately 35 seconds. Instrumented towers, located downwind of the spill site, gather data on the temperature, hydrogen concentration, and turbulence levels as the hydrogen vapor cloud drifted downwind. Visual phenomena were recorded by motion picture and still cameras. Preliminary results of the experiments indicate that, for rapid spills, thermal and momentum induced turbulences cause the cloud to disperse to safe concentration levels and become positively buoyant long before mixing due to normal atmospheric turbulence becomes a major factor.

  1. Nonlinear Thermal Analyses of a Liquid Hydrogen Tank Wall

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Waters, W. Allen, Jr.

    2003-01-01

    A thermal evaluation of a composite tank wall design for a liquid hydrogen tank was performed in the present study. The primary focus of the current effort was to perform one-dimensional, temperature nonlinear, transient thermal analyses to determine the through-the-thickness temperature profiles. These profiles were used to identify critical points within the flight envelope that could have detrimental effects on the adhesive bondlines used in the construction of the tank wall. Additionally, this paper presents the finite element models, analysis strategies, and thermal analysis results that were determined for several vehicle flight conditions. The basic tank wall configuration used to perform the thermal analyses consisted of carbon-epoxy facesheets and a Korex honeycomb core sandwich that was insulated with an Airex cryogenic foam and an Alumina Enhanced Thermal Barrier (AETB-12). Nonlinear, transient thermal analyses were conducted using the ABAQUS finite element code. Tank wall models at a windward side location on the fuel tank were analyzed for three basic flight conditions: cold-soak (ground-hold), ascent, and re-entry. Additionally, three ambient temperature boundary conditions were applied to the tank wall for the cold-soak condition, which simulated the launch pad cooldown process. Time-dependent heating rates were used in the analyses of the ascent and reentry segments of the flight history along with temperature dependent material properties. The steady-state through-the-thickness temperature profile from the cold-soak condition was used as the initial condition for the ascent analyses. Results from the nonlinear thermal analyses demonstrated very good correlation with results from similar models evaluated by Northrop- Grumman using a different analysis tool. Wall through-the-thickness temperature gradients as a function of flight time were obtained for future incorporation into a full-scale thermostructural analysis to evaluate the adhesive bondlines

  2. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures

    SciTech Connect

    Sabourin, J.L.; Yetter, R.A.; Risha, G.A.; Son, S.F.; Tappan, B.C.

    2008-08-15

    An experimental investigation of the combustion characteristics of nanoaluminum (nAl), liquid water (H{sub 2}O{sub (l)}), and hydrogen peroxide (H{sub 2}O{sub 2}) mixtures has been conducted. Linear and mass-burning rates as functions of pressure, equivalence ratio ({phi}), and concentration of H{sub 2}O{sub 2} in H{sub 2}O{sub (l)} oxidizing solution are reported. Steady-state burning rates were obtained at room temperature using a windowed pressure vessel over an initial pressure range of 0.24 to 12.4 MPa in argon, using average nAl particle diameters of 38 nm, {phi} from 0.5 to 1.3, and H{sub 2}O{sub 2} concentrations between 0 and 32% by mass. At a nominal pressure of 3.65 MPa, under stoichiometric conditions, mass-burning rates per unit area ranged between 6.93 g/cm{sup 2} s (0% H{sub 2}O{sub 2}) and 37.04 g/cm{sup 2} s (32% H{sub 2}O{sub 2}), which corresponded to linear burning rates of 9.58 and 58.2 cm/s, respectively. Burning rate pressure exponents of 0.44 and 0.38 were found for stoichiometric mixtures at room temperature containing 10 and 25% H{sub 2}O{sub 2}, respectively, up to 5 MPa. Burning rates are reduced above {proportional_to}5 MPa due to the pressurization of interstitial spaces of the packed reactant mixture with argon gas, diluting the fuel and oxidizer mixture. Mass burning rates were not measured above {proportional_to}32% H{sub 2}O{sub 2} due to an anomalous burning phenomena, which caused overpressurization within the quartz sample holder, leading to tube rupture. High-speed imaging displayed fingering or jetting ahead of the normal flame front. Localized pressure measurements were taken along the sample length, determining that the combustion process proceeded as a normal deflagration prior to tube rupture, without significant pressure buildup within the tube. In addition to burning rates, chemical efficiencies of the combustion reaction were determined to be within approximately 10% of the theoretical maximum under all conditions

  3. Fluid thrust control system. [for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Howell, W. L.; Jansen, H. B.; Lehmann, E. N. (Inventor)

    1968-01-01

    A pure fluid thrust control system is described for a pump-fed, regeneratively cooled liquid propellant rocket engine. A proportional fluid amplifier and a bistable fluid amplifier control overshoot in the starting of the engine and take it to a predetermined thrust. An ejector type pump is provided in the line between the liquid hydrogen rocket nozzle heat exchanger and the turbine driving the fuel pump to aid in bringing the fluid at this point back into the regular system when it is not bypassed. The thrust control system is intended to function in environments too severe for mechanical controls.

  4. Active Oxidation of Liquid Silicon in the Presence of Hydrogen: Extension of the Ratto Model

    NASA Astrophysics Data System (ADS)

    Vadon, Mathieu; Delannoy, Yves; Chichignoud, Guy

    2017-03-01

    The rate of oxidation of silicon has been studied in the presence of hydrogen, in order to predict the rate of boron removal from liquid silicon in liquid/gas processes where a chemical equilibrium exists at the surface. A new 1D model for the reactive boundary layer above liquid silicon has been developed from existing literature, adding two gaseous species H2 and H2O. The classical model (O2 only) gives a layer of silica aerosol just above the surface, for oxygen pressures above some pascals. Adding some hydrogen, this layer is displaced away from the silicon and vanishes if the hydrogen ratio is sufficient. We applied this model on liquid silicon oxidation experiments with theoretically predicted mass boundary layer thicknesses for impinging jets. The needed thickness to reproduce the experimental purification rate on our plasma process is compatible with our model.

  5. Liquid waste treatment system. Final report

    SciTech Connect

    Baker, M.N.; Houston, H.M.

    1999-06-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS).

  6. Zero Boil-Off Methods for Large Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  7. [Hydrogen peroxide in artificial photosynthesizing systems].

    PubMed

    Lobanov, A V; Komissarov, G G

    2014-01-01

    From the point of view of the concepts of hydrogen peroxide as a source of photosynthetic oxygen (hydrogen) coordination and photochemical properties of chlorophyll and its aggregates towards hydrogen peroxide were considered. The binding energy of H2O and H2O2 with chlorophyll and chlorophyllide depending on their form (monomers, dimers and trimers) was estimated by quantum chemical calculations. It is shown that at an increase of the degree of the pigment aggregation binding energy of H2O2 was more than the energy of H2O. Analysis of experimental results of the photochemical decomposition of hydrogen peroxide using chlorophyll was carried out. Estimates of the thermodynamic parameters (deltaG degrees and deltaH degrees) of the formation of organic compounds from CO2 with water and hydrogen peroxide were compared. The interaction of CO2 with H2O2 requires much less energy consumption than with water for all considered cases. The formation of organic products (formaldehyde, alcohols, carboxylic and carbonylic compounds) and simultaneous production of O2 under the influence of visible light in the systems of inorganic carbon--hydrogen peroxide--chlorophyll (phthalocyanine) is detected by GC/MS method, FTIR spectroscopy, and chemical analysis.

  8. Sustainable bioreactor systems for producing hydrogen

    SciTech Connect

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A.; Benemann, J.R.; Tredici, M.R.

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  9. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    NASA Technical Reports Server (NTRS)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  10. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  11. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-01

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  12. Algal Systems for Hydrogen Photoproduction

    SciTech Connect

    Ghirardi, Maria L

    2015-10-08

    The National Renewable Energy Laboratory (NREL), under the guidance of Drs. Michael Seibert (retired, Fellow Emeritus) and Maria Ghirardi (Fellow), led 15 years of research addressing the issue of algal H2 photoproduction. This project resulted in greatly increased rates and yields of algal hydrogen production; increased understanding of the H2 metabolism in the green alga, Chlamydomonas reinhardtii; expanded our knowledge of other physiological aspects relevant to sustained algal photosynthetic H2 production; led to the genetic identification, cloning and manipulation of algal hydrogenase genes; and contributed to a broader, fundamental understanding of the technical and scientific challenges to improving the conversion efficiencies in order to reach the U.S. Department of Energy’s Fuel Cell Technologies Office’s targets. Some of the tangible results are: (i) 64 publications and 6 patents, (ii) international visibility to NREL, (iii) reinvigoration of national and international biohydrogen research, and (iv) research progress that helped stimulate new funding from other DOE and non-DOE programs, including the AFOSR and the DOE Office of Science.

  13. Liquid propellant thermal conditioning system test program

    NASA Technical Reports Server (NTRS)

    Bullard, B. R.

    1972-01-01

    Results are presented from more than 1500 hours of testing on a liquid hydrogen thermal conditioning unit. Test parameters included: mixer and vent flow rates; tank size; ullage volume; pressurant gas; pressurant temperature; pressure level; and heat rate. Gaseous hydrogen and helium were used as pressurants. Analytical models were developed to correlate the test data and relate the performance to that anticipated in zero gravity. Experimental and theoretical results are presented which relate the variables controlling vapor condensation at a moving interface.

  14. The liquid annular reactor system (LARS) for deep space exploration

    NASA Astrophysics Data System (ADS)

    Maise, George; Paniagua, John; Powell, James R.; Ludewig, Hans; Todosow, Michael

    1999-05-01

    A new propulsion concept for high Δ V space missions, termed LARS (Liquid Annular Reactor System), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (-6000 K). The molten fuel is contained in a lower-temperature solid container which rotates to stabilize and hold in the liquid layer by centripetal force. Containment of ultra high temperature molten refractories, using this method, has been experimentally demonstrated by A.V. Grosse. The specific impulse of a rocket exhausting hydrogen at 6000 K is 2000 seconds, approximately double that of solid-core nuclear rockets. A LARS-powered space probe could accomplish extra-solar missions to 550 A.U. in approximately 35 years.

  15. Biological Systems for Hydrogen Photoproduction (Presentation)

    SciTech Connect

    Ghirardi, M. L.

    2012-05-01

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

  16. Study of Thermodynamic Vent and Screen Baffle Integration for Orbital Storage and Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1973-01-01

    A comprehensive analytical and experimental program was performed to determine the feasibility of integrating an internal thermodynamic vent system and a full wall-screen liner for the orbital storage and transfer of liquid hydrogen (LH2). Ten screens were selected from a comprehensive screen survey. The experimental study determined the screen bubble point, flow-through pressure loss, and pressure loss along rectangular channels lined with screen on one side, for the 10 screens using LH2 saturated at 34.5 N/cm2 (50 psia). The correlated experimental data were used in an analysis to determine the optimum system characteristics in terms of minimum weight for 6 tanks ranging from 141.6 m3 (5,000 ft3) to 1.416 m3 (50 ft3) for orbital storage times of 30 and 300 days.

  17. Dispersion and Hydrogen Bonding Rule: Why the Vaporization Enthalpies of Aprotic Ionic Liquids Are Significantly Larger than those of Protic Ionic liquids.

    PubMed

    Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Stange, Peter; Schick, Christoph; Verevkin, Sergey P; Ludwig, Ralf

    2016-09-12

    It is well known that gas-phase experiments and computational methods point to the dominance of dispersion forces in the molecular association of hydrocarbons. Estimates or even quantification of these weak forces are complicated due to solvent effects in solution. The dissection of interaction energies and quantification of dispersion interactions is particularly challenging for polar systems such as ionic liquids (ILs) which are characterized by a subtle balance between Coulomb interactions, hydrogen bonding, and dispersion forces. Here, we have used vaporization enthalpies, far-infrared spectroscopy, and dispersion-corrected calculations to dissect the interaction energies between cations and anions in aprotic (AILs), and protic (PILs) ionic liquids. It was found that the higher total interaction energy in PILs results from the strong and directional hydrogen bonds between cation and anion, whereas the larger vaporization enthalpies of AILs clearly arise from increasing dispersion forces between ion pairs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogenation with monolith reactor under conditions of immiscible liquid phases

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2002-01-01

    The present invention relates to an improved for the hydrogenation of an immiscible mixture of an organic reactant in water. The immiscible mixture can result from the generation of water by the hydrogenation reaction itself or, by the addition of, water to the reactant prior to contact with the catalyst. The improvement resides in effecting the hydrogenation reaction in a monolith catalytic reactor from 100 to 800 cpi, at a superficial velocity of from 0.1 to 2 m/second in the absence of a cosolvent for the immiscible mixture. In a preferred embodiment, the hydrogenation is carried out using a monolith support which has a polymer network/carbon coating onto which a transition metal is deposited.

  19. Diagram of a Hydrogen Fuel System on NACA’s Martin B-57B Canberra

    NASA Image and Video Library

    1957-02-21

    This diagram shows a hydrogen fuel system designed by researchers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory and installed on a Martin B-57B Canberra aircraft. Lewis researchers accelerated their studies of high energy propellants in the early 1950s. In late 1954, Lewis researchers studied the combustion characteristics of gaseous hydrogen in a turbojet combustor. It was found that the hydrogen provided a very high efficiency. Almost immediately thereafter, Associate Director Abe Silverstein became focused on the possibilities of hydrogen for aircraft propulsion. That fall, Silverstein secured a contract to work with the air force to examine the practicality of liquid hydrogen aircraft. A B-57B Canberra was obtained by the air force especially for this project, referred to as Project Bee. The aircraft was powered by two Wright J65 engines, one of which was modified so that it could be operated using either traditional or liquid hydrogen propellants. The engine and its liquid hydrogen fuel system were tested extensively in the Altitude Wind Tunnel and the Four Burner Area test cells in 1955 and 1956. A B-57B flight program was planned to test the system on an actual aircraft. The aircraft would take off using jet fuel, switch to liquid hydrogen while over Lake Erie, then after burning the hydrogen supply switch back to jet fuel for the landing. The third test flight, in February 1957, was a success, and the ensuing B-57B flights remain the only demonstration of hydrogen-powered aircraft.

  20. Effect of a liquid phase on spillover of hydrogen

    SciTech Connect

    Kildibekova, G.A.; Zavyalov, S.A.; Mikhailenko, S.D.

    1995-03-01

    Spillover of hydrogen in Pt/ZnO is studied by measuring conductance of semiconductor sensors in the presence of water and alcohol vapors. The sensor conductance is found to increase sharply at low solvent pressures and to decrease significantly with increasing pressure. The effects observed are interpreted from the standpoint of accelerating the transfer of atomic hydrogen by solvation and desolvation of a proton.

  1. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  2. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  3. Biophotolysis systems for hydrogen production

    SciTech Connect

    Rao, K.K.; Adams, M.W.W.; Gisby, P.E.; Morris, P.; Hall, D.O.

    1981-01-01

    Model systems containing natural and synthetic catalysts were constructed for the production of H/sub 2/ from water using visible solar radiation as the energy source. The authors have investigated the use of aqueous systems with proflavine as the light activator and artificial electron donors for subsequent production of H/sub 2/ when coupled to electron mediators and hydrogenase (or Pt). The characteristics, relative merits and defects of these systems are discussed. 22 refs.

  4. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  5. Pressurization systems for liquid rockets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Guidelines for the successful design of pressurization systems for main propulsion, auxiliary propulsion, and attitude control systems for boosters, upper stages, and spacecraft were presented, drawing on the wealth of design experience that has accumulated in the development of pressurization systems for liquid rockets operational in the last 15 years. The design begins with a preliminary phase in which the system requirements are received and evaluated. Next comes a detail-design and integration phase in which the controls and the hardware components that make up the system are determined. The final phase, design evaluation, provides analysis of problems that may arise at any point in the design when components are combined and considered for operation as a system. Throughout the monograph, the design tasks are considered in the order and manner in which the designer must handle them.

  6. The Palm Desert Renewable Hydrogen Transportation System

    SciTech Connect

    Lehman, P.

    1996-10-01

    The present paper describes, for purposes of the Department of Energy (DoE) Hydrogen Program Review, Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period January through June 1996. This period represents the first six months of the three year project. The estimated cost over three years is $3.9M, $1.859M of which is funded by the DoE ($600 k for fiscal year 1996). The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project will demonstrate the practical utility of hydrogen as a transportation fuel and proton exchange membrane (PEM) fuel cells as vehicle power plants. This transportation system will be developed in the City of Palm Desert in southern California and will include a fleet of 8 fuel cell powered vehicles, solar and wind powered hydrogen generating facilities, a consumer-ready refueling station, and a service infrastructure. The system holds the promise of a clean environment and an energy supply that is predictable, domestic, safe, and abundant. During, the first part of 1996 SERC has nearly completed building a fuel cell powered personal utility vehicle, which features an upgraded safety and computer system; they have designed and built a test bench that is able to mimic golf cart loads and test fuel cell system auxiliary components; they have begun the design of the solar hydrogen generating station; they have worked with Sandia National Laboratory on an advanced metal hydride storage system; they have increased the power density of the SERC fuel cell by as much as 50%; and they have reached out to the rest of the world with a new fact sheet, world wide web pages, a press release, video footage for a television program. and instruction within the community.

  7. The role of hydrogen atoms in interactions involving imidazolium-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Kempter, V.; Kirchner, B.

    2010-05-01

    In the first part of this report experimental results are discussed which focus onto the importance of hydrogen atoms in the interaction of imidazolium-based ionic liquids. These include examples for the cation-anion interaction in neat ionic liquids as well as the interactions between ionic liquids and their molecular environment, water in particular. Most of the studies emphasize the importance of the C(2)-H group of the imidazolium ring for the intra- and intermolecular interactions; commonly, the interactions of the type C-H … X (X =: O, halide) are attributed to "hydrogen bonding". In the second part it is analyzed whether these interactions and their consequences fulfill the criteria set by standard definitions of hydrogen bonding. Two cation-anion co-conformations at the C(2)-H group are found. One co-conformer (in-plane) often resembles a hydrogen bond while the other one (on-top) points to a non-hydrogen bonding behavior. Furthermore, the degree of hydrogen bonding for the in-plane structure is very dependent on the anion. Spatial distribution functions show that, in general, both co-conformations are occupied. However, the question of how long a particular co-conformer is populated in the liquid state has yet to be answered. Therefore, it is concluded that the term "hydrogen bond" should, at present, be treated with care to characterize the cation-anion contacts, because of the above-mentioned difficulties. Once more it must be stressed that oversimplifications and generalizations, even for this subclass of ionic liquids have to be avoided, because these liquids are more complicated than it appears from first sight.

  8. System level analysis of hydrogen storage options.

    SciTech Connect

    Ahluwalia, R. K.; Peng, J.-C.; Hua, T. Q.; Kumar, R.; Satyapal, S.; USDOE

    2006-01-01

    The overall objective of this effort is to support DOE with independent system level analyses of various H2 storage approaches, to help to assess and down-select options, and to determine the feasibility of meeting DOE targets. Specific objectives in Fiscal Year 2008 included: (1) Model various developmental hydrogen storage systems, (2) Provide results to Centers of Excellence (CoEs) for assessment of performance targets and goals, (3) Develop models to 'reverse-engineer' particular approaches, (4) Identify interface issues, opportunities, and data needs for technology development. Several different approaches are being pursued to develop on-board hydrogen storage systems with the goal of meeting DOE targets for light-duty vehicular applications. Each approach has unique characteristics, such as the thermal energy and temperature of charge and discharge, kinetics of the physical and chemical process steps involved, and requirements for the materials and energy interfaces between the storage system and the fuel supply system on the one hand, and the fuel user on the other. Other storage system design and operating parameters influence the projected system costs as well. We are developing models to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. Our approach is to develop thermodynamic, kinetic, and engineering models of the various hydrogen storage systems being developed under DOE sponsorship.

  9. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  10. Slosh wave and geyser excitations due to liquid hydrogen shut-off during draining in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1995-01-01

    The dynamical behavior of liquid hydrogen shut-off during draining, and shut-off at the moment of the incipience of a suction dip have been investigated. It shows that a large amplitude surge is observed for liquid in the container at the moment of liquid hydrogen shut-off in reduced gravity. It also shows that slosh waves accompanied by a strong geyser are developed for surge-related flow fields induced by liquid hydrogen shut-off at the incipience of a suction dip. In the slosh wave excitation, both a lower gravity environment and higher flow rate before the shut-off of liquid draining are resonsible for the initiation of greater amplitude slosh waves. Slosh wave excitation, due to shut-off during liquid hydrogen draining, shift the fluid mass distribution in the container which imposes time-dependent variation in the spacecraft moment of inertia. This provides important information necessary for on-orbit guidance and attitude control of spacecraft.

  11. Modeling of a Hydrogenic Pellet Production System

    NASA Astrophysics Data System (ADS)

    Leachman, J. W.; Pfotenhauer, J. M.; Nellis, G. F.

    2010-04-01

    Solid hydrogenic pellets are used as fuel for fusion energy machines like the ITER device. This paper discusses the numerical modeling of a Pellet Production System (PPS) that is used to generate these pellets. The PPS utilizes a source of supercritical helium to provide the cooling that is necessary to precool, liquefy, and solidify hydrogenic material that is ultimately extruded and cut into fuel pellets. The specific components within the PPS include a pre-cooling heat exchanger, a liquefier, and a twin-screw solidifying extruder. This paper presents numerical models of each component. These numerical models are used as design tools to predict the performance of the respective devices. The performance of the PPS is dominated by the heat transfer coefficient and viscous dissipation associated with the solidifying hydrogenic fluid in the twin-screw extruder. This observation motivates experimental efforts aimed at precise measurement of these quantities.

  12. Systems and methods for selective hydrogen transport and measurement

    DOEpatents

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  13. Liquid hydrogen suction dip and slosh wave excitation during draining under normal and reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    The paper discusses the dynamical behavior of vapor ingestion, liquid residual at the incipience of suction dip, slosh wave excitation under normal and reduced gravity and different flow rates during liquid hydrogen draining. Liquid residuals at the incipience of suction dip increase as the values of gravity decrease. Also liquid residuals increase with the draining flow rates. Lower ratio of Bond number and Weber number are unable to excite slosh waves. Lower flow rates and higher gravity excites waves with lower frequencies and higher wave amplitude slosh waves.

  14. Biophotolysis systems for hydrogen production

    NASA Astrophysics Data System (ADS)

    Rao, K. K.; Adams, M. W. W.; Morris, P.; Hall, D. O.; Gisby, P. E.

    Model systems containing natural and sythetic catalysts were constructed for the production of H2 from water using visible solar radiation as the energy source. Chloroplast membranes were used for light absorption and photodecomposition of water, ferredoxin, flavodoxin, cytochrome, viologen dyes, 'Jeevanu' particles or synthetic clusters containing Fe-Mo-S centers were used as electron transfer catalysts, and hydrogenase or PtO2 served as the proton activator. We have also investigated the use of aqueous systems with proflavine as the light activator and artificial electron donors for subsequent production of H2 when coupled to electron mediators and hydrogenase (or Pt). The characteristics, relative merits and defects of these systems are discussed.

  15. Hydrogen bonding in a mixture of protic ionic liquids: a molecular dynamics simulation study.

    PubMed

    Paschek, Dietmar; Golub, Benjamin; Ludwig, Ralf

    2015-04-07

    We report results of molecular dynamics (MD) simulations characterising the hydrogen bonding in mixtures of two different protic ionic liquids sharing the same cation: triethylammonium-methylsulfonate (TEAMS) and triethylammonium-triflate (TEATF). The triethylammonium-cation acts as a hydrogen-bond donor, being able to donate a single hydrogen-bond. Both, the methylsulfonate- and the triflate-anions can act as hydrogen-bond acceptors, which can accept multiple hydrogen bonds via their respective SO3-groups. In addition, replacing a methyl-group in the methylsulfonate by a trifluoromethyl-group in the triflate significantly weakens the strength of a hydrogen bond from an adjacent triethylammonium cation to the oxygen-site in the SO3-group of the anion. Our MD simulations show that these subtle differences in hydrogen bond strength significantly affect the formation of differently-sized hydrogen-bonded aggregates in these mixtures as a function of the mixture-composition. Moreover, the reported hydrogen-bonded cluster sizes can be predicted and explained by a simple combinatorial lattice model, based on the approximate coordination number of the ions, and using statistical weights that mostly account for the fact that each anion can only accept three hydrogen bonds.

  16. Direct experimental access to microscopic dynamics in liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Celli, M.; Colognesi, D.; Zoppi, M.

    2002-08-01

    We have obtained the double-differential incoherent neutron scattering cross section of liquid and solid parahydrogen in various thermodynamic conditions using TOSCA, a time-of-flight, inverse geometry, crystal analyzer spectrometer, operating at the pulsed neutron source ISIS. The measured cross section provides direct experimental access to the self part of the center-of-mass inelastic structure factor of the parahydrogen molecules in the system. Data have been corrected for the experimental effects and then analyzed in the framework of the Young-Koppel model and the Gaussian approximation. The velocity autocorrelation functions and their energy spectra have been obtained from a fitting procedure, making use of the quantum generalized Langevin equation and of model memory functions, and finally compared to the most recent results of both molecular centroid dynamics and self-consistent quantum mode-coupling theory. Some dynamic quantities were also related to simple equilibrium properties and simulated through a standard path integral Monte Carlo code. Results are very interesting but still urge for further developments of theoretical and dynamic simulation approaches, as well as for more extensive experimental efforts.

  17. The Palm Desert renewable [hydrogen] transportation system

    SciTech Connect

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  18. Hydrogen bonding in the protic ionic liquid triethylammonium nitrate explored by density functional tight binding simulations

    NASA Astrophysics Data System (ADS)

    Zentel, Tobias; Kühn, Oliver

    2016-12-01

    The applicability of the density functional based tight binding (DFTB) method to the description of hydrogen bond dynamics and infrared (IR) spectroscopy is addressed for the exemplary protic ionic liquid triethylammonium nitrate. Potential energy curves for proton transfer in gas and liquid phases are shown to be comparable to the high level coupled cluster theory in the thermally accessible range of bond lengths. Geometric correlations in the hydrogen bond dynamics are analyzed for a cluster of six ion pairs. Comparing DFTB and DFT data lends further support for the reliability of the DFTB method. Therefore, DFTB bulk simulations are performed to quantify the extent of geometric correlations in terms of Pauling's bond order model. Further, IR absorption spectra are obtained using DFTB and analyzed putting emphasis on the signatures of hydrogen bonding in the NH-stretching and far IR hydrogen bond range.

  19. Using Aerogel-Based Insulation Material To Prevent Foam Loss on the Liquid-Hydrogen Intertank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Uninsulated areas on cryogenic propellant tanks and feedlines cause moisture in the air to condense or ice to form. Flange joints, bracket supports, expansion bellows, and other cavities are uninsulated by design. These areas cannot be sealed because conventional thermal insulation materials would restrict mechanical articulations. Aerogel-based thermal insulation systems are able to seal critical locations such as the liquid-oxygen (LO2) feedline bellows. A new thermal insulation system was also necessary between the intertank wall, flange, and the liquid-hydrogen (LH2) tank dome, where there is a cavity (or crevice) with an exposed 20-K surface. When nitrogen gas is used for purging within the intertank volume, it condenses on this cold surface. Some solid nitrogen may also form on the colder side of the crevice. Voids or discontinuities within the foam can pressurize and cause areas of foam to weaken and break off, reducing thermal efficiency and creating potentially dangerous debris. To prevent this foam loss, we developed a thermal insulation system using bulk-fill aerogel material and demonstrated it with a one-tenth-scale model of the LH2 intertank flange area

  20. Liquid state of a hydrogen bond network in ice

    NASA Astrophysics Data System (ADS)

    Ryzhkin, M. I.; Klyuev, A. V.; Sinitsyn, V. V.; Ryzhkin, I. A.

    2016-08-01

    It is theoretically shown that the Coulomb interaction between violations of the Bernal-Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6-7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.

  1. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing and Analytical Modeling

    NASA Technical Reports Server (NTRS)

    Olsen, A. D.; Cady, E. C.; Jenkins, D. S.; Chandler, F. O.; Grayson, G. D.; Lopez, A.; Hastings, L. J.; Flachbart, R. H.; Pedersen, K. W.

    2012-01-01

    The demonstration of a unique liquid hydrogen (LH2) storage and feed system concept for solar thermal upper stage was cooperatively accomplished by a Boeing/NASA Marshall Space Flight Center team. The strategy was to balance thermodynamic venting with the engine thrusting timeline during a representative 30-day mission, thereby, assuring no vent losses. Using a 2 cubic m (71 cubic ft) LH2 tank, proof-of-concept testing consisted of an engineering checkout followed by a 30-day mission simulation. The data were used to anchor a combination of standard analyses and computational fluid dynamics (CFD) modeling. Dependence on orbital testing has been incrementally reduced as CFD codes, combined with standard modeling, continue to be challenged with test data such as this.

  2. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend, J. G., II; Beßler, Y.; Klaus, M.

    2014-01-01

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  3. An assessment of the crash fire hazard of liquid hydrogen fueled aircraft

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The crash fire hazards of liquid hydrogen fueled aircraft relative to those of mission equivalent aircraft fueled either with conventional fuel or with liquefied methane were evaluated. The aircraft evaluated were based on Lockheed Corporation design for 400 passenger, Mach 0.85, 5500 n. mile aircraft. Four crash scenarios were considered ranging from a minor incident causing some loss of fuel system integrity to a catastrophic crash. Major tasks included a review of hazardous properties of the alternate fuels and of historic crash fire data; a comparative hazard evluation for each of the three fuels under four crash scenarios a comprehensive review and analysis and an identification of areas further development work. The conclusion was that the crash fire hazards are not significantly different when compared in general for the three fuels, although some fuels showed minor advantages in one respect or another.

  4. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    SciTech Connect

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G.; Beßler, Y.; Klaus, M.

    2014-01-29

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  5. An assessment of the government liquid hydrogen requirements for the 1995-2005 time frame

    NASA Technical Reports Server (NTRS)

    Bain, Addison

    1990-01-01

    The results of government study of long range liquid hydrogen (LH2) requirements for the time period of 1995 through the year 2005 are presented. To assure an adequate supply of LH2 is available in support of various programs, it is imperative a long range projection of LH2 requirements be developed and maintained. This information is vital in planning for necessary procurement actions and assuring adequate industry lead time to acquiring the necessary production and distribution capabilities. The Advanced Launch System and High-Altitude Long-Endurance programs may represent the predominant government needs for LH2 in the long range. The assembled data clearly indicates a need for KSC (Kennedy Space Center) constant program/project surveillance. Also clear is the need for KSC to monitor industry's plans for LH2 plant production and distribution expansion.

  6. Discovery of New Type of Exoplanets Made of Liquid Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Flor Torres, L. M.; Coziol, R.; Schröeder, K.-P.; Caretta, C. A.

    2017-07-01

    The study of exoplanets does not only consist in finding them, but also in establishing and understanding their physical characteristics. One of the most important results so far is that many exoplanets might possess internal structures than differ significantly from what is observable in the solar system, like, for example, Hot Jupiters and Super-Earths. In our study, we have created a new diagnostic diagram, the BGP diagram that allows to separate exoplanets according to their possible physical structures. We have also introduced a different physical boundary that allows us to identified a new type of massive exoplanets that are Self-Gravitating (SG). By comparing their mass-radius relation (MRR) with those of other exoplanets, and with low-mass stars like Brown Dwarf, we have discovered that the SG exoplanets may have a structure that is different from any other exoplanet observed so far. Comparison with structure model suggests the SG exoplanets would be formed of liquid metallic hydrogen.

  7. Study on hydrogen isotopes permeation in fluidized state of liquid lithium-lead

    SciTech Connect

    Yoshimura, S.; Yoshimura, R.; Okada, M.; Fukada, S.; Edao, Y.

    2015-03-15

    Lithium-lead (Li-Pb) is one of the most promising candidate materials for the liquid blanket of fusion reactors. Hydrogen transfer under a fluidized condition of Li-Pb is investigated experimentally to design a Li-Pb blanket system. Li-Pb eutectic alloy flows inside a Ni tube in the experimental system, where H{sub 2} permeates into and out of the forced Li-Pb flow. The overall H{sub 2} permeation rate is analyzed using a mass balance model. Hydrogen atoms diffuse in Ni and Li-Pb. The steady-state H{sub 2} permeation rate obtained by this experiment is smaller than the result of the calculation model. A resistance factor is introduced to the present analysis in order to evaluate the influence of other H{sub 2} transfer mechanisms, such as diffusion in Li-Pb and dissolution reaction between Ni and Li-Pb. The contribution of the resistance to the overall H{sub 2} permeation rate becomes large when the flow rate of Li-Pb is low. This is because the boundary layer thickness between Ni and Li-Pb affects the overall H{sub 2} permeation rate. When the flow velocity of Li-Pb increases, the thickness of the boundary layer becomes thin, and the driving force of H{sub 2} permeation through the Ni wall becomes bigger. (authors)

  8. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    NASA Astrophysics Data System (ADS)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  9. Development of nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  10. Development of nickel hydrogen battery expert system

    NASA Astrophysics Data System (ADS)

    Shiva, Sajjan G.

    1990-10-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  11. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  12. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-06-06

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  13. Evidence of a liquid–liquid phase transition in hot dense hydrogen

    PubMed Central

    Dzyabura, Vasily; Zaghoo, Mohamed; Silvera, Isaac F.

    2013-01-01

    We use pulsed-laser heating of hydrogen at static pressures in the megabar pressure region to search for the plasma phase transition to liquid atomic metallic hydrogen. We heat our samples substantially above the melting line and observe a plateau in a temperature vs. laser power curve that otherwise increases with power. This anomaly in the heating curve appears correlated with theoretical predictions for the plasma phase transition. PMID:23630287

  14. Integrated numerical prediction of atomization process of liquid hydrogen jet

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Ohira, Katsuhide; Okabayashi, Kazuki; Chitose, Keiko

    2008-05-01

    The 3-D structure of the liquid atomization behavior of an LH jet flow through a pinhole nozzle is numerically investigated and visualized by a new type of integrated simulation technique. The present computational fluid dynamics (CFD) analysis focuses on the thermodynamic effect on the consecutive breakup of a cryogenic liquid column, the formation of a liquid film, and the generation of droplets in the outlet section of the pinhole nozzle. Utilizing the governing equations for a high-speed turbulent cryogenic jet flow through a pinhole nozzle based on the thermal nonequilibrium LES-VOF model in conjunction with the CSF model, an integrated parallel computation is performed to clarify the detailed atomization process of a high-speed LH2 jet flow through a pinhole nozzle and to acquire data, which is difficult to confirm by experiment, such as atomization length, liquid core shape, droplet-size distribution, spray angle, droplet velocity profiles, and thermal field surrounding the atomizing jet flow. According to the present computation, the cryogenic atomization rate and the LH2 droplets-gas two-phase flow characteristics are found to be controlled by the turbulence perturbation upstream of the pinhole nozzle, hydrodynamic instabilities at the gas-liquid interface and shear stress between the liquid core and the periphery of the LH2 jet. Furthermore, calculation of the effect of cryogenic atomization on the jet thermal field shows that such atomization extensively enhances the thermal diffusion surrounding the LH2 jet flow.

  15. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  16. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  17. Neutron Scattering of Residual Hydrogen in 1,4-Dioxane-d8 Liquid: Understanding Measurements with Molecular Dynamics Simulations.

    PubMed

    de Almeida, Valmor F; Liu, Hongjun; Herwig, Kenneth W; Kidder, Michelle K

    2016-06-23

    That incoherent scattering from protiated molecular liquids adds a constant background to the measured scattering intensity is well-known, but less appreciated is the fact that coherent scattering is also induced by the presence of hydrogen in a deuterated liquid. In fact, the scattering intensity can be very sensitive, in the small-q region, with respect to the amounts and distribution of residual H in the system. We used 1,4-dioxane liquid to demonstrate that the partial structure factors of the HD and DD atom pairs contribute significantly to intermolecular scattering and that uncertainty in the extent of deuteration account for discrepancies between simulations and measurements. Both contributions to uncertainty have similar magnitudes: scattering interference of the hydrogen-deuterium pair, and complementary interference from the deuterium-deuterium pair by virtue of chemical inhomogeneity. This situation arises in practice since deuteration of liquids is often 99% or less. A combined experimental and extensive computational study of static thermal neutron scattering of 1,4-dioxane demonstrates the foregoing. We show, through simulations, that the reason for the differences is the content of protiated dioxane (vendors quote 1%). We estimate that up to 5% (at 298 K and at 343 K) protiated molar fraction may be involved in generating the scattering differences. Finally, we find that the particular distribution of hydrogen in the protiated molecules affects the results significantly; here, we considered molecules to be either fully protiated or fully deuterated. This scenario best reconciles the computational and experimental results, and leads us to speculate that the deuteration synthesis process tends to leave a molecule either fully deuterated or fully protiated. Although we have used 1,4-dioxane as a model liquid, the effects described in this study extend to similar liquids, and similar systematic experimental/computational studies can be performed to

  18. Neutron Scattering of Residual Hydrogen in 1,4-Dioxane-D8 Liquid. Understanding Measurements with Molecular Dynamics Simulations

    SciTech Connect

    de Almeida, Valmor F.; Liu, Hongjun; Herwig, Kenneth W.; Kidder, Michelle

    2016-01-25

    That incoherent scattering from protiated molecular liquids adds a constant background to the measured scattering intensity is well known, but less appreciated is the fact that coherent scattering is also induced by the presence of hydrogen in a deuterated liquid. In fact, the scattering intensity can be very sensitive, in the small-q region, with respect to the amounts and distribution of residual H in the system. We used 1,4-dioxane liquid to demonstrate that the partial structure factors of the HD and DD atom pairs contribute significantly to inter-molecular scattering and that uncertainty in the extent of deuteration account for discrepancies between simulations and measurements. Both contributions to uncertainty have similar magnitudes: scattering interference of the hydrogen-deuterium pair, and complementary interference from the deuterium-deuterium pair by virtue of chemical inhomogeneity. This situation arises in practice since deuteration of liquids is often 99% or less. A combined experimental and extensive computational study of static thermal neutron scattering of 1,4-dioxane demonstrates the foregoing. We show, through simulations, that the reason for the differences is the content of protiated dioxane (vendors quote 1%). We estimate that up to 5% (at 298K and at 343K) protiated mole fraction may be involved in generating the scattering differences. Finally, we find that the particular distribution of hydrogen in the protiated molecules affects the results significantly; here we considered molecules to be either fully protiated or fully deuterated. This scenario best reconciles the computational and experimental results, and leads us to speculate that the deuteration synthesis process tends to leave a molecule either fully deuterated or fully protiated. Although we have used 1,4-dioxane as a model liquid, the effects described in this study extend to similar liquids and similar systematic experimental/computational studies can be performed to either

  19. The potential role of hydrogen bonding in aprotic and protic ionic liquids.

    PubMed

    Fumino, Koichi; Wulf, Alexander; Ludwig, Ralf

    2009-10-21

    Cohesion energies determine the phase behavior of materials. The understanding of interaction energies is in particular interesting for ionic liquids. Here we show experimentally that, in accord with theoretical work, the intermolecular cation-anion interactions in ionic liquids can be detected by far FTIR spectroscopy. The measured vibrational bands of aprotic and protic ionic liquids in the low-frequency range can be referred to the interaction strength between cations and anions in various combinations. It can be shown by DFT B3LYP calculations that these interactions are described by characteristic ratios between Coulomb forces and hydrogen bonds. These ratios can be tuned towards increasing hydrogen bond contributions which is reflected in important macroscopic properties of ionic liquids such as enthalpies of vaporization and viscosities. This opens a new path for tuning the desired properties of this new class of material.

  20. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  1. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  2. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect

    Ahluwalia, R.; Hua, T.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M.; Nuclear Engineering Division; TIAX LLC; U.S. DOE

    2010-05-01

    On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2-4 and 1.6-2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  3. Liquid-Liquid phase transition in a single component system

    NASA Astrophysics Data System (ADS)

    Franzese, Giancarlo; Skibinsky, Anna; Buldyrev, Sergey; Stanley, H. Eugene

    2001-06-01

    Recent experimental results indicate that phosphorus, a single-component system, can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order LDL-HDL transition line ending in a critical point is consistent with experimental data and Molecular Dynamics (MD) simulations for a variety of single-component systems such as water, silica and carbon, but a coherent and general interpretation of the LDL-HDL transition is lacking. By means of MD, we show that the LDL-HDL transition can be directly related to an interaction potential with an attractive part and with not one but `two' preferred short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state, in particular liquid metals. For the fisrt time, we show that the LDL-HDL transition can occur in systems with no density anomaly, opening an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.

  4. Hydrogen and Carbon Vapour Pressure Isotope Effects in Liquid Fluoroform Studied by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Oi, Takao; Mitome, Ryota; Yanase, Satoshi

    2017-03-01

    H/D and 12C/13C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF3) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF3 monomer and CHF3 molecules surrounded by other CHF3 molecules in every direction in CHF3 clusters were used as model molecules of vapour and liquid CHF3. Although experimental results in which the vapour pressure of liquid 12CHF3 is higher than that of liquid 12CDF3 and the vapour pressure of liquid 13CHF3 is higher than that of liquid 12CHF3 between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the 12C/13C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and 12C/13C VPIEs.

  5. FLUSH: A tool for the design of slush hydrogen flow systems

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.

    1990-01-01

    As part of the National Aerospace Plane Project an analytical model was developed to perform calculations for in-line transfer of solid-liquid mixtures of hydrogen. This code, called FLUSH, calculates pressure drop and solid fraction loss for the flow of slush hydrogen through pipe systems. The model solves the steady-state, one-dimensional equation of energy to obtain slush loss estimates. A description of the code is provided as well as a guide for users of the program. Preliminary results are also presented showing the anticipated degradation of slush hydrogen solid content for various piping systems.

  6. Quantum Monte Carlo Studies of Dense Hydrogen and Two-Dimensional Bose Liquids.

    NASA Astrophysics Data System (ADS)

    Magro, William R.

    Quantum Monte Carlo techniques; in their various incarnations, calculate ground state or finite temperature properties of many-body quantum systems. We apply the path-integral Monte Carlo method to hydrogen at densities and temperatures in the regime of cooperative thermal and pressure dissociation, relevant to structural models of the giant planets' interiors. We treat the protons and electrons as quantum particles, thereby avoiding the Born -Oppenheimer approximation. Fermi-Dirac exchange statistics are treated within the fixed-node approximation, with the nodes specified by the free Fermi gas. In the region of molecular dissociation, we observe properties consistent with and suggestive of a first order phase transition with positive density discontinuity (n_{ rm H2}systems: the Bose Yukawa liquid and the Bose Coulomb liquid. The Yukawa system is a model for flux line interactions in high temperature superconductors. We determine the phase diagram as a function of mass and density and find a high density scaling relation describing the crossover to Coulomb behavior. We apply our results to a sample superconducting compound, rm Bi_2Sr_2CaCu_2O _8. Next the results of the Coulomb system are presented. We show that the predominance of long wavelength plasmons destroys Bose condensation in this system. The ground state of this system is closely related to the bosonic representation of Laughlin's wave function for the fractional quantum Hall system.

  7. Final Report: Hydrogen Storage System Cost Analysis

    SciTech Connect

    James, Brian David; Houchins, Cassidy; Huya-Kouadio, Jennie Moton; DeSantis, Daniel A.

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  8. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Substrate

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Hastings, L.

    2001-01-01

    The multipurpose hydrogen test bed (MHTB), with an 18-cu m liquid hydrogen tank, was used to evaluate a combination foam/multilayer combination insulation (MLI) concept. The foam element (Isofoam SS-1171) insulates during ground hold/ascent flight, and allowed a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required. The 45-layer MLI was designed for an on-orbit storage period of 45 days. Unique WI features include a variable layer density, larger but fewer double-aluminized Mylar perforations for ascent to orbit venting, and a commercially established roll-wrap installation process that reduced assembly man-hours and resulted in a roust, virtually seamless MLI. Insulation performance was measured during three test series. The spray-on foam insulation (SOFI) successfully prevented purge gas liquefaction within the MLI and resulted in the expected ground hold heat leak of 63 W/sq m. The orbit hold tests resulted in heat leaks of 0.085 and 0.22 W/sq m with warm boundary temperatures of 164 and 305 K, respectively. Compared to the best previously measured performance with a traditional MLI system, a 41-percent heat leak reduction with 25 fewer MLI layers was achieved. The MHTB MLI heat leak is half that calculated for a constant layer density MLI.

  9. Conformational equilibrium and hydrogen bonding in liquid 2-phenylethylamine explored by Raman spectroscopy and theoretical calculations.

    PubMed

    Xie, Min; Qi, Yajing; Hu, Yongjun

    2011-04-14

    2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.

  10. Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.

  11. Accurate prediction of bulk properties in hydrogen bonded liquids: amides as case studies.

    PubMed

    Macchiagodena, Marina; Mancini, Giordano; Pagliai, Marco; Barone, Vincenzo

    2016-09-14

    In this contribution we show that it is possible to build accurate force fields for small organic molecules allowing the reliable reproduction of a large panel of bulk properties, which are seldom addressed in the same context. Starting from the results obtained in recent studies, we developed a protocol for charge estimation and virtual site generation for the amide class of molecules. The parametrization of electrostatic properties is based on population analysis and orbital localization of quantum mechanical computations rooted in density functional theory and the polarizable continuum model, without any additional external information. The new protocol, coupled to other recent studies in our group targeted at an accurate fitting of internal degrees of freedom, makes available a method for building force fields from scratch (excluding for the moment intermolecular van der Waals interactions) with focus on reproducing the structure and dynamics of hydrogen bonded liquids, yielding results that are in line or better than those delivered by current general force fields. The approach is tested on the demanding series formed by formamide and its two N-methyl derivatives, N-methylformamide and N,N-dimethylformamide. We show that the atomistic structure of the liquids arising from classical molecular dynamics (MD) simulations employing the new force field is in full agreement with X-ray and neutron diffraction experiments and the corresponding spatial distribution functions are in remarkable agreement with the results of ab initio MD simulations. It is noteworthy that the latter result has never been obtained before without using ad hoc (and system dependent) scale factors and that, in addition, our parameter-free procedure is able to reproduce static dielectric constants over a wide range of values without sacrificing the force field accuracy with respect to other observables. Finally, we are able to explain the trend of static dielectric constants followed by the

  12. Feasibility study: Liquid hydrogen plant, 30 tons per day

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design considerations of the plant are discussed in detail along with management planning, objective schedules, and cost estimates. The processing scheme is aimed at ultimate use of coal as the basic raw material. For back-up, and to provide assurance of a dependable and steady supply of hydrogen, a parallel and redundant facility for gasifying heavy residual oil will be installed. Both the coal and residual oil gasifiers will use the partial oxidation process.

  13. Method and apparatus for regenerating cold traps within liquid-metal systems

    DOEpatents

    McKee, Jr., John M.

    1976-01-01

    Oxide and hydride impurities of a liquid metal such as sodium are removed from a cold trap by heating to a temperature at which the metal hydroxide is stable in a molten state. The partial pressure of hydrogen within the system is measured to determine if excess hydride or oxide is present. Excess hydride is removed by venting hydrogen gas while excess oxide can be converted to molten hydroxide through the addition of hydrogen. The resulting, molten hydroxide is drained from the trap which is then returned to service at cold trap temperatures within the liquid-metal system.

  14. Liquid Iron Alloys with Hydrogen at Outer Core Conditions by First Principles

    NASA Astrophysics Data System (ADS)

    Umemoto, K.; Hirose, K.

    2015-12-01

    Since the density of the outer core deduced from seismic data is about 10% lower than that of pure iron at core pressures and temperatures (P-T), it is widely believed that the outer core includes one or more light elements. Although intensive experimental and theoretical studies have been performed so far, the light element in the core has not yet been identified. Comparison of the density and sound velocity of liquid iron alloys with observations, such as the PREM, is a promising way to determine the species and quantity of light alloying component(s) in the outer core. Here we report the results of a first-principles molecular dynamics study on liquid iron alloyed with hydrogen, one of candidates of the light elements. Hydrogen had been much less studied than other candidates. However, hydrogen has been known to reduce the melting temperature of Fe-H solid [1]. Furthermore, very recently, Nomura et al. argued that the outer core may include 24 at.% H in order to be molten under relatively low temperature (< 3600 K) [2]. Since then hydrogen has attracted strong interests. We clarify the effects of hydrogen on density and sound velocity of liquid iron alloys under outer core P-T conditions. It is shown that ~1 wt% hydrogen can reproduce PREM density and sound velocity simultaneously very well. In addition, we show the presence of hydrogen rather reduces Gruneisen parameters. It indicates that, if hydrogen exists in the outer core, temperature profile of the outer core could be changed considerably from one estimated so far. [1] Sakamaki, K., E. Takahashi, Y. Nakajima, Y. Nishihara, K. Funakoshi, T. Suzuki, and Y. Fukai, Phys. Earth Planet. Inter., 174, 192-201 (2009). [2] Nomura, R., K. Hirose, K. Uesugi, Y. Ohishi, A. Tsuchiyama, A. Miyake, and Y. Ueno, Science 31, 522-525 (2014).

  15. Sloshing in Liquid Hydrogen and LOX Propellant Tanks After Main Engine Cut-off

    NASA Technical Reports Server (NTRS)

    Kim, Sura

    2011-01-01

    NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. The objective of this study is to calculate the sloshing forces and moments in the LH2 and LO2 propellant tanks using a CFD/VOF analysis under realistic flight conditions. Propellant sloshing in the liquid hydrogen (LH2) and the liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there are substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.

  16. Wear reduction systems liquid piston ring

    SciTech Connect

    Raymond, R.J.; Chen, T.N.; DiNanno, L.

    1990-09-01

    The overall objective of the program was to demonstrate the technical feasibility of achieving an acceptable wear rate for the cylinder liner, piston, and piston rings in a coal/water-slurry-fueled engine that utilized the concept of a liquid piston ring above the conventional piston rings and to identify technical barriers and required research and development. The study included analytical modeling of the system, a bench study of the fluid motion in the liquid piston ring, and a single-cylinder test rig for wear comparison. A system analysis made on the different variations of the liquid supply system showed the desirability of the once-through version from the standpoint of system simplicity. The dynamics of the liquid ring were modeled to determine the important design parameters that influence the pressure fluctuation in the liquid ring during a complete engine cycle and the integrity of the liquid ring. This analysis indicated the importance of controlling heat transfer to the liquid ring through piston and liner to avoid boiling the liquid. A conceptual piston design for minimizing heat transfer is presented in this report. Results showed that the liquid piston ring effectively reduced the solid particles on the wall by scrubbing, especially in the case where a surfactant was added to the water. The wear rates were reduced by a factor of 2 with the liquid ring. However, leakage of the contaminated liquid ring material past the top ring limited the effectiveness of the liquid ring concept. 8 refs., 33 figs., 1 tab.

  17. Analysis of Fluid Flow and Heat Transfer in a Liquid Hydrogen Storage Vessel for Space Applications

    NASA Astrophysics Data System (ADS)

    Mukka, Santosh K.; Rahman, Muhammad M.

    2004-02-01

    This paper presents a systematic analysis of fluid flow and heat transfer in a liquid hydrogen storage vessel for both earth and space applications. The study considered a cylindrical tank with elliptical top and bottom. The tank wall is made of aluminum and a multi-layered blanket of cryogenic insulation (MLI) has been attached on the top of the aluminum. The tank is connected to a cryocooler to dissipate the heat leak through the insulation and tank wall into the fluid within the tank. The cryocooler has not been modeled; only the flow in and out of the tank to the cryocooler system has been included. The primary emphasis of this research has been the fluid circulation within the tank for different fluid distribution scenario and for different level of gravity to simulate potential earth and space based applications. The equations solved in the liquid region included the conservation of mass, conservation of energy, and conservation of momentum. For the solid region only the heat conduction equation was solved. The steady-state velocity, temperature, and pressure distributions were calculated for different inlet positions, inlet velocities, and for different gravity values. The above simulations were carried out for constant heat flux and constant wall temperature cases. It was observed that a good flow circulation could be obtained when the cold entering fluid was made to flow in radial direction and the inlet opening was placed close to the tank wall.

  18. The intermolecular hydrogen-hydrogen structure of chain-molecule liquids from neutron diffraction

    NASA Astrophysics Data System (ADS)

    Londono, J. D.; Annis, B. K.; Turner, J. Z.; Soper, A. K.

    1994-11-01

    Neutron diffraction isotopic substitution experiments on liquid n-decane (C10H22) and n-eicosane (C20H42) are described. The intermolecular H-H structure function hHH(Q) and the intermolecular H-H correlation function ginterHH(r) are obtained without recourse to models of the intramolecular structure. The structure of the ginterHH(r) found at 2.5, 5.0, and 7.0 Å corresponds to different shells in the H-H pair correlation function. In addition, ginterHH(r)<1 for a considerable range, due to the screening of intermolecular correlations by intramolecular correlations. This ``correlation hole'' effect is accentuated by extrapolation of the structure functions to the expected infinite wavelength limit, and shows good agreement with values determined from small-angle neutron scattering (SANS) data. All of these features are in good agreement with the results of molecular dynamics simulations for the closely related system C13H28.

  19. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.; Chirivella, J. E.

    1984-01-01

    This paper presents the initial findings of hydrogen vapor cloud dispersion experiments conducted by NASA. The experiments were performed to obtain basic information regarding the physical phenomena governing the dispersion of flammable clouds formed as the result of spills of large quantities of liquid hydrogen. The experiments consisted of ground spills of up to 5.7 cu m of liquid hydrogen with spill durations of approx. 35 s. Instrumented towers, located downwind of the spill site, gathered data on the temperature, hydrogen concentration and turbulence levels as the hydrogen vapor cloud drifted downwind. Preliminary results of the experiments indicate that, for rapid spills, thermal and momentum-induced turbulences cause the cloud to disperse to safe concentration levels and become positively buoyant long before mixing due to normal atmospheric turbulence becomes a major factor. An adiabatic mixing model has been developed to deduce hydrogen-air mixture ratios for temperature measurements obtained within the cloud formed by liquid hydrogen spills.

  20. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.; Chirivella, J. E.

    1984-01-01

    This paper presents the initial findings of hydrogen vapor cloud dispersion experiments conducted by NASA. The experiments were performed to obtain basic information regarding the physical phenomena governing the dispersion of flammable clouds formed as the result of spills of large quantities of liquid hydrogen. The experiments consisted of ground spills of up to 5.7 cu m of liquid hydrogen with spill durations of approx. 35 s. Instrumented towers, located downwind of the spill site, gathered data on the temperature, hydrogen concentration and turbulence levels as the hydrogen vapor cloud drifted downwind. Preliminary results of the experiments indicate that, for rapid spills, thermal and momentum-induced turbulences cause the cloud to disperse to safe concentration levels and become positively buoyant long before mixing due to normal atmospheric turbulence becomes a major factor. An adiabatic mixing model has been developed to deduce hydrogen-air mixture ratios for temperature measurements obtained within the cloud formed by liquid hydrogen spills.

  1. High speed machining of space shuttle external tank liquid hydrogen barrel panel

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1983-01-01

    Actual and projected optimum High Speed Machining data for producing shuttle external tank liquid hydrogen barrel panels of aluminum alloy 2219-T87 are reported. The data included various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods.

  2. Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Yanzhong; Zhang, Feini; Ma, Yuan

    2015-12-01

    Two finite difference computer models, aiming at the process predictions of no-vent fill in normal gravity and microgravity environments respectively, are developed to investigate the filling performance in a liquid hydrogen (LH2) tank. In the normal gravity case model, the tank/fluid system is divided into five control volume including ullage, bulk liquid, gas-liquid interface, ullage-adjacent wall, and liquid-adjacent wall. In the microgravity case model, vapor-liquid thermal equilibrium state is maintained throughout the process, and only two nodes representing fluid and wall regions are applied. To capture the liquid-wall heat transfer accurately, a series of heat transfer mechanisms are considered and modeled successively, including film boiling, transition boiling, nucleate boiling and liquid natural convection. The two models are validated by comparing their prediction with experimental data, which shows good agreement. Then the two models are used to investigate the performance of no-vent fill in different conditions and several conclusions are obtained. It shows that in the normal gravity environment the no-vent fill experiences a continuous pressure rise during the whole process and the maximum pressure occurs at the end of the operation, while the maximum pressure of the microgravity case occurs at the beginning stage of the process. Moreover, it seems that increasing inlet mass flux has an apparent influence on the pressure evolution of no-vent fill process in normal gravity but a little influence in microgravity. The larger initial wall temperature brings about more significant liquid evaporation during the filling operation, and then causes higher pressure evolution, no matter the filling process occurs under normal gravity or microgravity conditions. Reducing inlet liquid temperature can improve the filling performance in normal gravity, but cannot significantly reduce the maximum pressure in microgravity. The presented work benefits the

  3. A cooperative hydrogen bonding system with a Csbnd H⋯O hydrogen bond in ofloxacin

    NASA Astrophysics Data System (ADS)

    Gao, Xiuxiang; Liu, Yufeng; Li, Huizhen; Bian, Jiang; Zhao, Ying; Cao, Ye; Mao, Yuezhi; Li, Xin; Xu, Yizhuang; Ozaki, Yukihiro; Wu, Jinguang

    2013-05-01

    We have investigated a cooperative hydrogen bonding system with a Csbnd H⋯O hydrogen bond in ofloxacin by using NMR, UV-Vis spectra together with quantum chemistry calculation. Both pH-dependent NMR experiments and DFT calculation indicate that the intra-molecular Csbnd H⋯O hydrogen bond between an aromatic proton and an oxygen atom from the carboxyl group is formed. Notably, the Csbnd H⋯O hydrogen bond forms a cooperative hydrogen bonding system with a neighboring Osbnd H⋯O hydrogen bond between the carboxyl group and the keto oxygen. The cooperative hydrogen bonding system makes the formation and disruption of the Osbnd H⋯O and Csbnd H⋯O hydrogen bonds in a synergistic manner. Comparison on the pKa value of the carboxylic group in different fluoroquinolones compounds indicates that the Csbnd H⋯O hydrogen bond plays a significant role in stabilizing the Osbnd H⋯O hydrogen bond. In addition, the formation and disruption of the cooperative hydrogen bonding system could regulate the conformation of the carboxyl group, which affects the size of the conjugated system and spectral behavior of π-π transition of ofloxacin.

  4. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1992-01-01

    Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.

  5. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1992-01-01

    Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.

  6. Ab initio based understanding of diffusion mechanisms of hydrogen in liquid aluminum

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-04-01

    Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. We show that the hydrogen motion does not follow a Brownian motion caused by a broad distribution of spatial jumps that can exceed 15 times the interatomic AlH distance. This breakdown is also evidenced in the calculation of the self-part of the van Hove distribution function that is not the Gaussian expected for a Fickian process. We show that the hydrogen motion can be described well by a generalized continuous time random walk model leading to computed self-diffusion coefficients of H in liquid aluminum in good agreement with experimental ones. Finally, the impact of impurities and alloying elements is discussed.

  7. Structure of hydrogenous liquids: separation of coherent and incoherent cross sections using polarised neutrons

    NASA Astrophysics Data System (ADS)

    Stunault, A.; Vial, S.; Pusztai, L.; Cuello, G. J.; Temleitner, L.

    2016-04-01

    The determination of the coherent structure factor of hydrogenous liquids is very difficult: while X-rays are barely sensitive to hydrogen, neutrons results still lack accuracy due to the contamination of the scattering intensities by a huge spin-incoherent signal from the 1H atoms. Using polarised neutrons with polarisation analysis, one can experimentally separate the coherent and incoherent contributions to the scattered intensity. We present the upgrade of the D3 polarised hot neutron diffractometer at ILL to study hydrogenated liquids. We show first data obtained from a test sample of water and detail the data reduction leading to an unprecedented accuracy in the extraction of the coherent signal, representative of the structure.

  8. Luminescent gold(I) metallo-acids and their hydrogen bonded supramolecular liquid crystalline derivatives with decyloxystilbazole as hydrogen acceptor.

    PubMed

    Coco, Silverio; Cordovilla, Carlos; Domínguez, Cristina; Espinet, Pablo

    2008-12-28

    Gold complexes of 4-isocyanobenzoic acid, [AuX(CNC(6)H(4)CO(2)H)] (X = C[triple bond]C-C(6)H(4)-C(9)H(19), C(6)F(5), C(6)F(4)OC(6)H(13), C(6)F(4)C(6)F(4)Br) and [(mu-4,4'-C(6)F(4)C(6)F(4)){Au(CNC(6)H(4)CO(2)H)}(2)], have been isolated. These metallo-acids are luminescent. The single crystal X-ray diffraction study of [Au(C(6)F(5))(CNC(6)H(4)CO(2)H)](infinity) confirms a rod-like structure of the molecule, with a linear coordination around the gold atom, which extends into a supramolecular entity supported by hydrogen bond, gold-gold, and fluorophilic (F(ortho) ... F(meta)) interactions. The carboxylic acid group of the gold isocyanide complexes acts also as a hydrogen donor towards the hydrogen acceptor decyloxystilbazole, affording some hydrogen-bonded supramolecular liquid crystals.

  9. Thermal energy storage with liquid-liquid systems

    SciTech Connect

    Santana, E.A.; Stiel, L.I.

    1989-03-01

    The use of liquid-liquid mixtures for heat and cool storage applications has been investigated. Suitable mixtures exhibit large changes in the heat of mixing above and below the critical solution temperature of the system. Analytical procedures have been utilized to determine potential energy storage capabilities of systems with upper or lower critical solution temperatures. It has been found that aqueous systems with lower critical solution temperatures in a suitable range can result in large increases in the effective heat capacity in the critical region. For cool storage with a system of this type, the cooling process results in a transformation from two liquid phases to a single phase. Heats of mixing have been measured with a flow calorimeter system for a number of potential mixtures, and the results are summarized.

  10. Cryogenic target system for hydrogen layering

    SciTech Connect

    Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Boehm, K; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; Edwards, O.; Fair, J.; Fedorov, M.; Fry, J.; Gibson, C.; Haid, B.; Holunga, D.; Kohut, T.; Lewis, T.; Malsbury, T.; Mapoles, E.; Sater, J.; Skulina, K.; Trummer, D.; Walters, C.

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highly constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.

  11. Cryogenic target system for hydrogen layering

    DOE PAGES

    Parham, T.; Kozioziemski, B.; Atkinson, D.; ...

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  12. Acoustically Forced Coaxial Hydrogen/Liquid Oxygen Jet Flames

    DTIC Science & Technology

    2016-05-15

    Objectives • Determine the mechanisms governing the dynamics of a high pressure, chemically reacting, multiphase, acoustically driven, shear flow in the form...developed turbulent injector flows – well known boundary conditions – High -speed pressure transducers Rayleigh Index fields DISTRIBUTION A. Approved for...Symmetric recirculation zones Low-speed liquid O2 High -speed gaseous H2 Asymmetric recirculation zones Combustion case Results show large oxygen -side

  13. Liquid Condensation and Solidification Behavior of Hydrogen Isotopes in Foams

    SciTech Connect

    Kozioziemski, B.

    2016-10-21

    A foam shell, 1.2 mm outer diameter with a 35 μm thick foam layer is used to quickly form a solid deuterium layer for ICF. Figures show the visible light microscope image and a corresponding schematic representation. In each case, images show the empty foam shell, with the dark and light patches due to the foam imperfections; the foam shell with liquid deuterium filling the foam (in this case, the liquid level exceeds the foam level because the deuterium will shrink when it freezes); and an image of the shell taken 10 minutes after the center image, after the temperature was reduced by 2 K to freeze the deuterium. This image shows that the majority of the solid deuterium has no observable defects, with the exception of the isolated crystal that formed on the foam surface. The next step is to get the correct level of liquid and cooling rate to prevent the extra crystal on the surface. In contrast, typical ICF DT fuel layers require ~13 hours to solidify in order to be defect free with a success rate of approximately 20%.

  14. Collective vibrational effects in hydrogen bonded liquid amides and proteins studied by isotopic substitution

    NASA Astrophysics Data System (ADS)

    Nielsen, O. F.; Johansson, C.; Christensen, D. H.; Hvidt, S.; Flink, J.; Høime Hansen, S.; Poulsen, F.

    2000-09-01

    Raman spectroscopy is used to study the fast dynamics of simple liquid amides and proteins. Raman spectra in the visible region of liquid amides are obtained with a triple additive scanning monochromator, whereas FT-Raman technique is used in the near-IR region in order to avoid fluorescence from impurities in the proteins. Raman spectra are shown in the amide-I region of HCONHCH 3 ( N-methylformamide with all isotopes in their natural abundance), H 13CONHCH 3, HC 18ONHCH 3, human growth hormone, frog tropomyosin and chymotrypsin inhibitor 2 including C-13 and N-15 enriched samples of the latter. Resonance energy transfer (RET) between amide molecules gives rise to a non-coincidence effect of the anisotropic and the isotropic components of the amide-I band. This effect influences the band position in mixtures of liquid amide isotopomers. A further spectral feature caused by collective vibrational modes in the hydrogen bonded liquid amides is named coalescence of bands in mixtures of isotopomers (CBMI). The result of this effect is that only one band is found in mixtures of isotopomers where bands at different frequencies are observed for each of the isotopomers. A similar effect may account for the observation of protein amide-I bands with frequencies dependent only on the secondary structure of the protein and not on the amino acid residues. RET and CBMI are due to a collectivity of vibrational modes in different amide molecules. This collectivity may be related to a cooperativity of hydrogen bonds. A low-frequency band around 100 cm -1 is observed in hydrogen bonded liquid amides and proteins. Isotopic substitution shows that the mode corresponding to this band involves displacements of atoms in hydrogen bonds. This mode may drive a breaking of the hydrogen bond.

  15. Using silicon diodes for detecting the liquid-vapor interface in hydrogen

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1992-01-01

    Tests were performed using commercially available silicon diode temperature sensors to detect the location of the liquid-vapor interface in hydrogen during ground test programs. Results show that by increasing the current into the sensor, silicon diodes can be used as liquid level point sensors. After cycling the sensors from liquid to vapor several times, it was found that with a 30 mA (milliamps) input current, the sensors respond within 2 seconds by measuring a large voltage difference when transitioning from liquid to vapor across the interface. Nearly instantaneous response resulted during a transition from vapor to liquid. Detailed here are test procedures, experimental results, and guidelines for applying this information to other test facilities.

  16. Using silicon diodes for detecting the liquid-vapor interface in hydrogen

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1992-01-01

    Tests were performed using commercially available silicon diode temperature sensors to detect the location of the liquid-vapor interface in hydrogen during ground test programs. Results show that by increasing the current into the sensor, silicon diodes can be used as liquid level point sensors. After cycling the sensors from liquid to vapor several times, it was found that with a 30 mA (milliamps) input current, the sensors respond within 2 seconds by measuring a large voltage difference when transitioning from liquid to vapor across the interface. Nearly instantaneous response resulted during a transition form vapor to liquid. Detailed here are test procedures, experimental results, and guidelines for applying this information to other test facilities.

  17. Development of the ReaxFFCBN reactive force field for the improved design of liquid CBN hydrogen storage materials.

    PubMed

    Pai, Sung Jin; Yeo, Byung Chul; Han, Sang Soo

    2016-01-21

    Liquid CBN (carbon-boron-nitrogen) hydrogen-storage materials such as 3-methyl-1,2-BN-cyclopentane have the advantage of being easily accessible for use in current liquid-fuel infrastructure. To develop practical liquid CBN hydrogen-storage materials, it is of great importance to understand the reaction pathways of hydrogenation/dehydrogenation in the liquid phase, which are difficult to discover by experimental methods. Herein, we developed a reactive force field (ReaxFFCBN) from quantum mechanical (QM) calculations based on density functional theory for the storage of hydrogen in BN-substituted cyclic hydrocarbon materials. The developed ReaxFFCBN provides similar dehydrogenation pathways and energetics to those predicted by QM calculations. Moreover, molecular dynamics (MD) simulations with the developed ReaxFFCBN can predict the stability and dehydrogenation behavior of various liquid CBN hydrogen-storage materials. Our simulations reveal that a unimolecular dehydrogenation mechanism is preferred in liquid CBN hydrogen-storage materials. However, as the temperature in the simulation increases, the contribution of a bimolecular dehydrogenation mechanism also increases. Moreover, our ReaxFF MD simulations show that in terms of thermal stability and dehydrogenation kinetics, liquid CBN materials with a hexagonal structure are more suitable materials than those with a pentagonal structure. We expect that the developed ReaxFFCBN could be a useful protocol in developing novel liquid CBN hydrogen-storage materials.

  18. Vacuum Surface Science Meets Heterogeneous Catalysis: Dehydrogenation of a Liquid Organic Hydrogen Carrier in the Liquid State.

    PubMed

    Matsuda, Takashi; Taccardi, Nicola; Schwegler, Johannes; Wasserscheid, Peter; Steinrück, Hans-Peter; Maier, Florian

    2015-06-22

    Ultrahigh vacuum (UHV) surface science techniques are used to study the heterogeneous catalytic dehydrogenation of a liquid organic hydrogen carrier in its liquid state close to the conditions of real catalysis. For this purpose, perhydrocarbazole (PH), otherwise volatile under UHV, is covalently linked as functional group to an imidazolium cation, forming a non-volatile ionic liquid (IL). The catalysed dehydrogenation of the PH unit as a function of temperature is investigated for a Pt foil covered by a macroscopically thick PH-IL film and for Pd particles suspended in the PH-IL film, and for PH-IL on Au as inert support. X-ray photoelectron spectroscopy and thermal desorption spectroscopy allows us to follow in situ the catalysed transition of perhydrocarbazole to carbazole at technical reaction temperatures. The data demonstrate the crucial role of the Pt and Pd catalysts in order to shift the dehydrogenation temperature below the critical temperature of thermal decomposition.

  19. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2009-12-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  20. Some early perspectives on ground requirements of liquid hydrogen air transports

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.

    1976-01-01

    The paper examines the problem of liquid-hydrogen (LH2) subsonic long-range air transport from the perspectives of airplane manufacturers, the airline operator, the air terminal authority and the LH2 supplier. Emphasis is placed on identifying common problems and interfaces that are likely to occur in preparing for commercial airline operations of LH2 subsonic air transport in the 1990-1995 period. General considerations are discussed relative to sources and cost of gaseous hydrogen, hydrogen liquefaction, and LH2 availability. The fact that hydrogen sustains combustion at altitudes substantially higher than hydrocarbon fuels suggests that air transport can be designed to operate at higher enroute air traffic flight levels. This can be an advantage if only to relieve traffic congestion on heavily traveled routes. Pertinent interfaces in planning for the use of LH2 in air transportation are identified, including productivity and profitability, passenger-fuel compatibility, and lightning and electrical discharges.

  1. Controlling the equilibrium of formic acid with hydrogen and carbon dioxide using ionic liquid.

    PubMed

    Yasaka, Yoshiro; Wakai, Chihiro; Matubayasi, Nobuyuki; Nakahara, Masaru

    2010-03-18

    The equilibrium for the reversible decomposition of formic acid into carbon dioxide and hydrogen is studied in the ionic liquid (IL) 1,3-dipropyl-2-methylimidazolium formate. The equilibrium is strongly favored to the formic acid side because of the strong solvation of formic acid in the IL through the strong Coulombic solute-solvent interactions. The comparison of the equilibrium constants in the IL and water has shown that the pressures required to transform hydrogen and carbon dioxide into formic acid can be reduced by a factor of approximately 100 by using the IL instead of water. The hydrogen transformation in such mild conditions can be a chemical basis for the hydrogen storage and transportation using formic acid.

  2. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    SciTech Connect

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  3. Study of the microdynamics of liquid lithium and lithium-hydrogen melt by inelastic neutron scattering

    SciTech Connect

    Blagoveshchenskii, N. M.; Morozov, V. A.; Novikov, A. G.; Pashnev, M. A. Savostin, V. V.; Shimkevich, A. L.

    2007-05-15

    The frequency spectra of vibrations of Li atoms at temperatures of 22, 227, 397, and 557 deg. C and the lithium-hydrogen melt (98 at % {sup 7}Li, 2 at % H) at 557 deg. C have been obtained from the experimental neutron inelastic scattering data. On the basis of the frequency spectra, the temperature dependences of the mean-square displacement of Li atoms, the mean-square amplitudes of atomic vibrations, and the velocity autocorrelation function of atoms have been calculated. The speed of sound in liquid lithium has been estimated within the Debye model. The frequency spectra of lithium-hydrogen melt and solid lithium hydride are compared. A generalized frequency spectrum of vibrations of hydrogen atoms in lithium-hydrogen melt is obtained.

  4. The use of a continuous flow-reactor employing a mixed hydrogen-liquid flow stream for the efficient reduction of imines to amines.

    PubMed

    Saaby, Steen; Knudsen, Kristian Rahbek; Ladlow, Mark; Ley, Steven V

    2005-06-21

    Imines have been reduced to amines in high yield, and with excellent chemoselectivity, by catalytic hydrogenation in a continuous flow-reactor, utilising an electrochemically-generated hydrogen source to produce a mixed hydrogen-liquid flow stream.

  5. Hybrid Photovoltaic-Hydrogen Power Conditioning System

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Ejea, J. B.; Ferreres, A.; Sanchis, E.

    2011-10-01

    This paper explores a power conditioning unit for photovoltaic/hydrogen based energy systems. Similar power conversion techniques, compared to traditional space power systems, are applied. An S4R regulator is devised with an unregulated battery bus as primary output and a secondary path to feed and electrolyser. A modular fuel cell converter completes the system and it operates when photovoltaic energy is not available or load demand exceeds solar power, i. e. like a traditional BDR. An ancillary battery keeps the unregulated bus voltage distributed in the system and it also aids the fuel cell during transients or start-up due to its limited speed. A 1kW breadboard has been designed and implemented to corroborate the proposed system.

  6. Hydrogen fluoride capture by imidazolium acetate ionic liquid

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly

    2015-04-01

    Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, we evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

  7. Liquid metals for solar power systems

    NASA Astrophysics Data System (ADS)

    Flesch, J.; Niedermeier, K.; Fritsch, A.; Musaeva, D.; Marocco, L.; Uhlig, R.; Baake, E.; Buck, R.; Wetzel, T.

    2017-07-01

    The use of liquid metals in solar power systems is not new. The receiver tests with liquid sodium in the 1980s at the Plataforma Solar de Almería (PSA) already proved the feasibility of liquid metals as heat transfer fluid. Despite the high efficiency achieved with that receiver, further investigation of liquid metals in solar power systems was stopped due to a sodium spray fire. Recently, the topic has become interesting again and the gained experience during the last 30 years of liquid metals handling is applied to the concentrated solar power community. In this paper, recent activities of the Helmholtz Alliance LIMTECH concerning liquid metals for solar power systems are presented. In addition to the components and system simulations also the experimental setup and results are included.

  8. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  9. Neutron scattering of residual hydrogen in 1,4-dioxane d8 liquid: Understanding measurements with molecular dynamics simulations

    DOE PAGES

    Liu, Hongjun; Herwig, Kenneth W.; Kidder, Michelle K.; ...

    2016-06-08

    That incoherent scattering from protiated molecular liquids adds a constant background to the measured scattering intensity is well-known, but less appreciated is the fact that coherent scattering is also induced by the presence of hydrogen in a deuterated liquid. In fact, the scattering intensity can be very sensitive, in the small-q region, with respect to the amounts and distribution of residual H in the system. We used 1,4-dioxane liquid to demonstrate that the partial structure factors of the HD and DD atom pairs contribute significantly to intermolecular scattering and that uncertainty in the extent of deuteration account for discrepancies betweenmore » simulations and measurements. Both contributions to uncertainty have similar magnitudes: scattering interference of the hydrogen–deuterium pair, and complementary interference from the deuterium–deuterium pair by virtue of chemical inhomogeneity. This situation arises in practice since deuteration of liquids is often 99% or less. A combined experimental and extensive computational study of static thermal neutron scattering of 1,4-dioxane demonstrates the foregoing. We show, through simulations, that the reason for the differences is the content of protiated dioxane (vendors quote 1%). We estimate that up to 5% (at 298 K and at 343 K) protiated molar fraction may be involved in generating the scattering differences. Finally, we find that the particular distribution of hydrogen in the protiated molecules affects the results significantly; here, we considered molecules to be either fully protiated or fully deuterated. This scenario best reconciles the computational and experimental results, and leads us to speculate that the deuteration synthesis process tends to leave a molecule either fully deuterated or fully protiated. As a result, we have used 1,4-dioxane as a model liquid, the effects described in this study extend to similar liquids, and similar systematic experimental/computational studies can be

  10. Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin.

    PubMed

    Sodt, Alexander J; Pastor, Richard W; Lyman, Edward

    2015-09-01

    All-atom simulation data are presented for ternary mixtures of palmitoyl sphingomyelin (PSM), cholesterol, and either palmitoyl oleoyl phosphatidyl choline or dioleoyl phosphatidyl choline (DOPC). For comparison, data for a mixture of dipalmitoyl phosphatidyl choline (DPPC), cholesterol, and DOPC are also presented. Compositions corresponding to the liquid-ordered phase, the liquid-disordered phase, and coexistence of the two phases are simulated for each mixture. Within the liquid-ordered phase, cholesterol is preferentially solvated by DOPC if it is available, but if DOPC is replaced by POPC, cholesterol is preferentially solvated by PSM. In the DPPC mixtures, cholesterol interacts preferentially with the saturated chains via its smooth face, whereas in the PSM mixtures, cholesterol interacts preferentially with PSM via its rough face. Interactions between cholesterol and PSM have a very particular character: hydrogen bonding between cholesterol and the amide of PSM rotates the tilt of the amide plane, which primes it for more robust hydrogen bonding with other PSM. Cholesterol-PSM hydrogen bonding also locally modifies the hexagonal packing of hydrocarbon chains in the liquid-ordered phase of PSM mixtures.

  11. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.

    PubMed

    Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C

    2016-05-23

    The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled airc raft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft#s propulsive fan s. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 ?F). Conventional electric motors, however, are too heavy to use on an aircraft. We need to develop high-power, lig htweight electric motors (high-powerdensity motors).

  13. Simulation Methodology of the Screw-Centrifugal Pump for Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Sulinov, A. V.; Shabliy, L. S.; Zubanov, V. M.

    2017-01-01

    The article describes the basic modeling methods of hydrodynamic processes in screw centrifugal hydrogen pumps using software ANSYS CFD; the variable fluid density is taken into account. Three methods of modeling fluid flow with variable density were proposed in ANSYS CFD. Regression models of variable density were obtained. Regression models characteristics are of the second and fourth order, the pressure range is from 0.09 to 30 MPa and the temperature range is from 18 to 34 K. Regression models were implemented in the method by reference variable density of liquid hydrogen in the form of functional dependence.

  14. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  15. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, Don D.

    1985-01-01

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  16. Dual liquid and gas chromatograph system

    DOEpatents

    Gay, D.D.

    A chromatographic system is described that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a nontransparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extreme low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  17. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  18. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water.

    PubMed

    Bandyopadhyay, Dibyendu; Mohan, S; Ghosh, S K; Choudhury, Niharendu

    2013-07-25

    We use extensive molecular dynamics simulations employing different state-of-the-art force fields to find a common framework for comparing structural orders and density anomalies as obtained from different water models. It is found that the average number of hydrogen bonds correlates well with various order parameters as well as the temperature of maximum densities across the different models, unifying apparently disparate results from different models and emphasizing the importance of hydrogen bonding in determining anomalous properties and the structure of water. A deeper insight into the hydrogen bond network of water reveals that the solvation shell of a water molecule can be defined by considering only those neighbors that are hydrogen-bonded to it. On the basis of this view, the origin of the appearance of a non-tetrahedral peak at a higher temperature in the distribution of tetrahedral order parameters has been explained. It is found that a neighbor that is hydrogen-bonded to the central molecule is tetrahedrally coordinated even at higher temperatures. The non-tetrahedral peak at a higher temperature arises due to the strained orientation of the neighbors that are non-hydrogen-bonded to the central molecule. With the new definition of the solvation shell, liquid water can be viewed as an instantaneously changing random hydrogen-bonded network consisting of differently coordinated hydrogen-bonded molecules with their distinct solvation shells. The variation of the composition of these hydrogen-bonded molecules against temperature accounts for the density anomaly without introducing the concept of large-scale structural polyamorphism in water.

  19. Borazine-boron nitride hybrid hydrogen storage system

    DOEpatents

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  20. The noncavitating performance and life of a small vane-type positive displacement pump in liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Ulbricht, T. E.; Hemminger, J. A.

    1986-01-01

    The low flow rate and high head rise requirements of hydrogen/oxygen auxiliary propulsion systems make the application of centrifugal pumps difficult. Positive displacement pumps are well-suited for these flow conditions, but little is known about their performance and life characteristics in liquid hydrogen. An experimental and analytical investigation was conducted to determine the performance and life characteristics of a vane-type, positive displacement pump. In the experimental part of this effort, mass flow rate and shaft torque were determined as functions of shaft speed and pump pressure rise. Since liquid hydrogen offers little lubrication in a rubbing situation, pump life is an issue. During the life test, the pump was operated intermittently for 10 hr at the steady-state point of 0.074 lbm/sec (0.03 kg/sec) flow rate, 3000 psid (2.07 MPa) pressure rise, and 9000 rpm (938 rad/sec) shaft speed. Pump performance was monitored during the life test series and the results indicated no loss in performance. Material loss from the vanes was recorded and wear of the other components was documented. In the analytical part of this effort, a comprehensive pump performance analysis computer code, developed in-house, was used to predict pump performance. The results of the experimental investigation are presented and compared with the results of the analysis. Results of the life test are also presented.