40 CFR 63.7545 - What notifications must I submit and when?
Code of Federal Regulations, 2010 CFR
2010-07-01
... reconstructed boiler or process heater is in one of the liquid fuel subcategories and burns only liquid fossil... limited use subcategories (the limited use solid fuel subcategory, the limited use liquid fuel subcategory, or the limited use gaseous fuel subcategory), your Initial Notification must include the information...
40 CFR 63.7545 - What notifications must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... reconstructed boiler or process heater is in one of the liquid fuel subcategories and burns only liquid fossil... limited use subcategories (the limited use solid fuel subcategory, the limited use liquid fuel subcategory, or the limited use gaseous fuel subcategory), your Initial Notification must include the information...
40 CFR 63.7545 - What notifications must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... reconstructed boiler or process heater is in one of the liquid fuel subcategories and burns only liquid fossil... limited use subcategories (the limited use solid fuel subcategory, the limited use liquid fuel subcategory, or the limited use gaseous fuel subcategory), your Initial Notification must include the information...
Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.
Haynes, M; Vega, E J; Herrada, M A; Benilov, E S; Montanero, J M
2018-03-01
Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond number decreases and the maximum liquid bridge length increases. In this paper, we show experimentally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liquid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We calculate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is simulated too. We find qualitative agreement between the numerical predictions for both the stability limits and the breakup process and their experimental counterparts. Finally, we show the applicability of our technique to control the amount of liquid transferred between two solid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the large liquid fuel subcategory or the limited use liquid fuel subcategory that burn only fossil... Notification of Compliance Status report required in § 63.7545(e) that indicates you burn only liquid fossil... you burn only liquid fossil fuels other than residual oils, either alone or in combination with...
40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the large liquid fuel subcategory or the limited use liquid fuel subcategory that burn only fossil... Notification of Compliance Status report required in § 63.7545(e) that indicates you burn only liquid fossil... you burn only liquid fossil fuels other than residual oils, either alone or in combination with...
40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the large liquid fuel subcategory or the limited use liquid fuel subcategory that burn only fossil... Notification of Compliance Status report required in § 63.7545(e) that indicates you burn only liquid fossil... you burn only liquid fossil fuels other than residual oils, either alone or in combination with...
Modelling Limit Order Execution Times from Market Data
NASA Astrophysics Data System (ADS)
Kim, Adlar; Farmer, Doyne; Lo, Andrew
2007-03-01
Although the term ``liquidity'' is widely used in finance literatures, its meaning is very loosely defined and there is no quantitative measure for it. Generally, ``liquidity'' means an ability to quickly trade stocks without causing a significant impact on the stock price. From this definition, we identified two facets of liquidity -- 1.execution time of limit orders, and 2.price impact of market orders. The limit order is an order to transact a prespecified number of shares at a prespecified price, which will not cause an immediate execution. On the other hand, the market order is an order to transact a prespecified number of shares at a market price, which will cause an immediate execution, but are subject to price impact. Therefore, when the stock is liquid, market participants will experience quick limit order executions and small market order impacts. As a first step to understand market liquidity, we studied the facet of liquidity related to limit order executions -- execution times. In this talk, we propose a novel approach of modeling limit order execution times and show how they are affected by size and price of orders. We used q-Weibull distribution, which is a generalized form of Weibull distribution that can control the fatness of tail to model limit order execution times.
Code of Federal Regulations, 2014 CFR
2014-07-01
... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... limitation: Connectors in gas/vapor service and light liquid service. 63.649 Section 63.649 Protection of...: Connectors in gas/vapor service and light liquid service. (a) If an owner or operator elects to monitor... gas/vapor service and for connectors in light liquid service. The data for the two groups of...
Stability limit of liquid water in metastable equilibrium with subsaturated vapors.
Wheeler, Tobias D; Stroock, Abraham D
2009-07-07
A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair
Designs of LiMIT as a Limiter in the EAST Tokamak
NASA Astrophysics Data System (ADS)
Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David
2016-10-01
Liquid metal plasma facing components (PFCs) provide a constantly refreshing, self-healing surface that can reduce erosion and thermal stress damage to prolong device lifetime, and additionally decrease edge recycling, reduce impurities, and enhance plasma performance. The Liquid Metal Infused Trench (LiMIT) system, developed at UIUC, has demonstrated thermoelectric magnetohydrodynamic (TEMHD) driven flow of liquid lithium through series of solid trenches. This TEMHD effect drives liquid lithium in fusion systems using the plasma heat flux and the toroidal magnetic field, and the surface tension of the liquid lithium maintains a fresh surface on top of the solid trenches. LiMIT has been successfully tested at UIUC as well as HT-7 and Magnum PSI at heat fluxes up to 3 MW/m2. The next step is demonstrating system viability in full-scale fusion-relevant conditions. In collaboration with a team in Hefei, design and testing has begun for a large scale LiMIT system that will act as a limiter in EAST. The designs improve upon previous versions of LiMIT tested at Illinois and incorporate lessons learned from earlier tests of liquid metal PFCs at EAST. Existing infrastructure is used to load and supply lithium to the system, and the LiMIT trenches will help maintain a smooth, fresh surface as well as aid in propelling the lithium out of direct plasma flux to improve heat transfer. Supported by DOE/ALPS DE-FG02-99ER54515.
Polymer-cholesteric liquid-crystalline composites with a broad light reflection band
NASA Astrophysics Data System (ADS)
Mitov, Michel
2016-05-01
Cholesteric liquid crystals selectively reflect the light. The reflection bandgap is typically limited to 100 nm in the visible spectrum and, at the best, 50% of the unpolarized incident light is reflected. Solutions are found in biopolymers and polymer-liquid crystal composite materials to go beyond these limits.
The limit of the film extraction technique for annular two-phase flow in a small tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.
1999-07-01
The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et. al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In these experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirelymore » from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.« less
The limit of the film extraction technique for annular two-phase flow in a small tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.
1999-07-01
The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In the experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirelymore » from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.« less
A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis
2012-10-01
The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.
Stability limits and dynamics of nonaxisymmetric liquid bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Resnik, Andy; Kaukler, William F.
1993-01-01
This program of theoretical and experimental ground-based and low gravity research is focussed on the understanding of the dynamics and stability limits of nonaxisymmetric liquid bridges. There are three basic objectives to the proposed work: (1) to determine the stability limits of nonaxisymmetric liquid bridges held between non-coaxially aligned disks; (2) to examine the dynamics of nonaxisymmetric bridges and nonaxisymmetric oscillations of initially axisymmetric bridges (some of these experiments require a low gravity environment and the ground-based research will culminate in a definitive flight experiment); and (3) to experimentally investigate the vibration sensitivity of liquid bridges under terrestrial and low gravity conditions.
Lithium-Metal Infused Trenches: Progress toward a Divertor Solution
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Fiflis, P.; Christenson, M.; Szott, M.; Xu, W.; Jung, S.; Morgan, T. W.; Kalathiparambil, K.
2014-10-01
The application of liquid metal, especially liquid lithium, as a plasma facing component (PFC) has the capacity to offer a strong alternative to solid PFCs by reducing damage concerns and enhancing plasma performance. The Liquid-Metal Infused Trenches (LiMIT) concept is a liquid metal divertor alternative which employs thermoelectric current from either plasma or external heating in tandem with the toroidal field to self-propel liquid lithium through a series of trenches. LiMIT has been tested in several devices, namely HT-7, the UIUC SLiDE and TELS facilities and Magnum PSI at heat fluxes of up to 3 MW/m-2. Results of these experiments, including velocity and temperature measurements, power handling considerations, and preliminary vapor shielding results will be discussed, focusing on the 117 shots performed at Magnum scanning magnetic fields and heat fluxes up to ~ 0.3 T and 3 MW/m-2. Concerns over tritium retention and MHD droplet ejection will additionally be addressed. LiMIT has also been proposed to function as a limiter on the EAST moveable limiter arm and tests have been performed with a prototype module inclined at various angles.
NASA Astrophysics Data System (ADS)
Xu, Wenyu; Christenson, Michael; Fiflis, Peter; Curreli, Davide; Andruczyk, Daniel; Ruzic, David
2013-10-01
The application of liquid metal, especially liquid lithium has become an important topic for plasma facing component (PFC) design. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactors. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can be utilized to drive liquid lithium flow within horizontally placed metallic open trenches in transverse magnetic field. A limiter based on this concept was tested in HT-7 and gave out positive results. However a broader application of this concept may require the trench be tilted or even placed vertically, for which strong capillary force caused by narrow trenches may be the solution. A new LiMIT design with very narrow trenches have been manufactured and tested in University of Illinois and related results will be presented. Based on this idea new limiters are designed for EAST and LTX and scheduled experiments on both devices will be discussed. This project is supported by DOE/ALPS contract: DEFG02- 99ER54515.
Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick
2015-11-03
Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, J.; Zuo, G. Z.; Hu, J. S.
2015-02-15
A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thinmore » flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.« less
Experimental investigation on consistency limits of cement and lime-stabilized marine sediments.
Wang, DongXing; Zentar, Rachid; Abriak, Nor Edine; Xu, WeiYa
2012-06-01
This paper presents the effects of treatments with cement and lime on the consistency limits of marine sediments dredged from Dunkirk port. The Casagrande percussion test and the fall cone test were used to determine the liquid limits of raw sediments and treated marine sediments. For the evaluation of the plastic limits, the results of the fall cone test were compared with those obtained by the rolling test method. The relationship between the water contents and the penetration depths for the determination of the liquid limit and the plastic limit was explored. Liquid limits at 15.5 mm and plastic limits at 1.55 mm seem to be a more appropriate choice for the studied marine sediments compared with the limits determined by other used prediction methods. Finally, the effect of cement treatment and lime treatment on the Casagrande classification of the studied sediments was investigated according to the different prediction results.
Yueh, Fang-Yu; Sharma, Ramesh C; Singh, Jagdish P; Zhang, Hansheng; Spencer, William A
2002-11-01
The analytical figure of merit of the potential of laser-induced breakdown spectroscopy (LIBS) has been evaluated for detection of trace element in liquid. LIBS data of Mg, Cr, Mn, and Re were studied. Various optical geometries, which produce the laser spark in and at the liquid sample, were tested. The calibration curves for Mg, Cr, Mn, and Re were obtained at the optimized experimental conditions with bulk liquid and in liquid jet. It was found that measurements using a liquid jet provide better detection limits than bulk liquid measurements. The limits of detection (LOD) of Mg, Cr, Mn, and Re in the present liquid jet measurement are found to be 0.1, 0.4, 0.7, and 8 ppm, respectively. The LOD of Mg using Mg 279.55 nm was compared with the values found in other liquid work.
Optical Limiting Based on Liquid-Liquid Immiscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.
A nonionic surfactant is used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using anmore » alkyl end-capped polyethylene glycol ether. The salt concentration was adjusted so that the index-matched mixture exhibited a large pass band. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is thought to be a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Mie scattering. The presence of many boundaries significantly amplifies the effect. Experiments also were conducted on the phase-inverted system (aqueous phase in organic liquid). Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved limiters based upon this optical deflection approach.« less
Liquidity Dynamics in the Xetra Order Book
NASA Astrophysics Data System (ADS)
Schmidinger, Christoph
2010-09-01
In this paper we show how to reconstruct the limit order book of the 30 stocks constituting the DAX30 index based on the trading protocol of the Xetra Trading System at the Frankfurt Stock Exchange. The algorithm used is innovative as it captures all trading phases, including auctions, and delivers a reconstruction of the orderbook either from a trader's view or a supervisory view including hidden volume as well. Based on the rebuilt order book, liquidity dynamics are examined. In contrats to findings for dealer markets, past market returns play a minor role in the determination of liquidity and liquidity commonality in Xetra, a pure limit order book market. Consequently, we provide evidence that liquidity provision by multiple sources in Xetra mitigates systemic liquidity risk introduced by the interrelation of return and liquidity.
High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls
Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...
2015-05-15
The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less
Sel, Sabriye; Öztürk Er, Elif; Bakırdere, Sezgin
2017-12-01
A highly sensitive and simple diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method was developed for the simultaneous determination of niacin and pyridoxine in pharmaceutical drugs, tap water, and wastewater samples. To determine the in vivo behavior of niacin and pyridoxine, analytes were subjected to simulated gastric conditions. The calibration plots of the diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method showed good linearity over a wide concentration range with close to 1.0 correlation coefficients for both analytes. The limit of detection/limit of quantitation values for liquid chromatography quadrupole time-of-flight tandem mass spectrometry analysis were 1.98/6.59 and 1.3/4.4 μg/L for niacin and pyridoxine, respectively, while limit of detection/limit of quantitation values for niacin and pyridoxine in high-performance liquid chromatography analysis were 3.7/12.3 and 5.7/18.9 μg/L, respectively. Recovery studies were also performed to show the applicability of the developed methods, and percentage recovery values were found to be 90-105% in tap water and 94-97% in wastewater for both analytes. The method was also successfully applied for the qualitative and quantitative determination of niacin and pyridoxine in drug samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for Predicting Hypergolic Mixture Flammability Limits
2017-02-01
liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition and the interactions...of what happens in the liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition...and the interactions of all these phases. The ignition happens in the gas -phase but products formed here and there (in the liquid phase or at
Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines
NASA Astrophysics Data System (ADS)
Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.
Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.
Wang, Zhengjia; Chen, Jiahao; Oyola-Reynoso, Stephanie; Thuo, Martin
2016-08-16
Substrate roughness influences the wetting properties of self-assembled monolayers (SAMs), but details on this dependency at the sub-nanometer level are still lacking. This study investigates the effect of surface roughness on interfacial properties of n-alkanethiolate SAMs, specifically wetting, and confirms the predicted limit to the observation of the odd-even effect in hydrophobicity. This article studies static contact angles of polar and nonpolar probe liquids on a series of n-alkanethiolate SAMs on surfaces with tunable roughness. We prepared Ag surfaces with root-mean-square roughness (Rrms) of ∼0.6-2.2 nm and compared the wetting properties of n-alkanethiolate SAMs fabricated on these surfaces. We measured the static contact angles, θs, formed between SAM and probe liquids [water, glycerol, and hexadecane]. Hexadecane showed an odd-even effect on all surfaces irrespective of the degree of roughness. Polar liquids (water and glycerol), however, showed a dependency on the roughness of the substrate with an odd-even effect observable only on smooth, but not rougher (Rrms ≥ 1.15 nm), surfaces. These results confirm that the previously predicted limit to observation of the odd-even effect in hydrophobicity (here extended to polar liquids) is real. From the results with glycerol, we infer that this limit is not limited just to hydrophobicity but may extend to other polar liquids. Results from hexadecane, however, suggest that this limit may not be a universal property of the SAM.
Liquid and Emulsified Sulfur in Submarine Solfatara Fields of two Northern Mariana Arc Volcanoes.
NASA Astrophysics Data System (ADS)
Nakamura, K.; Embley, R. W.; Chadwick, W. W.; Butterfield, D. A.; Takano, B.; Resing, J. A.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Inagaki, F.
2006-12-01
Because elemental sulfur melting point is ca 100 deg C (depend on allotropes and heating rate, S8 triple point temperature: 115 deg C), the evidence of liquid sulfur has been known for many subaerial crater lakes and small ponds in geothermal regions throughout the world. But the milky nature of water (sulfur-in- water emulsion in limited water mass) prohibited the direct observation of on-going processes at the bottom of these subaerial lakes. In the passive degassing environment at the summit craters of Daikoku and Nikko Seamounts of the northern Mariana Arc, the continuous flushing of sulfur emulsion by seawater allowed us to observe on- going submarine solfatara processes and associated chemistry through dives with ROVs during the NT05-18 cruise (JAMSTEC R/V Natsushima and ROV hyper-Dolphin) and the Submarine Ring of Fire 2006 cruise (R/V Melville and ROV JASON II). A higher viscosity for liquid elemental sulfur relative to that of seawater, as well as a limited stability of sulfur emulsion (aqueous sulfur sol) at high temperatures in electrolyte solution (seawater), ensures limited mobility of liquid sulfur in the conduits of hydrothermal vents. The subseafloor boiling depth of hydrothermal fluid limits the locus of any liquid sulfur reservoir. It was observed in an exposed liquid sulfur pond that the penetration of gas bubbles (mostly CO2) created sulfur emulsion while collapsing liquid sulfur film between seawater and gas bubbles. Liquid sulfur pits, encrusted sulfur, liquid sulfur fountain structure, sulfur stalactites and stalagmites, mini-pillow lava-like sulfur flows, accretionary sulfur lapilli and sulfur deltas were also observed at the summits of two volcanoes. Note: Solfatara: Italian. A type of fumarole, the gases of which are characteristically sulfurous. In 'Glossary of geology.'
Jank, Louise; Martins, Magda Targa; Arsand, Juliana Bazzan; Campos Motta, Tanara Magalhães; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara
2015-11-01
A fast and simple method for residue analysis of the antibiotics classes of macrolides (erythromycin, azithromycin, tylosin, tilmicosin and spiramycin) and lincosamides (lincomycin and clindamycin) was developed and validated for cattle, swine and chicken muscle and for bovine milk. Sample preparation consists in a liquid-liquid extraction (LLE) with acetonitrile, followed by liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-ESI-MS/MS), without the need of any additional clean-up steps. Chromatographic separation was achieved using a C18 column and a mobile phase composed by acidified acetonitrile and water. The method was fully validated according the criteria of the Commission Decision 2002/657/EC. Validation parameters such as limit of detection, limit of quantification, linearity, accuracy, repeatability, specificity, reproducibility, decision limit (CCα) and detection capability (CCβ) were evaluated. All calculated values met the established criteria. Reproducibility values, expressed as coefficient of variation, were all lower than 19.1%. Recoveries range from 60% to 107%. Limits of detection were from 5 to 25 µg kg(-1).The present method is able to be applied in routine analysis, with adequate time of analysis, low cost and a simple sample preparation protocol. Copyright © 2015. Published by Elsevier B.V.
Stability limits for the supercooled liquid and superheated crystal of Lennard-Jones particles
NASA Astrophysics Data System (ADS)
Loscar, Ernesto S.; Martin, Daniel A.; Grigera, Tomás S.
2017-07-01
We have studied the limits of stability in the first order liquid-solid phase transition in a Lennard-Jones system by means of the short-time relaxation method and using the bond-orientational order parameter Q6. These limits are compared with the melting line. We have paid special attention to the supercooled liquid, comparing our results with the point where the free energy cost of forming a nucleating droplet goes to zero. We also indirectly estimate the dimension associated to the critical nucleus at the spinodal, expected to be fractal according to mean field theories of nucleation.
NASA Astrophysics Data System (ADS)
Anyalebechi, P. N.
Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.
To what extent does terrestrial life "follow the water"?
Jones, Eriita G; Lineweaver, Charles H
2010-04-01
Terrestrial life is known to require liquid water, but not all terrestrial water is inhabited. Thus, liquid water is a necessary, but not sufficient, condition for life. To quantify the terrestrial limits on the habitability of water and help identify the factors that make some terrestrial water uninhabited, we present empirical pressure-temperature (P-T) phase diagrams of water, Earth, and terrestrial life. Eighty-eight percent of the volume of Earth where liquid water exists is not known to host life. This potentially uninhabited terrestrial liquid water includes (i) hot and deep regions of Earth where some combination of high temperature (T > 122 degrees C) and restrictions on pore space, nutrients, and energy is the limiting factor and (ii) cold and near-surface regions of Earth, such as brine inclusions and thin films in ice and permafrost (depths less than approximately 1 km), where low temperatures (T < -40 degrees C), low water activity (a(w) < 0.6), or both are the limiting factors. If the known limits of terrestrial life do not change significantly, these limits represent important constraints on our biosphere and, potentially, on others, since approximately 4 billion years of evolution have not allowed life to adapt to a large fraction of the volume of Earth where liquid water exists.
Dynamics and statics of nonaxisymmetric and symmetric liquid bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Resnick, Andrew H.; Kaukler, William F.; Zhang, Yiqiang
1994-01-01
This program of theoretical and experimental ground-based research focuses on the understanding of the dynamics and stability limits of nonaxisymmetric and symmetric liquid bridges. There are three basic objectives: First, to determine the stability limits of nonaxisymmetric liquid bridges held between non-coaxial parallel disks, Second, to examine the dynamics of nonaxisymmetric bridges and nonaxisymmetric oscillations of initially axisymmetric bridges. The third objective is to experimentally investigate the vibration sensitivity of liquid bridges under terrestrial and low gravity conditions. Some of these experiments will require a low gravity environment and the ground-based research will culminate in a definitive flight experiment.
Detection of bottled liquid explosives by near infrared
NASA Astrophysics Data System (ADS)
Itozaki, Hide; Miyamura, Ryu; Sato-Akaba, Hideo
2012-10-01
Bottled liquids are limited to be brought in the airplane, because liquid explosives have been used in some terrorist attaches recently. A bottled liquid scanner is expected to be developed. Liquid scanner using near infrared technologies is being developed by us. Many spectrum of liquids have been collected and analyzed by chemometorics in order to separate safe beverage to explosive and dangerous liquids. This bottled liquid scanner had feasibility tests in some international airport in Japan and obtained good review from security people in the airport.
You, Xiangwei; Chen, Xiaochu; Liu, Fengmao; Hou, Fan; Li, Yiqiang
2018-01-15
A novel and simple ionic liquid-based air-assisted liquid-liquid microextraction technique combined with high performance liquid chromatography was developed to analyze five fungicides in juice samples. In this method, ionic liquid was used instead of a volatile organic solvent as the extraction solvent. The emulsion was formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent repeatedly using a 10mL glass syringe. No organic dispersive solvent was required. Under the optimized conditions, the limits of detection (LODs) were 0.4-1.8μgL -1 at a signal-to-noise ratio of 3. The limits of quantification (LOQs) set as the lowest spiking levels with acceptable recovery in juices were 10μgL -1 , except for fludioxonil whose LOQ was 20μgL -1 . The proposed method was applied to determine the target fungicides in juice samples, and acceptable recoveries ranging from 74.9% to 115.4% were achieved. Copyright © 2017. Published by Elsevier Ltd.
Asati, Ankita; Satyanarayana, G N V; Patel, Devendra K
2017-09-01
Two low density organic solvents based liquid-liquid microextraction methods, namely Vortex assisted liquid-liquid microextraction based on solidification of floating organic droplet (VALLME-SFO) and Dispersive liquid-liquid microextraction based on solidification of floating organic droplet(DLLME-SFO) have been compared for the determination of multiclass analytes (pesticides, plasticizers, pharmaceuticals and personal care products) in river water samples by using liquid chromatography tandem mass spectrometry (LC-MS/MS). The effect of various experimental parameters on the efficiency of the two methods and their optimum values were studied with the aid of Central Composite Design (CCD) and Response Surface Methodology(RSM). Under optimal conditions, VALLME-SFO was validated in terms of limit of detection, limit of quantification, dynamic linearity range, determination of coefficient, enrichment factor and extraction recovery for which the respective values were (0.011-0.219ngmL -1 ), (0.035-0.723ngmL -1 ), (0.050-0.500ngmL -1 ), (R 2 =0.992-0.999), (40-56), (80-106%). However, when the DLLME-SFO method was validated under optimal conditions, the range of values of limit of detection, limit of quantification, dynamic linearity range, determination of coefficient, enrichment factor and extraction recovery were (0.025-0.377ngmL -1 ), (0.083-1.256ngmL -1 ), (0.100-1.000ngmL -1 ), (R 2 =0.990-0.999), (35-49), (69-98%) respectively. Interday and intraday precisions were calculated as percent relative standard deviation (%RSD) and the values were ≤15% for VALLME-SFO and DLLME-SFO methods. Both methods were successfully applied for determining multiclass analytes in river water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
One-step liquid-liquid extraction of cocaine from urine samples for gas chromatographic analysis.
Farina, Marcelo; Yonamine, Maurício; Silva, Ovandir A
2002-07-17
An improved technique for cocaine extraction from urine samples for gas chromatographic (GC) analysis is described. Employing a simple liquid-liquid extraction (LLE) of cocaine with a mixture of ethyl ether:isopropanol (9:1) the method presents a mean recovery of 74.49%. Limit of detection (LOD) and limit of quantification (LOQ) were 5 and 20 ng/ml, respectively. The method is highly precise (coefficient of variation (CV) <8%) and linear from 20 to 2000 ng/ml. It can he applied to detect the presence of cocaine in urine as a marker of its recent use in drug abuse treatment protocols.
Design and Modeling of a Liquid Lithium LiMIT Loop
NASA Astrophysics Data System (ADS)
Szott, Matthew; Christenson, Michael; Stemmley, Steven; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David
2017-10-01
The use of flowing liquid lithium in plasma facing components has been shown to reduce erosion and thermal stress damage, prolong device lifetime, decrease edge recycling, reduce impurities, and increase plasma performance, all while providing a clean and self-healing surface. The Liquid Metal Infused Trench (LiMIT) system has proven the concept of controlled thermoelectric magnetohydrodynamic-driven lithium flow for use in fusion relevant conditions, through tests at UIUC, HT-7, and Magnum PSI. As the use of liquid lithium in fusion devices progresses, emphasis must now be placed on full systems integration of flowing liquid metal concepts. The LiMIT system will be upgraded to include a full liquid lithium loop, which will pump lithium into the fusion device, utilize TEMHD to drive lithium through the vessel, and remove lithium for filtration and degassing. Flow control concepts recently developed at UIUC - including wetting control, dryout control, and flow velocity control - will be tested in conjunction in order to demonstrate a robust system. Lithium loop system requirements, designs, and modeling work will be presented, along with plans for installation and testing on the HIDRA device at UIUC. This work is supported by DOE/ALPS DE-FG02-99ER54515.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
12 CFR Appendix B to Part 1720 - Policy Guidance; Non-Mortgage Liquidity Investments
Code of Federal Regulations, 2012 CFR
2012-01-01
... control standards; v. The limits structure; vi. The performance standards and measures; and vii. The... risk oversight group. f. The Enterprise should adopt a limit structure to promote diversification in..., management should consider the discrete risks associated with the non-mortgage liquidity investment portfolio...
12 CFR Appendix B to Part 1720 - Policy Guidance; Non-Mortgage Liquidity Investments
Code of Federal Regulations, 2011 CFR
2011-01-01
... control standards; v. The limits structure; vi. The performance standards and measures; and vii. The... risk oversight group. f. The Enterprise should adopt a limit structure to promote diversification in..., management should consider the discrete risks associated with the non-mortgage liquidity investment portfolio...
12 CFR Appendix B to Part 1720 - Policy Guidance; Non-Mortgage Liquidity Investments
Code of Federal Regulations, 2014 CFR
2014-01-01
... control standards; v. The limits structure; vi. The performance standards and measures; and vii. The... risk oversight group. f. The Enterprise should adopt a limit structure to promote diversification in..., management should consider the discrete risks associated with the non-mortgage liquidity investment portfolio...
12 CFR Appendix B to Part 1720 - Policy Guidance; Non-Mortgage Liquidity Investments
Code of Federal Regulations, 2013 CFR
2013-01-01
... control standards; v. The limits structure; vi. The performance standards and measures; and vii. The... risk oversight group. f. The Enterprise should adopt a limit structure to promote diversification in..., management should consider the discrete risks associated with the non-mortgage liquidity investment portfolio...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
40 CFR Table 2 to Subpart Nnnnn of... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... vented to a control device. For each . . . You must . . . 1. Caustic scrubber or water scrubber/absorber a. Maintain the daily average scrubber inlet liquid or recirculating liquid flow rate, as appropriate, above the operating limit; andb. Maintain the daily average scrubber effluent pH within the...
40 CFR Table 2 to Subpart Nnnnn of... - Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... vented to a control device. For each . . . You must . . . 1. Caustic scrubber or water scrubber/absorber a. Maintain the daily average scrubber inlet liquid or recirculating liquid flow rate, as appropriate, above the operating limit; andb. Maintain the daily average scrubber effluent pH within the...
Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan
2017-07-01
This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.
Diuzheva, Alina; Balogh, József; Jekő, József; Cziáky, Zoltán
2018-05-17
A dispersive liquid-liquid microextraction method for the simultaneous determination of 11 pharmaceuticals has been developed. The method is based on a microextraction procedure applied to wastewater samples from different regions of Hungary followed by high performance liquid chromatography with mass spectrometry. The effect of the nature of the extractant, dispersive solvent, different additives and extraction time were examined on the extraction efficiently of the dispersive liquid-liquid microextraction method. Under optimal conditions, the linearity for determining the pharmaceuticals was in the range of 1-500 ng mL -1 , with the correlation coefficients ranging from 0.9922 to 0.9995. The limits of detection and limits of quantification were in the range 0.31-6.65 and 0.93-22.18 ng mL -1 , respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Dissolution of cellulose in ionic liquid: A review
NASA Astrophysics Data System (ADS)
Mohd, N.; Draman, S. F. S.; Salleh, M. S. N.; Yusof, N. B.
2017-02-01
Dissolution of cellulose with ionic liquids (IL) and deep eutectic solvent (DES) lets the comprehensive dissolution of cellulose. Basically, cellulose can be dissolved, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Chloride based ionic liquids are suitable solvents for cellulose dissolution. Although the ILs is very useful in fine chemical industry, its application in the pharmaceutical and food industry have been very limited due to issues with toxicity, purity, and high cost. Seeing to these limitations, new green alternative solvent which is DES was used. This green solvents, may be definitely treated as the next-generation reagents for more sustainable industrial development. Thus, this review aims to discuss the dissolution of cellulose either with ionic liquids or DES and its application.
NASA Astrophysics Data System (ADS)
Lee, G. W.; Jeon, S.; Park, C.; Kang, D. H.; Choi, B. I.; Park, S. N.
2013-09-01
An electrostatic levitation (ESL) device is developed to study the radiation-properties of liquid metals at high temperature. The technique provides good advantage, such as fast response of temperature change on a sample, clear features of recalescence and plateau during freezing, no contamination or no reaction with environment, easy control of supercooling deducing hypercooling limit, and relatively simple analysis of thermodynamic quantities because of only radiative cooling process under vacuum. In this study, we could obtain a hypercooling limit (i.e., maximum supercooling) of liquid Ti, 341 K using the ESL. An accurate ratio of the specific heat to total hemispherical emissivity of liquid Ti was obtained by Stefan-Boltzmann law. Then, the specific heat and total hemispherical emissivity of Ti liquid metal can be estimated with the hypercooling limit and known fusion enthalpy values of Ti, which has been rarely reported.
Suppression of the sonic heat transfer limit in high-temperature heat pipes
NASA Astrophysics Data System (ADS)
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
Design and Development of the Liquid Lithium Limiter (L3) for CDX-U
NASA Astrophysics Data System (ADS)
Seraydarian, R. P.; Chousal, L.; Doerner, R. P.; Luckhardt, S. C.; Lynch, T.
2000-10-01
--- This poster describes experiments with liquid Li that informed the design of a Liquid Lithium Limter (L3) built by UCSD for installation on the CDX-U spherical torus at PPPL. It was necessary to resort to wetting liquid Li to textured structures in order for the limiter to intercept 2-3 density e-folding lengths of the scrape off layer (3 cm) of the CDX-U plasma. Since Li is chemically active and corrodes rapidly in all but the driest air, we carried out wetting experiments in vacuum (10-7 - 10-8 torr) and also in Ar at near atmospheric pressure. Wetting of steel occurred reliably at substrate temperatures near 500 ^oC under all conditions, but this high temperature presented special problems of rapid material loss through evaporation, especially under vacuum. Once the surface is wetted, however, lost Li can be replenished at ~ 200 ^oC (just above the melting temperature) where evaporation is negligible. A wetted limiter can even be cooled to room temperature and then reheated many hours later as long as clean conditions are maintained. Surface textures, heating techniques, effective seal materials for piston-driven liquid Li reservoirs, and other aspects of the limiter system design will be presented. Work supported by US DOE grant DE-FG03-95ER54301
Microfluidics with fluid walls.
Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R
2017-10-10
Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.
D'Antuono, A; Dall'Orto, V C; Lo Balbo, A; Sobral, S; Rezzano, I
2001-03-01
Liquid chromatography with electrochemical detector (LC-ED), using a chemically modified electrode coated with a metalloporphyrin film, is reported for determination of bisphenol A (BPA) migration from polycarbonate baby bottles. The extraction process of the samples was performed according to regulations of the Southern Common Market (MERCOSUR), where certain food-simulating liquids [(A) distilled water, (B) acetic acid 3% V/V in distilled water, and (C) ethanol 15% V/V in distilled water] are defined along with controlled time and temperature conditions. The baseline obtained using the naked electrode showed a considerable drift which increased the detection limit. This effect was suppressed with the chemically modified electrode. A linear range up to 450 ppb along with a detection limit of 20 ppb for the amperometric detection technique was observed. The procedure described herein allowed lowering the detection limit of the method to 0.2 ppb. The value found for BPA in the food-simulating liquid is 1.2 ppb, which is below the tolerance limit for specific migration (4.8 ppm).
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.
1997-01-01
The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase or in a spray. Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the liquid/gas interface. In one such limit, the gas flame occurs under near-breakaway conditions, exerting little thermal or hydrodynamic influence on the burning propellant. In another such limit, distributed combustion occurs in an intrusive regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest. Finally, the liquid propellant may simply undergo exothermic decomposition at the surface without any significant distributed combustion, such as appears to occur in some types of HydroxylAmmonium Nitrate (HAN)-based liquid propellants at low pressures. Such limiting models have recently been formulated,thereby significantly generalizing earlier classical models that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension, viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. Indeed, the inverse Froude number, representing the ratio of buoyant to inertial forces, appears explicitly in all of these models, and consequently, in the dispersion relation that determines the neutral stability boundaries beyond which steady, planar burning is unstable to nonsteady, and/or nonplanar (cellular) modes of burning. These instabilities thus lead to a number of interesting phenomena, such as the sloshing type of waves that have been observed in mixtures of HAN and TriEthanolAmmonium Nitrate (TEAN) with water. Although the Froude number was treated as an O(1) quantity in these studies, the limit of small inverse Froude number corresponding to the microgravity regime is increasingly of interest and can be treated explicitly, leading to various limiting forms of the models, the neutral stability boundaries, and, ultimately, the evolution equations that govern the nonlinear dynamics of the propagating reaction front. In the present work, we formally exploit this limiting parameter regime to compare some of the features of hydrodynamic instability of liquid-propellant combustion at reduced gravity with the same phenomenon at normal gravity.
Heterogeneous Mixtures as NLO Christiansen Filters for Optical Limiting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.
Mixtures of two non-absorbing and index-matched materials with contrasting nonlinear optical response have been shown to optically limit above a critical fluence of pulsed nanosecond laser light. Under these conditions, index mismatch is induced between the disparate phases leading to strong Tyndall scattering. The effect has been demonstrated previously by the authors in both solid-liquid mixtures (hexadecane and calcium fluoride), and surfactant-stabilized liquid-liquid emulsions consisting of dichloroethane as the organic phase and a concentrated aqueous phase of sodium thiocyanate (NaSCN). Materials used in these studies exhibit low absorption coefficients over extended wavelength regions allowing for a broadband response of themore » limiter. Recently, limiting has been observed at 532 nm in a polymer composite consisting of barium fluoride and poly-(n-butyl acrylate). A modified open-aperture z-scan method was used to quantify optical limiter performance in this system. Modeling studies provide the basis for designing optical limiters based upon this light scattering mechanism and show the importance of size resonance and constituent optical properties on limiter performance.« less
Koster, J.E.; Bolton, R.D.
1999-03-02
A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.
Koster, James E.; Bolton, Richard D.
1999-01-01
A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.
Liquid-solid joining of bulk metallic glasses
NASA Astrophysics Data System (ADS)
Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.
2016-07-01
Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.
Liquid-solid joining of bulk metallic glasses
Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.
2016-01-01
Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components. PMID:27471073
Liquid-solid joining of bulk metallic glasses.
Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K
2016-07-29
Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.
Liquid-solid joining of bulk metallic glasses
Huang, Yongjiang; Xue, Peng; Guo, Shu; ...
2016-07-29
Here, we successfully welded two bulk metallic glass (BMG) materials, Zr 51Ti 5Ni 10Cu 25Al 9 and Zr 50.7Cu 28Ni 9Al 12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. In conclusion, the liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318
Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures
NASA Technical Reports Server (NTRS)
Webeler, R.; Bedard, F.
1961-01-01
The absence of experimental data in the literature concerning a viscosity difference for normal and equilibrium liquid hydrogen may be attributed to the limited reproducibility of "oscillating disk" measurements in a liquid-hydrogen environment. Indeed, there is disagreement over the viscosity values for equilibrium liquid hydrogen even without proton spin considerations. Measurements presented here represent the first application of the piezoelectric alpha quartz torsional oscillator technique to liquid-hydrogen viscosity measurements.
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2015-07-01
The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.
High-Efficiency Helical Coil Electromagnetic Launcher
2006-08-31
significant launcher performance benefits by super-cooling the conductor in the armature (i.e., liquid nitrogen temperatures). 20061102530 14. ABSTRACT...i.e., liquid nitrogen temperatures). 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON...31 Liquid Nitrogen Cooled Armature
Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Slobozhanin, Lev A.; Resnick, Andrew H.; Ramus, Jean-Francois; Delafontaine, Sylvie
1999-01-01
Liquid bridges have been the focus of numerous theoretical and experimental investigations since the early work by Plateau more than a century ago. More recently, motivated by interest in their physical behavior and their occurrence in a variety of technological situations, there has been a resurgence of interest in the static and dynamic behavior of liquid bridges. Furthermore, opportunities to carry out experiments in the near weightless environment of a low-Earth-orbit spacecraft have also led to a number of low-gravity experiments involving large liquid bridges. In this paper, we present selected results from our work concerning the stability of nonaxisymmetric liquid bridges, the bifurcation of weightless bridges in the neighborhood of the maximum volume stability limit, isorotating axisymmetric bridges contained between equidimensional disks, and bridges contained between unequal disks. For the latter, we discuss both theoretical and experimental results. Finally, we present results concerning the stability of axisymmetric equilibrium configurations for a capillary liquid partly contained in a closed circular cylinder.
NASA Technical Reports Server (NTRS)
Huang, W. L.
1980-01-01
The melting relations and distribution of K and Cs in portions of the system was determined at high pressures. Ferrosilite is stable as a primary phase at high pressures because of the incongruent melting of ferrosilite to quartz plus liquid and the boundary between the one and two liquid fields on the joint Fe(1-x) O-FeS-SiO2 shifts away from silica with increasing pressures. Potassium K was found to have limited solubility in metal sulfide liquids at pressures up to 45 kb. The speculation that K may dissolve significantly in metal-metal sulfide liquids after undergoing first order isomorphic transition was tested by determining the distribution of Cs between sulfide and silicate liquids as an analogy to K. At 45 kb, 1400 C and 27 kb, 1300 C only limited amounts of Cs were detected in quench sulfide liquids even at pressures beyond the isomorphic transition of Cs.
Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)
NASA Astrophysics Data System (ADS)
Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis
2016-09-01
Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.
Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier
2017-04-01
Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.
Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.
2017-08-01
The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.
Frydel, Derek; Levin, Yan
2018-01-14
In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.
NASA Astrophysics Data System (ADS)
Frydel, Derek; Levin, Yan
2018-01-01
In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.
Gravitational instability of thin gas layer between two thick liquid layers
NASA Astrophysics Data System (ADS)
Pimenova, A. V.; Goldobin, D. S.
2016-12-01
We consider the problem of gravitational instability (Rayleigh-Taylor instability) of a horizontal thin gas layer between two liquid half-spaces (or thick layers), where the light liquid overlies the heavy one. This study is motivated by the phenomenon of boiling at the surface of direct contact between two immiscible liquids, where the rate of the "break-away" of the vapor layer growing at the contact interface due to development of the Rayleigh-Taylor instability on the upper liquid-gas interface is of interest. The problem is solved analytically under the assumptions of inviscid liquids and viscous weightless vapor. These assumptions correspond well to the processes in real systems, e.g., they are relevant for the case of interfacial boiling in the system water- n-heptane. In order to verify the results, the limiting cases of infinitely thin and infinitely thick gas layers were considered, for which the results can be obviously deduced from the classical problem of the Rayleigh-Taylor instability. These limiting cases are completely identical to the well-studied cases of gravity waves at the liquidliquid and liquid-gas interfaces. When the horizontal extent of the system is long enough, the wavenumber of perturbations is not limited from below, and the system is always unstable. The wavelength of the most dangerous perturbations and the rate of their exponential growth are derived as a function of the layer thickness. The dependence of the exponential growth rate on the gas layer thickness is cubic.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that produces gases, liquids, or solids through the heating of MSW, and the gases, liquids, or solids... the highest 4-hour arithmetic average flue gas temperature measured at the particulate matter control... setting or equipment that combusts solid, liquid, or gasified MSW including, but not limited to, field...
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted... gas temperature measured at the inlet of the particulate matter control device during 4 consecutive... combusts solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected...
Code of Federal Regulations, 2012 CFR
2012-07-01
... that produces gases, liquids, or solids through the heating of MSW, and the gases, liquids, or solids... the highest 4-hour arithmetic average flue gas temperature measured at the particulate matter control... setting or equipment that combusts solid, liquid, or gasified MSW including, but not limited to, field...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that produces gases, liquids, or solids through the heating of MSW, and the gases, liquids, or solids... the highest 4-hour arithmetic average flue gas temperature measured at the particulate matter control... setting or equipment that combusts solid, liquid, or gasified MSW including, but not limited to, field...
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted... gas temperature measured at the inlet of the particulate matter control device during 4 consecutive... combusts solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected...
Ionic liquid electrolytes for dye-sensitized solar cells.
Gorlov, Mikhail; Kloo, Lars
2008-05-28
The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.
Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI device design features that permit reproducible a...
Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI system design features that permit reproducible a...
75 FR 17111 - Hazardous Materials Regulations: Combustible Liquids
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... non-bulk packagings in a revised set of requirements for Class 3 materials, thereby eliminating the... material classed as a combustible liquid in a non-bulk packaging unless the combustible liquid is a... package for limited quantities for Class 7 (radioactive materials) could be transported as a combustible...
40 CFR 60.1465 - What definitions must I know?
Code of Federal Regulations, 2013 CFR
2013-07-01
... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...
40 CFR 60.1465 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...
40 CFR 60.1465 - What definitions must I know?
Code of Federal Regulations, 2014 CFR
2014-07-01
... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...
NASA Technical Reports Server (NTRS)
Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz
2004-01-01
In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.
Stability limits of unsteady open capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.
This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the Lender will be allowed including, but not limited to, employee salaries, staff lawyers, travel... Lender's plan to use voluntary liquidation when the plan clearly addresses the responsibilities of the...
50 CFR 253.23 - Default and liquidation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... limited to, where appropriate, retaking or arrest of collateral, foreclosure, restructuring, debarment, referral for debt collection, or liquidation as it deems best able to protect the U.S. Government's...
50 CFR 253.23 - Default and liquidation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... limited to, where appropriate, retaking or arrest of collateral, foreclosure, restructuring, debarment, referral for debt collection, or liquidation as it deems best able to protect the U.S. Government's...
50 CFR 253.23 - Default and liquidation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... limited to, where appropriate, retaking or arrest of collateral, foreclosure, restructuring, debarment, referral for debt collection, or liquidation as it deems best able to protect the U.S. Government's...
50 CFR 253.23 - Default and liquidation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... limited to, where appropriate, retaking or arrest of collateral, foreclosure, restructuring, debarment, referral for debt collection, or liquidation as it deems best able to protect the U.S. Government's...
Study of helium transfer technology for STICCR: Fluid management
NASA Technical Reports Server (NTRS)
Frank, D. J.; Yuan, S. W. K.; Grove, R. K.; Lheureux, J. M.
1987-01-01
The Space Infrared Telescope Facility (SIRTF) is a long life cryogenically cooled space based telescope for infrared astronomy from 2 to 700 microns currently under study and planned for launch in the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. Candidates are reviewed for a liquid management device to be used in the resupply of liquid helium, and for the selection of an appropriate candidate.
NASA Astrophysics Data System (ADS)
Kim, Yong Gi
2017-11-01
A real-time in-situ interferometry method was proposed to measure water (liquid) evaporation directly over the liquid surface inside the reservoir. The direct evaporation measurement relied on the counting the number of sinusoidal fringes. As the water inside reservoir evaporated, the depth of the water decreases a little thus the optical path length changes. Evaporation signals have been determined as a function of the focusing beam position of the signal beam over the liquid surface. In interferometry technique, the most limiting factors are surface disturbances and vibrations over the liquid surface. This limiting factor was simply inhibited by placing a long cylindrical aluminum tube around the signal beam of the interferometer over the liquid surface. A small diameter cylindrical Al tube diminished vibrations and wind induced surface ripples more effectively than that of the larger one. Water evaporation was successfully measured in real-time with a warm water and cold water even under windy condition with an electric fan. The experimental results demonstrated that the interferometry technique allows determining of liquid evaporation in real-time. Interferometric technique opens up a new possibility of methodology for liquid evaporation measurement even in several environmental disturbances, such as, vibration, surface disturbance, temperature change and windy environments.
Liquid jet pumped by rising gas bubbles
NASA Technical Reports Server (NTRS)
Hussain, N. A.; Siegel, R.
1975-01-01
A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.
Unified phonon-based approach to the thermodynamics of solid, liquid and gas states
NASA Astrophysics Data System (ADS)
Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.
2015-12-01
We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.
40 CFR Table 4 to Subpart Uuuuu of... - Operating Limits for EGUs
Code of Federal Regulations, 2014 CFR
2014-07-01
...-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals... demonstrating compliance with the filterable PM, total non-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals (individual HAP metals including Hg, for liquid oil...
40 CFR Table 4 to Subpart Uuuuu of... - Operating Limits for EGUs
Code of Federal Regulations, 2013 CFR
2013-07-01
...-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals... demonstrating compliance with the filterable PM, total non-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals (individual HAP metals including Hg, for liquid oil...
46 CFR 151.45-6 - Maximum amount of cargo.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Operations § 151.45-6 Maximum amount of cargo. (a) Tanks carrying liquids or liquefied gases at ambient temperatures regulated by this subchapter shall be limited in the amount of cargo loaded to that which will avoid the tank being liquid full at 105 °F if...
Droplet-turbulence interactions in subcritical and supercritical evaporating sprays
NASA Technical Reports Server (NTRS)
Santavicca, Domenic A.; Coy, Edward; Greenfield, Stuart; Song, Young-Hoon
1991-01-01
The objective of this research is to obtain an improved understanding of droplet turbulence interactions in vaporizing liquid sprays under conditions typical of those encountered in liquid fueled rocket engines. The interaction between liquid droplets and the surrounding turbulent gas flow affects droplet dispersion, droplet collisions, droplet vaporization and gas-phase, fuel-oxidant mixing, and therefore has a significant effect on the engine's combustion characteristics. An example of this is the role which droplet-turbulence interactions are believed to play in combustion instabilities. Despite their importance, droplet-turbulence interactions and their effect on liquid fueled rocket engine performance are not well understood. This is particularly true under supercritical conditions, where many conventional concepts, such as surface tension, no longer apply. Our limited understanding of droplet-turbulence interactions, under both subcritical conditions, represents a major limitation in our ability to design improved liquid previously unavailable information and valuable new insights which will directly impact the design of future liquid fueled rocket engines, as well as, allow for the development of significantly improved spray combustion models, making such models useful design tools.
Solubility of K in Fe-S liquid, silicate-K/Fe-S/liq equilibria, and their planetary implications
NASA Technical Reports Server (NTRS)
Gangully, J.; Kennedy, G. C.
1977-01-01
Potassium has been found to have extremely limited absolute solubility in Fe-S liquid in the pressure-temperature range of 18 to 40 kbars, 1050 to 1150 C, and fO2 within the field of metallic iron. It also partitioned into a certain silicate phase highly in preference to Fe-S liquid at 30 kbar and 1100 C. The dependence of the partitioning of K between solid silicate and Fe-S liquid on fO2 and compositions of mineral solid solutions have been analyzed. These experimental data, along with those of others, limit the amount of K that could fractionate in Fe-S liquid layers or a core in the early history of the moon and, thus, act as localized heat sources in its thermal history models; the data also seem to argue against a chondritic abundance of potassium for earth. The question of fractionation of enough K-40 in an Fe-S liquid outer core of earth to provide the necesary thermal energy for the geomagnetic dynamo remains unresolved.
Wang, Ze Ping; Shen, Jian Zhong; Linhardt, Robert J; Jiang, Hui; Cheng, Lin Li
2017-03-01
Hainanmycin is a new veterinary polyether antibiotic and has few sensitive analytical method in present days. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) relying on multiple reaction monitoring (MRM) detection was developed for analysis of hainanmycin in animal feed. Feed samples were extracted with ethyl acetate and purified by two steps of liquid-liquid extraction (LLE) to get rid of water solvable matrix and lipids one by one. The final simple was analyzed by LC-MS/MS. The LC mobile phase was composed of 0.1% aqueous formic acid and 0.1% formic acidified acetonitrile by gradient elution. Average recoveries ranged from 74.22% to 87.85%, as determined by spiking with 2.0 (LOQ) ∼2500μgkg -1 of hainanmycin. The inter-day and intra-day coefficient of variation was 9.21% to 11.77% and 7.67% to 13.49%, respectively. The limit of detection (LOD) and the limit of quantitation (LOQ) were 0.36μgkg -1 and 2.0μgkg -1 , respectively. Copyright © 2016. Published by Elsevier B.V.
Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José
2016-07-01
Dispersive liquid-liquid microextraction was used to preconcentrate three spirocyclic tetronic/tetramic acid derivatives (spirotetramat, spiromesifen and spirodiclofen) and five neonicotinoid (thiamethoxam, chlotianidin, imidacloprid, acetamiprid and thiacloprid) insecticides previously extracted from fruit and vegetable matrices with acetonitrile. The organic enriched phase was evaporated, reconstituted in 25μL acetonitrile and analyzed by reversed-phase liquid chromatography with tandem mass spectrometry using a triple quadrupole in selected reaction monitoring mode. Enrichment factors in the 15-100 range were obtained. A matrix effect was observed, the detection limits varying between 0.025 and 0.5ngg(-1), depending on the compound and the sample matrix. The developed method was applied to the analysis of 25 samples corresponding to five different fruit and vegetable matrices. Only thiamethoxam was detected in a lemon sample at a concentration close to the quantification limit, and spiromesifen and spirotetramat at concentrations between 11.6 and 54.5ngg(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.
Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo
2017-11-01
In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermocapillary phenomena and performance limitations of a wickless heat pipe in microgravity.
Kundan, Akshay; Plawsky, Joel L; Wayner, Peter C; Chao, David F; Sicker, Ronald J; Motil, Brian J; Lorik, Tibor; Chestney, Louis; Eustace, John; Zoldak, John
2015-04-10
A counterintuitive, thermocapillary-induced limit to heat- pipe performance was observed that is not predicted by current thermal-fluid models. Heat pipes operate under a number of physical constraints including the capillary, boiling, sonic, and entrainment limits that fundamentally affect their performance. Temperature gradients near the heated end may be high enough to generate significant Marangoni forces that oppose the return flow of liquid from the cold end. These forces are believed to exacerbate dry out conditions and force the capillary limit to be reached prematurely. Using a combination of image and thermal data from experiments conducted on the International Space Station with a transparent heat pipe, we show that in the presence of significant Marangoni forces, dry out is not the initial mechanism limiting performance, but that the physical cause is exactly the opposite behavior: flooding of the hot end with liquid. The observed effect is a consequence of the competition between capillary and Marangoni-induced forces. The temperature signature of flooding is virtually identical to dry out, making diagnosis difficult without direct visual observation of the vapor-liquid interface.
Comparative drug release measurements in limited amounts of liquid: a suppository formulation study.
Welch, Ken; Ek, Ragnar; Strømme, Maria
2006-07-01
A novel method for the investigation of drug formulations in limited liquid volumes is presented. The experimental setup consists of a measurement cell containing an absorbent sponge cloth placed between two parallel electrodes. Conductivity measurements are used to monitor the drug release from the dosage form. By varying the amount of water contained in the absorbent cloth surrounding the dosage form, it is possible to measure the drug release performance of the dosage form in very limited amounts of water. The method was employed to test four different tablet formulations consisting of the model drug NaCl incorporated in excipient matrices of hard fat, polyethylene glycol, microcrystalline cellulose and a mixture of microcrystalline cellulose and croscarmellose sodium (Ac-Di-Sol). The drug release rates of the different formulations in limited water volumes differed markedly from the release rates in an excess of water. Whereas the release rates from all tablet types in an excess of water showed only minor differences among the tablet types, the release rates from the tablets formulated with disintegrating excipients were clearly superior in limited water volumes. The developed method for drug release in limited volumes of liquid should be suitable for evaluation of rectal dosage forms.
Fines classification based on sensitivity to pore-fluid chemistry
Jang, Junbong; Santamarina, J. Carlos
2016-01-01
The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.
Luminosity limits for liquid argon calorimetry
NASA Astrophysics Data System (ADS)
J, Rutherfoord; B, Walker R.
2012-12-01
We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.
Sun, Lirui; Jia, Longfei; Xie, Xing; Xie, Kaizhou; Wang, Jianfeng; Liu, Jianyu; Cui, Lulu; Zhang, Genxi; Dai, Guojun; Wang, Jinyu
2016-02-01
In this present study, we developed a simple, rapid and specific method for the quantitative analysis of the contents of amoxicillin (AMO), AMO metabolites and ampicillin (AMP) in eggs. This method uses a simple liquid-liquid extraction with acetonitrile followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized method has been validated according to requirements defined by the European Union and Food and Drug Administration. Extraction recoveries of the target compounds from the egg at 5, 10 and 25 μg/kg were all higher than 80%, with relative standard deviations not exceeding 10.00%. The limits of quantification in eggs were below the maximum residue limits (MRLs). The decision limits (CCα) ranged between 11.1 and 11.5 μg/kg, while detection capabilities (CCβ) from 12.1 to 13.0 μg/kg. These values were very close to the corresponding MRLs. Finally, the new approach was successfully verified for the quantitative determination of these analytes in 40 commercial eggs from local supermarkets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liquid droplet radiator performance studies
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Hertzberg, A.
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.
Liquid droplet radiator performance studies
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Hertzberg, A.
1984-01-01
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.
Liquid droplet radiator performance studies
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Hertzberg, A.
1984-10-01
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.
Goerlitz, D.F.
1981-01-01
Methods for the determination of pentachlorophenol (PCP) in water and aquifer sediments are presented. Reverse-phase high-performance liquid chromotography employing ion suppression and gradient elution is used. PCP can be determined directly in water at a lower limit of detection Of 0.2 micrograms per liter. For extracts of sediment, PCP can be determined to a lower limit of 1.0 micrograms per kilogram.
The DarkSide direct dark matter search with liquid argon
NASA Astrophysics Data System (ADS)
Edkins, E.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2017-11-01
The DarkSide-50 direct dark matter detector is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator neutron veto (LSV) and a water Cerenkov muon veto (WCV). Located under 3800 m.w.e. at the Laboratori Nazionali del Gran Sasso, Italy, it is the only direct dark matter experiment currently operating background free. The atmospheric argon target was replaced with argon from underground sources in April, 2015. The level of 39Ar, a β emitter present in atmospheric argon (AAr), has been shown to have been reduced by a factor of (1.4 ± 0.2) x 103. The combined spin-independent WIMP exclusion limit of 2.0 x 10-44 cm2 (mχ = 100 GeV/c2) is currently the best limit on a liquid argon target.
Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks
NASA Technical Reports Server (NTRS)
Vandresar, Neil T.; Haberbusch, Mark S.
1994-01-01
Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.
40 CFR Table 2 to Subpart Jjjjj of... - Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Kiln equipped with a WS a. Maintain the average scrubber pressure drop for each 3-hour block period at... average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test; and c. Maintain the average scrubber liquid flow rate for each 3-hour...
40 CFR Table 2 to Subpart Jjjjj of... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Kiln equipped with a WS a. Maintain the average scrubber pressure drop for each 3-hour block period at... average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test; and c. Maintain the average scrubber liquid flow rate for each 3-hour...
Geysermans, P; Elyeznasni, N; Russier, V
2005-11-22
We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.
Kim, Yushin; Amemiya, Shigeru
2008-08-01
A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.
Taheri, Salman; Jalali, Fahimeh; Fattahi, Nazir; Jalili, Ronak; Bahrami, Gholamreza
2015-10-01
Dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high-performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1-Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid-liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvents of traditional dispersive liquid-liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kistler, Kurt A.; Gillman, Gene; Voudris, Vassilis
2015-01-01
Introduction: The purpose of this study was to evaluate sweet-flavored electronic cigarette (EC) liquids for the presence of diacetyl (DA) and acetyl propionyl (AP), which are chemicals approved for food use but are associated with respiratory disease when inhaled. Methods: In total, 159 samples were purchased from 36 manufacturers and retailers in 7 countries. Additionally, 3 liquids were prepared by dissolving a concentrated flavor sample of known DA and AP levels at 5%, 10%, and 20% concentration in a mixture of propylene glycol and glycerol. Aerosol produced by an EC was analyzed to determine the concentration of DA and AP. Results: DA and AP were found in 74.2% of the samples, with more samples containing DA. Similar concentrations were found in liquid and aerosol for both chemicals. The median daily exposure levels were 56 μg/day (IQR: 26–278 μg/day) for DA and 91 μg/day (IQR: 20–432 μg/day) for AP. They were slightly lower than the strict NIOSH-defined safety limits for occupational exposure and 100 and 10 times lower compared with smoking respectively; however, 47.3% of DA and 41.5% of AP-containing samples exposed consumers to levels higher than the safety limits. Conclusions: DA and AP were found in a large proportion of sweet-flavored EC liquids, with many of them exposing users to higher than safety levels. Their presence in EC liquids represents an avoidable risk. Proper measures should be taken by EC liquid manufacturers and flavoring suppliers to eliminate these hazards from the products without necessarily limiting the availability of sweet flavors. PMID:25180080
Nazaripour, Ali; Yamini, Yadollah; Ebrahimpour, Behnam; Fasihi, Javad
2016-07-01
In this study, two-phase hollow-fiber liquid-phase microextraction and three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6-200 and 0.9-200 μg L(-1) and the limits of detection were 0.2 and 0.3 μg L(-1) for oxazepam and lorazepam, respectively. For two-phase hollow fiber liquid-phase microextraction, the calibration curves were found to be linear in the range of 1-200 and 1.5-200 μg L(-1) and the limits of detection were 0.3 and 0.5 μg L(-1) for oxazepam and lorazepam, respectively. In a urine sample, for three-phase hollow-fiber-based liquid-phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2-4.5% and preconcentration factors in the range of 70-180 were obtained for oxazepam and lorazepam, respectively. Also for the two-phase hollow-fiber liquid-phase microextraction, preconcentration factors in the range of 101-257 were obtained for oxazepam and lorazepam, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bilge, Gonca; Sezer, Banu; Boyaci, Ismail Hakki; Eseller, Kemal Efe; Berberoglu, Halil
2018-07-01
Liquid analysis by using LIBS is a complicated process due to difficulties encountered during the collection of light and formation of plasma in liquid. To avoid these, some applications are performed such as aerosol formation and transforming liquid into solid state. However, performance of LIBS in liquid samples still remains a challenging issue. In this study, performance evaluation of LIBS and parameter optimizations in liquid and solid phase samples were performed. For this purpose, milk was chosen as model sample; milk powder was used as solid sample, and milk was used as liquid sample in the experiments. Different experimental setups have been constructed for each sampling technique, and optimizations were performed to determine suitable parameters such as delay time, laser energy, repetition rate and speed of rotary table for solid sampling technique, and flow rate of carrier gas for liquid sampling technique. Target element was determined as Ca, which is a critically important element in milk for determining its nutritional value and Ca addition. In optimum parameters, limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD) values were calculated as 0.11%, 0.36% and 8.29% respectively for milk powders samples; while LOD, LOQ and RSD values were calculated as 0.24%, 0.81%, and 10.93% respectively for milk samples. It can be said that LIBS is an applicable method in both liquid and solid samples with suitable systems and parameters. However, liquid analysis requires much more developed systems for more accurate results.
Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.
Williams, G R; Doran, P M
2000-01-01
A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems.
Environmental Capability of Liquid Lubricants
NASA Technical Reports Server (NTRS)
Beerbower, A.
1973-01-01
The methods available for predicting the properties of liquid lubricants from their structural formulas are discussed. The methods make it possible to design lubricants by forecasting the results of changing the structure and to determine the limits to which liquid lubricants can cope with environmental extremes. The methods are arranged in order of their thermodynamic properties through empirical physical properties to chemical properties.
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the... British thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and... auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ...
Education in the Interregnum: An Evaluation of Zygmunt Bauman's Liquid-Turn Writing on Education
ERIC Educational Resources Information Center
Best, Shaun
2017-01-01
In his liquid-turn writings, Zygmunt Bauman has come to identify liquid modernity as a period of interregnum. Education has a central role to play within the contemporary interregnum by opening up a new public sphere for dialogue. However, the processes of liquefaction manifest themselves in conditions that severely limit a person's ability to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikheev, Evgeny; Himmetoglu, Burak; Kajdos, Adam P.
We analyze and compare the temperature dependence of the electron mobility of two- and three-dimensional electron liquids in SrTiO{sub 3}. The contributions of electron-electron scattering must be taken into account to accurately describe the mobility in both cases. For uniformly doped, three-dimensional electron liquids, the room temperature mobility crosses over from longitudinal optical (LO) phonon-scattering-limited to electron-electron-scattering-limited as a function of carrier density. In high-density, two-dimensional electron liquids, LO phonon scattering is completely screened and the mobility is dominated by electron-electron scattering up to room temperature. The possible origins of the observed behavior and the consequences for approaches to improvemore » the mobility are discussed.« less
Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2015-12-22
Evaluation of the tensile/compression limit of a solid under conditions of tension or compression is often performed to provide mechanical properties that are critical for structure design and assessment. Algara-Siller et al. recently demonstrated that when water is constrained between two sheets of graphene, it becomes a two-dimensional (2D) liquid and then is turned into an intriguing monolayer solid with a square pattern under high lateral pressure [ Nature , 2015 , 519 , 443 - 445 ]. From a mechanics point of view, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of the 2D monolayer water. Here, we perform a simulation study of the compression limit of 2D monolayer, bilayer, and trilayer water constrained in graphene nanocapillaries. At 300 K, a myriad of 2D ice polymorphs (both crystalline-like and amorphous) are formed from the liquid water at different widths of the nanocapillaries, ranging from 6.0 to11.6 Å. For monolayer water, the compression limit is typically a few hundred MPa, while for the bilayer and trilayer water, the compression limit is 1.5 GPa or higher, reflecting the ultrahigh van der Waals pressure within the graphene nanocapillaries. The compression-limit (phase) diagram is obtained at the nanocapillary width versus pressure (h-P) plane, based on the comprehensive molecular dynamics simulations at numerous thermodynamic states as well as on the Clapeyron equation. Interestingly, the compression-limit curves exhibit multiple local minima.
Chlou, G.T.; Kile, D.E.; Malcolm, R.L.
1988-01-01
Vapor sorption of water, ethanol, benzene, hexane, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,2-dibromoethane on (Sanhedron) soil humic acid has been determined at room temperature. Isotherms for all organic liquids are highly linear over a wide range of relative pressure (P/P??), characteristic of the partitioning (dissolution) of the organic compounds in soil humic acid. Polar liquids exhibit markedly greater sorption capacities on soil humic acid than relatively nonpolar liquids, in keeping with the polar nature of the soil humic acid as a partition medium. The limiting sorption (partition) capacities of relatively non-polar liquids are remarkably similar when expressed in terms of volumes per unit weight of soil humic acid. The soil humic acid is found to be about half as effective as soil organic matter in sorption of relatively nonpolar organic compounds. The nearly constant limiting sorption capacity for nonpolar organic liquids with soil humic acid on a volume-to-weight basis and its efficiency in sorption relative to soil organic matter provide a basis for predicting the approximate sorption (partition) coefficients of similar compounds in uptake by soil in aqueous systems.
Nojavan, Yones; Kamankesh, Marzieh; Shahraz, Farzaneh; Hashemi, Maryam; Mohammadi, Abdorreza
2015-05-01
A novel technique for simultaneous determination of five folate derivatives in various food matrices was developed by ion pair-based dispersive liquid-liquid microextraction (IP-DLLME) combined with high-performance liquid chromatography (HPLC). In the proposed method, N-methyl-N,N-dioctyloctan-1-ammonium chloride (aliquat-336) was used as an ion-pair reagent. Effective variables of microextraction process were optimized. Under optimum conditions, the method yielded a linear calibration curve ranging from 1-200 ng g(-1) with correlation coefficients (r(2)) higher than 0.98. The relative standard deviation for the seven analyses was 5.2-7.4%. Enrichment factors for the five folates ranged between 108-135. Limits of detection were 2-4.1 ng g(-1). A comparison of this method with other methods described that the new proposed method is rapid and accurate, and gives very good enrichment factors and detection limits for determining five folate derivatives. The newly developed method was successfully applied for the determination of five folate derivatives in wheat flour, egg yolk and orange juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Aeenehvand, Saeed; Toudehrousta, Zahra; Kamankesh, Marzieh; Mashayekh, Morteza; Tavakoli, Hamid Reza; Mohammadi, Abdorreza
2016-01-01
This study developed an analytical method based on microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of three polar heterocyclic aromatic amines from hamburger patties. Effective parameters controlling the performance of the microextraction process, such as the type and volume of extraction and disperser solvents, microwave time, nature of alkaline aqueous solution, pH and salt amount, were optimized. The calibration graphs were linear in the range of 1-200 ng g(-1), with a coefficient of determination (R(2)) better than 0.9993. The relative standard deviations (RSD) for seven analyses were between 3.2% and 6.5%. The recoveries of those compounds in hamburger patties were from 90% to 105%. Detection limits were between 0.06 and 0.21 ng g(-1). A comparison of the proposed method with the existing literature demonstrates that it is a simple, rapid, highly selective and sensitive, and it gives good enrichment factors and detection limits for determining HAAs in real hamburger patties samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Faraji, M; Adeli, M
2017-04-15
A new and sensitive pre-column derivatization with dabsyl chloride followed by dispersive liquid-liquid microextraction was developed for the analysis of melamine (MEL) in raw milk and powdered infant formula samples by high performance liquid chromatography (HPLC) with visible detection. Derivatization with dabsyl chloride leads to improving sensitivity and hydrophobicity of MEL. Under optimum conditions of derivatization and microextraction steps, the method yielded a linear calibration curve ranging from 1.0 to 500μgL -1 with a determination coefficient (R 2 ) of 0.9995. Limit of detection and limit of quantification were 0.1 and 0.3μgL -1 , respectively. The relative standard deviation (RSD%) for intra-day (repeatability) and inter-day (reproducibility) at 25 and 100μgL -1 levels of MEL was less than 7.0% (n=6). Finally, the proposed method was successfully applied for the preconcentration and determination of MEL in different raw milk and powdered infant formula, and satisfactory results were obtained (relative recovery ⩾94%). Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence ofmore » CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.« less
Engineering: Liquid metal pumped at a record temperature
NASA Astrophysics Data System (ADS)
Lambrinou, Konstantina
2017-10-01
Although liquid metals are effective fluids for heat transfer, pumping them at high temperatures is limited by their corrosiveness to solid metals. A clever pump design addresses this challenge using only ceramics. See Article p.199
Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark
2008-01-01
Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.
Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids
NASA Astrophysics Data System (ADS)
Szasz, Aaron; Ilan, Roni; Moore, Joel E.
2017-02-01
We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.
Adsorbed water and thin liquid films on Mars
NASA Astrophysics Data System (ADS)
Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.
2012-07-01
At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001-0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6-66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55-325 times larger than Mars' atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104-1.5×106 litres of water, which is 6.0×10-7-4.0×10-4%, respectively, of a 10 pr μm water vapour column, and 3.0×10-6-4.0×10-4% and 6.0×10-6-8.0×10-4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106-3.0×107 litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104 litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.
First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK
NASA Astrophysics Data System (ADS)
Gomes, R. B.; Fernandes, H.; Silva, C.; Borba, D.; Carvalho, B.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Mikelsons, A.; Platnieks, I.
2006-12-01
The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium jet is generated by hydrostatic pressure and injected in a radial position close to a moveable stainless steel limiter. Both the jet and the limiter positions are variable allowing for a controlled exposure of the liquid Gallium to the edge plasma. The main components of the Gallium loop are a MHD pump, the liquid metal injector and a filtering system. The MHD pump is of the induction type, based on rotating permanent magnets. The injector is build from a ¼″ stainless steel pipe ended by a shaping nozzle. A setup has been developed to introduce oxide-free Gallium inside the loop's main supply tank. Raw liquid metal is placed inside a chamber heated and degassed under high vacuum while clean Gallium is extracted from the main body of the liquefied metal. Prior to installation on the tokamak, the experimental rig has been implemented using a Pyrex tube as test chamber to investigate the stability of the Gallium jet and its break-up length for several nozzle sizes. Results are presented in this paper. This rig was also useful to assess the behavior of the overall implemented apparatus.
Quantification of bulk solution limits for liquid and interfacial transport in nanoconfinements.
Kelly, Shaina; Balhoff, Matthew T; Torres-Verdín, Carlos
2015-02-24
Liquid imbibition, the capillary-pressure-driven flow of a liquid into a gas, provides a mechanism for studying the effects of solid-liquid and solid-liquid-gas interfaces on nanoscale transport. Deviations from the classic Washburn equation for imbibition are generally observed for nanoscale imbibition, but the identification of the origin of these irregularities in terms of transport variables varies greatly among investigators. We present an experimental method and corresponding image and data analysis scheme that enable the determination of independent effective values of nanoscale capillary pressure, liquid viscosity, and interfacial gas partitioning coefficients, all critical transport variables, from imbibition within nanochannels. Experiments documented herein are performed within two-dimensional siliceous nanochannels of varying size and as small as 30 nm × 60 nm in cross section. The wetting fluid used is the organic solvent isopropanol and the nonwetting fluid is air, but investigations are not limited to these fluids. Optical data of dynamic flow are rare in geometries that are nanoscale in two dimensions due to the limited resolution of optical microscopy. We are able to capture tracer-free liquid imbibition with reflected differential interference contrast microscopy. Results with isopropanol show a significant departure from bulk transport values in the nanochannels: reduced capillary pressures, increased liquid viscosity, and nonconstant interfacial mass-transfer coefficients. The findings equate to the nucleation of structured, quasi-crystalline boundary layers consistently ∼10-25 nm in extent. This length is far thicker than the boundary layer range prescribed by long-range intermolecular force interactions. Slower but linear imbibition in some experimental cases suggests that structured boundary layers may inhibit viscous drag at confinement walls for critical nanochannel dimensions. Probing the effects of nanoconfinement on the definitions of capillary pressure, viscosity, and interfacial mass transfer is critical in determining and improving the functionality and fluid transport efficacy of geological, biological, and synthetic nanoporous media and materials.
Compiled visualization with IPI method for analysing of liquid liquid mixing process
NASA Astrophysics Data System (ADS)
Jasikova, Darina; Kotek, Michal; Kysela, Bohus; Sulc, Radek; Kopecky, Vaclav
2018-06-01
The article deals with the research of mixing process using visualization techniques and IPI method. Characteristics of the size distribution and the evolution of two liquid-liquid phase's disintegration were studied. A methodology has been proposed for visualization and image analysis of data acquired during the initial phase of the mixing process. IPI method was used for subsequent detailed study of the disintegrated droplets. The article describes advantages of usage of appropriate method, presents the limits of each method, and compares them.
Lee, Ji Sun; Cho, Soo Hee; Lim, Chae Mi; Chang, Moon Ik; Joo, Hyun Jin; Park, Hyun Jin
2017-01-01
A confirmatory and quantitative method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of mebendazole and its hydrolyzed and reduced metabolites in pork, chicken, and horse muscles was developed and validated in this study. Anthelmintic compounds were extracted with ethyl acetate after sample mixture was made alkaline followed by liquid chromatographic separation using a reversed phase C18 column. Gradient elution was performed with a mobile phase consisting of water containing 10 mM ammonium formate and methanol. This confirmatory method was validated according to EU requirements. Evaluated validation parameters included specificity, accuracy, precision (repeatability and within-laboratory reproducibility), analytical limits (decision limit and detection limit), and applicability. Most parameters were proved to be conforming to the EU requirements. The decision limit (CCα) and detection capability (CCβ) for all analytes ranged from 15.84 to 17.96 μgkg-1. The limit of detection (LOD) and the limit of quantification (LOQ) for all analytes were 0.07 μgkg-1 and 0.2 μgkg-1, respectively. The developed method was successfully applied to monitoring samples collected from the markets in major cities and proven great potential to be used as a regulatory tool to determine mebendazole residues in animal based foods. PMID:28085912
Combustion theory for liquids with a free surface. 3: Special problems
NASA Technical Reports Server (NTRS)
Milkov, S. N.; Sukhov, G. S.; Yarin, L. P.
1986-01-01
Two special problems concerning the combustion of liquids with a free surface, i.e., flame quenching during the mixing of a burning liquid inside a container and liquid burnout from a porous layer, are analyzed using a quasi-one-dimensional model. The critical parameters corresponding to the quenching of a burning fluid with a free surface are determined. Determinations are also made of the limiting pressure gradients corresponding to the transition from the combustion mode where the liquid evaporates from the surface of a porous layer to the mode where the phase transition surface lies inside the porous layer.
Bolzan, Cátia M; Caldas, Sergiane S; Guimarães, Bruno S; Primel, Ednei G
2016-09-01
A simple, rapid, and sensitive method for the determination of atrazine, simazine, cyproconazole, tebuconazole, and epoxiconazole in mineral water employing the dispersive liquid-liquid microextraction with solidification of a floating organic drop with determination by liquid chromatography tandem mass spectrometry has been developed. A mixed solution of 250 μL 1-dodecanol and 1250 μL methanol was injected rapidly into 10 mL aqueous solution (pH 7.0) with 2% w/v NaCl. After centrifugation for 5 min at 2000 rpm, the organic solvent droplets floated on the surface of the aqueous solution and the floating solvent solidified. The method limits of detection were between 3.75 and 37.5 ng/L and limits of quantification were between 12.5 and 125 ng/L. The recoveries ranged from 70 to 118% for repeatability and between 76 and 95% for intermediate precision with a relative standard deviation from 2 to 18% for all compounds. Low matrix effect was observed. The proposed method can be successfully applied in routine analysis for determination of pesticide residues in mineral water samples, allowing for monitoring of triazine and triazoles at levels below the regulatory limits set by international and national legislations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ANALYSIS OF SELECTED CHEMICAL GROUPS BY LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY
The use of the moving-belt liquid chromatographic interface in combination with mass spectrometry was evaluated for determining detection limits of selected members of various chemical classes. mong the chemical classes examined were benzidines, nitrosoamines, anilines, nitroarom...
Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge
2012-01-01
In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H(2)SO(4) solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical "resolution limit" to measure the square root of the density-viscosity product [Formula: see text] of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for [Formula: see text] measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.
Aszyk, Justyna; Kubica, Paweł; Kot-Wasik, Agata; Namieśnik, Jacek; Wasik, Andrzej
2017-10-13
Liquid chromatography-tandem mass spectrometry with electrospray ionization (HPLC-ESI-MS/MS) methods were developed for the simultaneous determination of 42 flavouring compounds and nicotine in liquids for e-cigarettes. The chromatographic separation was performed using an Ace ® Ultracore™ SuperC18™ (100×2.1mm, 2.5μm) column in both acidic and alkaline pH conditions to separate all the compounds. A simple "dilute & shoot" approach was used for the sample preparation. The method validation was performed by evaluating key analytical parameters such as linearity, accuracy, selectivity, precision, limit of detection (LOD) and limit of quantification (LOQ). The calibration curves showed good linearity within the specific ranges for the investigated compounds with correlation coefficients greater than 0.990 in each case. The recovery for all the investigated compounds varied from 89% to 110%. The intra- and inter-day precision were within the acceptable limits (±15%) at all tested concentrations. The applicability of the methods was examined by analysing 25 liquid samples from e-cigarettes commercially available on the Polish market. Copyright © 2017 Elsevier B.V. All rights reserved.
12 CFR 1237.10 - Limited-life regulated entities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Limited-life regulated entities. 1237.10... RECEIVERSHIP Limited-Life Regulated Entities § 1237.10 Limited-life regulated entities. (a) Status. The United... liquidity portfolio of a limited-life regulated entity. (c) Policies and procedures. The Agency may draft...
12 CFR 1237.10 - Limited-life regulated entities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Limited-life regulated entities. 1237.10... RECEIVERSHIP Limited-Life Regulated Entities § 1237.10 Limited-life regulated entities. (a) Status. The United... liquidity portfolio of a limited-life regulated entity. (c) Policies and procedures. The Agency may draft...
12 CFR 1237.10 - Limited-life regulated entities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Limited-life regulated entities. 1237.10... RECEIVERSHIP Limited-Life Regulated Entities § 1237.10 Limited-life regulated entities. (a) Status. The United... liquidity portfolio of a limited-life regulated entity. (c) Policies and procedures. The Agency may draft...
Aflatoxin B1 in eggs and chicken livers by dispersive liquid-liquid microextraction and HPLC.
Amirkhizi, Behzad; Arefhosseini, Seyed Rafie; Ansarin, Masoud; Nemati, Mahboob
2015-01-01
A rapid, low-cost and simple technique has been developed for the determination of aflatoxin B1 (AFB1) in eggs and livers using high-performance liquid chromatography (HPLC) with UV detection. In this study, the presence of AFB1 was investigated in 150 eggs and 50 chicken livers from the local market of Tabriz, Iran. AFB1 was extracted with a mixture of acetonitrile:water (80:20) and cleaned up by dispersive liquid-liquid microextraction which is a very economical, fast and sensitive method. AFB1 was quantified by HPLC-UV without need for any complex derivatisation in samples to enhance the detection. The results showed that 72% of the liver and 58% of the egg samples were contaminated with AFB1 ranging from 0.30 to 16.36 µg kg (̶1). limit of detection and limit of quantification for AFB1 were 0.08 and 0.28 µg kg (̶ 1), respectively. The proposed method is suitable for fast analysing of AFB1 in egg and liver samples.
Ionic liquid technology to recover volatile organic compounds (VOCs).
Salar-García, M J; Ortiz-Martínez, V M; Hernández-Fernández, F J; de Los Ríos, A P; Quesada-Medina, J
2017-01-05
Volatile organic compounds (VOCs) comprise a wide variety of carbon-based materials which are volatile at relatively low temperatures. Most of VOCs pose a hazard to both human health and the environment. For this reason, in the last years, big efforts have been made to develop efficient techniques for the recovery of VOCs produced from industry. The use of ionic liquids (ILs) is among the most promising separation technologies in this field. This article offers a critical overview on the use of ionic liquids for the separation of VOCs both in bulk and in immobilized form. It covers the most relevant works within this field and provides a global outlook on the limitations and future prospects of this technology. The extraction processes of VOCs by using different IL-based assemblies are described in detail and compared with conventional methods This review also underlines the advantages and limitations posed by ionic liquids according to the nature of the cation and the anions present in their structure and the stability of the membrane configurations in which ILs are used as liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... incinerator or waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6... liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during which...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the incremental... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the... supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the incremental... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the... supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million...
Code of Federal Regulations, 2010 CFR
2010-07-01
... incinerator or waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6... liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during which...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani
2015-01-09
A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Liquid crystal templating as an approach to spatially and temporally organise soft matter.
van der Asdonk, Pim; Kouwer, Paul H J
2017-10-02
Chemistry quickly moves from a molecular science to a systems science. This requires spatial and temporal control over the organisation of molecules and molecular assemblies. Whilst Nature almost by default (transiently) organises her components at multiple different length scales, scientists struggle to realise even relatively straightforward patterns. In the past decades, supramolecular chemistry has taught us the rules to precisely engineer molecular assembly at the nanometre scale. At higher length scales, however, we are bound to top-down nanotechnology techniques to realise order. For soft, biological matter, many of these top-down techniques come with serious limitations since the molecules generally show low susceptibilities to the applied stimuli. A new method is based on liquid crystal templating. In this hierarchical approach, a liquid crystalline host serves as the scaffold to order polymers or assemblies. Being a liquid crystal, the host material can be ordered at many different length scales and on top of that, is highly susceptible to many external stimuli, which can even be used to manipulate the liquid crystal organisation in time. As a result, we anticipate large control over the organisation of the materials inside the liquid crystalline host. Recently, liquid crystal templating was also realised in water. This suddenly makes this tool highly applicable to start organising more delicate biological materials or even small organisms. We review the scope and limitations of liquid crystal templating and look out to where the technique may lead us.
Asghari, Alireza; Fahimi, Ebrahim; Bazregar, Mohammad; Rajabi, Maryam; Boutorabi, Leila
2017-05-01
Simple and rapid determinations of some psychotropic drugs in some pharmaceutical wastewater and human plasma samples were successfully accomplished via the tandem dispersive liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection (TDLLME-HPLC-UV). TDLLME of the three psychotropic drugs clozapine, chlorpromazine, and thioridazine was easily performed through two consecutive dispersive liquid-liquid microextractions. By performing this convenient method, proper sample preconcentrations and clean-ups were achieved in just about 7min. In order to achieve the best extraction efficiency, the effective parameters involved were optimized. The optimal experimental conditions consisted of 100μL of CCl 4 (as the extraction organic solvent), and the pH values of 13 and 2 for the donor and acceptor phases, respectively. Under these optimum experimental conditions, the proposed TDLLME-HPLC-UV technique provided a good linearity in the range of 5-3000ngmL -1 for the three psychotropic drugs with the correlation of determinations (R 2 s) higher than 0.996. The limits of quantification (LOQs) and limits of detection (LODs) obtained were 5.0ngmL -1 and 1.0-1.5ngmL -1 , respectively. Also the proper enrichment factors (EFs) of 96, 99, and 88 for clozapine, chlorpromazine, and thioridazine, respectively, and good extraction repeatabilities (relative standard deviations below 9.3%, n=5) were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water
NASA Astrophysics Data System (ADS)
Locke, Bruce R.; Shih, Kai-Yuan
2011-06-01
This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.
Application of ionic liquid in liquid phase microextraction technology.
Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho
2012-11-01
Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou; Wang, Tianwei
2017-04-01
Collapsing gullies are one of the most serious soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have been performed on the relationship of soil Atterberg limits with soil profiles of the collapsing gullies. Soil Atterberg limits, which include plastic limit and liquid limit, have been proposed as indicators for soil vulnerability to degradation. Here, the soil Atterberg limits within different weathering profiles and their relationships with soil physicochemical properties were investigated by characterizing four collapsing gullies in four counties in the hilly granitic region of southern China. The results showed that with the fall of weathering degree, there was a sharp decrease in plastic limit, liquid limit, plasticity index, soil organic matter, cation exchange capacity and free iron oxide. Additionally, there was a gradual increase in liquidity index, a sharp increase in particle density and bulk density followed by a slight decline, a decrease in the finer soil particles, a noticeable decline in the clay contents, and a considerable increase in the gravel and sand contents. The plastic limit varied from 19.43 to 35.93 % in TC, 19.51 to 33.82 % in GX, 19.32 to 35.58 % in AX and 18.91 to 36.56 % in WH, while the liquid limit varied from 30.91 to 62.68 % in TC, 30.89 to 57.70 % in GX, 32.48 to 65.71 % in AX and 30.77 to 62.70 % in WH, respectively. The soil Atterberg limits in the sandy soil layers and detritus layers were lower than those in the surface layers and red soil layers, which results in higher vulnerability of the sandy soil layers and detritus layers to erosion and finally the formation of the collapsing gully. The regression analyses showed that soil Atterberg limits had significant and positive correlation with SOM, clay content, cationic exchange capacity and Fed, significant and negative correlation with sand content and no obvious correlation with other properties. The results of this study revealed that soil Atterberg limits are an informative indicator to reflect the weathering degree of different weathering profiles of the collapsing gullies in the hilly granitic region.
Test report dot 7A type a liquid packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E. T.; Brandjes, C.; Benoit, T. J.
This test report documents the performance of Savannah River National Laboratory’s (SRNL’s) U.S. Department of Transportation (DOT) Specification 7A; General Packaging, Type A shielded liquid shipping packaging and compliance with the regulatory requirements of Title 49 of the Code of Federal Regulations (CFR). The primary use of this packaging design is for the transport of radioactive liquids of up to 1.3 liters in an unshielded configuration and up to 113 mL of radioactive liquids in a shielded configuration, with no more than an A2 quantity in either configuration, over public highways and/or commercial aircraft. The contents are liquid radioactive materialsmore » sufficiently shielded and within the activity limits specified in173.435 or 173.433 for A2 (normal form) materials, as well as within the analyzed thermal heat limits. Any contents must be compatibly packaged and must be compatible with the packaging. The basic packaging design is based on the U.S. Department of Energy’s (DOE’s) Model 9979 Type A fissile shipping packaging designed and tested by SRNL. The shielded liquid configuration consists of the outer and inner drums of the 9979 package with additional low density polyethylene (LDPE) dunnage nesting a tungsten shielded cask assembly (WSCA) within the 30-gallon inner drum. The packaging model for the DOT Specification 7A, Type A liquids packaging is HVYTAL.« less
The application of tribology in assessing texture perception of oral liquid medicines.
Batchelor, Hannah; Venables, Rebecca; Marriott, John; Mills, Tom
2015-02-20
The palatability of medicines is likely to have a significant impact on patient adherence and consequently, on the safety and efficacy of a medicinal product. Palatability encompasses properties of medicines not limited to taste including swallowability (e.g. size, shape, texture). However, there has been limited work undertaken to measure the texture of medicines and how this may affect palatability and subsequent adherence. Tribology offers an understanding of oral processes and can allow physical properties of materials to be linked to "mouthfeel". This paper describes a preliminary application of tribology to oral liquid medicines and demonstrates that this technique is useful in the development of future oral liquid medicines. Copyright © 2015 Elsevier B.V. All rights reserved.
Coherent Raman Studies of Shocked Liquids
NASA Astrophysics Data System (ADS)
McGrane, Shawn; Brown, Kathryn; Dang, Nhan; Bolme, Cynthia; Moore, David
2013-06-01
Transient vibrational spectroscopies offer the potential to directly observe time dependent shock induced chemical reaction kinetics. We report recent experiments that couple a hybrid picosecond/femtosecond coherent anti-Stokes Raman spectroscopy (CARS) diagnostic with our tabletop ultrafast laser driven shock platform. Initial results on liquids shocked to 20 GPa suggest that sub-picosecond dephasing at high pressure and temperature may limit the application of this nonresonant background free version of CARS. Initial results using interferometric CARS to increase sensitivity and overcome these limitations will be presented.
The Upper Limit of Energy Density of Nanoporous Materials Functionalized Liquid
NASA Astrophysics Data System (ADS)
Han, Aijie; Punyamurtula, Venkata K.; Kim, Taewan; Qiao, Yu
2008-06-01
In this article, we report the experimental result of energy dissipation of a mobil crystalline material (MCM) 41 in mercury. The MCM41 contains a large volume fraction of nanometer-sized pores. As the applied pressure is relatively high, the nanopore surfaces are exposed to mercury. Due to the large nanopore surface area and the large solid-liquid interfacial tension, the energy dissipation effectiveness of this system is ultrahigh, representing the upper limit that can be achieved by the pressure-induced infiltration technique.
Fan, Chen; Li, Nai; Cao, Xueli
2015-05-01
In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Disorder from the Bulk Ionic Liquid in Electric Double Layer Transistors
Petach, Trevor A.; Reich, Konstantin V.; Zhang, Xiao; ...
2017-07-28
Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. But, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We then validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.
On consistency of hydrodynamic approximation for chiral media
NASA Astrophysics Data System (ADS)
Avdoshkin, A.; Kirilin, V. P.; Sadofyev, A. V.; Zakharov, V. I.
2016-04-01
We consider chiral liquids, that is liquids consisting of massless fermions and right-left asymmetric. In such media, one expects existence of electromagnetic current flowing along an external magnetic field, associated with the chiral anomaly. The current is predicted to be dissipation-free. We consider dynamics of chiral liquids, concentrating on the issues of possible instabilities and infrared sensitivity. Instabilities arise, generally speaking, already in the limit of vanishing electromagnetic constant, αel → 0. In particular, liquids with non-vanishing chiral chemical potential might decay into right-left asymmetric states containing vortices.
Instabilities of Shallow Dynamic Thermocapillary Liquid Layers
NASA Technical Reports Server (NTRS)
Schwabe, D.; Moeller, U.; Schneider, J.; Scharmann, A.
1992-01-01
In the experiments reported here, correlation measurements with three fixed thermocouples and direct optical observations of the dynamically deformed liquid-gas interface were used to study the spatiotemporal structure of stable and unstable thermocapillary flows. The frequency, wavelength, phase speed, angle of propagation, and stability limits are reported for two geometrically different configurations of thermocapillary flow in side-heated thin liquid layers. A theoretical interpretation of the results is presented.
Molecular Beam Studies of Volatile Liquids and Fuel Surrogates Using Liquid Microjets
2014-12-18
themselves. Detailed discussions of the microjet technique are carried out in the following publications. Nozzle Liquid Jet Chopper Wheel...heating and evaporation occur within 1 ms of fuel leaving the fuel injector . This atomization proves is often the limiting process in combustion...This analysis leads to criteria for selecting the temperature and nozzle radius for producing stable jets in vacuum. Figure 4 depicts the
Risk-Based Explosive Safety Analysis
2016-11-30
safety siting of energetic liquids and propellants can be greatly aided by the use of risk-based methodologies. The low probability of exposed...liquids or propellants . 15. SUBJECT TERMS N/A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...of energetic liquids and propellants can be greatly aided by the use of risk-based methodologies. The low probability of exposed personnel and the
Hoff, Rodrigo Barcellos; Pizzolato, Tânia Mara; Peralba, Maria do Carmo Ruaro; Díaz-Cruz, M Silvia; Barceló, Damià
2015-03-01
Sulfonamides are widely used in human and veterinary medicine. The presence of sulfonamides residues in food is an issue of great concern. Throughout the present work, a method for the targeted analysis of 16 sulfonamides and metabolites residue in liver of several species has been developed and validated. Extraction and clean-up has been statistically optimized using central composite design experiments. Two extraction methods have been developed, validated and compared: i) pressurized liquid extraction, in which samples were defatted with hexane and subsequently extracted with acetonitrile and ii) ultrasound-assisted extraction with acetonitrile and further liquid-liquid extraction with hexane. Extracts have been analyzed by liquid chromatography-quadrupole linear ion trap-tandem mass spectrometry. Validation procedure has been based on the Commission Decision 2002/657/EC and included the assessment of parameters such as decision limit (CCα), detection capability (CCβ), sensitivity, selectivity, accuracy and precision. Method׳s performance has been satisfactory, with CCα values within the range of 111.2-161.4 µg kg(-1), limits of detection of 10 µg kg(-1) and accuracy values around 100% for all compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Meng; Cheng, Chunsheng; Liu, Chunbo; Yang, Yaling
2018-01-01
A rapid, simple, reliable and efficient hollow fiber supported ionic liquids liquid-phase micro-extraction method (IL-HF-LPME) followed by high-performance liquid chromatography was successfully applied to the determination of four kinds of polycyclic aromatic hydrocarbons (PAHs) in milk samples. In the IL-HF-LPME method, a mixture of [OMIM]PF6 and lauric acid, in a ratio of 3:1, was immobilized in the pores of a polypropylene hollow fiber used as extraction solvent. A series of essential parameters influencing the extraction efficiency were investigated and optimized. Under the optimal conditions, the extraction equilibrium is achieved within 3 min, the good linearity was >0.9990, the limits of detection varied from 0.14 to 0.71 ng/mL, the limit of quantification values were between 0.4 and 1.8 ng/mL, and the relative standard deviations were in the range of 1.24-3.27% (n = 5). The proposed method was applied to analyze four PAHs in milk samples and recoveries were between 93.6 and 102.8%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Faraji, Mohammad; Hamdamali, Mohammadrezza; Aryanasab, Fezzeh; Shabanian, Meisam
2018-07-13
In this research, an ultrasonic-assisted extraction followed by 2-naphthalenthiol derivatization and dispersive liquid-liquid microextraction of acrylamide (AA) was developed as simple and sensitive sample preparation method for AA in bread and biscuit samples using high performance liquid chromatography. Influence of derivatization and microextraction parameters were evaluated and optimized. Results showed that the derivatization of AA leads to improve its hydrophobicity and chromatographic behavior. Under optimum conditions of derivatization and microextraction, the method yielded a linear calibration curve ranging from 10 to 1000 μg L -1 with a determination coefficient (R 2 ) of 0.9987. Limit of detection (LOD) and limit of quantification (LOQ) were 3.0 and 9.0 μg L -1 , respectively. Intra-day (n = 6) and inter-day (n = 3) precisions based on relative standard deviation percent (RSD%) for extraction and determination of AA at 50 and 500 μg L -1 levels were less than 9.0%. Finally, the performance of proposed method was investigated for determination of AA in some bread and biscuit samples, and satisfactory results were obtained (relative recovery ≥ 90%). Copyright © 2018. Published by Elsevier B.V.
5 CFR 831.1404 - Financial hardship.
Code of Federal Regulations, 2010 CFR
2010-01-01
... may be deemed to exist in—but not limited to—those situations where the annuitant from whom collection is sought needs substantially all of his/her current income and liquid assets to meet current... the annuitant's liquid assets and current income in making such determinations. ...
Zhu, Shuqiang; Wang, Lijun; Su, Along; Zhang, Haixia
2017-08-01
A novel method was developed for the determination of two endocrine-disrupting chemicals, bisphenol A and 4-nonylphenol, in vegetable oil by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography with tandem mass spectrometry. Using a magnetic liquid as the microextraction solvent, several key parameters were optimized, including the type and volume of the magnetic liquid, extraction time, amount of dispersant, and the type of reverse extractant. The detection limits for bisphenol A and 4-nonylphenol were 0.1 and 0.06 μg/kg, respectively. The recoveries were 70.4-112.3%, and the relative standard deviations were less than 4.2%. The method is simple for the extraction of bisphenol A and 4-nonylphenol from vegetable oil and suitable for routine analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding the liquid-liquid (water-hexane) interface
NASA Astrophysics Data System (ADS)
Murad, Sohail; Puri, Ishwar K.
2017-10-01
Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.
Yılmaz, Pelin Köseoğlu; Ertaş, Abdulselam; Kolak, Ufuk
2014-08-01
A sensitive, rapid, and simple high-performance liquid chromatography with UV detection method was developed for the simultaneous determination of seven phthalic acid esters (dimethyl phthalate, dipropyl phthalate, di-n-butyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di-(2-ethylhexyl) phthalate, and di-n-octyl phthalate) in several kinds of beverage samples. Ultrasound and vortex-assisted dispersive liquid-liquid microextraction method was used. The separation was performed using an Intersil ODS-3 column (C18 , 250 × 4.6 mm, 5.0 μm) and a gradient elution with a mobile phase consisting of MeOH/ACN (50:50) and 0.2 M KH2 PO4 buffer. Analytes were detected by a UV detector at 230 nm. The developed method was validated in terms of linearity, limit of detection, limit of quantification, repeatability, accuracy, and recovery. Calibration equations and correlation coefficients (> 0.99) were calculated by least squares method with weighting factor. The limit of detection and quantification were in the range of 0.019-0.208 and 0.072-0.483 μg/L. The repeatability and intermediate precision were determined in terms of relative standard deviation to be within 0.03-3.93 and 0.02-4.74%, respectively. The accuracy was found to be in the range of -14.55 to 15.57% in terms of relative error. Seventeen different beverage samples in plastic bottles were successfully analyzed, and ten of them were found to be contaminated by different phthalic acid esters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zuo, G. Z.; Hu, J. S.; Maingi, R.; Yang, Q. X.; Sun, Z.; Huang, M.; Chen, Y.; Yuan, X. L.; Meng, X. C.; Xu, W.; Gentile, C.; Carpe, A.; Diallo, A.; Lunsford, R.; Mansfield, D.; Osborne, T.; Tritz, K.; Li, J. G.
2017-12-01
We report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermal contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.
Han, Xuemei; Koh, Charlynn Sher Lin; Lee, Hiang Kwee; Chew, Wee Shern; Ling, Xing Yi
2017-11-15
Miniaturizing the continuous multistep operations of a factory into a microchemical plant offers a safe and cost-effective approach to promote high-throughput screening in drug development and enforcement of industrial/environmental safety. While particle-assembled microdroplets in the form of liquid marble are ideal as microchemical plant, these platforms are mainly restricted to single-step reactions and limited to ex situ reaction monitoring. Herein, we utilize plasmonic liquid marble (PLM), formed by encapsulating liquid droplet with Ag nanocubes, to address these issues and demonstrate it as an ideal microchemical plant to conduct reaction-and-detection sequences on-demand in a nondisruptive manner. Utilizing a two-step azo-dye formation as our model reaction, our microchemical plant allows rapid and efficient diazotization of nitroaniline to form diazonium nitrobenzene, followed by the azo coupling of this intermediate with target aromatic compound to yield azo-dye. These molecular events are tracked in situ via SERS measurement through the plasmonic shell and further verified with in silico investigation. Furthermore, we apply our microchemical plant for ultrasensitive SERS detection and quantification of bisphenol A (BPA) with detection limit down to 10 amol, which is 50 000-fold lower than the BPA safety limit. Together with the protections offered by plasmonic shell against external environments, these collective advantages empower PLM as a multifunctional microchemical plant to facilitate small-volume testing and optimization of processes relevant in industrial and research contexts.
Edge properties with the liquid lithium limiter in FTU—experiment and transport modelling
NASA Astrophysics Data System (ADS)
Pericoli-Ridolfini, V.; Apicella, M. L.; Mazzitelli, G.; Tudisco, O.; Zagórski, R.; FTU Team
2007-07-01
Liquid lithium as a plasma-facing material was tested for the first time on a high field medium size tokamak, FTU. A liquid Li reservoir supplies a mesh of capillaries that is movable from shot to shot in the scrape-off layer (SOL) plasma to act as a secondary limiter. An almost complete lithization of the vacuum vessel walls is obtained in about three discharges. Plasmas cleaner than boronization and titanization, with lower radiation losses and smaller impurity content are produced. The SOL electron temperature increases, ΔTe ~ 10 eV, while density (ne) is less affected. The 2D multifluid code TECXY explains this only if a strong reduction of plasma recycling on the walls and main limiter occurs, consistent with the high Li hydrogen pumping capability. This property also permits a much tighter control of the plasma density. With the Li limiter inserted inside the vessel poloidal asymmetries develop in the SOL that TECXY explains with a local increase of radiation, caused by enhanced evaporation/sputtering of Li. New regimes can be produced in such conditions with a clear increase in |∇ne/ne| and of the peaking factor ne0/
Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.
Wang, Qingyang; Chen, Renkun
2018-05-09
Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.
Non-contact optical Liquid Level Sensors
NASA Astrophysics Data System (ADS)
Kiseleva, L. L.; Tevelev, L. V.; Shaimukhametov, R. R.
2016-06-01
Information about characteristics of the optical liquid level sensor are present. Sensors are used to control of the light level limit fluid - water, kerosene, alcohol, solutions, etc. Intrinsically safe, reliable and easy to use. The operating principle of the level sensor is an optoelectronic infrared device.
Turning schedules influence final composition of composted swine manure
USDA-ARS?s Scientific Manuscript database
Liquid swine (Sus scrofa domesticus) manure is a high-moisture, low-nutrient product that limits economical transport to areas in proximity of its source, possibly contributing to localized high soil nutrient levels. Composting swine manure converts liquid slurries to solids at lower moisture conten...
A liquid bioplastic formulation for film coating of agronomic seeds
USDA-ARS?s Scientific Manuscript database
Interest in industrial and domestic applications of biodegradable plastics from renewable sources is increasing, but their use in agriculture is still limited (e.g., mulching films, plant pots, and plant clips). However, a sprayable liquid bioplastic formulation was recently evaluated for applicati...
21 CFR 524.86 - Amitraz liquid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.86 Amitraz liquid... treatments, 14 days apart. (3) Limitations. Continue treatment until no viable mites are found in skin...
21 CFR 524.86 - Amitraz liquid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.86 Amitraz liquid... treatments, 14 days apart. (3) Limitations. Continue treatment until no viable mites are found in skin...
21 CFR 524.86 - Amitraz liquid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.86 Amitraz liquid... treatments, 14 days apart. (3) Limitations. Continue treatment until no viable mites are found in skin...
21 CFR 524.86 - Amitraz liquid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.86 Amitraz liquid... treatments, 14 days apart. (3) Limitations. Continue treatment until no viable mites are found in skin...
LCEC: The Combination of Liquid Chromatography and Electrochemistry.
ERIC Educational Resources Information Center
Kissinger, Peter T.
1983-01-01
Use of combined liquid chromatography and finite-current electrochemistry (LCEC) procedures are discussed. Also discusses the relationship between electroactivity and molecular structure, selectivity in LCEC, and LCEC applications. Because of its selectivity and low detection limits, the procedures are most often applied in biomedical and…
78 FR 6402 - Pipeline Safety: Accident and Incident Notification Time Limit
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No.... SUMMARY: Owners and operators of gas and hazardous liquid pipeline systems and liquefied natural gas (LNG... operators of gas and hazardous liquids pipeline systems and LNG facilities that, ``at the earliest...
Ferrari, Anthony; Hunt, Jacob; Stiegman, Albert; Dudley, Gregory B
2015-12-04
Temporary superheating and sustained nucleation-limited "superboiling" of unstirred liquids above the normal atmospheric boiling point have been documented during microwave heating. These phenomena are reliably observed under prescribed conditions, although the duration (of superheating) and magnitude (of superheating and superboiling) vary according to system parameters such as volume of the liquid and the size and shape of the vessel. Both phenomena are mitigated by rapid stirring with an appropriate stir bar and/or with the addition of boiling chips, which provide nucleation sites to support the phase-change from liquid to gas. With proper experimental design and especially proper stirring, the measured temperature of typical organic reaction mixtures heated at reflux will be close to the normal boiling point temperature of the solvent, whether heated using microwave radiation or conventional convective heat transfer. These observations are important to take into consideration when comparing reaction rates under conventional and microwave heating.
Dense Chern-Simons matter with fermions at large N
NASA Astrophysics Data System (ADS)
Geracie, Michael; Goykhman, Mikhail; Son, Dam T.
2016-04-01
In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the 't Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.
Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi
2017-09-01
A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.
Liquidity crises on different time scales
NASA Astrophysics Data System (ADS)
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Liquidity crises on different time scales.
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Analysis and Derivation of Allocations for Fiber Contaminants in Liquid Bipropellant Systems
NASA Technical Reports Server (NTRS)
Lowrey, N. M; ibrahim, K. Y.
2012-01-01
An analysis was performed to identify the engineering rationale for the existing particulate limits in MSFC-SPEC-164, Cleanliness of Components for Use in Oxygen, Fuel, and Pneumatic Systems, determine the applicability of this rationale to fibers, identify potential risks that may result from fiber contamination in liquid oxygen/fuel bipropellant systems, and bound each of these risks. The objective of this analysis was to determine whether fiber contamination exceeding the established quantitative limits for particulate can be tolerated in these systems and, if so, to derive and recommend quantitative allocations for fibers beyond the limits established for other particulate. Knowledge gaps were identified that limit a complete understanding of the risk of promoted ignition from an accumulation of fibers in a gaseous oxygen system.
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel
2009-10-23
This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel
2009-12-01
Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).
Contactless laser viscometer for flowing liquid films
NASA Astrophysics Data System (ADS)
Michels, Alexandre F.; Menegotto, Thiago; Grieneisen, Hans-Peter; Horowitz, Flavio
2005-12-01
This work briefly reviews recent progress in interferometric monitoring of spin and of dip coating, from a unified point of view, and its application for contactless viscometry of liquid films. Considering the associated models and measurement uncertainties, the method was validated for both coating processes with oil standards of known viscosities and constant refractive indices. Limitations and perspectives for application of the laser viscometer to liquid films with a varying refractive index are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isakov, L.M.; El'tsin, G.I.
1972-01-01
The requirements imposed on the measurement of the radioactivity of liquids are differentiated as a function of the purpose of the instrument. Five groups of radiometers were examined and for each the individual requirements were characterized. The proposed systematization was oriented toward the ordering of the development of liquid radiometers and a reduction in the number of models without limiting their range of applicability. (tr-auth)
The search for 0νββ decay with the GERDA experiment: Status and prospects
NASA Astrophysics Data System (ADS)
Majorovits, B.
2015-08-01
The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T1/2 0 v>2.1 ṡ1025 . A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.
Crystalline liquids: the blue phases
NASA Astrophysics Data System (ADS)
Wright, David C.; Mermin, N. David
1989-04-01
The blue phases of cholesteric liquid crystals are liquids that exhibit orientational order characterized by crystallographic space-group symmetries. We present here a pedagogical introduction to the current understanding of the equilibrium structure of these phases accompanied by a general overview of major experimental results. Using the Ginzburg-Landau free energy appropriate to the system, we first discuss in detail the character and stability of the usual helical phase of cholesterics, showing that for certain parameter ranges the helical phase is unstable to the appearance of one or more blue phases. The two principal models for the blue phases are two limiting cases of the Ginzburg-Landau theory. We explore each limit and conclude with some general considerations of defects in both models and an exact minimization of the free energy in a curved three-dimensional space.
Sub-wavelength Laser Nanopatterning using Droplet Lenses
NASA Astrophysics Data System (ADS)
Duocastella, Martí; Florian, Camilo; Serra, Pere; Diaspro, Alberto
2015-11-01
When a drop of liquid falls onto a screen, e.g. a cell phone, the pixels lying underneath appear magnified. This lensing effect is a combination of the curvature and refractive index of the liquid droplet. Here, the spontaneous formation of such lenses is exploited to overcome the diffraction limit of a conventional laser direct-writing system. In particular, micro-droplets are first laser-printed at user-defined locations on a surface and they are later used as lenses to focus the same laser beam. Under conditions described herein, nanopatterns can be obtained with a reduction in spot size primarily limited by the refractive index of the liquid. This all-optics approach is demonstrated by writing arbitrary patterns with a feature size around 280 nm, about one fourth of the processing wavelength.
Models of compacted fine-grained soils used as mineral liner for solid waste
NASA Astrophysics Data System (ADS)
Sivrikaya, Osman
2008-02-01
To prevent the leakage of pollutant liquids into groundwater and sublayers, the compacted fine-grained soils are commonly utilized as mineral liners or a sealing system constructed under municipal solid waste and other containment hazardous materials. This study presents the correlation equations of the compaction parameters required for construction of a mineral liner system. The determination of the characteristic compaction parameters, maximum dry unit weight ( γ dmax) and optimum water content ( w opt) requires considerable time and great effort. In this study, empirical models are described and examined to find which of the index properties correlate well with the compaction characteristics for estimating γ dmax and w opt of fine-grained soils at the standard compactive effort. The compaction data are correlated with different combinations of gravel content ( G), sand content ( S), fine-grained content (FC = clay + silt), plasticity index ( I p), liquid limit ( w L) and plastic limit ( w P) by performing multilinear regression (MLR) analyses. The obtained correlations with statistical parameters are presented and compared with the previous studies. It is found that the maximum dry unit weight and optimum water content have a considerably good correlation with plastic limit in comparison with liquid limit and plasticity index.
Letseka, Thabiso
2017-01-01
We report the application of the dispersive liquid-liquid microextraction coupled to hollow-fibre membrane-assisted liquid-phase microextraction and its application for extraction of atrazine and triclosan. Under optimum conditions, namely, 25 μL of a 1 : 4 chlorobenzene : ethyl acetate mixture dispersed in 1 mL of aqueous sample, 10% (m/v) NaCl, a magnetic stirrer speed at 600 rpm, and 10 minutes' extraction time with toluene-filled fibre as the acceptor phase, the method demonstrates sufficient figures of merit. These include linearity (R2 ≥ 0.9975), intravial precision (%RSD ≤ 7.6), enrichment factors (127 and 142), limits of detection (0.0081 and 0.0169 µg/mL), and recovery from river water and sewerage (96–101%). The relatively high detection limits are attributed to the flame ionization detector which is less preferred than a mass spectrometer in trace analyses. This is the first report of a homogenous mixture of the dispersed organic solvent in aqueous solutions and its employment in extraction of organic compounds from aqueous solutions. It therefore adds yet another candidate in the pool of miniaturised solvent microextraction techniques. PMID:29158736
Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan
2017-08-01
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid phase stabilization versus bubble formation at a nanoscale curved interface
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Luo, Tengfei
2018-03-01
We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.
Zheng, Difan; Chen, Haiquan
2016-06-20
With the advances of technology, great progresses have been made in liquid biopsy in recent years. Liquid biopsy is currently playing a more and more important role in early diagnosis and treatment of cancer. Compared with traditional tissue biopsy, liquid biopsy is more popular in clinical practice due to its non-invasiveness, convenience and high repeatability. It has huge potential in the future. This review introduces circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) as the most important objects in liquid biopsy, mainly focusing on their history, biological characteristics, detection technologies, limitations and applications in non-small cell lung cancer.
Ultrasonic technique for detection of liquids in copper tubing process lines
NASA Astrophysics Data System (ADS)
Dudley, W. A.
1980-10-01
An ultrasonic pulse-echo method developed for semiquantitative measurement of liquid levels in copper tubing is described. This ultrasonic approach is of particular value when used as a pre-maintenance diagnostic tool in repairing process lines containing hazardous liquids. Performance tests show that water and similar liquids can be directly detected to fill levels as low as 1/16 in. For water fills below 1/16 in., direct level detection is impractical because of signal resolution limitations. However, this fill condition is indirectly measurable and is detected by the effect of observed degradation of the adjacent wall echo pattern. Fill conditions for liquids associated with high sound attenuation such as oil can be indirectly determined.
Kletenik-Edelman, Orly; Reichman, David R; Rabani, Eran
2011-01-28
A novel quantum mode coupling theory combined with a kinetic approach is developed for the description of collective density fluctuations in quantum liquids characterized by Boltzmann statistics. Three mode-coupling approximations are presented and applied to study the dynamic response of para-hydrogen near the triple point and normal liquid helium above the λ-transition. The theory is compared with experimental results and to the exact imaginary time data generated by path integral Monte Carlo simulations. While for liquid para-hydrogen the combination of kinetic and quantum mode-coupling theory provides semi-quantitative results for both short and long time dynamics, it fails for normal liquid helium. A discussion of this failure based on the ideal gas limit is presented.
Advanced Booster Liquid Engine Combustion Stability
NASA Technical Reports Server (NTRS)
Tucker, Kevin; Gentz, Steve; Nettles, Mindy
2015-01-01
Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.
Lutenegger, A.J.; Hallberg, G.R.
1988-01-01
Lutenegger, A.J. and Hallberg, G.R., 1988. Stability of loess. Eng. Geol., 25: 247-261. The natural stability of loess soils can be related to fundamental geotechnical properties such as Atterberg limits, water content and void ratio. Field observations of unstable conditions in loess deposits in the upper midwest, U.S.A. show relationships between instability and the in situ moisture content and the liquidity index of the loess. Unstable loess can attain natural moisture contents equal to, or greater than, its liquid limit. Implications of these observations for applied engineering works are described. ?? 1988.
Background characterization of an ultra-low background liquid scintillation counter
Erchinger, J. L.; Orrell, John L.; Aalseth, C. E.; ...
2017-01-26
The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3–3600 keV can be realized. Finally, initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.
Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.
Optical biosensor based on liquid crystal droplets for detection of cholic acid
NASA Astrophysics Data System (ADS)
Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao
2016-12-01
A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.
Partial wetting gas-liquid segmented flow microreactor.
Kazemi Oskooei, S Ali; Sinton, David
2010-07-07
A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.
Viscous Dissipation in One-Dimensional Quantum Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Pustilnik, M.
We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zerotemperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. In conclusion, our consideration is applicable to all single-component Galilean- invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.
Development of a passive phase separator for space and earth applications
Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.
2018-01-01
The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785
Viscous Dissipation in One-Dimensional Quantum Liquids
Matveev, K. A.; Pustilnik, M.
2017-07-20
We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zerotemperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. In conclusion, our consideration is applicable to all single-component Galilean- invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.
46 CFR 151.03-35 - Limiting draft.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...
46 CFR 151.03-35 - Limiting draft.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...
46 CFR 151.03-35 - Limiting draft.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...
46 CFR 151.03-35 - Limiting draft.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...
46 CFR 151.03-35 - Limiting draft.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Limiting draft. 151.03-35 Section 151.03-35 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-35 Limiting draft. Maximum allowable draft to which a barge may be loaded. Limiting draft is a function of hull type and cargo specific gravity...
Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi
2018-05-09
Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.
Mass Accommodation and Chemical Reaction at Gas-Liquid Interfaces
NASA Astrophysics Data System (ADS)
Kolb, C. E.; Williams, L. R.; Jayne, J. T.; Worsnop, D. R.; Davidovits, P.
2006-12-01
The uptake of trace gases by liquid surfaces is an important process that initiates the heterogeneous chemistry of liquid aerosol particles and cloud droplets. We have recently reviewed the available experimental data for liquid aqueous and aqueous/organic surfaces (1). The review highlights some inconsistencies among experimental results and between experimental results and molecular dynamics simulations. Some of these inconsistencies will be evaluated and discussed in terms of the physics of liquid interfaces, the limitations of various experimental techniques and the disparate scales of laboratory experiments and current molecular simulations (1, 2). 1. Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., Worsnop, D. R., 2006, Mass Accommodation and Chemical Reactions at Gas Liquid Interfaces, Chem. Rev. 106, 1323-1354. 2. Garrett, B. C., Schenter, G. K., Morita, A., 2006, Molecular Simulations of Molecules across the Liquid/Vapor Interface of Water, Chem. Rev. 106, 1355-1374.
40 CFR Table 7 to Subpart Ddddd of... - Establishing Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Particulate matter, mercury, or total selected metals a. Wet scrubber operating parameters i. Establish a site... drop and liquid flow rate monitors and the particulate matter, mercury, or total selected metals... from the pressure drop and liquid flow rate monitors and the particulate matter, mercury, or total...
Detection of ricin contamination in liquid egg by electrochemiluminescence immunosorbent assay
USDA-ARS?s Scientific Manuscript database
A monoclonal antibody-based electrochemical luminescence (ECL) method was developed for detecting and quantifying ricin in liquid egg, with a limit of detection of 0.2 ng/mL. Because this highly toxic protein, present in the seeds of Ricinus communis (castor), has been used for intentional poisoning...
46 CFR 105.15-10 - Application for inspection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... a commercial fishing vessel, intended for transporting combustible or flammable liquids in bulk in limited quantities for the purpose of dispensing those liquids, the owners, master, or agent shall submit... letter of compliance of a vessel shall be made in writing by the master, owner, or agent to an Officer in...
46 CFR 105.15-10 - Application for inspection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... a commercial fishing vessel, intended for transporting combustible or flammable liquids in bulk in limited quantities for the purpose of dispensing those liquids, the owners, master, or agent shall submit... letter of compliance of a vessel shall be made in writing by the master, owner, or agent to an Officer in...
46 CFR 105.15-10 - Application for inspection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a commercial fishing vessel, intended for transporting combustible or flammable liquids in bulk in limited quantities for the purpose of dispensing those liquids, the owners, master, or agent shall submit... letter of compliance of a vessel shall be made in writing by the master, owner, or agent to an Officer in...
46 CFR 105.15-10 - Application for inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... a commercial fishing vessel, intended for transporting combustible or flammable liquids in bulk in limited quantities for the purpose of dispensing those liquids, the owners, master, or agent shall submit... letter of compliance of a vessel shall be made in writing by the master, owner, or agent to an Officer in...
46 CFR 105.15-10 - Application for inspection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... a commercial fishing vessel, intended for transporting combustible or flammable liquids in bulk in limited quantities for the purpose of dispensing those liquids, the owners, master, or agent shall submit... letter of compliance of a vessel shall be made in writing by the master, owner, or agent to an Officer in...
76 FR 82026 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... International Maritime Organization's (IMO) Bulk Liquids and Gases Subcommittee to be held at the IMO... code for the transport and handling of limited amounts of hazardous and noxious liquid substances in bulk in offshore support vessels --Consideration of amendment to SOLAS to mandate enclosed space entry...
Bowtle, William; Kanyowa, Lionel; Mackenzie, Mark; Higgins, Paul
2011-06-01
The industrial take-up of liquid-fill hard capsule technology is limited in part by lack of published long-term physical and chemical stability data which demonstrate the robustness of the system. To assess the effects of extreme long-term storage on liquid-fill capsule product quality and integrity, with respect to both the capsules per se and a standard blister-pack type (foil-film blister). Fourteen sets of stored peroxidation-sensitive liquid-fill hard gelatin capsule product samples, originating ~20 years from the current study, were examined with respect to physical and selected chemical properties, together with microbiological evaluation. All sets retained physical integrity of capsules and blister-packs. Capsules were free of leaks, gelatin cross-linking, and microbiological growth. Eight samples met a limit (anisidine value, 20) commonly used as an index of peroxidation for lipid-based products with shelf lives of 2-3 years. Foil-film blister-packs using PVC or PVC-PVdC as the thermoforming film were well-suited packaging components for the liquid-fill capsule format. The study confirms the long-term physical robustness of the liquid-fill hard capsule format, together with its manufacturing and banding processes. It also indicates that various peroxidation-sensitive products using the capsule format may be maintained satisfactorily over very prolonged storage periods.
Petrarca, Mateus Henrique; Ccanccapa-Cartagena, Alexander; Masiá, Ana; Godoy, Helena Teixeira; Picó, Yolanda
2017-05-12
A new selective and sensitive liquid chromatography triple quadrupole mass spectrometry method was developed for simultaneous analysis of natural pyrethrins and synthetic pyrethroids residues in baby food. In this study, two sample preparation methods based on ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and salting-out assisted liquid-liquid extraction (SALLE) were optimized, and then, compared regarding the performance criteria. Appropriate linearity in solvent and matrix-based calibrations, and suitable recoveries (75-120%) and precision (RSD values≤16%) were achieved for selected analytes by any of the sample preparation procedures. Both methods provided the analytical selectivity required for the monitoring of the insecticides in fruit-, cereal- and milk-based baby foods. SALLE, recognized by cost-effectiveness, and simple and fast execution, provided a lower enrichment factor, consequently, higher limits of quantification (LOQs) were obtained. Some of them too high to meet the strict legislation regarding baby food. Nonetheless, the combination of ultrasound and DLLME also resulted in a high sample throughput and environmental-friendly method, whose LOQs were lower than the default maximum residue limit (MRL) of 10μgkg -1 set by European Community for baby foods. In the commercial baby foods analyzed, cyhalothrin and etofenprox were detected in different samples, demonstrating the suitability of proposed method for baby food control. Copyright © 2017 Elsevier B.V. All rights reserved.
Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin
2018-04-01
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schaper, J. Niklas; Pfeuffer, Kevin P.; Shelley, Jacob T.; Bings, Nicolas H.
2012-01-01
One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed “drop-on-demand” (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (~17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 µg/mL, without sample pretreatment, were obtained. PMID:23025277
Schaper, J Niklas; Pfeuffer, Kevin P; Shelley, Jacob T; Bings, Nicolas H; Hieftje, Gary M
2012-11-06
One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed "drop-on-demand" (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (∼17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 μg/mL, without sample pretreatment, were obtained.
Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri
2014-02-03
Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.
Analysis of penicillin G in milk by liquid chromatography.
Boison, J O; Keng, L J; MacNeil, J D
1994-01-01
A liquid chromatographic (LC) method that was previously developed for penicillin G residues in animal tissues has been adapted to milk and milk products. After protein precipitation with sodium tungstate, samples are applied to a C18 solid-phase extraction cartridge, from which penicillin is eluted, derivatized with 1,2,4-triazole-mercuric chloride solution, and analyzed by isocratic liquid chromatography (LC) on a C18 column with UV detection at 325 nm. Quantitation is done with reference to penicillin V as an internal standard. Penicillin G recoveries were determined to be > 70% on standards fortified at 3-60 ppb. Accuracy approached 100% using the penicillin V internal standard. The detection limit for penicillin G residues was 3 ppb in fluid milk. Samples may be confirmed by thermospray/LC at concentrations approaching the detection limit of the UV method.
Highly sensitive and selective liquid crystal optical sensor for detection of ammonia.
Niu, Xiaofang; Zhong, Yuanbo; Chen, Rui; Wang, Fei; Luo, Dan
2017-06-12
Ammonia detection technologies are very important in environment monitoring. However, most existing technologies are complex and expensive, which limit the useful range of real-time application. Here, we propose a highly sensitive and selective optical sensor for detection of ammonia (NH 3 ) based on liquid crystals (LCs). This optical sensor is realized through the competitive binding between ammonia and liquid crystals on chitosan-Cu 2+ that decorated on glass substrate. We achieve a broad detection range of ammonia from 50 ppm to 1250 ppm, with a low detection limit of 16.6 ppm. This sensor is low-cost, simple, fast, and highly sensitive and selective for detection of ammonia. The proposal LC sensing method can be a sensitive detection platform for other molecule monitors such as proteins, DNAs and other heavy metal ions by modifying sensing molecules.
Ouyang, Ying; Mansell, Robert S; Nkedi-Kizza, Peter
2004-01-01
A high performance liquid chromatography (HPLC) method with UV detection was developed to analyze paraquat (1,1'-dimethyl-4,4'-dipyridinium dichloride) herbicide content in soil solution samples. The analytical method was compared with the liquid scintillation counting (LSC) method using 14C-paraquat. Agreement obtained between the two methods was reasonable. However, the detection limit for paraquat analysis was 0.5 mg L(-1) by the HPLC method and 0.05 mg L(-1) by the LSC method. The LSC method was, therefore, 10 times more precise than the HPLC method for solution concentrations less than 1 mg L(-1). In spite of the high detection limit, the UC (nonradioactive) HPLC method provides an inexpensive and environmentally safe means for determining paraquat concentration in soil solution compared with the 14C-LSC method.
NASA Astrophysics Data System (ADS)
Bie, Qunyi; Cui, Haibo; Wang, Qiru; Yao, Zheng-An
2017-10-01
The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678-2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.
Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan
2015-09-01
In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Observation of surface layering in a nonmetallic liquid
NASA Astrophysics Data System (ADS)
Mo, Haiding; Evmenenko, Guennadi; Kewalramani, Sumit; Kim, Kyungil; Dutta, Pulak; Ehrlich, Steven
2006-03-01
Non-monotonic density profiles (layers) have previously been observed at the free surfaces of many metallic liquids, but not in isotropic dielectric liquids. Whether the presence of an electron gas is necessary for surface layering has been the subject of debate. Until recently, MD simulations have suggested that layering at free liquid interface may be a generic phenomenon and is not limited to the metallic liquids^1. The theories predict that if normal liquids can be cooled down to temperatures low enough, layering structure should be observed experimentally. However, this is difficult for most molecular liquids because these liquids freeze well above the temperature necessary for observing the layering structure. By studying the surface structure of liquid TEHOS (tetrakis(2-ethylhexoxy)silane), which combines relatively low freezing point and high boiling point compared to that of most molecular liquids, we have observed the evidence of layering at the free interface of liquid TEHOS using x-ray reflectivity. When cooled to T/Tc 0.25 (well above the bulk freezing point, Tc is the critical temperature of TEHOS), the surface roughness drops sharply and density oscillations appear near the surface. Lateral ordering of the surface layers is liquid-like, just as at liquid metal surfaces. 1. E. Chac'on and P. Tarazona, Phys. Rev. Lett. 91 166103-1 (2003)
NASA Astrophysics Data System (ADS)
Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.
2013-04-01
Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.
Zhu, Shuqiang; Zhou, Jia; Jia, Hongfang; Zhang, Haixia
2018-03-15
A method was developed for the determination of eight synthetic pigments in beverage samples by liquid-liquid microextraction followed by high performance liquid chromatography. Using hydrophobic deep eutectic solvent (DES) as the microextraction solvent, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH value, vortex time and salt content. Detection limits were in the range 0.016-1.12 ng/mL, recoveries were in the range 74.5-102.5% and relative standard deviations were <5.4%. The method is simple, green and practical, and could be applied to the extraction and determination of synthetic pigments in beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microfluidic study of fast gas-liquid reactions.
Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia
2012-02-15
We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.
Tassi, Marco; De Vos, Jelle; Chatterjee, Sneha; Sobott, Frank; Bones, Jonathan; Eeltink, Sebastiaan
2018-01-01
The characterization of biotherapeutics represents a major analytical challenge. This review discusses the current state-of-the-art in analytical technologies to profile biopharma products under native conditions, i.e., the protein three dimensional conformation is maintained during liquid chromatographic analysis. Native liquid-chromatographic modes that are discussed include aqueous size-exclusion chromatography, hydrophobic interaction chromatography, and ion-exchange chromatography. Infusion conditions and the possibilities and limitations to hyphenate native liquid chromatography to mass spectrometry are discussed. Furthermore, the applicability of native liquid-chromatography methods and intact mass spectrometry analysis for the characterization of monoclonal antibodies and antibody-drug conjugates is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermocapillary convection in two immiscible liquid layers with free surface
NASA Technical Reports Server (NTRS)
Doi, Takao; Koster, Jean N.
1993-01-01
Thermocapillary convection is studied in two immiscible liquid layers with one free surface, one liquid/liquid interface, and differential heating applied parallel to the interfaces. An analytical solution is introduced for infinite horizontal layers. The defining parameter for the flow pattern is lambda, the ratio of the temperature coefficient of the interfacial tension to that of the surface tension. Four different flow patterns exist under zero gravity conditions. 'Halt' conditions which halt the fluid motion in the lower encapsulated liquid layer have been found. A numerical experiment is carried out to study effects of vertical end walls on the double layer convection in a 2D cavity. The halt condition obtained from the analytical study is found to be valid in the limit of small Reynolds numbers. The flow in the encapsulated liquid layer can be suppressed substantially.
Code of Federal Regulations, 2010 CFR
2010-07-01
... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...
Code of Federal Regulations, 2011 CFR
2011-07-01
... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...
Jank, Louise; Martins, Magda Targa; Arsand, Juliana Bazzan; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara
2015-01-01
This study describes the development and validation procedures for scope extension of a method for the determination of β-lactam antibiotic residues (ampicillin, amoxicillin, penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin, ceftiofur, cefquinome, cefoperazone, cephapirine, cefalexin and cephalonium) in bovine milk. Sample preparation was performed by liquid-liquid extraction (LLE) followed by two clean-up steps, including low temperature purification (LTP) and a solid phase dispersion clean-up. Extracts were analysed using a liquid chromatography-electrospray-tandem mass spectrometry system (LC-ESI-MS/MS). Chromatographic separation was performed in a C18 column, using methanol and water (both with 0.1% of formic acid) as mobile phase. Method validation was performed according to the criteria of Commission Decision 2002/657/EC. Main validation parameters such as linearity, limit of detection, decision limit (CCα), detection capability (CCβ), accuracy, and repeatability were determined and were shown to be adequate. The method was applied to real samples (more than 250) and two milk samples had levels above maximum residues limits (MRLs) for cloxacillin - CLX and cefapirin - CFAP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, G. Z.; Hu, J. S.; Maingi, R.
In this paper, we report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermalmore » contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Finally, despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.« less
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-12-14
In this paper, we report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermalmore » contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Finally, despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.83 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.82 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.83 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.82 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.82 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.83 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.82 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.83 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.82 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Liquid Soaps Subcategory § 417.83 Effluent limitations guidelines representing the degree of...
Ion Conduction in Perfectly Aligned Block Copolymer-Ionic Liquid Mixtures
NASA Astrophysics Data System (ADS)
Choi, Jae-Hong; Elabd, Yossef A.; Winey, Karen I.
2011-03-01
Our earlier work to correlate the transport measurements in diblock copolymer-ionic liquid mixtures was limited by our bulk samples that have only partial alignment. Here, thin films with perfect alignment of lamellar microdomains from mixtures of a poly(methyl methacrylate- b -styrene) diblock copolymer and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, have been studied. The morphologies will be characterized by cross-sectional transmission electron microscopy. Ion conduction will be presented within and through the thin film.
Dirac points, spinons and spin liquid in twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Irkhin, V. Yu.; Skryabin, Yu. N.
2018-05-01
Twisted bilayer graphene is an excellent example of highly correlated system demonstrating a nearly flat electron band, the Mott transition and probably a spin liquid state. Besides the one-electron picture, analysis of Dirac points is performed in terms of spinon Fermi surface in the limit of strong correlations. Application of gauge field theory to describe deconfined spin liquid phase is treated. Topological quantum transitions, including those from small to large Fermi surface in the presence of van Hove singularities, are discussed.
Electrochemical methods for monitoring of environmental carcinogens.
Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J
2001-04-01
The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.
Automatic control of human thermal comfort with a liquid-cooled garment
NASA Technical Reports Server (NTRS)
Kuznetz, L. H.
1977-01-01
Water cooling in a liquid-cooled garment is used to maintain the thermal comfort of crewmembers during extravehicular activity. The feasibility of a simple control that will operate automatically to maintain the thermal comfort is established. Data on three test subjects are included to support the conclusion that heat balance can be maintained well within allowable medical limits. The controller concept was also successfully demonstrated for ground-based applications and shows potential for any tasks involving the use of liquid-cooled garments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petach, Trevor A.; Reich, Konstantin V.; Zhang, Xiao
Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. But, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We then validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erchinger, J. L.; Orrell, John L.; Aalseth, C. E.
The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3–3600 keV can be realized. Finally, initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.
Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel
2017-04-22
Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Speed Liquid Chromatographic Determination of Total Aromatics in Enamel and Lacquer Solvents.
ERIC Educational Resources Information Center
Esposito, G. G.
Aromatic solvents possess the strongest solvency of the hydrogen types, but various air pollution control districts have established maximum limits on the amount that may be present in organic coatings. In the proposed procedure, high efficiency liquid chromatography is used to determine total aromatics in enamels and lacquer thinners, their…
Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fang; Liu, Tao; Qian, Weijun
2011-07-22
Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.
ERIC Educational Resources Information Center
Popova, Maia; Bretz, Stacey Lowery; Hartley, C. Scott
2016-01-01
Although stereochemistry is an important topic in second-year undergraduate organic chemistry, there are limited options for laboratory activities that allow direct visualization of macroscopic chiral phenomena. A novel, guided-inquiry experiment was developed that allows students to explore chirality in the context of cholesteric liquid crystals.…
40 CFR 63.3510 - What notifications must I submit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... in § 63.9(h). (1) Company name and address. (2) Statement by a responsible official with that... which you conduct liquid-liquid material balances according to § 63.3541(i). (i) For each emission... those limits. (iv) A statement of whether or not you developed and implemented the work practice plan...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... Order To Mitigate Systemic Risk, Specifically Liquidity Related, Associated With DTC End of Day Net... so, DTC believes it would reduce the systemic risk associated with a liquidity shortfall and would... facilitate the settlement of transactions while limiting systemic risk due to Participant failure. \\4\\ These...
40 CFR Table 2 to Subpart Kkkkk of... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Maintain the average scrubber pressure drop for each 3-hour block period at or above the average pressure drop established during the performance test; andb. Maintain the average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test...
Wang, Yuanyuan; Li, Xiaowei; Zhang, Zhiwen; Ding, Shuangyang; Jiang, Haiyang; Li, Jiancheng; Shen, Jianzhong; Xia, Xi
2016-02-01
A sensitive, confirmatory ultra-high performance liquid chromatography-tandem mass spectrometric method was developed and validated to detect 23 veterinary drugs and metabolites (nitroimidazoles, benzimidazoles, and chloramphenicol components) in bovine milk. Compounds of interest were sequentially extracted from milk with acetonitrile and basified acetonitrile using sodium chloride to induce liquid-liquid partition. The extract was purified on a mixed mode solid-phase extraction cartridge. Using rapid polarity switching in electrospray ionization, a single injection was capable of detecting both positively and negatively charged analytes in a 9 min chromatography run time. Recoveries based on matrix-matched calibrations and isotope labeled internal standards for milk ranged from 51.7% to 101.8%. The detection limits and quantitation limits of the analytical method were found to be within the range of 2-20 ng/kg and 5-50 ng/kg, respectively. The recommended method is simple, specific, and reliable for the routine monitoring of nitroimidazoles, benzimidazoles, and chloramphenicol components in bovine milk samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Erarpat, Sezin; Özzeybek, Gözde; Chormey, Dotse Selali; Bakırdere, Sezgin
2017-12-01
In this study, dispersive liquid-liquid microextraction (DLLME) and slotted quartz tube (SQT) were coupled to flame atomic absorption spectrometry (FAAS) to increase the sensitivity of lead. Conditions such as the formation of the lead-dithizone complex, efficiency of the DLLME method and the output of the SQT were systematically optimized to improve the detection limit for the analyte. The conventional FAAS system was improved upon by about 3.0 times with SQT-FAAS, 32 times with DLLME-FAAS and 142 times with DLLME-SQT-FAAS. The method was applicable over a wide linear range (10-500 μg L -1 ). The limit of detection (LOD) determined by DLLME-SQT-FAAS for seawater and mussel were 2.7 μg L -1 and 270 μg kg -1 , respectively. The percent recoveries obtained for mussel and seawater samples (spiked at 20 and 50 μg L -1 ) were 95-96% and 98-110%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl
2017-02-01
The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bassanese, Danielle N; Conlan, Xavier A; Barnett, Neil W; Stevenson, Paul G
2015-05-01
This paper explores the analytical figures of merit of two-dimensional high-performance liquid chromatography for the separation of antioxidant standards. The cumulative two-dimensional high-performance liquid chromatography peak area was calculated for 11 antioxidants by two different methods--the areas reported by the control software and by fitting the data with a Gaussian model; these methods were evaluated for precision and sensitivity. Both methods demonstrated excellent precision in regards to retention time in the second dimension (%RSD below 1.16%) and cumulative second dimension peak area (%RSD below 3.73% from the instrument software and 5.87% for the Gaussian method). Combining areas reported by the high-performance liquid chromatographic control software displayed superior limits of detection, in the order of 1 × 10(-6) M, almost an order of magnitude lower than the Gaussian method for some analytes. The introduction of the countergradient eliminated the strong solvent mismatch between dimensions, leading to a much improved peak shape and better detection limits for quantification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qiao, Zheng; Xiang, Ping; Shen, Baohua; Shen, Min; Yan, Hui
2018-05-01
Anticoagulant rodenticides are widely used for rodent control around the world. A rapid and sensitive method was developed and validated for the simultaneous determination of 13 anticoagulant rodenticides (coumafuryl, pindone, valone, warfarin, coumatetralyl, coumachlor, diphacinone, dicumarol, chlorophacinone, bromadiolone, difenacoum, flocoumafen, and brodifacoum) in human blood by liquid chromatography-tandem mass spectrometry. After liquid-liquid extraction, the anticoagulant rodenticides were separated on an Eclipse Plus C18 column. Linearities were observed for each analyte in blood ranging from 0.5 to 50 ng/mL, with correlation coefficients over 0.99. The limits of detection ranged from 0.01 to 0.2 ng/mL, and the limits of quantification were 0.5 ng/mL for all analytes. The intraday and interday precisions were <15%, and accuracies ranged from 80.3% to 111.0%. This validated method with high sensitivity has been applied in three anticoagulant rodenticide poisoning cases and has been used successfully in monitoring blood concentrations for months. © 2017 American Academy of Forensic Sciences.
Zokaei, Maryam; Abedi, Abdol-Samad; Kamankesh, Marzieh; Shojaee-Aliababadi, Saeedeh; Mohammadi, Abdorreza
2017-11-01
In this research, for the first time, we successfully developed ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as a new, fast and highly sensitive method for determining of acrylamide in potato chips samples. Xanthydrol was used as a derivatization reagent and parameters affecting in the derivatization and microextraction steps were studied and optimized. Under optimum conditions, the calibration curves showed high levels of linearity (R 2 >0.9993) for acrylamide in the range of 2-500ngmL -1 . The relative standard deviation (RSD) for the seven analyses was 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.6ngg -1 and 2ngg -1 , respectively. The UAE-DLLME-GC-MS method demonstrated high sensitivity, good linearity, recovery, and enrichment factor. The performance of the new proposed method was evaluated for the determination of acrylamide in various types of chips samples and satisfactory results were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.
Montevecchi, Giuseppe; Masino, Francesca; Zanasi, Luca; Antonelli, Andrea
2017-04-15
A method for the extraction of phthalate esters (PAEs) by Ultrasound-Vortex-Assisted Dispersive Liquid-Liquid Micro-Extraction (USVADLLME) approach was optimised and applied for the first time to a historical series of brandies. These contaminants are widely spread in the environment as a consequence of about half century of use in different fields of applications. The concern about these substances and the recent legal restrictions of China in distillates import need a quick and sensitive method for their quantification. The proposed method, moreover, is environmentally oriented due to the disposal of micro-quantities of solvent required. In fact, sub-ppm-limits of detection were achieved with a solvent volume as low as 160μL. The analysed samples were within the legal limits, except for some very ancient brandies whose contamination was probably due to a PAEs concentration effect as a consequence of long ageing and for the use of plastic pipelines no more operative. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dense Chern-Simons matter with fermions at large N
Geracie, Michael; Goykhman, Mikhail; Son, Dam T.
2016-04-18
In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry fluxmore » through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. Furthermore, as the ’t Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.« less
Juhel-Gaugain, M; Anger, B; Laurentie, M
1999-01-01
A high-performance liquid chromatographic (HPLC) method for the simultaneous determination of tilmicosin, tylosin, spiramycin, and its major metabolite neospiramycin was developed that is suitable for porcine, bovine, and poultry muscles. Macrolide residues were extracted from muscle with acetonitrile, fat was removed by liquid-liquid extraction with isooctane, and the extract was then cleaned on Bond Elut C18 cartridges. The HPLC separation was performed on an Inertsil ODS3 C18 column (150 x 4 mm) with 0.05% trifluoroacetic acid-acetonitrile in a gradient mode. Two different chromatographic gradients were used for tilmicosin-tylosin and spiramycin-neospiramycin, and the detection wavelengths were 287 and 232 nm, respectively. The method was validated from 1/2 the maximum residue limit (MRL) to 4 times the MRL with pork muscle samples. Mean recoveries were 60, 63.5, 51, and 42% for tilmicosin, tylosin, spiramycin, and neospiramycin, respectively. The detection limits are 15 micrograms/kg for tilmicosin and tylosin, 30 micrograms/kg for spiramycin, and 25 micrograms/kg for neospiramycin. Linearity, precision, and accuracy of the method were also tested.
The Propagation of a Liquid Bolus Through an Elastic Tube and Airway Reopening
NASA Technical Reports Server (NTRS)
Howell, Peter D.; Grotberg, James B.
1996-01-01
We use lubrication theory and matched asymptotic expansions to model the quasi-steady propagation of a liquid bridge through an elastic tube. In the limit of small capillary number, asymptotic expressions are found for the pressure drop across the bridge and the thickness of the liquid film left behind, as functions of the capillary number, the thickness of the liquid lining ahead of the bridge and the elastic characteristics of the tube wall. For a given precursor thickness, we find a critical propagation speed, and hence a critical imposed pressure drop, above which the bridge will eventually burst, and hence the tube will reopen.
Solitons induced by alternating electric fields in surface-stabilized ferroelectric liquid crystals
NASA Astrophysics Data System (ADS)
Jeżewski, W.; Kuczyński, W.; Hoffmann, J.
2011-04-01
Propagation of solitary waves activated in thin ferroelectric liquid crystal cells under external, sinusoidally alternating electric fields is investigated using the electro-optic technique. It is shown that solitons give contributions only to the loss component of the response spectrum, within rather narrow ranges of frequencies and in sufficiently strong fields. The limit frequency, at which the amplitude of the velocity of the solitary waves is greatest, is found to be related to material constants of liquid crystals. Measuring this threshold frequency provides the capability to determine the elastic constant of surface stabilized liquid crystalline materials in the bookshelf or chevron layer geometries.
Sadeghipour, F; Veuthey, J L
1997-11-07
A rapid, sensitive and selective liquid chromatographic method with fluorimetric detection was developed for the separation and quantification of four methylenedioxylated amphetamines without interference of other drugs of abuse and common substances found in illicit tablets. The method was validated by examining linearity, precision and accuracy as well as detection and quantification limits. Methylenedioxylated amphetamines were quantified in eight tablets from illicit drug seizures and results were quantitatively compared to HPLC-UV analyses. To demonstrate the better sensitivity of the fluorimetric detection, methylenedioxylated amphetamines were analyzed in serum after a liquid-liquid extraction procedure and results were also compared to HPLC-UV analyses.
Application of IR imaging for free-surface velocity measurement in liquid-metal systems
Hvasta, M. G.; Kolemen, E.; Fisher, A.
2017-01-05
Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. Lastly, this method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.
Method and apparatus for conversion of carbonaceous materials to liquid fuel
Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.
2015-12-01
Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.
NASA Technical Reports Server (NTRS)
Bain, Addison
1990-01-01
Liquid hydrogen will continue to be an integral element in virtually every major space program, and it has also become a significant merchant product for certain commercial markets. Liquid hydrogen is not a universally available commodity, and the number of supply sources historically have been limited to regions having concentrated consumption patterns. With the increased space program activity it becomes necessary to assess all future programs on a collective and unified basis. An initial attempt to identify projected requirements on a long range basis is presented.
Occurrence of ivermectin in bovine milk from the Brazilian retail market.
Lobato, V; Rath, S; Reyes, F G R
2006-07-01
High-performance liquid chromatography (HPLC) with fluorescence detection was used for the quantification of ivermectin residues in bovine milk intended for human consumption. After liquid-liquid extraction of ivermectin and purification of the extract, the compound was derivatized with 1-methylimidazol in N,N-dimethyl formamide to form a fluorescent derivative, which was separated by HPLC, using reversed-phase C18, with methanol : water (96 : 4 v/v) mobile phase at a flow rate 0.7 ml min-1. The excitation and emission wavelengths of the fluorescence detector were adjusted at 360 and 470 nm, respectively. The linearity of the method was in the range 10-100 ng ivermectin ml-1. Based on a sample of 5.0 ml, the limit of detection and the limit of quantification for ivermectin in milk were 0.6 and 2 ng ml-1, respectively. The recovery rate varied from 76.4 to 87.2%, with an average of 77.9 +/- 3.2%, at four fortification levels. The inter-day precision of the method was 13% (n = 5). Of 168 samples analysed, 17.8% contained ivermectin above the limit of quantification. Nevertheless, none of the samples contained ivermectin above the maximum residue limit (10 ng ml-1) established by the Brazilian Ministry of Agriculture.
Free energy perturbation method for measuring elastic constants of liquid crystals
NASA Astrophysics Data System (ADS)
Joshi, Abhijeet
There is considerable interest in designing liquid crystals capable of yielding specific morphological responses in confined environments, including capillaries and droplets. The morphology of a liquid crystal is largely dictated by the elastic constants, which are difficult to measure and are only available for a handful of substances. In this work, a first-principles based method is proposed to calculate the Frank elastic constants of nematic liquid crystals directly from atomistic models. These include the standard splay, twist and bend deformations, and the often-ignored but important saddle-splay constant. The proposed method is validated using a well-studied Gay-Berne(3,5,2,1) model; we examine the effects of temperature and system size on the elastic constants in the nematic and smectic phases. We find that our measurements of splay, twist, and bend elastic constants are consistent with previous estimates for the nematic phase. We further outline the implementation of our approach for the saddle-splay elastic constant, and find it to have a value at the limits of the Ericksen inequalities. We then proceed to report results for the elastic constants commonly known liquid crystals namely 4-pentyl-4'-cynobiphenyl (5CB) using atomistic model, and show that the values predicted by our approach are consistent with a subset of the available but limited experimental literature.
Do, Van-Khoai; Yamamoto, Masahiko; Taguchi, Shigeo; Takamura, Yuzuru; Surugaya, Naoki; Kuno, Takehiko
2018-06-01
A sensitive analytical method for determination of total cesium (Cs) in highly active liquid waste (HALW) by using modified liquid electrode plasma optical emission spectrometry (LEP-OES) is developed in this study. The instrument is modified to measure radioactive samples in a glove box. The effects of important factors, including pulsed voltage sequence and nitric acid concentration, on the emission of Cs are investigated. The limit of detection (LOD) and limit of quantification (LOQ) are 0.005 mg/L and 0.02 mg/L, respectively. The achieved LOD is one order lower than that of recently developed spectroscopic methods using liquid discharge plasma. The developed method is validated by subjecting a simulated HALW sample to inductively coupled plasma mass spectrometry (ICP-MS). The recoveries obtained from a spike-and-recovery test are 96-102%, implying good accuracy. The method is successfully applied to the quantification of Cs in a real HALW sample at the Tokai reprocessing plant in Japan. Apart from dilution and filtration of the HALW sample, no other pre-treatment process is required. The results agree well with the values obtained using gamma spectrometry. The developed method offers a reliable technique for rapid analysis of total Cs in HALW samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of operating temperature on styrene mass transfer characteristics in a biotrickling filter.
Parnian, Parham; Zamir, Seyed Morteza; Shojaosadati, Seyed Abbas
2017-05-01
To study the effect of operating temperature on styrene mass transfer from gas to liquid phase in biotrickling filters (BTFs), overall mass transfer coefficient (K L a) was calculated through fitting test data to a general mass balance model under abiotic conditions. Styrene was used as the volatile organic compound and the BTF was packed with a mixture of pall rings and pumice. Operating temperature was set at 30°C and 50°C for mesophilic and thermophilic conditions, respectively. K L a values increased from 54 to 70 h -1 at 30°C and from 60 to 90 h -1 at 50°C, respectively, depending on the countercurrent gas to liquid flow ratio that varied in the range of 7.5-32. Evaluation of styrene mass transfer capacity (MTC) showed that liquid-phase mass transfer resistance decreased as the flow ratio increased at constant temperature. MTC also decreased with an increase in operating temperature. Both gas-liquid partition coefficient and K L a increased with increasing temperature; however the effect on gas-liquid partition coefficient was more significant and served to increase mass transfer limitations. Thermophilic biofiltration on the one hand increases mass transfer limitations, but on the other hand may enhance the biodegradation rate in favor of enhancing BTFs' performance.
Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction
NASA Technical Reports Server (NTRS)
Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.
2001-01-01
Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.
Liquid uranium alloy-helium fission reactor
Minkov, Vladimir
1986-01-01
This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.
Incoherent Scatterer in a Luttinger Liquid: A New Paradigmatic Limit
NASA Astrophysics Data System (ADS)
Altland, Alexander; Gefen, Yuval; Rosenow, Bernd
2012-03-01
We address the problem of a Luttinger liquid with a scatterer that allows for both coherent and incoherent scattering channels. The asymptotic behavior at zero temperature is governed by a new stable fixed point: A Goldstone mode dominates the low energy dynamics, leading to universal behavior. This limit is marked by equal probabilities for forward and backward scattering. Notwithstanding this nontrivial scattering pattern, we find that the shot noise as well as cross-current correlations vanish. We thus present a paradigmatic picture of an impurity in the Luttinger model, alternative to the Kane-Fisher picture.
Non-Fermi Liquid Behavior in the Single-Impurity Mixed Valence Problem
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu
An effective Hamiltonian of the Anderson single-impurity model with finite-range Coulomb interactions is derived near a particular limit, which is analogous to the Toulouse limit of the ordinary Kondo problem, and the physical properties around the mixed valence quantum critical point are calculated. At this quantum critical point, the local moment is only partially quenched and X-ray edge singularities are exhibited. Around this point, a new type of non-Fermi liquid behavior is predicted with an extra specific heat Cimp ~ T1/4 + AT ln T and spin-susceptibility χimp ~T-3/4 + B ln T.
Growth of bacteria in 3-d colonies
Mugler, Andrew; Kim, Justin
2017-01-01
The dynamics of growth of bacterial populations has been extensively studied for planktonic cells in well-agitated liquid culture, in which all cells have equal access to nutrients. In the real world, bacteria are more likely to live in physically structured habitats as colonies, within which individual cells vary in their access to nutrients. The dynamics of bacterial growth in such conditions is poorly understood, and, unlike that for liquid culture, there is not a standard broadly used mathematical model for bacterial populations growing in colonies in three dimensions (3-d). By extending the classic Monod model of resource-limited population growth to allow for spatial heterogeneity in the bacterial access to nutrients, we develop a 3-d model of colonies, in which bacteria consume diffusing nutrients in their vicinity. By following the changes in density of E. coli in liquid and embedded in glucose-limited soft agar, we evaluate the fit of this model to experimental data. The model accounts for the experimentally observed presence of a sub-exponential, diffusion-limited growth regime in colonies, which is absent in liquid cultures. The model predicts and our experiments confirm that, as a consequence of inter-colony competition for the diffusing nutrients and of cell death, there is a non-monotonic relationship between total number of colonies within the habitat and the total number of individual cells in all of these colonies. This combined theoretical-experimental study reveals that, within 3-d colonies, E. coli cells are loosely packed, and colonies produce about 2.5 times as many cells as the liquid culture from the same amount of nutrients. We verify that this is because cells in liquid culture are larger than in colonies. Our model provides a baseline description of bacterial growth in 3-d, deviations from which can be used to identify phenotypic heterogeneities and inter-cellular interactions that further contribute to the structure of bacterial communities. PMID:28749935
Tankiewicz, Maciej; Biziuk, Marek
2018-02-01
A simple and efficient dispersive liquid-liquid microextraction technique (DLLME) was developed by using a mixture of two solvents: 40 μL of tetrachlorethylene (extraction solvent) and 1.0 mL of methanol (disperser solvent), which was rapidly injected with a syringe into 10 mL of water sample. Some important parameters affecting the extraction efficiency, such as type and volume of solvents, water sample volume, extraction time, temperature, pH adjustment and salt addition effect were investigated. Simultaneous determination of 34 commonly used pesticides was performed by using gas chromatography coupled with mass spectrometry (GC-MS). The procedure has been validated in order to obtain the highest efficiency at the lowest concentration levels of analytes to fulfill the requirements of regulations on maximum residue limits. Under the optimum conditions, the linearity range was within 0.0096-100 μg L -1 . The limits of detection (LODs) of the developed DLLME-GC-MS methodology for all investigated pesticides were in the range of 0.0032 (endrin)-0.0174 (diazinon) μg L -1 and limits of quantification (LOQs) from 0.0096 to 0.052 μg L -1 . At lower concentration of 1 μg L -1 for each pesticide, recoveries ranged between 84% (tebufenpyrad) and 108% (deltamethrin) with relative standard deviations (RSDs) (n = 7) from 1.1% (metconazole) to 11% (parathion-mehtyl). This methodology was successfully applied to check contamination of environmental samples. The procedure has proved to be selective, sensitive and precise for the simultaneous determination of various pesticides. The optimized analytical method is very simple and rapid (less than 5 min). Graphical abstract Analytical procedure for testing water samples consists of dispersive liquid-liquid microextraction (DLLME) and gas chromatography coupled with mass spectrometry (GC-MS).
Boonchiangma, Suthasinee; Ngeontae, Wittaya; Srijaranai, Supalax
2012-01-15
Dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography (HPLC) with UV detection was applied for the determination of six pyrethroids (tetramethrin, fenpropathrin, cypermethrin, deltamethrin, fenvalerate and permethrin) in various fruit juices including apple, red grape, orange, kiwi, passion fruit, pomegranate and guava juice. Six pyrethroids were separated within 30 min using a Waters Atlantis T3 column under an isocratic elution of acetonitrile-water (72:28). The parameters affecting extraction efficiency of the DLLME method such as type of disperser and extraction solvent, volume of disperser and extraction solvent and centrifugation time were investigated. Under the optimum conditions, 5.00 mL of sample solution, 300 μL of chloroform as extraction solvent and 1.25 mL of methanol as dispersive solvent gave high enrichment factor in the range of 62-84. Good linearity was obtained from 2 to 1,500 μg/L (r(2)>0.995). The mean recoveries of the pyrethroids evaluated by fortification of real samples were in the range of 84-94%. The limits of detection ranging from 2 to 5 μg/L are sufficient to analyze pyrethroid residues at the maximum residue limits (MRLs) established by the European Union (EU) in fruit juices. The proposed method can be applied to direct determination of pyrethroid residues in fruit juices. Copyright © 2011 Elsevier B.V. All rights reserved.
Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Khayamian, Taghi; Moradmand, Ali
2011-12-02
A novel and sensitive method based on combination of two immiscible organic solvents hollow fiber-based liquid-liquid-liquid microextraction and corona discharge ion mobility spectrometry (HF-LLLME-CD-IMS) was employed for the analysis of clomipramine in human urine and plasma. The effect of formic, acetic and propionic acid as the reagent gas (dopant) on the corona discharge ion mobility signal was investigated. The influence of dopant amount was also studied. Optimum mass flow rates of the dopants were 3.7, 1.1 and 1.0 μmol min(-1) for formic, acetic and propionic acid, respectively. Experimental parameters influencing the extraction efficiency of HF-LLLME, such as NaOH concentration as donor solution, ionic strength of the sample, stirring rate, and extraction time were investigated and optimized. Under the optimum conditions, analytical parameters such as linearity, precision and limit of detection were also evaluated. The linear dynamic range was from 1 to 100 μg L(-1) (r(2)=0.9980) and the limit of detection was 0.35 μg L(-1). Intra- and inter-day precisions were satisfactory with a relative standard deviation (RSD) of 5.9 and 6.7%, respectively. The proposed method was satisfactorily applied for the determination of clomipramine in human plasma and urine. Copyright © 2011 Elsevier B.V. All rights reserved.
Physics of transduction in ionic liquid-swollen Nafion membranes
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2006-03-01
Ionic polymer transducers are a class of electroactive polymers that are able to generate large strains (1-5%) in response to low voltage inputs (1-5 V). Additionally, these materials generate electrical charge in response to mechanical strain and are therefore able to operate as soft, distributed sensors. Traditionally, ionic polymer transducers have been limited in their application by their hydration dependence. This work seeks to overcome this limitation by replacing the water with an ionic liquid. Ionic liquids are molten salts that exhibit very high thermal and electrochemical stability while also possessing high ionic conductivity. Results have shown that an ionic liquid-swollen ionic polymer transducer can operate for more than 250,000 cycles in air as compared to about 2,000 cycles for a water-swollen transducer. The current work examines the mechanisms of transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a model of the charge transport mechanism responsible for electromechanical coupling in these membranes.
Wagh, Sameer M; Koranne, Kishore V; Sonolikar, Ram L
2012-04-01
The hydrodynamic characteristics of RFJLB was studied with superficial liquid velocity (Ul), nozzle diameter (Dn) and nozzle height (Hn) in the range of 0.0293-0.094m/s, 17.4-22.0mm and 50-400mm, respectively. For Dn=17.4mm, Hn=50 and 200mm, with ejector mode and regular operating procedure i.e. simultaneous entry of gas with increasing liquid velocity, had limitation of not establishing the circulation loop. To overcome this limitation a modified operating procedure i.e. entry of gas after established liquid circulation loop is proposed. Also the comparison of gas holdups with ejector and injector mode proves the effectiveness of ejector mode and can eliminate the supply of compressed gas. Thus proper choice of Dn, Hn and also the operating procedure becomes necessary. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, K.S.; Stout, L.A.; Napier, B.A.
1983-06-01
This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less
Electrochemical Detection in Stacked Paper Networks.
Liu, Xiyuan; Lillehoj, Peter B
2015-08-01
Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-
On the shape of giant soap bubbles.
Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe
2017-03-07
We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.
Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud
2016-01-01
An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid–liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid–liquid materials. PMID:27185930
[Liquid biopsy analysis using cell-free DNA (cfDNA): Opportunities and limitations].
Dahl, E; Kloten, V
2015-11-01
Molecular biological analysis of nucleic acids in blood or other bodily fluids (i.e. liquid biopsy analyses) may supplement the pathologists' diagnostic armamentarium in a reasonable way-particularly in cancer precision medicine. Within the field of oncology, liquid biopsy can potentially be used to monitor tumor burden in the blood and to early detect emerging resistance in the course of targeted cancer therapies. An already approved application of liquid biopsy is the detection of epidermal growth factor receptor (EGFR) driver mutations in blood samples of lung cancer patients in those cases where no tissue biopsy is available. However, there is still currently considerable insecurity associated with blood-based DNA analytic methods that must be solved before liquid biopsy can be implemented for broader routine application in the diagnosis of cancer. In this article, the current state of development of liquid biopsy in molecular diagnostics from a pathology point of view is presented.
Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh
2014-01-01
Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485
Çabuk, Hasan; Köktürk, Mustafa
2013-01-01
A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535
Exergie /4th revised and enlarged edition/
NASA Astrophysics Data System (ADS)
Baloh, T.; Wittwer, E.
The theoretical concept of exergy is explained and its practical applications are discussed. Equilibrium and thermal equilibrium are reviewed as background, and exergy is considered as a reference point for solid-liquid, liquid-liquid, and liquid-gas systems. Exergetic calculations and their graphic depictions are covered. The concepts of enthalpy and entropy are reviewed in detail, including their applications to gas mixtures, solutions, and isolated substances. The exergy of gas mixtures, solutions, and isolated substances is discussed, including moist air, liquid water in water vapor, dry air, and saturation-limited solutions. Mollier exergy-enthalpy-entropy diagrams are presented for two-component systems, and exergy losses for throttling, isobaric mixing, and heat transfer are addressed. The relationship of exergy to various processes is covered, including chemical processes, combustion, and nuclear reactions. The optimization of evaporation plants through exergy is discussed. Calculative examples are presented for energy production and heating, industrial chemical processes, separation of liquid air, nuclear reactors, and others.
Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud
2016-05-31
An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this "liquid wire" and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.
NASA Astrophysics Data System (ADS)
Auger, T.; Hamouche, Z.; Medina-Almazàn, L.; Gorse, D.
2008-06-01
LME of the martensitic T91 and the austenitic 316L steels have been investigated in the CCT geometry in the plane-stress condition. Using such a geometry, premature cracking induced by a liquid metal (PbBi and Hg) can be studied using a fracture mechanics approach based on CTOD, J-Δ a and fracture assessment diagram. One is able to measure a reduction of the crack tip blunting and a reduction of the energy required for crack propagation induced by the liquid metal. In spite of some limitations, this qualitative evaluation shows that liquid metals do not induce strong embrittlement on steels in plane-stress condition. Rather, the effect of the liquid metal seems to promote a fracture mode by plastic collapse linked with strain localization. It indicates that the materials, in spite of a potential embrittlement, should still be acceptable in terms of safety criteria.
Phase equilibrium measurements on nine binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilding, W.V.; Giles, N.F.; Wilson, L.C.
1996-11-01
Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region existsmore » in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.« less
Double layer effects on metal nucleation in deep eutectic solvents.
Abbott, Andrew P; Barron, John C; Frisch, Gero; Gurman, Stephen; Ryder, Karl S; Fernando Silva, A
2011-06-07
The electrodeposition of zinc has been studied in two deep eutectic solvents. Unlike the metals studied to date in these liquids, zinc electrodeposition is not mass transport limited and the morphology of the deposit differs in the two liquids. This study shows that changing the concentration of solute affects the physical properties of the liquid to different extents although this is found to not effect the morphology of the metal deposited. EXAFS was used to show that the speciation of zinc was the same in both liquids. Double layer capacitance studies showed differences between the two liquids and these are proposed to be due to the adsorption of a species on the electrode which is thought to be chloride. The differences in zinc morphology is attributed to blocking of certain crystal faces leading to deposition of small platelet shaped crystals in the glycol based liquid.
Anaerobic fermentation of biogas liquid pretreated maize straw by rumen microorganisms in vitro.
Jin, Wenyao; Xu, Xiaochen; Gao, Yang; Yang, Fenglin; Wang, Gang
2014-02-01
This study intended to investigate the effect of pretreatment of maize straw with biogas liquid on followed fermentation by rumen microorganisms in vitro. The multiple effects including treated time, temperature and dosage of biogas liquid in pretreatment on the followed fermentation performance were analyzed by orthogonal array. The optimum conditions of pretreatment were 9days, 25°C and 50% (v/w) dosage of biogas liquid, which were indicated by the corresponding crystallinity index, dry matter digestibility (DMD) and acetate limiting-step concentration were 57.5%, 73.76% and 1756mg/L, respectively. The ordering sequence of the influential factors for pretreatment was treated time > temperature > dosage of biogas liquid. The results of fermentation showed that the maize straw pretreated by biogas liquid was an efficient and economic pretreatment method of maize straw. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud
2016-05-01
An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.
Thermal regulation of methane hydrate dissociation: Implications for gas production models
Circone, S.; Kirby, S.H.; Stern, L.A.
2005-01-01
Thermal self-regulation of methane hydrate dissociation at pressure, temperature conditions along phase boundaries, illustrated by experiment in this report, is a significant effect with potential relevance to gas production from gas hydrate. In surroundings maintained at temperatures above the ice melting point, the temperature in the vicinity of dissociating methane hydrate will decrease because heat flow is insufficient to balance the heat absorbed by the endothermic reaction: CH4??nH2O (s) = CH4 (g) + nH2O (l). Temperature decreases until either all of the hydrate dissociates or a phase boundary is reached. At pressures above the quadruple point, the temperature-limiting phase boundary is that of the dissociation reaction itself. At lower pressures, the minimum temperature is limited by the H2O solid/liquid boundary. This change in the temperature-limiting phase boundary constrains the pressure, temperature conditions of the quadruple point for the CH4-H2O system to 2.55 ?? 0.02 MPa and 272.85 ?? 0.03 K. At pressures below the quadruple point, hydrate dissociation proceeds as the liquid H2O produced by dissociation freezes. In the laboratory experiments, dissociation is not impeded by the formation of ice byproduct per se; instead rates are proportional to the heat flow from the surroundings. This is in contrast to the extremely slow dissociation rates observed when surrounding temperatures are below the H2O solid/liquid boundary, where no liquid water is present. This "anomalous" or "self" preservation behavior, most pronounced near 268 K, cannot be accessed when surrounding temperatures are above the H2O solid/liquid boundary. ?? 2005 American Chemical Society.
Impedance method for measuring shear elasticity of liquids
NASA Astrophysics Data System (ADS)
Badmaev, B. B.; Dembelova, T. S.; Damdinov, B. B.; Gulgenov, Ch. Zh.
2017-11-01
Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.
NASA Astrophysics Data System (ADS)
Zhao, Cunhua; Liang, Huiqin; Cui, Dongqing; Hong, Xinhua; Wei, Daling; Gao, Changliu
2011-08-01
In the ultralight or ultrathin applied domain of zoom lens, the traditional glass / plastic lens is limited for manufacture technology or cost. Therefore, a liquid lens was put forward to solve the problems. The liquid zoom lens has the merits of lower cost, smaller volume, quicker response, lower energy consumption, continuous zoom and higher accuracy. In liquid zoom lens the precise focal length is obtained by the contact angle changing to affect the curvature radius of interface. In our works, the relations of the exerted voltage, the contact angle, the curvature radius and the focal length were researched and accurately calculated. The calculation of the focal length provides an important theoretical basis for instructing the design of liquid zoom lens.
Reconfigurable Liquid Whispering Gallery Mode Microlasers
Yang, Shancheng; Ta, Van Duong; Wang, Yue; Chen, Rui; He, Tingchao; Demir, Hilmi Volkan; Sun, Handong
2016-01-01
Engineering photonic devices from liquid has been emerging as a fascinating research avenue. Reconfigurably tuning liquid optical micro-devices are highly desirable but remain extremely challenging because of the fluidic nature. In this article we demonstrate an all-liquid tunable whispering gallery mode microlaser floating on a liquid surface fabricated by using inkjet print technique. We show that the cavity resonance of such liquid lasers could be reconfigurably manipulated by surface tension alteration originated from the tiny concentration change of the surfactant in the supporting liquid. As such, remarkable sensing of water-soluble organic compounds with a sensitivity of free spectral range as high as 19.85 THz / (mol · mL−1) and the detectivity limit around 5.56 × 10−3 mol · mL−1 is achieved. Our work provides not only a novel approach to effectively tuning a laser resonator but also new insight into potential applications in biological, chemical and environmental sensing. PMID:27256771
Thermodynamic processes associated with frostbite in the handling of liquid nitrogen
NASA Astrophysics Data System (ADS)
Johnson, W. L.; Cook, C. R.
2014-01-01
It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.
Liu, Zhongling; Yu, Wei; Zhang, Hanqi; Gu, Fanbin; Jin, Xiangqun
2016-12-01
Salting-out homogenous extraction followed by ionic liquid/ionic liquid dispersive liquid-liquid micro-extraction system was developed and applied to the extraction of sulfonamides in blood. High-performance liquid chromatography was applied to the determination of the analytes. The blood sample was centrifuged to obtain the serum. After the proteins in the serum were removed in the presence of acetonitrile, ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, dipotassium hydrogen phosphate, ionic liquid 1-Hexyl-3-methylimidazolium hexafluorophosphate were added into the resulting solution. After the resulting mixture was ultrasonically shaken and centrifuged, the precipitate was separated. The acetonitrile was added in the precipitate and the analytes were extracted into the acetonitrile phase. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of dipotassium hydrogen phosphate, volume of dispersant, extraction time and temperature were investigated. The limits of detection of sulfamethizole (STZ), sulfachlorpyridazine (SCP), sulfamethoxazole (SMX) and Sulfisoxazole (SSZ) were 4.78, 3.99, 5.21 and 3.77μgL -1 , respectively. When the present method was applied to the analysis of real blood samples, the recoveries of analytes ranged from 90.0% to 113.0% and relative standard deviations were lower than 7.2%. Copyright © 2016 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... U.S.C. 78s(b). FINRA Rule 2360 (Options) and FINRA Rule 2359 (Position and Exercise Limits; Liquidations) incorporate by reference comparable position and exercise limit rules of the options exchanges. Specifically: (i) FINRA Rule 2360(b)(3)(B) incorporates position limits for index options established by the...
40 CFR 63.9890 - What emission limitations must I meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... each emission limit in Table 1 to this subpart that applies to you. (b) For each wet scrubber applied... average pressure drop and scrubber liquid flow rate at or above the minimum level established during the...
40 CFR 63.9890 - What emission limitations must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... each emission limit in Table 1 to this subpart that applies to you. (b) For each wet scrubber applied... average pressure drop and scrubber liquid flow rate at or above the minimum level established during the...
NASA Astrophysics Data System (ADS)
Maltezos, George; Johnston, Matthew; Taganov, Konstantin; Srichantaratsamee, Chutatip; Gorman, John; Baltimore, David; Chantratita, Wasun; Scherer, Axel
2010-12-01
Thermal ramp rate is a major limiting factor in using real-time polymerase chain reaction (PCR) for routine diagnostics. We explored the limits of speed by using liquid for thermal exchange rather than metal as in traditional devices, and by testing different polymerases. In a clinical setting, our system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA/RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus. Using Thermococcus kodakaraensis polymerase and optimizing both electrical and chemical systems, we obtained an accurate, 35 cycle amplification of an 85-base pair fragment of E. coli O157:H7 Shiga toxin gene in as little as 94.1 s, a significant improvement over a typical 1 h PCR amplification.
12 CFR 709.4 - Powers and duties of liquidating agent.
Code of Federal Regulations, 2013 CFR
2013-01-01
... desirable or expedient in its discretion to wind up the affairs of the credit union including, but not... Certified Public Accountants, and pay the costs out of the assets of the liquidated credit union; (4) Employ..., including, but not limited to, the costs and expenses of any litigation, as approved by the General Counsel...
12 CFR 709.4 - Powers and duties of liquidating agent.
Code of Federal Regulations, 2014 CFR
2014-01-01
... desirable or expedient in its discretion to wind up the affairs of the credit union including, but not... Certified Public Accountants, and pay the costs out of the assets of the liquidated credit union; (4) Employ..., including, but not limited to, the costs and expenses of any litigation, as approved by the General Counsel...
12 CFR 709.4 - Powers and duties of liquidating agent.
Code of Federal Regulations, 2012 CFR
2012-01-01
... desirable or expedient in its discretion to wind up the affairs of the credit union including, but not... Certified Public Accountants, and pay the costs out of the assets of the liquidated credit union; (4) Employ..., including, but not limited to, the costs and expenses of any litigation, as approved by the General Counsel...
2012-08-01
This document contains color. 14. ABSTRACT This effort focused specifically on the Liquid Composite Molding (LCM) class of processes as they...SUBJECT TERMS Liquid Composite Molding (LCM), fabrication, manufacturability assessment 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... Molding (LCM) .......................................................................... 2 1.1.1 LCM Process Variations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-03
... Rule Change To Amend SPAN Margin Parameters for ICE OTC Natural Gas Liquids Contracts December 27, 2012... Rule Change The purpose of the change is to amend SPAN Margin Parameters for ICE OTC Natural Gas Liquids (NGL) Contracts. All capitalized terms not defined herein are defined in the ICE Clear Europe...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... to as natural gas liquids or NGLs. Interstate pipelines have a limit on how much NGLs natural gas can... gas processing plant to remove those liquids before it can be transported on interstate pipelines... Gas Transmission, and Trailblazer pipelines, as well as associated processing and storage capacity. On...
40 CFR 49.130 - Rule for limiting sulfur in fuels.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...
40 CFR 49.130 - Rule for limiting sulfur in fuels.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...
40 CFR 49.130 - Rule for limiting sulfur in fuels.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...
A model for predicting embankment slope failures in clay-rich soils; A Louisiana example
NASA Astrophysics Data System (ADS)
Burns, S. F.
2015-12-01
A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (< 5% chance of failure in 8-15 years after construction) contained soils with a liquid limit < 36%, a plasticity index < 16%, and a clay content < 32%. These data show that if one is constructing embankments and one wants to prevent slope failure of the 3:1 slopes, check the above soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.
Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W
2006-01-23
Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2011-03-01
To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.
Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang
2016-06-01
In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-05-29
An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Beiraghi, Asadollah; Shokri, Masood
2018-02-01
In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.
A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction
Dickey, Michael D.
2016-01-01
Controlling interfacial tension is an effective method for manipulating the shape, position, and flow of fluids at sub-millimeter length scales, where interfacial tension is a dominant force. A variety of methods exist for controlling the interfacial tension of aqueous and organic liquids on this scale; however, these techniques have limited utility for liquid metals due to their large interfacial tension. Liquid metals can form soft, stretchable, and shape-reconfigurable components in electronic and electromagnetic devices. Although it is possible to manipulate these fluids via mechanical methods (e.g., pumping), electrical methods are easier to miniaturize, control, and implement. However, most electrical techniques have their own constraints: electrowetting-on-dielectric requires large (kV) potentials for modest actuation, electrocapillarity can affect relatively small changes in the interfacial tension, and continuous electrowetting is limited to plugs of the liquid metal in capillaries. Here, we present a method for actuating gallium and gallium-based liquid metal alloys via an electrochemical surface reaction. Controlling the electrochemical potential on the surface of the liquid metal in electrolyte rapidly and reversibly changes the interfacial tension by over two orders of magnitude (~500 mN/m to near zero). Furthermore, this method requires only a very modest potential (< 1 V) applied relative to a counter electrode. The resulting change in tension is due primarily to the electrochemical deposition of a surface oxide layer, which acts as a surfactant; removal of the oxide increases the interfacial tension, and vice versa. This technique can be applied in a wide variety of electrolytes and is independent of the substrate on which it rests. PMID:26863045
NASA Astrophysics Data System (ADS)
Hizir, F. E.; Hardt, D. E.
2017-05-01
An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.
Severijnen, Chantal; Abrahamse, Evan; van der Beek, Eline M; Buco, Amra; van de Heijning, Bert J M; van Laere, Katrien; Bouritius, Hetty
2007-10-01
Diabetics are recommended to eat a balanced diet containing normal amounts of carbohydrates, preferably those with a low glycemic index. For solid foods, this can be achieved by choosing whole-grain, fiber-rich products. For (sterilized) liquid products, such as meal replacers, the choices for carbohydrate sources are restricted due to technological limitations. Starches usually have a high glycemic index after sterilization in liquids, whereas low glycemic sugars and sugar replacers can only be used in limited amounts. Using an in vitro digestion assay, we identified a resistant starch (RS) source [modified high amylose starch (mHAS)] that might enable the production of a sterilized liquid product with a low glycemic index. Heating mHAS for 4-5 min in liquid increased the slowly digestible starch (SDS) fraction at the expense of the RS portion. The effect was temperature dependent and reached its maximum above 120 degrees C. Heating at 130 degrees C significantly reduced the RS fraction from 49 to 22%. The product remained stable for at least several months when stored at 4 degrees C. To investigate whether a higher SDS fraction would result in a lower postprandial glycemic response, the sterilized mHAS solution was compared with rapidly digestible maltodextrin. Male Wistar rats received an i.g. bolus of 2.0 g available carbohydrate/kg body weight. Ingestion of heat-treated mHAS resulted in a significant attenuation of the postprandial plasma glucose and insulin responses compared with maltodextrin. mHAS appears to be a starch source which, after sterilization in a liquid product, acquires slow-release properties. The long-term stability of mHAS solutions indicates that this may provide a suitable carbohydrate source for low glycemic index liquid products for inclusion in a diabetes-specific diet.
Biddle, John W; Singh, Rakesh S; Sparano, Evan M; Ricci, Francesco; González, Miguel A; Valeriani, Chantal; Abascal, José L F; Debenedetti, Pablo G; Anisimov, Mikhail A; Caupin, Frédéric
2017-01-21
One of the most promising frameworks for understanding the anomalies of cold and supercooled water postulates the existence of two competing, interconvertible local structures. If the non-ideality in the Gibbs energy of mixing overcomes the ideal entropy of mixing of these two structures, a liquid-liquid phase transition, terminated at a liquid-liquid critical point, is predicted. Various versions of the "two-structure equation of state" (TSEOS) based on this concept have shown remarkable agreement with both experimental data for metastable, deeply supercooled water and simulations of molecular water models. However, existing TSEOSs were not designed to describe the negative pressure region and do not account for the stability limit of the liquid state with respect to the vapor. While experimental data on supercooled water at negative pressures may shed additional light on the source of the anomalies of water, such data are very limited. To fill this gap, we have analyzed simulation results for TIP4P/2005, one of the most accurate classical water models available. We have used recently published simulation data, and performed additional simulations, over a broad range of positive and negative pressures, from ambient temperature to deeply supercooled conditions. We show that, by explicitly incorporating the liquid-vapor spinodal into a TSEOS, we are able to match the simulation data for TIP4P/2005 with remarkable accuracy. In particular, this equation of state quantitatively reproduces the lines of extrema in density, isothermal compressibility, and isobaric heat capacity. Contrary to an explanation of the thermodynamic anomalies of water based on a "retracing spinodal," the liquid-vapor spinodal in the present TSEOS continues monotonically to lower pressures upon cooling, influencing but not giving rise to density extrema and other thermodynamic anomalies.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.
1998-01-01
The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. It is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the large-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.
NASA Technical Reports Server (NTRS)
Margolis, S. B.
1997-01-01
The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(p)(k), where A(p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A(p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. it is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the long-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.
2014-01-01
Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475
Frontiers in poly(ionic liquid)s: syntheses and applications.
Qian, Wenjing; Texter, John; Yan, Feng
2017-02-20
We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.
Liquid cooled approaches for high density avionics
NASA Astrophysics Data System (ADS)
Levasseur, Robert
Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).
Thermophysical properties of liquid rare earth metals
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Sonvane, Y. A.; Patel, H. P.; Jani, A. R.
2013-06-01
The thermodynamical properties like long wavelength limit S(0), iso-thermal compressibility (χT), thermal expansion coefficient (αV), thermal pressure coefficient (γV), specific heat at constant volume (CV) and specific heat at constant pressure (CP) are calculated for liquid rare earth metals. Our newly constructed parameter free model potential is used to describe the electron ion interaction due to Sarkar et al (S) local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermophysical properties of liquid rare earth metals.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... immediately enter a Limit State if the National Best Offer equals the Lower Limit Band and does not cross the... from occurring outside of the specified price bands.\\6\\ These limit up-limit down requirements would be... moves (as opposed to erroneous trades or momentary gaps in liquidity). \\5\\ 17 CFR 242.600(b)(47). See...
Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad
2015-03-07
Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.
A tunable optofluidic circular liquid fiber
NASA Astrophysics Data System (ADS)
Li, Lei; Wu, Wei; Shi, Yang; Gong, Enze; Yang, Yi
2016-01-01
This paper presents a tunable optofluidic circular liquid fiber through the numerical simulation. Fiber is a significant optical device and has been widely applied on optical fiber communication. But the fiber based solid has limited tunability. Compared to solid fiber, the fiber based liquid material is relatively infrequent. Cause for the liquid optical device has more freedom tunable properties than solid counterpart, it has attracted more interest. The traditional optofluidic waveguide is designed like a sandwich in planar channel. This two-dimensional (2D) structure liquid waveguide will face huge transmission loss in the perpendicular direction of the flow streams. In this paper, a curving microchannel is designed inside the microchip to produce centrifugal effect. Two different liquids are injected into the chip by external pumps. In a particular situation, the core flow will be totally surrounded by the cladding flow. So the liquid can form an optical waveguide. Its structure is similar to an optical fiber which high refractive index (RI) liquid is core of the waveguide and the low RI liquid is cladding of the waveguide. Profit from the reconfigurability of liquid material, this liquid fiber has excellent tunability. The diameter of the core flow can be tuned in a wider range by changing the volume ratio of the flows through the finite element analysis. It is predictable that such a tunable liquid fiber may find wider applications in lab-on-a-chip systems and integrated optical devices.
A review of limits on microbial activity in the cryosphere: temperature and water availability
NASA Astrophysics Data System (ADS)
Bakermans, C.
2017-12-01
The extent of microbial activity in the cryosphere likely depends on many things: the presence of liquid water, an adequate energy and nutrient supply (amount and flux), the absence of damaging conditions, exposure to low temperatures, and the time to evolve adaptations to low temperature conditions. Determining the extent of microbial activity in the cryosphere is a challenge complicated by the reduced availability of liquid water as water freezes and the low rates of diffusion and reaction brought on by low temperatures. Despite these limitations, many studies have demonstrated that reproduction by microorganisms is possible at temperatures of -10 to -20°C and that metabolism continues to even lower temperatures of about -30°C. In addition, microcosm studies in frozen soils and permafrost have demonstrated respiration down to temperatures of -18°C and DNA synthesis at temperatures from 0 to -20°C. In the environment, low temperature conditions (and lack of liquid water) appear to limit microbial activity in a few places like Don Juan Pond and University Valley in Antarctica. Microorganisms may be metabolically active in Arctic permafrost, but metabolism may be so exceptionally slow as to escape detection. Given the slow metabolism expected and the short geological age of permafrost (3 million years at the longest), there is probably insufficient time for microorganisms to evolve to become better adapted to live at subfreezing temperatures. Indeed, terrestrial life may never have the chance to evolve to exploit the low temperature capabilities of its biomolecules in view of the limited times at which cold environments persist on Earth. These observational studies of microorganisms in low temperature environments of the Polar regions expose how the extent of microbial activity at low temperature is entangled with other factors (perhaps inextricably); how the lack of liquid water at low temperatures appears to be the true limit on activity at low temperatures, and not low temperature per se; and that time at low temperatures may limit cold adaptation of microorganisms.
A Hierarchy of Models for Two-Phase Flows
NASA Astrophysics Data System (ADS)
Bouchut, F.; Brenier, Y.; Cortes, J.; Ripoll, J.-F.
2000-12-01
We derive a hierarchy of models for gas-liquid two-phase flows in the limit of infinite density ratio, when the liquid is assumed to be incompressible. The starting model is a system of nonconservative conservation laws with relaxation. At first order in the density ratio, we get a simplified system with viscosity, while at the limit we obtain a system of two conservation laws, the system of pressureless gases with constraint and undetermined pressure. Formal properties of this constraint model are provided, and sticky blocks solutions are introduced. We propose numerical methods for this last model, and the results are compared with the two previous models.
Ortega, Nàdia; Macià, Alba; Romero, Maria-Paz; Trullols, Esther; Morello, Jose-Ramón; Anglès, Neus; Motilva, Maria-Jose
2009-08-26
An improved chromatographic method was developed using ultra-performance liquid chromatography-tandem mass spectrometry to identify and quantify phenolic compounds and alkaloids, theobromine and caffeine, in carob flour samples. The developed method has been validated in terms of speed, sensitivity, selectivity, peak efficiency, linearity, reproducibility, limits of detection, and limits of quantification. The chromatographic method allows the identification and quantification of 20 phenolic compounds, that is, phenolic acids, flavonoids, and their aglycone and glucoside forms, together with the determination of the alkaloids, caffeine and theobromine, at low concentration levels all in a short analysis time of less than 20 min.
Liquid-metal atomization for hot working preforms
NASA Technical Reports Server (NTRS)
Grant, N. J.; Pelloux, R. M.
1974-01-01
Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.
Gravimetric measurement of momentary drying rate of spray freeze-dried powders in vials.
Gieseler, Henning; Lee, Geoffrey
2009-09-01
The profile of drying rate versus primary drying time for a spray freeze-dried trehalose aqueous solution is much different from that determined for regular freeze-drying. Drying rate declines very rapidly, attributed to rate-limiting heat transfer through the packed bed of frozen microparticles contained in a vial. The inter-particulate spaces appear to be the cause of this rate limitation. Use of either liquid nitrogen or liquid propane as a cryogenic produced strong differences in both SFD particle morphology and drying rate using trehalose, sucrose, or mannitol. The lack of any evident correlation supports the argument that the inter-particulate voids determine drying behavior.
Cold atoms in one-dimensional rings: a Luttinger liquid approach to precision measurement
NASA Astrophysics Data System (ADS)
Ragole, Stephen; Taylor, Jacob
Recent experiments have realized ring shaped traps for ultracold atoms. We consider the one-dimensional limit of these ring systems with a moving weak barrier, such as a blue-detuned laser beam. In this limit, we employ Luttinger liquid theory and find an analogy with the superconducting charge qubit. In particular, we find that strongly-interacting atoms in such a system could be used for precision rotation sensing. We compare the performance of this new sensor to the state of the art non-interacting atom interferometry. Funding provided by the Physics Frontier Center at the JQI and by DARPA QUASAR.
Photonic-based liquid level transmitter using Mach-Zehnder interferometer for industrial application
NASA Astrophysics Data System (ADS)
Singh, Yadvendra; Raghuwanshi, Sanjeev K.; Kumar, Manish
2018-02-01
In the present scenario the process control industries mainly uses 1-5 Volt or 4-20 mA protocol for transmitting the measured signal to remote location operators. These types of protocol prone to interference and limited data transfer rate. To overcome these types of limitation we proposed photonic based transmitter for liquid level measurement which will enhance data transfer rate and interference reduction to eliminate noise signal in the channel during transmission to make transmission more reliable, accurate and consistent in performance. The required mathematical derivation and the principle of operation of the transmitter are shown in the paper.
Andre, M; Loidl, J; Laus, G; Schottenberger, H; Bentivoglio, G; Wurst, K; Ongania, K-H
2005-01-15
The potential of ionic liquids as solvents for headspace gas chromatography was investigated. Three compounds with boiling points above 200 degrees C were selected to demonstrate the feasibility of the concept described. 2-Ethylhexanoic acid, formamide, and tri-n-butylamine as examples of acidic, neutral, and basic analytes were dissolved in acidic 1-n-butyl-3-methylimidazolium hydrogen sulfate (1), neutral 1-n-butyl-2,3-dimethylimidazolium dicyanamide (2), and 2 containing 1,8-diazabicyclo[5.4.0]undec-7-ene to adjust basic conditions. All analytes could be determined with limits of detection and limits of quantification in the low-ppm concentration range.
Going beyond the reflectance limit of cholesteric liquid crystals
NASA Astrophysics Data System (ADS)
Mitov, Michel; Dessaud, Nathalie
2006-05-01
Cholesteric liquid-crystalline states of matter are abundant in nature: atherosclerosis, arthropod cuticles, condensed phases of DNA, plant cell walls, human compact bone osteon, and chiral biopolymers. The self-organized helical structure produces unique optical properties. Light is reflected when the wavelength matches the pitch (twice periodicity); cholesteric liquid crystals are not only coloured filters, but also reflectors and polarizers. But, in theory, the reflectance is limited to 50% of the ambient (unpolarized) light because circularly polarized light of the same handedness as the helix is reflected. Here we give details of a cholesteric medium for which the reflectance limit is exceeded. Photopolymerizable monomers are introduced into a cholesteric medium exhibiting a thermally induced helicity inversion, and the blend is then cured with ultraviolet light when the helix is right-handed. Because of memory effects attributable to the polymer network, the reflectance exceeds 50% when measured at the temperature assigned for a cholesteric helix with the same pitch but a left-handed sense before the reaction. As cholesteric materials are used as tunable bandpass filters, reflectors or polarizers and temperature or pressure sensors, novel opportunities to modulate the reflection over the whole light flux range, instead of only 50%, are offered.
NASA Astrophysics Data System (ADS)
Riseborough, P. S.; Lawrence, J. M.
2016-08-01
We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.
Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons.
Abbasnezhad, Hassan; Gray, Murray; Foght, Julia M
2011-11-01
Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil-water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase. © Springer-Verlag 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riseborough, P. S.; Lawrence, Jon M.
Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less
Riseborough, P. S.; Lawrence, Jon M.
2016-07-04
Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less
Persistence of the gapless spin liquid in the breathing kagome Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Iqbal, Yasir; Poilblanc, Didier; Thomale, Ronny; Becca, Federico
2018-03-01
The nature of the ground state of the spin S =1 /2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings J▵ and J▿ within elementary up- and down-pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and Monte Carlo methods. We analyze the stability of the U(1 ) Dirac spin liquid with respect to the presence of fermionic pairing that leads to a gapped Z2 spin liquid. For several values of the ratio J▿/J▵ , the size scaling of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss the competition with the "simplex" Z2 resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly anisotropic regime, i.e., J▿≪J▵ .
Pallarés, Noelia; Font, Guillermina; Mañes, Jordi; Ferrer, Emilia
2017-11-29
The aim of the present study was to develop a multimycotoxin liquid chromatography tandem mass spectrometry (LC-MS/MS) method with a dispersive liquid-liquid microextraction procedure (DLLME) for the analysis of AFs, 3aDON, 15aDON, NIV, HT-2, T-2, ZEA, OTA, ENNs, and BEA in tea beverages and to evaluate their mycotoxin contents. The proposed method was characterized in terms of linearity, limits of detection (LODs), limits of quantification (LOQs), recoveries, repeatability (intraday precision), reproducibility (interday precision), and matrix effects to check suitability. The results show LODs in the range of 0.05-10 μg/L, LOQs in the range of 0.2-33 μg/L, and recoveries in the range of 65-127% (RSD < 20%). The method developed in this study was applied to 44 commercial samples of black tea, red tea, green tea, and green mint tea. The results show that, of the analyzed mycotoxins, AFB2, AFG2, 15aDON, AFG1, and ENB were detected in the samples. AFB2 (14.4-32.2 μg/L) and 15aDON (60.5-61 μg/L) presented the highest levels. Green mint tea contained the highest concentration of mycotoxins. The risk assessment study shows that the population is not much exposed to mycotoxins through the consumption of tea beverages.
Zou, Nan; Chen, Ronghua; Qin, Yuhong; Song, Shuangyu; Tang, Xinglin; Pan, Canping
2016-09-01
Analytical methods based on multiplug filtration cleanup coupled with pulse glow discharge-ion mobility spectrometry and liquid chromatography tandem mass spectrometry were developed for the analysis of tricaine mesylate residue in fish and fish-raising water samples. A silica fiber holder and an appropriate new interface were designed to make the direct introduction of the fiber into the pulse glow discharge-ion mobility spectrometry introduction mechanism. The multiplug filtration cleanup method with adsorption mixtures was optimized for the determination of tricaine mesylate in fish samples. Good linear relationships were obtained by the two methods. For fish samples, limits of detection were 6 and 0.6 μg/kg by ion mobility spectrometry and liquid chromatography with tandem mass spectrometry, respectively. The matrix effect of the established liquid chromatography tandem mass spectrometry method was negligible for fish samples but that of the ion mobility spectrometry method was not. The two methods were compared. The ion mobility spectrometry system could be used a rapid screening tool on site with the advantage of rapidity, simplicity, and portability, and the liquid chromatography tandem mass spectrometry system could be used for validation in laboratory conditions with the advantage of lower limit of detection, stability, and precision. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-12-04
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.
Messman, J.D.; Rains, T.C.
1981-01-01
A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-01-01
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... the Commission determined to review (1) Claim construction of the limitation ``layer'' of the asserted... of claims 4 and 7 of the '006 patent by Scheuble; (4) the claim construction of the limitations... construction of the ``second rate'' ``determined by'' limitation of the asserted claims of the '941 patent and...
NASA Technical Reports Server (NTRS)
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.
Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U
Jaworski, M. A.; Brooks, A.; Kaita, R.; ...
2016-08-08
Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2012 CFR
2012-07-01
... incinerator or waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... burn auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2014 CFR
2014-07-01
... incinerator or waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... burn auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed...
Re-addressable Interconnects with Light-Induced Waveguides in Liquid Crystals
2011-08-09
average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...15. SUBJECT TERMS EOARD, Liquid Crystals, Laser beam control 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...external stimuli, their performance is far from optimal: their response time can be larger than 100ms and they exhibit transverse fluctuations due
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... only be applicable to PSOs that remove liquidity from the NYSE and that a PSO that provides liquidity...(kk). A PSO is a Primary Only (``PO'') Order that initially sweeps the Exchange's Book before being routed to the security's primary market. \\11\\ In limited circumstances where a PSO in a Tape A security...
Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide
Rathke, J.W.; Klingler, R.J.
1993-03-30
A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.
Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide
Rathke, Jerome W.; Klingler, Robert J.
1993-01-01
A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.
40 CFR Table 8 to Subpart Sssss of... - Continuous Compliance with Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... subpart; andii. Reducing the scrubber pressure drop data to 1-hour and 3-hour block averages; and iii.... Reducing the scrubber liquid pH data to 1-hour and 3-hour block averages; and iii. Maintaining the 3-hour... subpart; andii. Reducing the scrubber liquid flow rate data to 1-hour and 3-hour block averages; and iii...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... trading session while representing at the same time, on behalf of that account, market or limit orders at the minimum variation on both sides of the market, the broker may liquidate or cover the position... can execute any other order for the same account on the same side of the market as that liquidating...
Code of Federal Regulations, 2013 CFR
2013-10-01
... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...
Code of Federal Regulations, 2012 CFR
2012-10-01
... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...
Code of Federal Regulations, 2014 CFR
2014-10-01
... samples are analyzed directly by high performance liquid chromatography (HPLC). Detection limits: 0.01% by... proper selection of HPLC parameters. 2.4. Samples must be free of any particulates that may clog the... clarification kit. 3. Apparatus 3.1. Liquid chromatograph equipped with a UV detector. 3.2. HPLC Column that...
Inequalities for frequency-moment sum rules of electron liquids
NASA Technical Reports Server (NTRS)
Iwamoto, N.
1986-01-01
The relations between the various frequency-moment sum rules of electron liquids, which include even-power moments, are systematically examined by using the Cauchy-Schwarz and Hoelder inequalities. A relation involving the isothermal sound velocity and the kinetic and potential energies is obtained from one of the inequalities in the long-wavelength limit, and is generalized to arbitrary spatial dimensions.
Sun, Jianzhi; He, Hui; Liu, Shuhui
2014-07-01
A simple method that consumes low organic solvent is proposed for the analysis of phthalic acid esters in Chinese white spirit using dispersive liquid-liquid microextraction coupled with sweeping-micellar electrokinetic chromatography. Tetrachloromethane and white-spirit-containing ethanol were used as the extraction and dispersing solvents, respectively. The electrophoresis separation buffer was composed of 5 mM β-cyclodextrin, 50 mM sodium dodecyl sulfate and 25 mM borate buffer (pH 9.2) with 9% acetonitrile, enabling the baseline resolution of the analytes within 13 min. Under the optimum conditions, satisfactory linearities (5-1000 ng/mL, r ≥ 0.9909), good reproducibility (RSD ≤ 6.7% for peak area, and RSD ≤ 2.8% for migration time), low detection limits (0.4-0.8 ng/mL) and acceptable recovery rates (89.6-105.7%) were obtained. The proposed method was successfully applied to 22 Chinese white spirits, and the content of dibutyl phthalate in 55% of the samples exceeded the Specific Migration Limit of 0.3 mg/kg established by the domestic and international regulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1972-01-01
Buoyancy effects on the critical heat flux and general data trends for a liquid nitrogen internal flow system were determined by comparison of upflow and downflow data under identical test conditions. The test section had a 1.28 cm diameter flow passage and a 30.5 cm heated length which was subjected to uniform heat fluxes through resistance heating. Test conditions covered a range of pressures from 3.4 to 10.2 atm, inlet velocities from 0.23 to 3.51 m/sec, with the liquid nitrogen temperature at saturated inlet conditions. Data comparisons showed that the critical heat flux for downflow could be up to 36 percent lower than for upflow. A nonmonotonic relationship between the critical heat flux and velocity was determined for upflow but not for downflow. A limiting inlet velocity of 4.12 m/sec was determined to be the minimum velocity required to completely suppress the influence of buoyancy on the critical heat flux for this saturated inlet flow system. A correlation of this limiting fluid velocity is presented that was developed from previously published subcooled liquid nitrogen data and the saturated data of this investigation.
Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms
Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc
2014-01-01
Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792
Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge
2012-01-01
In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product (ρη) of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for ρη measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency. PMID:23112618
Wu, Hongliang; Li, Guoliang; Liu, Shucheng; Hu, Na; Geng, Dandan; Chen, Guang; Sun, Zhiwei; Zhao, Xianen; Xia, Lian; You, Jinmao
2016-02-01
This research established a sensitive and efficient pre-column derivatization HPLC method based on dispersive liquid-liquid microextraction (DLLME) for the simultaneous determination of six steroidal and phenolic endocrine disrupting chemicals (EDCs). In this study, EDCs were firstly labeled by the derivatization reagent 2-(11H-benzo[a]carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) and then extracted by DLLME. The response surface methodology was employed to investigate the key parameters of pre-column derivatization and DLLME. Under the optimal conditions, a good linear relationship between the peak area and the concentration of analytes was observed with correlation coefficients of >0.9991. Limits of detection for all EDCs derivatives were achieved within the range of 0.02-0.07 μg L(-1). The proposed method has the advantages of simple operation, low consumption of organic solvent, saving time, low output limit and good selectivity. When applied to several food and water samples analysis, it demonstrated good applicability for the determination of EDCs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tsai, Chia-Ju; Li, Jih-Heng; Feng, Chia-Hsien
2015-09-04
A novel, simple and quick sample preparation method was developed and used for pre-concentration and extraction of six phenylpropenes, including anethole, estragole, eugenol, methyl eugenol, safrole and myristicin, from oil samples by dual dispersive liquid-liquid microextraction. Gas chromatography-mass spectrometry was used for determination and separation of compounds. Several experimental parameters affecting extraction efficiency were evaluated and optimized, including forward-extractant type and volume, surfactant type and concentration, water volume, and back-extractant type and volume. For all analytes (10-1000ng/mL), the limits of detection (S/N≧3) ranged from 1.0 to 3.0ng/mL; the limits of quantification (S/N≧10) ranged from 2.5 to 10.0ng/mL; and enrichment factors ranged from 3.2 to 37.1 times. Within-run and between-run relative standard deviations (n=6) were less than 2.61% and less than 4.33%, respectively. Linearity was excellent with determination coefficients (r(2)) above 0.9977. The experiments showed that the proposed method is a simple, effective, and environmentally friendly method of analyzing phenylpropenes in oil samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz
2018-06-01
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Towards High-Frequency Shape Memory Alloy Actuators Incorporating Liquid Metal Energy Circuits
NASA Astrophysics Data System (ADS)
Hartl, Darren; Mingear, Jacob; Bielefeldt, Brent; Rohmer, John; Zamarripa, Jessica; Elwany, Alaa
2017-12-01
Large shape memory alloy (SMA) actuators are currently limited to applications with low cyclic actuation frequency requirements due to their generally poor heat transfer rates. This limitation can be overcome through the use of distributed body heating methods such as induction heating or by accelerated cooling methods such as forced convection in internal cooling channels. In this work, a monolithic SMA beam actuator containing liquid gallium-indium alloy-filled channels is fabricated through additive manufacturing. These liquid metal channels enable a novel multi-physical thermal control system, allowing for increased heating and cooling rates to facilitate an increased cyclic actuation frequency. Liquid metal flowing in the channels performs the dual tasks of inductively heating the surrounding SMA material and then actively cooling the SMA via forced internal fluid convection. A coupled thermoelectric model, implemented in COMSOL, predicts a possible fivefold increase in the cyclic actuation frequency due to these increased thermal transfer rates when compared to conventional SMA forms having external heating coils and being externally cooled via forced convection. The first ever experimental prototype SMA actuator of this type is described and, even at much lower flow rates, is shown to exhibit a decrease in cooling time of 40.9%.
Mehta, Rohini; Baranova, Ancha; Birerdinc, Aybike
2012-01-01
Liquid nitrogen is colorless, odorless, extremely cold (-196 °C) liquid kept under pressure. It is commonly used as a cryogenic fluid for long term storage of biological materials such as blood, cells and tissues 1,2. The cryogenic nature of liquid nitrogen, while ideal for sample preservation, can cause rapid freezing of live tissues on contact - known as 'cryogenic burn'2, which may lead to severe frostbite in persons closely involved in storage and retrieval of samples from Dewars. Additionally, as liquid nitrogen evaporates it reduces the oxygen concentration in the air and might cause asphyxia, especially in confined spaces2. In laboratories, biological samples are often stored in cryovials or cryoboxes stacked in stainless steel racks within the Dewar tanks1. These storage racks are provided with a long shaft to prevent boxes from slipping out from the racks and into the bottom of Dewars during routine handling. All too often, however, boxes or vials with precious samples slip out and sink to the bottom of liquid nitrogen filled tank. In such cases, samples could be tediously retrieved after transferring the liquid nitrogen into a spare container or discarding it. The boxes and vials can then be relatively safely recovered from emptied Dewar. However, the cryogenic nature of liquid nitrogen and its expansion rate makes sunken sample retrieval hazardous. It is commonly recommended by Safety Offices that sample retrieval be never carried out by a single person. Another alternative is to use commercially available cool grabbers or tongs to pull out the vials3. However, limited visibility within the dark liquid filled Dewars poses a major limitation in their use. In this article, we describe the construction of a Cryotolerant DIY retrieval device, which makes sample retrieval from Dewar containing cryogenic fluids both safe and easy. PMID:22617806
Mehta, Rohini; Baranova, Ancha; Birerdinc, Aybike
2012-05-11
Liquid nitrogen is colorless, odorless, extremely cold (-196 °C) liquid kept under pressure. It is commonly used as a cryogenic fluid for long term storage of biological materials such as blood, cells and tissues (1,2). The cryogenic nature of liquid nitrogen, while ideal for sample preservation, can cause rapid freezing of live tissues on contact - known as 'cryogenic burn' (2), which may lead to severe frostbite in persons closely involved in storage and retrieval of samples from Dewars. Additionally, as liquid nitrogen evaporates it reduces the oxygen concentration in the air and might cause asphyxia, especially in confined spaces (2). In laboratories, biological samples are often stored in cryovials or cryoboxes stacked in stainless steel racks within the Dewar tanks (1). These storage racks are provided with a long shaft to prevent boxes from slipping out from the racks and into the bottom of Dewars during routine handling. All too often, however, boxes or vials with precious samples slip out and sink to the bottom of liquid nitrogen filled tank. In such cases, samples could be tediously retrieved after transferring the liquid nitrogen into a spare container or discarding it. The boxes and vials can then be relatively safely recovered from emptied Dewar. However, the cryogenic nature of liquid nitrogen and its expansion rate makes sunken sample retrieval hazardous. It is commonly recommended by Safety Offices that sample retrieval be never carried out by a single person. Another alternative is to use commercially available cool grabbers or tongs to pull out the vials (3). However, limited visibility within the dark liquid filled Dewars poses a major limitation in their use. In this article, we describe the construction of a Cryotolerant DIY retrieval device, which makes sample retrieval from Dewar containing cryogenic fluids both safe and easy.
Prado, A H; Borges, M C; Eloy, J O; Peccinini, R G; Chorilli, M
2017-10-01
Cutaneous penetration is a critical factor in the use of sunscreen, as the compounds should not reach systemic circulation in order to avoid the induction of toxicity. The evaluation of the skin penetration and permeation of the UVB filter octyl methoxycinnamate (OMC) is essential for the development of a successful sunscreen formulation. Liquid-crystalline systems are innovative and potential carriers of OMC, which possess several advantages, including controlled release and protection of the filter from degradation. In this study, a new and effective method was developed using ultra-high performance liquid chromatography (UPLC) with ultraviolet detection (UV) for the quantitative analysis of penetration of OMC-loaded liquid crystalline systems into the skin. The following parameters were assessed in the method: selectivity, linearity, precision, accuracy, robustness, limit of detection (LOD), and limit of quantification (LOQ). The analytical curve was linear in the range from 0.25 to 250 μg.m-1, precise, with a standard deviation of 0.05-1.24%, with an accuracy in the range from 96.72 to 105.52%, and robust, with adequate values for the LOD and LOQ of 0.1 and 0.25 μg.mL -1, respectively. The method was successfully used to determine the in vitro skin permeation of OMC-loaded liquid crystalline systems. The results of the in vitro tests on Franz cells showed low cutaneous permeation and high retention of the OMC, particularly in the stratum corneum, owing to its high lipophilicity, which is desirable for a sunscreen formulation.
CFD analysis of laboratory scale phase equilibrium cell operation
NASA Astrophysics Data System (ADS)
Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville
2017-10-01
For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.
CFD analysis of laboratory scale phase equilibrium cell operation.
Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville
2017-10-01
For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.
Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao
2017-06-01
In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Martins, Ayrton F; Frank, Carla da S; Altissimo, Joseline; de Oliveira, Júlia A; da Silva, Daiane S; Reichert, Jaqueline F; Souza, Darliana M
2017-08-24
Statins are classified as being amongst the most prescribed agents for treating hypercholesterolaemia and preventing vascular diseases. In this study, a rapid and effective liquid chromatography method, assisted by diode array detection, was designed and validated for the simultaneous quantification of atorvastatin (ATO) and simvastatin (SIM) in hospital effluent samples. The solid phase extraction (SPE) of the analytes was optimized regarding sorbent material and pH, and the dispersive liquid-liquid microextraction (DLLME), in terms of pH, ionic strength, type and volume of extractor/dispersor solvents. The performance of both extraction procedures was evaluated in terms of linearity, quantification limits, accuracy (recovery %), precision and matrix effects for each analyte. The methods proved to be linear in the concentration range considered; the quantification limits were 0.45 µg L -1 for ATO and 0.75 µg L -1 for SIM; the matrix effect was almost absent in both methods and the average recoveries remained between 81.5-90.0%; and the RSD values were <20%. The validated methods were applied to the quantification of the statins in real samples of hospital effluent; the concentrations ranged from 18.8 µg L -1 to 35.3 µg L -1 for ATO, and from 30.3 µg L -1 to 38.5 µg L -1 for SIM. Since the calculated risk quotient was ≤192, the occurrence of ATO and SIM in hospital effluent poses a potential serious risk to human health and the aquatic ecosystem.
Werner, Justyna
2016-04-01
Task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task-specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT-TL-1, INCT-MPH-2) with the recovery values in the range of 90-104%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decompression-induced melting of ice IV and the liquid-liquid transition in water
NASA Astrophysics Data System (ADS)
Mishima, Osamu; Stanley, H. Eugene
1998-03-01
Although liquid water has been the focus of intensive research for over 100 years, a coherent physical picture that unifies all of the known anomalies of this liquid, is still lacking. Some of these anomalies occur in the supercooled region, and have been rationalized on the grounds of a possible retracing of the liquid-gas spinodal (metastability limit) line into the supercooled liquid region, or alternatively the presence of a line of first-order liquid-liquid phase transitions in this region which ends in a critical point,. But these ideas remain untested experimentally, in part because supercooled water can be probed only above the homogeneous nucleation temperature TH at which water spontaneously crystallizes. Here we report an experimental approach that is not restricted by the barrier imposed by TH, involving measurement of the decompression-induced melting curves of several high-pressure phases of ice in small emulsified droplets. We find that the melting curve for ice IV seems to undergo a discontinuity at precisely the location proposed for the line of liquid-liquid phase transitions. This is consistent with, but does not prove, the coexistence of two different phases of (supercooled) liquid water. From the experimental data we calculate a possible Gibbs potential surface and a corresponding equation of state for water, from the forms of which we estimate the coordinates of the liquid-liquid critical point to be at pressure Pc ~ 0.1GPa and temperature Tc ~ 220K.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pengfei; Wei, Xiaona; Zhuang, Songlin; Yang, Bo
2010-11-01
Liquid lens is a novel optical device which can implement active zooming. With liquid lens, zoom camera can be designed with more miniature size and simpler structure than before. It is thought that the micro zoom system with liquid lens has a very wide potential applications in many fields, in which the volume and weight of the system are critically limited, such as endoscope, mobile, PDA and so on. There are mainly three types of tunable-focus liquid lens: liquid crystal lens, electrowetting effect based liquid lens and liquid-filled membrane lens. Comparing with the other two kinds of liquid lens, the liquid-filled membrane lens has the advantages of simple structure, flexible aperture and high zooming efficiency. But its membrane surface will have an initial shape deformation caused by the gravity when the aperture of the lens is at large size, which will lead to the wave front aberration and the imaging quality impairing. In this paper, the initial deformation of the lens caused by the gravity was simulated based on the theory of Elastic Mechanics, which was calculated by the Finite Element Analysis method. The relationship between the diameter of the lens and the wave front aberration caused by the gravity was studied. And the Optical path difference produced by different liquid density was also analyzed.
Yang, Xiao; Diao, Chun-Peng; Sun, Ai-Ling; Liu, Ren-Min
2014-10-01
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut-glass dropper was designed and applied to collect the floating extraction drop in liquid-liquid microextraction when low-density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low-density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex-assisted liquid-liquid microextraction was employed to investigate the usefulness of the apparatus. High-performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r(2) = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Weidolf, L O; Lee, E D; Henion, J D
1988-03-01
Sulfoconjugated anabolic steroids were separated by micro-bore high-performance liquid chromatography. The eluent was introduced into the atmospheric pressure ion source of the triple-quadrupole mass spectrometer via an ion spray liquid chromatograph/mass spectrometer interface operated in the negative ion mode. The limit of detection was 10 pg on-column by selected ion monitoring of the molecular ion and the response increased linearly over a concentration range of 2.4 orders of magnitude. Following work-up by a liquid-solid extraction procedure of equine urine samples, full-scan daughter ion spectra of boldenone sulfate could be obtained up to 17 days after a therapeutic dose of boldenone undecylenate to a horse.
NASA Astrophysics Data System (ADS)
Lin, Sheng-Yu; Chen, Pin-Shiuan; Chang, Sarah Y.
2015-03-01
A simple, rapid, and sensitive method for the detection of posaconazole using dispersive liquid-liquid microextraction (DLLME) coupled to surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. After the DLLME, posaconazole was detected using SALDI/MS with colloidal gold and α-cyano-4-hydroxycinnamic acid (CHCA) as the co-matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 1.0 to 100.0 nM for posaconazole, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 0.3 nM for posaconazole. This novel method was successfully applied to the determination of posaconazole in human urine samples.
The dissociation of liquid silica at high pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, D; Boehly, T; Eggert, J
2005-11-17
Liquid silica at high pressure and temperature is shown to undergo significant structural modifications and profound changes in its electronic properties. Temperature measurements on shock waves in silica at 70-1000 GPa indicate that the specific heat of liquid SiO{sub 2} rises well above the Dulong-Petit limit, exhibiting a broad peak with temperature that is attributable to the growing structural disorder caused by bond-breaking in the melt. The simultaneous sharp rise in optical reflectivity of liquid SiO{sub 2} indicates that dissociation causes the electrical and therefore thermal conductivities of silica to attain metallic-like values of 1-5 x 10{sup 5} S/m andmore » 24-600 W/m.K respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Liam F.; Weber, Stefan A. L.; Rodriguez, Brian
Kelvin probe force microscopy (KPFM) has been widely used to map nanoscale surface potentials of materials in ambient and ultra-high vacuum environments. However, to study and ultimately understand charge-related processes, e.g., in biological systems or to further improve energy storage devices such as electrochemical batteries, nanoscale surface potential measurements in liquid environments are required. Here, we describe the various implementations of KPFM-based approaches for measuring surface potentials in liquid environments. We provide practical guidelines for surface potential measurements and describe what other information can be obtained. Finally, we discuss potential applications and limitations of existing approaches and present possible solutionsmore » for the successful implementation of liquid KPFM.« less
Investigation of the reaction of liquid hydrogen with liquid air in a pressure tube
NASA Technical Reports Server (NTRS)
Karb, Erich H.
1987-01-01
A pressure tube should protect the FR-2 reactor from the consequences of a hydrogen-air reaction, which is conceivable in the breakdown of several safety devices of the planned cold neutron source Project FR-2/16. The magnitudes and time pattern of the pressures to be expected were investigated. In the geometry used and the ignition mechanism selected, which is comparable to the strongest ignition process conceivable in the reactor, the reaction proceeds with greater probability than combustion. The combustion is possibly smaller if local limited partial detonations are superimposed. The magnitude of the pressure was determined by the masses of the reaction partners, liquid H2 and liquid air, and determines their ratio to each other.
Tuzen, Mustafa; Pekiner, Ozlem Zeynep
2015-12-01
A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Helium dilution refrigeration system
Roach, Patrick R.; Gray, Kenneth E.
1988-01-01
A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.
Helium dilution refrigeration system
Roach, P.R.; Gray, K.E.
1988-09-13
A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.
Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José
2017-10-15
A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel
2016-01-01
A new procedure based on direct insert microvial thermal desorption injection allows the direct analysis of ionic liquid extracts by gas chromatography and mass spectrometry (GC-MS). For this purpose, an in situ ionic liquid dispersive liquid-liquid microextraction (in situ IL DLLME) has been developed for the quantification of bisphenol A (BPA), bisphenol Z (BPZ) and bisphenol F (BPF). Different parameters affecting the extraction efficiency of the microextraction technique and the thermal desorption step were studied. The optimized procedure, determining the analytes as acetyl derivatives, provided detection limits of 26, 18 and 19 ng L(-1) for BPA, BPZ and BPF, respectively. The release of the three analytes from plastic containers was monitored using this newly developed analytical method. Analysis of the migration test solutions for 15 different plastic containers in daily use identified the presence of the analytes at concentrations ranging between 0.07 and 37 μg L(-1) in six of the samples studied, BPA being the most commonly found and at higher concentrations than the other analytes.
Zhang, Zhong; Ren, Fei; Zhang, Pan
2012-11-01
A method was developed for the determination of capsaicinoids (capsaicin, dihydrocapsaicin and synthetic capsaicin) and eugenol in waste-edible-oil extracted by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capsaicinoids and eugenol in waste-edible-oil were extracted by methanol, and then separated by a SUPEL COSIL ABZ + Plus dC18 column (150 mm x4.6 mm, 5 microm). The analysis was performed by MS/MS with electrospray ionization in positive and negative ion modes with multiple reaction monitoring (MRM). The limits of detection for capsaicin, dihydrocapsaicin, synthetic capsaicin and eugenol were 0.02, 0.03, 0.03 and 0.6 microg/L, respectively. The good linear relationships were obtained in certain concentration ranges of capsaicinoids and eugenol. The relative standard deviations (RSDs, n=5) of same-worker and different-worker were less than 5%. The method is exclusive, sensitive and accurate, and can be used in waste-edible-oil determination.
Miralles, Pablo; Vrouvaki, Ilianna; Chisvert, Alberto; Salvador, Amparo
2016-07-01
An analytical method for the simultaneous determination of phenethyl alcohol, methylpropanediol, phenylpropanol, caprylyl glycol, and ethylhexylglycerin, which are used as alternative preservatives in cosmetic products, has been developed. The method is based on liquid chromatography with UV spectrophotometric detection after chromophoric derivatization with benzoyl chloride and vortex-assisted liquid-liquid semimicroextraction. Different chromatographic parameters, derivatization conditions, and sample preparation variables were studied. Under optimized conditions, the limits of detection values for the analytes ranged from 0.02 to 0.06µgmL(-1). The method was validated with good recovery values (84-118%) and precision values (3.9-9.5%). It was successfully applied to 10 commercially available cosmetic samples. The good analytical features of the proposed method besides of its environmentally-friendly characteristics, make it useful to carry out the quality control of cosmetic products containing the target compounds as preservative agents. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Albright, N.; Concus, P.; Karasalo, I.
1977-01-01
Of principal interest is the stability of a perfectly wetting liquid in an inverted, vertical, right circular-cylindrical container having a concave spheroidal bottom. The mathematical conditions that the contained liquid be in stable static equilibrium are derived, including those for the limiting case of zero contact angle. Based on these results, a computational investigation is carried out for a particular container that is used for the storage of liquid fuels in NASA Centaur space vehicles, for which the axial ratio of the container bottom is 0.724. It is found that for perfectly wetting liquids the qualitative nature of the onset of instability changes at a critical liquid volume, which for the Centaur fuel tank corresponds to a mean fill level of approximately 0.503 times the tank's radius. Small-amplitude periodic sloshing modes for this tank were calculated; oscillation frequencies or growth rates are given for several Bond numbers and liquid volumes, for normal modes having up to six angular nodes.
Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled Janus tiles.
Bucaro, Michael A; Kolodner, Paul R; Taylor, J Ashley; Sidorenko, Alex; Aizenberg, Joanna; Krupenkin, Tom N
2009-04-09
In this paper, we describe a tunable, high-reflectivity optofluidic device based on self-assembly of anisotropically functionalized hexagonal micromirrors (Janus tiles) on the surface of an oil droplet to create a concave liquid mirror. The liquid mirror is deposited on a patterned transparent electrode that allows the focal length and axial position to be electrically controlled. The mirror is mechanically robust and retains its integrity even at high levels of vibrational excitation of the interface. The use of reflection instead of refraction overcomes the limited available refractive-index contrast between pairs of density-matched liquids, allowing stronger focusing than is possible for a liquid lens of the same geometry. This approach is compatible with optical instruments that could provide novel functionality-for example, a dynamic 3D projector, i.e., a light source which can scan an image onto a moving, nonplanar focal surface. Janus tiles with complex optical properties can be manufactured using our approach, thus potentially enabling a wide range of novel optical elements.
Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled Janus tiles
NASA Astrophysics Data System (ADS)
Krupenkin, Tom; Bucaro, Mike; Kolodner, Paul; Taylor, Ashley; Sidorenko, Alex; Aizenberg, Joanna
2009-03-01
In this work we describe a tunable, high-reflectivity optofluidic device based on self-assembly of anisotropically-functionalized hexagonal micromirrors (Janus tiles) on the surface of an oil droplet to create a concave liquid mirror. The liquid mirror is deposited on a patterned transparent electrode that allows the focal length and axial position to be electrically controlled. The mirror is mechanically robust and retains its integrity even at high levels of vibrational excitation of the interface. The use of reflection instead of refraction overcomes the limited available refractive-index contrast between pairs of density-matched liquids, allowing stronger focusing than is possible for a liquid lens of the same geometry. This approach is compatible with optical instruments that could provide novel functionality - for example, a dynamic 3D projector; i.e., a light source which can scan an image onto a moving, non-planar focal surface. Janus tiles with complex optical properties can be manufactured using our approach, thus potentially enabling a wide range of novel optical elements.
Pumping liquid metal at high temperatures up to 1,673 kelvin
NASA Astrophysics Data System (ADS)
Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.
2017-10-01
Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.
Electrodeposition of Si from an Ionic Liquid Bath at Room Temperature in the Presence of Water.
Shah, Nisarg K; Pati, Ranjan Kumar; Ray, Abhijit; Mukhopadhyay, Indrajit
2017-02-21
The electrochemical deposition of Si has been carried out in an ionic liquid medium in the presence of water in a limited dry nitrogen environment on highly oriented pyrolytic graphite (HOPG) at room temperature. It has been found that the presence of water in ionic liquids does not affect the available effective potential window to a large extent. Silicon has been successfully deposited electrochemically in the overpotential regime in two different ionic liquids, namely, BMImTf 2 N and BMImPF 6 , in the presence of water. Although a Si thin film has been obtained from BMImTf 2 N; only distinguished Si crystals protected in ionic liquid droplets have been observed from BMImPF 6 . The most important observation of the present investigation is that the Si precursor, SiCl 4 , instead of undergoing hydrolysis, even in the presence of water, coexisted with ionic liquids, and elemental Si has been successfully electrodeposited.
Bodai, Zsolt; Szabó, Bálint Sámuel; Novák, Márton; Hámori, Susanne; Nyiri, Zoltán; Rikker, Tamás; Eke, Zsuzsanna
2014-10-15
A simple and fast analytical method was developed for the determination of six UV stabilizers (Cyasorb UV-1164, Tinuvin P, Tinuvin 234, Tinuvin 326, Tinuvin 327, and Tinuvin 1577) and five antioxidants (Irgafos 168, Irganox 1010, Irganox 3114, Irganox 3790, and Irganox 565) in milk. For sample preparation liquid-liquid extraction with low-temperature purification combined with centrifugation was used to remove fats, proteins, and sugars. After the cleanup step, the sample was analyzed with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). External standard and matrix calibrations were tested. External calibration proved to be acceptable for Tinuvin P, Tinuvin 234, Tinuvin 326, Tinuvin 327, Irganox 3114, and Irganox 3790. The method was successfully validated with matrix calibration for all compounds. Method detection limits were between 0.25 and 10 μg/kg. Accuracies ranged from 93 to 109%, and intraday precisions were <13%.
Pinch-off Scaling Law of Soap Bubbles
NASA Astrophysics Data System (ADS)
Davidson, John; Ryu, Sangjin
2014-11-01
Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.
Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira
2016-05-01
Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
CFTR is required for maximal transepithelial liquid transport in pig alveolar epithelia.
Li, Xiaopeng; Comellas, Alejandro P; Karp, Philip H; Ernst, Sarah E; Moninger, Thomas O; Gansemer, Nicholas D; Taft, Peter J; Pezzulo, Alejandro A; Rector, Michael V; Rossen, Nathan; Stoltz, David A; McCray, Paul B; Welsh, Michael J; Zabner, Joseph
2012-07-01
A balance between alveolar liquid absorption and secretion is critical for maintaining optimal alveolar subphase liquid height and facilitating gas exchange in the alveolar space. However, the role of cystic fibrosis transmembrane regulator protein (CFTR) in this homeostatic process has remained elusive. Using a newly developed porcine model of cystic fibrosis, in which CFTR is absent, we investigated ion transport properties and alveolar liquid transport in isolated type II alveolar epithelial cells (T2AECs) cultured at the air-liquid interface. CFTR was distributed exclusively to the apical surface of cultured T2AECs. Alveolar epithelia from CFTR(-/-) pigs failed to increase liquid absorption in response to agents that increase cAMP, whereas cAMP-stimulated liquid absorption in CFTR(+/-) epithelia was similar to that in CFTR(+/+) epithelia. Expression of recombinant CFTR restored stimulated liquid absorption in CFTR(-/-) T2AECs but had no effect on CFTR(+/+) epithelia. In ex vivo studies of nonperfused lungs, stimulated liquid absorption was defective in CFTR(-/-) alveolar epithelia but similar between CFTR(+/+) and CFTR(+/-) epithelia. When epithelia were studied at the air-liquid interface, elevating cAMP levels increased subphase liquid height in CFTR(+/+) but not in CFTR(-/-) T2AECs. Our findings demonstrate that CFTR is required for maximal liquid absorption under cAMP stimulation, but it is not the rate-limiting factor. Furthermore, our data define a role for CFTR in liquid secretion by T2AECs. These insights may help to develop new treatment strategies for pulmonary edema and respiratory distress syndrome, diseases in which lung liquid transport is disrupted.
The Influence of Liquids on the Mechanical Properties of Allografts in Bone Impaction Grafting.
Putzer, David; Ammann, Christoph Gert; Coraça-Huber, Débora; Lechner, Ricarda; Schmölz, Werner; Nogler, Michael
2017-10-01
Allografts are used to compensate for bone defects resulting from revision surgery, tumor surgery, and reconstructive bone surgery. Although it is well known that the reduction of fat content of allografts increases mechanical properties, the content of liquids with a known grain size distribution has not been assessed so far. The aim of the study was to compare the mechanical properties of dried allografts (DA) with allografts mixed with a saline solution (ASS) and with allografts mixed with blood (AB) having a similar grain size distribution. Fresh-frozen morselized bone chips were cleaned chemically, sieved, and reassembled in specific portions with a known grain size distribution. A uniaxial compression was used to assess the yield limit, initial density, density at yield limit, and flowability of the three groups before and after compaction with a fall hammer apparatus. No statistically significant difference could be found for the yield limit between DA and ASS (p = 0.339) and between ASS and AB (p = 0.554). DA showed a statistically significant higher yield limit than AB (p = 0.022). Excluding the effect of the grain size distribution on the mechanical properties, it was shown that allografts have a lower yield limit when lipids are present. The liquid content of allografts seems to play an inferior role as no statistically significant difference could be found between DA and ASS. It is suggested, in accordance with other studies, to chemically clean allografts before implantation to reduce the contamination risk and the fat content.
Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field
NASA Technical Reports Server (NTRS)
Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles
1999-01-01
Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air between two solid supports. The maximum achievable length to diameter ratio R(sub max) was approx. (3.10 +/- 0.07), very close to the Rayleigh-Plateau limit of pi. For smaller R, the stability of the column was measured as a function of the Bond number, which could be continuously varied by adjusting the strength of the magnetic field. Liquid bridges supported by two solid surfaces have been attracting scientific attention since the time of Rayleigh and Plateau. For a cylindrical bridge of length L and diameter d, it was shown theoretically that in zero gravity the maximum slenderness ratio R (identically = L/d) is pi. The stability and ultimate collapse of such bridges is of interest because of their importance in a number of industrial processes and their potential for low gravity applications. In the presence of gravity, however, the cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the maximum achievable value of R. Theoretical studies have discussed the stability and possible shapes of axisymmetric bridges. Experiments typically are performed in either a Plateau tank, in which the bridge is surrounded by a density-matched immiscible fluid, or in a space-borne microgravity environment. It has been shown, for example, that the stability limit R can be pushed beyond pi by using flow stabilization, by acoustic radiation pressure, or by forming columns in the presence of an axial electric field. In this work, magnetic levitation was used to simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a magnetic field permits us to continuously vary the Bond number B identically equal to (g)(rho)d(exp 2)/4(sigma), where g is the gravitational acceleration, rho is the density of the liquid, and sigma is the surface tension of the liquid in air. The dimensionless Bond number represents the relative importance of external forces acting on the liquid column to those due to surface tension. Our central result is that in a large magnetic field gradient we could create and stabilize columns of mixtures of water and paramagnetic manganese chloride tetrahydrate (MnCl2.4H2O), achieving a length to diameter ratio very close to pi.
Liquid metal actuation by electrical control of interfacial tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaker, Collin B.; Dickey, Michael D., E-mail: michael-dickey@ncsu.edu
2016-09-15
By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm lengthmore » scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.« less
Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin
2016-11-01
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth
NASA Technical Reports Server (NTRS)
Kim, Inchul; Sirignano, William A.
1999-01-01
This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.
The role of disclinations on the organization and conductivity in liquid crystal nanocomposites
NASA Astrophysics Data System (ADS)
Martinez-Miranda, Luz J.; Romero-Hasler, P.; Meneses-Franco, A.; Soto-Bustamante, E. A.
The structure of TiO2 nanoparticles in a liquid crystal nanocomposite was found to be an oblique structure due to the alignment of the TiO2 with respect to the liquid crystals. This order is anisotropic due to the ordering of the liquid crystals. The particles are highly localized in the nanocomposite, which has consequences in the electrical percolation. We want to obtain an understanding of how the nanoparticles organize in this highly localized fashion. The nanoparticles and the liquid crystals phase separate, with the nanoparticles accumulating in the defects exhibited by the liquid crystal even after being sonicated initially. The liquid crystal is polymerized by the process of electropolymerization that takes place in the isotropic phase of the monomers. The nanoparticles are free to move away from the defects where they phase separate since the defects disappear in the isotropic. We believe the polymerization imposes a limitation in the movement of the nanoparticles. The combination of the accumulation in the disclinations, the polymerization in the isotropic and the formation of the liquid crystal unit side chains can affect the conductivity of the nanocomposite. NSF-OISE-1157589; Fondecyt Project 1130187; CONICYT scholarships 21130413 and 21090713.
Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien
2016-01-01
The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ICAM-1, ELAM-1, TNF-alpha and IL-6 in serum and blister liquid of pemphigus vulgaris patients.
Alecu, M; Alecu, S; Coman, G; Gălăţescu, E; Ursaciuc, C
1999-01-01
The levels of ICAM-1, ELAM-1, TNF-alpha and IL-6 were determined in 12 patients with pemphigus vulgaris (PV) both in serum and the blister liquid. As a control, the same parameters were determined in 7 patients with herpes zoster (HZ). The patients with PV presented significantly higher values of ICAM-1 in the blister liquid, as compared to the serum values. The values of TNF-alpha and IL-6 were increased both in serum and the blister liquid. The ELAM-1 values did not show significant differences between serum and the blister liquid. In HZ patients, the blister liquid values did not significantly exceed the serum values both for ICAM-1 and ELAM-1. TNF-alpha and IL-6 presented high values both in serum and the blister liquid. We consider that the high values of ICAM-1 in the blister liquid from PV patients suggest the involvement of this adhesion molecule in the PV pathogenic features. The implication of ICAM-1 could be nonspecific and limited, and could possibly represent a reaction to the destruction of the desmosomal bonds within keratinocytes.
Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.
Hauwiller, Matthew R; Ondry, Justin C; Alivisatos, A Paul
2018-05-17
Graphene liquid cell electron microscopy provides the ability to observe nanoscale chemical transformations and dynamics as the reactions are occurring in liquid environments. This manuscript describes the process for making graphene liquid cells through the example of graphene liquid cell transmission electron microscopy (TEM) experiments of gold nanocrystal etching. The protocol for making graphene liquid cells involves coating gold, holey-carbon TEM grids with chemical vapor deposition graphene and then using those graphene-coated grids to encapsulate liquid between two graphene surfaces. These pockets of liquid, with the nanomaterial of interest, are imaged in the electron microscope to see the dynamics of the nanoscale process, in this case the oxidative etching of gold nanorods. By controlling the electron beam dose rate, which modulates the etching species in the liquid cell, the underlying mechanisms of how atoms are removed from nanocrystals to form different facets and shapes can be better understood. Graphene liquid cell TEM has the advantages of high spatial resolution, compatibility with traditional TEM holders, and low start-up costs for research groups. Current limitations include delicate sample preparation, lack of flow capability, and reliance on electron beam-generated radiolysis products to induce reactions. With further development and control, graphene liquid cell may become a ubiquitous technique in nanomaterials and biology, and is already being used to study mechanisms governing growth, etching, and self-assembly processes of nanomaterials in liquid on the single particle level.
Thermodynamic calculations for the liquid systems NaK, KCs and LiPb
NASA Astrophysics Data System (ADS)
Alblas, B. P.; Van Der Lugt, W.; Visser, E. G.; De Hosson, J. Th. M.
1982-06-01
The semi-empirical model for the calculation of the Gibbs free energy of mixing via the entropy of mixing, proposed by Visser et al. [1], is used to determine the activity coefficients and the long-wavelength limit of the structure factor, SCC(0). For the liquid alloys systems NaK and KCs the method leads to fairly accurate results, indicating almost ideal behaviour. For the compound-forming liquid alloys systems LiPb the agreement with experiment is less favourable, but the calculations clearly demonstrate the important influence of the volume contraction on the entropy.
Metastable phase selection from undercooled Zr 77 Rh 23 liquid alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, M. L.; Gibbons, P. C.; Vogt, A. J.
2017-11-01
From measurements of X-ray and neutron scattering of electrostatically levitated Zr77Rh23 liquids, a variety of metastable crystallization behavior was observed. The metastable phase selection in deeply undercooled liquid droplets is characterized and their crystallization pathways discussed. A metastable phase previously identified as a primary devitrification product from the metallic glass formed when undercooling was maximized to near the hypercooling limit. The direct formation of α–Zr and the equilibrium C16 phase as well as a newly discovered Zr5Rh3 (Mg5Si3-type) phase are also reported.
Intraocular lens based on double-liquid variable-focus lens.
Peng, Runling; Li, Yifan; Hu, Shuilan; Wei, Maowei; Chen, Jiabi
2014-01-10
In this work, the crystalline lens in the Gullstrand-Le Grand human eye model is replaced by a double-liquid variable-focus lens, the structure data of which are based on theoretical analysis and experimental results. When the pseudoaphakic eye is built in Zemax, aspherical surfaces are introduced to the double-liquid variable-focus lens to reduce the axial spherical aberration existent in the system. After optimization, the zoom range of the pseudoaphakic eye greatly exceeds that of normal human eyes, and the spot size on an image plane basically reaches the normal human eye's limit of resolution.
Gas-liquid coexistence in a system of dipolar soft spheres.
Jia, Ran; Braun, Heiko; Hentschke, Reinhard
2010-12-01
The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Here we compute the gas-liquid critical point in a system of dipolar soft spheres subject to an external electric field using molecular dynamics computer simulation. Tracking the critical point as the field strength is approaching zero we find the following limiting values: T(c)=0.063 and ρ(c)=0.0033 (dipole moment μ=1). These values are confirmed by independent simulation at zero field strength.
Deploying Liquid Filaments and Suspensions with an Electrohydrodynamic Liquid Bridge
NASA Astrophysics Data System (ADS)
Saville, D. A.
2005-11-01
We show that a dynamic liquid bridge can be formed by deploying the filament issuing from a Taylor Cone onto a surface with the nozzle and surface held at different electric potentials. This configuration differs sharply form the familiar `electrospinning' configuration where the filament whips violently. Nevertheless, although the aspect ratio (length/diameter) exceeds the Plateau limit by more than two orders of magnitude the bridge is stable. Here we report on the stability characteristics and show that such a bridge can be used to `print' sub-micron scale features on a moving surface with both clear fluids and suspensions.
Cosolvent electrolytes for electrochemical devices
Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven
2018-01-23
A method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.
MEMS based pumped liquid cooling systems for micro/nano spacecraft thermal control
NASA Technical Reports Server (NTRS)
Birur, G. C.; Shakkottai, P.; Sur, T. W.
2000-01-01
The electronic and other payload power densities in future micro/nano spacecraft are expected to exceed 25 Watts/cm(sup 2) and require advanced thermal control concepts and technologies to keep their payload within allowable temperature limits. This paper presents background on the need for pumped liquid cooling systems for future micro/nano spacecraft and results from this ongoing experimental investigation.
Fire suppressing apparatus. [sodium fires
Buttrey, K.E.
1980-12-19
Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.
Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Frederking, T. H. K.
1989-01-01
Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.
Buttrey, Kenneth E.
1982-11-02
Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubes depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.
NASA Technical Reports Server (NTRS)
Mitchell, C. E.
1980-01-01
Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.
South Africa Country Analysis Brief
2015-01-01
South Africa has a large energy-intensive coal mining industry. The country has limited proved reserves of oil and natural gas and uses its large coal deposits to meet most of its energy needs, particularly in the electricity sector. South Africa also has a sophisticated synthetic fuels industry, producing gasoline and diesel fuels from the Secunda coal-to-liquids (CTL) and Mossel Bay gas-to-liquids (GTL) plants
Cosolvent electrolytes for electrochemical devices
Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven
2018-02-13
A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.
Cosolvent electrolytes for electrochemical devices
Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven
2018-05-15
A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.
The simultaneous mass and energy evaporation (SM2E) model.
Choudhary, Rehan; Klauda, Jeffery B
2016-01-01
In this article, the Simultaneous Mass and Energy Evaporation (SM2E) model is presented. The SM2E model is based on theoretical models for mass and energy transfer. The theoretical models systematically under or over predicted at various flow conditions: laminar, transition, and turbulent. These models were harmonized with experimental measurements to eliminate systematic under or over predictions; a total of 113 measured evaporation rates were used. The SM2E model can be used to estimate evaporation rates for pure liquids as well as liquid mixtures at laminar, transition, and turbulent flow conditions. However, due to limited availability of evaporation data, the model has so far only been tested against data for pure liquids and binary mixtures. The model can take evaporative cooling into account and when the temperature of the evaporating liquid or liquid mixture is known (e.g., isothermal evaporation), the SM2E model reduces to a mass transfer-only model.
Kramer, S; Blaschke, G
2001-02-10
A sensitive high-performance liquid chromatographic method has been developed for the determination of the beta2-selective adrenergic agonist fenoterol in human plasma. To improve the sensitivity of the method, fenoterol was derivatized with N-(chloroformyl)-carbazole prior to HPLC analysis yielding highly fluorescent derivatives. The assay involves protein precipitation with acetonitrile, liquid-liquid-extraction of fenoterol from plasma with isobutanol under alkaline conditions followed by derivatization with N-(chloroformyl)-carbazole. Reversed-phase liquid chromatographic determination of the fenoterol derivative was performed using a column-switching system consisting of a LiChrospher 100 RP 18 and a LiChrospher RP-Select B column with acetonitrile, methanol and water as mobile phase. The limit of quantitation in human plasma was 376 pg fenoterol/ml. The method was successfully applied for the assay of fenoterol in patient plasma.
NASA Astrophysics Data System (ADS)
Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai
2014-10-01
Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing.
Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai
2014-01-01
Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing. PMID:25355005
Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K Y; Wang, Zuankai
2014-10-30
Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing.
NASA Astrophysics Data System (ADS)
Crassous, Jerome; Gabay, Claude; Liogier, Gaetan; Berge, Bruno
2004-12-01
A new technology for focus variation with direct electric control without moving part will be presented. The technology relies on an interface between two non-miscible transparent liquids, which can be deformed by electrowetting. This technology has been developed since 10 years in the lab and starts to be available commercially, with the following characteristics: large amplitude of dioptric correction (20 dioptries for a 5mm pupil size), fast response, small power consumption and good transmission in the visible range, clear pupil 1-10mm diameter. This paper will show the basic principle, as well as the physical limitations and optical aberrations due to differential thermal expansion of the two liquids in the cell. Experimental measurements made with a Schack Hartmann wave front analyzer will be presented, as well as numerical simulations of the liquid-liquid interface. Applications will be discussed, mainly in consumer electronics.
Yilmaz, Bilal; Asci, Ali; Kucukoglu, Kaan; Albayrak, Mevlut
2016-08-01
A simple high-performance liquid chromatography method has been developed for the determination of formaldehyde in human tissue. FA Formaldehyde was derivatized with 2,4-dinitrophenylhydrazine. It was extracted from human tissue with ethyl acetate by liquid-liquid extraction and analyzed by high-performance liquid chromatography. The calibration curve was linear in the concentration range of 5.0-200 μg/mL. Intra- and interday precision values for formaldehyde in tissue were <6.9%, and accuracy (relative error) was better than 6.5%. The extraction recoveries of formaldehyde from human tissue were between 88 and 98%. The limits of detection and quantification of formaldehyde were 1.5 and 5.0 μg/mL, respectively. Also, this assay was applied to liver samples taken from a biopsy material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Muirhead, Daniel
In this thesis, the relative humidity (RH) of the cathode reactant gas was investigated as a factor which influences gas diffusion layer (GDL) liquid water accumulation and mass transport-related efficiency losses over a range of operating current densities in a polymer electrolyte membrane (PEM) fuel cell. Limiting current measurements were used to characterize fuel cell oxygen transport resistance while simultaneous measurements of liquid water accumulation were conducted using synchrotron X-ray radiography. GDL porosity distributions were characterized with micro-computed tomography (microCT). The work presented here can be used by researchers to develop improved numerical models to predict GDL liquid water accumulation and to inform the design of next-generation GDL materials to mitigate mass transport-related efficiency losses. This work also contributes an extensive set of concurrent performance and liquid water visualization data to the PEM fuel cell field that can be used for validating multiphase transport models.
Capillary Pressure of a Liquid Between Uniform Spheres Arranged in a Square-Packed Layer
NASA Technical Reports Server (NTRS)
Alexader, J. Iwan D.; Slobozhanin, Lev A.; Collicott, Steven H.
2004-01-01
The capillary pressure in the pores defined by equidimensional close-packed spheres is analyzed numerically. In the absence of gravity the menisci shapes are constructed using Surface Evolver code. This permits calculation the free surface mean curvature and hence the capillary pressure. The dependences of capillary pressure on the liquid volume constructed here for a set of contact angles allow one to determine the evolution of basic capillary characteristics under quasi-static infiltration and drainage. The maximum pressure difference between liquid and gas required for a meniscus passing through a pore is calculated and compared with that for hexagonal packing and with approximate solution given by Mason and Morrow [l]. The lower and upper critical liquid volumes that determine the stability limits for the equilibrium capillary liquid in contact with square packed array of spheres are tabulated for a set of contact angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbush, C.M.; Viswanath, D.S.; Hsieh, F.H.
Data on thermal conductivity of liquids, as a function of temperature, are essential in the design of heat- and mass- transfer equipment. A number of correlations have been developed to predict thermal conductivity of liquids with limited success. Among the correlations proposed so far, only the correlation due to Nagvekar and Daubert is based on group contributions. In this paper, a new group contribution method is developed based on the Klaas and Viswanath method for prediction of thermal conductivity of liquids and the results are compared to the method of Nagvekar and Daubert and other existing correlations. The present methodmore » predicts thermal conductivity of some 228 liquids that encompass 1487 experimental data points with an average absolute deviation of 2.5%. The group contribution method is used to examine the temperature dependence of Prandtl number for vegetable oils.« less
Podhorniak, Lynda V; Kamel, Alaa; Rains, Diane M
2010-05-26
A rapid multiresidue method that captures residues of the insecticide formetanate hydrochloride (FHCl) in selected fruits is described. The method was used to provide residue data for dietary exposure determinations of FHCl. Using an acetonitrile extraction with a dispersive cleanup based on AOAC International method 2007.01, also known as QuEChERS, which was further modified and streamlined, thousands of samples were successfully analyzed for FHCl residues. FHCl levels were determined both by liquid chromatography-single-stage mass spectrometry (LC-MS) and ultraperformance liquid chromatography (UPLC)-tandem mass spectrometry (LC-MS/MS). The target limit of detection (LOD) and the limit of quantitation (LOQ) achieved for FHCl were 3.33 and 10 ng/g, respectively, with LC-MS and 0.1 and 0.3 ng/g, respectively, with LC-MS/MS. Recoveries at these previously unpublished levels ranged from 95 to 109%. A set of 20-40 samples can be prepared in one working day by two chemists.
Kwon, Jeong-Wook; Armbrust, Kevin L; Vidal-Dorsch, Doris; Bay, Steven M
2009-01-01
A method using liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of 17alpha-ethynylestradiol in fish liver; a second method using LC/MS was developed for the determination of carbamazepine, diazepam, simvastatin, and oxybenzone in fish liver. The fish liver samples were extracted and cleaned up by using liquid-liquid extraction and solid-phase extraction before the extracts were analyzed by LC/MS or LC/MS/MS with electrospray negative and positive ionization. Recoveries of the 5 target compounds from spiked catfish liver ranged from 72 +/- 2 to 100 +/- 3%. Limits of quantification for the 5 compounds were between 4.2 and 12.3 ng/g (wet weight). Ten turbot (Pleuronichthys verticalis) liver samples were analyzed; levels of 17alpha-ethynylestradiol, carbamazepine, simvastatin, and oxybenzone were below the detection limits. Diazepam was detected in all 10 fish liver samples at concentrations ranging from 23 to 110 ng/g (wet weight).
Díaz, Laura; Llorca-Pórcel, Julio; Valor, Ignacio
2008-08-22
A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 microL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm x 50 mm, 1.8 microm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L(-1) and correlation coefficients for the calibration curves in the range of 30-2000 ng L(-1) were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Pei; He, Li; Besser, Matthew F.
Here, electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt 57.5Cu 14.7Ni 5.3P 22.5 amorphous nanorods and Pd 40Ni 40P 20 bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g 2(t), and the time per frame,more » which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g 2(t) data even with low signal per frame.« less
Hoschek, Anna; Bühler, Bruno; Schmid, Andreas
2017-11-20
Gas-liquid mass transfer of gaseous reactants is a major limitation for high space-time yields, especially for O 2 -dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic photosynthesis was used for homogeneous O 2 supply via in situ generation in the liquid phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas putida GPo1. With light, but without external addition of O 2 , the chemo- and regioselective hydroxylation of nonanoic acid methyl ester to ω-hydroxynonanoic acid methyl ester was driven by O 2 generated through photosynthetic water oxidation. Photosynthesis also delivered the necessary reduction equivalents to regenerate the Fe 2+ center in AlkB for oxygen transfer to the terminal methyl group. The in situ coupling of oxygenic photosynthesis to O 2 -transferring enzymes now enables the design of fast hydrocarbon oxyfunctionalization reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Pei; He, Li; Besser, Matthew F.; ...
2016-09-08
Here, electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt 57.5Cu 14.7Ni 5.3P 22.5 amorphous nanorods and Pd 40Ni 40P 20 bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g 2(t), and the time per frame,more » which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g 2(t) data even with low signal per frame.« less
Louveau, B; Fernandez, C; Zahr, N; Sauvageon-Martre, H; Maslanka, P; Faure, P; Mourah, S; Goldwirt, L
2016-12-01
A precise and accurate high-performance liquid chromatography (HPLC) quantification method of rifampicin in human plasma was developed and validated using ultraviolet detection after an automatized solid-phase extraction. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision, accuracy, lower limit of quantification and stability. Chromatographic separation was performed on a Chromolith RP 8 column using a mixture of 0.05 m acetate buffer pH 5.7-acetonitrile (35:65, v/v) as mobile phase. The compounds were detected at a wavelength of 335 nm with a lower limit of quantification of 0.05 mg/L in human plasma. Retention times for rifampicin and 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline used as internal standard were respectively 3.77 and 4.81 min. This robust and exact method was successfully applied in routine for therapeutic drug monitoring in patients treated with rifampicin. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Link, Michael F.; Kim, Jounghwa; Park, Gyutae; Lee, Taehyoung; Park, Taehyun; Babar, Zaeem Bin; Sung, Kijae; Kim, Pilho; Kang, Seokwon; Kim, Jeong Soo; Choi, Yongjoo; Son, Jihawn; Lim, Ho-Jin; Farmer, Delphine K.
2017-05-01
A vehicle fleet representative of passenger vehicles driven in the Seoul Metropolitan Region was investigated for primary emissions and secondary chemistry. Exhaust was photochemically oxidized in a flow reactor to determine the ammonium nitrate (NH4NO3) aerosol formation potential from vehicles of gasoline, diesel and liquid petroleum gasoline (LPG) fuel types. Secondary formation of aerosol NH4NO3, was larger than primary emissions for all vehicle fuel types except diesel, for which negligible secondary NH4NO3 production was observed. Although diesel vehicles emitted more primary nitrogen oxides than other vehicle types, ammonia emitted from gasoline and liquid petroleum gasoline fuels types limited the secondary production of NH4NO3. The results suggest that gasoline and liquid petroleum gasoline vehicles with three-way catalysts could be an important source of ammonia for NH4NO3 aerosol formation in ammonia-limited environments, including the Seoul Metropolitan Region.
Optical Limiting by Index-Matched Phase-Segregated Mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Manijeh Razeghi, Gail J. Brown
The nonlinear optical response for index-matched, non-absorbing immiscible phases (liquid-solid, liquid-liquid, solid-solid) has been determined by means of open aperture z-scan measurements. In mixtures where one constituent shows a relatively high optical nonlinearity, rapid and reversible transformation to a light-scattering state is observed under conditions where a critical incident light fluence is exceeded. This passive broadband response is induced by a transient change in the dispersive part of the refractive index, and is based upon the Christiansen-Shelyubskii filter that at one time was used as a means to monitor the temperature of glass melts. Modeling studies are used to simulatemore » scattering intensities in such textured composites as a function of composition, microstructure, and constituent optical properties. Results provide a rational approach to the selection of materials for use in these limiters. Challenges to preparing dispersed phase mixtures and their response to 532 nm nanosecond pulsed laser irradiation are described.« less
Time-dependent limited penetrable visibility graph analysis of nonstationary time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong
2017-06-01
Recent years have witnessed the development of visibility graph theory, which allows us to analyze a time series from the perspective of complex network. We in this paper develop a novel time-dependent limited penetrable visibility graph (TDLPVG). Two examples using nonstationary time series from RR intervals and gas-liquid flows are provided to demonstrate the effectiveness of our approach. The results of the first example suggest that our TDLPVG method allows characterizing the time-varying behaviors and classifying heart states of healthy, congestive heart failure and atrial fibrillation from RR interval time series. For the second example, we infer TDLPVGs from gas-liquid flow signals and interestingly find that the deviation of node degree of TDLPVGs enables to effectively uncover the time-varying dynamical flow behaviors of gas-liquid slug and bubble flow patterns. All these results render our TDLPVG method particularly powerful for characterizing the time-varying features underlying realistic complex systems from time series.
Trace detection of oxygen--ionic liquids in gas sensor design.
Baltes, N; Beyle, F; Freiner, S; Geier, F; Joos, M; Pinkwart, K; Rabenecker, P
2013-11-15
This paper presents a novel electrochemical membrane sensor on basis of ionic liquids for trace analysis of oxygen in gaseous atmospheres. The faradaic response currents for the reduction of oxygen which were obtained by multiple-potential-step-chronoamperometry could be used for real time detection of oxygen down to concentrations of 30 ppm. The theoretical limit of detection was 5 ppm. The simple, non-expensive sensors varied in electrolyte composition and demonstrated a high sensitivity, a rapid response time and an excellent reproducibility at room temperature. Some of them were continuously used for at least one week and first results promise good long term stability. Voltammetric, impedance and oxygen detection studies at temperatures up to 200 °C (in the presence and absence of humidity and CO2) revealed also the limitations of certain ionic liquids for some electrochemical high temperature applications. Application areas of the developed sensors are control and analysis processes of non oxidative and oxygen free atmospheres. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhuang, Jinda; Ju, Y Sungtaek
2015-09-22
The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.
Substitute fluid examinations for liquid manure
NASA Astrophysics Data System (ADS)
Schrader, Kevin; Riedel, Marco; Eichert, Helmut
For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.
Earthquake-Induced Liquefaction of Fine-Grained Soils - Considerations from Japanese Research
1988-12-01
plasticity silt (from Silver Lake , Washington, liquid limit: 26 percent; plastic limit: 22 percent) on particle-to-particle contacts in the sand matrix...Resistance of Damsite 1, Reelfoot -Indian Creek Watershed, Obion County, Tennessee," Report to US Department of Agriculture, Soil Conservation Service
Tolrà, R P; Alonso, R; Poschenrieder, C; Barceló, D; Barceló, J
2000-08-11
Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry was used to identify glucosinolates in plant extracts. Optimization of the analytical conditions and the determination of the method detection limit was performed using commercial 2-propenylglucosinolate (sinigrin). Optimal values for the following parameters were determined: nebulization pressure, gas temperature, flux of drying gas, capillar voltage, corona current and fragmentor conditions. The method detection limit for sinigrin was 2.85 ng. For validation of the method the glucosinolates in reference material (rapeseed) from the Community Bureau of Reference Materials (BCR) were analyzed. The method was applied for the determination of glucosinolates in Thlaspi caerulescens plants.