High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls
Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...
2015-05-15
The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less
A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis
2012-10-01
The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.
Investigation Of A Tin-Lithium Alloy As A Liquid Plasma-Facing Material
NASA Astrophysics Data System (ADS)
Sandefur, Heather; Ruzic, David; Kolasinski, Robert; Buchenauer, Dean; Sandia National Laboratories Collaboration; University of Illinois Collaboration
2017-10-01
Sn-Li is a low melting-point alloy that has been identified as a material with favorable performance in plasma material interaction studies. While lithium is a low Z material with a demonstrated ability to absorb impinging ions, pure lithium is plagued by high evaporation rates in the liquid phase. The Sn-Li alloy is a more stable alternative that provides a lower rate of evaporative flux due to the high vapor pressure of tin. In the liquid phase, the bulk segregation of lithium to the surface of the material has also been observed. While the alloy is of considerable interest, little data has been collected on its surface chemistry in a plasma environment. In order to expand the existing body of knowledge in this area, samples of an 80 percent Sn-20 percent Li alloy were prepared and analyzed in order to assess the surface composition and degree of lithium segregation in the liquid phase. The Angle-Resolved Ion Energy Spectrometer (ARIES) at Sandia National Laboratories was used to probe the surfaces of the alloy using the low energy ion scattering method. The lithium coverage at the surface was measured, and the material's affinity for hydrogen chemisorption was investigated.
Tritz, Kevin; Bell, Ronald E.; Beiersdorfer, Peter; ...
2014-11-12
The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in themore » form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. In conclusion, these new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments.« less
Spreading of lithium on a stainless steel surface at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, C. H.; Capece, A. M.; Roszell, J. P.
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less
Spreading of lithium on a stainless steel surface at room temperature
Skinner, C. H.; Capece, A. M.; Roszell, J. P.; ...
2015-11-10
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less
Spreading of lithium on a stainless steel surface at room temperature
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.
2016-01-01
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium-lithium bonding.
Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide
NASA Technical Reports Server (NTRS)
Stephen, Mark A. (Inventor)
2018-01-01
An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.
Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U
Rindt, P.; Lopes Cardozo, N. J.; van Dommelen, J. A. W.; ...
2016-09-03
In this study, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heatmore » flux peaking at 10 MW m –2 for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid “interlayer” allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. As a result, the requirements are met, and thus a prototype will be manufactured for physical testing.« less
Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rindt, P.; Lopes Cardozo, N. J.; van Dommelen, J. A. W.
In this study, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heatmore » flux peaking at 10 MW m –2 for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid “interlayer” allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. As a result, the requirements are met, and thus a prototype will be manufactured for physical testing.« less
Designs of LiMIT as a Limiter in the EAST Tokamak
NASA Astrophysics Data System (ADS)
Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David
2016-10-01
Liquid metal plasma facing components (PFCs) provide a constantly refreshing, self-healing surface that can reduce erosion and thermal stress damage to prolong device lifetime, and additionally decrease edge recycling, reduce impurities, and enhance plasma performance. The Liquid Metal Infused Trench (LiMIT) system, developed at UIUC, has demonstrated thermoelectric magnetohydrodynamic (TEMHD) driven flow of liquid lithium through series of solid trenches. This TEMHD effect drives liquid lithium in fusion systems using the plasma heat flux and the toroidal magnetic field, and the surface tension of the liquid lithium maintains a fresh surface on top of the solid trenches. LiMIT has been successfully tested at UIUC as well as HT-7 and Magnum PSI at heat fluxes up to 3 MW/m2. The next step is demonstrating system viability in full-scale fusion-relevant conditions. In collaboration with a team in Hefei, design and testing has begun for a large scale LiMIT system that will act as a limiter in EAST. The designs improve upon previous versions of LiMIT tested at Illinois and incorporate lessons learned from earlier tests of liquid metal PFCs at EAST. Existing infrastructure is used to load and supply lithium to the system, and the LiMIT trenches will help maintain a smooth, fresh surface as well as aid in propelling the lithium out of direct plasma flux to improve heat transfer. Supported by DOE/ALPS DE-FG02-99ER54515.
Design and Modeling of a Liquid Lithium LiMIT Loop
NASA Astrophysics Data System (ADS)
Szott, Matthew; Christenson, Michael; Stemmley, Steven; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David
2017-10-01
The use of flowing liquid lithium in plasma facing components has been shown to reduce erosion and thermal stress damage, prolong device lifetime, decrease edge recycling, reduce impurities, and increase plasma performance, all while providing a clean and self-healing surface. The Liquid Metal Infused Trench (LiMIT) system has proven the concept of controlled thermoelectric magnetohydrodynamic-driven lithium flow for use in fusion relevant conditions, through tests at UIUC, HT-7, and Magnum PSI. As the use of liquid lithium in fusion devices progresses, emphasis must now be placed on full systems integration of flowing liquid metal concepts. The LiMIT system will be upgraded to include a full liquid lithium loop, which will pump lithium into the fusion device, utilize TEMHD to drive lithium through the vessel, and remove lithium for filtration and degassing. Flow control concepts recently developed at UIUC - including wetting control, dryout control, and flow velocity control - will be tested in conjunction in order to demonstrate a robust system. Lithium loop system requirements, designs, and modeling work will be presented, along with plans for installation and testing on the HIDRA device at UIUC. This work is supported by DOE/ALPS DE-FG02-99ER54515.
Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)
NASA Astrophysics Data System (ADS)
Allain, Jean Paul; Taylor, Chase N.
2012-05-01
The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.
Operational Characteristics of Liquid Lithium Divertor in NSTX
NASA Astrophysics Data System (ADS)
Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.
2010-11-01
Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.
Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies
NASA Astrophysics Data System (ADS)
Lewandowski, Andrzej; Świderska-Mocek, Agnieszka
The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.
Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.
Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori
2014-06-01
A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liquid surface skimmer apparatus for molten lithium and method
Robinson, Samuel C.; Pollard, Roy E.; Thompson, William F.; Stark, Marshall W.; Currin, Jr., Robert T.
1995-01-01
This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.
A sealed optical cell for the study of lithium-electrode|electrolyte interfaces
NASA Astrophysics Data System (ADS)
Howlett, P. C.; MacFarlane, D. R.; Hollenkamp, A. F.
A sealed, symmetrical, lithium optical cell, which enables optical images of lithium surface deposits and in situ Raman spectra to be obtained simply and conveniently during charge-discharge cycling of lithium metal electrodes, has been designed and tested. A conventional aprotic liquid, 1 M lithium hexafluorophosphate in propylene carbonate, and an experimental ionic liquid, 20 mol% lithium bis(trifluoromethanesulfonyl)amide in 1-ethyl 3-methyl imidazolium bis(trifluoromethanesulfonyl)amide, are investigated as electrolyte solutions. Images obtained from the cell with the former electrolyte solution demonstrate the problems associated with cycling lithium metal electrodes. Images obtained with the latter electrolyte solution provide clear evidence that continued investigation of ionic liquids for use with lithium metal electrodes is warranted. Operation of the cell with the conventional electrolyte yields Raman spectra of good quality. The spectra display vibrational modes which arise from the electrolyte, as well as several additional modes which are associated with the deposits formed during cycling.
Interaction of plasmas with lithium and tungsten fusion plasma facing components
NASA Astrophysics Data System (ADS)
Fiflis, Peter Robert
One of the largest outstanding issues in magnetic confinement fusion is the interaction of the fusion plasma with the first wall of the device; an interaction which is strongest in the divertor region. Erosion, melting, sputtering, and deformation are all concerns which inform choices of divertor material. Of the many materials proposed for use in the divertor, only a few remain as promising choices. Tungsten has been chosen as the material for the ITER divertor, and liquid lithium stands poised as its replacement in higher heat flux devices. As a refractory metal, tungsten's large melting point and thermal conductivity as well as its low sputtering yield have led to its selection as the material of choice of the ITER divertor. Experiments have reinforced this choice demonstrating tungsten's ability to withstand large heat fluxes when adequately cooled. However, tungsten has shown a propensity to nanostructure under exposure within a certain temperature range to large fluxes of helium ions. These nanostructures if disrupted into the plasma as dust by an off-normal event would cause quenching of the plasma from the generated dust. Liquid lithium, meanwhile, has gathered growing interest within the fusion community in recent years as a divertor, limiter, and alternative first wall material. Liquid lithium is attractive as a low-Z material replacement for refractory metals due to its ability to getter impurities, while also being self-healing in nature. However, concerns exist about the stability of a liquid metal surface at the edge of a fusion device. Liquid metal pools, such as the Li-DiMes probe, have shown evidence of macroscopic lithium displacement as well as droplet formation and ejection into the plasma. These issues must be mitigated in future implementations of liquid lithium divertor concepts. Rayleigh-Taylor-like (RT) and Kelvin-Helmholtz-like (KH) instabilities have been claimed as the initiators of droplet ejection, yet not enough data exists to delineate a stability boundary. The influences of plasma pressure and current driven instabilities on lithium surfaces that lead to droplet ejection are investigated to determine which of the two effects is dominant for a given set of plasma conditions. This work studies the influence of large plasma fluxes on these two materials to better inform the selection and design of plasma facing components (PFCs). The nanostructuring of tungsten was investigated to determine the mechanisms by which tungsten nanostructures so that its formation may be mitigated. Experiments investigated the dependence of nanostructuring on temperature, looked at the morphological evolution, and grew nanostructures on a variety of metals to examine their similarity to tungsten. Additionally, a computational model is presented for the initial stages of fuzz formation showing good quantitative and qualitative agreement with experimental observations. The influences of RT and KH instabilities on the surface of liquid lithium were experimentally observed and quantified on the ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) chamber at the University of Illinois at Urbana-Champaign and the stabilizing effect of surface tension, an effect employed by the LiMIT concept as well as other liquid lithium concepts, was studied, and the stability boundary afforded by surface tension was compared between experiment, computational simulation, and theory.
NASA Astrophysics Data System (ADS)
Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong
2017-12-01
Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.
Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; ...
2015-03-18
Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm 2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. Themore » effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, J.; Zuo, G. Z.; Hu, J. S.
2015-02-15
A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thinmore » flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.« less
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.
2004-09-01
Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.
Design and Fabrication of the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid
2006-10-01
The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.
Molecular dynamics simulations of bubble formation and cavitation in liquid metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insepov, Z.; Hassanein, A.; Bazhirov, T. T.
2007-11-01
Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly stretched region of the liquid phase diagram;more » and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-2700 K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory (CNT).« less
Magnetic diagnostics for the lithium tokamak experiment.
Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L
2008-10-01
The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions.
Conference report on the 3rd International Symposium on Lithium Application for Fusion Devices
Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.; ...
2015-01-14
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less
Conference Report on the 3rd International Symposium on Lithium Application for Fusion Devices
NASA Astrophysics Data System (ADS)
Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.
2015-02-01
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.
NASA Astrophysics Data System (ADS)
Xu, Wenyu; Christenson, Michael; Fiflis, Peter; Curreli, Davide; Andruczyk, Daniel; Ruzic, David
2013-10-01
The application of liquid metal, especially liquid lithium has become an important topic for plasma facing component (PFC) design. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactors. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can be utilized to drive liquid lithium flow within horizontally placed metallic open trenches in transverse magnetic field. A limiter based on this concept was tested in HT-7 and gave out positive results. However a broader application of this concept may require the trench be tilted or even placed vertically, for which strong capillary force caused by narrow trenches may be the solution. A new LiMIT design with very narrow trenches have been manufactured and tested in University of Illinois and related results will be presented. Based on this idea new limiters are designed for EAST and LTX and scheduled experiments on both devices will be discussed. This project is supported by DOE/ALPS contract: DEFG02- 99ER54515.
Parabolic lithium mirror for a laser-driven hot plasma producing device
Baird, James K.
1979-06-19
A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less
High-flux neutron source based on a liquid-lithium target
NASA Astrophysics Data System (ADS)
Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.
2013-04-01
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.
High-flux neutron source based on a liquid-lithium target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Paul, M.
2013-04-19
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generatemore » a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.« less
Hydrogen, lithium, and lithium hydride production
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.
2017-06-20
A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.
NASA Astrophysics Data System (ADS)
Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.
2016-10-01
We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.
NASA Astrophysics Data System (ADS)
Fiflis, Peter; Xu, Wenyu; Christenson, Michael; Andruczyk, Daniel; Curreli, Davide; Ruzic, David
2013-10-01
Critical to the implementation of flowing liquid lithium plasma facing components is understanding the interactions of liquid lithium with various surfaces. Presented here are experiments investigating the material compatibility, wetting characteristics, and relative thermopower of liquid lithium with a variety of potential substrate candidates for the LiMIT concept. Wetting experiments with lithium used the contact angle as a metric. Among those materials investigated are 316 SS, Mo, Ta, and W. The contact angle, as well as its dependence on temperature was measured. For example, at 200 C, tungsten registers a contact angle of 130°, whereas above its wetting temperature of 350 C, the contact angle is less than 80°. Several methods were found to decrease the critical wetting temperature of various materials and are presented here. The thermopower of W, Mo, Ta, Li, Ga, Wood's metal and Sn has been measured relative to stainless steel, and the Seebeck coefficient of has then been calculated. For molybdenum the Seebeck coefficient has a linear rise with temperature from SMo = 3.9 μVK-1 at 30 °C to 7.5 μVK-1 at 275 °C. On Assignment at PPPL
Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David
2014-10-01
An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.
Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan
2017-05-22
Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temperature Dependence of Lithium Reactions with Air
NASA Astrophysics Data System (ADS)
Sherrod, Roman; Skinner, C. H.; Koel, Bruce
2016-10-01
Liquid lithium plasma facing components (PFCs) are being developed to handle long pulse, high heat loads in tokamaks. Wetting by lithium of its container is essential for this application, but can be hindered by lithium oxidation by residual gases or during tokamak maintenance. Lithium PFCs will experience elevated temperatures due to plasma heat flux. This work presents measurements of lithium reactions at elevated temperatures (298-373 K) when exposed to natural air. Cylindrical TZM wells 300 microns deep with 1 cm2 surface area were filled with metallic lithium in a glovebox containing argon with less than 1.6 ppm H20, O2, and N2. The wells were transferred to a hot plate in air, and then removed periodically for mass gain measurements. Changes in the surface topography were recorded with a microscope. The mass gain of the samples at elevated temperatures followed a markedly different behavior to that at room temperature. One sample at 373 K began turning red indicative of lithium nitride, while a second turned white indicative of lithium carbonate formation. Data on the mass gain vs. temperature and associated topographic changes of the surface will be presented. Science Undergraduate Laboratory Internship funded by Department of Energy.
Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)
NASA Astrophysics Data System (ADS)
Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei
The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.
Investigation of tin-lithium eutectic as a liquid plasma facing material
NASA Astrophysics Data System (ADS)
Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar
2016-10-01
Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.
NASA Astrophysics Data System (ADS)
Narula, Manmeet Singh
Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the MHD interaction of fast flowing liquid metal films under various divertor relevant magnetic field configurations through numerical modeling exercises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904
2014-05-15
The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.
Particle control and plasma performance in the Lithium Tokamak eXperimenta)
NASA Astrophysics Data System (ADS)
Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D.; Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G.; Kubota, S.; Peebles, W. A.; Beiersdorfer, P.; Clementson, J. H. T.; Tritz, K.
2013-05-01
The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.
Evidence of formation of lithium compounds on FTU tiles and dust
NASA Astrophysics Data System (ADS)
Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.
2018-01-01
Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.
Innovative Surfaces for Controlled Flow of Liquid Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortini, Arthur J.
2016-03-22
The potential economic, environmental, and strategic benefits associated with the development of fusion energy are numerous. However, application of fusion technology cannot be realized until advanced materials are developed that allow operation under the high heat flux conditions necessary for cost-competitive electric energy generation. Bathing the wall of a fusion reactor plasma-facing component in a liquid metal such as lithium, gallium, or tin is a viable approach for accommodating continuous heat flux levels exceeding 10 MW/m2, and it is also the preferred approach for removing hydrogen isotopes. Stabilizing the liquid film is the key challenge, which can be addressed throughmore » the use of a microtextured surface. In previous work, Ultramet developed high temperature microtextured tungsten and rhenium coatings consisting of thousands of high aspect ratio pyramids per square millimeter that are compatible with lithium, gallium, and tin, and whose effectiveness in wicking molten lithium has been demonstrated even in the presence of strong body forces. Heat transfer and fluid flow characteristics were also modeled. Because of the safety issues surrounding lithium, the current project focused on adapting and optimizing this wicking technology for use with gallium and tin. The coatings were deposited by chemical vapor deposition (CVD), and the height, population density, and morphology of the pyramids was varied to optimize the wetting properties, which were measured and quantified by exposing the coatings to molten gallium or tin. Micron-thick films of other materials were also applied to the textured surfaces to vary the wetting characteristics. Wicking tests were performed with both gallium and tin on a variety of coatings with different textures and surface chemistries, and both metals showed excellent wicking and wettability on virtually all of the textured coatings. Extensive modeling of the interaction between the dendrites and the liquid metal, as well as additional wetting testing, was performed by Digital Materials Solutions (DMS, Carlsbad, CA).« less
Fabricating solid carbon porous electrodes from powders
Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.
1997-01-01
Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.
Fabricating solid carbon porous electrodes from powders
Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.
1997-06-10
Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.
Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor
NASA Astrophysics Data System (ADS)
McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.
2013-07-01
Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.
Vella, Joseph R.; Stillinger, Frank H.; Panagiotopoulos, Athanassios Z.; ...
2015-07-23
Here, we compare six lithium potentials by examining their ability to predict coexistence properties and liquid structure using molecular dynamics. All potentials are of the embedded-atom-method (EAM) type. The coexistence properties we focus on are the melting curve, vapor pressure, saturated liquid density, and vapor-liquid surface tension. For each property studied, the simulation results are compared to available experimental data in order to properly assess the accuracy of each potential. We find that the Cui 2NN MEAM is the most robust potential, giving adequate agreement with most of the properties examined. For example, the zero-pressure melting point of this potentialmore » is shown to be around 443 K, while experimentally is it about 454 K. This potential also gives excellent agreement with saturated liquid densities, even though no liquid properties were used in the fitting procedure. Our study allows us to conclude that the Cui 2NN MEAM should be used for further simulations of lithiums.« less
De Jonghe, Lutgard C.; Visco, Steven J.; Liu, Meilin; Mailhe, Catherine C.
1990-01-01
A lithium/organosulfur redox cell is disclosed which comprises a solid lium anode, a liquid organosulfur cathode, and a barrier layer formed adjacent a surface of the solid lithium anode facing the liquid organosulfur cathode consisting of a reaction product of the lithium anode with the organosulfur cathode. The organosulfur cathode comprises a material having the formula (R(S).sub.y).sub.N where y=1 to 6, n=2 to 20 and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the linear chain may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.
Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.
Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano
2015-03-18
In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.
Modeling of surface temperature effects on mixed material migration in NSTX-U
NASA Astrophysics Data System (ADS)
Nichols, J. H.; Jaworski, M. A.; Schmid, K.
2016-10-01
NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.
Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li 3N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kyusung; Goodenough, John B.
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li 3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li 3N particle is without dendrite nucleation. The Li 3N particles create amore » higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li 3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm -2 for more than 100 cycles. In this paper, the origin of the bonding responsible for wetting of the Li 3N particles by lithium and for plating through a Li 3N particle is discussed.« less
Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li 3N
Park, Kyusung; Goodenough, John B.
2017-07-10
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li 3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li 3N particle is without dendrite nucleation. The Li 3N particles create amore » higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li 3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm -2 for more than 100 cycles. In this paper, the origin of the bonding responsible for wetting of the Li 3N particles by lithium and for plating through a Li 3N particle is discussed.« less
A vanadium alloy for the application in a liquid metal blanket of a fusion reactor
NASA Astrophysics Data System (ADS)
Borgstedt, H. U.; Grundmann, M.; Konys, J.; Perić, Z.
1988-07-01
The vanadium alloy V3Ti1Si has been corrosion tested in liquid lithium and the eutectic alloy Pb-17Li at 550°C. This alloy has a comparable corrosion resistance to the alloy V15Cr5Ti in lithium. In this molten metal it is superior to stainless steel AISI 316. In the Pb-17Li melt it is even superior to martensitic steels. The alloy has only a weak tendency to be dissolved. It is sensitive to an exchange of non-metallic elements, which causes the formation of a hardened surface layer. These chemical effects are influenced by the mass and surface ratios of the vanadium alloy to the molten metals and other structural materials. These ratios are unfavorable in the two test loops. The effects might be less pronounced in a vanadium alloy/liquid metal fusion reactor blanket.
NASA Astrophysics Data System (ADS)
Eliseeva, O. I.; Fedirko, V. N.; Chernov, V. M.; Zavialsky, L. P.
2000-12-01
The effect of V-(0-70)Ti-(0-30)Cr (at.%) compositions on their compatibility with nitrogen-containing lithium (0.0015-0.67 at.% N) at 7000°C under steady-state test conditions and long-term contact with lithium (up to 2000 h) has been studied. The conditions for formation and stable coexistence of nitride layers on the surface of various compositions under variable nitrogen concentration in lithium have been defined. The V-(8-10)Ti-(4-5)Cr compositions showed the best characteristics from the standpoint of corrosion resistance, nitride layer stability under conditions of variable nitrogen concentration in lithium, and the possibility of 'in situ' protective nitride layer formation.
Surface Structure of Liquid Li and Na: An ab initio Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
González, D. J.; González, L. E.; Stott, M. J.
2004-02-01
Molecular dynamics simulations of the liquid-vapor interfaces of liquid metals have been performed using first principles methods. Results are presented for liquid lithium and sodium near their respective triple points, for samples of 2000 particles in a slab geometry. The atomic density profiles show a pronounced stratification extending several atomic diameters into the bulk, which is similar to that already experimentally observed in liquid K, Ga, In, and Hg.
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M
2014-08-29
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.
NASA Astrophysics Data System (ADS)
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.
2014-08-01
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.
2014-01-01
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309
Liquid-metal plasma-facing component research on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Jaworski, M. A.; Khodak, A.; Kaita, R.
2013-12-01
Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasaribu, Marvin H., E-mail: marvin-shady88@yahoo.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id
Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li{sup +} ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anionmore » metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10{sup −2} S cm{sup −1} for chitosan to 1.30 × 10{sup −2} S cm{sup −1} for chitosan with EMImBF4/Li{sup +}, and this result was supported by analysis the surface morphology (SEM)« less
Understanding batteries on the micro- and nanometer scale
None
2018-01-16
In order to understand performance limitations and failure mechanisms of batteries, one has to investigate processes on the micro- and nanometer scale. A typical failure mechanism in lithium metal batteries is dendritic growth. During discharge, lithium is stripped of the anode surface and migrates to the cathode. During charge, lithium is deposited back on the anode. Repeated cycling can result in stripping and re-deposition that roughens the surface. The roughening of the surface changes the electric field and draws more metal to spikes that are beginning to grow. These can grow with tremendous mechanical force, puncture the separator, and directly connect the anode with the cathode which can create an internal short circuit. This can lead to an uncontrolled discharge reaction, which heats the cell and causes additional exothermic reactions leading to what is called thermal runaway. ORNL has developed a new technology called liquid electron microscopy. In a specially designed sample holder micro-chamber with electron-transparent windows, researchers can hold a liquid and take images of structures and particles at nanometer size. It's the first microscope holder of its kind used to investigate the inside of a battery while cycled.
NASA Astrophysics Data System (ADS)
Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young
2014-10-01
Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.
A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes
NASA Astrophysics Data System (ADS)
Lourenço, Tuanan C.; Zhang, Yong; Costa, Luciano T.; Maginn, Edward J.
2018-05-01
Classical molecular dynamics simulations were performed on twelve different ionic liquids containing aprotic heterocyclic anions doped with Li+. These ionic liquids have been shown to be promising electrolytes for lithium ion batteries. Self-diffusivities, lithium transference numbers, densities, and free volumes were computed as a function of lithium concentration. The dynamics and free volume decreased with increasing lithium concentration, and the trends were rationalized by examining the changes to the liquid structure. Of those examined in the present work, it was found that (methyloxymethyl)triethylphosphonium triazolide ionic liquids have the overall best performance.
Electrospun Nanofiber-Coated Membrane Separators for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Lee, Hun
Lithium-ion batteries are widely used as a power source for portable electronic devices and hybrid electric vehicles due to their excellent energy and power densities, long cycle life, and enhanced safety. A separator is considered to be the critical component in lithium-ion rechargeable batteries. The separator is placed between the positive and negative electrodes in order to prevent the physical contact of electrodes while allowing the transportation of ions. In most commercial lithium-ion batteries, polyolefin microporous membranes are commonly used as the separator due to their good chemical stability and high mechanical strength. However, some of their intrinsic natures, such as low electrolyte uptake, poor adhesion property to the electrodes, and low ionic conductivity, can still be improved to achieve higher performance of lithium-ion batteries. In order to improve these intrinsic properties, polyolefin microporous membranes can be coated with nanofibers by using electrospinning technique. Electrospinning is a simple and efficient method to prepare nanofibers which can absorb a significant amount of liquid electrolyte to achieve low internal resistance and battery performance. This research presents the preparation and investigation of composite membrane separators prepared by coating nanofibers onto polyolefin microporous membranes via electrospinning technique. Polyvinylidene fluoride polymers and copolymers were used for the preparation of electrospun nanofiber coatings because they have excellent electrochemical stability, good adhesion property, and high temperature resistance. The nanofiber coatings prepared by electrospinning form an interconnected and randomly orientated structure on the surface of the polyolefin microporous membranes. The size of the nanofibers is on a scale that does not interfere with the micropores in the membrane substrates. The resultant nanofiber-coated membranes have the potential to combine advantages of both the polyolefin separator membranes and the nanoscale fibrous polymer coatings. The polyolefin microporous membranes serve as the supporting substrate which provides the required mechanical strength for the assembling process of lithium-ion batteries. The electrospun nanofiber coatings improve the wettability of the composite membrane separators to the liquid electrolyte, which is desirable for the lithium-ion batteries with high kinetics and good cycling performance. The results show that the nanofiber-coated membranes have enhanced adhesion properties to the battery electrode which can help prevent the formation of undesirable gaps between the separators and electrodes during prolonged charge-discharge cycles, especially in large-format batteries. The improvement on adhesive properties of nanofiber-coated membranes was evaluated by peel test. Nanofiber coatings applied to polyolefin membrane substrates improve the adhesion of separator membranes to battery electrodes. Electrolyte uptakes, ionic conductivities and interfacial resistances of the nanofiber-coated membrane separators were studied by soaking the membrane separators with a liquid electrolyte solution of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate/dimethylcarbonate/ethylmethyl carbonate (1:1:1 vol). The nanofiber coatings on the surface of the membrane substrates increase the electrolyte uptake capacity due to the high surface area and capillary effect of nanofibers. The nanofiber-coated membranes soaked in the liquid electrolyte solution exhibit high ionic conductivities and low interfacial resistances to the lithium electrode. The cells containing LiFePO 4 cathode and the nanofiber-coated membranes as the separator show high discharge specific capacities and good cycling stability at room temperature. The nanofiber coatings on the membrane substrates contribute to high ionic conductivity and good electrochemical performance in lithium-ion batteries. Therefore, these nanofiber-coated composite membranes can be directly used as novel battery separators for high performance of lithium-ion batteries. Coating polyolefin microporous membranes with electrospun nanofibers is a promising approach to obtain highperformance separators for advanced lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Meng, Xiancai; Zuo, Guizhong; Ren, Jun; Xu, Wei; Sun, Zhen; Huang, Ming; Hu, Wangyu; Hu, Jiansheng; Deng, Huiqiu
2016-11-01
Investigation of corrosion behavior of stainless steel served as one kind of structure materials exposed to liquid lithium (Li) is one of the keys to apply liquid Li as potential plasma facing materials (PFM) or blanket coolant in the fusion device. Corrosion experiments of 304 austenite stainless steel (304 SS) were carried out in static liquid Li at 600 K and up to1584 h at high vacuum with pressure less than 4 × 10-4 Pa. After exposure to liquid Li, it was found that the weight of 304 SS slightly decreased with weight loss rate of 5.7 × 10-4 g/m2/h and surface hardness increased by about 50 HV. Lots of spinel-like grains and holes were observed on the surface of specimens measured by SEM. By further EDS, XRD and metallographic analyzing, it was confirmed that the main compositions of spinel-like grains were M23C6 carbides, and 304 SS produced a non-uniform corrosion behavior by preferential grain boundary attack, possibly due to the easy formation of M23C6 carbides and/or formation of Li compound at grain boundaries.
Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J
2015-05-04
A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.
Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Gu, Meng; Chen, Honghao
2013-05-16
Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectivelymore » protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.« less
Safety and diagnostic systems on the Liquid Lithium Test Stand (LLTS)
NASA Astrophysics Data System (ADS)
Schwartz, J. A.; Jaworski, M. A.; Ellis, R.; Kaita, R.; Mozulay, R.
2013-10-01
The Liquid Lithium Test Stand (LLTS) is a test bed for development of flowing liquid lithium systems for plasma-facing components at PPPL. LLTS is designed to test operation of liquid lithium under vacuum, including flowing, solidifying (such as would be the case at the end of plasma operations), and re-melting. Constructed of stainless steel, LLTS is a closed loop of pipe with two reservoirs and a pump, as well as diagnostics for temperature, flow rate, and pressure. Since liquid lithium is a highly reactive material, special care must be taken when designing such a system. These include a permanent-magnet MHD pump and MHD flow meter that have no mechanical components in direct contact with the liquid lithium. The LLTS also includes an expandable 24-channel leak-detector interlock system which cuts power to heaters and the pump if any lithium leaks from a pipe joint. Design for the interlock systems and flow meter are presented. This work is supported by US DOE Contract DE-AC02-09CH11466.
Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M
2015-12-01
A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lucia, M.; Kaita, R.; Majeski, R.; Boyle, D. P.; Granstedt, E. M.; Jacobson, C. M.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Gonderman, S.
2013-10-01
The Lithium Tokamak Experiment (LTX) is a spherical torus designed to accommodate solid or liquid lithium as the primary plasma-facing component (PFC). We present initial results from the implementation on LTX of the Materials Analysis and Particle Probe (MAPP) diagnostic, a collaboration among PPPL, Purdue University, and the University of Illinois. MAPP is a compact in vacuo surface science diagnostic, and its operation on LTX will provide the first ever in situ surface measurements of a tokamak first wall environment. With MAPP's analysis techniques, we will study the evolution of the surface chemistry of LTX's first wall as a function of varied temperature and lithium coating. During its 2013 run campaign, LTX will use an electron beam to evaporate lithium onto the first wall from an in-vessel reservoir. We will use two quartz crystal microbalances to estimate thickness of lithium coatings thus applied to the MAPP probe. We have recently installed a set of triple Langmuir probes on LTX, and they will be used to relate LTX edge plasma parameters to MAPP results. We will combine data from MAPP and the triple probes to estimate the local edge recycling coefficient based on desorption of retained hydrogen. This work was supported by U.S. DOE contract DE-AC02-09CH11466.
Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Lucia, Matthew James
The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance---ascertained from plasma current and density measurements---progressively improved as plasma carbon and oxygen impurity levels fell. This was true for PFC conditioning by vacuum baking and argon glow discharge cleaning, as well as by lithium evaporation. Some evidence suggested that impurity sequestration was more important than hydrogen retention in enhancing LTX plasma performance. In contrast with expectations for lithium PFCs, heating the Li2 O PFCs in LTX caused increased plasma impurity levels that tended to reduce plasma performance.
Lithium purification technique
Keough, Robert F.; Meadows, George E.
1985-01-01
A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.
Lithium purification technique
Keough, R.F.; Meadows, G.E.
1984-01-10
A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.
Development of a liquid lithium thin film for use as a heavy ion beam stripper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momozaki, Y.; Nolen, J.; Reed, C.
2009-04-01
A series of experiments was performed to investigate the feasibility of a liquid lithium thin film for a charge stripper in a high-power heavy ion linac. Various preliminary experiments using simulants were first conducted to determine the film formation scheme, to investigate the film stability, and to obtain the design parameters for a liquid lithium thin film system. Based on the results from these preliminary studies, a prototypical, high pressure liquid lithium system was constructed to demonstrate liquid lithium thin film formation. This system was capable of driving liquid lithium at {approx}< 300 C and up to 13.9 MPa (2000more » psig) through a nozzle opening as large as 1 mm (40 mil) in diameter. This drive pressure corresponds to a Li velocity of >200 m/s. A thin lithium film of 9 mm in width at velocity of {approx}58 m/s was produced. Its thickness was estimated to be roughly {approx}< 13 {micro}m. High vacuum was maintained in the area of the film. This type of liquid metal thin film may also be used in other high power beam applications such as for intense X-ray or neutron sources.« less
Moir, Ralph W.
1981-01-01
A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.
NASA Astrophysics Data System (ADS)
Appetecchi, Giovanni B.; Montanino, Maria; Balducci, Andrea; Lux, Simon F.; Winterb, Martin; Passerini, Stefano
In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR 13FSI) and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR 14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF 6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures.
NASA Astrophysics Data System (ADS)
Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan
2018-06-01
Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.
Observations of the freeze/thaw performance of lithium fluoride by motion picture photography
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Perry, W. D.
1991-01-01
To gain direct observation of the molten salt phase change, a novel containerless technique was developed where the high surface tension of lithium fluoride was used to suspend a bead of the molten salt inside a specially designed wire cage. By varying the current passing through the wire, the cage also served as a variable heat source. In this way, the freeze/thaw performance of the lithium fluoride could be photographed by motion picture photography without the influence of container walls. The motion picture photography of the lithium fluoride sample revealed several zones during the phase change, a solid zone and a liquid zone, as expected, and a slush zone that was predicted by thermal analysis modeling.
Golmohammadzadeh, Rabeeh; Rashchi, Fereshteh; Vahidi, Ehsan
2017-06-01
An environmentally-friendly route based on hydrometallurgy was investigated for the recovery of cobalt and lithium from spent lithium ion batteries (LIBs) using different organic acids (citric acid, Dl-malic acid, oxalic acid and acetic acid). In this investigation, response surface methodology (RSM) was utilized to optimize leaching parameters including solid to liquid ratio (S/L), temperature, acid concentration, type of organic acid and hydrogen peroxide concentration. Based on the results obtained from optimizing procedure, temperature was recognized as the most influential parameter. In addition, while 81% of cobalt was recovered, the maximum lithium recovery of 92% was achieved at the optimum leaching condition of 60°C, S/L: 30gL -1 , citric acid concentration: 2M, hydrogen peroxide concentration: 1.25Vol.% and leaching time: 2h. Furthermore, results displayed that ultrasonic agitation will enhance the recovery of lithium and cobalt. It was found that the kinetics of cobalt leaching is controlled by surface chemical reaction at temperatures lower than 45°C. However, diffusion through the product layer at temperatures higher than 45°C controls the rate of cobalt leaching. Rate of lithium reaction is controlled by diffusion through the product layer at all the temperatures studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Diwan, Ravinder M.
1989-01-01
The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.
Design and Development of the Liquid Lithium Limiter (L3) for CDX-U
NASA Astrophysics Data System (ADS)
Seraydarian, R. P.; Chousal, L.; Doerner, R. P.; Luckhardt, S. C.; Lynch, T.
2000-10-01
--- This poster describes experiments with liquid Li that informed the design of a Liquid Lithium Limter (L3) built by UCSD for installation on the CDX-U spherical torus at PPPL. It was necessary to resort to wetting liquid Li to textured structures in order for the limiter to intercept 2-3 density e-folding lengths of the scrape off layer (3 cm) of the CDX-U plasma. Since Li is chemically active and corrodes rapidly in all but the driest air, we carried out wetting experiments in vacuum (10-7 - 10-8 torr) and also in Ar at near atmospheric pressure. Wetting of steel occurred reliably at substrate temperatures near 500 ^oC under all conditions, but this high temperature presented special problems of rapid material loss through evaporation, especially under vacuum. Once the surface is wetted, however, lost Li can be replenished at ~ 200 ^oC (just above the melting temperature) where evaporation is negligible. A wetted limiter can even be cooled to room temperature and then reheated many hours later as long as clean conditions are maintained. Surface textures, heating techniques, effective seal materials for piston-driven liquid Li reservoirs, and other aspects of the limiter system design will be presented. Work supported by US DOE grant DE-FG03-95ER54301
Protection of tokamak plasma facing components by a capillary porous system with lithium
NASA Astrophysics Data System (ADS)
Lyublinski, I.; Vertkov, A.; Mirnov, S.; Lazarev, V.
2015-08-01
Development of plasma facing material (PFM) based on the Capillary-Porous System (CPS) with lithium and activity on realization of lithium application strategy are addressed to meet the challenges under the creation of steady-state tokamak fusion reactor and fusion neutron source. Presented overview of experimental study of lithium CPS in plasma devices demonstrates the progress in protection of tokamak plasma facing components (PFC) from damage, stabilization and self-renewal of liquid lithium surface, elimination of plasma pollution and lithium accumulation in tokamak chamber. The possibility of PFC protection from the high power load related to cooling of the tokamak boundary plasma by radiation of non-fully stripped lithium ions supported by experimental results. This approach demonstrated in scheme of closed loops of Li circulation in the tokamak vacuum chamber and realized in a series of design of tokamak in-vessel elements.
NASA Astrophysics Data System (ADS)
Mangang, M.; Seifert, H. J.; Pfleging, W.
2016-02-01
Lithium iron phosphate is a promising cathode material for lithium-ion batteries, despite its low electrical conductivity and lithium-ion diffusion kinetic. To overcome the reduced rate performance, three dimensional (3D) architectures were generated in composite cathode layers. By using ultrashort laser radiation with pulse durations in the femtosecond regime the ablation depth per pulse is three times higher compared to nanosecond laser pulses. Due to the 3D structuring, the surface area of the active material which is in direct contact with liquid electrolyte, i.e. the active surface, is increased. As a result the capacity retention and the cycle stability were significantly improved, especially for high charging/discharging currents. Furthermore, a 3D structure leads to higher currents during cyclic voltammetry. Thus, the lithium-ion diffusion kinetic in the cell was improved. In addition, using ultrashort laser pulses results in a high aspect ratio and further improvement of the cell kinetic was achieved.
Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucia, Matthew James
The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experimentmore » (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (d ~ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H2 within minutes. For impurity sequestration, LTX plasma performance—ascertained from plasma current and density measurements—progressively improved as plasma carbon and oxygen impurity levels fell. This was true for PFC conditioning by vacuum baking and argon glow discharge cleaning, as well as by lithium evaporation. Some evidence suggested that impurity sequestration was more important than hydrogen retention in enhancing LTX plasma performance. In contrast with expectations for lithium PFCs, heating the Li2O PFCs in LTX caused increased plasma impurity levels that tended to reduce plasma performance.« less
Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects
Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.; ...
2017-03-14
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less
Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects.
Pascal, Tod A; Villaluenga, Irune; Wujcik, Kevin H; Devaux, Didier; Jiang, Xi; Wang, Dunyang Rita; Balsara, Nitash; Prendergast, David
2017-04-12
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.
Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.
2016-01-01
We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation−glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids. PMID:27767069
A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation
NASA Astrophysics Data System (ADS)
Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David
2017-10-01
A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.
Compatibility of AlN with liquid lithium
NASA Astrophysics Data System (ADS)
Terai, T.; Suzuki, A.; Yoneoka, T.; Mitsuyama, T.
2000-12-01
Development of ceramic coatings is one of the most important subjects in liquid blanket research and development. Compatibility of sintered AlN and AlN coatings with liquid lithium, a candidate breeding material, was investigated. Sintered AlN with or without the sintering aid of Y 2O 3 examined in lithium at 773 K for 1390 h showed a slight decrease in electrical resistivity because of a reduction in Al 2O 3 impurity, though AlN and Y 2O 3 components themselves were subject to no severe corrosion. On the other hand, AlN ceramic coatings on SUS430 with high resistivity (> 10 11 Ω m) fabricated by the RF sputtering method disappeared in liquid lithium at 773 K in 56 h. This may be because cracks were formed due to the difference in thermal expansion between the coatings and the substrate or because the oxide formed between the two was removed by liquid lithium.
Imidazolium-organic solvent mixtures as electrolytes for lithium batteries
NASA Astrophysics Data System (ADS)
Chagnes, A.; Diaw, M.; Carré, B.; Willmann, P.; Lemordant, D.
γ-Butyrolactone (BL) has been mixed to the room temperature ionic liquid (RTIL) 1-butyl 3-methyl-imidazolium tetrafluoroborate (BMIBF 4) (ratio: 3/2, v/v) in the presence of lithium tetrafluoroborate (LiBF 4) for use as electrolyte in lithium-ion batteries. This mixture exhibits a larger thermal stability than the reference electrolyte EC/DEC/DMC (2/2/1) + LiPF 6 (1 M) and can be considered as a new RTIL as no free BL molecules are present in the liquid phase. The cycling ability of this electrolyte has been investigated at a graphite, a titanate oxide (Li 4Ti 5O 12) and a cobalt oxide (Li xCoO 2) electrodes. The ionic liquid is strongly reduced at the graphite electrode near 1 V and leads to the formation of a blocking film, which prevents any further cycling. The titanate oxide electrode can be cycled with a high capacity without any significant fading. Cycling of the positive cobalt oxide electrode was unsuccessfully owing to an oxidation reaction at the electrode surface, which prevents the intercalation or de-intercalation of Li ions in and from the host material. Less reactive cathode material than cobalt oxide must be employed with this RTIL.
Lahiri, Abhishek; Li, Guozhu; Olschewski, Mark; Endres, Frank
2016-12-14
Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py 1,4 ]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.
NASA Astrophysics Data System (ADS)
Capece, Angela
2014-10-01
Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Aqra, Fathi; Ayyad, Ahmed
2011-09-01
An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.
Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions
Ono, M.; Jaworski, M. A.; Kaita, R.; ...
2016-08-05
Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition to those issues, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues while potentially improving the reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-freemore » core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/sec of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤ 500°C than the first wall ~ 600 – 700°C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust / impurities are removed by relatively simple filter and cold/hot trap systems. Using a cold trap system, it can recover in tritium (T) in real time from LL at a rate of ~ 0.5 g / sec needed to sustain the fusion reaction while minimizing the T inventory issue. With an expected T fraction of ≤ 0.7 %, an acceptable level of T inventory can be achieved. In NSTX-U, preparations are now underway to elucidate the physics of Li plasma interactions with a number of Li application tools and Li radiation spectroscopic instruments. The NSTX-U Li evaporator which provides Li coating over the lower divertor plate, can offer important information on the RLLD concept, and the Li granule injector will test some of the key physics issue on the ARLLD concept. A LL-loop is also being prepared off line for prototyping future use on NSTX-U.« less
Lithium ion conducting ionic electrolytes
Angell, C.A.; Xu, K.; Liu, C.
1996-01-16
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.
Lithium ion conducting ionic electrolytes
Angell, C. Austen; Xu, Kang; Liu, Changle
1996-01-01
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.
Design and synthesis of inorganic/organic hybrid electrochemical materials
NASA Astrophysics Data System (ADS)
Harreld, John H.
An ambient pressure method for drying sol-gel materials is developed to synthesize high porosity (80--90%), high surface area vanadium oxide and silica aerogel materials (150--300 and 1000 m2/g for vanadium pentoxide and silica, respectively). The synthesis approach uses liquid exchange to replace the pore fluid with a low surface tension, nonpolar solvent which reduces the capillary pressures developed during drying. The Good-Girifalco interaction parameter is used to calculate pore stresses resulting from drying silica gels from various liquids. Vanadium oxide/polypyrrole hybrid aerogels are prepared using three strategies. These approaches focus on either sequential or consecutive polymerization of the inorganic and organic networks. Microcomposite aerogels are synthesized by encapsulating a dispersion of preformed polypyrrole in a vanadium pentoxide gel. In the second approach, pyrrole is polymerized and doped within the pore volume of preformed vanadium pentoxide gel. When the inorganic and organic precursors are polymerized simultaneously, the resulting gels exhibited a nanometer scaled microstructure with homogeneous distributions of either phases. Through this route, a suitable microstructure and composition for a lithium secondary battery cathode is obtained. Lithiated aerogels of hydrated nickel, cobalt, and mixed nickel-cobalt oxides are synthesized from lithium hydroxide and transition metal acetate precursors. The XRD analyses indicate that the nickel containing gels exhibit a lithium deficiency (less than 1 Li/transition metal. By increasing the concentration of the lithium precursor the lithium content in nickel oxides is increased, and additional base solution is no longer required to catalyze gelation. A non-hydrolytic sol-gel approach is utilized to create tin oxide and tin-aluminum binary oxide aerogels with high porosity (90%) and high surface area (300 m2/g). XRD data from single phase tin oxide aerogel indicates the growth of SnO2 crystallites between 150--400°C in air, accompanied by a reduction in surface area (30 m2/g). Heated tin oxide aerogel exhibits comparable reversible specific capacity (390 mAh/g) as that of commercial SnO2 (420 mAh/g). Amorphous tin oxide aerogel is stabilized to higher temperatures when aluminum oxide is incorporated into the structure. The tin oxide phase remains electrochemically active towards lithium insertion and exhibits excellent reversibility during cycling.
Conference Report on the 4rd International Symposium on Lithium Applications
NASA Astrophysics Data System (ADS)
Tabares, F. L.; Hirooka, Y.; Maingi, R.; Mazzitelli, G.; Mirnov, V.; Nygren, R.; Ono, M.; Ruzic, D. N.
2016-12-01
The fourth International Symposium on Liquid Metal Application for Fusion Devices (ISLA-2015) was held on 28-30 September 2015 at Granada, Spain, with growing participation and interest from the community working on general aspects of liquid metal research for fusion energy development. The ISLA symposia remain the largest, and arguably, the most important meetings dedicated to liquid metal application for the magnetic fusion research. Overall, 43 presentations plus 7 posters were given, representing 28 institutions from 12 countries. The latest experimental results from 9 magnetic fusion devices were given in 17 presentations from NSTX and LTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST (ASIPP, China), HT-7 (ASIPP, China), DIII-D (GA, USA), ISTTOK (IPFN, Portugal) and KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) liquid metals (LM) in magnetic confinement experiments (facility overviews), (II) LM in magnetic confinement experiments (topical issues), (III) laboratory experiments, (IV) LM tests in linear plasma devices, (V) LM theory/modeling (VI) LM technology and (VII) a special session on lithium-safety and lithium handling. There were contributions from fusion technology communities including IFMIF and TBM, which provided productive exchanges with physics-oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference), with the next workshop scheduled for Moscow, Russian Federation, in 2017.
Kachmar, Ali; Carignano, Marcelo; Laino, Teodoro; Iannuzzi, Marcella; Hutter, Jürg
2017-08-10
Understanding lithium solvation and transport in ionic liquids is important due to their possible application in electrochemical devices. Using first-principles simulations aided by a metadynamics approach we study the free-energy landscape for lithium ions at infinite dilution in ethylammonium nitrate, a protic ionic liquid. We analyze the local structure of the liquid around the lithium cation and obtain a quantitative picture in agreement with experimental findings. Our simulations show that the lowest two free energy minima correspond to conformations with the lithium ion being solvated either by three or four nitrate ions with a transition barrier between them of 0.2 eV. Other less probable conformations having different solvation pattern are also investigated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Krasin, V. P.; Soyustova, S. I.
2018-07-01
Along with other liquid metals liquid lithium-tin alloys can be considered as an alternative to the use of solid plasma facing components of a future fusion reactor. Therefore, parameters characterizing both the ability to retain hydrogen isotopes and those that determine the extraction of tritium from a liquid metal can be of particular importance. Theoretical correlations based on the coordination cluster model have been used to obtain Sieverts' constants for solutions of hydrogen in liquid Li-Sn alloys. The results of theoretical computations are compared with the previously published experimental values for two alloys of the Li-Sn system. The Butler equation in combination with the equations describing the thermodynamic potentials of a binary solution is used to calculate the surface composition and surface tension of liquid Li-Sn alloys.
Analysis of secondary cells with lithium anodes and immobilized fused-salt electrolytes
NASA Technical Reports Server (NTRS)
Cairns, E. J.; Rogers, G. L.; Shimotake, H.
1969-01-01
Secondary cells with liquid lithium anodes, liquid bismuth or tellurium cathodes, and fused lithium halide electrolytes immobilized as rigid pastes operate between 380 and 485 degrees. Applications include power sources in space, military vehicle propulsion and special commercial vehicle propulsion.
Stabilizing lithium metal using ionic liquids for long-lived batteries
Basile, A.; Bhatt, A. I.; O'Mullane, A. P.
2016-01-01
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Allen; Zheng, Guangyuan; Shi, Feifei
Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g -1 and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a criticalmore » fundamental scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Finally, based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.« less
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
Pei, Allen; Zheng, Guangyuan; Shi, Feifei; ...
2017-01-10
Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g -1 and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a criticalmore » fundamental scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Finally, based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.« less
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal.
Pei, Allen; Zheng, Guangyuan; Shi, Feifei; Li, Yuzhang; Cui, Yi
2017-02-08
Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g -1 and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a critical fundamental scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.
Lithium-Sulfur Batteries: from Liquid to Solid Cells?
Lin, Zhan; Liang, Chengdu
2014-11-11
Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less
New Electrode and Electrolyte Configurations for Lithium-Oxygen Battery.
Ulissi, Ulderico; Elia, Giuseppe Antonio; Jeong, Sangsik; Reiter, Jakub; Tsiouvaras, Nikolaos; Passerini, Stefano; Hassoun, Jusef
2018-03-02
Cathode configurations reported herein are alternative to the most diffused ones for application in lithium-oxygen batteries, using an ionic liquid-based electrolyte. The electrodes employ high surface area conductive carbon as the reaction host, and polytetrafluoroethylene as the binding agent to enhance the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) reversibility. Roll-pressed, self-standing electrodes (SSEs) and thinner, spray deposited electrodes (SDEs) are characterized in lithium-oxygen cells using an ionic liquid (IL) based electrolyte formed by mixing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl)imide (DEMETFSI). The electrochemical results reveal reversible reactions for both electrode configurations, but improved electrochemical performance for the self-standing electrodes in lithium-oxygen cells. These electrodes show charge/discharge polarizations at 60 °C limited to 0.4 V, with capacity up to 1 mAh cm -2 and energy efficiency of about 88 %, while the spray deposited electrodes reveal, under the same conditions, a polarization of 0.6 V and energy efficiency of 80 %. The roll pressed electrode combined with the DEMETFSI-LiTFSI electrolyte and a composite Li x Sn-C alloy anode forms a full Li-ion oxygen cell showing extremely limited polarization, and remarkable energy efficiency. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza
2015-01-01
Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.
Chang, Hee Jung; Ilott, Andrew J; Trease, Nicole M; Mohammadi, Mohaddese; Jerschow, Alexej; Grey, Clare P
2015-12-09
Lithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ (7)Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode. For this purpose, chemical shift (CS) imaging of the metal electrodes is a particularly sensitive diagnostic method, enabling a clear distinction to be made between different types of microstructural growth occurring at the electrode surface and the eventual dendrite growth between the electrodes. The CS imaging shows that mossy types of microstructure grow close to the surface of the anode from the beginning of charge in every cell studied, while dendritic growth is triggered much later. Simple metrics have been developed to interpret the MRI data sets and to compare results from a series of cells charged at different current densities. The results show that at high charge rates, there is a strong correlation between the onset time of dendrite growth and the local depletion of the electrolyte at the surface of the electrode observed both experimentally and predicted theoretical (via the Sand's time model). A separate mechanism of dendrite growth is observed at low currents, which is not governed by salt depletion in the bulk liquid electrolyte. The MRI approach presented here allows the rate and nature of a process that occurs in the solid electrode to be correlated with the concentrations of components in the electrolyte.
Corrosion resistance investigation of vanadium alloys in liquid lithium
NASA Astrophysics Data System (ADS)
Borovitskaya, I. V.; Lyublinskiy, I. E.; Bondarenko, G. G.; Paramonova, V. V.; Korshunov, S. N.; Mansurova, A. N.; Lyakhovitskiy, M. M.; Zharkov, M. Yu.
2016-12-01
A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10-3 wt %) of vanadium and vanadium alloys (V-1.86Ga, V-3.4Ga-0.62Si, V-4.81Ti-4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 1022 m-2 at an irradiation temperature of 400°C. The degree of corrosion was estimated by measuring the changes in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.
Corrosion resistance investigation of vanadium alloys in liquid lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovitskaya, I. V., E-mail: symp@imet.ac.ru; Lyublinskiy, I. E.; Bondarenko, G. G.
A major concern in using vanadium alloys for first wall/blanket systems in fusion reactors is their activity with regard to nonmetallic impurities in the coolants. This paper presents the results of studying the corrosion resistance in high-purity liquid lithium (with the nitrogen and carbon content of less than 10{sup –3} wt %) of vanadium and vanadium alloys (V–1.86Ga, V–3.4Ga–0.62Si, V–4.81Ti–4.82Cr) both in the initial state and preliminarily irradiated with Ar+ ions with energy of 20 keV to a dose of 10{sup 22} m{sup –2} at an irradiation temperature of ~400°C. The degree of corrosion was estimated by measuring the changesmore » in the weight and microhardness. Corrosion tests were carried out under static isothermal conditions at a temperature of 600°C for 400 h. The identity of corrosion mechanisms of materials both irradiated with Ar ions and not irradiated, which consisted in an insignificant penetration of nitrogen into the materials and a substantial escape of oxygen from the materials, causing the formation of a zone with a reduced microhardness near the surface, was established. The influence of the corrosive action of lithium on the surface morphology of the materials under study was found, resulting in the manifestation of grain boundaries and slip lines on the sample surface, the latter being most clearly observed in the case of preliminary irradiation with Ar ions.« less
A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte
NASA Astrophysics Data System (ADS)
Kobayashi, Yo; Shono, Kumi; Kobayashi, Takeshi; Ohno, Yasutaka; Tabuchi, Masato; Oka, Yoshihiro; Nakamura, Tatsuya; Miyashiro, Hajime
2017-02-01
Ether-based solid polymer electrolyte (SPE) is one of the most well-known lithium ion conductors. Unlike the other inorganic electrolytes, SPE exhibits advantages of flexibility and large-area production, enabling low cost production of large size batteries. However, because the ether group is oxidized at 4 V versus Li/Li+ cathode, and due to its high irreversibility with the carbon anode, ether-based SPE was believed to be inapplicable to 4 V class lithium-ion batteries with carbon anode. Here we report a remarkably stable SPE in combination with a 4 V class cathode and carbon anode achieved by the proper design at the interface. The introduced boron-based lithium salt prohibits further oxidation of SPE at the cathode interface. The surface modification of graphite by the annealing of polyvinyl chloride mostly prohibits the continuous consumption of lithium at the graphite anode. Using above interface design, we achieved 60% capacity retention after 5400 cycles. The proposed battery provides a possible approach for realizing flammable electrolyte-free lithium-ion batteries, which achieve innovative safety improvements of large format battery systems for stationary use.
Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium
2017-01-01
Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-Li3N film directly bonded onto Li metal foil. The film consists of highly textured large Li3N grains (tens of μm) with (001) crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10–4 S cm–1, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This Li3N coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|Li4Ti5O12 cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis. PMID:29392181
Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium-Sulfur Battery.
Bao, Weizhai; Xie, Xiuqiang; Xu, Jing; Guo, Xin; Song, Jianjun; Wu, Wenjian; Su, Dawei; Wang, Guoxiu
2017-09-12
Three-dimensional metal carbide MXene/reduced graphene oxide hybrid nanosheets are prepared and applied as a cathode host material for lithium-sulfur batteries. The composite cathodes are obtained through a facile and effective two-step liquid-phase impregnation method. Owing to the unique 3 D layer structure and functional 2 D surfaces of MXene and reduced graphene oxide nanosheets for effective trapping of sulfur and lithium polysulfides, the MXene/reduced graphene oxide/sulfur composite cathodes deliver a high initial capacity of 1144.2 mAh g -1 at 0.5 C and a high level of capacity retention of 878.4 mAh g -1 after 300 cycles. It is demonstrated that hybrid metal carbide MXene/reduced graphene oxide nanosheets could be a promising cathode host material for lithium-sulfur batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S.; Yang, Jae-Young
1991-01-01
The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (1) homogeneous nucleation; (2) heterogeneous nucleation; (3) normal segregation of helium gas dissolved in liquid lithium; and (4) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids. In viewing this, the subsequent research focuses on the effects of shrinkage void forming during freezing of lithium on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. The cases of lithium-fluoride are also investigated to show the effect of larger volume shrinkage upon freezing on the freeze and thaw processes. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is included that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less
NASA Astrophysics Data System (ADS)
Zuo, G. Z.; Hu, J. S.; Maingi, R.; Yang, Q. X.; Sun, Z.; Huang, M.; Chen, Y.; Yuan, X. L.; Meng, X. C.; Xu, W.; Gentile, C.; Carpe, A.; Diallo, A.; Lunsford, R.; Mansfield, D.; Osborne, T.; Tritz, K.; Li, J. G.
2017-12-01
We report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermal contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.
NASA Astrophysics Data System (ADS)
Lu, Wei; Wang, Weihua; Jiang, Haiyan; Zuo, Guizhong; Pan, Baoguo; Xu, Wei; Chu, Delin; Hu, Jiansheng; Qi, Junli
2017-10-01
The dual-cooled lead lithium (PbLi) blanket is considered as one of the main options for the Chinese demonstration reactor (DEMO). Liquid PbLi alloy is used as the breeder material and coolant. Reduced activation ferritic/martensitic (RAFM) steel, stainless steel and the silicon carbide ceramic matrix composite (SiCf) are selected as the substrate materials for different use. To investigate the wetting property and inter-facial interactions of PbLi/RAFM steel, PbLi/SS316L, PbLi/SiC and PbLi/SiCf couples, in this paper, the special vacuum experimental device is built, and the 'dispensed droplet' modification for the classic sessile droplet technique is made. Contact angles are measured between the liquid PbLi and the various candidate materials at blanket working temperature from 260 to 480 °C. X-ray photoelectron spectroscopy (XPS) is used to characterize the surface components of PbLi droplets and substrate materials, in order to study the element trans-port and corrosion mechanism. Results show that SiC composite (SiCf) and SiC ceramic show poor wetting properties with the liquid PbLi alloy. Surface roughness and testing temperature only provide tiny improvements on the wetting property below 480 °C. RAFM steel performs better wetting properties and corrosion residence when contacted with molten PbLi, while SS316L shows low corrosion residence above 420 °C for the decomposition of protective surface film mainly consisted of chromic sesquioxide. The results could provide meaningful compatibility database of liquid PbLi alloy and valuable reference in engineering design of candidate structural and functional materials for future fusion blanket.
High performance batteries with carbon nanomaterials and ionic liquids
Lu, Wen [Littleton, CO
2012-08-07
The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.
Lithium As Plasma Facing Component for Magnetic Fusion Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masayuki Ono
The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor ofmore » two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team
Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50.more » Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.« less
Ionic Liquids in Lithium-Ion Batteries.
Balducci, Andrea
2017-04-01
Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.
NASA Astrophysics Data System (ADS)
Takeya, J.
2008-10-01
The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.
Electrical detection of liquid lithium leaks from pipe joints.
Schwartz, J A; Jaworski, M A; Mehl, J; Kaita, R; Mozulay, R
2014-11-01
A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.
Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.
Pawelko, R. J.; Shimada, M.; Katayama, K.; ...
2015-11-28
This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determinemore » operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.« less
NASA Astrophysics Data System (ADS)
Mirnov, S. V.; Azizov, E. A.; Evtikhin, V. A.; Lazarev, V. B.; Lyublinski, I. E.; Vertkov, A. V.; Prokhorov, D. Yu
2006-06-01
The paper is an overview of recent results of Li limiter testing in T-11M tokamak. The lithium limiter is based on the capillary-pore system (CPS) concept. The Li erosion process and deuterium (D2) and helium (He) sorption by Li first wall were investigated. The ability of capillary forces to confine the liquid Li in the CPS limiter during disruption was demonstrated. The idea of combined lithium limiter with thin (0.6 mm) CPS coating as a solution of the heat removal problem was realized. As a result the quasi steady-state tokamak regime with duration up to 0.3 s and clean (Zeff = 1) deuterium plasma has been achieved. The temporal evolution of the lithium surface temperature during discharge was measured by a IR radiometer and then was recalculated to the surface power load. For the estimation of the Li limiter erosion the Li neutral and ions spectral line emission were observed. The increase in lithium erosion as a result of limiter heating was discovered. The radial distribution of plasma column radiation measurements showed up to 90% of the total radiation losses in a relatively thin (5 cm) boundary layer and only 10% in a plasma centre during discharges with high Li influx. Oscillations of Li emission and saw-tooth-like oscillations of the limiter surface temperature have been detected in discharge regimes with highest Li limiter temperature (>600 °C). A version of Li CPS first wall of DEMO reactor and Li CPS limiter experiment in the International Thermonuclear Energy Reactor are suggested.
Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U
Jaworski, M. A.; Brooks, A.; Kaita, R.; ...
2016-08-08
Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less
Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes
NASA Astrophysics Data System (ADS)
Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.
2013-03-01
The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.
Cycling and rate performance of Li-LiFePO 4 cells in mixed FSI-TFSI room temperature ionic liquids
NASA Astrophysics Data System (ADS)
Lewandowski, A. P.; Hollenkamp, A. F.; Donne, S. W.; Best, A. S.
A study is conducted of the performance of lithium iron(II) phosphate, LiFePO 4, as a cathode material in a lithium secondary battery that features an ionic liquid electrolyte solution and a metallic lithium anode. The electrolyte solution comprises an ionic liquid of a N-methyl-N-alkyl-pyrrolidinium (alkyl = n-propyl or n-butyl) cation and either the bis(fluorosulfonyl)imide [(FSO 2) 2N -] or bis(trifluoromethanesulfonyl)imide [(F 3CSO 2) 2N -] anion, together with 0.5 mol kg -1 of lithium bis(trifluoromethanesulfonyl)imide salt. For N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide, coin cells discharging at rates of C/10 and 4C yield specific capacities of 153 and 110 mAh g -1, respectively, at an average coulombic efficiency of 99.8%. This performance is maintained for over 400 cycles at 50 °C and therefore indicates that these electrolyte solutions support long-term cycling of both LiFePO 4 and metallic lithium while, due to the negligible volatility of ionic liquids, surrounding the lithium in an inherently safe, non-flammable medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaita, Robert; Boyle, Dennis; Gray, Timothy
Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less
Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.
Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A
2006-12-22
The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.
Liquid lithium loop system to solve challenging technology issues for fusion power plant
Ono, Masayuki; Majeski, Richard P.; Jaworski, Michael A.; ...
2017-07-12
Here, steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peakmore » heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned. We examined two key technology issues: 1) dust or solid particle removal and 2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust / impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~ 1 l/sec LL flow, even a small 0.1% dust content by weight (or 0.5 g per sec) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~ 3 GW fusion power) fusion power plant, about 0.5 g / sec of tritium is needed to maintain the fusion fuel cycle assuming ~ 1 % fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap (SCT) concept.« less
Liquid lithium loop system to solve challenging technology issues for fusion power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki; Majeski, Richard P.; Jaworski, Michael A.
Here, steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peakmore » heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned. We examined two key technology issues: 1) dust or solid particle removal and 2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust / impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~ 1 l/sec LL flow, even a small 0.1% dust content by weight (or 0.5 g per sec) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~ 3 GW fusion power) fusion power plant, about 0.5 g / sec of tritium is needed to maintain the fusion fuel cycle assuming ~ 1 % fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap (SCT) concept.« less
Liquid lithium loop system to solve challenging technology issues for fusion power plant
NASA Astrophysics Data System (ADS)
Ono, M.; Majeski, R.; Jaworski, M. A.; Hirooka, Y.; Kaita, R.; Gray, T. K.; Maingi, R.; Skinner, C. H.; Christenson, M.; Ruzic, D. N.
2017-11-01
Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor concept and its variant, the active liquid lithium divertor concept, taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~1 l s-1 is envisioned. We examined two key technology issues: (1) dust or solid particle removal and (2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust/impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~1 l s-1 LL flow, even a small 0.1% dust content by weight (or 0.5 g s-1) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~3 GW fusion power) fusion power plant, about 0.5 g s-1 of tritium is needed to maintain the fusion fuel cycle assuming ~1% fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap concept.
Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...
2015-12-17
Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less
Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems
NASA Astrophysics Data System (ADS)
Montanino, M.; Moreno, M.; Carewska, M.; Maresca, G.; Simonetti, E.; Lo Presti, R.; Alessandrini, F.; Appetecchi, G. B.
2014-12-01
The thermal, transport, rheological and flammability properties of electrolyte mixtures, proposed for safer lithium-ion battery systems, were investigated as a function of the mole composition. The blends were composed of a lithium salt (LiTFSI), organic solvents (namely EC, DEC) and an ionic liquid (PYR13TFSI). The main goal is to combine the fast ion transport properties of the organic compounds with the safe issues of the non-flammable and non-volatile ionic liquids. Preliminary tests in batteries have evidenced cycling performance approaching that observed in commercial organic electrolytes.
Kobayashi, Takeshi; Kobayashi, Yo; Tabuchi, Masato; Shono, Kumi; Ohno, Yasutaka; Mita, Yuichi; Miyashiro, Hajime
2013-12-11
The all solid-state lithium battery with polyether-based solid polymer electrolyte (SPE) is regarded as one of next-generation lithium batteries, and has potential for sufficient safety because of the flammable-electrolyte-free system. It has been believed that polyether-based SPE is oxidized at the polymer/electrode interface with 4 V class cathodes. Therefore, it has been used for electric devices such as organic transistor, and lithium battery under 3 V. We estimated decomposition reaction of polyether used as SPE of all solid-state lithium battery. We first identified the decomposed parts of polyether-based SPE and the conservation of most main chain framework, considering the results of SPE analysis after long cycle operations. The oxidation reaction was found to occur slightly at the ether bond in the main chain with the branched side chain. Moreover, we resolved the issue by introducing a self-sacrificing buffer layer at the interface. The introduction of sodium carboxymethyl cellulose (CMC) to the 4 V class cathode surface led to the suppression of SPE decomposition at the interface as a result of the preformation of a buffer layer from CMC, which was confirmed by the irreversible exothermic reaction during the first charge, using electrochemical calorimetry. The attained 1500 cycle operation is 1 order of magnitude longer than those of previously reported polymer systems, and compatible with those of reported commercial liquid systems. The above results indicate to proceed to an intensive research toward the realization of 4 V class "safe" lithium polymer batteries without flammable liquid electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, M.; Jaworski, M. A.; Kaita, R.
Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition to those issues, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues while potentially improving the reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-freemore » core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/sec of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤ 500°C than the first wall ~ 600 – 700°C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust / impurities are removed by relatively simple filter and cold/hot trap systems. Using a cold trap system, it can recover in tritium (T) in real time from LL at a rate of ~ 0.5 g / sec needed to sustain the fusion reaction while minimizing the T inventory issue. With an expected T fraction of ≤ 0.7 %, an acceptable level of T inventory can be achieved. In NSTX-U, preparations are now underway to elucidate the physics of Li plasma interactions with a number of Li application tools and Li radiation spectroscopic instruments. The NSTX-U Li evaporator which provides Li coating over the lower divertor plate, can offer important information on the RLLD concept, and the Li granule injector will test some of the key physics issue on the ARLLD concept. A LL-loop is also being prepared off line for prototyping future use on NSTX-U.« less
Electrochemical Energy Storage Materials
2012-07-01
of porous polypropylene membrane (Celgrad® 2400) separators soaked in a liquid electrolyte solution containing 1.0 M lithium hexafluorophosphate ... Lithium Li-ion Lithium ion LiO2 Lithium Dioxide LiOx Lithium Oxide (non stoichiometric) LiPF6 lithium hexafluorophosphate LT-ALD Low Temperature...Nanostructured Battery Architectures, Nanostructured Lithium Ion Batteries 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF
Song, Jongchan; Lee, Hongkyung; Choo, Min-Ju; Park, Jung-Ki; Kim, Hee-Tak
2015-01-01
The inhomogeneous Li electrodeposition of lithium metal electrode has been a major impediment to the realization of rechargeable lithium metal batteries. Although single ion conducting ionomers can induce more homogeneous Li electrodeposition by preventing Li+ depletion at Li surface, currently available materials do not allow room-temperature operation due to their low room temperature conductivities. In the paper, we report that a highly conductive ionomer/liquid electrolyte hybrid layer tightly laminated on Li metal electrode can realize stable Li electrodeposition at high current densities up to 10 mA cm−2 and permit room-temperature operation of corresponding Li metal batteries with low polarizations. The hybrid layer is fabricated by laminating few micron-thick Nafion layer on Li metal electrode followed by soaking 1 M LiPF6 EC/DEC (1/1) electrolyte. The Li/Li symmetric cell with the hybrid layer stably operates at a high current density of 10 mA cm−2 for more than 2000 h, which corresponds to more than five-fold enhancement compared with bare Li metal electrode. Also, the prototype Li/LiCoO2 battery with the hybrid layer offers cycling stability more than 350 cycles. These results demonstrate that the hybrid strategy successfully combines the advantages of bi-ionic liquid electrolyte (fast Li+ transport) and single ionic ionomer (prevention of Li+ depletion). PMID:26411701
NASA Astrophysics Data System (ADS)
Song, Jongchan; Lee, Hongkyung; Choo, Min-Ju; Park, Jung-Ki; Kim, Hee-Tak
2015-09-01
The inhomogeneous Li electrodeposition of lithium metal electrode has been a major impediment to the realization of rechargeable lithium metal batteries. Although single ion conducting ionomers can induce more homogeneous Li electrodeposition by preventing Li+ depletion at Li surface, currently available materials do not allow room-temperature operation due to their low room temperature conductivities. In the paper, we report that a highly conductive ionomer/liquid electrolyte hybrid layer tightly laminated on Li metal electrode can realize stable Li electrodeposition at high current densities up to 10 mA cm-2 and permit room-temperature operation of corresponding Li metal batteries with low polarizations. The hybrid layer is fabricated by laminating few micron-thick Nafion layer on Li metal electrode followed by soaking 1 M LiPF6 EC/DEC (1/1) electrolyte. The Li/Li symmetric cell with the hybrid layer stably operates at a high current density of 10 mA cm-2 for more than 2000 h, which corresponds to more than five-fold enhancement compared with bare Li metal electrode. Also, the prototype Li/LiCoO2 battery with the hybrid layer offers cycling stability more than 350 cycles. These results demonstrate that the hybrid strategy successfully combines the advantages of bi-ionic liquid electrolyte (fast Li+ transport) and single ionic ionomer (prevention of Li+ depletion).
Thermochemistry of tantalum-wall cooling system with lithium and sodium working fluids
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots are presented which show the distribution of oxygen between liquid lithium and tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures. Additional plots showing the composition of the gas phase above the solutions of oxygen and alkali metal are presented. The use of the plots is illustrated by an example tantalum heat pipe filled with lithium.
High-power liquid-lithium jet target for neutron production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904
2013-12-15
A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based onmore » a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.« less
Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
Zu, Chenxi; Manthiram, Arumugam
2014-08-07
Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-04-08
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-04-01
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-01-01
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575
Thermal analysis and management of lithium-titanate batteries
NASA Astrophysics Data System (ADS)
Giuliano, Michael R.; Advani, Suresh G.; Prasad, Ajay K.
2011-08-01
Battery electric vehicles and hybrid electric vehicles demand batteries that can store large amounts of energy in addition to accommodating large charge and discharge currents without compromising battery life. Lithium-titanate batteries have recently become an attractive option for this application. High current thresholds allow these cells to be charged quickly as well as supply the power needed to drive such vehicles. These large currents generate substantial amounts of waste heat due to loss mechanisms arising from the cell's internal chemistry and ohmic resistance. During normal vehicle operation, an active cooling system must be implemented to maintain a safe cell temperature and improve battery performance and life. This paper outlines a method to conduct thermal analysis of lithium-titanate cells under laboratory conditions. Thermochromic liquid crystals were implemented to instantaneously measure the entire surface temperature field of the cell. The resulting temperature measurements were used to evaluate the effectiveness of an active cooling system developed and tested in our laboratory for the thermal management of lithium-titanate cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, G. Z.; Hu, J. S.; Maingi, R.
In this paper, we report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermalmore » contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Finally, despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.« less
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-12-14
In this paper, we report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermalmore » contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Finally, despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Jianchao C.; An, Yonghao H.; Montalvo, Elizabeth
The graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to the charisma of graphene in assisting various metal oxides (MOs) to achieve near-theoretical capacities, exploiting the exceptional electronic and mechanical properties of graphene. By comparison, the true lithium storage mechanisms of graphene and their correlations with MOs remain enigmatic. Via a unique two-step liquid-flow-guided solgel process, we have synthesized and investigated the electrochemical performance ofmore » several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs play an equally important role in promoting graphene to achieve large reversible lithium storage capacity. Our experiments suggest that the unexpected lithium storage heightening may arise from a unique surface coverage mechanism of MOs. The magnitude of capacity improvement is found to scale crudely with the surface coverage of MOs but depend strongly upon the storage mechanisms of MOs variety. Importantly, synergistic effect is only observed in conversion reaction GMOs (i.e., Fe2O3/graphene and SnO2/graphene) but not in intercalationbased GMOs (i.e., TiO2/graphene). Our first principles calculations suggest an alternative lithium storage sites from resultant interfaces between Li2O and graphene that agree with our experimental observations. This unusually beneficial role of MOs to graphene suggests an effective pathway for reversible lithium storage in graphene and shifts design paradigms for graphene-based electrodes.« less
Ye, Jianchao C.; An, Yonghao H.; Montalvo, Elizabeth; ...
2016-02-10
The graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to the charisma of graphene in assisting various metal oxides (MOs) to achieve near-theoretical capacities, exploiting the exceptional electronic and mechanical properties of graphene. By comparison, the true lithium storage mechanisms of graphene and their correlations with MOs remain enigmatic. Via a unique two-step liquid-flow-guided solgel process, we have synthesized and investigated the electrochemical performance ofmore » several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs play an equally important role in promoting graphene to achieve large reversible lithium storage capacity. Our experiments suggest that the unexpected lithium storage heightening may arise from a unique surface coverage mechanism of MOs. The magnitude of capacity improvement is found to scale crudely with the surface coverage of MOs but depend strongly upon the storage mechanisms of MOs variety. Importantly, synergistic effect is only observed in conversion reaction GMOs (i.e., Fe2O3/graphene and SnO2/graphene) but not in intercalationbased GMOs (i.e., TiO2/graphene). Our first principles calculations suggest an alternative lithium storage sites from resultant interfaces between Li2O and graphene that agree with our experimental observations. This unusually beneficial role of MOs to graphene suggests an effective pathway for reversible lithium storage in graphene and shifts design paradigms for graphene-based electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id
Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensilemore » resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.H.; Erck, R.; Park, E.T.
1997-04-01
Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calciummore » alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.« less
Soft X-ray emission spectroscopy of liquids and lithium batterymaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustsson, Andreas
2004-01-01
Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed tomore » view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular orbital and orbital mixing between water molecules upon hydrogen bonding. Apart from the four-hydrogen-bonding structure in water, a structure where one hydrogen bond is broken could be separated and identified. The soft x-ray emission study of methanol showed the existence of ring and chain formations in the liquid phase and the dominating structures are formed of 6 and 8 molecules. Upon mixing of the two liquids, a segregation at the molecular level was found and the formation of new structures, which could explain the unexpected low increase of the entropy.« less
Wu, Feng; Chen, Nan; Chen, Renjie; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator-based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable "nanogelator" that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid-like apparent ionic conductivity of 2.93 × 10 -3 S cm -1 at room temperature. The results show that the nanogelator, which possess self-regulating ability, is able to immobilize imidazolium-, pyrrolidinium-, or piperidinium-based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti-nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes.
Diddens, Diddo; Heuer, Andreas
2014-01-30
We present an extensive molecular dynamics (MD) simulation study of the lithium ion transport in ternary polymer electrolytes consisting of poly(ethylene oxide) (PEO), lithium-bis(trifluoromethane)sulfonimide (LiTFSI), and the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide (PYR13TFSI). In particular, we focus on two different strategies by which the ternary electrolytes can be devised, namely by (a) adding the ionic liquid to PEO20LiTFSI and (b) substituting the PEO chains in PEO20LiTFSI by the ionic liquid. To grasp the changes of the overall lithium transport mechanism, we employ an analytical, Rouse-based cation transport model (Maitra et al. Phys. Rev. Lett. 2007, 98, 227802), which has originally been devised for binary PEO-based electrolytes. This model distinguishes three different microscopic transport mechanisms, each quantified by an individual time scale. In the course of our analysis, we extend this mathematical description to account for an entirely new transport mechanism, namely, the TFSI-supported diffusion of lithium ions decoupled from the PEO chains, which emerges for certain stoichiometries. We find that the segmental mobility plays a decisive role in PEO-based polymer electrolytes. That is, whereas the addition of the ionic liquid to PEO20LiTFSI plasticizes the polymer network and thus also increases the lithium diffusion, the amount of free, mobile ether oxygens reduces when substituting the PEO chains by the ionic liquid, which compensates the plasticizing effect. In total, our observations allow us to formulate some general principles about the lithium ion transport mechanism in ternary polymer electrolytes. Moreover, our insights also shed light on recent experimental observations (Joost et al. Electrochim. Acta 2012, 86, 330).
Lithium-ion batteries having conformal solid electrolyte layers
Kim, Gi-Heon; Jung, Yoon Seok
2014-05-27
Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.
Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza; Libera, Joseph A; Klavetter, Kyle C; Zavadil, Kevin R; Elam, Jeffrey W
2018-02-28
Lithium metal is considered the "holy grail" of next-generation battery anodes. However, severe parasitic reactions at the lithium-electrolyte interface deplete the liquid electrolyte and the uncontrolled formation of high surface area and dendritic lithium during cycling causes rapid capacity fading and battery failure. Engineering a dendrite-free lithium metal anode is therefore critical for the development of long-life batteries using lithium anodes. In this study, we deposit a conformal, organic/inorganic hybrid coating, for the first time, directly on lithium metal using molecular layer deposition (MLD) to alleviate these problems. This hybrid organic/inorganic film with high cross-linking structure can stabilize lithium against dendrite growth and minimize side reactions, as indicated by scanning electron microscopy. We discovered that the alucone coating yielded several times longer cycle life at high current rates compared to the uncoated lithium and achieved a steady Coulombic efficiency of 99.5%, demonstrating that the highly cross-linking structured material with great mechanical properties and good flexibility can effectively suppress dendrite formation. The protected Li was further evaluated in lithium-sulfur (Li-S) batteries with a high sulfur mass loading of ∼5 mg/cm 2 . After 140 cycles at a high current rate of ∼1 mA/cm 2 , alucone-coated Li-S batteries delivered a capacity of 657.7 mAh/g, 39.5% better than that of a bare lithium-sulfur battery. These findings suggest that flexible coating with high cross-linking structure by MLD is effective to enable lithium protection and offers a very promising avenue for improved performance in the real applications of Li-S batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellar, Michael
2015-09-01
The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to themore » typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.« less
A review of lithium and non-lithium based solid state batteries
NASA Astrophysics Data System (ADS)
Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam
2015-05-01
Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.
Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries.
Lee, Sang-Young; Yong, Hyun Hang; Lee, Young Joo; Kim, Seok Koo; Ahn, Soonho
2005-07-21
It is a common observation that when ionic liquids are added to electrolytes the performances of lithium ion cells become poor, while the thermal safeties of the electrolytes might be improved. In this study, this behavior is investigated based on the kinetics of ionic diffusion. As a model ionic liquid, we chose butyldimethylimidazolium hexafluorophosphate (BDMIPF(6)). The common solvent was propylene carbonate (PC), and lithium hexafluorophosphate (LiPF(6)) was selected as the lithium conducting salt. Ionic diffusion coefficients are estimated by using a pulsed field gradient NMR technique. From a basic study on the model electrolytes (BDMIPF(6) in PC, LiPF(6) in PC, and BDMIPF(6) + LiPF(6) in PC), it was found that the BDMI(+) from BDMIPF(6) shows larger diffusion coefficients than the Li(+) from LiPF(6). However, the anionic (PF(6)(-)) diffusion coefficients present little difference between the model electrolytes. The higher diffusion coefficient of BDMI(+) than that of Li(+) suggests that the poor C-rate performance of lithium ion cells containing ionic liquids as an electrolyte component can be attributed to the two-cation competition between Li(+) and BDMI(+).
NASA Astrophysics Data System (ADS)
Xu, Hewei; Shi, Junli; Hu, Guosheng; He, Ying; Xia, Yonggao; Yin, Shanshan; Liu, Zhaoping
2018-07-01
One of the crucial challenge for developing high safety and high voltage lithium ion batteries is to find a reliable electrolyte system. In this work, we report a kind of hybrid electrolytes, which are used for high-voltage lithium ion batteries and are expected to be able to effectively enhance the battery safety. The hybrid electrolytes are obtained by incorporating silane-Al2O3 (Al2O3-ST) into liquid electrolyte, which combines the merits of both solid electrolyte and liquid electrolyte. The Al2O3-ST nanoparticles help to increase lithium-ion transference number and to enhance battery safety, while liquid electrolyte contributes to high ionic conductivity. The cycling stability and rate capacity of LiNi0.5Mn1.5O4/Li batteries are improved by using the hybrid electrolytes. Nail-penetration tests indicate that LiNi0.6Mn0.2Co0.2O2/graphite battery with hybrid electrolyte owns obviously enhanced safety than that using traditional liquid electrolyte. This work provides new insight on electrolyte design for high-safety high-voltage lithium ion batteries.
Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J
2012-01-09
Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The use of lithium as a marker for the retention of liquids in the oral cavity after rinsing.
Hanning, Sara M; Kieser, Jules A; Ferguson, Martin M; Reid, Malcolm; Medlicott, Natalie J
2014-01-01
The aim of this study was to validate the use of lithium as a marker to indicate the retention of simple liquids in the oral cavity and use this to determine how much liquid is retained in the oral cavity following 30 s of rinsing. This is a validation study in which saliva was spiked with known concentrations of lithium. Twenty healthy participants then rinsed their mouths with either water or a 1 % w/v carboxymethylcellulose (CMC) solution for 30 s before expectorating into a collection cup. Total volume and concentration of lithium in the expectorant were then measured, and the percentage of liquid retained was calculated. The mean amount of liquid retained was 10.4 ± 4.7 % following rinsing with water and 15.3 ± 4.1 % following rinsing with 1 % w/v CMC solution. This difference was significant (p < 0.01). Lithium was useful as a marker for the retention of liquids in the oral cavity, and a value for the amount of water and 1 % w/v CMC solution remaining in the oral cavity following a 30-s rinse was established. The present study quantifies the retention of simple fluids in the oral cavity, validating a technique that may be applied to more complex fluids such as mouth rinses. Further, the application of this method to specific population groups such as those with severe xerostomia may assist in developing effective saliva substitutes.
NASA Astrophysics Data System (ADS)
Lux, Simon F.; Schmuck, Martin; Appetecchi, Giovanni B.; Passerini, Stefano; Winter, Martin; Balducci, Andrea
In this paper we report the results about the use of ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. Mixtures of N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide, PYR 13FSI, and N-butyl- N-methylpyrrolidinium bis(trifluoromethansulfonyl) imide, PYR 14TFSI, with lithium hexafluorophosphate, LiPF 6 and lithium bis(trifluoromethansulfonyl) imide, LiTFSI, containing 5 wt.% of vinylene carbonate (VC) as additive, have been used in combination with a commercial graphite, KS6 TIMCAL. The performance of the graphite electrodes has been considered in term of specific capacity, cycling efficiency and cycling stability. The results clearly show the advantage of the use of ternary mixtures on the performance of the graphite electrode.
Heat pipe cooling for scramjet engines
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1986-01-01
Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.
Liquid Lubricants for Spacecraft Applications
NASA Astrophysics Data System (ADS)
Gill, S.; Rowntree, A.
Liquid lubricants used for spacecraft have advantages over solid lubricants but there are also disadvantages to consider. The challenge is to ensure that the liquid lubricant does not disappear from the mechanism by evaporation or creep. Lubricants can be used as fluids or formulated as greases. The liquids can be highly refined hydrocarbons, PAOs, silicones, polyol esters (POEs), multiply alkylated cycloparaffins, (MACs) or various perfluoropolyethers (PFPEs). Greases are made from these liquids using thickeners such as lithium, calcium or sodium soaps, PTFE, graphite or lead. Operational temperatures range from - 45°C to over 100°C. Low vapour pressures are crucial, below 10-8 mbar at 20°C and total weight loss must be <1% for general applications, <0.1% for optical applications. 'Surface creep rates' must be low, temperature gradients and surface Ra are important factors. The wear rates for standard tests using different lubricants vary over several orders of magnitude for different lubricants, surface coatings and rpm. Unexpected effects, such as PTFE 'plating out' at low rpm, occur. The main issues are to prevent the lubricant escaping from working areas and to protect it from degradation by chemical reactions or radiation.
The Role of Dissolved Gas in Ionic Liquid Electrolytes for Secondary Lithium Metal Batteries
2013-01-07
devices use lithium-ion batteries comprised of a graphite anode and metal oxide cathode . Lithium, being the third-lightest element, is already synonymous...support shuttling lithium ions (battery cycling) such as the separator, electrolyte, and cathode and anode superstructures contribute most of the...ability of electro-deposit lithium non-dendritically. When lithium is electrodeposited , as during battery charging, it tends to form needle-like
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, R.R.; Bond, J.A.
1994-03-29
A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.
Self‐Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery
Wu, Feng; Chen, Nan; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator‐based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable “nanogelator” that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid‐like apparent ionic conductivity of 2.93 × 10−3 S cm−1 at room temperature. The results show that the nanogelator, which possess self‐regulating ability, is able to immobilize imidazolium‐, pyrrolidinium‐, or piperidinium‐based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti‐nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes. PMID:27774385
Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project)
NASA Astrophysics Data System (ADS)
Balducci, A.; Jeong, S. S.; Kim, G. T.; Passerini, S.; Winter, M.; Schmuck, M.; Appetecchi, G. B.; Marcilla, R.; Mecerreyes, D.; Barsukov, V.; Khomenko, V.; Cantero, I.; De Meatza, I.; Holzapfel, M.; Tran, N.
This manuscript presents the work carried out within the European project ILLIBATT, which was dedicated to the development of green, safe and high performance ionic liquids-based lithium batteries. Different types of ionic liquids-based electrolytes were developed in the project, based on different ionic liquids and polymers. Using these electrolytes, the performance of several anodic and cathodic materials has been tested and promising results have been obtained. Also, electrodes were formulated using water soluble binders. Using these innovative components, lithium-ion and lithium-metal battery prototypes (0.7-0.8 Ah) have been assembled and cycled between 100% and 0% SOC. The results of these tests showed that such ionic liquids-based prototypes are able to display high capacity, high coulombic efficiency and high cycle life. Moreover, safety tests showed that the introduction of these alternative electrolytes positively contribute to the safety of the batteries.
Innovative Ionic Liquids: Electrolytes for Ion Power Sources
2008-01-01
imide–based ILs can function not only as the electrolyte in a conventional lithium ion battery , but also as a solid nanocomposite separator when...conductivity comparable to the pure ionic liquid. Figure 6 shows the charge-discharge behavior of the micro lithium ion battery created entirely by the
Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina
2011-10-01
A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.
Liquid Li based neutron source for BNCT and science application.
Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S
2015-12-01
Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.
A reversible dendrite-free high-areal-capacity lithium metal electrode
Wang, Hui; Matsui, Masaki; Kuwata, Hiroko; Sonoki, Hidetoshi; Matsuda, Yasuaki; Shang, Xuefu; Takeda, Yasuo; Yamamoto, Osamu; Imanishi, Nobuyuki
2017-01-01
Reversible dendrite-free low-areal-capacity lithium metal electrodes have recently been revived, because of their pivotal role in developing beyond lithium ion batteries. However, there have been no reports of reversible dendrite-free high-areal-capacity lithium metal electrodes. Here we report on a strategy to realize unprecedented stable cycling of lithium electrodeposition/stripping with a highly desirable areal-capacity (12 mAh cm−2) and exceptional Coulombic efficiency (>99.98%) at high current densities (>5 mA cm−2) and ambient temperature using a diluted solvate ionic liquid. The essence of this strategy, that can drastically improve lithium electrodeposition kinetics by cyclic voltammetry premodulation, lies in the tailoring of the top solid-electrolyte interphase layer in a diluted solvate ionic liquid to facilitate a two-dimensional growth mode. We anticipate that this discovery could pave the way for developing reversible dendrite-free metal anodes for sustainable battery chemistries. PMID:28440299
High energy supercapattery with an ionic liquid solution of LiClO4.
Yu, Linpo; Chen, George Z
2016-08-15
A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.
NASA Advanced Radiator Technology Development
NASA Astrophysics Data System (ADS)
Koester, J. Kent; Juhasz, Albert J.
1994-07-01
A practical implementation of the two-phase working fluid of lithium and NaK has been developed experimentally for pumped loop radiator designs. The benefits of the high heat capacity and low mass of lithium have been integrated with the shutdown capability enabled by the low freezing temperature of NaK by mixing these liquid metals directly. The stable and reliable start up and shutdown of a lithium/NaK pumped loop has been demonstrated through the development of a novel lithium freeze-separation technique within the flowing header ducts. The results of a highly instrumented liquid metal test loop are presented in which both lithium fraction as well as loop gravitational effects were varied over a wide range of values. Diagnostics based on dual electric probes are presented in which the convective behavior of the lithium component is directly measured during loop operation. The uniform distribution of the lithium after a freeze separation is verified by neutron radiography. The operating regime for reliable freeze/thaw flow behavior is described in terms of correlations based on dimensional analysis.
Nonlinear functional for solvation in Density Functional Theory
NASA Astrophysics Data System (ADS)
Gunceler, Deniz; Sundararaman, Ravishankar; Schwarz, Kathleen; Letchworth-Weaver, Kendra; Arias, T. A.
2013-03-01
Density functional calculations of molecules and surfaces in a liquid can accelerate the development of many technologies ranging from solar energy harvesting to lithium batteries. Such studies require the development of robust functionals describing the liquid. Polarizable continuum models (PCM's) have been applied to some solvated systems; but they do not sufficiently capture solvation effects to describe highly polar systems like surfaces of ionic solids. In this work, we present a nonlinear fluid functional within the framework of Joint Density Functional Theory. The fluid is treated not as a linear dielectric, but as a distribution of dipoles that responds to the solute, which we describe starting from the exact free energy functional for point dipoles. We also show PCM's can be recovered as the linear limit of our functional. Our description is of similar computational cost to PCM's, and captures complex solvation effects like dielectric saturation without requiring new fit parameters. For polar and nonpolar molecules, it achieves millihartree level agreement with experimental solvation energies. Furthermore, our functional now makes it possible to investigate chemistry on the surface of lithium battery materials, which PCM's predict to be unstable. Supported as part of the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001086
Lithium Circuit Test Section Design and Fabrication
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Garber, Anne
2006-01-01
The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.
Lithium Circuit Test Section Design and Fabrication
NASA Astrophysics Data System (ADS)
Godfroy, Thomas; Garber, Anne; Martin, James
2006-01-01
The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.
Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Y.; Smith, D. L.
1999-10-07
The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolantmore » channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.« less
On the use of tin?lithium alloys as breeder material for blankets of fusion power plants
NASA Astrophysics Data System (ADS)
Fütterer, M. A.; Aiello, G.; Barbier, F.; Giancarli, L.; Poitevin, Y.; Sardain, P.; Szczepanski, J.; Li Puma, A.; Ruvutuso, G.; Vella, G.
2000-12-01
Tin-lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead-lithium (Pb-17Li) by a suitable tin-lithium alloy: (i) for the European water-cooled Pb-17Li (WCLL) blanket concept with reduced activation ferritic-martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiC f/SiC as the structural material. It was found that in none of these blankets Sn-Li alloys would lead to significant advantages, in particular due to the low tritium breeding capability. Only in forced convection cooled divertors with W-alloy structure, Sn-Li alloys would be slightly more favorable. It is concluded that Sn-Li alloys are only advantageous in free surface cooled reactor internals, as this would make maximum use of the principal advantage of Sn-Li, i.e., the low vapor pressure.
Multiplier, moderator, and reflector materials for advanced lithium?vanadium fusion blankets
NASA Astrophysics Data System (ADS)
Gohar, Y.; Smith, D. L.
2000-12-01
The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at average loading conditions of 2 MW/m 2 surface heat flux and 10 MW/m 2 neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.
A compact self-flowing lithium system for use in an industrial neutron source
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David
2016-10-01
A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.
NASA Astrophysics Data System (ADS)
Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun
2018-03-01
The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.
NASA Astrophysics Data System (ADS)
Nakagawa, Hiroe; Fujino, Yukiko; Kozono, Suguru; Katayama, Yoshihiro; Nukuda, Toshiyuki; Sakaebe, Hikari; Matsumoto, Hajime; Tatsumi, Kuniaki
A mixture of flammable organic solvent and nonflammable room temperature ionic liquid (RTIL) has been investigated as a new concept electrolyte to improve the safety of lithium-ion cells. This study focused on the use of N-methyl- N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13-TFSI) as the RTIL for the flame-retardant additive. It was found that a carbon negative electrode, both graphite and hard carbon, could be used with the mixed electrolyte. A 383562-size lithium-ion trial cell made with the mixed electrolyte showed good discharge capacity, which was equivalent to a cell with conventional organic electrolyte up to a discharge current rate of complete discharge in 1 h. Moreover, the mixed electrolyte was observed to be nonflammable at ionic liquid contents of 40 mass% or more. Thus the mixed electrolyte was found to realize both nonflammability and the good discharge performance of lithium-ion cells with carbon negative electrodes. These results indicate that RTILs have potential as a flame-retardant additive for the organic electrolytes used in lithium-ion cells.
Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I
2014-06-01
A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.
Surface protected lithium-metal-oxide electrodes
Thackeray, Michael M.; Kang, Sun-Ho
2016-04-05
A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.
Gettering capsule for removing oxygen from liquid lithium systems
NASA Technical Reports Server (NTRS)
Tower, L. K.; Breitwieser, R.
1973-01-01
Capsule consisting of tantalum shell lined with tantalum screen and partially filled with lithium and pieces of yttrium is immersed in hot lithium stream. Oxygen is removed from stream by being absorbed by gettering capsule. Oxygen passes through capsule wall and into lithium inside capsule where it reacts with yttrium to form Y2O3.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, Roland R.; Bond, James A.
1994-01-01
A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.
Black, Jeffrey J; Dolan, Andrew; Harper, Jason B; Aldous, Leigh
2018-06-06
Solvate ionic liquids are a relatively new class of liquids produced by combining a coordinating solvent with a salt. They have a variety of uses and their suitability for such depends upon the ratio of salt to coordinating solvent. This work investigates the Kamlet-Taft solvent parameters of, NMR chemical shifts of nuclei in, and thermoelectrochemistry of a selected set of solvate ionic liquids produced from glymes (methyl terminated oligomers of ethylene glycol) and lithium bis(trifluoromethylsulfonyl)imide at two different compositions. The aim is to improve the understanding of the interactions occurring in these ionic liquids to help select suitable solvate ionic liquids for future applications.
NASA Astrophysics Data System (ADS)
Miccio, L.; Vespini, V.; Grilli, S.; Paturzo, M.; Finizio, A.; De Nicola, S.; Ferraro, P.
2009-06-01
We show how thin liquid film on polar dielectric substrate can form an array of liquid micro-lenses. The effect is driven by the pyroelectric effect leading to a new concept in electro-wetting (EW). EW is a viable method for actuation of liquids in microfluidic systems and requires the design and fabrication of complex electrodes for suitable actuation of liquids. When compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuitless configuration. In our case the surface electric charge induced by the thermal stimulus is able to pattern selectively the surface wettability according to geometry of the ferroelectric domains micro-engineered into the lithium niobate crystal. We show that different geometries of liquid microlenses can be obtained showing also a tuneability of the focal lenses down to 1.6 mm. Thousand of liquid microlenses, each with 100 μm diameter, can be formed and actuated. Also different geometries such as hemi-cylindrical and toroidal liquid structures can be easily obtained. By means of a digital holography method, an accurate characterization of the micro-lenses curvature is performed and presented. The preliminary results concerning the imaging capability of the micro-lens array are also reported. Microlens array can find application in medical stereo-endoscopy, imaging, telecommunication and optical data storage too.
Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.
2007-01-01
Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal.
Schmitz, Paulo; Jakelski, Rene; Pyschik, Marcelina; Jalkanen, Kirsi; Nowak, Sascha; Winter, Martin; Bieker, Peter
2017-03-09
Ionic liquids (ILs) are considered to be suitable electrolyte components for lithium-metal batteries. Imidazolium cation based ILs were previously found to be applicable for battery systems with a lithium-metal negative electrode. However, herein it is shown that, in contrast to the well-known IL N-butyl-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ([Pyr 14 ][TFSI]), 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C2MIm][TFSI]) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C4MIm][TFSI]) are chemically unstable versus metallic lithium. A lithium-metal sheet was immersed in pure imidazolium-based IL samples and aged at 60 °C for 28 days. Afterwards, the aged IL samples were investigated to deduce possible decomposition products of the imidazolium cation. The chemical instability of the ILs in contact with lithium metal and a possible decomposition starting point are shown for the first time. Furthermore, the investigated imidazolium-based ILs can be utilized for lithium-metal batteries through the addition of the solid-electrolyte interphase (SEI) film-forming additive fluoroethylene carbonate. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrolyte compositions for lithium ion batteries
Sun, Xiao-Guang; Dai, Sheng; Liao, Chen
2016-03-29
The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.
Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P
2007-08-01
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.
Electrochemical and kinetic studies of ultrafast laser structured LiFePO4 electrodes
NASA Astrophysics Data System (ADS)
Mangang, M.; Gotcu-Freis, P.; Seifert, H. J.; Pfleging, W.
2015-03-01
Due to a growing demand of cost-efficient lithium-ion batteries with an increased energy and power density as well as an increased life-time, the focus is set on intercalation cathode materials like LiFePO4. It has a high practical capacity, is environmentally friendly and has low material costs. However, its low electrical conductivity and low ionic diffusivity are major drawbacks for its use in electrochemical storage devices or electric vehicles. By adding conductive agents, the electrical conductivity can be enhanced. By increasing the surface of the cathode material which is in direct contact with the liquid electrolyte the lithium-ion diffusion kinetics can be improved. A new approach to increase the surface of the active material without changing the active particle packing density or the weight proportion of carbon black is the laser-assisted generation of 3D surface structures in electrode materials. In this work, ultrafast laser radiation was used to create a defined surface structure in LiFePO4 electrodes. It was shown that by using ultrashort laser pulses instead of nanosecond laser pulses, the ablation efficiency could be significantly increased. Furthermore, melting and debris formation were reduced. To investigate the diffusion kinetics, electrochemical methods such as cyclic voltammetry and galvanostatic intermittent titration technique were applied. It could be shown that due to a laser generated 3D structure, the lithium-ion diffusion kinetic, the capacity retention and cell life-time can be significantly improved.
He, Qing; Williams, Neil J.; Oh, Ju; ...
2018-05-25
LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing; Williams, Neil J.; Oh, Ju
LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less
NASA Astrophysics Data System (ADS)
Liang, Yinzheng; Ji, Liwen; Guo, Bingkun; Lin, Zhan; Yao, Yingfang; Li, Ying; Alcoutlabi, Mataz; Qiu, Yiping; Zhang, Xiangwu
Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF 6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 × 10 -3 S cm -1. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF 6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g -1 and good cycling performance at 0.2 C rate at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altshuler, Gennady; Manor, Ofer, E-mail: manoro@technion.ac.il
A MHz vibration, or an acoustic wave, propagating in a solid substrate may support the convective spreading of a liquid film. Previous studies uncovered this ability for fully wetting silicon oil films under the excitation of a MHz Rayleigh surface acoustic wave (SAW), propagating in a lithium niobate substrate. Partially wetting de-ionized water films, however, appeared immune to this spreading mechanism. Here, we use both theory and experiment to reconsider this situation and show partially wetting water films may spread under the influence of a propagating MHz vibration. We demonstrate distinct capillary and convective (vibrational/acoustic) spreading regimes that are governedmore » by a balance between convective and capillary mechanisms, manifested in the non-dimensional number θ{sup 3}/We, where θ is the three phase contact angle of the liquid with the solid substrate and We ≡ ρU{sup 2}H/γ; ρ, γ, H, and U are the liquid density, liquid/vapour surface tension, characteristic film thickness, and the characteristic velocity amplitude of the propagating vibration on the solid surface, respectively. Our main finding is that the vibration will support a continuous spreading motion of the liquid film out of a large reservoir if the convective mechanism prevails (θ{sup 3}/We < 1); otherwise (θ{sup 3}/We > 1), the dynamics of the film is governed by the capillary mechanism.« less
Leung, Kevin
2016-12-10
The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH – surface groups; and chemicalmore » reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less
Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V
2016-01-14
In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.
Battery Power Management in Heavy-duty HEVs based on the Estimated Critical Surface Charge
2011-03-01
health prospects without any penalty on fuel efficiency. Keywords: Lithium - ion battery ; power management; critical surface charge; Lithium-ion...fuel efficiency. 15. SUBJECT TERMS Lithium - ion battery ; power management; critical surface charge; Lithium-ion concentration; estimation; extended...Di Domenico, D., Fiengo, G., and Stefanopoulou, A. (2008) ’ Lithium - ion battery state of charge estimation with a kalman filter based on a
Chemical and morphological characteristics of lithium electrode surfaces
NASA Technical Reports Server (NTRS)
Yen, S. P. S.; Shen, D.; Vasquez, R. P.; Grunthaner, F. J.; Somoano, R. B.
1981-01-01
Lithium electrode surfaces were analyzed for chemical and morphological characteristics, using electron spectroscopy chemical analysis (ESCA) and scanning electron microscopy (SEM). Samples included lithium metal and lithium electrodes which were cycled in a 1.5 M lithium arsenic hexafluoride/two-methyl tetrahydrofuran electrolyte. Results show that the surface of the as-received lithium metal was already covered by a film composed of LiO2 and an Li2O/CO2 adduct with a thickness of approximately 100-200 A. No evidence of Ni3 was found. Upon exposure of the lithium electrode to a 1.5 M LiAsF6/2-Me-THF electrochemical environment, a second film was observed to form on the surface, consisting primarily of As, Si, and F, possibly in the form of lithium arsenic oxyfluorides or lithium fluorosilicates. It is suggested that the film formation may be attributed to salt degradation.
Surface phenomenon in Electrochemical Systems
NASA Astrophysics Data System (ADS)
Gupta, Tanya
Interfaces play a critical role in the performance of electrochemical systems. This thesis focusses on interfaces in batteries and covers aspects of interfacial morphologies of metal anodes, including Silicon, Lithium and Zinc. Growth and cycling of electrochemically grown Lithium and Zinc metal structures is investigated. A new morphology of Zinc, called Hyper Dendritic Zinc is introduced. It is cycled against Prussian Blue Analogues and is shown to improve the performance of this couple significantly. Characterization of materials is done using various electron microscopy techniques ranging from Low Energy Electron Microscope (LEEM), to high energy Transmission Electron Microscope (TEM). LEEM is used for capturing subtle surface phenomenon occurring during epitaxial process of electrolyte on anode. The system studied is Silicon (100) during Chemical Vapor Deposition of Ethylene Carbonate. A strain driven relaxation theory is modeled to explain the unusual restructuring of Si substrate. The other extreme, TEM, is often used to study electrochemical processes, without clear understanding of how the high-energy electron beam can influence the sample under investigation. Here, we study the radiolysis in liquid cell TEM and emphasize on the enhancement of radiation dose at interfaces of the liquid due to generation of secondary and backscattered electrons from adjoining materials. It is shown that this effect is localized in a 10 nm region around the interface and can play a dominating role if there is an interface of liquid with heavy metals like Gold and Platinum which are frequently used as electrode materials. This analysis can be used to establish guidelines for experimentalists to follow, for accurate interpretation of their results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli
2013-10-15
Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique doesmore » not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup −1} after 50 cycles @100 mA g{sup −1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.« less
NASA Astrophysics Data System (ADS)
Yang, Jae-Young; El-Genk, M. S.
1991-07-01
The effects of shrinkage void forming during freezing of lithium and lithium-fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.
NASA Technical Reports Server (NTRS)
Yang, Jae Y.; El-Genk, Mohamed S.
1991-01-01
The effects of shrinkage void forming during freezing of lithium and lithium fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.
Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping
2016-03-01
Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery.
Survey of Commercial Small Lithium Polymer Batteries
2007-09-19
by a liquid electrolyte which is made conductive for Li ions by the addition of a salt such as lithium hexafluorophosphate (LiPF6). The...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--07-9073 Survey of Commercial Small Lithium Polymer Batteries September 19, 2007... Lithium Polymer Batteries Arnold M. Stux and Karen Swider-Lyons Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5320 NRL/MR
Recycling positive-electrode material of a lithium-ion battery
Sloop, Steven E.
2017-11-21
Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.
Lithium-Metal Infused Trenches: Progress toward a Divertor Solution
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Fiflis, P.; Christenson, M.; Szott, M.; Xu, W.; Jung, S.; Morgan, T. W.; Kalathiparambil, K.
2014-10-01
The application of liquid metal, especially liquid lithium, as a plasma facing component (PFC) has the capacity to offer a strong alternative to solid PFCs by reducing damage concerns and enhancing plasma performance. The Liquid-Metal Infused Trenches (LiMIT) concept is a liquid metal divertor alternative which employs thermoelectric current from either plasma or external heating in tandem with the toroidal field to self-propel liquid lithium through a series of trenches. LiMIT has been tested in several devices, namely HT-7, the UIUC SLiDE and TELS facilities and Magnum PSI at heat fluxes of up to 3 MW/m-2. Results of these experiments, including velocity and temperature measurements, power handling considerations, and preliminary vapor shielding results will be discussed, focusing on the 117 shots performed at Magnum scanning magnetic fields and heat fluxes up to ~ 0.3 T and 3 MW/m-2. Concerns over tritium retention and MHD droplet ejection will additionally be addressed. LiMIT has also been proposed to function as a limiter on the EAST moveable limiter arm and tests have been performed with a prototype module inclined at various angles.
Liquid-free rechargeable Li polymer battery
NASA Astrophysics Data System (ADS)
Matsui, S.; Muranaga, T.; Higobashi, H.; Inoue, S.; Sakai, T.
Safety is a key concern for high-power energy storage systems such as will be required for electric vehicles. Present lithium ion batteries, which use a flammable organic liquid electrolyte, lack inherent safety. Our approach in solving this problem is to replace the liquid electrolyte with a liquid-free polymer electrolyte. Data of the composition of the positive electrode, charge-discharge and cycle-life capability are presented. The cell using metallic lithium anode and crosslinked polymer electrolyte P(EO/MEEGE/AGE)-LiTFSI showed a discharge capacity of 134 mAh g -1 of LiCoO 2 at 60°C and 140 mAh g -1 at 140°C.
Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven; ...
2017-08-11
An understanding of the wetting properties and a characterization of theinterface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. Here, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force eld is parameterized to describe the interactions between Li and Mo. The new force eld reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (110) surface. This force field is then used tomore » study the wetting of liquid Li on the (110) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we nd that liquid Li tends to completely wet the perfect Mo (110) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (110) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin- lm simulations, it is observed that the first layer of Li on the Mo (110) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. Our findings are consistent with temperature-programmed desorption experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven
An understanding of the wetting properties and a characterization of theinterface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. Here, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force eld is parameterized to describe the interactions between Li and Mo. The new force eld reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (110) surface. This force field is then used tomore » study the wetting of liquid Li on the (110) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we nd that liquid Li tends to completely wet the perfect Mo (110) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (110) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin- lm simulations, it is observed that the first layer of Li on the Mo (110) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. Our findings are consistent with temperature-programmed desorption experiments.« less
NASA Astrophysics Data System (ADS)
Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
2017-11-01
An understanding of the wetting properties and a characterization of the interface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. In this work, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force field is parameterized to describe the interactions between Li and Mo. The new force field reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (1 1 0) surface. This force field is then used to study the wetting of liquid Li on the (1 1 0) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we find that liquid Li tends to completely wet the perfect Mo (1 1 0) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (1 1 0) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin-film simulations, it is observed that the first layer of Li on the Mo (1 1 0) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. These findings are consistent with temperature-programmed desorption experiments.
In situ TEM study of the Li-Au reaction in an electrochemical liquid cell.
Zeng, Zhiyuan; Liang, Wen-I; Chu, Ying-Hao; Zheng, Haimei
2014-01-01
We study the lithiation of a Au electrode in an electrochemical liquid cell using transmission electron microscopy (TEM). The commercial liquid electrolyte for lithium ion batteries (1 M lithium hexafluorophosphate LiPF6 dissolved in 1 : 1 (v/v) ethylene carbonate (EC) and diethyl carbonate (DEC)) was used. Three distinct types of morphology change during the reaction, including gradual dissolution, explosive reaction and local expansion/shrinkage, are observed. It is expected that significant stress is generated from lattice expansion during lithium-gold alloy formation. There is vigorous bubble formation from electrolyte decomposition, likely due to the catalytic effect of Au, while the bubble generation is less severe with titanium electrodes. There is an increase of current in response to electron beam irradiation, and electron beam effects on the observed electrochemical reaction are discussed.
Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.
2009-01-01
Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.
Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic
2013-05-28
Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil
2016-06-08
Unimolecular and collision-induced dissociation of doubly charged lithium acetate clusters, (CH3COOLi)nLi22+, demonstrated that Coulomb fission via charge separation is the dominant dissociation process with no contribution from the neutral evaporation processes for all such ions from the critical limit to larger cluster ions, although latter process have normally been observed in all earlier studies. These results are clearly in disagreement with the Rayleigh’s liquid drop model that has been used successfully to predict the critical size and explain the fragmentation behavior of multiply charged clusters.
Electromagnetic Pumps for Liquid Metal-Fed Electric Thrusters
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Markusic, Thomas E.
2007-01-01
Prototype designs of two separate pumps for use in electric propulsion systems with liquid lithium and bismuth propellants are presented. Both pumps are required to operate at elevated temperatures, and the lithium pump must additionally withstand the corrosive nature of the propellant. Compatibility of the pump materials and seals with lithium and bismuth were demonstrated through proof-of-concept experiments followed by post-experiment visual inspections. The pressure rise produced by the bismuth pump was found to be linear with input current and ranged from 0-9 kPa for corresponding input current levels of 0-30 A, showing good quantitative agreement with theoretical analysis.
Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.
2017-06-06
Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.
Garcia, Rudan P.; Conti, Paulo CR.; Pereira, Jefferson R.; Valle, Accácio Ld.
2013-01-01
Objective: This study evaluated the influence of low concentration acid treatment on the shear bond strength between lithium disilicate (LD) infrastructure and veneering porcelain. The surface morphology characteristic after this acid treatment was also examined. Study Design: LD reinforced ceramic cylinders (n=10) (IPS e.max Press, Ivoclar-Vivadent, Schaan, Liechtenstein) were treated (LD-treated) with a low concentration acid solution (Invex Liquid – Ivoclar-Vivadent, Schaan, Liechtenstein) or not treated with the acid solution (LD-untreated). They were veneered with a glass ceramic (IPS e.max Ceram, Ivoclar-Vivadent, Schaan, Liechtenstein). A metal ceramic group (CoCr) was tested as control. Shear bond strength (SBS) was conducted using a universal testing machine at 0.5 mm/min. Surface morphology characteristics after acid treatment were analyzed using scanning electron microscopy. Results: The acid treatment at low concentrations did not influence the SBS of the LD/veneering porcelain interface. The CoCr group showed the significant higher SBS value (35.59 ± 5.97 MPa), followed by LD-untreated group (27.76 ± 3.59 MPa) and LD-treated (27.02 ± 4.79 MPa). The fracture modes were predominantly adhesive for CoCr group and cohesive within the infrastructure for DL groups. Scanning Electron Microscopy (SEM) analysis showed no morphological differences between treated and untreated LD surfaces. Conclusions: Low concentration acid treatment did not improved SBS of veneering ceramic to LD and did not cause morphological changes on the LD surface. Key words:Lithium disilicate, glass ceramics, acid etching, shear bond strength, scanning electron microscopy. PMID:24455073
Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; ...
2014-11-26
A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAhg- 1 (second cycle) by using 40% 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-Npropylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60% 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower thanmore » that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAhg 1 even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity.« less
Electromagnetic Pumps for Conductive-Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado
2005-01-01
Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.
Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.
The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages overmore » some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.« less
Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress.
Li, Sa; Jiang, Mengwen; Xie, Yong; Xu, Hui; Jia, Junyao; Li, Ju
2018-04-01
Lithium metal anodes are potentially key for next-generation energy-dense batteries because of the extremely high capacity and the ultralow redox potential. However, notorious safety concerns of Li metal in liquid electrolytes have significantly retarded its commercialization: on one hand, lithium metal morphological instabilities (LMI) can cause cell shorting and even explosion; on the other hand, breaking of the grown Li arms induces the so-called "dead Li"; furthermore, the continuous consumption of the liquid electrolyte and cycleable lithium also shortens cell life. The research community has been seeking new strategies to protect Li metal anodes and significant progress has been made in the last decade. Here, an overview of the fundamental understandings of solid electrolyte interphase (SEI) formation, conceptual models, and advanced real-time characterizations of LMI are presented. Instructed by the conceptual models, strategies including increasing the donatable fluorine concentration (DFC) in liquid to enrich LiF component in SEI, increasing salt concentration (ionic strength) and sacrificial electrolyte additives, building artificial SEI to boost self-healing of natural SEI, and 3D electrode frameworks to reduce current density and delay Sand's extinction are summarized. Practical challenges in competing with graphite and silicon anodes are outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical modification of electrolytes for lithium batteries
NASA Astrophysics Data System (ADS)
Afanas'ev, Vladimir N.; Grechin, Aleksandr G.
2002-09-01
Modern approaches to modifying chemically electrolytes for lithium batteries are analysed with the aim of optimising the charge-transfer processes in liquid-phase and solid (polymeric) media. The main regularities of transport properties of lithium electrolyte solutions containing complex (encapsulated) ions in aprotic solvents and polymers are discussed. The prospects for the development of electrolytic solvosystems with the chain (ionotropic) mechanism of conduction with respect to lithium ions are outlined. The bibliography includes 126 references.
Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi
2016-06-29
Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency.
Heteroaromatic-based electrolytes for lithium and lithium-ion batteries
Cheng, Gang; Abraham, Daniel P.
2017-04-18
The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.
Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators.
Zahn, Raphael; Lagadec, Marie Francine; Hess, Michael; Wood, Vanessa
2016-12-07
The microstructure of lithium-ion battery separators plays an important role in separator performance; however, here we show that a geometrical analysis falls short in predicting the lithium-ion transport in the electrolyte-filled pore space. By systematically modifying the surface chemistry of a commercial polyethylene separator while keeping its microstructure unchanged, we demonstrate that surface chemistry, which alters separator-electrolyte interactions, influences ionic conductivity and lithium-ion transference number. Changes in separator surface chemistry, particularly those that increase lithium-ion transference numbers can reduce voltage drops across the separator and improve C-rate capability.
Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions
NASA Technical Reports Server (NTRS)
Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)
2014-01-01
Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.
2015-01-01
Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.
Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery
2011-11-01
Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery Johanna K. Star 1 , Yi Ding 2 , and Paul A. Kohl ,1, * 1...Journal Article 3. DATES COVERED 01-11-2011 to 01-11-2011 4. TITLE AND SUBTITLE DENDRITE-FREE ELECTRODEPOSITION AND REOXIDATION OF LITHIUM-SODIUM...Results and Discussion The initial ionic liquid selection was driven by the need to electrodeposit sodium and lithium from the same electrolyte
2004-09-16
published in non peer-reviewed journals: 1. Gross, SM, Hamilton JL. "Polymer Gels for Use in Lithium Polymer Batteries", Nebraska Academy of Science...a process for the anionic polymerization of styrene and methyl methacrylate in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ...Current polymer electrolyte composites used for these applications typically comprise polyethers with ethylene carbonate solvents containing lithium
Takeda, Sahori; Morimura, Wataru; Liu, Yi-Hung; Sakai, Tetsuo; Saito, Yuria
2016-08-15
Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Woolley, Robert D.
2002-01-01
A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery
NASA Astrophysics Data System (ADS)
Togasaki, Norihiro; Shibamura, Ryuji; Naruse, Takuya; Momma, Toshiyuki; Osaka, Tetsuya
2018-04-01
Among the recent advancements in lithium-oxygen (Li-O2) chemistries, redox mediators (RMs) have been revealed to play a significant role in decreasing overpotential on charging and in improving cycling performance. However, an intrinsic problem is redox shuttle of RMs, which leads to degraded RM utilization and induces the accumulation of discharge products on the cathode surface; this remains a significant issue in the current battery cell configuration (Li anode/separator/cathode). To address this detrimental problem, herein we propose a novel Li-O2 cell incorporating a freestanding electropolymerized polypyrrole (PPy) film for the restriction of the redox-shuttle phenomenon of lithium iodide (Li anode/separator/PPy film/cathode). In this study, a PPy film, which is prepared through oxidative electropolymerization using an ionic liquid of 1-methyl-1-butylpyrrolidinium mixed with pyrrole and lithium bis(trifluoromethanesulfonyl)imide, is introduced between the cathode and the separator. From the charge-discharge voltage profile, it is confirmed that the PPy film suppresses the diffusion of the oxidized I3- to the Li anode, while allowing Li ion transport. Secondary scanning electron microscope measurements confirm that the chemical reactions between I3- and Li2O2 are facilitated by the presence of the PPy film because I3- remains near the cathode surface during the charging process. As a result, the cycling performance in the Li-O2 cells with PPy film exhibits a cycling life four times as long as that of the Li-O2 cells without PPy film.
NASA Astrophysics Data System (ADS)
Leung, Kevin
2015-03-01
Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The Twentieth International Symposium on Molten Salts and Ionic Liquids
2016-11-29
Heterocyclic Carbene Involved?" by Hyung Kim "Carbon Dioxide Absorption Behavior and Cabronate Ion Transport of Lithium Orthosilicate/Molten Carbonate...K. Gemmell, K. Johnson, A. East 575 Lithium Ion Conduction in Single Lithium Perfluorosulfonylamides K. Kubota, H. Matsumoto 585...energy applications (e.g., batteries , fuel cells, semiconductors, photovoltaics, and phase change energy storage); (3) rare earth and nuclear chemistry
Dutta, Arghya; Wong, Raymond A; Park, Woonghyeon; Yamanaka, Keisuke; Ohta, Toshiaki; Jung, Yousung; Byon, Hye Ryung
2018-02-14
The major challenge facing lithium-oxygen batteries is the insulating and bulk lithium peroxide discharge product, which causes sluggish decomposition and increasing overpotential during recharge. Here, we demonstrate an improved round-trip efficiency of ~80% by means of a mesoporous carbon electrode, which directs the growth of one-dimensional and amorphous lithium peroxide. Morphologically, the one-dimensional nanostructures with small volume and high surface show improved charge transport and promote delithiation (lithium ion dissolution) during recharge and thus plays a critical role in the facile decomposition of lithium peroxide. Thermodynamically, density functional calculations reveal that disordered geometric arrangements of the surface atoms in the amorphous structure lead to weaker binding of the key reaction intermediate lithium superoxide, yielding smaller oxygen reduction and evolution overpotentials compared to the crystalline surface. This study suggests a strategy to enhance the decomposition rate of lithium peroxide by exploiting the size and shape of one-dimensional nanostructured lithium peroxide.
Status of National Spherical Torus Experiment Liquid Lithium Divertor
NASA Astrophysics Data System (ADS)
Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.
2009-11-01
Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.
Li, Zhen-Yu; Zhang, Sha-Sha; Jie-Xing; Qin, Xue-Mei
2015-01-01
In this study, an ionic liquids (ILs) based extraction approach has been successfully applied to the extraction of essential oil from Farfarae Flos, and the effect of lithium chloride was also investigated. The results indicated that the oil yields can be increased by the ILs, and the extraction time can be reduced significantly (from 4h to 2h), compared with the conventional water distillation. The addition of lithium chloride showed different effect according to the structures of ILs, and the oil yields may be related with the structure of cation, while the chemical compositions of essential oil may be related with the anion. The reduction of extraction time and remarkable higher efficiency (5.41-62.17% improved) by combination of lithium salt and proper ILs supports the suitability of the proposed approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrode structure and method for making the same
Affinito, John D.; Lowe, Gregory K.
2015-05-26
Electrode structures, and more specifically, electrode structures for use in electrochemical cells, are provided. The electrode structures described herein may include one or more protective layers. In one set of embodiments, a protective layer may be formed by exposing a lithium metal surface to a plasma comprising ions of a gas to form a ceramic layer on top of the lithium metal. The ceramic layer may be highly conductive to lithium ions and may protect the underlying lithium metal surface from reaction with components in the electrolyte. In some cases, the ions may be nitrogen ions and a lithium nitride layer may be formed on the lithium metal surface. In other embodiments, the protective layer may be formed by converting lithium to lithium nitride at high pressures. Other methods for forming protective layers are also provided.
Effects of Surface Oxygen on the Performance of Carbon as an Anode in Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Clark, Gregory W.
2001-01-01
Carbon materials with similar bulk structure but different surface oxygen were compared for their performance as anodes in lithium-ion battery. The bulk structure was such that the graphene planes were perpendicular to the surface. Three types of surfaces were examined: surface containing C=O type oxygen. surface containing -O-C type oxygen, and surface containing high concentration of active sites. The test involved cycles of lithium insertion into and release from the carbon materials, which was in the half cells of carbon/saturated LiI-50/50 (vol %) EC and DMC/lithium. During the first cycle of lithium insertion, the presence of adsorbed oxygen, -O-C type oxygen, active carbon sites, and C=O type oxygen resulted in the formation of solid-electrolyte interface (SEI) when the carbon's voltage relative to lithium metal was >1.35, 1 to 1.35, 0.5 to 1, and 0.67 to 0.7 V, respectively. An optimum -O-C type oxygen and a minimum C=O type oxygen was found to increase the reversible and decrease the irreversible capacity of carbon. Active sites on the carbon surface result in a large irreversible capacity and a second lithium insertion-release mechanism. However, this new mechanism has a short cycle life.
NASA Astrophysics Data System (ADS)
Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.
2012-12-01
To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.
Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng
2015-01-01
A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAh g(-1) (second cycle) by using 40 % 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60 % 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower than that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAh g(-1) even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Yanilmaz, Meltem
Lithium-ion batteries have been widely used in electronic devices including mobile phones, laptop computers, and cameras due to their high specific energy, high energy density, long cycling lifetime, and low self-discharge rate. Nowadays, lithium-ion batteries are finding new applications in electric/hybrid vehicles and energy storage for smart grids. To be used in these new applications, novel battery components are needed so that lithiumion batteries with higher cell performance, better safety, and lower cost can be developed. A separator is an important component to obtain safe batteries and its primary function is to prevent electronic contact between electrodes while regulating cell kinetics and ionic flow. Currently, microporous membranes are the most commonly used separator type and they have good mechanical properties and chemical stability. However, their wettability and thermal stabilities are not sufficient for applications that require high operating temperature and high performance. Due to the superior properties such as large specific surface area, small pore size and high porosity, electrospun nanofiber membranes can be good separator candidate for highperformance lithium-ion batteries. In this work, we focus our research on fabricating nanofiber-based membranes to design new high-performance separators with good thermal stability, as well as superior electrochemical performance compared to microporous polyolefin membranes. To combine the good mechanical strength of PP nonwovens with the excellent electrochemical properties of SiO2/polyvinylidene fluoride (PVDF) composite nanofibers, SiO 2/PVDF composite nanofiber-coated PP nonwoven membranes were prepared. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Although ceramic/polymer composites can be prepared by encapsulating ceramic particles directly into polymer nanofibers, the performance of the resultant composite membranes is restricted because these nanoparticles are not exposed to liquid electrolytes and have limited effect on improving the cell performance. Hence, we introduced new nanoparticle-on-nanofiber hybrid membrane separators by combining electrospraying with electrospinning techniques. Electrochemical properties were enhanced due to the increased surface area caused by the unique hybrid structure of SiO2 nanoparticles and PVDF nanofibers. To design a high-performance separator with enhanced mechanical properties and good thermal stability, electrospun SiO2/nylon 6,6 nanofiber membranes were fabricated. It was found that SiO2/nylon 6,6 nanofiber membranes had superior thermal stability and mechanical strength. Electrospinning has serious drawbacks such as low spinning rate and high production cost. Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning. SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells exhibited good cycling and C-rate performance.
Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface.
Habibpourmoghadam, Atefeh; Lucchetti, Liana; Evans, Dean R; Reshetnyak, Victor Y; Omairat, Faissal; Schafforz, Samuel L; Lorenz, Alexander
2017-10-16
A chiral nematic (N*) liquid crystal (LC) was hybridized with a z-cut iron doped lithium niobate (Fe:LN) substrate and exposed with a focused continuous wave diode laser beam. The N* LC layer was confined with a cover glass to provide a homogeneous LC layer thickness. Two distinct kinds of test cells were investigated, one with an uncoated glass covering slip and one with an indium tin oxide (ITO) coated cover glass. Photo generated electric fields (generated in the Fe:LN) resulted in a localized defect formation and textural transitions in the N* LC. Due to field confinement, the field induced responses were more localized in samples with ITO coated cover glasses. By scanning the laser beam on programmed trajectories, formation of persistent patterns could be achieved in the N* LC layer. Polarized optical microscopy of the exposed samples revealed that these patterns consisted of adjacent circular Frank-Pryce defects. Exposure with a slightly defocused laser beam could be applied selectively to erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives, and touch sensitive devices in a hybridized N* LC with micron accuracy.
Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation
Abrams, T.; Jaworski, M. A.; Chen, M.; ...
2015-12-17
Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>10 23 m -2 s -1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate ofmore » Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 10 23-10 24 m -2 s -1 and Li surface temperatures. ≤800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. Lastly, these results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.« less
Lin, Dingchang; Liu, Yayuan; Chen, Wei; ...
2017-05-23
Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li–S and Li–air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here in this paper, we develop a conformalmore » LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide (Li-rGO) electrodes, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells. Furthermore, Li–S cells with LiF protected Li-rGO exhibit significantly improved cyclability and Coulombic efficiency, while excellent rate capability (~800 mAh g -1 at 2 C) can still be retained.« less
Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang
2017-03-22
All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Dingchang; Liu, Yayuan; Chen, Wei
Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li–S and Li–air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here in this paper, we develop a conformalmore » LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide (Li-rGO) electrodes, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells. Furthermore, Li–S cells with LiF protected Li-rGO exhibit significantly improved cyclability and Coulombic efficiency, while excellent rate capability (~800 mAh g -1 at 2 C) can still be retained.« less
Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei
2018-02-16
Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.
Navarra, Maria Assunta; Fujimura, Kanae; Sgambetterra, Mirko; Tsurumaki, Akiko; Panero, Stefania; Nakamura, Nobuhumi; Ohno, Hiroyuki; Scrosati, Bruno
2017-06-09
Here, two ionic liquids, N-ethoxyethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (M 1,2O2 TFSI) and N-ethoxyethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (P 1,2O2 TFSI) were synthesized and compared. Fundamental relevant properties, such as thermal and electrochemical stability, density, and ionic conductivity were analyzed to evaluate the effects caused by the presence of the ether bond in the side chain and/or in the organic cation ring. Upon lithium salt addition, two electrolytes suitable for lithium batteries applications were found. Higher conducting properties of the piperidinium-based electrolyte resulted in enhanced cycling performances when tested with LiFePO 4 (LFP) cathode in lithium cells. When mixing the P 1,2O2 TFSI/LiTFSI electrolyte with a tailored alkyl carbonate mixture, the cycling performance of both Li and Li-ion cells greatly improved, with prolonged cyclability delivering very stable capacity values, as high as the theoretical one in the case of Li/LFP cell configurations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid solution lithium alloy cermet anodes
Richardson, Thomas J.
2013-07-09
A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.
On the Application of Lithium Additives in the Electrolytic Production of Primary Aluminum
NASA Astrophysics Data System (ADS)
Saitov, A. V.; Bazhin, V. Yu.; Povarov, V. G.
2017-12-01
The behavior of carbon-graphite subjected to treatment in the lithium carbonate Li2CO3 melt without cryolite and alkali-metal fluorides is studied to reliably estimate the influence of lithium on the surface layers of a carbon-containing cathode lining. The chemical composition and the structure of the carbon-graphite material after its interaction with lithium in the Li2CO3 melt have been studied. The high-temperature interaction of the system components in the melt is found to be accompanied by fracture of the operating surface of the carbon-graphite material, while the carbon-graphite surface does not failed upon interacting with lithium vapors. Based on the obtained data, a model for the formation of lithium ions during the reduction of lithium and its interaction with a carbon-graphite sample during the electrolysis of lithium carbonate is proposed.
2015-05-07
6 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic...Cl, Br, or I) Prepared by Ball-Milling and Used as Anode Materials for Lithium - Ion Batteries ……………....................23 3.4 Well-Defined Two...9 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes
Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages.
Petronico, Aaron; Moneypenny, Timothy P; Nicolau, Bruno G; Moore, Jeffrey S; Nuzzo, Ralph G; Gewirth, Andrew A
2018-06-20
We demonstrate that solid-liquid nanocomposites derived from porous organic cages are effective lithium ion electrolytes at room temperature. A solid-liquid electrolyte nanocomposite (SLEN) fabricated from a LiTFSI/DME electrolyte system and a porous organic cage exhibits ionic conductivity on the order of 1 × 10 -3 S cm -1 . With an experimentally measured activation barrier of 0.16 eV, this composite is characterized as a superionic conductor. Furthermore, the SLEN displays excellent oxidative stability up to 4.7 V vs Li/Li + . This simple three-component system enables the rational design of electrolytes from tunable discrete molecular architectures.
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Kerr, Robert; Forsyth, Maria
2018-05-01
Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.
An advanced lithium-air battery exploiting an ionic liquid-based electrolyte.
Elia, G A; Hassoun, J; Kwak, W-J; Sun, Y-K; Scrosati, B; Mueller, F; Bresser, D; Passerini, S; Oberhumer, P; Tsiouvaras, N; Reiter, J
2014-11-12
A novel lithium-oxygen battery exploiting PYR14TFSI-LiTFSI as ionic liquid-based electrolyte medium is reported. The Li/PYR14TFSI-LiTFSI/O2 battery was fully characterized by electrochemical impedance spectroscopy, capacity-limited cycling, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results of this extensive study demonstrate that this new Li/O2 cell is characterized by a stable electrode-electrolyte interface and a highly reversible charge-discharge cycling behavior. Most remarkably, the charge process (oxygen oxidation reaction) is characterized by a very low overvoltage, enhancing the energy efficiency to 82%, thus, addressing one of the most critical issues preventing the practical application of lithium-oxygen batteries.
Ionic liquid electrolytes for Li-air batteries: lithium metal cycling.
Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano
2014-05-08
In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.
Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling
Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano
2014-01-01
In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li–air cells. PMID:24815072
Composite anode for lithium ion batteries
de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.
2018-03-06
A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
2001-01-01
In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.
NASA Astrophysics Data System (ADS)
Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Abrams, T.; Bell, R. E.; Boyle, D. P.; Jaworski, M. A.; Schmitt, J. C.
2015-08-01
The Materials Analysis and Particle Probe (MAPP) diagnostic has been implemented on the Lithium Tokamak Experiment (LTX) at PPPL, providing the first in situ X-ray photoelectron spectroscopy (XPS) surface characterization of tokamak plasma facing components (PFCs). MAPP samples were exposed to argon glow discharge conditioning (GDC), lithium evaporations, and hydrogen tokamak discharges inside LTX. Samples were analyzed with XPS, and alterations to surface conditions were correlated against observed LTX plasma performance changes. Argon GDC caused the accumulation of nm-scale metal oxide layers on the PFC surface, which appeared to bury surface carbon and oxygen contamination and thus improve plasma performance. Lithium evaporation led to the rapid formation of a lithium oxide (Li2O) surface; plasma performance was strongly improved for sufficiently thick evaporative coatings. Results indicate that a 5 h argon GDC or a 50 nm evaporative lithium coating will both significantly improve LTX plasma performance.
Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A
2015-11-17
Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs.
Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Zhengyuan; Nath, Pooja; Lu, Yingying
Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceousmore » host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs.« less
Leung, Kevin
2012-04-13
Density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (100) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is necessary but far from sufficient. Key steps that facilitate Mn(II) ion migration include concerted liquid/solid-state motions, proton-induced weakening of Mn-O bonds forming mobile OH - surface groups; andmore » chemical reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI component facilitates electrochemical reduction and decomposition of LEDC. These findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less
NASA Astrophysics Data System (ADS)
Borodin, Oleg
2010-03-01
Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.
Ceramic-metal seals for advanced battery systems. [sodium sulfur and lithium sulfur batteries
NASA Technical Reports Server (NTRS)
Reed, L.
1978-01-01
The search for materials which are electrochemically compatible with the lithium sulfur and sodium sulfur systems is discussed. The use liquid or braze alloys, titanium hydrite coatings, and tungsten yttria for bonding beryllium with ceramic is examined.
Electrochemical Capacities of Commercially Available Structural Carbon Fibers, Fabrics, and Papers
2008-09-01
Hollingsworth & Vose. A liquid electrolyte of ethylene carbonate: ethyl methyl carbonate (3:7 by weight) with 1.0 M lithium hexafluorophosphate (LiPF6) was...fiber pulp COTS commercial off-the-shelf Da dalton FE-SEM Field Emission Scanning Electron Microscope LiPF6 lithium hexafluorophosphate MWNT...material for anodes in modern technologies, particularly in lithium -ion batteries and electrochemical supercapacitors. Graphitic carbon allows for
Hot filament technique for measuring the thermal conductivity of molten lithium fluoride
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Perry, William D.
1990-01-01
Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.
Ab initio molecular orbital calculations on the associated complexes of lithium cyanide with ammonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohandas, P.; Shivaglal, M.C.; Chandrasekhar, J.
Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets are carried out on a series of complexes of NH{sub 3} with Li{sup +}, C{triple_bond}N{sup -}, LiCN, and its isomer LiNC. The BSSE-corrected interaction energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies are evaluated for 15 species. Complexes with trifurcated (C{sub 3v}) structures are calculated to be saddle points on the potential energy surfaces and have one imaginary frequency each. Calculated energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies of the various species considered are discussed in terms of the nature of associationmore » of LiCN with ammonia. The vibrational frequencies of the relevant complexed species are compared with the experimental frequencies reported earlier for solutions of lithium cyanide in liquid ammonia. 40 refs., 1 fig., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun
A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.
Liu, Zaizhi; Gu, Huiyan; Yang, Lei
2015-10-23
Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.
A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
Fang, Xin; Peng, Huisheng
2015-04-01
As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding and improving lithium ion batteries through mathematical modeling and experiments
NASA Astrophysics Data System (ADS)
Deshpande, Rutooj D.
There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Menge, P.R.; Hanson, D.L.
Application of ion beams to Inertial Confinement Fusion requires efficient production, transport and focusing of an intense, low microdivergence beam of an appropriate range ion. At Sandia, the authors are studying the production of lithium ion beams in extraction applied-B ion diodes on the SABRE accelerator (5 MV, 250 kA). Evidence on both SABRE (1 TW) and PBFA-II (20 TW) indicates that the lithium beam turns off and is replaced by a beam of mostly protons and carbon, possibly due to electron thermal and stimulated desorption of hydrocarbon surface contamination with subsequent avalanche ionization. Turn-off of the lithium beam ismore » accompanied by rapid impedance collapse. Surface cleaning techniques are being developed to reduce beam contamination, increase the total lithium energy and reduce the rate of diode impedance collapse. Application of surface cleaning techniques has increased the production of lithium from passive LiF sources by a factor of 2. Improved diode electric and magnetic field profiles have increased the diode efficiency and production of lithium by a factor of 5, without surface cleaning. Work is ongoing to combine these two advances which are discussed here.« less
Ambient temperature secondary lithium cells containing inorganic electrolyte
NASA Astrophysics Data System (ADS)
Schlaikjer, Carl R.
The history and current status of rechargeable lithium cells using electrolytes based on liquid sulfur dioxide are reviewed. Three separate approaches currently under development include lithium/lithium dithionite/carbon cells with a supporting electrolyte salt; lithium/cupric chloride cells using sulfur dioxide/lithium tetrachloroaluminate; and several adaptations of a lithium/carbon cell using sulfur dioxide/lithium tetrachloroaluminate in which the discharge reaction involves the incorporation of aluminum into the positive electrode. The latter two chemistries have been studied in prototype hardware. For AA size cells with cupric chloride, 157 Whr/1 at 24 W/1 for 230 cycles was reported. For AA size cells containing 2LiCl-CaCl2-4AlCl3-12SO2, energy densities as high as 265 Whr/liter and 100 Whr/kg have been observed, but, at 26 W/1, for only 10 cycles. The advantages and remaining problems are discussed.
Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces
Leung, Kevin; Jungjohann, Katherine L.
2017-09-08
Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be “hot spots” where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li 2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li 2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e– leakage and passivationmore » breakdown. Strain often accompanies Li insertion; applying an ~1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li 2O films, becoming “incipient lithium filaments”. LiF films are more resistant to lithium metal growth. Finally, the models used herein should in turn inform passivating strategies in all-solid-state batteries.« less
Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Kevin; Jungjohann, Katherine L.
Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be “hot spots” where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li 2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li 2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e– leakage and passivationmore » breakdown. Strain often accompanies Li insertion; applying an ~1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li 2O films, becoming “incipient lithium filaments”. LiF films are more resistant to lithium metal growth. Finally, the models used herein should in turn inform passivating strategies in all-solid-state batteries.« less
Safer Electrolytes for Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Kejha, Joe; Smith, Novis; McCloseky, Joel
2004-01-01
A number of nonvolatile, low-flammability liquid oligomers and polymers based on aliphatic organic carbonate molecular structures have been found to be suitable to be blended with ethylene carbonate to make electrolytes for lithium-ion electrochemical cells. Heretofore, such electrolytes have often been made by blending ethylene carbonate with volatile, flammable organic carbonates. The present nonvolatile electrolytes have been found to have adequate conductivity (about 2 mS/cm) for lithium ions and to remain liquid at temperatures down to -5 C. At normal charge and discharge rates, lithiumion cells containing these nonvolatile electrolytes but otherwise of standard design have been found to operate at current and energy densities comparable to those of cells now in common use. They do not perform well at high charge and discharge rates -- an effect probably attributable to electrolyte viscosity. Cells containing the nonvolatile electrolytes have also been found to be, variously, nonflammable or at least self-extinguishing. Hence, there appears to be a basis for the development of safer high-performance lithium-ion cells.
Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.
2007-01-01
Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.
Advantages and Challenges of Radiative Liquid Lithium Divertor
NASA Astrophysics Data System (ADS)
Ono, Masayuki
2017-10-01
Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid Li divertor (RLLD) concept and its variant, the active liquid Li divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest Li-loop could provide a possible solution for the outstanding fusion reactor technology issues such as divertor heat flux mitigation and real time dust removal, while potentially improving the reactor plasma performance. Laboratory tests are also planned to investigate the Li-T recover efficiency and other relevant research topics of the RLLD. This work supported by DoE Contract No. DE-AC02-09CH11466.
Progress and prospect on failure mechanisms of solid-state lithium batteries
NASA Astrophysics Data System (ADS)
Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei
2018-07-01
By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.
Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
2013-05-21
Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of batteries, the microstructure of the coating layers and the mechanism of action are not fully understood. Therefore, researchers will need to further investigate the surface coating strategy during the development of new lithium ion batteries.
A stable lithium-rich surface structure for lithium-rich layered cathode materials
Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook
2016-01-01
Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178
Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun
2014-08-14
The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.
Process for manufacturing a lithium alloy electrochemical cell
Bennett, William R.
1992-10-13
A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.
Mechanical behavior of monocrystalline aluminum-lithium alloy at low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z.G.; Liu, W.; Xu, Y.B.
1994-12-01
Investigations have indicated that at low temperature aluminum- lithium alloys display improved toughness and an improved strength-toughness relationship. The yield strength, ultimate tensile strength, elongation and the fracture toughness increase with decreasing temperatures. Several mechanisms have been proposed to explain this most striking feature. Webster claimed that low melting point impurities, such as sodium and potassium, are responsible for the improvement of mechanical properties in Al-Li alloys at low temperatures. However, Venkateswara Rao et al. indicated that the increased delamination at low temperatures can increase the degree of in-plane crack deflection, resulting in toughening of the alloys. On the basismore » of their own results, Xu and coworker pointed out that the improvement of tensile and fatigue properties at liquid nitrogen temperatures is also presumably attributable to the delamination. Therefore, the mechanisms responsible for the variation in mechanical properties with temperature are not currently well-understood. In order to elucidate the real situation, single crystals of a binary aluminum-lithium alloy were adopted in the present study. This paper is devoted to the description of the behavior of the load-displacement curves and the associated slip traces on the sample surfaces.« less
Homogeneous fast-flux isotope-production reactor
Cawley, W.E.; Omberg, R.P.
1982-08-19
A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.
A high performance ceramic-polymer separator for lithium batteries
NASA Astrophysics Data System (ADS)
Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru
2016-01-01
A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.
Trinh, Ngoc Duc; Lepage, David; Aymé-Perrot, David; Badia, Antonella; Dollé, Mickael; Rochefort, Dominic
2018-04-23
The resurgence of the lithium metal battery requires innovations in technology, including the use of non-conventional liquid electrolytes. The inherent electrochemical potential of lithium metal (-3.04 V vs. SHE) inevitably limits its use in many solvents, such as acetonitrile, which could provide electrolytes with increased conductivity. The aim of this work is to produce an artificial passivation layer at the lithium metal/electrolyte interface that is electrochemically stable in acetonitrile-based electrolytes. To produce such a stable interface, the lithium metal was immersed in fluoroethylene carbonate (FEC) to generate a passivation layer via the spontaneous decomposition of the solvent. With this passivation layer, the chemical stability of lithium metal is shown for the first time in 1 m LiPF 6 in acetonitrile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolution of the lithium morphology from cycling of thin film solid state batteries
Dudney, Nancy J.
2017-03-11
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Evolution of the lithium morphology from cycling of thin film solid state batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J.
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Hailan, Qian; Lingyan, Ren; Rongrong, Nie; Xiangfeng, Meng
2017-12-01
This study aimed at determining the influence of hydrofluoric acid (HF) in varied concentrations on the surface morphology of lithium disilicate glass ceramics and bond durability between resin composites and post-treated lithium disilicate glass ceramics. After being sintered, ground, and washed, 72 as-prepared specimens of lithium disilicate glass ceramics with dimensions of 11 mm×13 mm×2 mm were randomly divided into three groups. Each group was treated with acid solution [32% phosphoric acid (PA) or 4% or 9.5% HF] for 20 s. Then, four acidified specimens from each group were randomly selected. One of the specimens was used to observe the surface morphology using scanning electron microscopy, and the others were used to observe the surface roughness using a surface roughness meter (including Ra, Rz, and Rmax). After treatment with different acid solutions in each group, 20 samples were further treated with silane coupling agent/resin adhesive/resin cement (Monobond S/Multilink Primer A&B/Multilink N), followed by bonding to a composite resin column (Filtek™ Z350) with a diameter of 3 mm. A total of 20 specimens in each group were randomly divided into two subgroups, which were used for measuring the microshear bond strength, with one of them subjected to cool-thermal cycle for 20 000 times. The surface roughness (Ra, Rz, and Rmax) of lithium disilicate glass ceramics treated with 4% or 9.5% HF was significantly higher than that of the ceramic treated with PA (P<0.05). The lithium disilicate glass ceramics treated with 9.5% HF also demonstrated better surface roughness (Rz and Rmax) than that of the ceramics treated with 4% HF. Cool-thermal cycle treatment reduced the bond strength of lithium disilicate glass ceramics in all groups (P<0.05). After cool-thermal cycle, the lithium disilicate glass ceramics treated with HF had higher bond strength than that of the ceramics treated with PA. The lithium disilicate glass ceramics treated with 4% HF had higher bond strength than that of the ceramics treated with 9.5% HF (P<0.05). During cool-thermal cycle, the lithium disilicate glass ceramics treated with 4% HF demonstrated higher reduction in bond strength than that of the samples treated with 9.5% HF (P<0.05). The concentration of HF significantly affected the surface morphology of lithium disilicate glass ceramics and the bond durability between resin composites and post-treated lithium disilicate glass ceramics. The bond strength between resin composites and post-treated lithium disilicate glass ceramic was more efficiently maintained by treatment with 9.5% HF.
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.
2008-01-01
A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.
Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties
NASA Astrophysics Data System (ADS)
Wilken, Susanne; Xiong, Shizhao; Scheers, Johan; Jacobsson, Per; Johansson, Patrik
2015-02-01
Ionic liquids have been highlighted as non-flammable, environmentally friendly, and suggested as possible solvents in lithium ion battery electrolytes. Here, the application of two ionic liquids from the EMIm-family in a state-of-the-art carbonate solvent based electrolyte is studied with a focus on safety improvement. The impact of the composition on physical and safety related properties is investigated for IL concentrations of additive (∼5 wt%) up to co-solvent concentrations (∼60 wt%). Furthermore, the role of the lithium salt concentration is separately addressed by studying a set of electrolytes at 0.5 M, 1 M, and 2 M LiPF6 concentrations. A large impact on the electrolyte properties is found for the electrolytes containing EMImTFSI and high salt concentrations. The composition 2 M LiPF6 EC:DEC:IL (1:1:3 wt%) is found non-flammable for both choices of ILs added. The macroscopic observations are complemented by a Raman spectroscopy analysis whereby a change in the Li+ solvation is detected for IL concentrations >4.5 mol%.
A lithium superionic conductor.
Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio
2011-07-31
Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N., E-mail: ramakrishnan@monash.edu
Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use ofmore » a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.« less
NASA Astrophysics Data System (ADS)
Novikov, A. N.; Kalinov, V. S.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Voitovich, A. P.
2017-11-01
Near-surface color centers in sodium fluoride nanocrystals have been formed. At pre-irradiation annealing of sodium and lithium fluorides samples at temperatures of 623 K and above, the near-surface color centers in them have not been found after γ-irradiation. Annealing lithium fluoride nanocrystals with the near-surface defects leads to their transformation into bulk ones of the same composition.
Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries.
Zhong, Yiren; Yin, Lichang; He, Peng; Liu, Wen; Wu, Zishan; Wang, Hailiang
2018-01-31
Chemistry at the cathode/electrolyte interface plays an important role for lithium-sulfur batteries in which stable cycling of the sulfur cathode requires confinement of the lithium polysulfide intermediates and their fast electrochemical conversion on the electrode surface. While many materials have been found to be effective for confining polysulfides, the underlying chemical interactions remain poorly understood. We report a new and general lithium polysulfide-binding mechanism enabled by surface oxidation layers of transition-metal phosphide and chalcogenide materials. We for the first time find that CoP nanoparticles strongly adsorb polysulfides because their natural oxidation (forming Co-O-P-like species) activates the surface Co sites for binding polysulfides via strong Co-S bonding. With a surface oxidation layer capable of confining polysulfides and an inner core suitable for conducting electrons, the CoP nanoparticles are thus a desirable candidate for stabilizing and improving the performance of sulfur cathodes in lithium-sulfur batteries. We demonstrate that sulfur electrodes that hold a high mass loading of 7 mg cm -2 and a high areal capacity of 5.6 mAh cm -2 can be stably cycled for 200 cycles. We further reveal that this new surface oxidation-induced polysulfide-binding scheme applies to a series of transition-metal phosphide and chalcogenide materials and can explain their stabilizing effects for lithium-sulfur batteries.
Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources
NASA Astrophysics Data System (ADS)
Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.
Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.
Understanding transport mechanisms in ionic liquid/carbonate solvent electrolyte blends.
Oldiges, K; Diddens, D; Ebrahiminia, M; Hooper, J B; Cekic-Laskovic, I; Heuer, A; Bedrov, D; Winter, M; Brunklaus, G
2018-06-20
To unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.
1935-01-01
109ead-------------59 Vapor-pressure table ----------- 110 Lithium -------------------- 63 Bibliography ----------------- 115 Acceson orj NYTIS CRAMI ti...852-926*) have measured the vapor pressure of lithium in the liquid state, and Ruff and Jobannsen (32~4) have stated that the boili point is above...the results of th~e three investigations on ii u{id lithium do not agree, some arbitrar choice must be made. V this case, the data of Hartmann and
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Bennett, William R.
2003-01-01
A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.
Winsche, Warren E.; Miles, Francis T.; Powell, James R.
1976-01-01
This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.
Strehlau, Jenny; Weber, Till; Lürenbaum, Constantin; Bornhorst, Julia; Galla, Hans-Joachim; Schwerdtle, Tanja; Winter, Martin; Nowak, Sascha
2017-10-01
A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place. Graphical abstract Schematic setup for the investigation of toxicity of lithium ion battery electrolytes.
Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinshui; Bai, Ying; Sun, Xiao-Guang
2015-01-01
The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space tomore » afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.« less
Hydrodynamic and shock heating instabilities of liquid metal strippers for RIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanein, Ahmed
2013-05-24
Stripping of accelerated ions is a key problem for the design of RIA to obtain high efficiency. Thin liquid Lithium film flow is currently considered as stripper for RIA ion beams to obtain higher Z for following acceleration: in extreme case of Uranium from Z=29 to Z=60-70 (first stripper) and from Z=70 till full stripping Z=92 (second stripper). Ionization of ion occurs due to the interaction of the ion with electrons of target material (Lithium) with the loss of parts of the energy due to ionization, Q{sub U}, which is also accompanied with ionization energy losses, Q{sub Li} of themore » lithium. The resulting heat is so high that can be removed not by heat conduction but mainly by convection, i.e., flowing of liquid metal across beam spot area. The interaction of the beam with the liquid metal generates shock wave propagating along direction perpendicular to the beam as well as excites oscillations along beam direction. We studied the dynamics of these excited waves to determine conditions for film stability at the required velocities for heat removal. It will allow optimizing jet nozzle shapes and flow parameters to prevent film fragmentation and to ensure stable device operation.« less
New Liquid Cathodes for Lithium Batteries. Part A. Halocarbons,
1984-05-01
difluoroethane , 99 percent; PCR Inc. thionyl chloride, doubly-distilled, Apache Chemicals, Seward, Ill. l.5M LiAlCI4 in SOC1 2 , ɝppm Fe, Lithium Corp. of...tetrachloroethane, and 1,2-dichloro-l,1- difluoroethane appeared stable towards Li during the study. When in contact with electrolyte solutions of 50
Reliability and Maintainability Data for Lead Lithium Cooling Systems
Cadwallader, Lee
2016-11-16
This article presents component failure rate data for use in assessment of lead lithium cooling systems. Best estimate data applicable to this liquid metal coolant is presented. Repair times for similar components are also referenced in this work. These data support probabilistic safety assessment and reliability, availability, maintainability and inspectability analyses.
Additive-containing ionic liquid electrolytes for secondary lithium battery
NASA Astrophysics Data System (ADS)
Xu, Jinqiang; Yang, Jun; NuLi, Yanna; Wang, Jiulin; Zhang, Zongshuang
Room temperature ionic liquid (RTIL) consisting of N-methyl- N-propylpiperidinium (PP13) cation and bis(trifluoromethanesulfonyl)imide (TFSI) anion was synthesized and its electrochemical stability was investigated in comparison with 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF 6). The electrochemical window of PP13-TFSI (5.8 V versus Li/Li +) is wider than that of BMIBF 4 (4.7 V) and BMIPF 6 (4.5 V). The cathodic limit of the PP13-TFSI is about -0.3 V versus Li/Li +, against 0.7 V for BMIPF 6 and BMIBF 4, so it may be used as the electrolyte for second lithium batteries based on lithium anode. In this work, charge efficiency of lithium plating/striping on nickel substrate and the cycle life have been measured using 0.4 M LiTFSI/PP13-TFSI electrolyte both without and with additives such as vinyl acetate (VA), ethylene sulfite (ES), and ethylene carbonate (EC). Remarkable improvement in cycling efficiency and cycle life was found for EC as additive.
Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte
NASA Astrophysics Data System (ADS)
Li, Qin; Ardebili, Haleh
2016-01-01
The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.
Ceramic and polymeric solid electrolytes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.
Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement
2011-01-19
or lithium iron phosphate ( LiFePO4 ), on a current collector of aluminum foil, (iii) a microporous separator between the electrodes, and (iv) a liquid...with four LiFePO4 lithium ion cells will likely result in a closely matched voltage. However, other types of lithium ion cells also consisting of...20.5 15- 24.6 17.5- 28.7 20- 32.8 22.5- 36.9 Voltage(V) ( LiFePO4 ) 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 n x 3.3 Voltage range (V
NASA Astrophysics Data System (ADS)
Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.
2018-03-01
Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.
NASA Astrophysics Data System (ADS)
Han, Hong-Bo; Zhou, Si-Si; Zhang, Dai-Jun; Feng, Shao-Wei; Li, Li-Fei; Liu, Kai; Feng, Wen-Fang; Nie, Jin; Li, Hong; Huang, Xue-Jie; Armand, Michel; Zhou, Zhi-Bin
Lithium bis(fluorosulfonyl)imide (LiFSI) has been studied as conducting salt for lithium-ion batteries, in terms of the physicochemical and electrochemical properties of the neat LiFSI salt and its nonaqueous liquid electrolytes. Our pure LiFSI salt shows a melting point at 145 °C, and is thermally stable up to 200 °C. It exhibits far superior stability towards hydrolysis than LiPF 6. Among the various lithium salts studied at the concentration of 1.0 M (= mol dm -3) in a mixture of ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (3:7, v/v), LiFSI shows the highest conductivity in the order of LiFSI > LiPF 6 > Li[N(SO 2CF 3) 2] (LiTFSI) > LiClO 4 > LiBF 4. The stability of Al in the high potential region (3.0-5.0 V vs. Li +/Li) has been confirmed for high purity LiFSI-based electrolytes using cyclic voltammetry, SEM morphology, and chronoamperometry, whereas Al corrosion indeed occurs in the LiFSI-based electrolytes tainted with trace amounts of LiCl (50 ppm). With high purity, LiFSI outperforms LiPF 6 in both Li/LiCoO 2 and graphite/LiCoO 2 cells.
NASA Astrophysics Data System (ADS)
Santos, Luis; Światowska, Jolanta; Lair, Virginie; Zanna, Sandrine; Seyeux, Antoine; Melendez-Ceballos, Arturo; Tran-Van, Pierre; Cassir, Michel; Marcus, Philippe
2017-10-01
Room temperature ionic liquids (RTILs) attract much attention as a new type of environmentally benign electrolytes for Li-ion batteries due to their numerous interesting physicochemical properties. Here, in this paper, Li intercalation/deintercalation in presence of the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI) and N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (PYR13FSI) containing 0.3 M LiTFSI, was evaluated in a thin 100 nm layer of V2O5 deposited on Al substrate by atomic layer deposition. Potentiodynamic tests performed in LiTFSI/Pyr14TFSI show a quasi-reversible Li intercalation during 10 cycles (between 2.4 and 5 V) with an average coulombic efficiency of 99%. The capacity, calculated from the 1st cycle, is found to be 182 mAh g-1, about 19% (±2%) higher than the theoretical capacity reported for V2O5 (147 mAh g-1). X-ray photoelectron spectroscopy analysis confirms that the intercalation of more than 1 mol of Li+ per V2O5 is achieved as also the possible presence of a solid permeable interface (SPI) layer on the V2O5 surface. Likewise, the Li+ in-depth distribution on the V2O5 layer after intercalation in RTILs measured by time-of-flight secondary ion mass spectrometry ion depth profiles, show small irreversible electrode modifications with the presence of lithium through the entire V2O5 layer with significant lithium trapping at the V2O5 layer/Al substrate interface.
Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
Investigation of lithium PFC surface characteristics and low recycling at LTX/LTX-Beta
NASA Astrophysics Data System (ADS)
Maan, Anurag; Kaita, Robert; Elliott, Drew; Boyle, Dennis; Majeski, Richard; Donovan, David; Buzi, Luxherta; Koel, Bruce E.; Biewer, Theodore M.
2017-10-01
Lithium coatings on high-Z PFCs at LTX have led to improved plasma performance. The initial hypothesis was that lithium retains hydrogen by forming lithium hydride and thereby enabling low recycling in LTX. However, recent in-vacuo measurements indicate the presence of lithium oxide in deposited lithium coatings. Improved plasma performance continued to be observed in the presence of lithium oxide. These observations raise questions like what is the nature of the lithium oxide surface, whether the PFC is an amorphous mixture of lithium and lithium oxide or something more ordered like a lithium oxide layer growing on top of lithium, and whether lithium oxide is responsible for any retention of hydrogen from the plasma. To investigate the mechanism by which the LTX PFC might be responsible for low recycling, we discuss the results of deuterium retention measurements using NRA/RBS and sample characterization using high resolution XPS (HR-XPS) in bulk lithium samples. Baseline HR-XPS scans indicate the presence of Lithium Oxide on sputtered lithium samples. Status of related planned experiments at LTX- β will also be discussed. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725 and DE-AC02-09CH11466. BEK acknowledges support of this work by the U.S. DOE, Office of Science/FES under Award Number DE-SC0012890.
Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.
2003-01-01
The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.
NASA Astrophysics Data System (ADS)
Grilli, S.; Miccio, L.; Vespini, V.; Ferraro, P.
2008-08-01
In recent years a wide variety of liquid based optical elements have been conceived, designed and fabricated even for commercial products like digital cameras. The impressive development of microfluidic systems in conjunction with optics has led to the creation of a completely new field of investigation named optofludics. Among other things, the optofluidic area deals with the investigation and the realization of liquid micro-lenses. Different methods and configurations have been proposed in literature to achieve liquid variable micro-lenses. This paper reports about the possibility to achieve lensing effect by a relatively easy to accomplish technique based on an open microfluidic system consisting of a tiny amount of appropriate liquid manipulated by the pyroelectric effect onto a periodically poled LiNbO3 substrate. Basically, an electrowetting process is performed to actuate the liquid film by using the surface charges generated pyroelectrically under temperature variation. The configuration is electrode-less compared to standard electrowetting systems, thus improving the device flexibility and easiness of fabrication. The curvature of the liquid lenses has been characterized by interferometric techniques based on the evaluation of the phase map through digital holography. The results showing the evolution of the lens curvature with the temperature variation will be presented and discussed.
Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries
NASA Astrophysics Data System (ADS)
Yoshimoto, Nobuko; Niida, Yoshihiro; Egashira, Minato; Morita, Masayuki
A nonflammable polymeric gel electrolyte has been developed for rechargeable lithium battery systems. The gel film consists of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) swollen with lithium hexafluorophosphate (LiPF 6) solution in ternary solvent containing trimethyl phosphate (TMP). High ionic conductivity of 6.2 mS cm -1 at 20 °C was obtained for the gel electrolyte consisting of 0.8 M LiPF 6/EC + DEC + TMP (55:25:20) with PVdF-HFP, which is comparable to that of the liquid electrolyte containing the same electrolytic salt. Addition of a small amount of vinylene carbonate (VC) in the gel electrolyte improved the rechargeability of a graphite electrode. The rechargeable capacity of the graphite in the gel containing VC was ca. 300 mAh g -1, which is almost the same as that in a conventional liquid electrolyte system.
Multi-layered, chemically bonded lithium-ion and lithium/air batteries
Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R
2014-05-13
Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.
Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Kim, Dong-Won
2016-02-17
Trapping lithium polysulfides formed in the sulfur positive electrode of lithium-sulfur batteries is one of the promising approaches to overcome the issues related to polysulfide dissolution. In this work, we demonstrate that intrinsically hydrophilic magnesium oxide (MgO) nanoparticles having surface hydroxyl groups can be used as effective additives to trap lithium polysulfides in the positive electrode. MgO nanoparticles were uniformly distributed on the surface of the active sulfur, and the addition of MgO into the sulfur electrode resulted in an increase in capacity retention of the lithium-sulfur cell compared to a cell with pristine sulfur electrode. The improvement in cycling stability was attributed to the strong chemical interactions between MgO and lithium polysulfide species, which suppressed the shuttling effect of lithium polysulfides and enhanced the utilization of the sulfur active material. To the best of our knowledge, this report is the first demonstration of MgO as an effective functional additive to trap lithium polysulfides in lithium-sulfur cells.
Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen; ...
2017-10-30
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liang; Chen-Wiegart, Yu-Chen K.
2017-10-30
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
Lin, X; Kavian, R; Lu, Y; Hu, Q; Shao-Horn, Y; Grinstaff, M W
2015-11-13
Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature.
NASA Astrophysics Data System (ADS)
Raccichini, Rinaldo; Varzi, Alberto; Chakravadhanula, Venkata Sai Kiran; Kübel, Christian; Balducci, Andrea; Passerini, Stefano
2015-05-01
The electrochemical properties of graphene are strongly depending on its synthesis. Between the different methods proposed so far, liquid phase exfoliation turns out to be a promising method for the production of graphene. Unfortunately, the low yield of this technique, in term of solid material obtained, still limit its use to small scale applications. In this article we propose a low cost and environmentally friendly method for producing multilayer crystalline graphene with high yield. Such innovative approach, involving an improved ionic liquid assisted, microwave exfoliation of expanded graphite, allows the production of graphene with advanced lithium ion storage performance, for the first time, at low temperatures (<0 °C), as low as -30 °C, with respect to commercially available graphite.
All Solid State Rechargeable Lithium Batteries using Block Copolymers
NASA Astrophysics Data System (ADS)
Hallinan, Daniel; Balsara, Nitash
2011-03-01
The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.
Selection of new Kynar-based electrolytes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Christie, Alasdair M.; Christie, Lynn; Vincent, Colin A.
New electrolyte solution compositions have been identified for use in lithium-ion batteries after gelling with an appropriate quantity of Kynar polymer. Since the Li + conducting medium is largely the liquid electrolyte component, the assessment of these solutions as suitable lithium-ion cell candidates were investigated before adding the polymer. Selected electrolyte solutions were then used in the preparation of polymer gels. The specific conductivities of Kynar-based gels were determined as a function of salt concentration and polymer concentration. Optimised self-supporting polymer films, based on mixtures of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and lithium hexafluorophosphate (LiPF 6) or lithium tetrafluoroborate (LiBF 4), showed good high current density cycling performance when used as separators in coke and Li 1- xMn 2O 4 (spinel) half-cells.
Anode material for lithium batteries
Belharouak, Ilias [Westmont, IL; Amine, Khalil [Downers Grove, IL
2012-01-31
Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.
Anode material for lithium batteries
Belharouak, Ilias [Bolingbrook, IL; Amine, Khalil [Downers Grove, IL
2008-06-24
Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.
Anode material for lithium batteries
Belharouak, Ilias [Bolingbrook, IL; Amine, Khalil [Oak Brook, IL
2011-04-05
Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.
Hydraulic Actuator for Ganged Control Rods
NASA Technical Reports Server (NTRS)
Thompson, D. C.; Robey, R. M.
1986-01-01
Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.
Cleaning techniques for applied-B ion diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Menge, P.R.; Hanson, D.L.
Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaningmore » techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.« less
NASA Astrophysics Data System (ADS)
Kartini, Evvy; Manawan, Maykel
2016-02-01
With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li3PO4 has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li3PO4 has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H3PO4. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li3PO4, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li3PO4 was around 10-8 S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li3PO4 for lithium ion battery will give more added values to the researches and national industry.
NASA Astrophysics Data System (ADS)
Ferraro, Pietro; Grilli, Simonetta; Miccio, Lisa; Vespini, Veronica; Finizio, Sergio DeNicola Andrea
2008-11-01
In recent years a variety of liquid bases optical elements have been conceived, designed and fabricated even for commercial products like digital cameras o cellular phone cameras. The impressive development of microfluidic systems in conjunction with optics has led to the creation of a completely new Science field of investigation named optofludics. Optofludics, among others topics, deals with investigation and methods for realizing liquid micro-lenses. A variety of liquid micro-lenses have been designed and realized by using different configurations. We demonstrate that a lensing effect can be obtained in an open microfluidic system by using a thin layer of liquid on a polar electric crystal such as Lithium Niobate (LiNbO3). Electrowetting patterning on LiNbO3 surface is obtained by pyroelectric effect consisting in a simple but reliable electrodes-less and circuit-less configuration. The electrodes are intrinsically embedded into the substrate. The material is functionalised by means of a micro-engineering electric filed poling process. Lens array with variable focus has been demonstrated with a large number of lens elements (10x10) on micrometric scale (aperture of single lens 100 microns).
NASA Astrophysics Data System (ADS)
Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna
2017-10-01
A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.
Functionalizing the Surface of Lithium-Metal Anodes
Buonaiuto, Megan; Neuhold, Susanna; Schroeder, David J.; ...
2014-09-03
Metal-air batteries are an important aspect of many beyond lithium ion research efforts. However, as our understanding of how molecular oxygen can act as a rechargeable cathode has progressed; the problems associated with how these materials at various states of charge interact with the lithium metal anode are only beginning to come to the surface. In this study we have devised a method to coat the surface a lithium with a functional group to act as either an anchor for further derivation studies or be polymerized to create a nanometer thick polymer coating attached to the surface by silane groups.more » These stable films, formed by polymerization of vinyl substituents, lower cell impedance at the electrode and over the first 50 cycles, increase cycling efficiency and demonstrate lower capacity fade.« less
NASA Astrophysics Data System (ADS)
Brutti, Sergio; Gentili, Valentina; Reale, Priscilla; Carbone, Lorenzo; Panero, Stefania
Nanosized titanium oxides can achieve large reversible specific capacity (above 200 mAh g -1) and good rate capabilities, but suffer irreversible capacity losses in the first cycle. Moreover, due to the intrinsic safe operating potential (1.5 V), the use of titanium oxide requires to couple it with high-potential cathodes, such as lithium nickel manganese spinel (LNMO) in order to increase the energy density of the final cell. However the use of the 4.7 V vs. Li +/Li 0 LNMO cathode material requires to tackle the continuous electrolyte decomposition upon cycling. Coupling these two electrodes to make a lithium ion battery is thus highly appealing but also highly difficult because the cell balancing must account not only for the charge reversibly exchanged by each electrode but also for the irreversible charge losses. In this paper a LNMO-nano TiO 2 Li-ion cell with liquid electrolyte is presented: two innovative approaches on both the cathode and the anode sides were developed in order to mitigate the electrolyte decomposition upon cycling. In particular the LNMO surface was coated with ZnO in order to minimize the surface reactivity, and the TiO 2 nanoparticles where activated by incorporating nano-lithium in the electrode formulation to compensate for the irreversible capacity loss in the first cycle. With these strategies we were able to assemble balanced Li-ion coin cells thus avoiding the use of electrolyte additives and more hazardous and expensive ex-situ SEI preforming chemical or electrochemical procedures.
Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study.
Jeong, Ii-Do; Kim, Woong-Chul; Park, Jinyoung; Kim, Chong-Myeong; Kim, Ji-Hwan
2017-08-01
This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (α=.05). The RMS value of lithium disilicate crown was 29.2 (4.1) µm and 17.6 (5.5) µm on the outer and inner surfaces, respectively, whereas these values were 18.6 (2.0) µm and 20.6 (5.1) µm for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface ( P <.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns.
Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix
2011-12-23
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-Wall Carbon Nanotubes as Lithium Nanopipettes and SPM Probes
NASA Astrophysics Data System (ADS)
Larson, Jonathan; Bharath, Satyaveda; Cullen, William; Reutt-Robey, Janice
2014-03-01
A multi-walled carbon nanotube (MWCNT) - terminated SPM cantilever, was utilized to perform nanolithography and surface diffusion measurements on a thin film of vapor-deposited lithium atop a silicon (111) substrate under ultra-high vacuum conditions. In these investigations the MWCNT tip was shown to act as both a lithium nanopipette and a probe for non-contact atomic force microscopy (NC-AFM) measurements. With the application of appropriate bias conditions, the MWCNT could site-selectively extract (expel) nano-scale amounts of lithium from (to) the sample surface. Depressions, mounds, and spikes were generated on the surface in this way and were azimuthally symmetric about the selected point of pipetting. Following lithium transfer to/from the substrate, the MWCNT pipette-induced features were sequentially imaged with NC-AFM using the MWCNT as the probe. Vacancy pits of ca. 300 nm diameter and 1.5 nm depth were observed to decay on a timescale of hours at room temperature, through diffusion-limited decay processes. A continuum model was utilized to simulate the island decay rates, and the lithium surface diffusion coefficient of D =7.5 (+/-1.3)*10-15 cm2/s was extracted. U.S. Department of Energy Award Number DESC0001160.
Polymer Energy Rechargeable System Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2003-01-01
Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.
Irreversible Capacities of Graphite in Low Temperature Electrolytes for Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Ratnakumar, B.; Smart, M.; Surampudi, S.; Wang, Y.; Zhang, X.; Greenbaum, S.; Hightower, A.; Ahn, C.; Fultz, B.
1999-01-01
Carbonaceous anode materials in lithium ion rechargeable cells experience irreversible capacity, mainly due to a consumption of lithium in the formation of surface passive films. The stability and kinetics of lithium intercalation into the carbon anodes are dictated by these films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, G. Z.; Hu, J. S.; Maingi, R.
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-03-02
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
Bobnar, Jernej; Lozinšek, Matic; Kapun, Gregor; Njel, Christian; Dedryvère, Rémi; Genorio, Boštjan; Dominko, Robert
2018-04-11
Metallic lithium is considered to be one of the most promising anode materials since it offers high volumetric and gravimetric energy densities when combined with high-voltage or high-capacity cathodes. However, the main impediment to the practical applications of metallic lithium is its unstable solid electrolyte interface (SEI), which results in constant lithium consumption for the formation of fresh SEI, together with lithium dendritic growth during electrochemical cycling. Here we present the electrochemical performance of a fluorinated reduced graphene oxide interlayer (FGI) on the metallic lithium surface, tested in lithium symmetrical cells and in combination with two different cathode materials. The FGI on the metallic lithium exhibit two roles, firstly it acts as a Li-ion conductive layer and electronic insulator and secondly, it effectively suppresses the formation of high surface area lithium (HSAL). An enhanced electrochemical performance of the full cell battery system with two different types of cathodes was shown in the carbonate or in the ether based electrolytes. The presented results indicate a potential application in future secondary Li-metal batteries.
Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte
Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...
2016-09-08
Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less
2016-09-29
Lithium and Lithium - Ion Batteries September 29, 2016 Approved for public release; distribution is unlimited. Joseph F. parker JeFFrey W. Long Surface...Boundaries of Navy and Marine Corps Lithium and Lithium - Ion Batteries Joseph F. Parker, Jeffrey W. Long, Olga A. Baturina, and Corey T. Love Naval...U.S. Marine Corps have identified a strategic interest to operate lithium - ion batteries in cold climate regions as well as undersea and in high
NASA Astrophysics Data System (ADS)
Nguyen, Viet Tu; Lee, Jae-chun; Jeong, Jinki; Kim, Byung-Su; Pandey, B. D.
2014-03-01
This paper focuses on the extractive separation and selective recovery of cobalt, nickel and lithium from the sulfate leachate of cathode scrap generated during manufacture of lithium ion batteries (LIBs). The conditions for extraction, scrubbing and stripping of cobalt from nickel and lithium are optimized with an aqueous feed containing 25.1 g·dm-3 cobalt, 2.54 g·dm-3 nickel and 6.2 g·dm-3 lithium using Na-PC-88A. 99.8% Co is extracted with 60% Na-0.56 mol·dm-3 PC-88A in two counter-current stages at an O/A phase ratio of 3/1 and an equilibrium pH of 4.5. The "crowding effect" shown for the first time provides effective scrubbing of impurities (Ni and Li) with 2.0 g·dm-3 CoSO4 solution. The McCabe-Thiele diagram predicts the scrubbing of 99.9% Ni and 99.9% Li at an equilibrium pH of 4.75 and O/A of 2/1 in two stages. High purity (99.9%) cobalt sulfate along with Ni and Li from the leach liquor of cathode scrap is recovered by solvent extraction. The proposed process ensures complete recycling of the waste of the manufacturing process of LIBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliviero, E.; David, M. L.; Beaufort, M. F.
The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less
Advanced Micro/Nanostructures for Lithium Metal Anodes
Zhang, Rui; Li, Nian‐Wu; Cheng, Xin‐Bing; Yin, Ya‐Xia
2017-01-01
Owning to their very high theoretical capacity, lithium metal anodes are expected to fuel the extensive practical applications in portable electronics and electric vehicles. However, unstable solid electrolyte interphase and lithium dendrite growth during lithium plating/stripping induce poor safety, low Coulombic efficiency, and short span life of lithium metal batteries. Lately, varies of micro/nanostructured lithium metal anodes are proposed to address these issues in lithium metal batteries. With the unique surface, pore, and connecting structures of different nanomaterials, lithium plating/stripping processes have been regulated. Thus the electrochemical properties and lithium morphologies have been significantly improved. These micro/nanostructured lithium metal anodes shed new light on the future applications for lithium metal batteries. PMID:28331792
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yue; Zhao, Yuming; Li, Yuguang C.
The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. In this paper, we report a new skin-grafting strategy that stabilizes the Li metal–liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) butmore » also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi 0.5Co 0.2Mn 0.3O 2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm 2 in a carbonate-based electrolyte. Finally, this proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.« less
Tanong, Kulchaya; Coudert, Lucie; Chartier, Myriam; Mercier, Guy; Blais, Jean-François
2017-12-01
This paper presents an innovative process for the recovery of valuable metals from a mixture of spent batteries. Different types of batteries, including alkaline, zinc-carbon (Zn-C), nickel cadmium (Ni-Cd), nickel metal hydride (Ni-MH), lithium ion (Li-ion) and lithium metallic (Li-M) batteries, were mixed according to the proportion of the Canadian sales of batteries. A Box-Behnken design was applied to find the optimum leaching conditions allowing a maximum of valuable metal removals from a mixture of spent batteries in the presence of an inorganic acid and a reducing agent. The results highlighted the positive effect of sodium metabisulfite on the performance of metals removal, especially for Mn. The solid/liquid ratio and the concentration of H 2 SO 4 were the main factors affecting the leaching behavior of valuable metals (Zn, Mn, Cd, Ni) present in spent batteries. Finally, the optimum leaching conditions were found as follows: one leaching step, solid/liquid ratio = 10.9%, [H 2 SO 4 ] = 1.34 M, sodium metabisulfite (Na 2 S 2 O 5 ) = 0.45 g/g of battery powder and retention time = 45 min. Under such conditions, the removal yields achieved were 94% for Mn, 81% for Cd, 99% for Zn, 96% for Co and 68% for Ni.
Gao, Yue; Zhao, Yuming; Li, Yuguang C.; ...
2017-10-06
The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity toward liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4 V high-capacity cathodes. In this paper, we report a new skin-grafting strategy that stabilizes the Li metal–liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) butmore » also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi 0.5Co 0.2Mn 0.3O 2 cathode has a 90.0% capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm 2 in a carbonate-based electrolyte. Finally, this proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.« less
Cheng, Lei; Crumlin, Ethan J; Chen, Wei; Qiao, Ruimin; Hou, Huaming; Franz Lux, Simon; Zorba, Vassilia; Russo, Richard; Kostecki, Robert; Liu, Zhi; Persson, Kristin; Yang, Wanli; Cabana, Jordi; Richardson, Thomas; Chen, Guoying; Doeff, Marca
2014-09-14
Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.
Li Experiments at the Tokamak T-11M Toward PFC Concept of Steady State Tokamak-Reactor
NASA Astrophysics Data System (ADS)
Mirnov, S. V.
2009-11-01
As practical method of using a liquid lithium as a renewable plasma-facing component (PCF) for steady state tokamak-reactor the concept of lithium emitter-collector is considered [1]. It is based on lithium filled capillary porous system proposed by V.A. Evtikhin et al. (1996). The lithium circulation process consists of four steps: (1) Li emission from the PFC emitter into the plasma; (2) plasma boundary cooling by non-coronal Li radiation; (3) Li ion capture by the collector (before they are lost to the tokamak chamber wall); (4) Li return from the collector to the emitter. T-11M tokamak experiments have used three local rail limiters made from lithium, molybdenum and graphite as lithium collectors. The lithium behavior was studied by analysis of the witness samples, and by a mobile graphite probe. The key findings are: (1) lithium collection on the ion side of the lithium limiter is 2-3 times larger than on the electron side; (2) total efficiency of Li collection integrated over all three rail limiters can reach 50-70% of the lithium emission during the discharge pulse, while the theoretical limit is about 90%. [1] S.V. Mirnov, J. Nucl. Mat., 390-391, 876 (2009).
A lithium-oxygen battery with a long cycle life in an air-like atmosphere.
Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin
2018-03-21
Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.
A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.
Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng
2018-02-01
Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, He-Lou; Li, Xiao; Ren, Jiaxing
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of themore » PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.« less
Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study
Kim, Chong-Myeong
2017-01-01
PURPOSE This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. MATERIALS AND METHODS A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (α=.05). RESULTS The RMS value of lithium disilicate crown was 29.2 (4.1) µm and 17.6 (5.5) µm on the outer and inner surfaces, respectively, whereas these values were 18.6 (2.0) µm and 20.6 (5.1) µm for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface (P<.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. CONCLUSION Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns. PMID:28874991
Experimental study of ejecta from shock melted lead
NASA Astrophysics Data System (ADS)
Chen, Yongtao; Hu, Haibo; Tang, Tiegang; Ren, Guowu; Li, Qingzhong; Wang, Rongbo; Buttler, William T.
2012-03-01
This effort investigates the dynamic properties of ejecta from explosively shocked, melted Pb targets. The study shows that the ejecta cloud that expands beyond the shocked surface is characterized by a high density and low velocity fragment layer between the free-surface and the high velocity micro-jetting particle cloud. This slow, dense ejecta layer is liquid micro-spall. The properties of micro-spall layer, such as the mass, density and velocity, were diagnosed in a novel application of an Asay window, while micro-jetting particles by lithium niobate piezoelectric pins and high speed photography. The total mass-velocity distribution of ejecta, including micro-spall fragments and micro-jetting particles, is presented. Furthermore, the sensitivity of ejecta production to slight variations in the shockwave drive using the Asay foil is studied.
Lin, X.; Kavian, R.; Lu, Y.; Hu, Q.; Shao-Horn, Y.
2015-01-01
Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature. PMID:28757963
NASA Astrophysics Data System (ADS)
Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi
2018-05-01
Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.
Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi
2016-03-15
Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium-scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with "lithiophilic" coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm(2) over 80 cycles.
Ionic liquids and derived materials for lithium and sodium batteries.
Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang; Hu, Yong-Sheng; Xing, Huabin; Dai, Sheng
2018-03-21
The ever-growing demand for advanced energy storage devices in portable electronics, electric vehicles and large scale power grids has triggered intensive research efforts over the past decade on lithium and sodium batteries. The key to improve their electrochemical performance and enhance the service safety lies in the development of advanced electrode, electrolyte, and auxiliary materials. Ionic liquids (ILs) are liquids consisting entirely of ions near room temperature, and are characterized by many unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. These properties create the possibilities of designing batteries with excellent safety, high energy/power density and long-term stability, and also provide better ways to synthesize known materials. IL-derived materials, such as poly(ionic liquids), ionogels and IL-tethered nanoparticles, retain most of the characteristics of ILs while being endowed with other favourable features, and thus they have received a great deal of attention as well. This review provides a comprehensive review of the various applications of ILs and derived materials in lithium and sodium batteries including Li/Na-ion, dual-ion, Li/Na-S and Li/Na-air (O 2 ) batteries, with a particular emphasis on recent advances in the literature. Their unique characteristics enable them to serve as advanced resources, medium, or ingredient for almost all the components of batteries, including electrodes, liquid electrolytes, solid electrolytes, artificial solid-electrolyte interphases, and current collectors. Some thoughts on the emerging challenges and opportunities are also presented in this review for further development.
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
Evenson, Carl; Mackay, Richard
2013-07-23
A process is disclosed for the preparation of electroactive cathode compounds useful in lithium-ion batteries, comprising exothermic mixing of low-cost precursors and calcination under appropriate conditions. The exothermic step may be a spontaneous flameless combustion reaction. The disclosed process can be used to prepare any lithium metal phosphate or lithium mixed metal phosphate as a high surface area single phase compound.
Secondary lithium batteries for space applications
NASA Technical Reports Server (NTRS)
Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.
1981-01-01
Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.
A solvated electron lithium electrode for secondary batteries
NASA Astrophysics Data System (ADS)
Sammells, A. F.; Semkow, K. W.
1986-09-01
Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartini, Evvy; Manawan, Maykel
With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is stillmore » the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li{sub 3}PO{sub 4} has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li{sub 3}PO{sub 4} has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H{sub 3}PO{sub 4}. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li{sub 3}PO{sub 4}, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li{sub 3}PO{sub 4} was around 10{sup −8} S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li{sub 3}PO{sub 4} for lithium ion battery will give more added values to the researches and national industry.« less
NASA Astrophysics Data System (ADS)
Nordh, Tim; Younesi, Reza; Brandell, Daniel; Edström, Kristina
2015-10-01
The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase. Li||LTO cells with electrolytes consisting of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate:diethyl carbonate (LiPF6 in EC:DEC) were cycled in two different voltage windows of 1.0-2.0 V and 1.4-2.0 V. LTO electrodes were characterized after 5 and 100 cycles. Also the pristine electrode as such, and an electrode soaked in the electrolyte were analyzed by varying the photon energies enabling depth profiling of the outermost surface layer. The main components of the surface layer were found to be ethers, P-O containing compounds, and lithium fluoride.
Durability of the Li 1+xTi 2–xAl x(PO 4) 3 Solid Electrolyte in Lithium–Sulfur Batteries
Wang, Shaofei; Ding, Yu; Zhou, Guangmin; ...
2016-10-31
Adoption of cells with a solid-state electrolyte is a promising solution for eliminating the polysulfide shuttle problem in Li-S batteries. Among the various known lithium-ion conducting solid electrolytes, the sodium superionic conductor (NASICON)-type Li 1+xTi 2-xAl x(PO 4) 3 offers the advantage of good stability under ambient conditions and in contact with air. Accordingly, we present here a comprehensive assessment of the durability of Li 1+xTi 2-xAl x(PO 4) 3 in contact with polysulfide solution and in Li-S cells. Because of its high reduction potential (2.5 V vs Li/Li +), Li 1+xTi 2-xAl x(PO 4) 3 gets lithiated in contactmore » with lithium polysulfide solution and Li 2CO 3 is formed on the particle surface, blocking the interfacial lithium-ion transport between the liquid and solid-state electrolytes. After the lithium insertion into the NASICON framework, the crystal expands in an anisotropic way, weakening the crystal bonds, causing fissures and resultant cracks in the ceramic, corroding the grain boundaries by polysulfide solution, and leaving unfavorable pores. The assembly of pores creates a gateway for polysulfide diffusion from the cathode side to the anode side, causing an abrupt decline in cell performance. Therefore, the solid-state electrolytes need to have good chemical compatibility with both the electrode and electrolyte, long-term stability under harsh chemical environment, and highly stable grain boundaries.« less
Anode materials for lithium-ion batteries
Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini
2014-12-30
An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.
Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.
Borodin, Oleg; Suo, Liumin; Gobet, Mallory; Ren, Xiaoming; Wang, Fei; Faraone, Antonio; Peng, Jing; Olguin, Marco; Schroeder, Marshall; Ding, Michael S; Gobrogge, Eric; von Wald Cresce, Arthur; Munoz, Stephen; Dura, Joseph A; Greenbaum, Steve; Wang, Chunsheng; Xu, Kang
2017-10-24
Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.
Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yong, Tianqiao; Zhang, Lingzhi; Wang, Jinglun; Mai, Yongjin; Yan, Xiaodan; Zhao, Xinyue
2016-10-01
Three choline-based ionic liquids functionalized with trimethylsilyl, allyl, and cynoethyl groups are synthesized in an inexpensive route as safe electrolytes for high-voltage lithium-ion batteries. The thermal stabilities, viscosities, conductivities, and electrochemical windows of these ILs are reported. Hybrid electrolytes were formulated by doping with 0.6 M LiPF6/0.4 M lithium oxalydifluoroborate (LiODFB) as salts and dimethyl carbonate (DMC) as co-solvent. By using 0.6 M LiPF6/0.4 M LiODFB trimethylsilylated choline-based IL (SN1IL-TFSI)/DMC as electrolyte, LiCoO2/graphite full cell showed excellent cycling performance with a capacity of 152 mAh g-1 and 99% capacity retention over 90 cycles at a cut-off voltage of 4.4 V. The propagation rate of SN1IL-TFSI)/DMC electrolyte is only one quarter of the commercial electrolyte (1 M LiPF6 EC/DEC/DMC, v/v/v = 1/1/1), suggesting a better safety feature.
NASA Astrophysics Data System (ADS)
Kim, Dong-Won; Sivakkumar, S. R.; MacFarlane, Douglas R.; Forsyth, Maria; Sun, Yang-Kook
A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4) and LiBF 4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF 4. A porous poly(vinylidene fluoride- co-hexafluoropropylene) (P(VdF- co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage-power sources with enhanced safety.
Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; ...
2014-08-20
Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF 4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li + ion in thismore » model electrolyte. By generating linear combinations of the computed spectra of Li +-associating and free PC molecules and comparing to the experimental spectrum, we find a Li +–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less
Develop a Low Cost, Safe and Environmentally Benign High Energy and High Rate Reserve Battery
2004-09-30
Methylimidazolium hexafluorophosphate BMItrif 1-Butyl-3-Methylimidazolium trifluoromethanesulfonate EC Ethylene carbonate EMC Ethyl methyl carbonate DEC...ionic liquid, a new field in lithium -based batteries, merits special recognition. The contribution of Dr. Mark Salomon with respect to the...applications. In particular, the anode is typically metallic lithium , and the cathode depolarizer is, most commonly, thionyl chloride (SOCl2) or sulfuryl
A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries
Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin
2016-01-01
A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system. PMID:26878890
Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture
NASA Technical Reports Server (NTRS)
Yue, A. S.; Yeh, C. W.; Yue, B. K.
1982-01-01
Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.
NASA Astrophysics Data System (ADS)
Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi
2016-04-01
Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.
Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi
2016-04-05
Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.
Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study
Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
2016-12-17
Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal.more » Here, a different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.« less
Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal.more » Here, a different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.« less
NASA Astrophysics Data System (ADS)
Wang, Yongliang; Ni, Muyi; Jiang, Jieqiong; Wu, Yican; FDS-Team
2012-07-01
This paper studied the adequacy of the World and China lithium resources, considering the most promising uses in the future, involving nuclear fusion and electric-vehicles. The lithium recycle model for D-T fusion power plant and electric-vehicles, and the logistic growth prediction model of the primary energy for the World and China were constructed. Based on these models, preliminary evaluation of lithium resources adequacy of the World and China for D-T fusion reactors was presented under certain assumptions. Results show that: a. The world terrestrial reserves of lithium seems too limited to support a significant D-T power program, but the lithium reserves of China are relatively abundant, compared with the world case. b. The lithium resources contained in the oceans can be called the “permanent" energy. c. The change in 6Li enrichment has no obvious effect on the availability period of the lithium resources using FDS-II (Liquid Pb-17Li breeder blanket) type of reactors, but it has a stronger effect when PPCS-B (Solid Li4 SiO4 ceramics breeder blanket) is used.
Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications.
Brunot-Gohin, C; Duval, J-L; Azogui, E-E; Jannetta, R; Pezron, I; Laurent-Maquin, D; Gangloff, S C; Egles, C
2013-09-01
Ceramics are widely used materials for prosthesis, especially in dental fields. Despite multiple biomedical applications, little is known about ceramic surface modifications and the resulting cell behavior at its contact. The aim of this study is to evaluate the biological response of polished versus glazed surface treatments on lithium disilicate dental ceramic. We studied a lithium disilicate ceramic (IPS e.max(®) Press, Ivoclar Vivadent) with 3 different surface treatments: raw surface treatment, hand polished surface treatment, and glazed surface treatment (control samples are Thermanox(®), Nunc). In order to evaluate the possible modulation of cell response at the surface of ceramic, we compared polished versus glazed ceramics using an organotypic culture model of chicken epithelium. Our results show that the surface roughness is not modified as demonstrated by equivalent Ra measurements. On the contrary, the contact angle θ in water is very different between polished (84°) and glazed (33°) samples. The culture of epithelial tissues allowed a very precise assessment of histocompatibility of these interfaces and showed that polished samples increased cell adhesion and proliferation as compared to glazed samples. Lithium disilicate polished ceramic provided better adhesion and proliferation than lithium disilicate glazed ceramic. Taken together, our results demonstrate for the first time, how it is possible to use simple surface modifications to finely modulate the adhesion of tissues. Our results will help dental surgeons to choose the most appropriate surface treatment for a specific clinical application, in particular for the ceramic implant collar. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Lithium Ion Testing at NSWC Crane in Support of NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Brown, Harry; Jung, David; Lee, Leonine
2010-01-01
This viewgraph presentation reviews Lithium Ion Cell testing at the Naval Surface Warfare Center in Crane, India. The contents include: 1) Quallion 15 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 2) Lithion 50 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 3) ABSL 5 Ahr Lithium-Ion Battery, LRO-LLO Life Cycle Test, SDO-GEO Life Cycle Test; and 4) A123 40 Ahr Lithium-Ion Battery, GPM Life Cycle Test, MMS Life Cycle Test.
Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.
Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang
2010-05-25
There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.
Thermodynamically constrained correction to ab initio equations of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Martin; Mattsson, Thomas R.
2014-07-07
We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence ofmore » the exchange-correlation functional used.« less
Gu, Meng; Parent, Lucas R; Mehdi, B Layla; Unocic, Raymond R; McDowell, Matthew T; Sacci, Robert L; Xu, Wu; Connell, Justin Grant; Xu, Pinghong; Abellan, Patricia; Chen, Xilin; Zhang, Yaohui; Perea, Daniel E; Evans, James E; Lauhon, Lincoln J; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D; Cui, Yi; Arslan, Ilke; Wang, Chong-Min
2013-01-01
Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.
High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.
Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng
2016-03-24
The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the role of quantum ion dynamics for the anomalous melting of lithium
NASA Astrophysics Data System (ADS)
Elatresh, Sabri; Bonev, Stanimir
2011-03-01
Lithium has attracted a lot of interest in relation to a number of counterintuitive electronic and structural changes that it exhibits under pressure. One of the most remarkable properties of dense lithium is its anomalous melting. This behavior was first predicted theoretically based on first-principles molecular dynamics (FPMD) simulations, which treated the ions classically. The lowest melting temperature was determined to be about 275~K at 65~GPa. Recent experiments measured a melting temperature about 100~K lower at the same pressure. In this talk, we will present FPMD calculations of solid and liquid lithium free energies up to 100 GPa that take into account ion quantum dynamics. We examine the significance of the quantum effects for the finite-temperature phase boundaries of lithium and, in particular, its melting curve. Work supported by NSERC, Acenet, and LLNL under Contract DE-AC52-07NA27344.
Interphase Evolution of a Lithium-Ion/Oxygen Battery.
Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef
2015-10-14
A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.
Xiao, Jiefeng; Li, Jia; Xu, Zhenming
2017-10-17
Lithium is a rare metal because of geographical scarcity and technical barrier. Recycling lithium resource from spent lithium ion batteries (LIBs) is significant for lithium deficiency and environmental protection. A novel approach for recycling lithium element as Li 2 CO 3 from spent LIBs is proposed. First, the electrode materials preobtained by mechanical separation are pyrolyzed under enclosed vacuum condition. During this process the Li is released as Li 2 CO 3 from the crystal structure of lithium transition metal oxides due to the collapse of the oxygen framework. An optimal Li recovery rate of 81.90% is achieved at 973 K for 30 min with a solid-to-liquid ratio of 25 g L -1 , and the purity rate of Li 2 CO 3 is 99.7%. The collapsed mechanism is then presented to explain the release of lithium element during the vacuum pyrolysis. Three types of spent LIBs including LiMn 2 O 4 , LiCoO 2 , and LiCo x Mn y Ni z O 2 are processed to prove the validity of in situ recycling Li 2 CO 3 from spent LIBs under enclosed vacuum condition. Finally, an economic assessment is taken to prove that this recycling process is positive.
Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolodosky, A.; Fratoni, M.
2014-11-20
Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis.more » The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.« less
Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...
2015-04-08
The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less
Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery
NASA Technical Reports Server (NTRS)
Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu
2015-01-01
Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.
Electrodeposition of Metals in Microgravity Conditions
NASA Technical Reports Server (NTRS)
Nishikawa, K.; Homma, T.; Chassaing, E.; Rosso, M.; Fukunaka, Y.
2012-01-01
Metal electrodeposition may introduce various morphological variations depending on the electrolytic conditions including cell configurations. For liquid electrolytes, a precise study of these deposits may be complicated by convective motion due to buoyancy. Zero-gravity (0-G) condition provided by drop shaft or parabolic flight gives a straightforward mean to avoid this effect: we present here 0-G electrodeposition experiments, which we compare to ground experiments (1-G). Two electrochemical systems were studied by laser interferometry, allowing to measure the concentration variations in the electrolyte: copper deposition from copper sulfate aqueous solution and lithium deposition from an ionic liquid containing LiTFSI. For copper, concentration variations were in good agreement with theory. For lithium, an apparent induction time was observed for the concentration evolution at 1-G: due to this induction time and to the low diffusion coefficient in ionic liquid, the concentration variations were hardly measurable in the parabolic flight 0-G periods of 20 seconds.
NASA Astrophysics Data System (ADS)
Voitovich, A. P.; Kalinov, V. S.; Novikov, A. N.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Tarasenko, N. V.
2017-01-01
It is shown that surface color centers of the same type are formed in the surface layer and in regions with damaged crystal structure inside crystalline lithium fluoride after γ-irradiation. Results are presented from a study of the effect of pre-irradiation annealing on the efficiency with which surface centers are formed in lithium fluoride nanocrystals. Raising the temperature for pre-irradiation annealing from room temperature to 250°C leads to a substantial reduction in the efficiency with which these centers are created. Surface color centers are not detected after γ-irradiation for pre-irradiation annealing temperatures of 300°C and above. Adsorption of atmospheric gases on the crystal surface cannot be regarded as a necessary condition for the formation of radiation-induced surface centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzic, David N.; Andruczyk, Daniel
The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not bemore » used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.« less
Lithium Ion Battery Anode Aging Mechanisms
Agubra, Victor; Fergus, Jeffrey
2013-01-01
Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xiangbo; Liu, Yuzi; Cao, Yanqiang
2017-05-18
This study examines the effects of nanophase S and surface coatings via atomic layer deposition (ALD) on high-loading sulfur cathodes for developing high-performance and high-energy lithium-sulfur (Li-S) batteries. It is first verified that ball milling is an effective and facile route for nanoengineering microsized S powders and the resultant nanoscale S particles exhibit better performance. Using these ball milled nanoscale S cathodes, it is found that ALD Al2O3 performed at 50 degrees C yields deposits that evolve with ALD cycles from dispersed nanoparticles, to porous, connected films, and finally to dense and continuous films. Moreover, this low temperature ALD processmore » suppresses S loss by sublimation. The ALD Al2O3 greatly improves sulfur cathode sustainable capacity and Coulombic efficiency. This study postulates two different mechanisms underlying the effects of ALD Al2O3 surface coatings depending on their morphology. ALD Al2O3 nanoparticles dispersed on the sulfur surface mainly function to adsorb polysulfides, thereby inhibiting S shuttling and improving sustainable capacity and Coulombic efficiency. By contrast, ALD Al2O3 films behave as a physical barrier to prevent polysulfides from contacting the liquid electrolyte and dissolving. The dispersed Al2O3 nanoparticles improve both sustainable capacity and Coulombic efficiency while the closed Al2O3 films improve Coulombic efficiency while decreasing the capacity« less
Arie, Arenst Andreas; Lee, Joong Kee
2011-07-01
A nano carbon coating layer was prepared by the thermal evaporation of fullerene C60 on the surface of lithium metal anodes for rechargeable lithium batteries. The morphology and structure of the carbon layer was firstly investigated by Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the nano-carbon coating layer on the electrochemical performance of the lithium electrode were then examined by charge-discharge tests and impedance spectroscopy. Raman spectra of carbon coating layer showed two main peaks (D and G peaks), indicating the amorphous structure of the film. A honey comb-like structure of carbon film was observed by TEM photographs, providing a transport path for the transport of lithium ions at the electrode/electrolyte interface. The carbon coated lithium electrodes exhibited a higher initial coulombic efficiency (91%) and higher specific capacity retention (88%) after the 30th cycle at 0.2 C-rate between 3.4 and 4.5 V. Impedance measurements showed that the charge transfer resistance was significantly reduced after cycle tests for the carbon coated electrodes, revealing that the more stable solid electrolyte (SEI) layer was established on their surface. Based on the experimental results, it suggested that the presence of the nano-carbon coating layer might suppress the dendritic growth on the surface of lithium metal electrodes, as confirmed by the observation of SEM images after cycle tests.
Thomas L. Eberhardt; Stan Lebow; Karen G. Reed
2012-01-01
A cellulose solvent system based on lithium chloride (LiCl) in N-methyl-2-pyrrolidinone (NMP) was used to assess the merits of partial dissolutions of coarsely ground wood samples. Alkaline Copper Quaternary (ACQ)-treated pine wood was of particular interest for treatment given the potential to generate a copper- rich stream apart from solid and/or liquid...
Hwa, Yoon; Seo, Hyeon Kook; Yuk, Jong-Min; Cairns, Elton J
2017-11-08
The ambient-temperature rechargeable lithium/sulfur (Li/S) cell is a strong candidate for the beyond lithium ion cell since significant progress on developing advanced sulfur electrodes with high sulfur loading has been made. Here we report on a new sulfur electrode active material consisting of a cetyltrimethylammonium bromide-modified sulfur-graphene oxide-carbon nanotube (S-GO-CTA-CNT) nanocomposite prepared by freeze-drying. We show the real-time formation of nanocrystalline lithium sulfide (Li 2 S) at the interface between the S-GO-CTA-CNT nanocomposite and the liquid electrolyte by in situ TEM observation of the reaction. The combination of GO and CNT helps to maintain the structural integrity of the S-GO-CTA-CNT nanocomposite during lithiation/delithiation. A high S loading (11.1 mgS/cm 2 , 75% S) S-GO-CTA-CNT electrode was successfully prepared using a three-dimensional structured Al foam as a substrate and showed good S utilization (1128 mAh/g S corresponding to 12.5 mAh/cm 2 ), even with a very low electrolyte to sulfur weight ratio of 4. Moreover, it was demonstrated that the ionic liquid in the electrolyte improves the Coulombic efficiency and stabilizes the morphology of the Li metal anode.
Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Boyle, D. P.; Bell, R. E.; Kaita, R.; Lucia, M.; Schmitt, J. C.; Scotti, F.; Kubota, S.; Hansen, C.; Biewer, T. M.; Gray, T. K.
2016-10-01
The Lithium Tokamak Experiment (LTX) is a modest-sized spherical tokamak with all-metal plasma facing components (PFCs), uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma. This work presents measurements of core plasma impurity concentrations and transport in LTX. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2 - 4 % Li, 0.6 - 2 % C, 0.4 - 0.7 % O, and Zeff < 1.2 . Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, and neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two. However, time-independent simulations with MIST indicated that neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles. Progress on additional analysis, including time-dependent impurity transport simulations and impurity measurements with liquid lithium coatings, and plans for diagnostic upgrades and future experiments in LTX- β will also be presented. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes
NASA Astrophysics Data System (ADS)
Aurbach, D.; Gofer, Y.; Schechter, A.; Chusid, O.; Gizbar, H.; Cohen, Y.; Moshkovich, M.; Turgeman, R.
This paper describes briefly the difference between reversible lithium and magnesium electrodes. In the case of lithium, the active metal is always covered by surface films. Li dissolution-deposition is reversible only when the surface films contain elastomers and are flexible. Hence, they can accommodate the morphological changes of the electrode during the electrochemical processes without breaking down. In an ideal situation, lithium is deposited beneath the surface films, while being constantly protected in a way that prevents reactions between freshly deposited lithium and solution species. In contrast to lithium, magnesium electrodes are reversible only in solutions where surface film free conditions exist. Mg does not react with ethers, and thus, in ethereal solutions of Grignard reagents (RMgX, where R=alkyl, aryl, X=halide) and complexes of the following type: Mg(AlX 4- nR n' R n″ ') 2, R and R'=alkyl groups, X=halide, A=Al, 0< n<4 and n'+ n''= n, magnesium electrodes behave reversibly. However, it should be noted that the above stoichiometry of the Mg salts does not reflect the true structure of the active ions in solutions. Mg deposition does not occur via electron transfer to simply solvated Mg 2+ ions. The behavior of Mg electrodes in these solutions is discussed in light of studies by EQCM, EIS, FTIR, XPS, STM and standard electrochemical techniques.
Lasche, George P.
1988-01-01
A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.
Development of a high-power neutron-producing lithium target for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Brown, Adam V.; Scott, Malcolm C.
2000-12-01
A neutron producing lithium target for a novel, accelerator based cancer treatment requires the removal of up to 6kW of heat produced by 1-2mA beam of 2.3-3.0MeV protons. This paper presents the results form computer simulations which show that, using submerged jet cooling, a solid lithium target can be maintained up to 1.6mA, and a liquid target up to 2.6mA, assuming a 3.0MeV proton beam. The predictions from the simulations are verified through the use of an experimental heat transfer test-rig and the result form a number of metallurgical studies made to select a compatible substrate material for the lithium are reported.
Lasche, G.P.
1987-02-20
A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.
NASA Astrophysics Data System (ADS)
Liu, Kai; Ma, Jiang-Tao; Wang, Chang-An
2014-08-01
Garnet type electrolyte "Li6.5La3Ta0.5Zr1.5O12" (LLZTO) was prepared by conventional solid-state reaction in alumina crucibles and excess lithium salt (from 0% to 50 mol%) was added into the starting materials to investigate the effects of excess lithium salt on the property of LLZTO. SEM, XRD and AC impedance were used to determine the microstructure, phase formation and Li-ion conductivity. Cubic garnet with a minor second phase LiAlO2 in the grain boundary was obtained for the pellets with excess lithium salt. As the amount of excess lithium salt increased, more Al element diffused from alumina crucibles to LLZTO pellets and reacted with excess lithium salt to form liquid Li2O-Al2O3 phase in the grain boundary, which accelerated the pellets' densification and reduced lithium loss at a high temperature. Ionic conductivity of LLZTO pellets increased with the amount of excess lithium salt added and leveled off at ∼4 × 10-4 S cm-1 when lithium salt exceeded 30 mol%. The performance of Li-air batteries with hybrid electrolytes, using homemade LLZTO thin pellets as solid electrolytes, was investigated. The LLZTO thin pellet with more excess lithium salt in starting material had a higher density and resulted in better cell performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.
2015-08-15
Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operatemore » at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Michael S.; Li, Qiuyan; Li, Xing
Electrolytes of 1 M LiPF 6 (lithium hexafluorophosphate) and 0.05 M CsPF 6 (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data inmore » their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.« less
Violent oxidation of lithium-containing aluminum alloys in liquid oxygen
NASA Astrophysics Data System (ADS)
Dalins, Ilmars; Karimi, Majid; Ila, Daryush
1991-06-01
A strong exothermic and quite well known thermite reaction involving aluminum, oxygen and transition metals (Fe, Cr, Ni, etc.) has apparently been initiated during impact testing of Alcoa aluminum alloy #2090 in liquid oxygen at NASA-MSFC. In some instances, this reaction, essentially an oxidation process, has been so intense that the Inconel 718 cup containing the aluminum alloy disk and associated impacter has melted raising certain safety concerns in the use of this alloy. Reaction products as well as the test specimen surfaces have been studied with surface science techniques like XPS/ESCA, SIMS and AES. Typically, in order to initiate the thermite reaction a temperature of approximately 1000°C is necessary. The mechanism responsible for this oxidation is of great interest. The analysis of the reaction products together with a theoretical analysis, including digital modeling has been pursued. There is strong evidence that the large relaxation energy of the aluminum oxide coating, formed during the aluminum alloy cleaning process, is causing a highly localized energy release during fracture or lattice deformation which is enhancing the oxidation process to a runaway condition. The presence of alkali atoms (Li) enhances the likelihood and intensity of the oxidation reaction. The details of the surface studies will be discussed.
Active Mixing in Microchannels using Surface Acoustic Wave Streaming on Lithium Niobate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Darren W.; Meyer, Grant D.; Bourdon, Christopher Jay
2005-11-01
We present an active method for mixing fluid streams in microchannels at low Reynolds number with no dead volume. To overcome diffusion limited mixing in microchannels, surface acoustic wave streaming offers an extremely effective approach to rapidly homogenize fluids. This is a pivotal improvement over mixers based on complex 3D microchannels which have significant dead volume resulting in trapping or loss of sample. Our micromixer is integrable and highly adaptable for use within existing microfluidic devices. Surface acoustic wave devices fabricated on 128° YX LiNbO 3 permitted rapid mixing of flow streams as evidenced by fluorescence microscopy. Longitudinal waves createdmore » at the solid-liquid interface were capable of inducing strong nonlinear gradients within the bulk fluid. In the highly laminar regime (Re = 2), devices achieved over 93% mixing efficacy in less than a second. Micro-particle imaging velicometry was used to determine the mixing behavior in the microchannels and indicated that the liquid velocity can be controlled by varying the input power. Fluid velocities in excess of 3 cm•s -1 were measured in the main excitation region at low power levels (2.8mW). We believe that this technology will be pivotal in the development and advancement of microfluidic devices and applications.« less
A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Gayatri; Rangasamy, Ezhiylmurugan; Li, Juchuan
2014-04-16
In lithium-ion conducting solid electrolytes the potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes is shown. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. We report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li 3AsS 4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li 3.334Ge 0.334As 0.666S 4more » has a high ionic conductivity of 1.12 mScm -1 at 27°C. Local Li + hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li + solid conductors. Finally, our study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.« less
Deuterium sputtering of Li and Li-O films
NASA Astrophysics Data System (ADS)
Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce
2017-10-01
Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.
Hydrogen retention in lithium and lithium oxide films
NASA Astrophysics Data System (ADS)
Buzi, L.; Yang, Y.; Domínguez-Gutiérrez, F. J.; Nelson, A. O.; Hofman, M.; Krstić, P. S.; Kaita, R.; Koel, B. E.
2018-04-01
Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li2O films, measurements were made as a function of surface temperature (90-520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li2O films retained H in similar amounts as pure Li. Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.
NASA Astrophysics Data System (ADS)
Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya
2016-03-01
Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.
Numerical Simulations of Free Surface Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema
2003-11-01
We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.
Kil, Eun-Hye; Choi, Keun-Ho; Ha, Hyo-Jeong; Xu, Sheng; Rogers, John A; Kim, Mi Ri; Lee, Young-Gi; Kim, Kwang Man; Cho, Kuk Young; Lee, Sang-Young
2013-03-13
A class of imprintable, bendable, and shape-conformable polymer electrolyte with excellent electrochemical performance in a lithium battery system is reported. The material consists of a UV-cured polymer matrix, high-boiling point liquid electrolyte, and Al2 O3 nanoparticles, formulated for use in lithium-ion batteries with 3D-structured electrodes or flexible characteristics. The unique structural design and well-tuned rheological characteristics of the UV-curable electrolyte mixture, in combination with direct UV-assisted nanoimprint lithography, allow the successful fabrication of polymer electrolytes in geometries not accessible with conventional materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi
Wiswall, R.H.
1960-05-10
Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.
Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen
2015-01-01
We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined. PMID:26657622
Grozema, F C; Best, A S; van Eijck, L; Stride, J; Kearley, G J; de Leeuw, S W; Picken, S J
2005-04-28
Polyelectrolyte materials are an interesting class of electrolytes for use in fuel cell and battery applications. Poly(para-phenylene terephthalamide) (PPTA, Kevlar) is a liquid crystalline polymer that, when sulfonated, is a polyelectrolyte that exhibits moderate ion conductivity at elevated temperatures. In this work, quasi-elastic neutron scattering (QENS) experiments were performed to gain insight into the effect of the presence of lithium counterions on the chain dynamics in the material. It was found that the addition of lithium ions decreases the dynamics of the chains. Additionally, the binding of lithium ions to the sulfonic acids groups was investigated by density functional theory (DFT) calculations. It was found that the local surroundings of the sulfonic acid group have very little effect on the lithium-ion binding energy. Binding energies for a variety of different systems were all calculated to be around 150 kcal/mol. The DFT calculations also show the existence of a structure in which a single lithium ion interacts with two sulfonic acid moieties on different chains. The formation of such "electrostatic cross-links" is believed to be the source of the increased tendency to aggregate and the reduced dynamics in the presence of lithium ions.
Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi
2016-10-04
Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.
NASA Astrophysics Data System (ADS)
Christenson, Michael; Szott, Matthew; Stemmley, Steven; Mettler, Jeremy; Wendeborn, John; Moynihan, Cody; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David
2017-10-01
Lithium has proven over numerous studies to improve core confinement, allowing access to operational regimes previously unattainable when using solid, high-Z divertor and limiter modules in magnetic confinement devices. Lithium readily absorbs fuel species, and while this is advantageous, it is also detrimental with regards to tritium inventory and safety concerns. As such, extraction technologies for the recovery of hydrogenic isotopes captured by lithium require development and testing in the context of a larger lithium loop recycling system. Proposed reclamation technologies at the University of Illinois at Urbana-Champaign (UIUC) will take advantage of the thermophysical properties of the lithium-hydrogen-lithium hydride system as the driving force for recovery. Previous work done at UIUC indicates that hydrogen release from pure lithium hydride reaches a maximum of 7 x 1018 s-1 at 665 °C. While this recovery rate is appreciable, reactor-scale scenarios will require isotope recycling to happen on an even faster timescale. The ratio of isotope dissolution to hydride precipitate formation must therefore be determined, along with the energy needed to recoup trapped hydrogen isotopes. Extraction technologies for use with a LiMIT-style loop system will be discussed and results will be presented. DOE/ALPS DE-FG02-99ER54515.
Chancelier, L; Diallo, A O; Santini, C C; Marlair, G; Gutel, T; Mailley, S; Len, C
2014-02-07
The energy storage market relating to lithium based systems regularly grows in size and expands in terms of a portfolio of energy and power demanding applications. Thus safety focused research must more than ever accompany related technological breakthroughs regarding performance of cells, resulting in intensive research on the chemistry and materials science to design more reliable batteries. Formulating electrolyte solutions with nonvolatile and hardly flammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids have been reported in the case of abuse conditions (fire, shortcut, overcharge or overdischarge). This work investigates thermal stability up to combustion of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C1C4Im][NTf2]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([PYR14][NTf2]) ionic liquids, and their corresponding electrolytes containing lithium bis(trifluoromethanesulfonyl)imide LiNTf2. Their possible routes of degradation during thermal abuse testings were investigated by thermodynamic studies under several experimental conditions. Their behaviours under fire were also tested, including the analysis of emitted compounds.
Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance
Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin; ...
2017-08-03
Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less
Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin
Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. Here, in this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also showsmore » excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C–O–Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. Finally, this discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.« less
Lithium vapor/aerosol studies. Interim summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, G.A.; Bauerle, J.E.; Down, M.G.
1979-04-01
The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538/sup 0/C (1000/sup 0/F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases inmore » lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation.« less
Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Hördemann, C.; Anand, H.; Gillner, A.
2017-08-01
Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.
The temperature and ion energy dependence of deuterium retention in lithium films
NASA Astrophysics Data System (ADS)
Buzi, Luxherta; Koel, Bruce E.; Skinner, Charles H.
2016-10-01
Lithium conditioning of plasma facing components in magnetic fusion devices has improved plasma performance and lowered hydrogen recycling. For applications of lithium in future high heat flux and long pulse duration machines it is important to understand and parameterize deuterium retention in lithium. This work presents surface science studies of deuterium retention in lithium films as a function of surface temperature, incident deuterium ion energy and flux. Initial experiments are performed on thin (3-30 ML) lithium films deposited on a single crystal molybdenum substrate to avoid effects due to grain boundaries, intrinsic defects and impurities. A monoenergetic and mass-filtered deuterium ion beam was generated in a differentially pumped Colutron ion gun. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to identify the elemental composition and temperature programmed desorption was used to measure the deuterium retention under the different conditions. Support was provided through DOE Contract Number DE-AC02-09CH11466.
Sorption of atmospheric gases by bulk lithium metal
Hart, C. A.; Skinner, C. H.; Capece, A. M.; ...
2016-01-01
Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. Elemental lithium will react with air during maintenance activities and with residual gases (H 2O, CO, CO 2) in the vacuum vessel during operations. We have used a mass balance (microgram sensitivity) to measure the mass gain of lithium samples during exposure of a ~1 cm 2 surface to ambient and dry synthetic air. For ambient air, we found an initial mass gain of several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude after 24 h. Amore » 9 mg sample achieved a final mass gain corresponding to complete conversion to Li 2CO 3 after 5 days. Exposure to dry air resulted in a 30 times lower initial rate of mass gain. The results have implications for the chemical state of lithium plasma facing surfaces and for safe handling of lithium coated components.« less
Hydrogen retention in lithium and lithium oxide films
Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.; ...
2018-02-09
Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less
Hydrogen retention in lithium and lithium oxide films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.
Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less
NASA Astrophysics Data System (ADS)
Lyublinski, I. E.; Vertkov, A. V.; Semenov, V. V.
2016-12-01
The use of capillary-porous systems (CPSs) with liquid Li, Ga, and Sn is considered as an alternative for solving the problem of creating plasma-facing elements (PFEs) of the fusion neutron source (FNS) and the DEMO-type reactor. The main advantages of CPSs with liquid metal compared with hard materials are their stability with respect to the degradation of properties in tokamak conditions and capability of surface self-restoration. The evaluation of applicability of liquid metals is performed on the basis of the analysis of their physical and chemical properties, the interaction with the tokamak plasma, and constructive and process features of in-vessel elements with CPSs implementing the application of these metals in a tokamak. It is shown that the upper limit of the PFE working temperature for all low-melting metals under consideration lies in the range of 550-600°C. The decisive factor for PFEs with Li is the limitation on the admissible atomic flux into plasma, while for those with Ga and Sn it is the corrosion resistance of construction materials. The upper limit of thermal loads in the steady-state operating mode for the considered promising PFE design with the use of Li, Ga, and Sn is close to 18-20 MW/m2. It is seen from the analysis that the use of metals with a low equilibrium vapor pressure of (Ga, Sn) gives no gain in extension of the region of admissible working temperatures of PFEs. However, with respect to the totality of properties, the possibility of implementing the self-restoration and stabilization effect of the liquid surface, the influence on the plasma discharge parameters, and the ability to protect the PFE surface in conditions of plasma perturbations and disruption, lithium is the most attractive liquid metal to create CPS-based PFEs for the tokamak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyublinski, I. E., E-mail: lyublinski@yandex.ru; Vertkov, A. V., E-mail: avertkov@yandex.ru; Semenov, V. V., E-mail: darkfenix2006@mail.ru
2016-12-15
The use of capillary-porous systems (CPSs) with liquid Li, Ga, and Sn is considered as an alternative for solving the problem of creating plasma-facing elements (PFEs) of the fusion neutron source (FNS) and the DEMO-type reactor. The main advantages of CPSs with liquid metal compared with hard materials are their stability with respect to the degradation of properties in tokamak conditions and capability of surface self-restoration. The evaluation of applicability of liquid metals is performed on the basis of the analysis of their physical and chemical properties, the interaction with the tokamak plasma, and constructive and process features of in-vesselmore » elements with CPSs implementing the application of these metals in a tokamak. It is shown that the upper limit of the PFE working temperature for all low-melting metals under consideration lies in the range of 550–600°Ð¡. The decisive factor for PFEs with Li is the limitation on the admissible atomic flux into plasma, while for those with Ga and Sn it is the corrosion resistance of construction materials. The upper limit of thermal loads in the steady-state operating mode for the considered promising PFE design with the use of Li, Ga, and Sn is close to 18–20 MW/m{sup 2}. It is seen from the analysis that the use of metals with a low equilibrium vapor pressure of (Ga, Sn) gives no gain in extension of the region of admissible working temperatures of PFEs. However, with respect to the totality of properties, the possibility of implementing the self-restoration and stabilization effect of the liquid surface, the influence on the plasma discharge parameters, and the ability to protect the PFE surface in conditions of plasma perturbations and disruption, lithium is the most attractive liquid metal to create CPS-based PFEs for the tokamak.« less
Alaboina, Pankaj Kumar; Uddin, Md-Jamal; Cho, Sung-Jin
2017-10-26
Nanotechnology-driven development of cathode materials is an essential part to revolutionize the evolution of the next generation lithium ion batteries. With the progress of nanoprocess and nanoscale surface modification investigations on cathode materials in recent years, the advanced battery technology future seems very promising - Thanks to nanotechnology. In this review, an overview of promising nanoscale surface deposition methods and their significance in surface functionalization on cathodes is extensively summarized. Surface modified cathodes are provided with a protective layer to overcome the electrochemical performance limitations related to side reactions with electrolytes, reduce self-discharge reactions, improve thermal and structural stability, and further enhance the overall battery performance. The review addresses the importance of nanoscale surface modification on battery cathodes and concludes with a comparison of the different nanoprocess techniques discussed to provide a direction in the race to build advanced lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Huang, Xiaosong
2014-06-01
Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.
Xia, Yan; Wang, Xiuli; Xia, Xinhui; Xu, Ruochen; Zhang, Shengzhao; Wu, Jianbo; Liang, Yanfei; Gu, Changdong; Tu, Jiangping
2017-10-26
Developing high-performance solid-state electrolytes is crucial for the innovation of next-generation lithium-sulfur batteries. Herein, a facile method for preparation of a novel gel polymer electrolyte (GPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) is reported. Furthermore, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 (LATP) nanoparticles as the active fillers are uniformly embedded into the GPE to form the final PVDF-HFP/LATP composite gel polymer electrolyte (CPE). Impressively, the obtained CPE demonstrates a high lithium ion transference number of 0.51 and improved electrochemical stability as compared to commercial liquid electrolyte. In addition, the assembled solid-sate Li-S battery with the composite gel polymer electrolyte membrane presents a high initial capacity of 918 mAh g -1 at 0.05 C, and better cycle performance than the counterparts with liquid electrolyte. Our designed PVDF-HFP/LATP composite can be a promising electrolyte for next-generation solid-state batteries with high cycling stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Viskic, Josko; Jokic, Drazen; Jakovljevic, Suzana; Bergman, Lana; Ortolan, Sladana Milardovic; Mestrovic, Senka; Mehulic, Ketij
2018-01-01
To evaluate the surface of glazed lithium disilicate dental ceramics after irradiation under different irradiation settings of Nd:YAG and Er:YAG lasers using a scanning electron microscope (SEM). Three glazed-press lithium disilicate ceramic discs were treated with HF, Er:YAG, and Nd:YAG, respectively. The laser-setting variables tested were laser mode, repetition rate (Hz), power (W), time of exposure (seconds), and laser energy (mJ). Sixteen different variable settings were tested for each laser type, and all the samples were analyzed by SEM at 500× and 1000× magnification. Surface analysis of the HF-treated sample showed a typical surface texture with a homogenously rough pattern and exposed ceramic crystals. Er:YAG showed no effect on the surface under any irradiation setting. The surface of Nd:YAG-irradiated samples showed cracking, melting, and resolidifying of the ceramic glaze. These changes became more pronounced as the power increased. At the highest power setting (2.25 W), craters on the surface with large areas of melted or resolidified glaze surrounded by globules were visible. However, there was little to no exposure of ceramic crystals or visible regular surface roughening. Neither Er:YAG nor Nd:YAG dental lasers exhibited adequate surface modification for bonding of orthodontic brackets on glazed lithium disilicate ceramics compared with the control treated with 9.5% HF.
NASA Technical Reports Server (NTRS)
Hung, Ching-Chen; Prisko, Aniko
1999-01-01
The effects of carbon structure and surface oxygen on the carbon's performance as the anode in lithium-ion battery were studied. Two carbon materials were used for the electrochemical tests: soft carbon made from defluorination of graphite fluoride, and the carbon precursor from which the graphite fluoride was made. In this research the precursor was graphitized carbon fiber P-100. It was first fluorinated to form CF(0.68), then defluorinated slowly at 350 to 450 C in bromoform, and finally heated in 1000 C nitrogen before exposed to room temperature air, producing disordered soft carbon having basic surface oxides. This process caused very little carbon loss. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) EC and DMC/Li half cell. The cycling test had four major results. (1) The presence of a basic oxide surface may prevent solvent from entering the carbon structure and therefore prolong the carbon's cycle life for lithium intercalation-deintercalation. (2) The disordered soft carbon can store lithium through two different mechanisms. One of them is lithium intercalation. which gives the disordered carbon an electrochemical behavior similar to its more ordered graphitic precursor. The other is unknown in its chemistry, but is responsible for the high-N,oltage portion (less than 0.3V) of the charge-discharge curve. (3) Under certain conditions, the disordered carbon can store more lithium than its precursor. (4) These sample and its precursor can intercalate at 200 mA/g. and deintercalate at a rate of 2000 mA/g without significant capacity loss.
In-situ vacuum deposition technique of lithium on neutron production target for BNCT
NASA Astrophysics Data System (ADS)
Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.
2012-10-01
For the purpose of avoiding the radiation blistering of the lithium target for neutron production in BNCT (Boron Neutron Capture Therapy) device, trilaminar Li target, of which palladium thin layer was inserted between cupper substrate and Li layer, was newly designed. In-situ vacuum deposition and electrolytic coating techniques were applied to validate the method of fabrication of the Li/Pd/Cu target, and the layered structures of the synthesized target were characterized. In-situ vacuum re-deposition technique was also established for repairing and maintenance for lithium target damaged. Following conclusions were derived; (1) Uniform lithium layers with the thickness from 1.6 nm to a few hundreds nanometer were formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. (2) Re-deposition of lithium layer on Li surface can be achieved by in situ vacuum deposition technique. (3) Small amount of water and carbonate was observed on the top surface of Li. But the thickness of the adsorbed layer was less than monolayer, which will not affect the quality of the Li target. (4) The formation of Pd-Li alloy layer was observed at the Pd and Li interface. The alloy layer would contribute to the stability of the Li layer.
Hooshmand, Tabassom; Rostami, Golriz; Behroozibakhsh, Marjan; Fatemi, Mostafa; Keshvad, Alireza; van Noort, Richard
2012-02-01
To evaluate the effect of HF acid etching and silane treatment on the interfacial fracture toughness of a self-adhesive and two conventional resin-based cements bonded to a lithium disilicate glass ceramic. Lithium disilicate glass ceramic discs were prepared with two different surface preparations consisting of gritblasted with aluminium oxide, and gritblasted and etched with hydrofluoric acid. Ceramic surfaces with a chevron shaped circular hole were treated by an optimized silane treatment followed by an unfilled resin and then three different resin cements (Variolink II, Panavia F2, and Multilink Sprint). Specimens were kept in distilled water at 37°C for 24h and then subjected to thermocycling. The interfacial fracture toughness was measured and mode of failures was also examined. Data were analysed using analysis of variance followed by T-test analysis. No statistically significant difference in the mean fracture toughness values between the gritblasted and gritblasted and etched surfaces for Variolink II resin cement was found (P>0.05). For the gritblasted ceramic surfaces, no significant difference in the mean fracture toughness values between Panavia F2 and Variolink II was observed (P>0.05). For the gritblasted and etched ceramic surfaces, a significantly higher fracture toughness for Panavia F2 than the other cements was found (P<0.05). The interfacial fracture toughness for the lithium disilicate glass ceramic system was affected by the surface treatment and the type of luting agent. Dual-cured resin cements demonstrated a better bonding efficacy to the lithium disilicate glass ceramic compared to the self-adhesive resin cement. The lithium disilicate glass ceramic surfaces should be gritblasted and etched to get the best bond when used with Panavia F2 and Multilink Sprint resin cements, whereas for the Variolink II only gritblasting is required. The best bond overall is achieved with Panavia F2. Copyright © 2011 Elsevier Ltd. All rights reserved.
Luo, Chao; Ji, Xiao; Chen, Ji; Gaskell, Karen J; He, Xinzi; Liang, Yujia; Jiang, Jianjun; Wang, Chunsheng
2018-05-23
Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li 3 PS 4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Outlook on Lithium Ion Battery Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manthiram, Arumugam
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less
An Outlook on Lithium Ion Battery Technology
Manthiram, Arumugam
2017-09-07
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bingbin; Wang, Shanyu; Evans IV, Willie J.
In recent years room temperature Li+ ion conductors have been intensively revisited in order to develop safe lithium ion (Li-ion) batteries and beyond that can be deployed in the electrical vehicles. Through careful modification on materials synthesis, promising solid Li+ conductors with high ionic conductivity, competitve with liquid electrolytes, have been demonstrated. However, the integration of those highly conductive solid electrolytes into the whole system is still very challenging mainly due to the high impedance existing in the different interfaces throughout the entire battery structure. Herein , this review paper focuses on the overview of the interfacial behaviors between Li+more » conductors and cathode/anode materials. The origin, evolution and potential solutions to reuce these interfacial impedances are reviewed for various battery systems spanning from Li-ion, lithium sulfur (Li-S), lithium oxygen (Li-O2) batteries to lithium metal protection. The predicted gravimetric and volumetric energy densities at different scenarios are also discussed along with the prospectives for further development of solid state batteries.« less
An Outlook on Lithium Ion Battery Technology
2017-01-01
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along with solid electrolytes and lithium metal anode are being intensively pursued. This article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies. PMID:29104922
Method of forming components for a high-temperature secondary electrochemical cell
Mrazek, Franklin C.; Battles, James E.
1983-01-01
A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.
Ma, Yulin; Zhou, Yan; Du, Chunyu; ...
2017-02-15
Surface degradation on cycled lithium-ion battery cathode particles is governed not only by intrinsic thermodynamic properties of the material but also, oftentimes more predominantly, by the side reactions with the electrolytic solution. A superior electrolyte inhibits these undesired side reactions on the cathode and at the electrolyte interface, which consequently minimizes the deterioration of the cathode surface. The present study investigates a new boron-based anion receptor, tris(2,2,2-trifluoroethyl)borate (TTFEB), as an electrolyte additive in cells containing a lithium- and manganese-rich layered oxide cathode, Li 1.16Ni 0.2Co 0.1Mn 0.54O 2. Our electrochemical studies demonstrate that the cycling performance and Coulombic efficiency aremore » significantly improved because of the additive, in particular, under elevated temperature conditions. Spectroscopic analyses revealed that the addition of 0.5 wt % TTFEB is capable of reducing the content of lithium-containing inorganic species within the cathode-electrolyte interphase layer and minimizing the reduction of tetravalent Mn4+ at the cathode surface. Furthermore, our work introduces a novel additive highly effective in improving lithium-ion battery performance, highlights the importance in preserving the surface properties of cathode materials, and provides new insights on the working mechanism of electrolyte additives.« less
NASA Astrophysics Data System (ADS)
Khalfan, Amish N.
This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the addition of fluorine groups (6F-SPTES) were also studied, and these membranes had been thought to show an improvement in water transport properties over SPTES. However, water diffusion studies of the 6F-SPTES membranes revealed the fluorinated membranes to be unfavorable. The morphology of the FSPTES is suspected to be more susceptible to the loss of bound water at higher temperatures than SPTES.
Scientific opportunities at SARAF with a liquid lithium jet target neutron source
NASA Astrophysics Data System (ADS)
Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo
2018-05-01
SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.
Alp, Gulce; Subasi, Meryem Gulce; Johnston, William M; Yilmaz, Burak
2018-03-15
The effects of surface treatments and coffee thermocycling on the color and relative translucency of a recently introduced computer-aided design and computer-aided manufacturing (CAD-CAM) monolithic glass-ceramic are unknown. The purpose of this in vitro study was to evaluate the effect of coffee thermocycling on the color and relative translucency parameter (RTP) of CAD-CAM monolithic glass-ceramics after different surface treatments. Specimens (1.5-mm-thick) were sectioned from zirconia-reinforced lithium silicate glass-ceramic (ZLS) (n=18) and lithium disilicate glass-ceramic (LDS) blocks (n=18). Two different types of surface treatments (glazing or polishing) were applied to the specimens. The specimens were subjected to 5000 thermocycles in a coffee solution. The color coordinates of specimens were measured before and after coffee thermocycling by using a spectroradiometer, and color differences and relative translucency values were calculated by using CIEDE2000 color difference and RTP formulas. ANOVA was used to analyze the color difference and relative translucency values by using maximum likelihood estimation and the Satterthwaite degrees of freedom methods. Any significant interaction between surface subgroups was further analyzed by using the Tukey-Kramer adjustment (α=.05). Material type had a significant effect on color difference (P=.018). All color difference values of all materials were smaller than the clinical acceptability threshold (<1.8 units). For relative translucency, material (P<.001) and coffee thermocycling had a significant effect (P=.014), and an interaction was found between the surface treatments and materials (P<.001). The Tukey-Kramer test revealed significant differences between glazed and polished subgroups of LDS material, except for ZLS-glazed and ZLS-polished subgroups. Different surface treatments of CAD-CAM monolithic zirconia-reinforced lithium silicate and lithium disilicate glass-ceramics resulted in clinically acceptable color changes after coffee thermocycling. The color changes in all groups, except for LDS-polished, were not perceivable. Lithium disilicate was more translucent than zirconia-reinforced lithium silicate before and after coffee thermocycling. Coffee thermocycling decreased the translucency of both of the materials. Different surface treatments affected the translucency of only lithium disilicate for tested thickness. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vieceli, Nathália; Nogueira, Carlos A.; Pereira, Manuel F. C.; Durão, Fernando O.; Guimarães, Carlos; Margarido, Fernanda
2018-01-01
The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.
Effect of lithium in the DIII-D SOL and plasma-facing surfaces
NASA Astrophysics Data System (ADS)
Jackson, G. L.; Chrobak, C. P.; McLean, A. G.; Maingi, R.; Mansfield, D. K.; Roquemore, A. L.; Diwakar, P.; Hassanein, A.; Lietz, A.; Rudakov, D. L.; Sizyuk, T.; Tripathi, J.
2015-08-01
Lithium has been introduced into the DIII-D tokamak, and migration and retention in graphite have been characterized since no lithium was present in DIII-D initially. A new regime with an enhanced edge electron pedestal and H98y2 ⩽ 2 has been obtained with lithium. Lithium deposition was not uniform, but rather preferentially deposited near the strike points, consistent with previous 13C experiments. Edge visible lithium light (LiI) remained well above the previous background during the entire DIII-D campaign, decaying with a 2600 plasma-second e-fold, but plasma performance was only affected on the discharge with lithium injection. Lithium injection demonstrated the capability of reducing hydrogenic recycling, density, and ELM frequency. Graphite and silicon samples were exposed to a lithium-injected discharge, using the DiMES system and then removed for ex-situ analysis. The deposited lithium layer remained detectable to a depth up to 1 μm.
Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi
2016-01-01
Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378
Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium
Zhang, Qifeng; Cao, Guozhong
2013-10-15
Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.
Harris, Carol A.; Jenner, F. A.
1972-01-01
1. The effect of intravenous infusions of various ions on the antidiuretic action of antidiuretic hormone has been studied in rats. 2. Lithium (13 mmol/l.) reversibly inhibits the antidiuretic responses. Similar concentrations of potassium, rubidium, strontium, magnesium, choline and calcium do not. Lithium has a similar effect on the antidiuretic activity of oxytocin. 3. The inhibition is not simply related to blood nor whole body lithium concentrations. 4. Lithium (2 mmol/l.) in contact with the serosal surface also inhibits the transport of water facilitated by either 0·5 U/l. antidiuretic hormone or 1·1 mmol/l. cyclic adenosine monophosphate in the isolated toad bladder. 5. Choline (2 mmol/l.) on the serosal surface also inhibits the transport of water facilitated by vasopressin in the toad bladder. PMID:4358411
NASA Astrophysics Data System (ADS)
Holtstiege, Florian; Schmuch, Richard; Winter, Martin; Brunklaus, Gunther; Placke, Tobias
2018-02-01
Pre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.
Excess lithium storage and charge compensation in nanoscale Li4+xTi5O12
NASA Astrophysics Data System (ADS)
Wang, Feng; Wu, Lijun; Ma, Chao; Su, Dong; Zhu, Yimei; Graetz, Jason
2013-10-01
Lithium titanate spinel (Li4Ti5O12; LTO) is a promising candidate for anodes in lithium-ion batteries due to its excellent cyclability and safety performance, and has been known as a ‘zero-strain’ material that allows reversible lithium insertion-deinsertion with little change in the lattice parameters. For a better understanding of lithium reaction mechanisms in this material, it has been of great interest to identify where lithium is inserted and how it migrates during charge and discharge, which is often difficult with x-ray and electron scattering techniques due to the low scattering power of lithium. In this study, we employed atomic-resolution annular bright-field imaging to directly image the lithium on interstitial sites in nanoscale LTO, and electron energy-loss spectroscopy to measure local lithium occupancy and electronic structure at different states of charge. During lithiation, charge compensation occurs primarily at O sites, rather than at Ti sites, and no significant change was found in the projected density of states (Ti 3d) until the voltage was lowered to ˜50 mV or below. The Li K-edge spectra were simulated via ab initio calculations, providing a direct correlation between the near-edge fine structure and the local lithium coordination. During the initial states of discharge, lithium ions on 8a sites migrate to 16c sites (above 740 mV). Further lithiation causes the partial re-occupation of 8a sites, initially in the near-surface region at ˜600 mV, and then in the bulk at lower voltages (˜50 mV). We attribute the enhanced capacity in nanostructured LTO to extra storage of lithium in the near-surface region, primarily at {111} facets.
NASA Astrophysics Data System (ADS)
Jain, U.; Mukherjee, A.; Dey, G. K.
2017-09-01
Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.
Lithium Polymer Electrolytes and Solid State NMR
NASA Technical Reports Server (NTRS)
Berkeley, Emily R.
2004-01-01
Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for participation on a variety of other projects, including aero-gels and carbon graphite mat en als. The goals of the polymer electrolyte research are to improve the physical properties of the polymers. This includes improving conductivity, durability, and expanding the temperature range over which it is effective. Currently, good conductivity is only present at high temperatures. My goals are to experiment with different arrangements of rods and coils to achieve these desirable properties. Some of my experiments include changing the number of repeat units in the polymer, the size of the diamines, and the types of coil. Analysis of these new polymers indicates improvement in some properties, such as lower glass transition temperature; however, they are not as flexible as desired. With further research we hope to produce polymers that encompass all of these properties to a high degree.
Low-Polarization Lithium-Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte.
Ulissi, Ulderico; Elia, Giuseppe Antonio; Jeong, Sangsik; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef
2018-01-10
The room-temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in Li-O 2 batteries. The [DEME][TFSI]-LiTFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability, and compatibility with lithium metal at 30 °C, 40 °C, and 60 °C. The electrolyte shows suitable properties for application in Li-O 2 battery, allowing a reversible, low-polarization discharge-charge performance with a capacity of about 13 Ah g-1carbon in the positive electrode and coulombic efficiency approaching 100 %. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the Li-O 2 cell using the [DEME][TFSI]-LiTFSI electrolyte at increasing temperatures (from 30 to 60 °C) evidences enhanced energy efficiency together with morphology changes of the deposited species at the working electrode. In addition, the use of carbon-coated Zn 0.9 Fe 0.1 O (TMO-C) lithium-conversion anode in an ionic-liquid-based Li-ion/oxygen configuration is preliminarily demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo
2016-01-01
This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).
NASA Astrophysics Data System (ADS)
Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut
2016-03-01
Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.
Diagnosis of power fade mechanisms in high-power lithium-ion cells
NASA Astrophysics Data System (ADS)
Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.
Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.
Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery.
Lee, Danbi; Lee, Gibaek; Tak, Yongsug
2018-06-19
Aluminum-ion batteries are considered to be a promising post lithium-ion battery system in energy storage devices because aluminum is earth-abundant, has a high theoretical capacity, and is of low cost. We report on the chemical activities and stabilities of chloroaluminate anions [Al n Cl n+1 ] - with aluminum metal using a different mole ratio of AlCl 3 and 1-ethyl-3-methylimidazolium chloride. The morphological changes in the Al metal surface are investigated as a function of dipping time in electrolyte, revealing that the Al metal surface is locally attacked by chloroaluminate anions followed by the formation of a new Al oxide layer with a specific lattice plane and a craterlike surface around the cracking site. The aluminum-ion battery exhibits outstanding cycle life and capacity even at the high C-rate of 3 A g -1 , with a high energy efficiency of 98%, regardless of the differences in the size of chloroaluminate anions.
Liquid lithium target as a high intensity, high energy neutron source
Parkin, Don M.; Dudey, Norman D.
1976-01-01
This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.
Developing the Pulsed Fission-Fusion (PuFF) Engine
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey
2014-01-01
In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.
Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, Saivenkataraman
2010-03-01
Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We aremore » currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.« less
NASA Astrophysics Data System (ADS)
Tamura, Tomoyuki; Kohyama, Masanori; Ogata, Shuji
2017-07-01
We performed a first-principles molecular dynamics (FPMD) simulation of the interfacial reactions between a LiCoO2 electrode and a liquid ethylene carbonate (EC) electrolyte. For configurations during the FPMD simulation, we also performed first-principles Co K-edge x-ray absorption near-edge structure (XANES) simulations, which can properly reproduce the bulk and surface spectra of LiCoO2. We observed strong absorption of an EC molecule on the LiCoO2 {110} surface, involving ring opening of the molecule, bond formation between oxygen atoms in the molecule and surface Co ions, and emission of one surface Li ion, while all the surface Co ions remain Co3 +. The surface Co ions having the bond with an oxygen atom in the molecule showed remarkable changes in simulated K-edge spectra which are similar to those of the in situ observation under electrolyte soaking [D. Takamatsu et al., Angew. Chem., Int. Ed. 51, 11597 (2012), 10.1002/anie.201203910]. Thus, the local environmental changes of surface Co ions due to the reactions with an EC molecule can explain the experimental spectrum changes.
Electron backscatter diffraction applied to lithium sheets prepared by broad ion beam milling.
Brodusch, Nicolas; Zaghib, Karim; Gauvin, Raynald
2015-01-01
Due to its very low hardness and atomic number, pure lithium cannot be prepared by conventional methods prior to scanning electron microscopy analysis. Here, we report on the characterization of pure lithium metallic sheets used as base electrodes in the lithium-ion battery technology using electron backscatter diffraction (EBSD) and X-ray microanalysis using energy dispersive spectroscopy (EDS) after the sheet surface was polished by broad argon ion milling (IM). No grinding and polishing were necessary to achieve the sufficiently damage free necessary for surface analysis. Based on EDS results the impurities could be characterized and EBSD revealed the microsctructure and microtexture of this material with accuracy. The beam damage and oxidation/hydration resulting from the intensive use of IM and the transfer of the sample into the microscope chamber was estimated to be <50 nm. Despite the fact that the IM process generates an increase of temperature at the specimen surface, it was assumed that the milling parameters were sufficient to minimize the heating effect on the surface temperature. However, a cryo-stage should be used if available during milling to guaranty a heating artefact free surface after the milling process. © 2014 Wiley Periodicals, Inc.
Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...
2015-04-13
A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less
Coating of porous carbon for use in lithium air batteries
Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W
2015-04-14
A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.
Oriented TiO2 nanotubes as a lithium metal storage medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae-Hun; Kang, Hee-Kook; Woo, Sang-Gil
2014-07-01
A new strategy for suppressing dendritic lithium growth in rechargeable lithium metal batteries is introduced, in which TiO2 nanotube (NT) array electrodes prepared by anodization are used as a metallic lithium storage medium. During the first charge process, lithium ions are inserted into the crystal structure of the TiO2 NT arrays, and then, lithium metal is deposited on the surfaces of the NT arrays, i.e., in the NT pores and between NT walls. From the second cycle onward, the TiO2 material is used as lithium ion pathways, which results in the effective current distribution for lithium deposition and prevents disintegrationmore » of the deposited metallic lithium. Compared to a Li(Cu foil)-LiCoO2 cell, the Li(TiO2 NT)-LiCoO2 cell exhibits enhanced cycling efficiency. This new concept will enable other 3D structured negative active materials to be used as lithium metal storage media for lithium metal batteries.« less
Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping
2017-12-01
Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Liang; Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People's Republic of China; Qiu Keqiang, E-mail: qiuwhs@sohu.com
2012-08-15
Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Vacuum pyrolysis as a pretreatment was used to separate cathode material from aluminum foils. Black-Right-Pointing-Pointer Cobalt and lithium can be leached using oxalate while cobalt can be directly precipitated as cobalt oxalate. Black-Right-Pointing-Pointer Cobalt and lithium can be separated efficiently from each other only in the oxalate leaching process. Black-Right-Pointing-Pointer High reaction efficiency of LiCoO{sub 2} was obtained with oxalate. - Abstract: Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalatemore » leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO{sub 2} and CoO directly as CoC{sub 2}O{sub 4}{center_dot}2H{sub 2}O with 1.0 M oxalate solution at 80 Degree-Sign C and solid/liquid ratio of 50 g L{sup -1} for 120 min. The reaction efficiency of more than 98% of LiCoO{sub 2} can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.« less
Liu, Jian; Banis, Mohammad N; Sun, Qian; Lushington, Andrew; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang
2014-10-08
Atomic layer deposition is successfully applied to synthesize lithium iron phosphate in a layer-by-layer manner by using self-limiting surface reactions. The lithium iron phosphate exhibits high power density, excellent rate capability, and ultra-long lifetime, showing great potential for vehicular lithium batteries and 3D all-solid-state microbatteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït
2005-04-01
In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.
Basrur, Veidhes R; Guo, Juchen; Wang, Chunsheng; Raghavan, Srinivasa R
2013-01-23
Lithium-ion batteries have emerged as the preferred type of rechargeable batteries, but there is a need to improve the performance of the electrolytes therein. Specifically, the challenge is to obtain electrolytes with the mechanical rigidity of solids but with liquid-like conductivities. In this study, we report a class of nanostructured gels that are able to offer this unique combination of properties. The gels are prepared by utilizing the synergistic interactions between a molecular gelator, 1,3:2,4-di-O-methyl-benzylidene-d-sorbitol (MDBS), and a nanoscale particulate material, fumed silica (FS). When MDBS and FS are combined in a liquid consisting of propylene carbonate with dissolved lithium perchlorate salt, the liquid electrolyte is converted into a free-standing gel due to the formation of a strong MDBS-FS network. The gels exhibit elastic shear moduli around 1000 kPa and yield stresses around 11 kPa-both values considerably exceed those obtainable by MDBS or FS alone in the same liquid. At the same time, the gel also exhibits electrochemical properties comparable to the parent liquid, including a high ionic conductivity (~5 × 10(-3) S/cm at room temperature) and a wide electrochemical stability window (up to 4.5 V).
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano
2016-01-11
The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Yongseon
2012-05-01
Li(Ni(0.8)Co(0.1)Mn(0.1))O(2) (NCM811) was synthesized using alkali chlorides as a flux and the performance as a cathode material for lithium ion batteries was examined. Primary particles of the powder were segregated and grown separately in the presence of liquid state fluxes, which induced each particle to be composed of one primary particle with well-developed facet planes, not the shape of agglomerates as appears with commercial NCMs. The new NCM showed far less gas emission during high temperature storage at charged states, and higher volumetric capacity thanks to its high bulk density. The material is expected to provide optimal performances for pouch type lithium ion batteries, which require high volumetric capacity and are vulnerable to deformation caused by gas generation from the electrode materials.
Chaos and Beyond in a Water Filled Ultrasonic Resonance System
NASA Technical Reports Server (NTRS)
Lazlo, Adler; Yost, W.; Cantrell, John H.
2013-01-01
Finite amplitude ultrasonic wave resonances in a one-dimensional liquid-filled cavity, formed by a narrow band transducer and a plane reflector, are reported. The resonances are observed to include not only the expected harmonic and subharmonic signals (1,2) but chaotic signals as well. The generation mechanism requires attaining a threshold value of the driving amplitude that the liquid-filled cavity system becomes sufficiently nonlinear in response. The nonlinear features of the system were recently investigated via the construction of an ultrasonic interferometer having optical precision. The transducers were compressional, undamped quartz and lithium niobate crystals having the frequency range 1-10 MHz, driven by a high power amplifier. Both an optical diffraction system to characterize the diffraction pattern of laser light normally incident to the cavity and a receiving transducer attached to an aligned reflector with lapped flat and parallel surfaces were used to assess the generated resonance response in the cavity. At least 5 regions of excitation are identified.
A Study on New Composite Thermoplastic Propellant
NASA Astrophysics Data System (ADS)
Kahara, Takehiro; Nakayama, Masanobu; Hasegawa, Hiroshi; Katoh, Kazushige; Miyazaki, Shigehumi; Maruizumi, Haruki; Hori, Keiichi; Morita, Yasuhiro; Akiba, Ryojiro
Efforts have been paid to realize a new composite propellant using thermoplastics as a fuel binder and lithium as a metallic fuel. Thermoplastics binder makes it possible the storage of solid propellant in small blocks and to provide propellants blocks into rocket motor case at a quantity needed just before use, which enables the production facility of solid propellant at a minimum level, thus, production cost significantly lower. Lithium has been a candidate for a metallic fuel for the ammonium perchlorate based composite propellants owing to its capability to reduce the hydrogen chloride in the exhaust gas, however, never been used because lithium is not stable at room conditions and complex reaction products between oxygen, nitrogen, and water are formed at the surface of particles and even in the core. However, lithium particles whose surface shell structure is well controlled are rather stable and can be stored in thermoplastics for a long period. Evaluation of several organic thermoplastics whose melting temperatures are easily tractable was made from the standpoint of combustion characteristics, and it is shown that thermoplastics propellants can cover wide range of burning rate spectrum. Formation of well-defined surface shell of lithium particles and its kinetics are also discussed.
NASA Astrophysics Data System (ADS)
Purewal, Justin; Wang, John; Graetz, Jason; Soukiazian, Souren; Tataria, Harshad; Verbrugge, Mark W.
2014-12-01
Capacity fade is reported for 1.5 Ah Li-ion batteries containing a mixture of Li-Ni-Co-Mn oxide (NCM) + Li-Mn oxide spinel (LMO) as positive electrode material and a graphite negative electrode. The batteries were cycled at a wide range of temperatures (10 °C-46 °C) and discharge currents (0.5C-6.5C). The measured capacity losses were fit to a simple physics-based model which calculates lithium inventory loss from two related mechanisms: (1) mechanical degradation at the graphite anode particle surface caused by diffusion-induced stresses (DIS) and (2) chemical degradation caused by lithium loss to continued growth of the solid-electrolyte interphase (SEI). These two mechanisms are coupled because lithium is consumed through SEI formation on newly exposed crack surfaces. The growth of crack surface area is modeled as a fatigue phenomenon due to the cyclic stresses generated by repeated lithium insertion and de-insertion of graphite particles. This coupled chemical-mechanical degradation model is consistent with the observed capacity loss features for the NCM + LMO/graphite cells.