Development of a liquid lithium thin film for use as a heavy ion beam stripper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momozaki, Y.; Nolen, J.; Reed, C.
2009-04-01
A series of experiments was performed to investigate the feasibility of a liquid lithium thin film for a charge stripper in a high-power heavy ion linac. Various preliminary experiments using simulants were first conducted to determine the film formation scheme, to investigate the film stability, and to obtain the design parameters for a liquid lithium thin film system. Based on the results from these preliminary studies, a prototypical, high pressure liquid lithium system was constructed to demonstrate liquid lithium thin film formation. This system was capable of driving liquid lithium at {approx}< 300 C and up to 13.9 MPa (2000more » psig) through a nozzle opening as large as 1 mm (40 mil) in diameter. This drive pressure corresponds to a Li velocity of >200 m/s. A thin lithium film of 9 mm in width at velocity of {approx}58 m/s was produced. Its thickness was estimated to be roughly {approx}< 13 {micro}m. High vacuum was maintained in the area of the film. This type of liquid metal thin film may also be used in other high power beam applications such as for intense X-ray or neutron sources.« less
Operational Characteristics of Liquid Lithium Divertor in NSTX
NASA Astrophysics Data System (ADS)
Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.
2010-11-01
Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.
Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)
NASA Astrophysics Data System (ADS)
Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei
The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.
Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte
NASA Astrophysics Data System (ADS)
Li, Qin; Ardebili, Haleh
2016-01-01
The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.
Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S
2018-04-25
Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.
Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources
NASA Astrophysics Data System (ADS)
Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.
Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.
NASA Astrophysics Data System (ADS)
Narula, Manmeet Singh
Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the MHD interaction of fast flowing liquid metal films under various divertor relevant magnetic field configurations through numerical modeling exercises.
NASA Astrophysics Data System (ADS)
Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun
2018-03-01
The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.
NASA Astrophysics Data System (ADS)
Liu, Kai; Ma, Jiang-Tao; Wang, Chang-An
2014-08-01
Garnet type electrolyte "Li6.5La3Ta0.5Zr1.5O12" (LLZTO) was prepared by conventional solid-state reaction in alumina crucibles and excess lithium salt (from 0% to 50 mol%) was added into the starting materials to investigate the effects of excess lithium salt on the property of LLZTO. SEM, XRD and AC impedance were used to determine the microstructure, phase formation and Li-ion conductivity. Cubic garnet with a minor second phase LiAlO2 in the grain boundary was obtained for the pellets with excess lithium salt. As the amount of excess lithium salt increased, more Al element diffused from alumina crucibles to LLZTO pellets and reacted with excess lithium salt to form liquid Li2O-Al2O3 phase in the grain boundary, which accelerated the pellets' densification and reduced lithium loss at a high temperature. Ionic conductivity of LLZTO pellets increased with the amount of excess lithium salt added and leveled off at ∼4 × 10-4 S cm-1 when lithium salt exceeded 30 mol%. The performance of Li-air batteries with hybrid electrolytes, using homemade LLZTO thin pellets as solid electrolytes, was investigated. The LLZTO thin pellet with more excess lithium salt in starting material had a higher density and resulted in better cell performance.
Multi-layered, chemically bonded lithium-ion and lithium/air batteries
Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R
2014-05-13
Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.
Particle control and plasma performance in the Lithium Tokamak eXperimenta)
NASA Astrophysics Data System (ADS)
Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D.; Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G.; Kubota, S.; Peebles, W. A.; Beiersdorfer, P.; Clementson, J. H. T.; Tritz, K.
2013-05-01
The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.
NASA Astrophysics Data System (ADS)
Leung, Kevin
2015-03-01
Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Hydrogen, lithium, and lithium hydride production
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.
2017-06-20
A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.
Hydrodynamic and shock heating instabilities of liquid metal strippers for RIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanein, Ahmed
2013-05-24
Stripping of accelerated ions is a key problem for the design of RIA to obtain high efficiency. Thin liquid Lithium film flow is currently considered as stripper for RIA ion beams to obtain higher Z for following acceleration: in extreme case of Uranium from Z=29 to Z=60-70 (first stripper) and from Z=70 till full stripping Z=92 (second stripper). Ionization of ion occurs due to the interaction of the ion with electrons of target material (Lithium) with the loss of parts of the energy due to ionization, Q{sub U}, which is also accompanied with ionization energy losses, Q{sub Li} of themore » lithium. The resulting heat is so high that can be removed not by heat conduction but mainly by convection, i.e., flowing of liquid metal across beam spot area. The interaction of the beam with the liquid metal generates shock wave propagating along direction perpendicular to the beam as well as excites oscillations along beam direction. We studied the dynamics of these excited waves to determine conditions for film stability at the required velocities for heat removal. It will allow optimizing jet nozzle shapes and flow parameters to prevent film fragmentation and to ensure stable device operation.« less
Thin-film Rechargeable Lithium Batteries
DOE R&D Accomplishments Database
Dudney, N. J.; Bates, J. B.; Lubben, D.
1995-06-01
Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.
Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates.
Grilli, S; Miccio, L; Vespini, V; Finizio, A; De Nicola, S; Ferraro, Pietro
2008-05-26
Lens effect was obtained in an open microfluidic system by using a thin layer of liquid on a polar electric crystal like LiNbO3. An array of liquid micro-lenses was generated by electrowetting effect in pyroelectric periodically poled crystals. Compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuit-less configuration. An interferometric technique was used to characterize the curvature of the micro-lenses and the corresponding results are presented and discussed. The preliminary results concerning the imaging capability of the micro-lens array are also reported.
Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes
NASA Astrophysics Data System (ADS)
Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.
2013-03-01
The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.
NASA Astrophysics Data System (ADS)
Zuo, G. Z.; Hu, J. S.; Maingi, R.; Yang, Q. X.; Sun, Z.; Huang, M.; Chen, Y.; Yuan, X. L.; Meng, X. C.; Xu, W.; Gentile, C.; Carpe, A.; Diallo, A.; Lunsford, R.; Mansfield, D.; Osborne, T.; Tritz, K.; Li, J. G.
2017-12-01
We report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermal contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.
Stretchable spiral thin-film battery capable of out-of-plane deformation
NASA Astrophysics Data System (ADS)
Kammoun, Mejdi; Berg, Sean; Ardebili, Haleh
2016-11-01
There is a compelling need for innovative design concepts in energy storage devices such as flexible and stretchable batteries that can simultaneously provide electrochemical and mechanical functions to accommodate nonconventional applications including wearable and implantable devices. In this study, we report on the design and fabrication of a stretchable spiral thin-film lithium ion battery that is capable of large out-of-plane deformation of 1300% while exhibiting simultaneous electrochemical functionality. The spiral battery is fabricated using a flexible solid polymer nanocomposite electrolyte film that offers enhanced safety and stability compared to the conventional organic liquid-based electrolyte. The spiral lithium ion battery exhibits robust mechanical stretchability over 9000 stretching cycles and an energy density of 4.862 mWh/cm3 at ∼650% out-of-plane deformation. Finite element analysis of the spiral battery offers insights about the nature of stresses and strains during battery stretching.
NASA Astrophysics Data System (ADS)
Liu, Kai; Wang, Chang-An
2015-05-01
Li-ion ceramic electrolyte material is considered the key for advanced lithium metal batteries, and garnet-type oxides are promising ceramic electrolyte materials. To disentangle the thinness-strength dilemma in garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte, we designed and successfully synthesized a ceramic-ceramic composite electrolyte, i.e. a honeycomb-Al2O3 pellet supported LLZTO membrane. The honeycomb-Al2O3 pellet acts as a supporter to the thin LLZTO membrane and makes the whole composite electrolyte strong enough, while the straight holes in the Al2O3 supporter can be filled with liquid electrolyte and acts as channels for Li+ transportation. Such a composite design eliminates the concern over the LLZTO membrane's fragility, and keeps its good electrical property.
High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls
Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...
2015-05-15
The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less
Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.
Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A
2006-12-22
The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, David O.
1998-01-01
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, D.O.
1998-01-06
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.
Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross
2014-11-04
The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, T.; Sugura, K.; Enokida, Y.
2015-03-15
Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less
Current status of solid-state lithium batteries employing solid redox polymerization cathodes
NASA Astrophysics Data System (ADS)
Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.
1991-03-01
The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.
A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis
2012-10-01
The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.
MultiLayer solid electrolyte for lithium thin film batteries
Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping
2015-07-28
A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, G. Z.; Hu, J. S.; Maingi, R.
In this paper, we report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermalmore » contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Finally, despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.« less
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-12-14
In this paper, we report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermalmore » contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Finally, despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.« less
NASA Astrophysics Data System (ADS)
Mirnov, S. V.; Azizov, E. A.; Evtikhin, V. A.; Lazarev, V. B.; Lyublinski, I. E.; Vertkov, A. V.; Prokhorov, D. Yu
2006-06-01
The paper is an overview of recent results of Li limiter testing in T-11M tokamak. The lithium limiter is based on the capillary-pore system (CPS) concept. The Li erosion process and deuterium (D2) and helium (He) sorption by Li first wall were investigated. The ability of capillary forces to confine the liquid Li in the CPS limiter during disruption was demonstrated. The idea of combined lithium limiter with thin (0.6 mm) CPS coating as a solution of the heat removal problem was realized. As a result the quasi steady-state tokamak regime with duration up to 0.3 s and clean (Zeff = 1) deuterium plasma has been achieved. The temporal evolution of the lithium surface temperature during discharge was measured by a IR radiometer and then was recalculated to the surface power load. For the estimation of the Li limiter erosion the Li neutral and ions spectral line emission were observed. The increase in lithium erosion as a result of limiter heating was discovered. The radial distribution of plasma column radiation measurements showed up to 90% of the total radiation losses in a relatively thin (5 cm) boundary layer and only 10% in a plasma centre during discharges with high Li influx. Oscillations of Li emission and saw-tooth-like oscillations of the limiter surface temperature have been detected in discharge regimes with highest Li limiter temperature (>600 °C). A version of Li CPS first wall of DEMO reactor and Li CPS limiter experiment in the International Thermonuclear Energy Reactor are suggested.
Understanding and improving lithium ion batteries through mathematical modeling and experiments
NASA Astrophysics Data System (ADS)
Deshpande, Rutooj D.
There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.
Lithium Oxysilicate Compounds Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apblett, Christopher A.; Coyle, Jaclyn
In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopymore » (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.« less
NASA Astrophysics Data System (ADS)
Manimekalai, R.; Antony Joseph, A.; Ramachandra Raja, C.
2014-03-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of authors. According to the author we have reported Aloevera Amino Acid added Lithium sulphate monohydrate [AALSMH] crystal is a new nonlinear optical crystal. From the recorded high performance liquid chromatography spectrum, by matching the retention times with the known compounds, the amino acids present in our extract are identified as homocystine, isoleucine, serine, leucine and tyrosine. From the thin layer chromatography and colorimetric estimation techniques, presence of isoleucine was identified and it was also confirmed by NMR spectrum. From the above studies, we came to conclude that AALSMH is new nonlinear optical crystal. After further investigation, lattice parameter values of AALSMH are coinciding with lithium sulphate. Therefore we have decided to withdraw our paper. Sorry for the inconvenience and time spent.
Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong
2014-04-01
Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland
2014-02-04
Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.
A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes
NASA Astrophysics Data System (ADS)
Lourenço, Tuanan C.; Zhang, Yong; Costa, Luciano T.; Maginn, Edward J.
2018-05-01
Classical molecular dynamics simulations were performed on twelve different ionic liquids containing aprotic heterocyclic anions doped with Li+. These ionic liquids have been shown to be promising electrolytes for lithium ion batteries. Self-diffusivities, lithium transference numbers, densities, and free volumes were computed as a function of lithium concentration. The dynamics and free volume decreased with increasing lithium concentration, and the trends were rationalized by examining the changes to the liquid structure. Of those examined in the present work, it was found that (methyloxymethyl)triethylphosphonium triazolide ionic liquids have the overall best performance.
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M
2014-08-29
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.
NASA Astrophysics Data System (ADS)
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.
2014-08-01
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.
Liquid Li based neutron source for BNCT and science application.
Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S
2015-12-01
Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.
2014-01-01
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309
Modeling of surface temperature effects on mixed material migration in NSTX-U
NASA Astrophysics Data System (ADS)
Nichols, J. H.; Jaworski, M. A.; Schmid, K.
2016-10-01
NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.
Design and Modeling of a Liquid Lithium LiMIT Loop
NASA Astrophysics Data System (ADS)
Szott, Matthew; Christenson, Michael; Stemmley, Steven; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David
2017-10-01
The use of flowing liquid lithium in plasma facing components has been shown to reduce erosion and thermal stress damage, prolong device lifetime, decrease edge recycling, reduce impurities, and increase plasma performance, all while providing a clean and self-healing surface. The Liquid Metal Infused Trench (LiMIT) system has proven the concept of controlled thermoelectric magnetohydrodynamic-driven lithium flow for use in fusion relevant conditions, through tests at UIUC, HT-7, and Magnum PSI. As the use of liquid lithium in fusion devices progresses, emphasis must now be placed on full systems integration of flowing liquid metal concepts. The LiMIT system will be upgraded to include a full liquid lithium loop, which will pump lithium into the fusion device, utilize TEMHD to drive lithium through the vessel, and remove lithium for filtration and degassing. Flow control concepts recently developed at UIUC - including wetting control, dryout control, and flow velocity control - will be tested in conjunction in order to demonstrate a robust system. Lithium loop system requirements, designs, and modeling work will be presented, along with plans for installation and testing on the HIDRA device at UIUC. This work is supported by DOE/ALPS DE-FG02-99ER54515.
NASA Astrophysics Data System (ADS)
Santos, Luis; Światowska, Jolanta; Lair, Virginie; Zanna, Sandrine; Seyeux, Antoine; Melendez-Ceballos, Arturo; Tran-Van, Pierre; Cassir, Michel; Marcus, Philippe
2017-10-01
Room temperature ionic liquids (RTILs) attract much attention as a new type of environmentally benign electrolytes for Li-ion batteries due to their numerous interesting physicochemical properties. Here, in this paper, Li intercalation/deintercalation in presence of the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI) and N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (PYR13FSI) containing 0.3 M LiTFSI, was evaluated in a thin 100 nm layer of V2O5 deposited on Al substrate by atomic layer deposition. Potentiodynamic tests performed in LiTFSI/Pyr14TFSI show a quasi-reversible Li intercalation during 10 cycles (between 2.4 and 5 V) with an average coulombic efficiency of 99%. The capacity, calculated from the 1st cycle, is found to be 182 mAh g-1, about 19% (±2%) higher than the theoretical capacity reported for V2O5 (147 mAh g-1). X-ray photoelectron spectroscopy analysis confirms that the intercalation of more than 1 mol of Li+ per V2O5 is achieved as also the possible presence of a solid permeable interface (SPI) layer on the V2O5 surface. Likewise, the Li+ in-depth distribution on the V2O5 layer after intercalation in RTILs measured by time-of-flight secondary ion mass spectrometry ion depth profiles, show small irreversible electrode modifications with the presence of lithium through the entire V2O5 layer with significant lithium trapping at the V2O5 layer/Al substrate interface.
Safety and diagnostic systems on the Liquid Lithium Test Stand (LLTS)
NASA Astrophysics Data System (ADS)
Schwartz, J. A.; Jaworski, M. A.; Ellis, R.; Kaita, R.; Mozulay, R.
2013-10-01
The Liquid Lithium Test Stand (LLTS) is a test bed for development of flowing liquid lithium systems for plasma-facing components at PPPL. LLTS is designed to test operation of liquid lithium under vacuum, including flowing, solidifying (such as would be the case at the end of plasma operations), and re-melting. Constructed of stainless steel, LLTS is a closed loop of pipe with two reservoirs and a pump, as well as diagnostics for temperature, flow rate, and pressure. Since liquid lithium is a highly reactive material, special care must be taken when designing such a system. These include a permanent-magnet MHD pump and MHD flow meter that have no mechanical components in direct contact with the liquid lithium. The LLTS also includes an expandable 24-channel leak-detector interlock system which cuts power to heaters and the pump if any lithium leaks from a pipe joint. Design for the interlock systems and flow meter are presented. This work is supported by US DOE Contract DE-AC02-09CH11466.
Thin film ion conducting coating
Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George
1989-01-01
Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.
Tritz, Kevin; Bell, Ronald E.; Beiersdorfer, Peter; ...
2014-11-12
The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in themore » form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. In conclusion, these new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments.« less
NASA Astrophysics Data System (ADS)
Hsueh, T. H.; Yu, Y. Q.; Jan, D. J.; Su, C. H.; Chang, S. M.
2018-03-01
All-solid-state thin film lithium batteries (TFLBs) are the most competitive low-power sources to be applied in various kinds of micro-electro-mechanical systems and have been draw a lot of attention in academic research. In this paper, the checkerboard deposition of all-solid-state TFLB was composed of thin film lithium metal anode, lithium phosphorus oxynitride (LiPON) solid electrolyte, and checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) cathode. The LiPON and LiMn2O4 were deposited by a radio frequency magnetron sputtering system, and the lithium metal was deposited by a thermal evaporation coater. The electrochemical characterization of this lithium battery showed the first discharge capacity of 107.8 μAh and the capacity retention was achieved 95.5% after 150 charge-discharge cycles between 4.3V and 3V at a current density of 11 μA/cm2 (0.5C). Obviously, the checkerboard of thin film increased the charge exchange rate; also this lithium battery exhibited high C-rate performance, with better capacity retention of 82% at 220 μA/cm2 (10C).
Lithium purification technique
Keough, Robert F.; Meadows, George E.
1985-01-01
A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.
Lithium purification technique
Keough, R.F.; Meadows, G.E.
1984-01-10
A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, He-Lou; Li, Xiao; Ren, Jiaxing
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of themore » PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.« less
Rechargeable Thin-film Lithium Batteries
DOE R&D Accomplishments Database
Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua
1993-08-01
Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.
Moir, Ralph W.
1981-01-01
A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.
NASA Astrophysics Data System (ADS)
Appetecchi, Giovanni B.; Montanino, Maria; Balducci, Andrea; Lux, Simon F.; Winterb, Martin; Passerini, Stefano
In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR 13FSI) and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR 14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF 6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures.
Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.
Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori
2014-06-01
A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp; Yamaguchi, Akihiro; Sakuda, Atsushi
2014-05-01
Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueousmore » solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.« less
Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes
NASA Technical Reports Server (NTRS)
Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.
2002-01-01
The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.
Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang
2016-12-21
To develop a high-performance anode for thin-film lithium-ion batteries (TFBs, with a total thickness on the scale of micrometers), a Cu 2 ZnSnS 4 (CZTS) thin film is fabricated by magnetron sputtering and exhibits an ultrahigh performance of 950 mAh g -1 even after 500 cycles, which is the highest among the reported CZTS for lithium storage so far. The characterization and electrochemical tests reveal that the thin-film structure and additional reactions both contribute to the excellent properties. Furthermore, the microscale TFBs with effective footprints of 0.52 mm 2 utilizing the CZTS thin film as anode are manufactured by microfabrication techniques, showing superior capability than the analogous TFBs with the SnO 2 thin film as anode. This work demonstrates the advantages of exploiting thin-film electrodes and novel materials into micropower sources by electronic manufacture methods.
Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.
2016-01-01
We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation−glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids. PMID:27767069
Compatibility of AlN with liquid lithium
NASA Astrophysics Data System (ADS)
Terai, T.; Suzuki, A.; Yoneoka, T.; Mitsuyama, T.
2000-12-01
Development of ceramic coatings is one of the most important subjects in liquid blanket research and development. Compatibility of sintered AlN and AlN coatings with liquid lithium, a candidate breeding material, was investigated. Sintered AlN with or without the sintering aid of Y 2O 3 examined in lithium at 773 K for 1390 h showed a slight decrease in electrical resistivity because of a reduction in Al 2O 3 impurity, though AlN and Y 2O 3 components themselves were subject to no severe corrosion. On the other hand, AlN ceramic coatings on SUS430 with high resistivity (> 10 11 Ω m) fabricated by the RF sputtering method disappeared in liquid lithium at 773 K in 56 h. This may be because cracks were formed due to the difference in thermal expansion between the coatings and the substrate or because the oxide formed between the two was removed by liquid lithium.
Development of Thin-Film Battery Powered Transdermal Medical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.B.; Sein, T.
1999-07-06
Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-filmmore » battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.« less
Lahiri, Abhishek; Li, Guozhu; Olschewski, Mark; Endres, Frank
2016-12-14
Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py 1,4 ]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.
Cathode limited charge transport and performance of thin-film rechargeable lithium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.B.; Hart, F.X.; Lubben, D.
1994-11-01
Several types of thin-film rechargeable batteries based on lithium metal anodes and amorphous V{sub 2}O{sub 5} (aV{sub 2}O{sub 5}), LiMn{sub 2}O{sub 4}, and LiCoO{sub 2} cathodes have been investigated in this laboratory. In all cases, the current density of these cells is limited by lithium ion transport in the cathodes. This paper, discusses sources of this impedance in Li-aV{sub 2}O{sub 5} and Li-LiMn{sub 2}O{sub 4} thin-film cells and their effect on cell performance.
Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe
2017-04-19
Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.
Lithium ion conducting ionic electrolytes
Angell, C.A.; Xu, K.; Liu, C.
1996-01-16
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.
Lithium ion conducting ionic electrolytes
Angell, C. Austen; Xu, Kang; Liu, Changle
1996-01-01
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.
Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide
NASA Technical Reports Server (NTRS)
Stephen, Mark A. (Inventor)
2018-01-01
An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.
Buried anode lithium thin film battery and process for forming the same
Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping
2004-10-19
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
Kachmar, Ali; Carignano, Marcelo; Laino, Teodoro; Iannuzzi, Marcella; Hutter, Jürg
2017-08-10
Understanding lithium solvation and transport in ionic liquids is important due to their possible application in electrochemical devices. Using first-principles simulations aided by a metadynamics approach we study the free-energy landscape for lithium ions at infinite dilution in ethylammonium nitrate, a protic ionic liquid. We analyze the local structure of the liquid around the lithium cation and obtain a quantitative picture in agreement with experimental findings. Our simulations show that the lowest two free energy minima correspond to conformations with the lithium ion being solvated either by three or four nitrate ions with a transition barrier between them of 0.2 eV. Other less probable conformations having different solvation pattern are also investigated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of secondary cells with lithium anodes and immobilized fused-salt electrolytes
NASA Technical Reports Server (NTRS)
Cairns, E. J.; Rogers, G. L.; Shimotake, H.
1969-01-01
Secondary cells with liquid lithium anodes, liquid bismuth or tellurium cathodes, and fused lithium halide electrolytes immobilized as rigid pastes operate between 380 and 485 degrees. Applications include power sources in space, military vehicle propulsion and special commercial vehicle propulsion.
A sealed optical cell for the study of lithium-electrode|electrolyte interfaces
NASA Astrophysics Data System (ADS)
Howlett, P. C.; MacFarlane, D. R.; Hollenkamp, A. F.
A sealed, symmetrical, lithium optical cell, which enables optical images of lithium surface deposits and in situ Raman spectra to be obtained simply and conveniently during charge-discharge cycling of lithium metal electrodes, has been designed and tested. A conventional aprotic liquid, 1 M lithium hexafluorophosphate in propylene carbonate, and an experimental ionic liquid, 20 mol% lithium bis(trifluoromethanesulfonyl)amide in 1-ethyl 3-methyl imidazolium bis(trifluoromethanesulfonyl)amide, are investigated as electrolyte solutions. Images obtained from the cell with the former electrolyte solution demonstrate the problems associated with cycling lithium metal electrodes. Images obtained with the latter electrolyte solution provide clear evidence that continued investigation of ionic liquids for use with lithium metal electrodes is warranted. Operation of the cell with the conventional electrolyte yields Raman spectra of good quality. The spectra display vibrational modes which arise from the electrolyte, as well as several additional modes which are associated with the deposits formed during cycling.
Stabilizing lithium metal using ionic liquids for long-lived batteries
Basile, A.; Bhatt, A. I.; O'Mullane, A. P.
2016-01-01
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652
Lithium-Sulfur Batteries: from Liquid to Solid Cells?
Lin, Zhan; Liang, Chengdu
2014-11-11
Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less
Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator
NASA Technical Reports Server (NTRS)
Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung
2005-01-01
A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.
Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza
2015-01-01
Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.
Thin-film rechargeable lithium batteries
NASA Astrophysics Data System (ADS)
Dudney, N. J.; Bates, J. B.; Lubben, D.
1994-11-01
Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxynitride electrolyte, Li metal anode, and Li(1-x)Mn2O4 as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100 C or by enhancing the lithium ion transport rate in the cathode material.
The AMBRE project: Constraining the lithium evolution in the Milky Way
NASA Astrophysics Data System (ADS)
Guiglion, G.; de Laverny, P.; Recio-Blanco, A.; Worley, C. C.; De Pascale, M.; Masseron, T.; Prantzos, N.; Mikolaitis, Š.
2016-10-01
Context. The chemical evolution of lithium in the Milky Way represents a major problem in modern astrophysics. Indeed, lithium is, on the one hand, easily destroyed in stellar interiors, and, on the other hand, produced at some specific stellar evolutionary stages that are still not well constrained. Aims: The goal of this paper is to investigate the lithium stellar content of Milky Way stars in order to put constraints on the lithium chemical enrichment in our Galaxy, in particular in both the thin and thick discs. Methods: Thanks to high-resolution spectra from the ESO archive and high quality atmospheric parameters, we were able to build a massive and homogeneous catalogue of lithium abundances for 7300 stars derived with an automatic method coupling, a synthetic spectra grid, and a Gauss-Newton algorithm. We validated these lithium abundances with literature values, including those of the Gaia benchmark stars. Results: In terms of lithium galactic evolution, we show that the interstellar lithium abundance increases with metallicity by 1 dex from [M/H] = -1 dex to + 0.0 dex. Moreover, we find that this lithium ISM abundance decreases by about 0.5 dex at super-solar metalllicity. Based on a chemical separation, we also observed that the stellar lithium content in the thick disc increases rather slightly with metallicity, while the thin disc shows a steeper increase. The lithium abundance distribution of α-rich, metal-rich stars has a peak at ALi ~ 3 dex. Conclusions: We conclude that the thick disc stars suffered of a low lithium chemical enrichment, showing lithium abundances rather close to the Spite plateau while the thin disc stars clearly show an increasing lithium chemical enrichment with the metallicity, probably thanks to the contribution of low-mass stars. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A18
Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries.
Guo, Binbin; Ruan, Hongcheng; Zheng, Cheng; Fei, Hailong; Wei, Mingdeng
2013-09-27
Hierarchically structured LiFePO4 was successfully synthesized by ionic liquid solvothermal method. These hierarchically structured LiFePO4 samples were constructed from nanostructured platelets with their (010) facets mainly exposed. To the best of our knowledge, facet control of a hierarchical LiFePO4 crystal has not been reported yet. Based on a series of experimental results, a tentative mechanism for the formation of these hierarchical structures was proposed. After these hierarchically structured LiFePO4 samples were coated with a thin carbon layer and used as cathode materials for lithium-ion batteries, they exhibited excellent high-rate discharge capability and cycling stability. For instance, a capacity of 95% can be maintained for the LiFePO4 sample at a rate as high as 20 C, even after 1000 cycles.
Improved Fabrication of Lithium Films Having Micron Features
NASA Technical Reports Server (NTRS)
Whitacre, Jay
2006-01-01
An improved method has been devised for fabricating micron-dimension Li features. This approach is intended for application in the fabrication of lithium-based microelectrochemical devices -- particularly solid-state thin-film lithium microbatteries.
Evolution of the lithium morphology from cycling of thin film solid state batteries
Dudney, Nancy J.
2017-03-11
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Evolution of the lithium morphology from cycling of thin film solid state batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J.
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
A Novel Inter Core-Cladding Lithium Niobate Thin Film Coated Fiber Modulator/Sensor
NASA Technical Reports Server (NTRS)
Jamison, Tracee L.; Komriech, Phillip; Yu, Chung
2004-01-01
A fiber modulator/sensor has been fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125 micron fiber. The proposed design of lithium niobate cylinder fibers can enhance the existing methodology for detecting sound waves under water utilizing the acoustooptic properties of lithium niobate. Upon application of a stress or strain, light propagating inside the core, according to the principle of total internal reflection, escapes, into the cladding because of the photoelastic boundary layer of lithium niobate. Test results of the lithium niobate fiber reveal a reduction in the 1550 nm, 4mW source with applied tension. The source power from an ordinary quartz fiber under the same stress condition remained invariant to applied tension.
The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O
Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.
2016-04-16
Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less
The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.
Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less
Conference report on the 3rd International Symposium on Lithium Application for Fusion Devices
Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.; ...
2015-01-14
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less
Conference Report on the 3rd International Symposium on Lithium Application for Fusion Devices
NASA Astrophysics Data System (ADS)
Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.
2015-02-01
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.
Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces
Leung, Kevin; Jungjohann, Katherine L.
2017-09-08
Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be “hot spots” where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li 2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li 2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e– leakage and passivationmore » breakdown. Strain often accompanies Li insertion; applying an ~1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li 2O films, becoming “incipient lithium filaments”. LiF films are more resistant to lithium metal growth. Finally, the models used herein should in turn inform passivating strategies in all-solid-state batteries.« less
Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Kevin; Jungjohann, Katherine L.
Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be “hot spots” where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li 2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li 2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e– leakage and passivationmore » breakdown. Strain often accompanies Li insertion; applying an ~1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li 2O films, becoming “incipient lithium filaments”. LiF films are more resistant to lithium metal growth. Finally, the models used herein should in turn inform passivating strategies in all-solid-state batteries.« less
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S.; Yang, Jae-Young
1991-01-01
The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (1) homogeneous nucleation; (2) heterogeneous nucleation; (3) normal segregation of helium gas dissolved in liquid lithium; and (4) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids. In viewing this, the subsequent research focuses on the effects of shrinkage void forming during freezing of lithium on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. The cases of lithium-fluoride are also investigated to show the effect of larger volume shrinkage upon freezing on the freeze and thaw processes. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is included that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.
Thin film buried anode battery
Lee, Se-Hee [Lakewood, CO; Tracy, C Edwin [Golden, CO; Liu, Ping [Denver, CO
2009-12-15
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
Yang, Shan; Yan, Binggong; Wu, Jiaxiong; Lu, Li; Zeng, Kaiyang
2017-04-26
This paper presents the in situ mapping of temperature-dependent lithium-ion diffusion at the nanometer level in thin film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode using electrochemical strain microscopy. The thin-film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode exhibits higher lithium-ion diffusivities with increasing temperature, which explains the higher capacity observed in the lithium-ion batteries with a Li-rich cathode at elevated temperature. In addition, the activation energy for lithium-ion diffusion can be extracted in an Arrhenius-type plot at the level of grain structure with the assumption that the ionic movement is diffusion controlled. Compared with the grain interiors, the grain boundaries show relatively lower activation energy; hence, it is the preferred diffusion path for lithium ions. This study has bridged the gap between atomistic calculations and traditional macroscopic experiments, showing direct evidence as well as mechanisms for ionic diffusion for Li-rich cathode material.
Triboelectric Nanogenerator Using Lithium Niobate Thin Film
NASA Astrophysics Data System (ADS)
Geng, Juan; Zhang, Xinzheng; Kong, Yongfa; Xu, Jingjun
2017-06-01
We present a triboelectric nanogenerator (TENG) using a lithium niobate thin film, as one of the triboelectric pairs which was grown on a silicon substrate by laser molecule beam epitaxy (LMBE). The designed TENG has the advantages of simple structure, easy fabrication, small size (1.1*1.0*0.15 cm3). An open-circuit voltage of 136 V and a short-circuit current of 8.40 μA have been achieved. The maximum output power is 307.5μW under the load resistance of 10MΩ. This is the first time to use lithium niobate thin film as one of the friction pair, which may make it possible to expand the application of triboelectric nanogenerator to optical field.
High performance batteries with carbon nanomaterials and ionic liquids
Lu, Wen [Littleton, CO
2012-08-07
The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.
Coating of porous carbon for use in lithium air batteries
Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W
2015-04-14
A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.
Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies
NASA Astrophysics Data System (ADS)
Lewandowski, Andrzej; Świderska-Mocek, Agnieszka
The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.
Ionic Liquids in Lithium-Ion Batteries.
Balducci, Andrea
2017-04-01
Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.
Electrical detection of liquid lithium leaks from pipe joints.
Schwartz, J A; Jaworski, M A; Mehl, J; Kaita, R; Mozulay, R
2014-11-01
A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.
Rechargeable lithium battery for use in applications requiring a low to high power output
Bates, John B.
1996-01-01
Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.
Rechargeable lithium battery for use in applications requiring a low to high power output
Bates, John B.
1997-01-01
Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.
Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzitelli, Guiseppe; Hirooka, Y.; Hu, J. S.
The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. Furthermore, this international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less
Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U
Rindt, P.; Lopes Cardozo, N. J.; van Dommelen, J. A. W.; ...
2016-09-03
In this study, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heatmore » flux peaking at 10 MW m –2 for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid “interlayer” allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. As a result, the requirements are met, and thus a prototype will be manufactured for physical testing.« less
Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rindt, P.; Lopes Cardozo, N. J.; van Dommelen, J. A. W.
In this study, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heatmore » flux peaking at 10 MW m –2 for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid “interlayer” allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. As a result, the requirements are met, and thus a prototype will be manufactured for physical testing.« less
Composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1997-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.
Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U
Jaworski, M. A.; Brooks, A.; Kaita, R.; ...
2016-08-08
Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less
Spreading of lithium on a stainless steel surface at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, C. H.; Capece, A. M.; Roszell, J. P.
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less
Spreading of lithium on a stainless steel surface at room temperature
Skinner, C. H.; Capece, A. M.; Roszell, J. P.; ...
2015-11-10
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (E des = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (E des = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less
Spreading of lithium on a stainless steel surface at room temperature
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.
2016-01-01
Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. The spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium-lithium bonding.
NASA Astrophysics Data System (ADS)
Xu, Wenyu; Christenson, Michael; Fiflis, Peter; Curreli, Davide; Andruczyk, Daniel; Ruzic, David
2013-10-01
The application of liquid metal, especially liquid lithium has become an important topic for plasma facing component (PFC) design. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactors. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can be utilized to drive liquid lithium flow within horizontally placed metallic open trenches in transverse magnetic field. A limiter based on this concept was tested in HT-7 and gave out positive results. However a broader application of this concept may require the trench be tilted or even placed vertically, for which strong capillary force caused by narrow trenches may be the solution. A new LiMIT design with very narrow trenches have been manufactured and tested in University of Illinois and related results will be presented. Based on this idea new limiters are designed for EAST and LTX and scheduled experiments on both devices will be discussed. This project is supported by DOE/ALPS contract: DEFG02- 99ER54515.
Cycling and rate performance of Li-LiFePO 4 cells in mixed FSI-TFSI room temperature ionic liquids
NASA Astrophysics Data System (ADS)
Lewandowski, A. P.; Hollenkamp, A. F.; Donne, S. W.; Best, A. S.
A study is conducted of the performance of lithium iron(II) phosphate, LiFePO 4, as a cathode material in a lithium secondary battery that features an ionic liquid electrolyte solution and a metallic lithium anode. The electrolyte solution comprises an ionic liquid of a N-methyl-N-alkyl-pyrrolidinium (alkyl = n-propyl or n-butyl) cation and either the bis(fluorosulfonyl)imide [(FSO 2) 2N -] or bis(trifluoromethanesulfonyl)imide [(F 3CSO 2) 2N -] anion, together with 0.5 mol kg -1 of lithium bis(trifluoromethanesulfonyl)imide salt. For N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide, coin cells discharging at rates of C/10 and 4C yield specific capacities of 153 and 110 mAh g -1, respectively, at an average coulombic efficiency of 99.8%. This performance is maintained for over 400 cycles at 50 °C and therefore indicates that these electrolyte solutions support long-term cycling of both LiFePO 4 and metallic lithium while, due to the negligible volatility of ionic liquids, surrounding the lithium in an inherently safe, non-flammable medium.
Investigation Of A Tin-Lithium Alloy As A Liquid Plasma-Facing Material
NASA Astrophysics Data System (ADS)
Sandefur, Heather; Ruzic, David; Kolasinski, Robert; Buchenauer, Dean; Sandia National Laboratories Collaboration; University of Illinois Collaboration
2017-10-01
Sn-Li is a low melting-point alloy that has been identified as a material with favorable performance in plasma material interaction studies. While lithium is a low Z material with a demonstrated ability to absorb impinging ions, pure lithium is plagued by high evaporation rates in the liquid phase. The Sn-Li alloy is a more stable alternative that provides a lower rate of evaporative flux due to the high vapor pressure of tin. In the liquid phase, the bulk segregation of lithium to the surface of the material has also been observed. While the alloy is of considerable interest, little data has been collected on its surface chemistry in a plasma environment. In order to expand the existing body of knowledge in this area, samples of an 80 percent Sn-20 percent Li alloy were prepared and analyzed in order to assess the surface composition and degree of lithium segregation in the liquid phase. The Angle-Resolved Ion Energy Spectrometer (ARIES) at Sandia National Laboratories was used to probe the surfaces of the alloy using the low energy ion scattering method. The lithium coverage at the surface was measured, and the material's affinity for hydrogen chemisorption was investigated.
Synthesis and characterization of lithium intercalation electrodes based on iron oxide thin films
NASA Astrophysics Data System (ADS)
Sarradin, J.; Guessous, A.; Ribes, M.
Sputter-deposited iron oxide thin films are investigated as a possible negative electrode for rocking-chair microbatteries. Experimental conditions related to the manufacturing of amorphous thin films suitable to a large number of available intercalation sites are described. Structural and physical properties of the thin layer films are presented. The conductivities of the amorphous thin films were found to be very high compared with those of the respective crystalline forms. Regarding the electrochemical behaviour, Fe 2O 3-based thin films electrodes are able to store and reversibly exchange lithium ions. At a C/2 charge/discharge rate with 100% depth-of-discharge (DOD), the specific capacity of these amorphous thin film electrodes remains almost constant and close to 330 Ah/kg after more than 120 charge/discharge cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaita, Robert; Boyle, Dennis; Gray, Timothy
Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less
Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
Bates, John B.
1994-01-01
A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.
Rechargeable thin film battery and method for making the same
Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.
2006-01-03
A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.
Jiang, Jian; Zhu, Jianhui; Ai, Wei; Wang, Xiuli; Wang, Yanlong; Zou, Chenji; Huang, Wei; Yu, Ting
2015-01-01
Elemental sulfur cathodes for lithium/sulfur cells are still in the stage of intensive research due to their unsatisfactory capacity retention and cyclability. The undesired capacity degradation upon cycling originates from gradual diffusion of lithium polysulfides out of the cathode region. To prevent losses of certain intermediate soluble species and extend lifespan of cells, the effective encapsulation of sulfur plays a critical role. Here we report an applicable way, by using thin-layered nickel-based hydroxide as a feasible and effective encapsulation material. In addition to being a durable physical barrier, such hydroxide thin films can irreversibly react with lithium to generate protective layers that combine good ionic permeability and abundant functional polar/hydrophilic groups, leading to drastic improvements in cell behaviours (almost 100% coulombic efficiency and negligible capacity decay within total 500 cycles). Our present encapsulation strategy and understanding of hydroxide working mechanisms may advance progress on the development of lithium/sulfur cells for practical use. PMID:26470847
Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...
2015-12-17
Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less
Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems
NASA Astrophysics Data System (ADS)
Montanino, M.; Moreno, M.; Carewska, M.; Maresca, G.; Simonetti, E.; Lo Presti, R.; Alessandrini, F.; Appetecchi, G. B.
2014-12-01
The thermal, transport, rheological and flammability properties of electrolyte mixtures, proposed for safer lithium-ion battery systems, were investigated as a function of the mole composition. The blends were composed of a lithium salt (LiTFSI), organic solvents (namely EC, DEC) and an ionic liquid (PYR13TFSI). The main goal is to combine the fast ion transport properties of the organic compounds with the safe issues of the non-flammable and non-volatile ionic liquids. Preliminary tests in batteries have evidenced cycling performance approaching that observed in commercial organic electrolytes.
Electrochemical Energy Storage Materials
2012-07-01
of porous polypropylene membrane (Celgrad® 2400) separators soaked in a liquid electrolyte solution containing 1.0 M lithium hexafluorophosphate ... Lithium Li-ion Lithium ion LiO2 Lithium Dioxide LiOx Lithium Oxide (non stoichiometric) LiPF6 lithium hexafluorophosphate LT-ALD Low Temperature...Nanostructured Battery Architectures, Nanostructured Lithium Ion Batteries 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF
NASA Astrophysics Data System (ADS)
Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.
2016-10-01
We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.
Thermochemistry of tantalum-wall cooling system with lithium and sodium working fluids
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots are presented which show the distribution of oxygen between liquid lithium and tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures. Additional plots showing the composition of the gas phase above the solutions of oxygen and alkali metal are presented. The use of the plots is illustrated by an example tantalum heat pipe filled with lithium.
High-power liquid-lithium jet target for neutron production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904
2013-12-15
A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based onmore » a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.« less
Thin-film Rechargeable Lithium Batteries
DOE R&D Accomplishments Database
Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.
1993-11-01
Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.
High-flux neutron source based on a liquid-lithium target
NASA Astrophysics Data System (ADS)
Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.
2013-04-01
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.
High-flux neutron source based on a liquid-lithium target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Paul, M.
2013-04-19
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generatemore » a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.« less
Periodic domain inversion in x-cut single-crystal lithium niobate thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackwitz, P., E-mail: peterm@mail.upb.de; Rüsing, M.; Berth, G.
2016-04-11
We report the fabrication of periodically poled domain patterns in x-cut lithium niobate thin-film. Here, thin films on insulator have drawn particular attention due to their intrinsic waveguiding properties offering high mode confinement and smaller devices compared to in-diffused waveguides in bulk material. In contrast to z-cut thin film lithium niobate, the x-cut geometry does not require back electrodes for poling. Further, the x-cut geometry grants direct access to the largest nonlinear and electro-optical tensor element, which overall promises smaller devices. The domain inversion was realized via electric field poling utilizing deposited aluminum top electrodes on a stack of LNmore » thin film/SiO{sub 2} layer/Bulk LN, which were patterned by optical lithography. The periodic domain inversion was verified by non-invasive confocal second harmonic microscopy. Our results show domain patterns in accordance to the electrode mask layout. The second harmonic signatures can be interpreted in terms of spatially, overlapping domain filaments which start their growth on the +z side.« less
NASA Astrophysics Data System (ADS)
Miccio, L.; Vespini, V.; Grilli, S.; Paturzo, M.; Finizio, A.; De Nicola, S.; Ferraro, P.
2009-06-01
We show how thin liquid film on polar dielectric substrate can form an array of liquid micro-lenses. The effect is driven by the pyroelectric effect leading to a new concept in electro-wetting (EW). EW is a viable method for actuation of liquids in microfluidic systems and requires the design and fabrication of complex electrodes for suitable actuation of liquids. When compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuitless configuration. In our case the surface electric charge induced by the thermal stimulus is able to pattern selectively the surface wettability according to geometry of the ferroelectric domains micro-engineered into the lithium niobate crystal. We show that different geometries of liquid microlenses can be obtained showing also a tuneability of the focal lenses down to 1.6 mm. Thousand of liquid microlenses, each with 100 μm diameter, can be formed and actuated. Also different geometries such as hemi-cylindrical and toroidal liquid structures can be easily obtained. By means of a digital holography method, an accurate characterization of the micro-lenses curvature is performed and presented. The preliminary results concerning the imaging capability of the micro-lens array are also reported. Microlens array can find application in medical stereo-endoscopy, imaging, telecommunication and optical data storage too.
Lithium battery electrodes with ultra-thin alumina coatings
Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.
2015-11-24
Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.H.; Erck, R.; Park, E.T.
1997-04-01
Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calciummore » alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.« less
Capacitor with a composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1999-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Method for fabricating composite carbon foam
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
2001-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Capacitor with a composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1999-04-27
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1997-05-06
Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Thin film method of conducting lithium-ions
Zhang, J.G.; Benson, D.K.; Tracy, C.E.
1998-11-10
The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.
Thin film method of conducting lithium-ions
Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin
1998-11-10
The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.
Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki
2009-09-15
Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectramore » showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted« less
Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte
NASA Astrophysics Data System (ADS)
Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying
2018-01-01
Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.
Wu, Feng; Chen, Nan; Chen, Renjie; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator-based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable "nanogelator" that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid-like apparent ionic conductivity of 2.93 × 10 -3 S cm -1 at room temperature. The results show that the nanogelator, which possess self-regulating ability, is able to immobilize imidazolium-, pyrrolidinium-, or piperidinium-based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti-nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes.
Diddens, Diddo; Heuer, Andreas
2014-01-30
We present an extensive molecular dynamics (MD) simulation study of the lithium ion transport in ternary polymer electrolytes consisting of poly(ethylene oxide) (PEO), lithium-bis(trifluoromethane)sulfonimide (LiTFSI), and the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide (PYR13TFSI). In particular, we focus on two different strategies by which the ternary electrolytes can be devised, namely by (a) adding the ionic liquid to PEO20LiTFSI and (b) substituting the PEO chains in PEO20LiTFSI by the ionic liquid. To grasp the changes of the overall lithium transport mechanism, we employ an analytical, Rouse-based cation transport model (Maitra et al. Phys. Rev. Lett. 2007, 98, 227802), which has originally been devised for binary PEO-based electrolytes. This model distinguishes three different microscopic transport mechanisms, each quantified by an individual time scale. In the course of our analysis, we extend this mathematical description to account for an entirely new transport mechanism, namely, the TFSI-supported diffusion of lithium ions decoupled from the PEO chains, which emerges for certain stoichiometries. We find that the segmental mobility plays a decisive role in PEO-based polymer electrolytes. That is, whereas the addition of the ionic liquid to PEO20LiTFSI plasticizes the polymer network and thus also increases the lithium diffusion, the amount of free, mobile ether oxygens reduces when substituting the PEO chains by the ionic liquid, which compensates the plasticizing effect. In total, our observations allow us to formulate some general principles about the lithium ion transport mechanism in ternary polymer electrolytes. Moreover, our insights also shed light on recent experimental observations (Joost et al. Electrochim. Acta 2012, 86, 330).
Lithium-ion batteries having conformal solid electrolyte layers
Kim, Gi-Heon; Jung, Yoon Seok
2014-05-27
Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellar, Michael
2015-09-01
The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to themore » typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.« less
A review of lithium and non-lithium based solid state batteries
NASA Astrophysics Data System (ADS)
Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam
2015-05-01
Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.
A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Teng, Xiaoling; Qin, Youzhi; Wang, Xia; Li, Hongsen; Shang, Xiantao; Fan, Shuting; Li, Qiang; Xu, Jie; Cao, Derang; Li, Shandong
2018-02-01
Nanocrystalline Fe2O3 thin films are deposited directly on the conduct substrates by pulsed laser deposition as anode materials for lithium-ion batteries. We demonstrate the well-designed Fe2O3 film electrodes are capable of excellent high-rate performance (510 mAh g- 1 at high current density of 15,000 mA g- 1) and superior cycling stability (905 mAh g- 1 at 100 mA g- 1 after 200 cycles), which are among the best reported state-of-the-art Fe2O3 anode materials. The outstanding lithium storage performances of the as-synthesized nanocrystalline Fe2O3 film are attributed to the advanced nanostructured architecture, which not only provides fast kinetics by the shortened lithium-ion diffusion lengths but also prolongs cycling life by preventing nanosized Fe2O3 particle agglomeration. The electrochemical performance results suggest that this novel Fe2O3 thin film is a promising anode material for all-solid-state thin film batteries.
NASA Astrophysics Data System (ADS)
Ferraro, Pietro; Grilli, Simonetta; Miccio, Lisa; Vespini, Veronica; Finizio, Sergio DeNicola Andrea
2008-11-01
In recent years a variety of liquid bases optical elements have been conceived, designed and fabricated even for commercial products like digital cameras o cellular phone cameras. The impressive development of microfluidic systems in conjunction with optics has led to the creation of a completely new Science field of investigation named optofludics. Optofludics, among others topics, deals with investigation and methods for realizing liquid micro-lenses. A variety of liquid micro-lenses have been designed and realized by using different configurations. We demonstrate that a lensing effect can be obtained in an open microfluidic system by using a thin layer of liquid on a polar electric crystal such as Lithium Niobate (LiNbO3). Electrowetting patterning on LiNbO3 surface is obtained by pyroelectric effect consisting in a simple but reliable electrodes-less and circuit-less configuration. The electrodes are intrinsically embedded into the substrate. The material is functionalised by means of a micro-engineering electric filed poling process. Lens array with variable focus has been demonstrated with a large number of lens elements (10x10) on micrometric scale (aperture of single lens 100 microns).
Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries.
Lee, Sang-Young; Yong, Hyun Hang; Lee, Young Joo; Kim, Seok Koo; Ahn, Soonho
2005-07-21
It is a common observation that when ionic liquids are added to electrolytes the performances of lithium ion cells become poor, while the thermal safeties of the electrolytes might be improved. In this study, this behavior is investigated based on the kinetics of ionic diffusion. As a model ionic liquid, we chose butyldimethylimidazolium hexafluorophosphate (BDMIPF(6)). The common solvent was propylene carbonate (PC), and lithium hexafluorophosphate (LiPF(6)) was selected as the lithium conducting salt. Ionic diffusion coefficients are estimated by using a pulsed field gradient NMR technique. From a basic study on the model electrolytes (BDMIPF(6) in PC, LiPF(6) in PC, and BDMIPF(6) + LiPF(6) in PC), it was found that the BDMI(+) from BDMIPF(6) shows larger diffusion coefficients than the Li(+) from LiPF(6). However, the anionic (PF(6)(-)) diffusion coefficients present little difference between the model electrolytes. The higher diffusion coefficient of BDMI(+) than that of Li(+) suggests that the poor C-rate performance of lithium ion cells containing ionic liquids as an electrolyte component can be attributed to the two-cation competition between Li(+) and BDMI(+).
NASA Astrophysics Data System (ADS)
Xu, Hewei; Shi, Junli; Hu, Guosheng; He, Ying; Xia, Yonggao; Yin, Shanshan; Liu, Zhaoping
2018-07-01
One of the crucial challenge for developing high safety and high voltage lithium ion batteries is to find a reliable electrolyte system. In this work, we report a kind of hybrid electrolytes, which are used for high-voltage lithium ion batteries and are expected to be able to effectively enhance the battery safety. The hybrid electrolytes are obtained by incorporating silane-Al2O3 (Al2O3-ST) into liquid electrolyte, which combines the merits of both solid electrolyte and liquid electrolyte. The Al2O3-ST nanoparticles help to increase lithium-ion transference number and to enhance battery safety, while liquid electrolyte contributes to high ionic conductivity. The cycling stability and rate capacity of LiNi0.5Mn1.5O4/Li batteries are improved by using the hybrid electrolytes. Nail-penetration tests indicate that LiNi0.6Mn0.2Co0.2O2/graphite battery with hybrid electrolyte owns obviously enhanced safety than that using traditional liquid electrolyte. This work provides new insight on electrolyte design for high-safety high-voltage lithium ion batteries.
NASA Astrophysics Data System (ADS)
Fiflis, Peter; Xu, Wenyu; Christenson, Michael; Andruczyk, Daniel; Curreli, Davide; Ruzic, David
2013-10-01
Critical to the implementation of flowing liquid lithium plasma facing components is understanding the interactions of liquid lithium with various surfaces. Presented here are experiments investigating the material compatibility, wetting characteristics, and relative thermopower of liquid lithium with a variety of potential substrate candidates for the LiMIT concept. Wetting experiments with lithium used the contact angle as a metric. Among those materials investigated are 316 SS, Mo, Ta, and W. The contact angle, as well as its dependence on temperature was measured. For example, at 200 C, tungsten registers a contact angle of 130°, whereas above its wetting temperature of 350 C, the contact angle is less than 80°. Several methods were found to decrease the critical wetting temperature of various materials and are presented here. The thermopower of W, Mo, Ta, Li, Ga, Wood's metal and Sn has been measured relative to stainless steel, and the Seebeck coefficient of has then been calculated. For molybdenum the Seebeck coefficient has a linear rise with temperature from SMo = 3.9 μVK-1 at 30 °C to 7.5 μVK-1 at 275 °C. On Assignment at PPPL
Elaboration and characterization of a free standing LiSICON membrane for aqueous lithium-air battery
NASA Astrophysics Data System (ADS)
Puech, Laurent; Cantau, Christophe; Vinatier, Philippe; Toussaint, Gwenaëlle; Stevens, Philippe
2012-09-01
In order to develop a LISICON separator for an aqueous lithium-air battery, a thin membrane was prepared by a tape-casting of a Li1.3Al0.3Ti1.7 (PO4)3-AlPO4 based slip followed by a sintering step. By optimizing the grain sizes, the slip composition and the sintering treatment, the mechanical properties were improved and the membrane was reduced to a thickness of down to 40 μm. As a result, the ionic resistance is relatively low, around 38 Ω for a 55 μm membrane of 1 cm2. One side of the membrane was coated with a lithium oxynitrured phosphorous (LiPON) thin film to prevent lithium metal attack. Lithium metal was electrochemically deposited on the LiPON surface from a saturated aqueous solution of LiOH. However, the ionic resistance of the LiPON film, around 67 Ω for a 1.2 μm film of 1 cm2, still causes an important ohmic loss contribution which limits the power performance of a lithium-air battery.
The use of lithium as a marker for the retention of liquids in the oral cavity after rinsing.
Hanning, Sara M; Kieser, Jules A; Ferguson, Martin M; Reid, Malcolm; Medlicott, Natalie J
2014-01-01
The aim of this study was to validate the use of lithium as a marker to indicate the retention of simple liquids in the oral cavity and use this to determine how much liquid is retained in the oral cavity following 30 s of rinsing. This is a validation study in which saliva was spiked with known concentrations of lithium. Twenty healthy participants then rinsed their mouths with either water or a 1 % w/v carboxymethylcellulose (CMC) solution for 30 s before expectorating into a collection cup. Total volume and concentration of lithium in the expectorant were then measured, and the percentage of liquid retained was calculated. The mean amount of liquid retained was 10.4 ± 4.7 % following rinsing with water and 15.3 ± 4.1 % following rinsing with 1 % w/v CMC solution. This difference was significant (p < 0.01). Lithium was useful as a marker for the retention of liquids in the oral cavity, and a value for the amount of water and 1 % w/v CMC solution remaining in the oral cavity following a 30-s rinse was established. The present study quantifies the retention of simple fluids in the oral cavity, validating a technique that may be applied to more complex fluids such as mouth rinses. Further, the application of this method to specific population groups such as those with severe xerostomia may assist in developing effective saliva substitutes.
Designs of LiMIT as a Limiter in the EAST Tokamak
NASA Astrophysics Data System (ADS)
Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David
2016-10-01
Liquid metal plasma facing components (PFCs) provide a constantly refreshing, self-healing surface that can reduce erosion and thermal stress damage to prolong device lifetime, and additionally decrease edge recycling, reduce impurities, and enhance plasma performance. The Liquid Metal Infused Trench (LiMIT) system, developed at UIUC, has demonstrated thermoelectric magnetohydrodynamic (TEMHD) driven flow of liquid lithium through series of solid trenches. This TEMHD effect drives liquid lithium in fusion systems using the plasma heat flux and the toroidal magnetic field, and the surface tension of the liquid lithium maintains a fresh surface on top of the solid trenches. LiMIT has been successfully tested at UIUC as well as HT-7 and Magnum PSI at heat fluxes up to 3 MW/m2. The next step is demonstrating system viability in full-scale fusion-relevant conditions. In collaboration with a team in Hefei, design and testing has begun for a large scale LiMIT system that will act as a limiter in EAST. The designs improve upon previous versions of LiMIT tested at Illinois and incorporate lessons learned from earlier tests of liquid metal PFCs at EAST. Existing infrastructure is used to load and supply lithium to the system, and the LiMIT trenches will help maintain a smooth, fresh surface as well as aid in propelling the lithium out of direct plasma flux to improve heat transfer. Supported by DOE/ALPS DE-FG02-99ER54515.
NASA Astrophysics Data System (ADS)
Lux, Simon F.; Schmuck, Martin; Appetecchi, Giovanni B.; Passerini, Stefano; Winter, Martin; Balducci, Andrea
In this paper we report the results about the use of ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. Mixtures of N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide, PYR 13FSI, and N-butyl- N-methylpyrrolidinium bis(trifluoromethansulfonyl) imide, PYR 14TFSI, with lithium hexafluorophosphate, LiPF 6 and lithium bis(trifluoromethansulfonyl) imide, LiTFSI, containing 5 wt.% of vinylene carbonate (VC) as additive, have been used in combination with a commercial graphite, KS6 TIMCAL. The performance of the graphite electrodes has been considered in term of specific capacity, cycling efficiency and cycling stability. The results clearly show the advantage of the use of ternary mixtures on the performance of the graphite electrode.
Investigation of tin-lithium eutectic as a liquid plasma facing material
NASA Astrophysics Data System (ADS)
Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar
2016-10-01
Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.
LiCoO2 and SnO2 Thin Film Electrodes for Lithium-Ion Battery Applications
NASA Technical Reports Server (NTRS)
Maranchi, Jeffrey P.; Hepp, Aloysius F.; Kumta, Prashant N.
2004-01-01
There is an increasing need for small dimension, ultra-lightweight, portable power supplies due to the miniaturization of consumer electronic devices. Rechargeable thin film lithium-ion batteries have the potential to fulfill the growing demands for micro-energy storage devices. However, rechargeable battery technology and fabrication processes have not kept paced with the advances made in device technology. Economical fabrication methods lending excellent microstructural and compositional control in the thin film battery electrodes have yet to be fully developed. In this study, spin coating has been used to demonstrate the flexibility of the approach to produce both anode (SnO2) and cathode (LiCoO2) thin films. Results on the microstructure crystal structure and electrochemical properties of the thin film electrodes are described and discussed.
NASA Astrophysics Data System (ADS)
Mazaletskiy, L. A.; Lebedev, M. E.; Mironenko, A. A.; Naumov, V. V.; Novozhilova, A. V.; Fedorov, I. S.; Rudy, A. S.
2017-11-01
Results of studies of the solid electrolyte effect on capacitance of thin-film electrodes on the basis of Si-O-Al and VxOy nanocomposites are presented. The studies were carried out by comparing the charge-discharge characteristics of two pairs of the identical electrodes, one of which was covered by LiPON film, within prototypes with two lithium electrodes - the counter and the reference electrode.
Iron doped LiCoPO4 thin films for lithium-ion microbatteries obtained by ns pulsed laser deposition
NASA Astrophysics Data System (ADS)
Smaldone, A.; Brutti, S.; De Bonis, A.; Ciarfaglia, N.; Santagata, A.; Teghil, R.
2018-07-01
Well crystallized and homogeneous iron doped LiCoPO4 (LCfP) thin films have been grown by ns Pulsed Laser Ablation, at ambient temperature without any substrate heating or post-annealing treatments. The films have been deposited in vacuum and in the presence of buffer gases (O2, Ar) and it has been found that their crystallinity, structure and morphology depend on pressure conditions. The films have been studied by Scanning Electron Microscopy and X Ray Diffraction, while their first steps of growth have been characterized by Transmission Electron Microscopy. A study of the plasma produced by the laser ablation in the different pressure conditions has been carried out with the aim of elucidate the mechanisms involved in the films deposition. LCfP thin films have been also tested as microelectrodes in lithium cells in galvanostatic condition for analyzing the reversibility of the lithium-ion battery.
Broadband X-ray edge-enhancement imaging of a boron fibre on lithium fluoride thin film detector
NASA Astrophysics Data System (ADS)
Nichelatti, E.; Bonfigli, F.; Vincenti, M. A.; Cecilia, A.; Vagovič, P.; Baumbach, T.; Montereali, R. M.
2016-10-01
The white beam (∼6-80 keV) available at the TopoTomo X-ray beamline of the ANKA synchrotron facility (KIT, Karlsruhe, Germany) was used to perform edge-enhancement imaging tests on lithium fluoride radiation detectors. The diffracted X-ray image of a microscopic boron fibre, consisting of tungsten wire wrapped by boron cladding, was projected onto lithium fluoride thin films placed at several distances, from contact to 1 m . X-ray photons cause the local formation of primary and aggregate colour centres in lithium fluoride; these latter, once illuminated under blue light, luminesce forming visible-light patterns-acquired by a confocal laser scanning microscope-that reproduce the intensity of the X-ray diffracted images. The tests demonstrated the excellent performances of lithium fluoride films as radiation detectors at the investigated photon energies. The experimental results are here discussed and compared with those calculated with a model that takes into account all the processes that concern image formation, storing and readout.
The Role of Dissolved Gas in Ionic Liquid Electrolytes for Secondary Lithium Metal Batteries
2013-01-07
devices use lithium-ion batteries comprised of a graphite anode and metal oxide cathode . Lithium, being the third-lightest element, is already synonymous...support shuttling lithium ions (battery cycling) such as the separator, electrolyte, and cathode and anode superstructures contribute most of the...ability of electro-deposit lithium non-dendritically. When lithium is electrodeposited , as during battery charging, it tends to form needle-like
Investigations of Si Thin Films as Anode of Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qingliu; Shi, Bing; Bareño, Javier
Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitablemore » in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.« less
Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan
2017-05-22
Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self‐Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery
Wu, Feng; Chen, Nan; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator‐based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable “nanogelator” that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid‐like apparent ionic conductivity of 2.93 × 10−3 S cm−1 at room temperature. The results show that the nanogelator, which possess self‐regulating ability, is able to immobilize imidazolium‐, pyrrolidinium‐, or piperidinium‐based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti‐nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes. PMID:27774385
Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project)
NASA Astrophysics Data System (ADS)
Balducci, A.; Jeong, S. S.; Kim, G. T.; Passerini, S.; Winter, M.; Schmuck, M.; Appetecchi, G. B.; Marcilla, R.; Mecerreyes, D.; Barsukov, V.; Khomenko, V.; Cantero, I.; De Meatza, I.; Holzapfel, M.; Tran, N.
This manuscript presents the work carried out within the European project ILLIBATT, which was dedicated to the development of green, safe and high performance ionic liquids-based lithium batteries. Different types of ionic liquids-based electrolytes were developed in the project, based on different ionic liquids and polymers. Using these electrolytes, the performance of several anodic and cathodic materials has been tested and promising results have been obtained. Also, electrodes were formulated using water soluble binders. Using these innovative components, lithium-ion and lithium-metal battery prototypes (0.7-0.8 Ah) have been assembled and cycled between 100% and 0% SOC. The results of these tests showed that such ionic liquids-based prototypes are able to display high capacity, high coulombic efficiency and high cycle life. Moreover, safety tests showed that the introduction of these alternative electrolytes positively contribute to the safety of the batteries.
Growth and applicability of radiation-responsive silica nanowires
NASA Astrophysics Data System (ADS)
Bettge, Martin
Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three-phase line with 670-850 mJ-m-2. Our analysis further reveals the existence of an additional force at this line that behaves as a negative line tension (or line energy). Its contribution is relatively small, but important for stable and small nanowire growth. The value of the line tension lies in the range of -0.1 to -1.0 nJ-m-1. Spontaneous alignment of these stranded, free-standing wires toward a source of directional ion irradiation is proposed to be driven by local surface area minimization. An intuitive model for this is provided and experimentally verified through post-growth reorientation of nanowire patterns over a wide range of angles with standard focused ion beam instrumentation. Ion-induced orientation control and modification of nanowire arrays might prove to be a powerful method for nanoscale surface engineering, potentially leading to surfaces with well-organized anisotropic topographies. Another potential application of aligned silica nanowires as templates for highly textured electrodes in lithium-ion batteries is also discussed. As textured thin films are expected to provide better cycle life and enhanced charge transport, their electrochemical performance is compared to planar thin films of equal mass using two secondary materials (amorphous silicon and lithium manganese oxide). Both materials are applied directly onto the wire arrays by conventional deposition tools and galvanostatically cycled against metallic lithium. Textured silicon films, for use as negative materials, show improved capacity retention compared to planar thin films. Capacity fade is found to be relatively constant at about 0.8% per cycle over 30 cycles. Significant charge trapping occurred due to massive formation of a solid-electrolyteinterface. Electrochemical cycling and impedance spectroscopy further demonstrate that kinetic and electrochemical behavior of the electrode is qualitatively similar for planar and for highly textured silicon thin films. Textured films of lithium manganese oxide (LiMn2O4), for use as positive materials, retain their unique texture after 30 cycles, as verified by scanning and transmission electron microscopy. Some accelerated capacity fade is however observed and attributed to chemical dissolution of the oxide material. Frequency-dependent impedances of textured oxide films are lower than those for planar films. These findings suggest that thin film texturing can indeed enhance some of the material's electrochemical performance characteristics and can be applied to a wide range of materials through use of appropriate nanostructured templates. In summary, this dissertation outlines physical and chemical factors leading to the formation of free-standing and uniquely stranded nanowires. It also provides an outlook on how ion-induced nanowire bending and alignment could be exploited. Key technological advantages of the developed process are refractory nanowire growth at low substrate temperatures and the ability to form radiation-responsive nanowire arrays without the use of lithography or templates.
Innovative Ionic Liquids: Electrolytes for Ion Power Sources
2008-01-01
imide–based ILs can function not only as the electrolyte in a conventional lithium ion battery , but also as a solid nanocomposite separator when...conductivity comparable to the pure ionic liquid. Figure 6 shows the charge-discharge behavior of the micro lithium ion battery created entirely by the
Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina
2011-10-01
A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.
A reversible dendrite-free high-areal-capacity lithium metal electrode
Wang, Hui; Matsui, Masaki; Kuwata, Hiroko; Sonoki, Hidetoshi; Matsuda, Yasuaki; Shang, Xuefu; Takeda, Yasuo; Yamamoto, Osamu; Imanishi, Nobuyuki
2017-01-01
Reversible dendrite-free low-areal-capacity lithium metal electrodes have recently been revived, because of their pivotal role in developing beyond lithium ion batteries. However, there have been no reports of reversible dendrite-free high-areal-capacity lithium metal electrodes. Here we report on a strategy to realize unprecedented stable cycling of lithium electrodeposition/stripping with a highly desirable areal-capacity (12 mAh cm−2) and exceptional Coulombic efficiency (>99.98%) at high current densities (>5 mA cm−2) and ambient temperature using a diluted solvate ionic liquid. The essence of this strategy, that can drastically improve lithium electrodeposition kinetics by cyclic voltammetry premodulation, lies in the tailoring of the top solid-electrolyte interphase layer in a diluted solvate ionic liquid to facilitate a two-dimensional growth mode. We anticipate that this discovery could pave the way for developing reversible dendrite-free metal anodes for sustainable battery chemistries. PMID:28440299
High energy supercapattery with an ionic liquid solution of LiClO4.
Yu, Linpo; Chen, George Z
2016-08-15
A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.
Lithium diffusion in sputter-deposited Li4Ti5O12 thin films
NASA Astrophysics Data System (ADS)
Wunde, F.; Berkemeier, F.; Schmitz, G.
2012-10-01
Li4Ti5O12 (LTO) thin films are deposited by dc-ion beam sputtering at different oxygen partial pressures and different substrate temperatures. In order to investigate, how these two parameters influence the atomic structure, the specimens are characterized by X-ray diffraction and transmission electron microscopy. Electrochemical characterization of the films is done by cyclic voltammetry and chrono-potentiometry. To determine an averaged chemical diffusion coefficient of lithium, a method is developed, evaluating c-rate tests. The results obtained by this method are compared to results obtained by the well established galvanostatic intermittent titration technique (GITT), which is used to determine a concentration dependent diffusion coefficient of lithium in LTO.
NASA Advanced Radiator Technology Development
NASA Astrophysics Data System (ADS)
Koester, J. Kent; Juhasz, Albert J.
1994-07-01
A practical implementation of the two-phase working fluid of lithium and NaK has been developed experimentally for pumped loop radiator designs. The benefits of the high heat capacity and low mass of lithium have been integrated with the shutdown capability enabled by the low freezing temperature of NaK by mixing these liquid metals directly. The stable and reliable start up and shutdown of a lithium/NaK pumped loop has been demonstrated through the development of a novel lithium freeze-separation technique within the flowing header ducts. The results of a highly instrumented liquid metal test loop are presented in which both lithium fraction as well as loop gravitational effects were varied over a wide range of values. Diagnostics based on dual electric probes are presented in which the convective behavior of the lithium component is directly measured during loop operation. The uniform distribution of the lithium after a freeze separation is verified by neutron radiography. The operating regime for reliable freeze/thaw flow behavior is described in terms of correlations based on dimensional analysis.
Lithium Circuit Test Section Design and Fabrication
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Garber, Anne
2006-01-01
The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.
Lithium Circuit Test Section Design and Fabrication
NASA Astrophysics Data System (ADS)
Godfroy, Thomas; Garber, Anne; Martin, James
2006-01-01
The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.
A compact self-flowing lithium system for use in an industrial neutron source
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David
2016-10-01
A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.
NASA Astrophysics Data System (ADS)
McKenzie, Iain; Cortie, David L.; Harada, Masashi; Kiefl, Robert F.; Levy, C. D. Philip; MacFarlane, W. Andrew; McFadden, Ryan M. L.; Morris, Gerald D.; Ogata, Shin-Ichi; Pearson, Matthew R.; Sugiyama, Jun
2017-06-01
β -detected NMR (β -NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β -NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of 8Li+ was observed in all of the films above ˜250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3 ±0.2 kJ mol-1 in PEO:LiTFA to 17.8 ±0.2 kJ mol-1 in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in 8Li+ hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.
McKenzie, Iain; Cortie, David L; Harada, Masashi; Kiefl, Robert F; Levy, C D Philip; MacFarlane, W Andrew; McFadden, Ryan M L; Morris, Gerald D; Ogata, Shin-Ichi; Pearson, Matthew R; Sugiyama, Jun
2017-06-28
β-detected NMR (β-NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β-NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of 8 Li + was observed in all of the films above ∼250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3±0.2 kJ mol -1 in PEO:LiTFA to 17.8±0.2 kJ mol -1 in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in 8 Li + hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.
NASA Astrophysics Data System (ADS)
Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.
2012-06-01
High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.
NASA Astrophysics Data System (ADS)
Nakagawa, Hiroe; Fujino, Yukiko; Kozono, Suguru; Katayama, Yoshihiro; Nukuda, Toshiyuki; Sakaebe, Hikari; Matsumoto, Hajime; Tatsumi, Kuniaki
A mixture of flammable organic solvent and nonflammable room temperature ionic liquid (RTIL) has been investigated as a new concept electrolyte to improve the safety of lithium-ion cells. This study focused on the use of N-methyl- N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13-TFSI) as the RTIL for the flame-retardant additive. It was found that a carbon negative electrode, both graphite and hard carbon, could be used with the mixed electrolyte. A 383562-size lithium-ion trial cell made with the mixed electrolyte showed good discharge capacity, which was equivalent to a cell with conventional organic electrolyte up to a discharge current rate of complete discharge in 1 h. Moreover, the mixed electrolyte was observed to be nonflammable at ionic liquid contents of 40 mass% or more. Thus the mixed electrolyte was found to realize both nonflammability and the good discharge performance of lithium-ion cells with carbon negative electrodes. These results indicate that RTILs have potential as a flame-retardant additive for the organic electrolytes used in lithium-ion cells.
Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I
2014-06-01
A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.
Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Lucia, Matthew James
The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance---ascertained from plasma current and density measurements---progressively improved as plasma carbon and oxygen impurity levels fell. This was true for PFC conditioning by vacuum baking and argon glow discharge cleaning, as well as by lithium evaporation. Some evidence suggested that impurity sequestration was more important than hydrogen retention in enhancing LTX plasma performance. In contrast with expectations for lithium PFCs, heating the Li2 O PFCs in LTX caused increased plasma impurity levels that tended to reduce plasma performance.
The Lithium Abundances of a Large Sample of Red Giants
NASA Astrophysics Data System (ADS)
Liu, Y. J.; Tan, K. F.; Wang, L.; Zhao, G.; Sato, Bun'ei; Takeda, Y.; Li, H. N.
2014-04-01
The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s-1. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4 km s-1). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M ⊙) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.
A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
Reyes Jiménez, Antonia; Klöpsch, Richard; Wagner, Ralf; Rodehorst, Uta C; Kolek, Martin; Nölle, Roman; Winter, Martin; Placke, Tobias
2017-05-23
The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.
NREL Scientist Named AAAS Fellow | News | NREL
competition, which includes solar and lithium ion battery car races for middle-school students. Ginley holds a thin films, hybrid organic-inorganic solar cells, fuel cells, and lithium batteries. Many scientists
Gettering capsule for removing oxygen from liquid lithium systems
NASA Technical Reports Server (NTRS)
Tower, L. K.; Breitwieser, R.
1973-01-01
Capsule consisting of tantalum shell lined with tantalum screen and partially filled with lithium and pieces of yttrium is immersed in hot lithium stream. Oxygen is removed from stream by being absorbed by gettering capsule. Oxygen passes through capsule wall and into lithium inside capsule where it reacts with yttrium to form Y2O3.
2016-08-04
BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...Objective • Objective and focus of this work is to develop a – Robust simulation methodology to model lithium - ion based batteries in its module and full...unlimited Lithium Ion Phosphate (LiFePO4) battery cell, module and pack was modeled in LS-DYNA using both Thin Shell Layer (TSL) and Thick Shell
On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells
NASA Astrophysics Data System (ADS)
Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru
2014-08-01
This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.
Pulsed laser deposition of lithium niobate thin films
NASA Astrophysics Data System (ADS)
Canale, L.; Girault-Di Bin, C.; Cosset, F.; Bessaudou, A.; Celerier, A.; Decossas, J.-Louis; Vareille, J.-C.
2000-12-01
Pulsed laser deposition of Lithium Niobate thin films onto sapphire (0001) substrates is reported. Thin films composition and structure have been determined using Rutherford Backscattermg Spectroscopy (RBS) and X-ray diffraction ( XRD) experiments. The influe:nce of deposition parameters such as substrate temperature, oxygen pressure and target to substrate distance on the composition and the structure of the films has been studied. Deposition temperature is found to be an important parameter which enables us to grow LiNbO3 films without the Li deficient phase LiNb3O8. Nearly stoichiometric thin fihns have been obtained for an oxygen pressure of 0. 1 Ton and a substrate temperature of 800°C. Under optimized conditions the (001) preferential orientation of growth, suitable for most optical applications, has been obtained.
The Effect of Oxidation and Charge/Discharge rates on Li Plating in All-Solid-State Batteries
NASA Astrophysics Data System (ADS)
Yulaev, Alexander; Oleshko, Vladimir; Talin, A. Alec; Leite, Marina S.; Kolmakov, Andrei
All-solid-state Li-ion batteries (SSLIBs) is currently an extensive area of research due to their promising specific power and energy density properties. Moreover, SSLIBs significantly mitigate the safety risks of the thermal runaway that may occur in liquid electrolyte batteries. We fabricated a model SSLIB, which consists of LiCoO2 cathode layer, LiPON as an electrolyte, and a model ultra-thin carbon anode. Using in operando scanning electron microscopy in conjunction with electrochemical measurements, we found that depending on ambient oxidizing conditions and charging rate, the morphology of plated lithium alternates between quasi-1D and 3D microstructures. In addition, we were able to use an electron beam as a virtual nano-electrode to selectively control the nucleation rate and Li growth structure during the SSLIB charging with high spatial resolution. Finally, we determined the conditions when lithium may be oxidized even during battery cycling under UHV conditions, leading to significant capacity losses. We foresee that our work will provide deeper insights into a safe SSLIB performance under real world operating conditions.
NASA Astrophysics Data System (ADS)
Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.
2012-08-01
Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.
Method for forming thin composite solid electrolyte film for lithium batteries
NASA Technical Reports Server (NTRS)
Attia, Alan I. (Inventor); Nagasubramanian, Ganesan (Inventor)
1997-01-01
A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a cosolvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.
Method for forming thin composite solid electrolyte film for lithium batteries
NASA Technical Reports Server (NTRS)
Nagasubramanian, Ganesan (Inventor); Attia, Alan I. (Inventor)
1994-01-01
A composite solid electrolyte film is formed by dissolving a lithium salt such as lithium iodide in a mixture of a first solvent which is a co-solvent for the lithium salt and a binder polymer such as polyethylene oxide and a second solvent which is a solvent for the binder polymer and has poor solubility for the lithium salt. Reinforcing filler such as alumina particles are then added to form a suspension followed by the slow addition of binder polymer. The binder polymer does not agglomerate the alumina particles. The suspension is cast into a uniform film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu; Kramer, Dominik, E-mail: dominik.kramer@kit.edu
2016-08-15
The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cyclemore » behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.« less
Black, Jeffrey J; Dolan, Andrew; Harper, Jason B; Aldous, Leigh
2018-06-06
Solvate ionic liquids are a relatively new class of liquids produced by combining a coordinating solvent with a salt. They have a variety of uses and their suitability for such depends upon the ratio of salt to coordinating solvent. This work investigates the Kamlet-Taft solvent parameters of, NMR chemical shifts of nuclei in, and thermoelectrochemistry of a selected set of solvate ionic liquids produced from glymes (methyl terminated oligomers of ethylene glycol) and lithium bis(trifluoromethylsulfonyl)imide at two different compositions. The aim is to improve the understanding of the interactions occurring in these ionic liquids to help select suitable solvate ionic liquids for future applications.
Polat, B D; Keleş, O
2014-05-01
We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.
Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.
2007-01-01
Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal.
Schmitz, Paulo; Jakelski, Rene; Pyschik, Marcelina; Jalkanen, Kirsi; Nowak, Sascha; Winter, Martin; Bieker, Peter
2017-03-09
Ionic liquids (ILs) are considered to be suitable electrolyte components for lithium-metal batteries. Imidazolium cation based ILs were previously found to be applicable for battery systems with a lithium-metal negative electrode. However, herein it is shown that, in contrast to the well-known IL N-butyl-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ([Pyr 14 ][TFSI]), 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C2MIm][TFSI]) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C4MIm][TFSI]) are chemically unstable versus metallic lithium. A lithium-metal sheet was immersed in pure imidazolium-based IL samples and aged at 60 °C for 28 days. Afterwards, the aged IL samples were investigated to deduce possible decomposition products of the imidazolium cation. The chemical instability of the ILs in contact with lithium metal and a possible decomposition starting point are shown for the first time. Furthermore, the investigated imidazolium-based ILs can be utilized for lithium-metal batteries through the addition of the solid-electrolyte interphase (SEI) film-forming additive fluoroethylene carbonate. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrolyte compositions for lithium ion batteries
Sun, Xiao-Guang; Dai, Sheng; Liao, Chen
2016-03-29
The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.
Lithium Dinitramide as an Additive in Lithium Power Cells
NASA Technical Reports Server (NTRS)
Gorkovenko, Alexander A.
2007-01-01
Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with lithium on the surface of the anode to form a beneficial SEI. Apparently, nitrides and oxides that result from reduction of lithium dinitramide on the anode produce a thin, robust SEI different from the SEIs formed from organic SEI promoters. The SEI formed from lithium dinitramide is more electronically insulating than is the film formed in the presence of an otherwise identical electrolyte that does not include lithium dinitramide. SEI promotion with lithium dinitramide is useful in batteries with metallic lithium and lithium alloy anodes.
He, Qing; Williams, Neil J.; Oh, Ju; ...
2018-05-25
LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing; Williams, Neil J.; Oh, Ju
LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less
Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.
Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R
2015-10-14
Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.
NASA Astrophysics Data System (ADS)
Liang, Yinzheng; Ji, Liwen; Guo, Bingkun; Lin, Zhan; Yao, Yingfang; Li, Ying; Alcoutlabi, Mataz; Qiu, Yiping; Zhang, Xiangwu
Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF 6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 × 10 -3 S cm -1. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF 6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g -1 and good cycling performance at 0.2 C rate at room temperature.
Parabolic lithium mirror for a laser-driven hot plasma producing device
Baird, James K.
1979-06-19
A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.
The lithium abundances of a large sample of red giants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y. J.; Tan, K. F.; Wang, L.
2014-04-20
The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s{sup –1}. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4more » km s{sup –1}). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M {sub ☉}) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.« less
Sun, Lin; Su, Tingting; Xu, Lei; Liu, Meipin; Du, Hong-Bin
2016-03-21
Ultra-thin SiO(x) (0 < x < 2) nanosheets were obtained via a convenient solvothermal route from a Zintl compound CaSi2. After carbon coating, the SiOx@C nanosheet anodes exhibit high capacity, good rate and superior cycling performance for high-capacity lithium ion battery applications. The specific capacity can be maintained as high as 760 mA h g(-1) with almost no capacity decay after 400 cycles at a current density of 0.5 A g(-1).
NASA Astrophysics Data System (ADS)
Guo, Shasha; Chen, Yaxin; Shi, Liluo; Dong, Yue; Ma, Jing; Chen, Xiaohong; Song, Huaihe
2018-04-01
In this paper, a low-cost and environmental friendly synthesis strategy is proposed to fabricate nitrogen-doped biomass-based ultra-thin carbon nanosheets (N-CNS) with interconnected framework by using soybean milk as the carbon precursor and sodium chloride as the template. The interconnected porous nanosheet structure is beneficial for lithium ion transportation, and the defects introduced by pyridine nitrogen doping are favorable for lithium storage. When used as the anodes for lithium-ion batteries, the N-CNS electrode shows a high initial reversible specific capacity of 1334 mAh g-1 at 50 mA g-1, excellent rate performance (1212, 555 and 336 mAh g-1 at 0.05, 0.5 and 2 A g-1, respectively) and good cycling stability (355 mAh g-1 at 1 A g-1 after 1000 cycles). Furthermore, this study demonstrates the prospects of biomass and soybean milk, as the potential anode for the application of electrochemical energy storage devices.
Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; ...
2016-05-30
All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte – electrode interfaces will be critical to improve performance. In this paper, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grewmore » in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. Finally, the stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.« less
Interaction of plasmas with lithium and tungsten fusion plasma facing components
NASA Astrophysics Data System (ADS)
Fiflis, Peter Robert
One of the largest outstanding issues in magnetic confinement fusion is the interaction of the fusion plasma with the first wall of the device; an interaction which is strongest in the divertor region. Erosion, melting, sputtering, and deformation are all concerns which inform choices of divertor material. Of the many materials proposed for use in the divertor, only a few remain as promising choices. Tungsten has been chosen as the material for the ITER divertor, and liquid lithium stands poised as its replacement in higher heat flux devices. As a refractory metal, tungsten's large melting point and thermal conductivity as well as its low sputtering yield have led to its selection as the material of choice of the ITER divertor. Experiments have reinforced this choice demonstrating tungsten's ability to withstand large heat fluxes when adequately cooled. However, tungsten has shown a propensity to nanostructure under exposure within a certain temperature range to large fluxes of helium ions. These nanostructures if disrupted into the plasma as dust by an off-normal event would cause quenching of the plasma from the generated dust. Liquid lithium, meanwhile, has gathered growing interest within the fusion community in recent years as a divertor, limiter, and alternative first wall material. Liquid lithium is attractive as a low-Z material replacement for refractory metals due to its ability to getter impurities, while also being self-healing in nature. However, concerns exist about the stability of a liquid metal surface at the edge of a fusion device. Liquid metal pools, such as the Li-DiMes probe, have shown evidence of macroscopic lithium displacement as well as droplet formation and ejection into the plasma. These issues must be mitigated in future implementations of liquid lithium divertor concepts. Rayleigh-Taylor-like (RT) and Kelvin-Helmholtz-like (KH) instabilities have been claimed as the initiators of droplet ejection, yet not enough data exists to delineate a stability boundary. The influences of plasma pressure and current driven instabilities on lithium surfaces that lead to droplet ejection are investigated to determine which of the two effects is dominant for a given set of plasma conditions. This work studies the influence of large plasma fluxes on these two materials to better inform the selection and design of plasma facing components (PFCs). The nanostructuring of tungsten was investigated to determine the mechanisms by which tungsten nanostructures so that its formation may be mitigated. Experiments investigated the dependence of nanostructuring on temperature, looked at the morphological evolution, and grew nanostructures on a variety of metals to examine their similarity to tungsten. Additionally, a computational model is presented for the initial stages of fuzz formation showing good quantitative and qualitative agreement with experimental observations. The influences of RT and KH instabilities on the surface of liquid lithium were experimentally observed and quantified on the ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) chamber at the University of Illinois at Urbana-Champaign and the stabilizing effect of surface tension, an effect employed by the LiMIT concept as well as other liquid lithium concepts, was studied, and the stability boundary afforded by surface tension was compared between experiment, computational simulation, and theory.
NASA Astrophysics Data System (ADS)
Yang, Jae-Young; El-Genk, M. S.
1991-07-01
The effects of shrinkage void forming during freezing of lithium and lithium-fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.
NASA Technical Reports Server (NTRS)
Yang, Jae Y.; El-Genk, Mohamed S.
1991-01-01
The effects of shrinkage void forming during freezing of lithium and lithium fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.
Survey of Commercial Small Lithium Polymer Batteries
2007-09-19
by a liquid electrolyte which is made conductive for Li ions by the addition of a salt such as lithium hexafluorophosphate (LiPF6). The...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--07-9073 Survey of Commercial Small Lithium Polymer Batteries September 19, 2007... Lithium Polymer Batteries Arnold M. Stux and Karen Swider-Lyons Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5320 NRL/MR
Recycling positive-electrode material of a lithium-ion battery
Sloop, Steven E.
2017-11-21
Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.
Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li 3N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kyusung; Goodenough, John B.
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li 3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li 3N particle is without dendrite nucleation. The Li 3N particles create amore » higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li 3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm -2 for more than 100 cycles. In this paper, the origin of the bonding responsible for wetting of the Li 3N particles by lithium and for plating through a Li 3N particle is discussed.« less
Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li 3N
Park, Kyusung; Goodenough, John B.
2017-07-10
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li 3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li 3N particle is without dendrite nucleation. The Li 3N particles create amore » higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li 3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm -2 for more than 100 cycles. In this paper, the origin of the bonding responsible for wetting of the Li 3N particles by lithium and for plating through a Li 3N particle is discussed.« less
Lithium-Metal Infused Trenches: Progress toward a Divertor Solution
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Fiflis, P.; Christenson, M.; Szott, M.; Xu, W.; Jung, S.; Morgan, T. W.; Kalathiparambil, K.
2014-10-01
The application of liquid metal, especially liquid lithium, as a plasma facing component (PFC) has the capacity to offer a strong alternative to solid PFCs by reducing damage concerns and enhancing plasma performance. The Liquid-Metal Infused Trenches (LiMIT) concept is a liquid metal divertor alternative which employs thermoelectric current from either plasma or external heating in tandem with the toroidal field to self-propel liquid lithium through a series of trenches. LiMIT has been tested in several devices, namely HT-7, the UIUC SLiDE and TELS facilities and Magnum PSI at heat fluxes of up to 3 MW/m-2. Results of these experiments, including velocity and temperature measurements, power handling considerations, and preliminary vapor shielding results will be discussed, focusing on the 117 shots performed at Magnum scanning magnetic fields and heat fluxes up to ~ 0.3 T and 3 MW/m-2. Concerns over tritium retention and MHD droplet ejection will additionally be addressed. LiMIT has also been proposed to function as a limiter on the EAST moveable limiter arm and tests have been performed with a prototype module inclined at various angles.
Vella, Joseph R.; Stillinger, Frank H.; Panagiotopoulos, Athanassios Z.; ...
2015-07-23
Here, we compare six lithium potentials by examining their ability to predict coexistence properties and liquid structure using molecular dynamics. All potentials are of the embedded-atom-method (EAM) type. The coexistence properties we focus on are the melting curve, vapor pressure, saturated liquid density, and vapor-liquid surface tension. For each property studied, the simulation results are compared to available experimental data in order to properly assess the accuracy of each potential. We find that the Cui 2NN MEAM is the most robust potential, giving adequate agreement with most of the properties examined. For example, the zero-pressure melting point of this potentialmore » is shown to be around 443 K, while experimentally is it about 454 K. This potential also gives excellent agreement with saturated liquid densities, even though no liquid properties were used in the fitting procedure. Our study allows us to conclude that the Cui 2NN MEAM should be used for further simulations of lithiums.« less
NASA Astrophysics Data System (ADS)
Dinh, L. N.; Grant, D. M.; Schildbach, M. A.; Smith, R. A.; Siekhaus, W. J.; Balazs, B.; Leckey, J. H.; Kirkpatrick, J. R.; McLean, W.
2005-12-01
Due to the exothermic reaction of lithium hydride (LiH) salt with water during transportation and handling, there is always a thin film of lithium hydroxide (LiOH) present on the LiH surface. In dry or vacuum storage, this thin LiOH film slowly decomposes. The technique of temperature-programmed reaction/decomposition (TPR) was employed in combination with the isoconversion method of thermal analysis to determine the outgassing kinetics of H 2O from pure LiOH and H 2 and H 2O from this thin LiOH film. H 2 production via the reaction of LiH with LiOH, forming a lithium oxide (Li 2O) interlayer, is thermodynamically favored, with the rate of further reaction limited by diffusion through the Li 2O and the stability of the decomposing LiOH. Lithium hydroxide at the LiOH/vacuum interface also decomposes easily to Li 2O, releasing H 2O which subsequently reacts with LiH in a closed system to form H 2. At the onset of dry decomposition, where H 2 is the predominant product, the activation energy for outgassing from a thin LiOH film is lower than that for bulk LiOH. However, as the reactions at the LiH/Li 2O/LiOH and at the LiOH/vacuum interfaces proceed, the overall activation energy barrier for the outgassing approaches that of bulk LiOH decomposition. The kinetics developed here predict a hydrogen evolution profile in good agreement with hydrogen release observed during long term isothermal storage.
Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)
NASA Astrophysics Data System (ADS)
Allain, Jean Paul; Taylor, Chase N.
2012-05-01
The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.
Liquid-free rechargeable Li polymer battery
NASA Astrophysics Data System (ADS)
Matsui, S.; Muranaga, T.; Higobashi, H.; Inoue, S.; Sakai, T.
Safety is a key concern for high-power energy storage systems such as will be required for electric vehicles. Present lithium ion batteries, which use a flammable organic liquid electrolyte, lack inherent safety. Our approach in solving this problem is to replace the liquid electrolyte with a liquid-free polymer electrolyte. Data of the composition of the positive electrode, charge-discharge and cycle-life capability are presented. The cell using metallic lithium anode and crosslinked polymer electrolyte P(EO/MEEGE/AGE)-LiTFSI showed a discharge capacity of 134 mAh g -1 of LiCoO 2 at 60°C and 140 mAh g -1 at 140°C.
NASA Astrophysics Data System (ADS)
Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong
2017-12-01
Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.
NASA Astrophysics Data System (ADS)
Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi
2012-07-01
Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.
Magnetic diagnostics for the lithium tokamak experiment.
Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L
2008-10-01
The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions.
Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.
Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide M; Zhang, Heng; Armand, Michel
2017-11-27
Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN 3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO 3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucia, Matthew James
The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experimentmore » (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (d ~ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H2 within minutes. For impurity sequestration, LTX plasma performance—ascertained from plasma current and density measurements—progressively improved as plasma carbon and oxygen impurity levels fell. This was true for PFC conditioning by vacuum baking and argon glow discharge cleaning, as well as by lithium evaporation. Some evidence suggested that impurity sequestration was more important than hydrogen retention in enhancing LTX plasma performance. In contrast with expectations for lithium PFCs, heating the Li2O PFCs in LTX caused increased plasma impurity levels that tended to reduce plasma performance.« less
In situ TEM study of the Li-Au reaction in an electrochemical liquid cell.
Zeng, Zhiyuan; Liang, Wen-I; Chu, Ying-Hao; Zheng, Haimei
2014-01-01
We study the lithiation of a Au electrode in an electrochemical liquid cell using transmission electron microscopy (TEM). The commercial liquid electrolyte for lithium ion batteries (1 M lithium hexafluorophosphate LiPF6 dissolved in 1 : 1 (v/v) ethylene carbonate (EC) and diethyl carbonate (DEC)) was used. Three distinct types of morphology change during the reaction, including gradual dissolution, explosive reaction and local expansion/shrinkage, are observed. It is expected that significant stress is generated from lattice expansion during lithium-gold alloy formation. There is vigorous bubble formation from electrolyte decomposition, likely due to the catalytic effect of Au, while the bubble generation is less severe with titanium electrodes. There is an increase of current in response to electron beam irradiation, and electron beam effects on the observed electrochemical reaction are discussed.
Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.
2009-01-01
Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.
Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic
2013-05-28
Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil
2016-06-08
Unimolecular and collision-induced dissociation of doubly charged lithium acetate clusters, (CH3COOLi)nLi22+, demonstrated that Coulomb fission via charge separation is the dominant dissociation process with no contribution from the neutral evaporation processes for all such ions from the critical limit to larger cluster ions, although latter process have normally been observed in all earlier studies. These results are clearly in disagreement with the Rayleigh’s liquid drop model that has been used successfully to predict the critical size and explain the fragmentation behavior of multiply charged clusters.
Electromagnetic Pumps for Liquid Metal-Fed Electric Thrusters
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Markusic, Thomas E.
2007-01-01
Prototype designs of two separate pumps for use in electric propulsion systems with liquid lithium and bismuth propellants are presented. Both pumps are required to operate at elevated temperatures, and the lithium pump must additionally withstand the corrosive nature of the propellant. Compatibility of the pump materials and seals with lithium and bismuth were demonstrated through proof-of-concept experiments followed by post-experiment visual inspections. The pressure rise produced by the bismuth pump was found to be linear with input current and ranged from 0-9 kPa for corresponding input current levels of 0-30 A, showing good quantitative agreement with theoretical analysis.
Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.
2017-06-06
Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.
NASA Astrophysics Data System (ADS)
Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan
2017-03-01
Lithium-sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium-sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density.
Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; ...
2014-11-26
A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAhg- 1 (second cycle) by using 40% 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-Npropylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60% 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower thanmore » that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAhg 1 even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity.« less
Electromagnetic Pumps for Conductive-Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado
2005-01-01
Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.
Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.
The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages overmore » some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.« less
Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress.
Li, Sa; Jiang, Mengwen; Xie, Yong; Xu, Hui; Jia, Junyao; Li, Ju
2018-04-01
Lithium metal anodes are potentially key for next-generation energy-dense batteries because of the extremely high capacity and the ultralow redox potential. However, notorious safety concerns of Li metal in liquid electrolytes have significantly retarded its commercialization: on one hand, lithium metal morphological instabilities (LMI) can cause cell shorting and even explosion; on the other hand, breaking of the grown Li arms induces the so-called "dead Li"; furthermore, the continuous consumption of the liquid electrolyte and cycleable lithium also shortens cell life. The research community has been seeking new strategies to protect Li metal anodes and significant progress has been made in the last decade. Here, an overview of the fundamental understandings of solid electrolyte interphase (SEI) formation, conceptual models, and advanced real-time characterizations of LMI are presented. Instructed by the conceptual models, strategies including increasing the donatable fluorine concentration (DFC) in liquid to enrich LiF component in SEI, increasing salt concentration (ionic strength) and sacrificial electrolyte additives, building artificial SEI to boost self-healing of natural SEI, and 3D electrode frameworks to reduce current density and delay Sand's extinction are summarized. Practical challenges in competing with graphite and silicon anodes are outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical modification of electrolytes for lithium batteries
NASA Astrophysics Data System (ADS)
Afanas'ev, Vladimir N.; Grechin, Aleksandr G.
2002-09-01
Modern approaches to modifying chemically electrolytes for lithium batteries are analysed with the aim of optimising the charge-transfer processes in liquid-phase and solid (polymeric) media. The main regularities of transport properties of lithium electrolyte solutions containing complex (encapsulated) ions in aprotic solvents and polymers are discussed. The prospects for the development of electrolytic solvosystems with the chain (ionotropic) mechanism of conduction with respect to lithium ions are outlined. The bibliography includes 126 references.
Design and Fabrication of the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid
2006-10-01
The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubasov, I. V., E-mail: kubasov.ilya@gmail.com; Kislyuk, A. M.; Bykov, A. S.
The bidomain structures produced by light external heating in z-cut lithium niobate and lithium tantalate single crystals are formed and studied. Interdomain regions about 200 and 40 μm wide in, respectively, LiNbO{sub 3} and LiTaO{sub 3} bidomain crystals are visualized and studied by optical microscopy and piezoresponse force microscopy. Extended chains and lines of domains in the form of thin layers with a width less than 10 μm in volume, which penetrate the interdomain region and spread over distances of up to 1 mm, are found.
Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi
2016-06-29
Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency.
Heteroaromatic-based electrolytes for lithium and lithium-ion batteries
Cheng, Gang; Abraham, Daniel P.
2017-04-18
The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, J.; Zuo, G. Z.; Hu, J. S.
2015-02-15
A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thinmore » flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.« less
NASA Astrophysics Data System (ADS)
Li, Weiqun
The lithium ion diffusion behavior and mechanism in the glassy electrolyte and the electrolyte/cathode interface during the initial stage of lithium ion diffusing from electrolyte into cathode were investigated using Molecular Dynamics simulation technique. Lithium aluminosilicate glass electrolytes with different R (ratio of the concentration of Al to Li) were simulated. The structural features of the simulated glasses are analyzed using Radial Distribution Function (RDF) and Pair Distribution Function (PDF). The diffusion coefficient and activation energy of lithium ion diffusion in simulated lithium aluminosilicate glasses were calculated and the values are consistent with those in experimental glasses. The behavior of lithium ion diffusion from the glassy electrolyte into a polycrystalline layered intercalation cathode has been studied. The solid electrolyte was a model lithium silicate glass while the cathode was a nanocrystalline vanadia with amorphous V2O5 intergranular films (IGF) between the V2O5 crystals. Two different orientations between the V2O5 crystal planes are presented for lithium ion intercalation via the amorphous vanadia IGF. A series of polycrystalline vanadia cathodes with 1.3, 1.9, 2.9 and 4.4 nm thickness IGFs were simulated to examine the effects of the IGF thickness on lithium ion transport in the polycrystalline vanadia cathodes. The simulated results showed that the lithium ions diffused from the glassy electrolyte into the IGF of the polycrystalline vanadia cathode and then part of those lithium ions diffused into the crystalline V2O5 from the IGF. The simulated results also showed an ordering of the vanadium ion structure in the IGF near the IGF/V2 O5 interface. The ordering structure still existed with glass former silica additive in IGF. Additionally, 2.9 run is suggested to be the optimal thickness of the IGF, which is neither too thick to decrease the capacity of the cathode nor too thin to impede the transport of lithium from glassy electrolyte into the cathode. Parallel molecular dynamic simulation technique was also used for a larger electrolyte/cathode interface system, which include more atoms and more complicated microstructures. Simulation results from larger electrolyte/cathode interface system prove that there is no size effect on simulation of smaller electrolyte/cathode interface system from statistical point of view.
Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery
Neudecker, Bernd J.; Bates, John B.
2001-01-01
Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.
Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions
NASA Technical Reports Server (NTRS)
Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)
2014-01-01
Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.
2015-01-01
Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.
Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery
2011-11-01
Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery Johanna K. Star 1 , Yi Ding 2 , and Paul A. Kohl ,1, * 1...Journal Article 3. DATES COVERED 01-11-2011 to 01-11-2011 4. TITLE AND SUBTITLE DENDRITE-FREE ELECTRODEPOSITION AND REOXIDATION OF LITHIUM-SODIUM...Results and Discussion The initial ionic liquid selection was driven by the need to electrodeposit sodium and lithium from the same electrolyte
2004-09-16
published in non peer-reviewed journals: 1. Gross, SM, Hamilton JL. "Polymer Gels for Use in Lithium Polymer Batteries", Nebraska Academy of Science...a process for the anionic polymerization of styrene and methyl methacrylate in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ...Current polymer electrolyte composites used for these applications typically comprise polyethers with ethylene carbonate solvents containing lithium
Electrolyte and Electrode Passivation for Thin Film Batteries
NASA Technical Reports Server (NTRS)
West, W.; Whitacre, J.; Ratnakumar, B.; Brandon, E.; Blosiu, J.; Surampudi, S.
2000-01-01
Passivation films for thin film batteries have been prepared and the conductivity and voltage stability window have been measured. Thin films of Li2CO3 have a large voltage stability window of 4.8V, which facilitates the use of this film as a passivation at both the lithium anode-electrolyte interface at high cathodic potentials.
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
Molecular dynamics simulations of bubble formation and cavitation in liquid metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insepov, Z.; Hassanein, A.; Bazhirov, T. T.
2007-11-01
Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly stretched region of the liquid phase diagram;more » and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-2700 K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory (CNT).« less
Woolley, Robert D.
2002-01-01
A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...
2017-04-10
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Liquid surface skimmer apparatus for molten lithium and method
Robinson, Samuel C.; Pollard, Roy E.; Thompson, William F.; Stark, Marshall W.; Currin, Jr., Robert T.
1995-01-01
This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.
The Twentieth International Symposium on Molten Salts and Ionic Liquids
2016-11-29
Heterocyclic Carbene Involved?" by Hyung Kim "Carbon Dioxide Absorption Behavior and Cabronate Ion Transport of Lithium Orthosilicate/Molten Carbonate...K. Gemmell, K. Johnson, A. East 575 Lithium Ion Conduction in Single Lithium Perfluorosulfonylamides K. Kubota, H. Matsumoto 585...energy applications (e.g., batteries , fuel cells, semiconductors, photovoltaics, and phase change energy storage); (3) rare earth and nuclear chemistry
De Jonghe, Lutgard C.; Visco, Steven J.; Liu, Meilin; Mailhe, Catherine C.
1990-01-01
A lithium/organosulfur redox cell is disclosed which comprises a solid lium anode, a liquid organosulfur cathode, and a barrier layer formed adjacent a surface of the solid lithium anode facing the liquid organosulfur cathode consisting of a reaction product of the lithium anode with the organosulfur cathode. The organosulfur cathode comprises a material having the formula (R(S).sub.y).sub.N where y=1 to 6, n=2 to 20 and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the linear chain may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.
Status of National Spherical Torus Experiment Liquid Lithium Divertor
NASA Astrophysics Data System (ADS)
Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.
2009-11-01
Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.
Li, Zhen-Yu; Zhang, Sha-Sha; Jie-Xing; Qin, Xue-Mei
2015-01-01
In this study, an ionic liquids (ILs) based extraction approach has been successfully applied to the extraction of essential oil from Farfarae Flos, and the effect of lithium chloride was also investigated. The results indicated that the oil yields can be increased by the ILs, and the extraction time can be reduced significantly (from 4h to 2h), compared with the conventional water distillation. The addition of lithium chloride showed different effect according to the structures of ILs, and the oil yields may be related with the structure of cation, while the chemical compositions of essential oil may be related with the anion. The reduction of extraction time and remarkable higher efficiency (5.41-62.17% improved) by combination of lithium salt and proper ILs supports the suitability of the proposed approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.
Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano
2015-03-18
In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.
Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David
2014-10-01
An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.
Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M
2015-12-01
A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng
2015-01-01
A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAh g(-1) (second cycle) by using 40 % 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60 % 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower than that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAh g(-1) even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.
Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei
2018-04-09
Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.
Reduced Dimensionality Lithium Niobate Microsystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenfield, Matt
2017-01-01
The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO 3 ). Section 1 provides an introduction to integrated LiNbO 3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO 3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbOmore » 3 structures fabricated from LiNbO 3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.« less
Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei
2018-02-16
Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.
Navarra, Maria Assunta; Fujimura, Kanae; Sgambetterra, Mirko; Tsurumaki, Akiko; Panero, Stefania; Nakamura, Nobuhumi; Ohno, Hiroyuki; Scrosati, Bruno
2017-06-09
Here, two ionic liquids, N-ethoxyethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (M 1,2O2 TFSI) and N-ethoxyethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (P 1,2O2 TFSI) were synthesized and compared. Fundamental relevant properties, such as thermal and electrochemical stability, density, and ionic conductivity were analyzed to evaluate the effects caused by the presence of the ether bond in the side chain and/or in the organic cation ring. Upon lithium salt addition, two electrolytes suitable for lithium batteries applications were found. Higher conducting properties of the piperidinium-based electrolyte resulted in enhanced cycling performances when tested with LiFePO 4 (LFP) cathode in lithium cells. When mixing the P 1,2O2 TFSI/LiTFSI electrolyte with a tailored alkyl carbonate mixture, the cycling performance of both Li and Li-ion cells greatly improved, with prolonged cyclability delivering very stable capacity values, as high as the theoretical one in the case of Li/LFP cell configurations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-05-07
6 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic...Cl, Br, or I) Prepared by Ball-Milling and Used as Anode Materials for Lithium - Ion Batteries ……………....................23 3.4 Well-Defined Two...9 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes
Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages.
Petronico, Aaron; Moneypenny, Timothy P; Nicolau, Bruno G; Moore, Jeffrey S; Nuzzo, Ralph G; Gewirth, Andrew A
2018-06-20
We demonstrate that solid-liquid nanocomposites derived from porous organic cages are effective lithium ion electrolytes at room temperature. A solid-liquid electrolyte nanocomposite (SLEN) fabricated from a LiTFSI/DME electrolyte system and a porous organic cage exhibits ionic conductivity on the order of 1 × 10 -3 S cm -1 . With an experimentally measured activation barrier of 0.16 eV, this composite is characterized as a superionic conductor. Furthermore, the SLEN displays excellent oxidative stability up to 4.7 V vs Li/Li + . This simple three-component system enables the rational design of electrolytes from tunable discrete molecular architectures.
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Kerr, Robert; Forsyth, Maria
2018-05-01
Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.
An advanced lithium-air battery exploiting an ionic liquid-based electrolyte.
Elia, G A; Hassoun, J; Kwak, W-J; Sun, Y-K; Scrosati, B; Mueller, F; Bresser, D; Passerini, S; Oberhumer, P; Tsiouvaras, N; Reiter, J
2014-11-12
A novel lithium-oxygen battery exploiting PYR14TFSI-LiTFSI as ionic liquid-based electrolyte medium is reported. The Li/PYR14TFSI-LiTFSI/O2 battery was fully characterized by electrochemical impedance spectroscopy, capacity-limited cycling, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results of this extensive study demonstrate that this new Li/O2 cell is characterized by a stable electrode-electrolyte interface and a highly reversible charge-discharge cycling behavior. Most remarkably, the charge process (oxygen oxidation reaction) is characterized by a very low overvoltage, enhancing the energy efficiency to 82%, thus, addressing one of the most critical issues preventing the practical application of lithium-oxygen batteries.
Ionic liquid electrolytes for Li-air batteries: lithium metal cycling.
Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano
2014-05-08
In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.
Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling
Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano
2014-01-01
In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li–air cells. PMID:24815072
Composite anode for lithium ion batteries
de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.
2018-03-06
A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
Thin film polymeric gel electrolytes
Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.
1996-01-01
Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.
Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes.
Abel, Paul R; Chockla, Aaron M; Lin, Yong-Mao; Holmberg, Vincent C; Harris, Justin T; Korgel, Brian A; Heller, Adam; Mullins, C Buddie
2013-03-26
Both silicon and germanium are leading candidates to replace the carbon anode of lithium ions batteries. Silicon is attractive because of its high lithium storage capacity while germanium, a superior electronic and ionic conductor, can support much higher charge/discharge rates. Here we investigate the electronic, electrochemical and optical properties of Si(1-x)Gex thin films with x = 0, 0.25, 0.5, 0.75, and 1. Glancing angle deposition provided amorphous films of reproducible nanostructure and porosity. The film's composition and physical properties were investigated by X-ray photoelectron spectroscopy, four-point probe conductivity, Raman, and UV-vis absorption spectroscopy. The films were assembled into coin cells to test their electrochemical properties as a lithium-ion battery anode material. The cells were cycled at various C-rates to determine the upper limits for high rate performance. Adjusting the composition in the Si(1-x)Gex system demonstrates a trade-off between rate capability and specific capacity. We show that high-capacity silicon anodes and high-rate germanium anodes are merely the two extremes; the composition of Si(1-x)Gex alloys provides a new parameter to use in electrode optimization.
Glassy materials for lithium batteries: electrochemical properties and devices performances
NASA Astrophysics Data System (ADS)
Duclot, Michel; Souquet, Jean-Louis
Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as -10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm -2 with over 10 4 charge-discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.
NASA Astrophysics Data System (ADS)
Borodin, Oleg
2010-03-01
Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.
Ceramic-metal seals for advanced battery systems. [sodium sulfur and lithium sulfur batteries
NASA Technical Reports Server (NTRS)
Reed, L.
1978-01-01
The search for materials which are electrochemically compatible with the lithium sulfur and sodium sulfur systems is discussed. The use liquid or braze alloys, titanium hydrite coatings, and tungsten yttria for bonding beryllium with ceramic is examined.
Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin
2017-06-06
The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.
Electrochemical Capacities of Commercially Available Structural Carbon Fibers, Fabrics, and Papers
2008-09-01
Hollingsworth & Vose. A liquid electrolyte of ethylene carbonate: ethyl methyl carbonate (3:7 by weight) with 1.0 M lithium hexafluorophosphate (LiPF6) was...fiber pulp COTS commercial off-the-shelf Da dalton FE-SEM Field Emission Scanning Electron Microscope LiPF6 lithium hexafluorophosphate MWNT...material for anodes in modern technologies, particularly in lithium -ion batteries and electrochemical supercapacitors. Graphitic carbon allows for
NASA Astrophysics Data System (ADS)
Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang
2014-12-01
Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10-8 S cm-1 at 323 K with ˜0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10-8 S cm-1 at 26 °C (299 K).
Hot filament technique for measuring the thermal conductivity of molten lithium fluoride
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Perry, William D.
1990-01-01
Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.
Liu, Zaizhi; Gu, Huiyan; Yang, Lei
2015-10-23
Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.
A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
Fang, Xin; Peng, Huisheng
2015-04-01
As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Diwan, Ravinder M.
1989-01-01
The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.
Method of preparing thin film polymeric gel electrolytes
Derzon, Dora K.; Arnold, Jr., Charles
1997-01-01
Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.
Ready fabrication of thin-film electrodes from building nanocrystals for micro-supercapacitors.
Chen, Zheng; Weng, Ding; Wang, Xiaolei; Cheng, Yanhua; Wang, Ge; Lu, Yunfeng
2012-04-18
Thin-film pseudocapacitor electrodes with ultrafast lithium storage kinetics, high capacitance and excellent cycling stability were fabricated from monodispersed TiO(2) building nanocrystals, providing a novel approach towards next-generation micro-supercapacitor applications. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Eliseeva, O. I.; Fedirko, V. N.; Chernov, V. M.; Zavialsky, L. P.
2000-12-01
The effect of V-(0-70)Ti-(0-30)Cr (at.%) compositions on their compatibility with nitrogen-containing lithium (0.0015-0.67 at.% N) at 7000°C under steady-state test conditions and long-term contact with lithium (up to 2000 h) has been studied. The conditions for formation and stable coexistence of nitride layers on the surface of various compositions under variable nitrogen concentration in lithium have been defined. The V-(8-10)Ti-(4-5)Cr compositions showed the best characteristics from the standpoint of corrosion resistance, nitride layer stability under conditions of variable nitrogen concentration in lithium, and the possibility of 'in situ' protective nitride layer formation.
Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng
2018-04-30
Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.
High performance sandwich structured Si thin film anodes with LiPON coating
NASA Astrophysics Data System (ADS)
Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao
2018-06-01
The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.
High performance sandwich structured Si thin film anodes with LiPON coating
NASA Astrophysics Data System (ADS)
Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao
2018-04-01
The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.
Ambient temperature secondary lithium cells containing inorganic electrolyte
NASA Astrophysics Data System (ADS)
Schlaikjer, Carl R.
The history and current status of rechargeable lithium cells using electrolytes based on liquid sulfur dioxide are reviewed. Three separate approaches currently under development include lithium/lithium dithionite/carbon cells with a supporting electrolyte salt; lithium/cupric chloride cells using sulfur dioxide/lithium tetrachloroaluminate; and several adaptations of a lithium/carbon cell using sulfur dioxide/lithium tetrachloroaluminate in which the discharge reaction involves the incorporation of aluminum into the positive electrode. The latter two chemistries have been studied in prototype hardware. For AA size cells with cupric chloride, 157 Whr/1 at 24 W/1 for 230 cycles was reported. For AA size cells containing 2LiCl-CaCl2-4AlCl3-12SO2, energy densities as high as 265 Whr/liter and 100 Whr/kg have been observed, but, at 26 W/1, for only 10 cycles. The advantages and remaining problems are discussed.
Safer Electrolytes for Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Kejha, Joe; Smith, Novis; McCloseky, Joel
2004-01-01
A number of nonvolatile, low-flammability liquid oligomers and polymers based on aliphatic organic carbonate molecular structures have been found to be suitable to be blended with ethylene carbonate to make electrolytes for lithium-ion electrochemical cells. Heretofore, such electrolytes have often been made by blending ethylene carbonate with volatile, flammable organic carbonates. The present nonvolatile electrolytes have been found to have adequate conductivity (about 2 mS/cm) for lithium ions and to remain liquid at temperatures down to -5 C. At normal charge and discharge rates, lithiumion cells containing these nonvolatile electrolytes but otherwise of standard design have been found to operate at current and energy densities comparable to those of cells now in common use. They do not perform well at high charge and discharge rates -- an effect probably attributable to electrolyte viscosity. Cells containing the nonvolatile electrolytes have also been found to be, variously, nonflammable or at least self-extinguishing. Hence, there appears to be a basis for the development of safer high-performance lithium-ion cells.
Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.
2007-01-01
Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.
NASA Astrophysics Data System (ADS)
Lin, Chun-Cheng; Chen, Chan-Ching; Weng, Chung-Ming; Chu, Sheng-Yuan; Hong, Cheng-Shong; Tsai, Cheng-Che
2015-02-01
Highly (100/110) oriented lead-free Lix(Na0.5K0.5)1-xNbO3 (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO2/Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (Pr = 14.3 μC/cm2), piezoelectric coefficient (d33 = 48.1 pm/V), and leakage current (<10-5 A/cm2) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields.
NASA Astrophysics Data System (ADS)
Chen, Xuefang; Huang, Ying; Li, Tianpeng; Wei, Chao; Yan, Jing; Feng, Xuansheng
2017-05-01
Novel hierarchical flower-like Sn3O4 assembled by thin Sn3O4 nanosheets, as a kind of mixed-valence tin oxide, decorated on two-dimensional graphene nanosheets has been synthesized via a hydrothermal route and a step solution deoxidization technique. More importantly, as the anode materials for lithium ion batteries, the flower-like Sn3O4/graphene composite has not been investigated in detail. Noticeably, the nanosheets stemming from flower-like Sn3O4 and graphene have been linked together to form a specials three dimensional structure, possessing high active surface area and large enough inner spaces, which is benefit to the diffusion of liquid electrolyte into the electrode materials. In addition, the special structure could provide sufficient free volume to buffer the volume expansion appeared in the process of discharging and charging. The as-prepared flowers-like Sn3O4/graphene displayed excellent electrochemical performance with high capacity and good cycling stability as anode materials for lithium ion batteries. The discharge capacity is 1727 mAh/g in the first cycle at the current density of 60 mA/g. The obtained reversible capacity is 631mAh/g with a coulomb efficiency of 97.04% after 50 cycles. With its better electrochemical properties, the as-prepared flowers-like Sn3O4/graphene has the potential to be the next generation materials as an environmentally benign, abundant, cheap anode materials for lithium ion batteries.
Advantages and Challenges of Radiative Liquid Lithium Divertor
NASA Astrophysics Data System (ADS)
Ono, Masayuki
2017-10-01
Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid Li divertor (RLLD) concept and its variant, the active liquid Li divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest Li-loop could provide a possible solution for the outstanding fusion reactor technology issues such as divertor heat flux mitigation and real time dust removal, while potentially improving the reactor plasma performance. Laboratory tests are also planned to investigate the Li-T recover efficiency and other relevant research topics of the RLLD. This work supported by DoE Contract No. DE-AC02-09CH11466.
Tunable liquid microlens array driven by pyroelectric effect: full interferometric characterization
NASA Astrophysics Data System (ADS)
Miccio, Lisa; Grilli, Simonetta; Vespini, Veronica; Ferraro, Pietro
2008-09-01
Liquid lenses with adjustable focal length are of great interest in the field of microfluidic devices. They are, usually, realized by electrowetting effect after electrodes patterning on a hydrofobic substrate. Applications are possible in many fields ranging from commercial products such as digital cameras to biological cell sorting. We realized an open array of liquid lenses with adjustable focal length without electrode patterning. We used a z-cut Lithium Niobate crystal (LN) as substrate and few microliters of an oily substance to obtain the droplets array. The spontaneous polarization of LN crystals is reversed by the electric field poling process, thus enabling the realization of periodically poled LN (PPLN) crystals. The substrate consists of a two-dimensional square array of reversed domains with a period around 200 μm. Each domain presents an hexagonal geometry due to the crystal structure. PPLN is first covered by a thin and homogeneous layer of the above mentioned liquid and therefore its temperature is changed by means of a digitally controlled hot plate. During heating and cooling process there is a rearrangement of the liquid layer until it reaches the final topography. Lenses formation is due to the superficial tension changing at the liquid-solid interface by means of the pyroelectric effect. Such effect allows to create a two-dimensional lens pattern of tunable focal length without electrodes. The temporal evolution of both shape and focal length lenses are quantitatively measured by Digital Holographic Microscopy. Array imaging properties and quantitative analysis of the lenses features and aberrations are presented.
NASA Astrophysics Data System (ADS)
Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying
2017-03-01
Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.
NASA Astrophysics Data System (ADS)
Xu, Feng; Ge, Binghui; Chen, Jing; Nathan, Arokia; Xin, Linhuo L.; Ma, Hongyu; Min, Huihua; Zhu, Chongyang; Xia, Weiwei; Li, Zhengrui; Li, Shengli; Yu, Kaihao; Wu, Lijun; Cui, Yiping; Sun, Litao; Zhu, Yimei
2016-06-01
Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). However, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. We further demonstrate that few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ˜1.25 × 104 s-1. The results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs.
Xu, Feng; Ge, Binghui; Chen, Jing; ...
2016-03-30
Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). But, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. Furthermore, we demonstrate thatmore » few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ~1.25 × 10 4 s -1. Our results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs.« less
NASA Astrophysics Data System (ADS)
Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.
2003-01-01
Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.
Progress and prospect on failure mechanisms of solid-state lithium batteries
NASA Astrophysics Data System (ADS)
Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei
2018-07-01
By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.
Electrochemical testing of industrially produced PEO-based polymer electrolytes
NASA Astrophysics Data System (ADS)
Appetecchi, G. B.; Alessandrini, F.; Duan, R. G.; Arzu, A.; Passerini, S.
The present report describes the results of the electrochemical tests performed on polyethyleneoxide-based polymer electrolyte thin films industrially manufactured by blown-extrusion. The polymer electrolyte composition was PEO 20 LiCF 3SO 3: 16.7% γLiAlO 2. The polymer electrolyte film was tested to evaluate the ionic conductivity as well as the interfacial properties with lithium metal anodes. The work was developed within the advanced lithium polymer electrolyte (ALPE) project, an Italian project devoted to the realization of lithium polymer batteries for electric vehicle applications, in collaboration with Union Carbide.
Thin film polymeric gel electrolytes
Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.
1996-12-31
Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.
Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen
The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deepmore » cycles at 0.1 C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, J. C.; Bialek, J.; Lazerson, S.
2014-11-01
The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnositc signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and themore » equilibrium reconstruction are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, J. C., E-mail: jschmitt@pppl.gov; Lazerson, S.; Majeski, R.
2014-11-15
The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnostic signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and themore » equilibrium reconstruction are presented.« less
Homogeneous fast-flux isotope-production reactor
Cawley, W.E.; Omberg, R.P.
1982-08-19
A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.
ERIC Educational Resources Information Center
Logemann, Jeri A.; Gensler, Gary; Robbins, JoAnne; Lindblad, Anne S.; Brandt, Diane; Hind, Jacqueline A.; Kosek, Steven; Dikeman, Karen; Kazandjian, Marta; Gramigna, Gary D.; Lundy, Donna; McGarvey-Toler, Susan; Miller Gardner, Patricia J.
2008-01-01
Purpose: This study was designed to identify which of 3 treatments for aspiration on thin liquids--chin-down posture, nectar-thickened liquids, or honey-thickened liquids--results in the most successful immediate elimination of aspiration on thin liquids during the videofluorographic swallow study in patients with dementia and/or Parkinson's…
A high performance ceramic-polymer separator for lithium batteries
NASA Astrophysics Data System (ADS)
Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru
2016-01-01
A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.
Trinh, Ngoc Duc; Lepage, David; Aymé-Perrot, David; Badia, Antonella; Dollé, Mickael; Rochefort, Dominic
2018-04-23
The resurgence of the lithium metal battery requires innovations in technology, including the use of non-conventional liquid electrolytes. The inherent electrochemical potential of lithium metal (-3.04 V vs. SHE) inevitably limits its use in many solvents, such as acetonitrile, which could provide electrolytes with increased conductivity. The aim of this work is to produce an artificial passivation layer at the lithium metal/electrolyte interface that is electrochemically stable in acetonitrile-based electrolytes. To produce such a stable interface, the lithium metal was immersed in fluoroethylene carbonate (FEC) to generate a passivation layer via the spontaneous decomposition of the solvent. With this passivation layer, the chemical stability of lithium metal is shown for the first time in 1 m LiPF 6 in acetonitrile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation
NASA Astrophysics Data System (ADS)
Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David
2017-10-01
A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.
The temperature and ion energy dependence of deuterium retention in lithium films
NASA Astrophysics Data System (ADS)
Buzi, Luxherta; Koel, Bruce E.; Skinner, Charles H.
2016-10-01
Lithium conditioning of plasma facing components in magnetic fusion devices has improved plasma performance and lowered hydrogen recycling. For applications of lithium in future high heat flux and long pulse duration machines it is important to understand and parameterize deuterium retention in lithium. This work presents surface science studies of deuterium retention in lithium films as a function of surface temperature, incident deuterium ion energy and flux. Initial experiments are performed on thin (3-30 ML) lithium films deposited on a single crystal molybdenum substrate to avoid effects due to grain boundaries, intrinsic defects and impurities. A monoenergetic and mass-filtered deuterium ion beam was generated in a differentially pumped Colutron ion gun. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to identify the elemental composition and temperature programmed desorption was used to measure the deuterium retention under the different conditions. Support was provided through DOE Contract Number DE-AC02-09CH11466.
Electrolyte for an electrochemical cell
Bates, John B.; Dudney, Nancy J.
1997-01-01
Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.
Electrolyte for an electrochemical cell
Bates, J.B.; Dudney, N.J.
1997-01-28
Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumara, L. S. R., E-mail: KUMARA.Rosantha@nims.go.jp; Yang, Anli; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp
2014-07-28
The core-level and valence-band electronic structures of Li{sub x}Ni{sub 1−x}O epitaxial thin films with x = 0, 0.27, and 0.48 were studied by hard X-ray photoelectron spectroscopy. A double peak structure, consisting of a main peak and a shoulder peak, and a satellite structure were observed in the Ni 2p{sub 3/2} core-level spectra. The intensity ratio of the shoulder to main peak in this double peak structure increased with increasing lithium content in Li{sub x}Ni{sub 1−x}O. This lithium doping dependence of the Ni 2p{sub 3/2} core-level spectra was investigated using an extended cluster model, which included the Zhang–Rice (ZR) doubletmore » bound states arising from a competition between O 2p – Ni 3d hybridization and the Ni on-site Coulomb interaction. The results indicated that the change in the intensity ratio in the main peak is because of a reduction in the ZR doublet bound states from lithium substitutions. This strongly suggests that holes compensating Li doping in Li{sub x}Ni{sub 1−x}O are of primarily ZR character.« less
NASA Astrophysics Data System (ADS)
Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula
2007-03-01
Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.
Electrospun Nanofiber-Coated Membrane Separators for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Lee, Hun
Lithium-ion batteries are widely used as a power source for portable electronic devices and hybrid electric vehicles due to their excellent energy and power densities, long cycle life, and enhanced safety. A separator is considered to be the critical component in lithium-ion rechargeable batteries. The separator is placed between the positive and negative electrodes in order to prevent the physical contact of electrodes while allowing the transportation of ions. In most commercial lithium-ion batteries, polyolefin microporous membranes are commonly used as the separator due to their good chemical stability and high mechanical strength. However, some of their intrinsic natures, such as low electrolyte uptake, poor adhesion property to the electrodes, and low ionic conductivity, can still be improved to achieve higher performance of lithium-ion batteries. In order to improve these intrinsic properties, polyolefin microporous membranes can be coated with nanofibers by using electrospinning technique. Electrospinning is a simple and efficient method to prepare nanofibers which can absorb a significant amount of liquid electrolyte to achieve low internal resistance and battery performance. This research presents the preparation and investigation of composite membrane separators prepared by coating nanofibers onto polyolefin microporous membranes via electrospinning technique. Polyvinylidene fluoride polymers and copolymers were used for the preparation of electrospun nanofiber coatings because they have excellent electrochemical stability, good adhesion property, and high temperature resistance. The nanofiber coatings prepared by electrospinning form an interconnected and randomly orientated structure on the surface of the polyolefin microporous membranes. The size of the nanofibers is on a scale that does not interfere with the micropores in the membrane substrates. The resultant nanofiber-coated membranes have the potential to combine advantages of both the polyolefin separator membranes and the nanoscale fibrous polymer coatings. The polyolefin microporous membranes serve as the supporting substrate which provides the required mechanical strength for the assembling process of lithium-ion batteries. The electrospun nanofiber coatings improve the wettability of the composite membrane separators to the liquid electrolyte, which is desirable for the lithium-ion batteries with high kinetics and good cycling performance. The results show that the nanofiber-coated membranes have enhanced adhesion properties to the battery electrode which can help prevent the formation of undesirable gaps between the separators and electrodes during prolonged charge-discharge cycles, especially in large-format batteries. The improvement on adhesive properties of nanofiber-coated membranes was evaluated by peel test. Nanofiber coatings applied to polyolefin membrane substrates improve the adhesion of separator membranes to battery electrodes. Electrolyte uptakes, ionic conductivities and interfacial resistances of the nanofiber-coated membrane separators were studied by soaking the membrane separators with a liquid electrolyte solution of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate/dimethylcarbonate/ethylmethyl carbonate (1:1:1 vol). The nanofiber coatings on the surface of the membrane substrates increase the electrolyte uptake capacity due to the high surface area and capillary effect of nanofibers. The nanofiber-coated membranes soaked in the liquid electrolyte solution exhibit high ionic conductivities and low interfacial resistances to the lithium electrode. The cells containing LiFePO 4 cathode and the nanofiber-coated membranes as the separator show high discharge specific capacities and good cycling stability at room temperature. The nanofiber coatings on the membrane substrates contribute to high ionic conductivity and good electrochemical performance in lithium-ion batteries. Therefore, these nanofiber-coated composite membranes can be directly used as novel battery separators for high performance of lithium-ion batteries. Coating polyolefin microporous membranes with electrospun nanofibers is a promising approach to obtain highperformance separators for advanced lithium-ion batteries.
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.
2008-01-01
A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.
Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; ...
2015-03-18
Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm 2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. Themore » effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less
Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties
NASA Astrophysics Data System (ADS)
Wilken, Susanne; Xiong, Shizhao; Scheers, Johan; Jacobsson, Per; Johansson, Patrik
2015-02-01
Ionic liquids have been highlighted as non-flammable, environmentally friendly, and suggested as possible solvents in lithium ion battery electrolytes. Here, the application of two ionic liquids from the EMIm-family in a state-of-the-art carbonate solvent based electrolyte is studied with a focus on safety improvement. The impact of the composition on physical and safety related properties is investigated for IL concentrations of additive (∼5 wt%) up to co-solvent concentrations (∼60 wt%). Furthermore, the role of the lithium salt concentration is separately addressed by studying a set of electrolytes at 0.5 M, 1 M, and 2 M LiPF6 concentrations. A large impact on the electrolyte properties is found for the electrolytes containing EMImTFSI and high salt concentrations. The composition 2 M LiPF6 EC:DEC:IL (1:1:3 wt%) is found non-flammable for both choices of ILs added. The macroscopic observations are complemented by a Raman spectroscopy analysis whereby a change in the Li+ solvation is detected for IL concentrations >4.5 mol%.
A lithium superionic conductor.
Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio
2011-07-31
Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).
Three-Dimensional Nanoporous Fe2O3/Fe3C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries
2015-01-01
Three-dimensional self-organized nanoporous thin films integrated into a heterogeneous Fe2O3/Fe3C-graphene structure were fabricated using chemical vapor deposition. Few-layer graphene coated on the nanoporous thin film was used as a conductive passivation layer, and Fe3C was introduced to improve capacity retention and stability of the nanoporous layer. A possible interfacial lithium storage effect was anticipated to provide additional charge storage in the electrode. These nanoporous layers, when used as an anode in lithium-ion batteries, deliver greatly enhanced cyclability and rate capacity compared with pristine Fe2O3: a specific capacity of 356 μAh cm–2 μm–1 (3560 mAh cm–3 or ∼1118 mAh g–1) obtained at a discharge current density of 50 μA cm–2 (∼0.17 C) with 88% retention after 100 cycles and 165 μAh cm–2 μm–1 (1650 mAh cm–3 or ∼518 mAh g–1) obtained at a discharge current density of 1000 μA cm–2 (∼6.6 C) for 1000 cycles were achieved. Meanwhile an energy density of 294 μWh cm–2 μm–1 (2.94 Wh cm–3 or ∼924 Wh kg–1) and power density of 584 μW cm–2 μm–1 (5.84 W cm–3 or ∼1834 W kg–1) were also obtained, which may make these thin film anodes promising as a power supply for micro- or even nanosized portable electronic devices. PMID:24669862
Saat, Gülbahar; Balci, Fadime Mert; Alsaç, Elif Pınar; Karadas, Ferdi; Dag, Ömer
2018-01-01
Mesoporous thin films of transition metal lithiates (TML) belong to an important group of materials for the advancement of electrochemical systems. This study demonstrates a simple one pot method to synthesize the first examples of mesoporous LiCoO 2 and LiMn 2 O 4 thin films. Molten salt assisted self-assembly can be used to establish an easy route to produce mesoporous TML thin films. The salts (LiNO 3 and [Co(H 2 O) 6 ](NO 3 ) 2 or [Mn(H 2 O) 4 ](NO 3 ) 2 ) and two surfactants (10-lauryl ether and cethyltrimethylammonium bromide (CTAB) or cethyltrimethylammonium nitrate (CTAN)) form stable liquid crystalline mesophases. The charged surfactant is needed for the assembly of the necessary amount of salt in the hydrophilic domains of the mesophase, which produces stable metal lithiate pore-walls upon calcination. The films have a large pore size with a high surface area that can be increased up to 82 m 2 g -1 . The method described can be adopted to synthesize other metal oxides and metal lithiates. The mesoporous thin films of LiCoO 2 show promising performance as water oxidation catalysts under pH 7 and 14 conditions. The electrodes, prepared using CTAN as the cosurfactant, display the lowest overpotentials in the literature among other LiCoO 2 systems, as low as 376 mV at 10 mA cm -2 and 282 mV at 1 mA cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of preparing thin film polymeric gel electrolytes
Derzon, D.K.; Arnold, C. Jr.
1997-11-25
Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.
Understanding transport mechanisms in ionic liquid/carbonate solvent electrolyte blends.
Oldiges, K; Diddens, D; Ebrahiminia, M; Hooper, J B; Cekic-Laskovic, I; Heuer, A; Bedrov, D; Winter, M; Brunklaus, G
2018-06-20
To unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.
1935-01-01
109ead-------------59 Vapor-pressure table ----------- 110 Lithium -------------------- 63 Bibliography ----------------- 115 Acceson orj NYTIS CRAMI ti...852-926*) have measured the vapor pressure of lithium in the liquid state, and Ruff and Jobannsen (32~4) have stated that the boili point is above...the results of th~e three investigations on ii u{id lithium do not agree, some arbitrar choice must be made. V this case, the data of Hartmann and
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Bennett, William R.
2003-01-01
A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.
Winsche, Warren E.; Miles, Francis T.; Powell, James R.
1976-01-01
This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.
The Gaia-ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc
NASA Astrophysics Data System (ADS)
Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofré, P.; Pancino, E.; Tautvaišienė, G.; Tang, B.; Magrini, L.; Lanzafame, A. C.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.
2018-02-01
Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A38
Strehlau, Jenny; Weber, Till; Lürenbaum, Constantin; Bornhorst, Julia; Galla, Hans-Joachim; Schwerdtle, Tanja; Winter, Martin; Nowak, Sascha
2017-10-01
A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place. Graphical abstract Schematic setup for the investigation of toxicity of lithium ion battery electrolytes.
Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinshui; Bai, Ying; Sun, Xiao-Guang
2015-01-01
The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space tomore » afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.« less
New Liquid Cathodes for Lithium Batteries. Part A. Halocarbons,
1984-05-01
difluoroethane , 99 percent; PCR Inc. thionyl chloride, doubly-distilled, Apache Chemicals, Seward, Ill. l.5M LiAlCI4 in SOC1 2 , ɝppm Fe, Lithium Corp. of...tetrachloroethane, and 1,2-dichloro-l,1- difluoroethane appeared stable towards Li during the study. When in contact with electrolyte solutions of 50
Reliability and Maintainability Data for Lead Lithium Cooling Systems
Cadwallader, Lee
2016-11-16
This article presents component failure rate data for use in assessment of lead lithium cooling systems. Best estimate data applicable to this liquid metal coolant is presented. Repair times for similar components are also referenced in this work. These data support probabilistic safety assessment and reliability, availability, maintainability and inspectability analyses.
Additive-containing ionic liquid electrolytes for secondary lithium battery
NASA Astrophysics Data System (ADS)
Xu, Jinqiang; Yang, Jun; NuLi, Yanna; Wang, Jiulin; Zhang, Zongshuang
Room temperature ionic liquid (RTIL) consisting of N-methyl- N-propylpiperidinium (PP13) cation and bis(trifluoromethanesulfonyl)imide (TFSI) anion was synthesized and its electrochemical stability was investigated in comparison with 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF 6). The electrochemical window of PP13-TFSI (5.8 V versus Li/Li +) is wider than that of BMIBF 4 (4.7 V) and BMIPF 6 (4.5 V). The cathodic limit of the PP13-TFSI is about -0.3 V versus Li/Li +, against 0.7 V for BMIPF 6 and BMIBF 4, so it may be used as the electrolyte for second lithium batteries based on lithium anode. In this work, charge efficiency of lithium plating/striping on nickel substrate and the cycle life have been measured using 0.4 M LiTFSI/PP13-TFSI electrolyte both without and with additives such as vinyl acetate (VA), ethylene sulfite (ES), and ethylene carbonate (EC). Remarkable improvement in cycling efficiency and cycle life was found for EC as additive.
A chemically stable PVD multilayer encapsulation for lithium microbatteries
NASA Astrophysics Data System (ADS)
Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.
2015-10-01
A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.
Ceramic and polymeric solid electrolytes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.
Technical Challenges for Vehicle 14V/28V Lithium Ion Battery Replacement
2011-01-19
or lithium iron phosphate ( LiFePO4 ), on a current collector of aluminum foil, (iii) a microporous separator between the electrodes, and (iv) a liquid...with four LiFePO4 lithium ion cells will likely result in a closely matched voltage. However, other types of lithium ion cells also consisting of...20.5 15- 24.6 17.5- 28.7 20- 32.8 22.5- 36.9 Voltage(V) ( LiFePO4 ) 3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 n x 3.3 Voltage range (V
NASA Astrophysics Data System (ADS)
Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.
2018-03-01
Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.
NASA Astrophysics Data System (ADS)
Han, Hong-Bo; Zhou, Si-Si; Zhang, Dai-Jun; Feng, Shao-Wei; Li, Li-Fei; Liu, Kai; Feng, Wen-Fang; Nie, Jin; Li, Hong; Huang, Xue-Jie; Armand, Michel; Zhou, Zhi-Bin
Lithium bis(fluorosulfonyl)imide (LiFSI) has been studied as conducting salt for lithium-ion batteries, in terms of the physicochemical and electrochemical properties of the neat LiFSI salt and its nonaqueous liquid electrolytes. Our pure LiFSI salt shows a melting point at 145 °C, and is thermally stable up to 200 °C. It exhibits far superior stability towards hydrolysis than LiPF 6. Among the various lithium salts studied at the concentration of 1.0 M (= mol dm -3) in a mixture of ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (3:7, v/v), LiFSI shows the highest conductivity in the order of LiFSI > LiPF 6 > Li[N(SO 2CF 3) 2] (LiTFSI) > LiClO 4 > LiBF 4. The stability of Al in the high potential region (3.0-5.0 V vs. Li +/Li) has been confirmed for high purity LiFSI-based electrolytes using cyclic voltammetry, SEM morphology, and chronoamperometry, whereas Al corrosion indeed occurs in the LiFSI-based electrolytes tainted with trace amounts of LiCl (50 ppm). With high purity, LiFSI outperforms LiPF 6 in both Li/LiCoO 2 and graphite/LiCoO 2 cells.
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.
2004-09-01
Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.
Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D
2013-09-25
Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
... Kaletra, in Viekira Pak); ledipasvir and sofosbuvir (Harvoni); lithium (Lithobid); loratadine (Claritin); medications for diabetes or seizures; ... rash weight loss or gain restlessness weakness nervousness irritability intolerance to heat or cold thinning hair excessive ...
Monolithic acoustic graphene transistors based on lithium niobate thin film
NASA Astrophysics Data System (ADS)
Liang, J.; Liu, B.-H.; Zhang, H.-X.; Zhang, H.; Zhang, M.-L.; Zhang, D.-H.; Pang, W.
2018-05-01
This paper introduces an on-chip acoustic graphene transistor based on lithium niobate thin film. The graphene transistor is embedded in a microelectromechanical systems (MEMS) acoustic wave device, and surface acoustic waves generated by the resonator induce a macroscopic current in the graphene due to the acousto-electric (AE) effect. The acoustic resonator and the graphene share the lithium niobate film, and a gate voltage is applied through the back side of the silicon substrate. The AE current induced by the Rayleigh and Sezawa modes was investigated, and the transistor outputs a larger current in the Rayleigh mode because of a larger coupling to velocity ratio. The output current increases linearly with the input radiofrequency power and can be effectively modulated by the gate voltage. The acoustic graphene transistor realized a five-fold enhancement in the output current at an optimum gate voltage, outperforming its counterpart with a DC input. The acoustic graphene transistor demonstrates a paradigm for more-than-Moore technology. By combining the benefits of MEMS and graphene circuits, it opens an avenue for various system-on-chip applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanc, Emil; Zając, Wojciech, E-mail: wojciech.zajac@agh.edu.pl; Lu, Li
Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet phase inmore » a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} electrolyte by means of the pulsed laser deposition technique.« less
On fabrication procedures of Li-ion conducting garnets
NASA Astrophysics Data System (ADS)
Hanc, Emil; Zając, Wojciech; Lu, Li; Yan, Binggong; Kotobuki, Masashi; Ziąbka, Magdalena; Molenda, Janina
2017-04-01
Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li7La3Zr2O12 group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li7La3Zr2O12 garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li7La3Zr2O12 electrolyte by means of the pulsed laser deposition technique.
Kaneoka, Asako; Pisegna, Jessica M; Saito, Hiroki; Lo, Melody; Felling, Katey; Haga, Nobuhiko; LaValley, Michael P; Langmore, Susan E
2017-08-01
To investigate whether drinking thin liquids with safety strategies increases the risk for pneumonia as compared with thickened liquids in patients who have demonstrated aspiration of thin liquids. Seven electronic databases, one clinical register, and three conference archives were searched. No language or publication date restrictions were imposed. Reference lists were scanned and authors and experts in the field were contacted. A blind review was performed by two reviewers for published or unpublished randomized controlled trials and prospective non-randomized trials comparing the incidence of pneumonia with intake of thin liquids plus safety strategies vs. thickened liquids in adult patients who aspirated on thin liquids. The data were extracted from included studies. Odds ratios (OR) for pneumonia were calculated from the extracted data. Risk of bias was also assessed with the included published trials. Seven studies out of 2465 studies including 650 patients met the inclusion criteria. All of the seven studies excluded patients with more than one known risk factor for pneumonia. Six studies compared thin water protocols to thickened liquids for pneumonia prevention. A meta-analysis was done on the six studies, showing no significant difference for pneumonia risk (OR = 0.82; 95% CI = 0.05-13.42; p = 0.89). There was no significant difference in the risk of pneumonia in aspirating patients who took thin liquids with safety strategies compared with those who took thickened liquids only. This result, however, is generalizable only for patients with low risk of pneumonia.
Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries
NASA Astrophysics Data System (ADS)
Yoshimoto, Nobuko; Niida, Yoshihiro; Egashira, Minato; Morita, Masayuki
A nonflammable polymeric gel electrolyte has been developed for rechargeable lithium battery systems. The gel film consists of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) swollen with lithium hexafluorophosphate (LiPF 6) solution in ternary solvent containing trimethyl phosphate (TMP). High ionic conductivity of 6.2 mS cm -1 at 20 °C was obtained for the gel electrolyte consisting of 0.8 M LiPF 6/EC + DEC + TMP (55:25:20) with PVdF-HFP, which is comparable to that of the liquid electrolyte containing the same electrolytic salt. Addition of a small amount of vinylene carbonate (VC) in the gel electrolyte improved the rechargeability of a graphite electrode. The rechargeable capacity of the graphite in the gel containing VC was ca. 300 mAh g -1, which is almost the same as that in a conventional liquid electrolyte system.
Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor
NASA Astrophysics Data System (ADS)
Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat
2013-08-01
Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.
NASA Astrophysics Data System (ADS)
Bullen, P. S.; Huang, H.-C.; Yang, H.; Dadap, J. I.; Kymissis, I.; Osgood, R. M.
2016-07-01
The domain structure of poled deeply thinned lithium niobate is investigated as a function of sample thickness. Free-standing samples of thickness from 25 to 500 μm are prepared by a multiple-cycle polish and annealing procedure and then periodically poled. Using these samples and employing micro-Raman scattering and scanning electron, atomic force, and optical microscopy together, the domain broadening and poling voltage are found to vary in a regular and significant manner. The poled domains show a reduction in width spreading of 38% as the sample thickness is reduced from 500 to 25 μm. Micro-Raman probe measurements verify the quality and the uniformity of the poled domains and provide insight into their thickness-dependent poling contrast.
Lin, X; Kavian, R; Lu, Y; Hu, Q; Shao-Horn, Y; Grinstaff, M W
2015-11-13
Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature.
NASA Astrophysics Data System (ADS)
Raccichini, Rinaldo; Varzi, Alberto; Chakravadhanula, Venkata Sai Kiran; Kübel, Christian; Balducci, Andrea; Passerini, Stefano
2015-05-01
The electrochemical properties of graphene are strongly depending on its synthesis. Between the different methods proposed so far, liquid phase exfoliation turns out to be a promising method for the production of graphene. Unfortunately, the low yield of this technique, in term of solid material obtained, still limit its use to small scale applications. In this article we propose a low cost and environmentally friendly method for producing multilayer crystalline graphene with high yield. Such innovative approach, involving an improved ionic liquid assisted, microwave exfoliation of expanded graphite, allows the production of graphene with advanced lithium ion storage performance, for the first time, at low temperatures (<0 °C), as low as -30 °C, with respect to commercially available graphite.
All Solid State Rechargeable Lithium Batteries using Block Copolymers
NASA Astrophysics Data System (ADS)
Hallinan, Daniel; Balsara, Nitash
2011-03-01
The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.
Conference Report on the 4rd International Symposium on Lithium Applications
NASA Astrophysics Data System (ADS)
Tabares, F. L.; Hirooka, Y.; Maingi, R.; Mazzitelli, G.; Mirnov, V.; Nygren, R.; Ono, M.; Ruzic, D. N.
2016-12-01
The fourth International Symposium on Liquid Metal Application for Fusion Devices (ISLA-2015) was held on 28-30 September 2015 at Granada, Spain, with growing participation and interest from the community working on general aspects of liquid metal research for fusion energy development. The ISLA symposia remain the largest, and arguably, the most important meetings dedicated to liquid metal application for the magnetic fusion research. Overall, 43 presentations plus 7 posters were given, representing 28 institutions from 12 countries. The latest experimental results from 9 magnetic fusion devices were given in 17 presentations from NSTX and LTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST (ASIPP, China), HT-7 (ASIPP, China), DIII-D (GA, USA), ISTTOK (IPFN, Portugal) and KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) liquid metals (LM) in magnetic confinement experiments (facility overviews), (II) LM in magnetic confinement experiments (topical issues), (III) laboratory experiments, (IV) LM tests in linear plasma devices, (V) LM theory/modeling (VI) LM technology and (VII) a special session on lithium-safety and lithium handling. There were contributions from fusion technology communities including IFMIF and TBM, which provided productive exchanges with physics-oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference), with the next workshop scheduled for Moscow, Russian Federation, in 2017.
Selection of new Kynar-based electrolytes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Christie, Alasdair M.; Christie, Lynn; Vincent, Colin A.
New electrolyte solution compositions have been identified for use in lithium-ion batteries after gelling with an appropriate quantity of Kynar polymer. Since the Li + conducting medium is largely the liquid electrolyte component, the assessment of these solutions as suitable lithium-ion cell candidates were investigated before adding the polymer. Selected electrolyte solutions were then used in the preparation of polymer gels. The specific conductivities of Kynar-based gels were determined as a function of salt concentration and polymer concentration. Optimised self-supporting polymer films, based on mixtures of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and lithium hexafluorophosphate (LiPF 6) or lithium tetrafluoroborate (LiBF 4), showed good high current density cycling performance when used as separators in coke and Li 1- xMn 2O 4 (spinel) half-cells.
Li Storage of Calcium Niobates for Lithium Ion Batteries.
Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won
2015-10-01
New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.
Anode material for lithium batteries
Belharouak, Ilias [Westmont, IL; Amine, Khalil [Downers Grove, IL
2012-01-31
Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.
Anode material for lithium batteries
Belharouak, Ilias [Bolingbrook, IL; Amine, Khalil [Downers Grove, IL
2008-06-24
Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.
Anode material for lithium batteries
Belharouak, Ilias [Bolingbrook, IL; Amine, Khalil [Oak Brook, IL
2011-04-05
Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.
Hydraulic Actuator for Ganged Control Rods
NASA Technical Reports Server (NTRS)
Thompson, D. C.; Robey, R. M.
1986-01-01
Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.
Protection of tokamak plasma facing components by a capillary porous system with lithium
NASA Astrophysics Data System (ADS)
Lyublinski, I.; Vertkov, A.; Mirnov, S.; Lazarev, V.
2015-08-01
Development of plasma facing material (PFM) based on the Capillary-Porous System (CPS) with lithium and activity on realization of lithium application strategy are addressed to meet the challenges under the creation of steady-state tokamak fusion reactor and fusion neutron source. Presented overview of experimental study of lithium CPS in plasma devices demonstrates the progress in protection of tokamak plasma facing components (PFC) from damage, stabilization and self-renewal of liquid lithium surface, elimination of plasma pollution and lithium accumulation in tokamak chamber. The possibility of PFC protection from the high power load related to cooling of the tokamak boundary plasma by radiation of non-fully stripped lithium ions supported by experimental results. This approach demonstrated in scheme of closed loops of Li circulation in the tokamak vacuum chamber and realized in a series of design of tokamak in-vessel elements.
NASA Astrophysics Data System (ADS)
Kartini, Evvy; Manawan, Maykel
2016-02-01
With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li3PO4 has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li3PO4 has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H3PO4. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li3PO4, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li3PO4 was around 10-8 S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li3PO4 for lithium ion battery will give more added values to the researches and national industry.
Evaporation thermal anslysis of Swallow-tailed Axial-grooved Heat Pipe
NASA Astrophysics Data System (ADS)
Zhang, Renping
2018-03-01
A detailed mathematical model that describes evaporating characteristics through thin liquid film at the evaporator section of swallow-tailed axial-grooved heat pipe was developed. The numerical simulation results about thin film profile, liquid-vapour interface temperature, evaporating rate and heat flux at the evaporating thin film region were given by the current investigation and the effect of superheat on the liquid-vapour interface temperature, evaporating mass rate and heat flux was discussed. Meanwhile, thermal model of the meniscus region at the evaporating section was developed to calculate the rate of heat transfer. The ratio of the heat conduction in the evaporating thin liquid film region and total heat rate were also discussed. It is indicated that the thickness of thin liquid film rises in a nearly linear fashion. The disjoining pressure can be neglected with increasing the liquid film thickness, tends to be negligibly small. The heat transfer rate at the intrinsic meniscus cannot be compared with that of the evaporating liquid film region.
Preparation of electrochemically active silicon nanotubes in highly ordered arrays
Grünzel, Tobias; Lee, Young Joo; Kuepper, Karsten
2013-01-01
Summary Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability) of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry. PMID:24205460
Liquid lithium loop system to solve challenging technology issues for fusion power plant
Ono, Masayuki; Majeski, Richard P.; Jaworski, Michael A.; ...
2017-07-12
Here, steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peakmore » heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned. We examined two key technology issues: 1) dust or solid particle removal and 2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust / impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~ 1 l/sec LL flow, even a small 0.1% dust content by weight (or 0.5 g per sec) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~ 3 GW fusion power) fusion power plant, about 0.5 g / sec of tritium is needed to maintain the fusion fuel cycle assuming ~ 1 % fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap (SCT) concept.« less
Liquid lithium loop system to solve challenging technology issues for fusion power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki; Majeski, Richard P.; Jaworski, Michael A.
Here, steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peakmore » heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned. We examined two key technology issues: 1) dust or solid particle removal and 2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust / impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~ 1 l/sec LL flow, even a small 0.1% dust content by weight (or 0.5 g per sec) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~ 3 GW fusion power) fusion power plant, about 0.5 g / sec of tritium is needed to maintain the fusion fuel cycle assuming ~ 1 % fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap (SCT) concept.« less
Liquid lithium loop system to solve challenging technology issues for fusion power plant
NASA Astrophysics Data System (ADS)
Ono, M.; Majeski, R.; Jaworski, M. A.; Hirooka, Y.; Kaita, R.; Gray, T. K.; Maingi, R.; Skinner, C. H.; Christenson, M.; Ruzic, D. N.
2017-11-01
Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor concept and its variant, the active liquid lithium divertor concept, taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~1 l s-1 is envisioned. We examined two key technology issues: (1) dust or solid particle removal and (2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust/impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~1 l s-1 LL flow, even a small 0.1% dust content by weight (or 0.5 g s-1) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~3 GW fusion power) fusion power plant, about 0.5 g s-1 of tritium is needed to maintain the fusion fuel cycle assuming ~1% fusion burn efficiency. It appears feasible to recover tritium (T) in real time from LL while maintaining an acceptable T inventory level. Laboratory tests are being conducted to investigate T recovery feasibility with the surface cold trap concept.
Surface Structure of Liquid Li and Na: An ab initio Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
González, D. J.; González, L. E.; Stott, M. J.
2004-02-01
Molecular dynamics simulations of the liquid-vapor interfaces of liquid metals have been performed using first principles methods. Results are presented for liquid lithium and sodium near their respective triple points, for samples of 2000 particles in a slab geometry. The atomic density profiles show a pronounced stratification extending several atomic diameters into the bulk, which is similar to that already experimentally observed in liquid K, Ga, In, and Hg.
NASA Astrophysics Data System (ADS)
Wang, L.; Xu, H. W.; Chen, P. C.; Zhang, D. W.; Ding, C. X.; Chen, C. H.
Iron oxide materials are attractive anode materials for lithium-ion batteries for their high capacity and low cost compared with graphite and most of other transition metal oxides. Porous carbon-free α-Fe 2O 3 films with two types of pore size distribution were prepared by electrostatic spray deposition, and they were characterized by X-ray diffraction, scanning electron microscopy and X-ray absorption near-edge spectroscopy. The 200 °C-deposited thin film exhibits a high reversible capacity of up to 1080 mAh g -1, while the initial capacity loss is at a remarkable low level (19.8%). Besides, the energy efficiency and energy specific average potential (E av) of the Fe 2O 3 films during charge/discharge process were also investigated. The results indicate that the porous α-Fe 2O 3 films have significantly higher energy density than Li 4Ti 5O 12 while it has a similar E av of about 1.5 V. Due to the porous structure that can buffer the volume changes during lithium intercalation/de-intercalation, the films exhibit stable cycling performance. As a potential anode material for high performance lithium-ion batteries that can be applied on electric vehicle and energy storage, rate capability and electrochemical performance under high-low temperatures were also investigated.
Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix
2011-12-23
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deuterium sputtering of Li and Li-O films
NASA Astrophysics Data System (ADS)
Nelson, Andrew; Buzi, Luxherta; Kaita, Robert; Koel, Bruce
2017-10-01
Lithium wall coatings have been shown to enhance the operational plasma performance of many fusion devices, including NSTX and other tokamaks, by reducing the global wall recycling coefficient. However, pure lithium surfaces are extremely difficult to maintain in experimental fusion devices due to both inevitable oxidation and codeposition from sputtering of hot plasma facing components. Sputtering of thin lithium and lithium oxide films on a molybdenum target by energetic deuterium ion bombardment was studied in laboratory experiments conducted in a surface science apparatus. A Colutron ion source was used to produce a monoenergetic, mass-selected ion beam. Measurements were made under ultrahigh vacuum conditions as a function of surface temperature (90-520 K) using x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD). Results are compared with computer simulations conducted on a temperature-dependent data-calibrated (TRIM) model.
Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation
Nicholas W. Brady; Takeuchi, Esther S.; Knehr, K. W.; ...
2016-04-24
Magnetite is a known lithium intercalation material, and the loss of active, nanocrystalline magnetite can be inferred from the open-circuit potential relaxation. Specifically, for current interruption after relatively small amounts of lithium insertion, the potential first increases and then decreases, and the decrease is hypothesized to be due to a formation of a surface layer, which increases the solid-state lithium concentration in the remaining active material. Comparisons of simulation to experiment suggest that the reactions with the electrolyte result in the formation of a thin layer of electrochemically inactive material, which is best described by a nucleation and growth mechanism.more » Simulations are consistent with experimental results observed for 6, 8 and 32-nm crystals. As a result, simulations capture the experimental differences in lithiation behavior between the first and second cycles.« less
Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium
2017-01-01
Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-Li3N film directly bonded onto Li metal foil. The film consists of highly textured large Li3N grains (tens of μm) with (001) crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10–4 S cm–1, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This Li3N coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|Li4Ti5O12 cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis. PMID:29392181
Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee
2018-03-14
An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.
Polymer Energy Rechargeable System Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2003-01-01
Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.
Imidazolium-organic solvent mixtures as electrolytes for lithium batteries
NASA Astrophysics Data System (ADS)
Chagnes, A.; Diaw, M.; Carré, B.; Willmann, P.; Lemordant, D.
γ-Butyrolactone (BL) has been mixed to the room temperature ionic liquid (RTIL) 1-butyl 3-methyl-imidazolium tetrafluoroborate (BMIBF 4) (ratio: 3/2, v/v) in the presence of lithium tetrafluoroborate (LiBF 4) for use as electrolyte in lithium-ion batteries. This mixture exhibits a larger thermal stability than the reference electrolyte EC/DEC/DMC (2/2/1) + LiPF 6 (1 M) and can be considered as a new RTIL as no free BL molecules are present in the liquid phase. The cycling ability of this electrolyte has been investigated at a graphite, a titanate oxide (Li 4Ti 5O 12) and a cobalt oxide (Li xCoO 2) electrodes. The ionic liquid is strongly reduced at the graphite electrode near 1 V and leads to the formation of a blocking film, which prevents any further cycling. The titanate oxide electrode can be cycled with a high capacity without any significant fading. Cycling of the positive cobalt oxide electrode was unsuccessfully owing to an oxidation reaction at the electrode surface, which prevents the intercalation or de-intercalation of Li ions in and from the host material. Less reactive cathode material than cobalt oxide must be employed with this RTIL.
Single-Wall Carbon Nanotube Anodes for Lithium Cells
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike
2006-01-01
In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasaribu, Marvin H., E-mail: marvin-shady88@yahoo.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id
Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li{sup +} ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anionmore » metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10{sup −2} S cm{sup −1} for chitosan to 1.30 × 10{sup −2} S cm{sup −1} for chitosan with EMImBF4/Li{sup +}, and this result was supported by analysis the surface morphology (SEM)« less
Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte
Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...
2016-09-08
Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less
Soft X-ray emission spectroscopy of liquids and lithium batterymaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustsson, Andreas
2004-01-01
Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed tomore » view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular orbital and orbital mixing between water molecules upon hydrogen bonding. Apart from the four-hydrogen-bonding structure in water, a structure where one hydrogen bond is broken could be separated and identified. The soft x-ray emission study of methanol showed the existence of ring and chain formations in the liquid phase and the dominating structures are formed of 6 and 8 molecules. Upon mixing of the two liquids, a segregation at the molecular level was found and the formation of new structures, which could explain the unexpected low increase of the entropy.« less
Temperature Dependence of Lithium Reactions with Air
NASA Astrophysics Data System (ADS)
Sherrod, Roman; Skinner, C. H.; Koel, Bruce
2016-10-01
Liquid lithium plasma facing components (PFCs) are being developed to handle long pulse, high heat loads in tokamaks. Wetting by lithium of its container is essential for this application, but can be hindered by lithium oxidation by residual gases or during tokamak maintenance. Lithium PFCs will experience elevated temperatures due to plasma heat flux. This work presents measurements of lithium reactions at elevated temperatures (298-373 K) when exposed to natural air. Cylindrical TZM wells 300 microns deep with 1 cm2 surface area were filled with metallic lithium in a glovebox containing argon with less than 1.6 ppm H20, O2, and N2. The wells were transferred to a hot plate in air, and then removed periodically for mass gain measurements. Changes in the surface topography were recorded with a microscope. The mass gain of the samples at elevated temperatures followed a markedly different behavior to that at room temperature. One sample at 373 K began turning red indicative of lithium nitride, while a second turned white indicative of lithium carbonate formation. Data on the mass gain vs. temperature and associated topographic changes of the surface will be presented. Science Undergraduate Laboratory Internship funded by Department of Energy.
Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries
NASA Astrophysics Data System (ADS)
Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae
Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.
NASA Astrophysics Data System (ADS)
Nguyen, Viet Tu; Lee, Jae-chun; Jeong, Jinki; Kim, Byung-Su; Pandey, B. D.
2014-03-01
This paper focuses on the extractive separation and selective recovery of cobalt, nickel and lithium from the sulfate leachate of cathode scrap generated during manufacture of lithium ion batteries (LIBs). The conditions for extraction, scrubbing and stripping of cobalt from nickel and lithium are optimized with an aqueous feed containing 25.1 g·dm-3 cobalt, 2.54 g·dm-3 nickel and 6.2 g·dm-3 lithium using Na-PC-88A. 99.8% Co is extracted with 60% Na-0.56 mol·dm-3 PC-88A in two counter-current stages at an O/A phase ratio of 3/1 and an equilibrium pH of 4.5. The "crowding effect" shown for the first time provides effective scrubbing of impurities (Ni and Li) with 2.0 g·dm-3 CoSO4 solution. The McCabe-Thiele diagram predicts the scrubbing of 99.9% Ni and 99.9% Li at an equilibrium pH of 4.75 and O/A of 2/1 in two stages. High purity (99.9%) cobalt sulfate along with Ni and Li from the leach liquor of cathode scrap is recovered by solvent extraction. The proposed process ensures complete recycling of the waste of the manufacturing process of LIBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliviero, E.; David, M. L.; Beaufort, M. F.
The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less
New Electrode and Electrolyte Configurations for Lithium-Oxygen Battery.
Ulissi, Ulderico; Elia, Giuseppe Antonio; Jeong, Sangsik; Reiter, Jakub; Tsiouvaras, Nikolaos; Passerini, Stefano; Hassoun, Jusef
2018-03-02
Cathode configurations reported herein are alternative to the most diffused ones for application in lithium-oxygen batteries, using an ionic liquid-based electrolyte. The electrodes employ high surface area conductive carbon as the reaction host, and polytetrafluoroethylene as the binding agent to enhance the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) reversibility. Roll-pressed, self-standing electrodes (SSEs) and thinner, spray deposited electrodes (SDEs) are characterized in lithium-oxygen cells using an ionic liquid (IL) based electrolyte formed by mixing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl)imide (DEMETFSI). The electrochemical results reveal reversible reactions for both electrode configurations, but improved electrochemical performance for the self-standing electrodes in lithium-oxygen cells. These electrodes show charge/discharge polarizations at 60 °C limited to 0.4 V, with capacity up to 1 mAh cm -2 and energy efficiency of about 88 %, while the spray deposited electrodes reveal, under the same conditions, a polarization of 0.6 V and energy efficiency of 80 %. The roll pressed electrode combined with the DEMETFSI-LiTFSI electrolyte and a composite Li x Sn-C alloy anode forms a full Li-ion oxygen cell showing extremely limited polarization, and remarkable energy efficiency. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid-metal plasma-facing component research on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Jaworski, M. A.; Khodak, A.; Kaita, R.
2013-12-01
Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.
Li Experiments at the Tokamak T-11M Toward PFC Concept of Steady State Tokamak-Reactor
NASA Astrophysics Data System (ADS)
Mirnov, S. V.
2009-11-01
As practical method of using a liquid lithium as a renewable plasma-facing component (PCF) for steady state tokamak-reactor the concept of lithium emitter-collector is considered [1]. It is based on lithium filled capillary porous system proposed by V.A. Evtikhin et al. (1996). The lithium circulation process consists of four steps: (1) Li emission from the PFC emitter into the plasma; (2) plasma boundary cooling by non-coronal Li radiation; (3) Li ion capture by the collector (before they are lost to the tokamak chamber wall); (4) Li return from the collector to the emitter. T-11M tokamak experiments have used three local rail limiters made from lithium, molybdenum and graphite as lithium collectors. The lithium behavior was studied by analysis of the witness samples, and by a mobile graphite probe. The key findings are: (1) lithium collection on the ion side of the lithium limiter is 2-3 times larger than on the electron side; (2) total efficiency of Li collection integrated over all three rail limiters can reach 50-70% of the lithium emission during the discharge pulse, while the theoretical limit is about 90%. [1] S.V. Mirnov, J. Nucl. Mat., 390-391, 876 (2009).
A lithium-oxygen battery with a long cycle life in an air-like atmosphere.
Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin
2018-03-21
Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.
A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.
Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng
2018-02-01
Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence of formation of lithium compounds on FTU tiles and dust
NASA Astrophysics Data System (ADS)
Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.
2018-01-01
Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.
New Solid Polymer Electrolytes for Improved Lithium Batteries
NASA Technical Reports Server (NTRS)
Hehemann, David G.
2002-01-01
The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.
NASA Astrophysics Data System (ADS)
de Castro, A.; Sepetys, A.; González, M.; Tabarés, F. L.
2018-04-01
Liquid metal (LM) divertor concepts explore an alternative solution to the challenging power/particle exhaust issues in future magnetic fusion reactors. Among them, lithium (Li) is the most promising material. Its use has shown important advantages in terms of improved H-mode plasma confinement and heat handling capabilities. In such scenario, a possible combination of tungsten (W) on the first wall and liquid Li on the divertor could be an acceptable solution, but several issues related to material compatibility remain open. In particular, the co-deposition of Li and hydrogen isotopes on W components could increase the associated tritium retention and represent a safety risk, especially if these co-deposits can uncontrollably grow in remote/plasma shadowed zones of the first wall. In this work, the retention of Li and deuterium (D) on tungsten at different surface temperature (200 °C-400 °C) has been studied by exposing W samples to Li evaporation under several D2 gaseous environments. Deuterium retention in the W-Li films has been quantified by using laser induced desorption-mass spectrometry (LID-QMS). Additional techniques as thermal desorption spectroscopy, secondary ion mass spectrometry, profilemetry and flame atomic emission spectroscopy were implemented to corroborate the retention results and for the qualitative and quantitative characterization of the films. The results showed a negligible (below LID sensibility) D uptake at T surface = 225 °C, when the W-Li layer is exposed to simultaneous Li evaporation and D2 gas exposition (0.67 Pa). Pre-lithiated samples were also exposed to higher D2 pressures (133.3 Pa) at different temperatures (200 °C-400 °C). A non-linear drastic reduction in the D retention with increasing temperatures was found on the W-Li films, presenting a D/Li atomic ratio at 400 °C lower than 0.1 at.% on a thin film of ≈100 nm thick. These results bode well (in terms of tritium inventory) for the potential utilization of this material combination in a real reactor scenario.
Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects
Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.; ...
2017-03-14
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less
Lin, X.; Kavian, R.; Lu, Y.; Hu, Q.; Shao-Horn, Y.
2015-01-01
Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature. PMID:28757963
Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects.
Pascal, Tod A; Villaluenga, Irune; Wujcik, Kevin H; Devaux, Didier; Jiang, Xi; Wang, Dunyang Rita; Balsara, Nitash; Prendergast, David
2017-04-12
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.
NASA Astrophysics Data System (ADS)
Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi
2018-05-01
Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.
Ionic liquids and derived materials for lithium and sodium batteries.
Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang; Hu, Yong-Sheng; Xing, Huabin; Dai, Sheng
2018-03-21
The ever-growing demand for advanced energy storage devices in portable electronics, electric vehicles and large scale power grids has triggered intensive research efforts over the past decade on lithium and sodium batteries. The key to improve their electrochemical performance and enhance the service safety lies in the development of advanced electrode, electrolyte, and auxiliary materials. Ionic liquids (ILs) are liquids consisting entirely of ions near room temperature, and are characterized by many unique properties such as ultralow volatility, high ionic conductivity, good thermal stability, low flammability, a wide electrochemical window, and tunable polarity and basicity/acidity. These properties create the possibilities of designing batteries with excellent safety, high energy/power density and long-term stability, and also provide better ways to synthesize known materials. IL-derived materials, such as poly(ionic liquids), ionogels and IL-tethered nanoparticles, retain most of the characteristics of ILs while being endowed with other favourable features, and thus they have received a great deal of attention as well. This review provides a comprehensive review of the various applications of ILs and derived materials in lithium and sodium batteries including Li/Na-ion, dual-ion, Li/Na-S and Li/Na-air (O 2 ) batteries, with a particular emphasis on recent advances in the literature. Their unique characteristics enable them to serve as advanced resources, medium, or ingredient for almost all the components of batteries, including electrodes, liquid electrolytes, solid electrolytes, artificial solid-electrolyte interphases, and current collectors. Some thoughts on the emerging challenges and opportunities are also presented in this review for further development.
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven; ...
2017-08-11
An understanding of the wetting properties and a characterization of theinterface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. Here, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force eld is parameterized to describe the interactions between Li and Mo. The new force eld reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (110) surface. This force field is then used tomore » study the wetting of liquid Li on the (110) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we nd that liquid Li tends to completely wet the perfect Mo (110) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (110) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin- lm simulations, it is observed that the first layer of Li on the Mo (110) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. Our findings are consistent with temperature-programmed desorption experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven
An understanding of the wetting properties and a characterization of theinterface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. Here, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force eld is parameterized to describe the interactions between Li and Mo. The new force eld reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (110) surface. This force field is then used tomore » study the wetting of liquid Li on the (110) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we nd that liquid Li tends to completely wet the perfect Mo (110) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (110) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin- lm simulations, it is observed that the first layer of Li on the Mo (110) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. Our findings are consistent with temperature-programmed desorption experiments.« less
NASA Astrophysics Data System (ADS)
Vella, Joseph R.; Chen, Mohan; Fürstenberg, Sven; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
2017-11-01
An understanding of the wetting properties and a characterization of the interface between liquid lithium (Li) and solid molybdenum (Mo) are relevant to assessing the efficacy of Li as a plasma-facing component in fusion reactors. In this work, a new second-nearest neighbor modified embedded-atom method (2NN MEAM) force field is parameterized to describe the interactions between Li and Mo. The new force field reproduces several benchmark properties obtained from first-principles quantum mechanics simulations, including binding curves for Li at three different adsorption sites and the corresponding forces on Li atoms adsorbed on the Mo (1 1 0) surface. This force field is then used to study the wetting of liquid Li on the (1 1 0) surface of Mo and to examine the Li-Mo interface using molecular dynamics simulations. From droplet simulations, we find that liquid Li tends to completely wet the perfect Mo (1 1 0) surface, in contradiction with previous experimental measurements that found non-zero contact angles for liquid Li on a Mo substrate. However, these experiments were not carried out under ultra-high vacuum conditions or with a perfect (1 1 0) Mo surface, suggesting that the presence of impurities, such as oxygen, and surface structure play a crucial role in this wetting process. From thin-film simulations, it is observed that the first layer of Li on the Mo (1 1 0) surface has many solid-like properties such as a low mobility and a larger degree of ordering when compared to layers further away from the surface, even at temperatures well above the bulk melting temperature of Li. These findings are consistent with temperature-programmed desorption experiments.
Mission Applicability Assessment of Integrated Power Components and Systems
NASA Technical Reports Server (NTRS)
Raffaelle, R. P.; Hepp, A. F.; Landis, G. A.; Hoffman, D. J.
2002-01-01
The need for smaller lightweight autonomous power systems has recently increased with the increasing focus on micro- and nanosatellites. Small area high-efficiency thin film batteries and solar cells are an attractive choice for such applications. The NASA Glenn Research Center, Johns Hopkins Applied Physics Laboratory, Lithium Power Technologies, MicroSat Systems, and others, have been working on the development of autonomous monolithic packages combining these elements or what are called integrated power supplies (IPS). These supplies can be combined with individual satellite components and are capable of providing continuous power even under intermittent illumination associated with a spinning or Earth orbiting satellite. This paper discusses the space mission applicability, benefits, and current development efforts associated with integrated power supply components and systems. The characteristics and several mission concepts for an IPS that combines thin-film photovoltaic power generation with thin-film lithium ion energy storage are described. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be for small "nanosatellites" or in specialized applications serving as a decentralized or as a distributed power source or uninterruptible power supply.
Li, Jie; Lin, Yue; Yao, Hehua; Yuan, Changfu; Liu, Jin
2014-07-01
A tunable polysiloxane thin-film electrolyte for all-solid-state lithium-ion batteries was developed. The polysiloxane was synthesized by hydrosilylation of polymethylhydrosiloxane with cyclic [(allyloxy)methyl]ethylene ester carbonic acid and vinyl tris(2-methoxyethoxy)silane. (1) H NMR spectroscopy and gel-permeation chromatography demonstrated that the bifunctional groups of the cyclic propylene carbonate (PC) and combed poly(ethylene oxide) (PEO) were well grafted on the polysiloxane. At PC/PEO=6:4, the polysiloxane-based electrolyte had an ionic conductivity of 1.55 × 10(-4) and 1.50 × 10(-3) S cm(-1) at 25 and 100 °C, respectively. The LiFePO4 /Li batteries fabricated with the thin-film electrolyte presented excellent cycling performance in the temperature range from 25 to 100 °C with an initial discharge capacity at a rate of 1 C of 88.2 and 140 mA h g(-1) at 25 and 100 °C, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene-based in-plane micro-supercapacitors with high power and energy densities
Wu, Zhong–Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus
2013-01-01
Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm−2 and a stack capacitance of 17.9 F cm−3. Further, they show a power density of 495 W cm−3 that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm−3 that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s−1, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications. PMID:24042088
Graphene-based in-plane micro-supercapacitors with high power and energy densities.
Wu, Zhong-Shuai; Parvez, Khaled; Feng, Xinliang; Müllen, Klaus
2013-01-01
Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates. The resulting micro-supercapacitors deliver an area capacitance of 80.7 μF cm⁻² and a stack capacitance of 17.9 F cm⁻³. Further, they show a power density of 495 W cm⁻³ that is higher than electrolytic capacitors, and an energy density of 2.5 mWh cm⁻³ that is comparable to lithium thin-film batteries, in association with superior cycling stability. Such microdevices allow for operations at ultrahigh rate up to 1,000 V s⁻¹, three orders of magnitude higher than that of conventional supercapacitors. Micro-supercapacitors with an in-plane geometry have great promise for numerous miniaturized or flexible electronic applications.
Amorphous lithium lanthanum titanate for solid-state microbatteries
Lee, Jungwoo Z.; Wang, Ziying; Xin, Huolin L.; ...
2016-12-16
Lithium lanthanum titanate (LLTO) is a promising solid state electrolyte for solid state batteries due to its demonstrated high bulk ionic conductivity. However, crystalline LLTO has a relatively low grain boundary conductivity, limiting the overall material conductivity. In this work, we investigate amorphous LLTO (a-LLTO) thin films grown by pulsed laser deposition (PLD). By controlling the background pressure and temperature we are able to optimize the ionic conductivity to 3 × 10 –4 S/cm and electronic conductivity to 5 × 10 –11 S/cm. XRD, TEM, and STEM/EELS analysis confirm that the films are amorphous and indicate that oxygen background gasmore » is necessary during the PLD process to decrease the oxygen vacancy concentration, decreasing the electrical conductivity. Amorphous LLTO is deposited onto high voltage LiNi 0.5Mn 1.5O 4 (LNMO) spinel cathode thin films and cycled up to 4.8 V vs. Li showing excellent capacity retention. Finally, these results demonstrate that a-LLTO has the potential to be integrated into high voltage thin film batteries.« less
NASA Astrophysics Data System (ADS)
Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.
We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.
NASA Astrophysics Data System (ADS)
Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai
2018-05-01
Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.
NASA Technical Reports Server (NTRS)
Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz
1991-01-01
A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.
Micro-channel-based high specific power lithium target
NASA Astrophysics Data System (ADS)
Mastinu, P.; Martın-Hernández, G.; Praena, J.; Gramegna, F.; Prete, G.; Agostini, P.; Aiello, A.; Phoenix, B.
2016-11-01
A micro-channel-based heat sink has been produced and tested. The device has been developed to be used as a Lithium target for the LENOS (Legnaro Neutron Source) facility and for the production of radioisotope. Nevertheless, applications of such device can span on many areas: cooling of electronic devices, diode laser array, automotive applications etc. The target has been tested using a proton beam of 2.8MeV energy and delivering total power shots from 100W to 1500W with beam spots varying from 5mm2 to 19mm2. Since the target has been designed to be used with a thin deposit of lithium and since lithium is a low-melting-point material, we have measured that, for such application, a specific power of about 3kW/cm2 can be delivered to the target, keeping the maximum surface temperature not exceeding 150° C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.
All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte – electrode interfaces will be critical to improve performance. In this paper, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grewmore » in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. Finally, the stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.« less
Efficiency of Moderated Neutron Lithium Glass Detectors Using Monte Carlo Techniques
NASA Astrophysics Data System (ADS)
James, Brian
2011-10-01
Due to national security concerns over the smuggling of special nuclear materials and the small supply of He-3 for use in neutron detectors, there is a great need for a new kind of neutron detector. Using Monte Carlo techniques I have been studying the use of lithium glass in varying configurations for neutron detectors. My research has included the effects of using a detector with two thin sheets of lithium at varying distances apart. I have also researched the effects of varying amounts of shielding a californium source with varying amounts of water. This is important since shielding would likely be used to make nuclear material more difficult to detect. The addition of one sheet of lithium-6 glass on the front surface of the detector significantly improves the efficiency for the detection of neutrons from a moderated fission source.
Observations of the freeze/thaw performance of lithium fluoride by motion picture photography
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Perry, W. D.
1991-01-01
To gain direct observation of the molten salt phase change, a novel containerless technique was developed where the high surface tension of lithium fluoride was used to suspend a bead of the molten salt inside a specially designed wire cage. By varying the current passing through the wire, the cage also served as a variable heat source. In this way, the freeze/thaw performance of the lithium fluoride could be photographed by motion picture photography without the influence of container walls. The motion picture photography of the lithium fluoride sample revealed several zones during the phase change, a solid zone and a liquid zone, as expected, and a slush zone that was predicted by thermal analysis modeling.
Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions
Ono, M.; Jaworski, M. A.; Kaita, R.; ...
2016-08-05
Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition to those issues, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues while potentially improving the reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-freemore » core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept and its variant, the active liquid lithium divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/sec of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤ 500°C than the first wall ~ 600 – 700°C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ~ 1 liter/second (l/sec) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust / impurities are removed by relatively simple filter and cold/hot trap systems. Using a cold trap system, it can recover in tritium (T) in real time from LL at a rate of ~ 0.5 g / sec needed to sustain the fusion reaction while minimizing the T inventory issue. With an expected T fraction of ≤ 0.7 %, an acceptable level of T inventory can be achieved. In NSTX-U, preparations are now underway to elucidate the physics of Li plasma interactions with a number of Li application tools and Li radiation spectroscopic instruments. The NSTX-U Li evaporator which provides Li coating over the lower divertor plate, can offer important information on the RLLD concept, and the Li granule injector will test some of the key physics issue on the ARLLD concept. A LL-loop is also being prepared off line for prototyping future use on NSTX-U.« less
A solvated electron lithium electrode for secondary batteries
NASA Astrophysics Data System (ADS)
Sammells, A. F.; Semkow, K. W.
1986-09-01
Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartini, Evvy; Manawan, Maykel
With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is stillmore » the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li{sub 3}PO{sub 4} has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li{sub 3}PO{sub 4} has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H{sub 3}PO{sub 4}. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li{sub 3}PO{sub 4}, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li{sub 3}PO{sub 4} was around 10{sup −8} S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li{sub 3}PO{sub 4} for lithium ion battery will give more added values to the researches and national industry.« less
Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.
Borodin, Oleg; Suo, Liumin; Gobet, Mallory; Ren, Xiaoming; Wang, Fei; Faraone, Antonio; Peng, Jing; Olguin, Marco; Schroeder, Marshall; Ding, Michael S; Gobrogge, Eric; von Wald Cresce, Arthur; Munoz, Stephen; Dura, Joseph A; Greenbaum, Steve; Wang, Chunsheng; Xu, Kang
2017-10-24
Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.
Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yong, Tianqiao; Zhang, Lingzhi; Wang, Jinglun; Mai, Yongjin; Yan, Xiaodan; Zhao, Xinyue
2016-10-01
Three choline-based ionic liquids functionalized with trimethylsilyl, allyl, and cynoethyl groups are synthesized in an inexpensive route as safe electrolytes for high-voltage lithium-ion batteries. The thermal stabilities, viscosities, conductivities, and electrochemical windows of these ILs are reported. Hybrid electrolytes were formulated by doping with 0.6 M LiPF6/0.4 M lithium oxalydifluoroborate (LiODFB) as salts and dimethyl carbonate (DMC) as co-solvent. By using 0.6 M LiPF6/0.4 M LiODFB trimethylsilylated choline-based IL (SN1IL-TFSI)/DMC as electrolyte, LiCoO2/graphite full cell showed excellent cycling performance with a capacity of 152 mAh g-1 and 99% capacity retention over 90 cycles at a cut-off voltage of 4.4 V. The propagation rate of SN1IL-TFSI)/DMC electrolyte is only one quarter of the commercial electrolyte (1 M LiPF6 EC/DEC/DMC, v/v/v = 1/1/1), suggesting a better safety feature.
NASA Astrophysics Data System (ADS)
Kim, Dong-Won; Sivakkumar, S. R.; MacFarlane, Douglas R.; Forsyth, Maria; Sun, Yang-Kook
A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4) and LiBF 4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF 4. A porous poly(vinylidene fluoride- co-hexafluoropropylene) (P(VdF- co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage-power sources with enhanced safety.
Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; ...
2014-08-20
Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF 4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li + ion in thismore » model electrolyte. By generating linear combinations of the computed spectra of Li +-associating and free PC molecules and comparing to the experimental spectrum, we find a Li +–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less
Develop a Low Cost, Safe and Environmentally Benign High Energy and High Rate Reserve Battery
2004-09-30
Methylimidazolium hexafluorophosphate BMItrif 1-Butyl-3-Methylimidazolium trifluoromethanesulfonate EC Ethylene carbonate EMC Ethyl methyl carbonate DEC...ionic liquid, a new field in lithium -based batteries, merits special recognition. The contribution of Dr. Mark Salomon with respect to the...applications. In particular, the anode is typically metallic lithium , and the cathode depolarizer is, most commonly, thionyl chloride (SOCl2) or sulfuryl
NASA Astrophysics Data System (ADS)
Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.
2010-12-01
Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).
A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennett, William R.
2007-01-01
The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.
A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries
Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin
2016-01-01
A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system. PMID:26878890
Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture
NASA Technical Reports Server (NTRS)
Yue, A. S.; Yeh, C. W.; Yue, B. K.
1982-01-01
Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.
Third order nonlinearity in pulsed laser deposited LiNbO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal, E-mail: kcjrsp@uohyd.ernet.in, E-mail: svrsp@uohyd.ernet.in
2016-05-06
Lithium niobate (LiNbO{sub 3}) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.
NASA Astrophysics Data System (ADS)
Wang, Yongliang; Ni, Muyi; Jiang, Jieqiong; Wu, Yican; FDS-Team
2012-07-01
This paper studied the adequacy of the World and China lithium resources, considering the most promising uses in the future, involving nuclear fusion and electric-vehicles. The lithium recycle model for D-T fusion power plant and electric-vehicles, and the logistic growth prediction model of the primary energy for the World and China were constructed. Based on these models, preliminary evaluation of lithium resources adequacy of the World and China for D-T fusion reactors was presented under certain assumptions. Results show that: a. The world terrestrial reserves of lithium seems too limited to support a significant D-T power program, but the lithium reserves of China are relatively abundant, compared with the world case. b. The lithium resources contained in the oceans can be called the “permanent" energy. c. The change in 6Li enrichment has no obvious effect on the availability period of the lithium resources using FDS-II (Liquid Pb-17Li breeder blanket) type of reactors, but it has a stronger effect when PPCS-B (Solid Li4 SiO4 ceramics breeder blanket) is used.
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Allen; Zheng, Guangyuan; Shi, Feifei
Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g -1 and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a criticalmore » fundamental scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Finally, based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.« less
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
Pei, Allen; Zheng, Guangyuan; Shi, Feifei; ...
2017-01-10
Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g -1 and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a criticalmore » fundamental scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Finally, based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.« less
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal.
Pei, Allen; Zheng, Guangyuan; Shi, Feifei; Li, Yuzhang; Cui, Yi
2017-02-08
Lithium metal has re-emerged as an exciting anode for high energy lithium-ion batteries due to its high specific capacity of 3860 mAh g -1 and lowest electrochemical potential of all known materials. However, lithium has been plagued by the issues of dendrite formation, high chemical reactivity with electrolyte, and infinite relative volume expansion during plating and stripping, which present safety hazards and low cycling efficiency in batteries with lithium metal electrodes. There have been a lot of recent studies on Li metal although little work has focused on the initial nucleation and growth behavior of Li metal, neglecting a critical fundamental scientific foundation of Li plating. Here, we study experimentally the morphology of lithium in the early stages of nucleation and growth on planar copper electrodes in liquid organic electrolyte. We elucidate the dependence of lithium nuclei size, shape, and areal density on current rate, consistent with classical nucleation and growth theory. We found that the nuclei size is proportional to the inverse of overpotential and the number density of nuclei is proportional to the cubic power of overpotential. Based on this understanding, we propose a strategy to increase the uniformity of electrodeposited lithium on the electrode surface.
Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm
2015-12-09
High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.
Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.
Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang
2010-05-25
There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.
Thermodynamically constrained correction to ab initio equations of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Martin; Mattsson, Thomas R.
2014-07-07
We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence ofmore » the exchange-correlation functional used.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904
2014-05-15
The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.
Gu, Meng; Parent, Lucas R; Mehdi, B Layla; Unocic, Raymond R; McDowell, Matthew T; Sacci, Robert L; Xu, Wu; Connell, Justin Grant; Xu, Pinghong; Abellan, Patricia; Chen, Xilin; Zhang, Yaohui; Perea, Daniel E; Evans, James E; Lauhon, Lincoln J; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D; Cui, Yi; Arslan, Ilke; Wang, Chong-Min
2013-01-01
Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.
High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.
Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng
2016-03-24
The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the role of quantum ion dynamics for the anomalous melting of lithium
NASA Astrophysics Data System (ADS)
Elatresh, Sabri; Bonev, Stanimir
2011-03-01
Lithium has attracted a lot of interest in relation to a number of counterintuitive electronic and structural changes that it exhibits under pressure. One of the most remarkable properties of dense lithium is its anomalous melting. This behavior was first predicted theoretically based on first-principles molecular dynamics (FPMD) simulations, which treated the ions classically. The lowest melting temperature was determined to be about 275~K at 65~GPa. Recent experiments measured a melting temperature about 100~K lower at the same pressure. In this talk, we will present FPMD calculations of solid and liquid lithium free energies up to 100 GPa that take into account ion quantum dynamics. We examine the significance of the quantum effects for the finite-temperature phase boundaries of lithium and, in particular, its melting curve. Work supported by NSERC, Acenet, and LLNL under Contract DE-AC52-07NA27344.
Interphase Evolution of a Lithium-Ion/Oxygen Battery.
Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef
2015-10-14
A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.
Multi-Wall Carbon Nanotubes as Lithium Nanopipettes and SPM Probes
NASA Astrophysics Data System (ADS)
Larson, Jonathan; Bharath, Satyaveda; Cullen, William; Reutt-Robey, Janice
2014-03-01
A multi-walled carbon nanotube (MWCNT) - terminated SPM cantilever, was utilized to perform nanolithography and surface diffusion measurements on a thin film of vapor-deposited lithium atop a silicon (111) substrate under ultra-high vacuum conditions. In these investigations the MWCNT tip was shown to act as both a lithium nanopipette and a probe for non-contact atomic force microscopy (NC-AFM) measurements. With the application of appropriate bias conditions, the MWCNT could site-selectively extract (expel) nano-scale amounts of lithium from (to) the sample surface. Depressions, mounds, and spikes were generated on the surface in this way and were azimuthally symmetric about the selected point of pipetting. Following lithium transfer to/from the substrate, the MWCNT pipette-induced features were sequentially imaged with NC-AFM using the MWCNT as the probe. Vacancy pits of ca. 300 nm diameter and 1.5 nm depth were observed to decay on a timescale of hours at room temperature, through diffusion-limited decay processes. A continuum model was utilized to simulate the island decay rates, and the lithium surface diffusion coefficient of D =7.5 (+/-1.3)*10-15 cm2/s was extracted. U.S. Department of Energy Award Number DESC0001160.
NASA Astrophysics Data System (ADS)
Chadha, Tandeep S.
Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular structures, due to a combination of high surface area, improved lithium diffusivity and electronic conductivity. The model developed allows for the prediction of optimized nanostructure geometry depending on the end-use application. Increasing demand for lithium-ion batteries, posing concerns for lithium supply and costs in future, have motivated research in sodium-ion batteries as alternatives. In this work, the nanostructured TiO2 electrodes have been studied as anodes for sodium ion batteries. To improve the performance, a new multi-component ACVD process has been developed to achieve single-step synthesis of doped nanostructured thin films. One-dimensional niobium doped TiO2 thin films have been synthesized and characterized as a novel anode material for sodium-ion batteries. The doped nanostructured thin films deliver significant improvements on capacity over their undoped counterparts and demonstrate feasibility of sodium-ion batteries. In summary, the studies conducted in this dissertation develop a detailed understanding of the ACVD process and demonstrate its ability to synthesize superior nanostructured thin films for energy storage applications, thereby motivating process scalability for commercial applications.
Xiao, Jiefeng; Li, Jia; Xu, Zhenming
2017-10-17
Lithium is a rare metal because of geographical scarcity and technical barrier. Recycling lithium resource from spent lithium ion batteries (LIBs) is significant for lithium deficiency and environmental protection. A novel approach for recycling lithium element as Li 2 CO 3 from spent LIBs is proposed. First, the electrode materials preobtained by mechanical separation are pyrolyzed under enclosed vacuum condition. During this process the Li is released as Li 2 CO 3 from the crystal structure of lithium transition metal oxides due to the collapse of the oxygen framework. An optimal Li recovery rate of 81.90% is achieved at 973 K for 30 min with a solid-to-liquid ratio of 25 g L -1 , and the purity rate of Li 2 CO 3 is 99.7%. The collapsed mechanism is then presented to explain the release of lithium element during the vacuum pyrolysis. Three types of spent LIBs including LiMn 2 O 4 , LiCoO 2 , and LiCo x Mn y Ni z O 2 are processed to prove the validity of in situ recycling Li 2 CO 3 from spent LIBs under enclosed vacuum condition. Finally, an economic assessment is taken to prove that this recycling process is positive.
Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolodosky, A.; Fratoni, M.
2014-11-20
Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis.more » The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.« less
Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...
2015-04-08
The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less
A vanadium alloy for the application in a liquid metal blanket of a fusion reactor
NASA Astrophysics Data System (ADS)
Borgstedt, H. U.; Grundmann, M.; Konys, J.; Perić, Z.
1988-07-01
The vanadium alloy V3Ti1Si has been corrosion tested in liquid lithium and the eutectic alloy Pb-17Li at 550°C. This alloy has a comparable corrosion resistance to the alloy V15Cr5Ti in lithium. In this molten metal it is superior to stainless steel AISI 316. In the Pb-17Li melt it is even superior to martensitic steels. The alloy has only a weak tendency to be dissolved. It is sensitive to an exchange of non-metallic elements, which causes the formation of a hardened surface layer. These chemical effects are influenced by the mass and surface ratios of the vanadium alloy to the molten metals and other structural materials. These ratios are unfavorable in the two test loops. The effects might be less pronounced in a vanadium alloy/liquid metal fusion reactor blanket.
Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery
NASA Technical Reports Server (NTRS)
Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu
2015-01-01
Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.
Electrodeposition of Metals in Microgravity Conditions
NASA Technical Reports Server (NTRS)
Nishikawa, K.; Homma, T.; Chassaing, E.; Rosso, M.; Fukunaka, Y.
2012-01-01
Metal electrodeposition may introduce various morphological variations depending on the electrolytic conditions including cell configurations. For liquid electrolytes, a precise study of these deposits may be complicated by convective motion due to buoyancy. Zero-gravity (0-G) condition provided by drop shaft or parabolic flight gives a straightforward mean to avoid this effect: we present here 0-G electrodeposition experiments, which we compare to ground experiments (1-G). Two electrochemical systems were studied by laser interferometry, allowing to measure the concentration variations in the electrolyte: copper deposition from copper sulfate aqueous solution and lithium deposition from an ionic liquid containing LiTFSI. For copper, concentration variations were in good agreement with theory. For lithium, an apparent induction time was observed for the concentration evolution at 1-G: due to this induction time and to the low diffusion coefficient in ionic liquid, the concentration variations were hardly measurable in the parabolic flight 0-G periods of 20 seconds.
Wu, Chia-Ching; Yang, Cheng-Fu
2013-06-12
P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.
Kobayashi, Takeshi; Kobayashi, Yo; Tabuchi, Masato; Shono, Kumi; Ohno, Yasutaka; Mita, Yuichi; Miyashiro, Hajime
2013-12-11
The all solid-state lithium battery with polyether-based solid polymer electrolyte (SPE) is regarded as one of next-generation lithium batteries, and has potential for sufficient safety because of the flammable-electrolyte-free system. It has been believed that polyether-based SPE is oxidized at the polymer/electrode interface with 4 V class cathodes. Therefore, it has been used for electric devices such as organic transistor, and lithium battery under 3 V. We estimated decomposition reaction of polyether used as SPE of all solid-state lithium battery. We first identified the decomposed parts of polyether-based SPE and the conservation of most main chain framework, considering the results of SPE analysis after long cycle operations. The oxidation reaction was found to occur slightly at the ether bond in the main chain with the branched side chain. Moreover, we resolved the issue by introducing a self-sacrificing buffer layer at the interface. The introduction of sodium carboxymethyl cellulose (CMC) to the 4 V class cathode surface led to the suppression of SPE decomposition at the interface as a result of the preformation of a buffer layer from CMC, which was confirmed by the irreversible exothermic reaction during the first charge, using electrochemical calorimetry. The attained 1500 cycle operation is 1 order of magnitude longer than those of previously reported polymer systems, and compatible with those of reported commercial liquid systems. The above results indicate to proceed to an intensive research toward the realization of 4 V class "safe" lithium polymer batteries without flammable liquid electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzic, David N.; Andruczyk, Daniel
The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not bemore » used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.« less
Innovative Surfaces for Controlled Flow of Liquid Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortini, Arthur J.
2016-03-22
The potential economic, environmental, and strategic benefits associated with the development of fusion energy are numerous. However, application of fusion technology cannot be realized until advanced materials are developed that allow operation under the high heat flux conditions necessary for cost-competitive electric energy generation. Bathing the wall of a fusion reactor plasma-facing component in a liquid metal such as lithium, gallium, or tin is a viable approach for accommodating continuous heat flux levels exceeding 10 MW/m2, and it is also the preferred approach for removing hydrogen isotopes. Stabilizing the liquid film is the key challenge, which can be addressed throughmore » the use of a microtextured surface. In previous work, Ultramet developed high temperature microtextured tungsten and rhenium coatings consisting of thousands of high aspect ratio pyramids per square millimeter that are compatible with lithium, gallium, and tin, and whose effectiveness in wicking molten lithium has been demonstrated even in the presence of strong body forces. Heat transfer and fluid flow characteristics were also modeled. Because of the safety issues surrounding lithium, the current project focused on adapting and optimizing this wicking technology for use with gallium and tin. The coatings were deposited by chemical vapor deposition (CVD), and the height, population density, and morphology of the pyramids was varied to optimize the wetting properties, which were measured and quantified by exposing the coatings to molten gallium or tin. Micron-thick films of other materials were also applied to the textured surfaces to vary the wetting characteristics. Wicking tests were performed with both gallium and tin on a variety of coatings with different textures and surface chemistries, and both metals showed excellent wicking and wettability on virtually all of the textured coatings. Extensive modeling of the interaction between the dendrites and the liquid metal, as well as additional wetting testing, was performed by Digital Materials Solutions (DMS, Carlsbad, CA).« less
Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J
2015-05-04
A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.
Thomas L. Eberhardt; Stan Lebow; Karen G. Reed
2012-01-01
A cellulose solvent system based on lithium chloride (LiCl) in N-methyl-2-pyrrolidinone (NMP) was used to assess the merits of partial dissolutions of coarsely ground wood samples. Alkaline Copper Quaternary (ACQ)-treated pine wood was of particular interest for treatment given the potential to generate a copper- rich stream apart from solid and/or liquid...
Hwa, Yoon; Seo, Hyeon Kook; Yuk, Jong-Min; Cairns, Elton J
2017-11-08
The ambient-temperature rechargeable lithium/sulfur (Li/S) cell is a strong candidate for the beyond lithium ion cell since significant progress on developing advanced sulfur electrodes with high sulfur loading has been made. Here we report on a new sulfur electrode active material consisting of a cetyltrimethylammonium bromide-modified sulfur-graphene oxide-carbon nanotube (S-GO-CTA-CNT) nanocomposite prepared by freeze-drying. We show the real-time formation of nanocrystalline lithium sulfide (Li 2 S) at the interface between the S-GO-CTA-CNT nanocomposite and the liquid electrolyte by in situ TEM observation of the reaction. The combination of GO and CNT helps to maintain the structural integrity of the S-GO-CTA-CNT nanocomposite during lithiation/delithiation. A high S loading (11.1 mgS/cm 2 , 75% S) S-GO-CTA-CNT electrode was successfully prepared using a three-dimensional structured Al foam as a substrate and showed good S utilization (1128 mAh/g S corresponding to 12.5 mAh/cm 2 ), even with a very low electrolyte to sulfur weight ratio of 4. Moreover, it was demonstrated that the ionic liquid in the electrolyte improves the Coulombic efficiency and stabilizes the morphology of the Li metal anode.
Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment
NASA Astrophysics Data System (ADS)
Boyle, D. P.; Bell, R. E.; Kaita, R.; Lucia, M.; Schmitt, J. C.; Scotti, F.; Kubota, S.; Hansen, C.; Biewer, T. M.; Gray, T. K.
2016-10-01
The Lithium Tokamak Experiment (LTX) is a modest-sized spherical tokamak with all-metal plasma facing components (PFCs), uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma. This work presents measurements of core plasma impurity concentrations and transport in LTX. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2 - 4 % Li, 0.6 - 2 % C, 0.4 - 0.7 % O, and Zeff < 1.2 . Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, and neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two. However, time-independent simulations with MIST indicated that neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles. Progress on additional analysis, including time-dependent impurity transport simulations and impurity measurements with liquid lithium coatings, and plans for diagnostic upgrades and future experiments in LTX- β will also be presented. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Gu, Meng; Chen, Honghao
2013-05-16
Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectivelymore » protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team
Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50.more » Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, G. Z.; Hu, J. S.; Maingi, R.
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-03-02
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 10 20 atom s –1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. Themore » Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
Lasche, George P.
1988-01-01
A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.
Development of a high-power neutron-producing lithium target for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Brown, Adam V.; Scott, Malcolm C.
2000-12-01
A neutron producing lithium target for a novel, accelerator based cancer treatment requires the removal of up to 6kW of heat produced by 1-2mA beam of 2.3-3.0MeV protons. This paper presents the results form computer simulations which show that, using submerged jet cooling, a solid lithium target can be maintained up to 1.6mA, and a liquid target up to 2.6mA, assuming a 3.0MeV proton beam. The predictions from the simulations are verified through the use of an experimental heat transfer test-rig and the result form a number of metallurgical studies made to select a compatible substrate material for the lithium are reported.
Lasche, G.P.
1987-02-20
A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.
Packaging material for thin film lithium batteries
Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.
1996-01-01
A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.
NASA Astrophysics Data System (ADS)
Meng, Xiancai; Zuo, Guizhong; Ren, Jun; Xu, Wei; Sun, Zhen; Huang, Ming; Hu, Wangyu; Hu, Jiansheng; Deng, Huiqiu
2016-11-01
Investigation of corrosion behavior of stainless steel served as one kind of structure materials exposed to liquid lithium (Li) is one of the keys to apply liquid Li as potential plasma facing materials (PFM) or blanket coolant in the fusion device. Corrosion experiments of 304 austenite stainless steel (304 SS) were carried out in static liquid Li at 600 K and up to1584 h at high vacuum with pressure less than 4 × 10-4 Pa. After exposure to liquid Li, it was found that the weight of 304 SS slightly decreased with weight loss rate of 5.7 × 10-4 g/m2/h and surface hardness increased by about 50 HV. Lots of spinel-like grains and holes were observed on the surface of specimens measured by SEM. By further EDS, XRD and metallographic analyzing, it was confirmed that the main compositions of spinel-like grains were M23C6 carbides, and 304 SS produced a non-uniform corrosion behavior by preferential grain boundary attack, possibly due to the easy formation of M23C6 carbides and/or formation of Li compound at grain boundaries.
Kil, Eun-Hye; Choi, Keun-Ho; Ha, Hyo-Jeong; Xu, Sheng; Rogers, John A; Kim, Mi Ri; Lee, Young-Gi; Kim, Kwang Man; Cho, Kuk Young; Lee, Sang-Young
2013-03-13
A class of imprintable, bendable, and shape-conformable polymer electrolyte with excellent electrochemical performance in a lithium battery system is reported. The material consists of a UV-cured polymer matrix, high-boiling point liquid electrolyte, and Al2 O3 nanoparticles, formulated for use in lithium-ion batteries with 3D-structured electrodes or flexible characteristics. The unique structural design and well-tuned rheological characteristics of the UV-curable electrolyte mixture, in combination with direct UV-assisted nanoimprint lithography, allow the successful fabrication of polymer electrolytes in geometries not accessible with conventional materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi
Wiswall, R.H.
1960-05-10
Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.
Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3
NASA Astrophysics Data System (ADS)
Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan
2016-12-01
Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.
Grozema, F C; Best, A S; van Eijck, L; Stride, J; Kearley, G J; de Leeuw, S W; Picken, S J
2005-04-28
Polyelectrolyte materials are an interesting class of electrolytes for use in fuel cell and battery applications. Poly(para-phenylene terephthalamide) (PPTA, Kevlar) is a liquid crystalline polymer that, when sulfonated, is a polyelectrolyte that exhibits moderate ion conductivity at elevated temperatures. In this work, quasi-elastic neutron scattering (QENS) experiments were performed to gain insight into the effect of the presence of lithium counterions on the chain dynamics in the material. It was found that the addition of lithium ions decreases the dynamics of the chains. Additionally, the binding of lithium ions to the sulfonic acids groups was investigated by density functional theory (DFT) calculations. It was found that the local surroundings of the sulfonic acid group have very little effect on the lithium-ion binding energy. Binding energies for a variety of different systems were all calculated to be around 150 kcal/mol. The DFT calculations also show the existence of a structure in which a single lithium ion interacts with two sulfonic acid moieties on different chains. The formation of such "electrostatic cross-links" is believed to be the source of the increased tendency to aggregate and the reduced dynamics in the presence of lithium ions.
Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.
Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy
2010-05-20
Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.
NASA Astrophysics Data System (ADS)
Christenson, Michael; Szott, Matthew; Stemmley, Steven; Mettler, Jeremy; Wendeborn, John; Moynihan, Cody; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David
2017-10-01
Lithium has proven over numerous studies to improve core confinement, allowing access to operational regimes previously unattainable when using solid, high-Z divertor and limiter modules in magnetic confinement devices. Lithium readily absorbs fuel species, and while this is advantageous, it is also detrimental with regards to tritium inventory and safety concerns. As such, extraction technologies for the recovery of hydrogenic isotopes captured by lithium require development and testing in the context of a larger lithium loop recycling system. Proposed reclamation technologies at the University of Illinois at Urbana-Champaign (UIUC) will take advantage of the thermophysical properties of the lithium-hydrogen-lithium hydride system as the driving force for recovery. Previous work done at UIUC indicates that hydrogen release from pure lithium hydride reaches a maximum of 7 x 1018 s-1 at 665 °C. While this recovery rate is appreciable, reactor-scale scenarios will require isotope recycling to happen on an even faster timescale. The ratio of isotope dissolution to hydride precipitate formation must therefore be determined, along with the energy needed to recoup trapped hydrogen isotopes. Extraction technologies for use with a LiMIT-style loop system will be discussed and results will be presented. DOE/ALPS DE-FG02-99ER54515.
Chancelier, L; Diallo, A O; Santini, C C; Marlair, G; Gutel, T; Mailley, S; Len, C
2014-02-07
The energy storage market relating to lithium based systems regularly grows in size and expands in terms of a portfolio of energy and power demanding applications. Thus safety focused research must more than ever accompany related technological breakthroughs regarding performance of cells, resulting in intensive research on the chemistry and materials science to design more reliable batteries. Formulating electrolyte solutions with nonvolatile and hardly flammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids have been reported in the case of abuse conditions (fire, shortcut, overcharge or overdischarge). This work investigates thermal stability up to combustion of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C1C4Im][NTf2]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([PYR14][NTf2]) ionic liquids, and their corresponding electrolytes containing lithium bis(trifluoromethanesulfonyl)imide LiNTf2. Their possible routes of degradation during thermal abuse testings were investigated by thermodynamic studies under several experimental conditions. Their behaviours under fire were also tested, including the analysis of emitted compounds.
Lithium vapor/aerosol studies. Interim summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, G.A.; Bauerle, J.E.; Down, M.G.
1979-04-01
The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538/sup 0/C (1000/sup 0/F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases inmore » lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation.« less
A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte
NASA Astrophysics Data System (ADS)
Kobayashi, Yo; Shono, Kumi; Kobayashi, Takeshi; Ohno, Yasutaka; Tabuchi, Masato; Oka, Yoshihiro; Nakamura, Tatsuya; Miyashiro, Hajime
2017-02-01
Ether-based solid polymer electrolyte (SPE) is one of the most well-known lithium ion conductors. Unlike the other inorganic electrolytes, SPE exhibits advantages of flexibility and large-area production, enabling low cost production of large size batteries. However, because the ether group is oxidized at 4 V versus Li/Li+ cathode, and due to its high irreversibility with the carbon anode, ether-based SPE was believed to be inapplicable to 4 V class lithium-ion batteries with carbon anode. Here we report a remarkably stable SPE in combination with a 4 V class cathode and carbon anode achieved by the proper design at the interface. The introduced boron-based lithium salt prohibits further oxidation of SPE at the cathode interface. The surface modification of graphite by the annealing of polyvinyl chloride mostly prohibits the continuous consumption of lithium at the graphite anode. Using above interface design, we achieved 60% capacity retention after 5400 cycles. The proposed battery provides a possible approach for realizing flammable electrolyte-free lithium-ion batteries, which achieve innovative safety improvements of large format battery systems for stationary use.
Analysis of carbonated thin liquids in pediatric neurogenic dysphagia
Lundine, Jennifer P.; Bates, David G.; Yin, Han
2015-01-01
Background Aspiration of liquids is a serious complication of neurological impairments such as traumatic brain injury or stroke. Carbonated liquids have been examined as a possible alternative to thickened liquids to help reduce aspiration in cases of dysphagia in adults, but no published literature to the best of our knowledge has evaluated this technique in children. If carbonated liquids result in safer swallowing in children, they could provide a preferred alternative to thickened liquids. Objective This pilot study examined whether carbonated thin liquids (CARB) improved swallowing compared to noncarbonated thin liquids (NOCARB) for children with neurogenic dysphagia. Materials and methods Twenty-four children admitted to a level I trauma center for acute neurological injury/disease were evaluated via videofluoroscopic swallow studies. Four descriptive outcome measures were contrasted. Results CARB significantly decreased pooling (P=0.0006), laryngeal penetration/aspiration (P=0.0044) and Penetration-Aspiration Scale scores (P=0.0127) when compared to NOCARB. On average, CARB improved scores on the Penetration-Aspiration Scale by 3.7 points for participants who aspirated NOCARB. There was no significant difference in pharyngeal residue noted between CARB and NOCARB (P=0.0625). Conclusion These findings support the hypothesis that carbonated thin liquids may provide an alternative to thickened liquids for children with neurogenic dysphagia. Implications for future research and clinical practice are discussed. PMID:25758792
Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Hördemann, C.; Anand, H.; Gillner, A.
2017-08-01
Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.
Pinch-off Scaling Law of Soap Bubbles
NASA Astrophysics Data System (ADS)
Davidson, John; Ryu, Sangjin
2014-11-01
Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.
Correlating Local Structure with Electrochemical Activity in L i2MnO 3
Nanda, Jagjit; Sacci, Robert L.; Veith, Gabriel M.; ...
2015-07-31
Li 2MnO 3 is of interest as one component of the composite lithium-rich oxides, which are under development for high capacity, high voltage cathodes in lithium ion batteries. Despite such practical importance, the mechanism of electrochemical activity in Li 2MnO 3 is contested in the literature, as are the effects of long-term electrochemical cycling. Here, Raman spectroscopy and mapping are used to follow the chemical and structural changes that occur in Li 2MnO 3. Both conventional slurry electrodes and thin films are studied as a function of the state of charge (voltage) and cycle number. Thin films have similar electrochemicalmore » properties as electrodes prepared from slurries, but allow for spectroscopic investigations on uniform samples without carbon additives. Spectral changes correlate well with electrochemical activity and support a mechanism whereby capacity is lost upon extended cycling due to the formation of new manganese oxide phases. Raman mapping of both thin film and slurry electrodes charged to different voltages reveals significant variation in the local structure. Poor conductivity and slow kinetics associated with a two-phase reaction mechanism contribute to the heterogeneity.« less
NASA Astrophysics Data System (ADS)
Islam, Mohammad A.; Zuba, Mateusz; DeBiase, Vincent; Noviasky, Nicholas; Hawley, Christopher J.
2018-02-01
Cobalt nanoparticle thin films were electrophoretically deposited on copper current collectors and were annealed into thin films of hollow Co3O4 nanoparticles. These thin films were directly used as the anodes of lithium ion batteries (LIBs) without the addition of conducting carbons and bonding agents. LIBs thus fabricated show high gravimetric capacities and long cycle lives. For ≈1.0 μm thick Co3O4 nanoparticle films the gravimetric capacities of the batteries were more than 800 mAh g-1 at a current rate of C/15, which is about 90% of the theoretical maximum. Additionally, the batteries were able to undergo 200 charge/discharge cycles at a relatively fast rate of C/5 and maintain 50% of the initial capacity. In order to understand the electrochemistry of lithiation in the context of nanoparticles, Raman spectra were collected at different stages of the electrode cycles to determine the chemical and structural changes in the nanomaterials. Our results indicate that initially the electrode nanoparticles were under significant strain and as the battery underwent many cycles of charging/discharging the nanoparticles experienced progressive strain relaxation.
Medvedev, Alexander G; Mikhaylov, Alexey A; Grishanov, Dmitry A; Yu, Denis Y W; Gun, Jenny; Sladkevich, Sergey; Lev, Ovadia; Prikhodchenko, Petr V
2017-03-15
A peroxogermanate thin film was deposited in high yield at room temperature on graphene oxide (GO) from peroxogermanate sols. The deposition of the peroxo-precursor onto GO and the transformations to amorphous GeO 2 , crystalline tetragonal GeO 2 , and then to cubic elemental germanium were followed by electron microscopy, XRD, and XPS. All of these transformations are influenced by the GO support. The initial deposition is explained in view of the sol composition and the presence of GO, and the different thermal transformations are explained by reactions with the graphene support acting as a reducing agent. As a test case, the evaluation of the different materials as lithium ion battery anodes was carried out revealing that the best performance is obtained by amorphous germanium oxide@GO with >1000 mAh g -1 at 250 mA g -1 (between 0 and 2.5 V vs Li/Li + cathode), despite the fact that the material contained only 51 wt % germanium. This is the first demonstration of the peroxide route to produce peroxogermanate thin films and thereby supported germanium and germanium oxide coatings. The advantages of the process over alternative methodologies are discussed.
In-situ vacuum deposition technique of lithium on neutron production target for BNCT
NASA Astrophysics Data System (ADS)
Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.
2012-10-01
For the purpose of avoiding the radiation blistering of the lithium target for neutron production in BNCT (Boron Neutron Capture Therapy) device, trilaminar Li target, of which palladium thin layer was inserted between cupper substrate and Li layer, was newly designed. In-situ vacuum deposition and electrolytic coating techniques were applied to validate the method of fabrication of the Li/Pd/Cu target, and the layered structures of the synthesized target were characterized. In-situ vacuum re-deposition technique was also established for repairing and maintenance for lithium target damaged. Following conclusions were derived; (1) Uniform lithium layers with the thickness from 1.6 nm to a few hundreds nanometer were formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. (2) Re-deposition of lithium layer on Li surface can be achieved by in situ vacuum deposition technique. (3) Small amount of water and carbonate was observed on the top surface of Li. But the thickness of the adsorbed layer was less than monolayer, which will not affect the quality of the Li target. (4) The formation of Pd-Li alloy layer was observed at the Pd and Li interface. The alloy layer would contribute to the stability of the Li layer.
NASA Astrophysics Data System (ADS)
Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin
2017-04-01
Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g-1 at a current density of 2 A g-1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g-1 at high current densities of 0.5, 2, 5, 10, and 20 A g-1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling.
Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin
2017-01-01
Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g−1 at a current density of 2 A g−1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g−1 at high current densities of 0.5, 2, 5, 10, and 20 A g−1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling. PMID:28418001
NASA Astrophysics Data System (ADS)
Huang, Xiaosong
2014-06-01
Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.
Xia, Yan; Wang, Xiuli; Xia, Xinhui; Xu, Ruochen; Zhang, Shengzhao; Wu, Jianbo; Liang, Yanfei; Gu, Changdong; Tu, Jiangping
2017-10-26
Developing high-performance solid-state electrolytes is crucial for the innovation of next-generation lithium-sulfur batteries. Herein, a facile method for preparation of a novel gel polymer electrolyte (GPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) is reported. Furthermore, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 (LATP) nanoparticles as the active fillers are uniformly embedded into the GPE to form the final PVDF-HFP/LATP composite gel polymer electrolyte (CPE). Impressively, the obtained CPE demonstrates a high lithium ion transference number of 0.51 and improved electrochemical stability as compared to commercial liquid electrolyte. In addition, the assembled solid-sate Li-S battery with the composite gel polymer electrolyte membrane presents a high initial capacity of 918 mAh g -1 at 0.05 C, and better cycle performance than the counterparts with liquid electrolyte. Our designed PVDF-HFP/LATP composite can be a promising electrolyte for next-generation solid-state batteries with high cycling stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id
Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensilemore » resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.« less
Luo, Chao; Ji, Xiao; Chen, Ji; Gaskell, Karen J; He, Xinzi; Liang, Yujia; Jiang, Jianjun; Wang, Chunsheng
2018-05-23
Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li 3 PS 4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Outlook on Lithium Ion Battery Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manthiram, Arumugam
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less
An Outlook on Lithium Ion Battery Technology
Manthiram, Arumugam
2017-09-07
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bingbin; Wang, Shanyu; Evans IV, Willie J.
In recent years room temperature Li+ ion conductors have been intensively revisited in order to develop safe lithium ion (Li-ion) batteries and beyond that can be deployed in the electrical vehicles. Through careful modification on materials synthesis, promising solid Li+ conductors with high ionic conductivity, competitve with liquid electrolytes, have been demonstrated. However, the integration of those highly conductive solid electrolytes into the whole system is still very challenging mainly due to the high impedance existing in the different interfaces throughout the entire battery structure. Herein , this review paper focuses on the overview of the interfacial behaviors between Li+more » conductors and cathode/anode materials. The origin, evolution and potential solutions to reuce these interfacial impedances are reviewed for various battery systems spanning from Li-ion, lithium sulfur (Li-S), lithium oxygen (Li-O2) batteries to lithium metal protection. The predicted gravimetric and volumetric energy densities at different scenarios are also discussed along with the prospectives for further development of solid state batteries.« less
An Outlook on Lithium Ion Battery Technology
2017-01-01
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along with solid electrolytes and lithium metal anode are being intensively pursued. This article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies. PMID:29104922
NASA Technical Reports Server (NTRS)
McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael
2011-01-01
Lithium primary and lithium ion secondary batteries provide high specific energy and energy density. The use of these batteries also helps to reduce launch weight. Both primary and secondary cells can be packaged as high-rate cells, which can present a threat to crew and equipment in the event of external or internal short circuits. Overheating of the cell interior from high current flows induced by short circuits can result in exothermic reactions in lithium primary cells and fully charged lithium ion secondary cells. Venting of the cell case, ejection of cell components, and fire have been reported in both types of cells, resulting from abuse, cell imperfections, or faulty electronic control design. A switch has been developed that consists of a thin layer of composite material made from nanoscale particles of nickel and Teflon that conducts electrons at room temperature and switches to an insulator at an elevated temperature, thus interrupting current flow to prevent thermal runaway caused by internal short circuits. The material is placed within the cell, as a thin layer incorporated within the anode and/or the cathode, to control excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect. The safety of high-rate cells is thus improved, preventing serious injury to personnel and sensitive equipment located near the battery. The use of recently available nanoscale particles of nickel and Teflon permits an improved, homogeneous material with the potential to be fine-tuned to a unique switch temperature, sufficiently below the onset of a catastrophic chemical reaction. The smaller particles also permit the formation of a thinner control film layer (<50 m), which can be incorporated into commercial high-rate lithium primary and secondary cells. The innovation permits incorporation in current lithium and lithium-ion cell designs with a minimal impact on cell weight and volume. The composite thermal switch (CTS(TradeMark)) coating can be incorporated in either the anode or cathode or both. The coating can be applied in a variety of different processes that permits incorporation in the cell and electrode manufacturing processes. The CTS responds quickly and halts current flow in the hottest parts of the cell first. The coating can be applied to metal foil and supplied as a cell component onto which the active electrode materials are coated.
NASA Astrophysics Data System (ADS)
Khalfan, Amish N.
This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the addition of fluorine groups (6F-SPTES) were also studied, and these membranes had been thought to show an improvement in water transport properties over SPTES. However, water diffusion studies of the 6F-SPTES membranes revealed the fluorinated membranes to be unfavorable. The morphology of the FSPTES is suspected to be more susceptible to the loss of bound water at higher temperatures than SPTES.
Song, Jongchan; Lee, Hongkyung; Choo, Min-Ju; Park, Jung-Ki; Kim, Hee-Tak
2015-01-01
The inhomogeneous Li electrodeposition of lithium metal electrode has been a major impediment to the realization of rechargeable lithium metal batteries. Although single ion conducting ionomers can induce more homogeneous Li electrodeposition by preventing Li+ depletion at Li surface, currently available materials do not allow room-temperature operation due to their low room temperature conductivities. In the paper, we report that a highly conductive ionomer/liquid electrolyte hybrid layer tightly laminated on Li metal electrode can realize stable Li electrodeposition at high current densities up to 10 mA cm−2 and permit room-temperature operation of corresponding Li metal batteries with low polarizations. The hybrid layer is fabricated by laminating few micron-thick Nafion layer on Li metal electrode followed by soaking 1 M LiPF6 EC/DEC (1/1) electrolyte. The Li/Li symmetric cell with the hybrid layer stably operates at a high current density of 10 mA cm−2 for more than 2000 h, which corresponds to more than five-fold enhancement compared with bare Li metal electrode. Also, the prototype Li/LiCoO2 battery with the hybrid layer offers cycling stability more than 350 cycles. These results demonstrate that the hybrid strategy successfully combines the advantages of bi-ionic liquid electrolyte (fast Li+ transport) and single ionic ionomer (prevention of Li+ depletion). PMID:26411701
Scientific opportunities at SARAF with a liquid lithium jet target neutron source
NASA Astrophysics Data System (ADS)
Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo
2018-05-01
SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.
NASA Astrophysics Data System (ADS)
Song, Jongchan; Lee, Hongkyung; Choo, Min-Ju; Park, Jung-Ki; Kim, Hee-Tak
2015-09-01
The inhomogeneous Li electrodeposition of lithium metal electrode has been a major impediment to the realization of rechargeable lithium metal batteries. Although single ion conducting ionomers can induce more homogeneous Li electrodeposition by preventing Li+ depletion at Li surface, currently available materials do not allow room-temperature operation due to their low room temperature conductivities. In the paper, we report that a highly conductive ionomer/liquid electrolyte hybrid layer tightly laminated on Li metal electrode can realize stable Li electrodeposition at high current densities up to 10 mA cm-2 and permit room-temperature operation of corresponding Li metal batteries with low polarizations. The hybrid layer is fabricated by laminating few micron-thick Nafion layer on Li metal electrode followed by soaking 1 M LiPF6 EC/DEC (1/1) electrolyte. The Li/Li symmetric cell with the hybrid layer stably operates at a high current density of 10 mA cm-2 for more than 2000 h, which corresponds to more than five-fold enhancement compared with bare Li metal electrode. Also, the prototype Li/LiCoO2 battery with the hybrid layer offers cycling stability more than 350 cycles. These results demonstrate that the hybrid strategy successfully combines the advantages of bi-ionic liquid electrolyte (fast Li+ transport) and single ionic ionomer (prevention of Li+ depletion).
Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza; Libera, Joseph A; Klavetter, Kyle C; Zavadil, Kevin R; Elam, Jeffrey W
2018-02-28
Lithium metal is considered the "holy grail" of next-generation battery anodes. However, severe parasitic reactions at the lithium-electrolyte interface deplete the liquid electrolyte and the uncontrolled formation of high surface area and dendritic lithium during cycling causes rapid capacity fading and battery failure. Engineering a dendrite-free lithium metal anode is therefore critical for the development of long-life batteries using lithium anodes. In this study, we deposit a conformal, organic/inorganic hybrid coating, for the first time, directly on lithium metal using molecular layer deposition (MLD) to alleviate these problems. This hybrid organic/inorganic film with high cross-linking structure can stabilize lithium against dendrite growth and minimize side reactions, as indicated by scanning electron microscopy. We discovered that the alucone coating yielded several times longer cycle life at high current rates compared to the uncoated lithium and achieved a steady Coulombic efficiency of 99.5%, demonstrating that the highly cross-linking structured material with great mechanical properties and good flexibility can effectively suppress dendrite formation. The protected Li was further evaluated in lithium-sulfur (Li-S) batteries with a high sulfur mass loading of ∼5 mg/cm 2 . After 140 cycles at a high current rate of ∼1 mA/cm 2 , alucone-coated Li-S batteries delivered a capacity of 657.7 mAh/g, 39.5% better than that of a bare lithium-sulfur battery. These findings suggest that flexible coating with high cross-linking structure by MLD is effective to enable lithium protection and offers a very promising avenue for improved performance in the real applications of Li-S batteries.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1989-01-01
The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.
Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor
NASA Astrophysics Data System (ADS)
McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.
2013-07-01
Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less
NASA Astrophysics Data System (ADS)
Jain, U.; Mukherjee, A.; Dey, G. K.
2017-09-01
Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.