Science.gov

Sample records for liquid metal pool

  1. A method of measuring a molten metal liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  2. Fragment structure from vapor explosions during the impact of molten metal droplets into a liquid pool

    NASA Astrophysics Data System (ADS)

    Kouraytem, Nadia; Li, Er Qiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur

    2015-11-01

    High-speed video imaging is used in order to look at the impact of a molten metal drop falling into a liquid pool. The interaction regimes are three: film boiling, nucleate boiling or vapor explosion. Following the vapor explosion, the metal fragments and different textures are observed. It was seen that, using a tin alloy, a porous structure results whereas using a distinctive eutectic metal, Field's metal, micro beads are formed. Different parameters such as the metal type, molten metal temperature, pool surface tension and pool boiling temperature have been altered in order to assess the role they play on the explosion dynamics and the molten metal's by product.

  3. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  4. Natural Convection Heat Transfer in a Rectangular Liquid Metal Pool With Bottom Heating and Top Cooling

    SciTech Connect

    Lee, Il S.; Yu, Yong H.; Son, Hyoung M.; Hwang, Jin S.; Suh, Kune Y.

    2006-07-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with top subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature

  5. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  6. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  7. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  8. Gas bubbling-enhanced film boiling of Freon-11 on liquid metal pools. [PWR; BWR

    SciTech Connect

    Greene, G.A.

    1985-01-01

    In the analysis of severe core damage accidents in LWRs, a major driving force which must be considered in evaluating containment loading and fission product transport is the ex-vessel interaction between molten core debris and structural concrete. Two computer codes have been developed for this purpose, the CORCON-MOD2 model of ex-vessel, core concrete interactions and the VANESA model for aerosol generation and fission product release as a result of molten core-concrete interactions. Under a wide spectrum of reactor designs and accident sequences, it is possible for water to come into contact with the molten core debris and form a coolant pool overlying the core debris which is attacking the concrete. As the concrete decomposes, noncondensable gases are released, which bubble through the melt and across the boiling interface, affecting the liquid-liquid boiling process. Currently, the CORCON code includes the classical Berenson model for film boiling over a horizontal flat plate for this phenomenon. The objectives of this activity are to investigate the influence of transverse noncondensable gas flux on the magnitude of the stable liquid-liquid film boiling heat flux and develop a gas flux-enhanced, liquid-liquid film boiling model for incorporation into the CORCON-MOD2 computer code to replace or modify the Berenson model.

  9. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  10. Safety Investigation of Liquid-Metal-Cooled Nuclear Systems with Heat Exchanger in the Risers of Simple Flow-Path Pool Design

    SciTech Connect

    Carlsson, Johan; Wider, Hartmut U.

    2005-12-15

    Safety investigations were performed on 600- and 1426-MW(thermal) liquid-metal-cooled reactors with the heat exchangers (HXs) located in the risers of simple flow-path pool designs. This includes both critical reactors and accelerator-driven systems (ADSs) using liquid-metal coolants. For the 600-MW(thermal) ADS, the safety implications were examined for vessel sizes of two heights (11 and 15 m) and two diameters (6 and 10 m). Then, the reference design of 11-m height and 6-m diameter was compared with a similar design, but with the HXs located in the downcomers. The transients investigated were total-loss-of-power (TLOP), unprotected-loss-of-flow (ULOF), protected-loss-of-flow, and unprotected loss-of-heat-sink accidents. The 600-MW(thermal) ADS of 11-m height and 6-m diameter peaks at 1041 K after 29 h during a TLOP accident. If the diameter is increased to 10 m, it will peak after 55 h at a 178 K lower temperature thanks to its larger thermal inertia. The difference between locating the HXs in the risers and the downcomers is insignificant for this accident type. With the HXs in the risers, the temperature peaks at 1045 K after 28 h. During a ULOF accident in an ADS at full power, the core outlet temperature stabilizes at 1010 K, which is 337 K above the nominal outlet temperature. When the vessel height is increased to 15 m, the natural convection is improved, and the core outlet temperature stabilizes at 911 K. A Pb-cooled 1426-MW(thermal) reactor of 11-m height and 12-m diameter is also shown to be sufficiently coolable during a TLOP accident; i.e., it peaks at 1093 K after 49 h. In a pool-type design with a simple flow path, the use of HXs in the risers and flaps at their inlets that prevent a flow reversal will have significant safety advantages in case of HX tube failures. Steam or gas bubbles exiting from the secondary circuit cannot be dragged into the core region by the liquid-metal coolant. Instead, they would rise with the coolant and exit through the

  11. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  12. Drop Impact on to Moving Liquid Pools

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  13. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  14. Burning of liquid pools in reduced gravity

    NASA Technical Reports Server (NTRS)

    Kanury, A. M.

    1977-01-01

    The existing literature on the combustion of liquid fuel pools is reviewed to identify the physical and chemical aspects which require an improved understanding. Among the pre-, trans- and post-ignition processes, a delineation was made of those which seem to uniquely benefit from studies in the essential environment offered by spacelab. The role played by the gravitational constant in analytical and experimental justifications was developed. The analytical justifications were based on hypotheses, models and dimensional analyses whereas the experimental justifications were based on an examination of the range of gravity and gravity-dependent variables possible in the earth-based laboratories. Some preliminary expositions into the questions of feasibility of the proposed spacelab experiment are also reported.

  15. Liquid metal enabled pump.

    PubMed

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O'Mullane, Anthony P; Abbott, Derek; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2014-03-04

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics.

  16. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  17. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  18. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  19. Liquid metal electric pump

    DOEpatents

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  20. Liquid metal enabled microfluidics.

    PubMed

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  1. High Velocity Droplet Rebound On Liquid Pools

    NASA Astrophysics Data System (ADS)

    Doak, William; Laiacona, Danielle; Chiarot, Paul; German, Guy

    2015-11-01

    Rebound of high velocity, periodic droplet streams off viscous liquid pools is studied experimentally. Droplets, approximately 60 micrometers in diameter, impact the oil surface at velocities up to 13 m/s and at angles between 2-25 degrees. The oil surface does not degrade or lose its ability to provide rebound even after millions of droplet impacts. The oil was varied to examine the effect that surface tension and viscosity had on droplet rebound. Stable rebound is achievable on oils varying in dynamic viscosity in the range 13-970 Pa.s and surface tensions in the range 19-28 mN/m. When rebound occurs, a consistent 29% loss of droplet kinetic energy is observed. This is a surprising relationship due to the fact that it holds true for all cases of stable rebound regardless of the oil used. We further observe an upper inertial limit where droplets no longer provide stable rebound and instead become fully entrained in the oil pool. This limit is governed by the Rayleigh-Plateau instability and can be characterized and predicted using a modified version of the Weber number. The droplet rebound presented in this study is unique due to the size, velocity, and frequency of the droplets used. Another unique feature is that the rebound manifests itself as an effectively static phenomenon. No motion of the interface - oscillations, waves, or otherwise - was observed during rebound. The quasi-static nature of rebound enabled distinctions to be made regarding energy dissipation and the transition from droplet rebound to entrainment.

  2. Thermodynamics of liquid metal

    SciTech Connect

    Kushnirenko, A.N.

    1988-01-01

    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  3. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  4. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  5. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  6. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  7. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  8. 41 CFR 109-27.5106 - Precious metals pool.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Precious metals pool. 109-27.5106 Section 109-27.5106 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5106 Precious metals pool....

  9. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  10. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  11. 13 CFR 120.1715 - Seller's Pool Loan liquidation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Establishment of SBA Secondary Market Guarantee Program for First Lien Position 504 Loan Pools § 120.1715 Seller... Regulations, and with SBA approval of a liquidation plan and any litigation plan, and any amendment of...

  12. 13 CFR 120.1715 - Seller's Pool Loan liquidation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Establishment of SBA Secondary Market Guarantee Program for First Lien Position 504 Loan Pools § 120.1715 Seller... Regulations, and with SBA approval of a liquidation plan and any litigation plan, and any amendment of...

  13. Liquid metal thermoacoustic engine

    SciTech Connect

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  14. Liquid Metal Dynamo Measurements

    NASA Astrophysics Data System (ADS)

    Luh, W. J.; Choi, Y. H.; Hardy, B. S.; Brown, M. R.

    1997-11-01

    Detection of convected magnetic fields in a small-scale liquid metal dynamo is attempted. Initial experiments will focus on the conversion of toroidal to poloidal flux (a version of the ω effect). A precision vector magnetometer will be used to measure the effect of a rotating magnetofluid on a static magnetic field. Water will be used as a control medium and effects will be compared with a conducting medium (liquid sodium or NaK). A small spherical flask (0.16 m diameter) houses 2 liters of fluid, a teflon stirrer creates an asymmetrical flow pattern, and Helmholtz coils generate a constant magnetic field on the order of 10 gauss. The Reynold's number will be of order unity.

  15. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2016-11-01

    While perpendicular drop impact onto a deep liquid pool is widely studied, the dynamics after oblique drop impact remain to be quantified. Here we study, for the first time, oblique drop impact experiments onto a deep liquid pool using ultrafast imaging. We quantify the splashing behavior and derive a model to describe the splashing threshold based on the impact angle and Weber number of the impacting drop. In addition, we study the cavity formation below the water surface and quantify the cavity depth and displacement. Based on the asymmetric cavity dynamics, we develop a method to predict the direction in which a jetted droplet can escape the cavity.

  16. Tools to study distinct metal pools in biology.

    PubMed

    New, Elizabeth J

    2013-03-07

    Current research interests in the field of metals in biology are very diverse, but are underpinned by a common need to study how stimuli affect metal homeostasis. This perspectives article argues for the need to combine information from multiple technical approaches to characterise the different metal pools inside living cells.

  17. Football Pools and the Reactivity Series of Metals.

    ERIC Educational Resources Information Center

    Heselden, Russ

    2001-01-01

    Describes an activity which presents the reactivity of metals series as a football pool with more reactive metals at the top of the table and unreactive metals at the bottom. Describes how the activity can be applied in different ways for different ability groups. (Author/MM)

  18. Football Pools and the Reactivity Series of Metals.

    ERIC Educational Resources Information Center

    Heselden, Russ

    2001-01-01

    Describes an activity which presents the reactivity of metals series as a football pool with more reactive metals at the top of the table and unreactive metals at the bottom. Describes how the activity can be applied in different ways for different ability groups. (Author/MM)

  19. Method of foaming a liquid metal

    DOEpatents

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  20. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  1. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  2. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  3. Method for determining molten metal pool level in twin-belt continuous casting machines

    DOEpatents

    Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.

    1989-03-21

    A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.

  4. Interfacing liquid metals with stretchable metal conductors.

    PubMed

    Kim, Bongsoo; Jang, Jaehyeok; You, Insang; Park, Jaeyoon; Shin, SangBaie; Jeon, Gumhye; Kim, Jin Kon; Jeong, Unyong

    2015-04-22

    Highly stretchable conductors are essential components in deformable electronics. Owing to their high stretchability and conductivity, liquid metals have attracted significant attention for use as circuits and interconnections. However, their poor wettability to stretchable metal electrodes prevents the formation of stable electrical connections. This study examined two approaches for creating a stable interface between a liquid metal (EGaIn) and stretchable metal electrodes via: (i) the use of honeycomb-structured stretchable metal electrodes and (ii) the addition of a conducting polymer interlayer. The line width of the honeycomb had a significant influence on the formation of a stable interface. The liquid metal formed a stable film layer on honeycomb metal electrodes, which have line widths of less than 50 μm. Coating PSS with a nonionic surfactant lowered the interfacial energy of EGaIn with flat stretchable metal surfaces; hence EGaIn was coated uniformly on the stretchable metal surfaces. Strain sensors were fabricated as a demonstrative example of an application that utilizes the stable interface.

  5. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  6. Liquid metal cooled nuclear reactors

    SciTech Connect

    Barnes, S.

    1980-10-07

    The vault of a liquid metal cooled nuclear reactor is lined with thermal insulation. The insulation is in two layers, a first layer cladding the vault surface is of solid ceramic material while a second layer cladding the first layer is of fibrous or metallic material. In the event of a breach of the vessel leakage of liquid metal is absorbed by the second layer providing a conduction path to the first layer thereby enhancing heat loss to the concrete of the vault and maintaining the internal temperature at a safe limit.

  7. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  8. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  9. Convection in molten pool created by a concentrated energy flux on a solid metal target

    SciTech Connect

    Dikshit, B.; Zende, G. R.; Bhatia, M. S.; Suri, B. M.

    2009-08-15

    During surface evaporation of metals by use of a concentrated energy flux such as electron beam or lasers, a liquid metal pool having a very high temperature gradient is formed around the hot zone created by the beam. Due to temperature dependence of surface tension, density, and depression of the evaporating surface caused by back pressure of the emitted vapor in this molten pool, a strong convective current sets in the molten pool. A proposition is made that this convection may pass through three different stages during increase in the electron beam power depending upon dominance of the various driving forces. To confirm this, convective heat transfer is quantified in terms of dimensionless Nusselt number and its evolution with power is studied in an experiment using aluminum, copper, and zirconium as targets. These experimentally determined values are also compared to the theoretical values predicted by earlier researchers to test the validity of their assumptions and to know about the type of flow in the melt pool. Thus, conclusion about the physical characteristics of flow in the molten pool of metals could be drawn by considering the roles of surface tension and curvature of the evaporating surface on the evolution of convective heat transfer.

  10. Feasibility study of liquid pool burning in reduced gravity

    NASA Technical Reports Server (NTRS)

    Kanury, A. M.

    1979-01-01

    The feasibility of conducting experiments in the Spacelab on ignition and flame spread with liquid fuel pools which are initially at a temperature lower than the fuel's flash point temperature was studied. Theories were developed for the ignition and flame spread processes, and experiments were conducted to understand the factors influencing the ignition process and the spread rate. The results were employed to devise a conceptual Spacelab experiment which is expected to be feasible for a safe conduct and to be suitable for obtaining crucial data on the concerned processes.

  11. Fluid Management of and Flame Spread Across Liquid Pools

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Miller, F. J.

    2001-01-01

    The goal of our research on flame spread across pools of liquid fuel remains the quantitative identification of the mechanisms that control the rate and nature of flame spread when the initial temperature of the liquid pool is below the fuel's flash point temperature. As described in, four microgravity (mu-g) sounding rocket flights examined the effect of forced opposed airflow over a 2.5 cm deep x 2 cm wide x 30 cm long pool of 1-butanol. Among many unexpected findings, it was observed that the flame spread is much slower and steadier than in 1g where flame spread has a pulsating character. Our numerical model, restricted to two dimensions, had predicted faster, pulsating flame spread in mu-g. In a test designed to achieve a more 2-D experiment, our investigation of a shallow, wide pool (2 mm deep x 78 mm wide x 30 cm long) was unsuccessful in mu-g, due to an unexpectedly long time required to fill the tray. As such, the most recent Spread Across Liquids (SAL) sounding rocket experiment had two principal objectives: 1) determine if pulsating flame spread in deep fuel trays would occur under the conditions that a state-of-the-art computational combustion code and short-duration drop tower tests predict; and 2) determine if a long, rectangular, shallow fuel tray could achieve a visibly flat liquid surface across the whole tray without spillage in the mu-g time allotted. If the second objective was met, the shallow tray was to be ignited to determine the nature of flame spread in mu-g for this geometry. For the first time in the experiment series, two fuel trays - one deep (30 cm long x 2 cm wide x 25 mm deep) and one shallow (same length and width, but 2 mm deep)-- were flown. By doing two independent experiments in a single flight, a significant cost savings was realized. In parallel, the computational objective was to modify the code to improve agreement with earlier results. This last objective was achieved by modifying the fuel mass diffusivity and adding a

  12. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  13. An Analysis of Pool Surface Deformation Due to a Plunging Liquid Jet

    DTIC Science & Technology

    1993-10-31

    pool surface depression by the plunging liquid jet (which leads to the entrainment of air ) was completed...technique. INTRODUCTION The entrainment of non-condensible gases by a plunging liquid jet impacting a liquid pool is important for some practical...the surface is such that the surface tension is not large enough to keep the pool surface from getting near the plunging liquid jet and thus air

  14. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2017-08-01

    Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  15. Adsorption of spent fuel storage pool contaminants into metal surfaces

    SciTech Connect

    Reaves, K.; Kunze, J.; Lu, Kang ); Bennett, P.C. )

    1990-01-01

    Shipping casks, after being submerged in spent fuel pools for the purpose of loading or unloading fuel, resist complete removal of the adsorbed contamination. To systematically study the mechanisms involved, 122 metal surface samples were immersed in the spent fuel storage pool of the Callaway Power Plant for periods of 7 to 30 days. After being removed from the pool, all samples were washed and wiped (with cloth) using demineralized water. They were then gamma counted for absolute activity, by using Eu-152 as an energy efficiency calibrator, applied uniformly to unexposed sample surfaces. Swipes were taken after each of 3 days of such environmental conditioning. Following this conditioning, selected samples were again counted to determine absolute contamination remaining on the samples. 2 refs., 1 tab.

  16. Metal pad instabilities in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Zikanov, Oleg

    2016-11-01

    Strong variations between the electrical conductivities of electrolyte and metal layers in a liquid metal battery indicate the possibility of 'metal pad' instabilities. Deformations of the electrolyte-metal interfaces cause strong perturbations of electric currents, which, hypothetically, can generate Lorentz forces enhancing the deformations. We investigate this possibility using two models: a mechanical analogy and a two-dimensional linearized approximation. It is found that the battery is prone to instabilities of two types. One is similar to the sloshing-wave instability observed in the Hall-Héroult aluminum reduction cells. Another is new and related to the interactions of current perturbations with the azimuthal magnetic field induced by the base current. Financial support was provided by the U.S. National Science Foundation (Grant CBET 1435269).

  17. Metals Separation by Liquid Extraction.

    ERIC Educational Resources Information Center

    Malmary, G.; And Others

    1984-01-01

    As part of a project focusing on techniques in industrial chemistry, students carry out experiments on separating copper from cobalt in chloride-containing aqueous solution by liquid extraction with triisoctylamine solvent and search the literature on the separation process of these metals. These experiments and the literature research are…

  18. Metals Separation by Liquid Extraction.

    ERIC Educational Resources Information Center

    Malmary, G.; And Others

    1984-01-01

    As part of a project focusing on techniques in industrial chemistry, students carry out experiments on separating copper from cobalt in chloride-containing aqueous solution by liquid extraction with triisoctylamine solvent and search the literature on the separation process of these metals. These experiments and the literature research are…

  19. Pool boiling from rotating and stationary spheres in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  20. Meteoritic strikes and liquid water pools on Titan

    NASA Astrophysics Data System (ADS)

    Artemieva, Natalia; Lunine, Jonathan

    Impact cratering must be an important process on Titan, since the airless icy satellites of the saturnian system exhibit high crater densities. However, Titan's thick atmosphere efficiently decelerates all comets smaller than 2-3 km in diameter. The resulting airblasts may heat an atmosphere locally and distribute cometary materials around Titan. We performed 3D numerical simulations of cometary impacts on Titan varying the comet size from 3 to 30 km and the crust thickness -from 10 km (ancient Titan) to 50 km (the last 1 Gyr). The surface temperature is 94 K, the water mantle is at 273 K with a calculated crustal thermal gradient in between. Cratering processes on Titan are mainly defined by the thickness of its crust. Even the smallest comets easily breached an ancient Titan's crust, delivering huge amount of water (both, molten crust and underlying ocean). The shape of these craters differs substantially from standard complex craters: a central uplift does not emerge; the rim is substantially eroded by liquid flows. Moreover, any crater relaxes quickly in the high-temperature (hence, low-viscosity) ice. Indeed, recent Cassini observations revealed a substantial dearth of impact craters on the surface with an approximate surface age of < 1 Gyr. Under modern conditions only < 10-km-diameter comets produce a crater in ice, while larger comets breach the crust creating an open water pool. The freezing time of an impact pool with a thickness H [km] is 26H2 [kyr]. If ammonia is present at non-negligible levels then the time for complete freezing could be significantly longer. Comparison of the impact rates and the cooling time of water shows that a persistent surface water layer on Titan does not exist for the present thermal conditions and for the present impact rate in saturnian system. Nonetheless, a non-negligible fraction of Titan's hydrocarbon (including ethane) deposits might have been exposed to liquid water on the surface over Titan's history. The interaction

  1. Measurement techniques for liquid metals

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Hernández, D.; Richter, T.; Otte, D.; Buchenau, D.; Krauter, N.; Wondrak, T.

    2017-07-01

    The measurement of flow properties of liquid metals, such as flow rate, flow structure and gas distribution, is a challenging task due to the opaqueness, the high temperatures (e. g. 1500 °C for liquid steel or liquid silicon) and the corrosiveness of those fluids. In this paper, a short review about the recent developments of measurement techniques in the framework of the Helmholtz Alliance Liquid Metal Technologies (LIMTECH) is presented. It focuses on the development of contactless inductive measurement techniques exploiting the high electrical conductivity of those melts. These measurement techniques include the contactless inductive flow tomography (CIFT), which is able to reconstruct the mean three-dimensional velocity structure in liquid melts, local Lorentz force velocimetry (local LFV), which enables the local assessment of flows close to the wall, and inductive methods for bubble detection, which are based on mutual inductance tomography (MIT). Additionally, a short overview of contactless inductive flow rate measurement techniques is given. Furthermore, an ultrasound technique called ultrasound transit-time technique (UTTT) will be presented which enables the measurement of position and size of bubbles in large vessels.

  2. Computer modeling of convection in the liquid metal during solidification

    NASA Technical Reports Server (NTRS)

    Lott, R. L., Jr.; Cheng, T. S.

    1988-01-01

    Numerical methods are used to study thermally/gravitationally induced convection during solidification. The primary object is aimed at understanding the flow field in the liquid metal pool due to convection. An Al-0.5Fe weight percent alloy is assumed to fill a small scale vertical rectangular enclosure model for this study. The Alternating Direction Implicit method and Successive Overrelaxation method are employed to solve these equations, which include the energy balance equation coupled with the mass and momentum equations. Both transient and steady state conditions under 1 g and low gravity (0.001 g) are investigated. The solutions for the two-dimensional isotherms and streamlines under 1 g conditions are graphically presented. The quantitative results show that the convection which occurs in the liquid metal pool is very small and is likely to have a negligible effect on the solute redistribution ahead of the solid-liquid interface.

  3. Air entrainment by a plunging liquid jet on a liquid pool

    NASA Astrophysics Data System (ADS)

    Liñan, Amable; Lasheras, Juan C.

    1999-11-01

    When a liquid jet impinges on liquid pool, with a velocity higher than a critical velocity, a thin air film is entrained by the jet. The thickness ha of the air film, and thus the air mass entrained by the jet, is a function of its radius a and velocity U. This function, for the realistic small values of the capillary number ɛ = μa U/σ << 1 (based on the air viscosity μa and surface tension σ) turns out to be of the form h_a/a = F(a/a_c, ɛ), where a_c=√ σ/ρl g is the capillary length (based on the acceleration of gravity and liquid density ρ_l). An analysis similar to the analysis of Levish and Landau, for the entrainment of liquid by a plate moving out of a liquid pool, shows that the dependence of h_a/a on ɛ is of the form h_a/a = ɛ^2/3f(a/a_c), where f is of order unity for a/ac << 1 and f ≈ a_c/a for large values of a_c/a

  4. Transformable liquid-metal nanomedicine

    PubMed Central

    Lu, Yue; Hu, Quanyin; Lin, Yiliang; Pacardo, Dennis B.; Wang, Chao; Sun, Wujin; Ligler, Frances S.; Dickey, Michael D.; Gu, Zhen

    2015-01-01

    To date, numerous inorganic nanocarriers have been explored for drug delivery systems (DDSs). However, the clinical application of inorganic formulations has often been hindered by their toxicity and failure to biodegrade. We describe here a transformable liquid-metal nanomedicine, based on a core–shell nanosphere composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell. This formulation can be simply produced through a sonication-mediated method with bioconjugation flexibility. The resulting nanoparticles loaded with doxorubicin (Dox) have an average diameter of 107 nm and demonstrate the capability to fuse and subsequently degrade under a mildly acidic condition, which facilitates release of Dox in acidic endosomes after cellular internalization. Equipped with hyaluronic acid, a tumour-targeting ligand, this formulation displays enhanced chemotherapeutic inhibition towards the xenograft tumour-bearing mice. This liquid metal-based DDS with fusible and degradable behaviour under physiological conditions provides a new strategy for engineering theranostic agents with low toxicity. PMID:26625944

  5. Transformable liquid-metal nanomedicine

    NASA Astrophysics Data System (ADS)

    Lu, Yue; Hu, Quanyin; Lin, Yiliang; Pacardo, Dennis B.; Wang, Chao; Sun, Wujin; Ligler, Frances S.; Dickey, Michael D.; Gu, Zhen

    2015-12-01

    To date, numerous inorganic nanocarriers have been explored for drug delivery systems (DDSs). However, the clinical application of inorganic formulations has often been hindered by their toxicity and failure to biodegrade. We describe here a transformable liquid-metal nanomedicine, based on a core-shell nanosphere composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell. This formulation can be simply produced through a sonication-mediated method with bioconjugation flexibility. The resulting nanoparticles loaded with doxorubicin (Dox) have an average diameter of 107 nm and demonstrate the capability to fuse and subsequently degrade under a mildly acidic condition, which facilitates release of Dox in acidic endosomes after cellular internalization. Equipped with hyaluronic acid, a tumour-targeting ligand, this formulation displays enhanced chemotherapeutic inhibition towards the xenograft tumour-bearing mice. This liquid metal-based DDS with fusible and degradable behaviour under physiological conditions provides a new strategy for engineering theranostic agents with low toxicity.

  6. Liquid metal Flow Meter - Final Report

    SciTech Connect

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  7. Instantaneous liquid release from a rail tanker: the influence of noise shields on pool shape and pool size.

    PubMed

    Rosmuller, Nils

    2009-05-30

    In the Netherlands, the Betuweline is a dedicated freight railway. It will, among other things, be used for transportation of all kinds of hazardous materials from the Port of Rotterdam to the German Hinterland and vice versa. The line is approximately 150 km long. Alongside the line, more than 100 km noise shields have been constructed. The question is how, and to what extent, this noise shield will affect the pool shape and size of an instantaneous release of a flammable liquid, such as liquefied petroleum gas (LPG). In case of an instantaneous release of liquid from a rail tanker (50 m(3)), both risk analysts and emergency responders use a circular pool shape of about 600 m(2) would result. To assess the influence of a noise shield, a full scale test was conducted on an already constructed part of the Betuweline. A rail tanker was filled with 50 m(3) red-colored environmentally safe liquid. The liquid was instantaneously released. A very peculiar pool shape actually results due to the presence of a noise shield. A zone between the rails and the noise shield (2m wide and 90 m long) is within 2-3 min filled with 15 cm of liquid. The total pool size area was about 750 m(2). Both shape and size deviate substantially from the traditional figures. These insights are both relevant to emergency responders for disaster abatement purposes and to risk analysts for effective modeling purposes. The Dutch Ministry of Transport is examining possible strategies to deal with these results. The results of this study are based upon one single instantaneous release test. In addition, it is valuable to find out what the pool shape and size would be in case of a continuous release from the rail tanker near a noise shield.

  8. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  9. Surface chemistry of liquid metals

    NASA Technical Reports Server (NTRS)

    Mann, J. Adin, Jr.; Peebles, Henry; Peebles, Diamond; Rye, Robert; Yost, Fred

    1993-01-01

    The fundamental surface chemistry of the behavior of liquid metals spreading on a solid substrate is not at all well understood. Each of these questions involves knowing the details of the structure of interfaces and their dynamics. For example the structure of a monolayer of tin oxide on pure liquid tin is unknown. This is in contrast to the relatively large amount of data available on the structure of copper oxide monolayers on solid, pure copper. However, since liquid tin has a vapor pressure below 10(exp -10)torr for a reasonable temperature range above its melting point, it is possible to use the techniques of surface science to study the geometric, electronic and vibrational structures of these monolayers. In addition, certain techniques developed by surface chemists for the study of liquid systems can be applied to the ultra-high vacuum environment. In particular we have shown that light scattering spectroscopy can be used to study the surface tension tensor of these interfaces. The tin oxide layer in particular is very interesting in that the monolayer is rigid but admits of bending. Ellipsometric microscopy allows the visualization of monolayer thick films and show whether island formation occurs at various levels of dosing.

  10. Some remarks about liquid metals.

    PubMed

    McLachlan, D

    1969-02-01

    This paper proposes that the liquid state in metals consists of clusters, or globs, of ordered material separated by very thin layers of defects. The nature of the defects surrounding each glob and separating it from neighboring globs is the main feature of the theory. The volume of each defect and the energy to produce it is found to be only a fraction of that required to produce an ordinary vacancy in a solid. A close correlation is shown to exist between this theory and Eyring's theory of significant structures.(1-7) The heats of fusion and the volume changes on melting can be computed, as can be the coordination numbers in the liquid state.

  11. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  12. Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth

    NASA Technical Reports Server (NTRS)

    Kim, Inchul; Sirignano, William A.

    1999-01-01

    This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.

  13. Flow Analyses of Liquid Metal First Wall

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Huang, Jinhua

    2003-06-01

    Liquid metal first wall is attractive in fusion reactor designs because of its high heat removal and self-refreshment capabilities. In liquid wall study, method of forming stable liquid flows on the front surface of blanket has to be found. In order to do this, free surface magneto-hydrodynamic (MHD) effects and flow velocity distributions of liquid metal under gravity have been studied. In our study, liquid metal flows down along ducts half-opened to face the plasma. Net electromagnetic force forms from induced eddy current interacting with the confinement magnetic field (12T) in the liquid metal flow. For liquid metal lithium (about 4cm thick), distributions of velocity along the flow direction have been obtained by combined calculations of free surface flow and electromagnetic analysis. The results show that MHD baffle might be used to get stable in front of the blanket.

  14. Liquid metal expulsion during laser spot welding of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    He, X.; Norris, J. T.; Fuerschbach, P. W.; Roy, T. Deb

    2006-02-01

    During laser spot welding of many metals and alloys, the peak temperatures on the weld pool surface are very high and often exceed the boiling points of materials. In such situations, the equilibrium pressure on the weld pool surface is higher than the atmospheric pressure and the escaping vapour exerts a large recoil force on the weld pool surface. As a consequence, the molten metal may be expelled from the weld pool surface. The liquid metal expulsion has been examined both experimentally and theoretically for the laser spot welding of 304 stainless steel. The ejected metal droplets were collected on the inner surface of an open ended quartz tube which was mounted perpendicular to the sample surface and co-axial with the laser beam. The size range of the ejected particles was determined by examining the interior surface of the tube after the experiments. The temperature distribution, free surface profile of the weld pool and the initiation time for liquid metal expulsion were computed based on a three-dimensional transient heat transfer and fluid flow model. By comparing the vapour recoil force with the surface tension force at the periphery of the liquid pool, the model predicted whether liquid metal expulsion would take place under different welding conditions. Expulsion of the weld metal was also correlated with the depression of the liquid metal in the middle of the weld pool due to the recoil force of the vapourized material. Higher laser power density and longer pulse duration significantly increased liquid metal expulsion during spot welding.

  15. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  16. Liquid metal corrosion considerations in alloy development

    SciTech Connect

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process.

  17. Technique for detecting liquid metal leaks

    DOEpatents

    Bauerle, James E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.

  18. Radiopure metal-loaded liquid scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  19. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  20. Liquid metals for solar power systems

    NASA Astrophysics Data System (ADS)

    Flesch, J.; Niedermeier, K.; Fritsch, A.; Musaeva, D.; Marocco, L.; Uhlig, R.; Baake, E.; Buck, R.; Wetzel, T.

    2017-07-01

    The use of liquid metals in solar power systems is not new. The receiver tests with liquid sodium in the 1980s at the Plataforma Solar de Almería (PSA) already proved the feasibility of liquid metals as heat transfer fluid. Despite the high efficiency achieved with that receiver, further investigation of liquid metals in solar power systems was stopped due to a sodium spray fire. Recently, the topic has become interesting again and the gained experience during the last 30 years of liquid metals handling is applied to the concentrated solar power community. In this paper, recent activities of the Helmholtz Alliance LIMTECH concerning liquid metals for solar power systems are presented. In addition to the components and system simulations also the experimental setup and results are included.

  1. Liquid-metal-piston MHD generator

    NASA Technical Reports Server (NTRS)

    Palmer, J. P.

    1969-01-01

    Magnetohydrodynamic generator uses a slug or piston of liquid potassium as the working fluid. An expanding vapor of the metal is allowed to reciprocate the liquid-metal-piston through a magnetic field and the expansion energy is converted directly into electrical energy.

  2. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  3. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  4. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  5. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  6. Liquid metal-cooled nuclear reactor

    SciTech Connect

    Kayser, G.

    1982-12-07

    Integrated nuclear reactor cooled by a liquid metal and incorporating a main vessel sealed in its upper part by a slab, an inner vessel containing the core, the latter resting on a system for the positioning and supply of the core with liquid metal and which is called the support, the latter itself resting on a supporting structure bearing on the bottom of the main vessel of the reactor, wherein it comprises an inner baffle cladding the side wall and bottom of the main vessel and defining with the latter an intermediate space filled with the liquid metal, tubes for supplying a liquid metal to the intermediate space below the bottom of the main vessel and tubes for returning said liquid metal to an auxiliary exchanger in order to remove heat from the intermediate space.

  7. Tokamak with liquid metal toroidal field coil

    DOEpatents

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  8. Galvanic Replacement of the Liquid Metal Galinstan.

    PubMed

    Hoshyargar, Faegheh; Crawford, Jessica; O'Mullane, Anthony P

    2017-02-01

    The galvanic replacement reaction is a highly versatile approach for the creation of a variety of nanostructured materials. However, the majority of reports are limited to the replacement of metallic nanoparticles or metal surfaces. Here we extend this elegant approach and describe the galvanic replacement of the liquid metal alloy galinstan with Ag and Au. This is achieved at a macrosized droplet to create a liquid metal marble that comprises a liquid metal core and a solid metal shell, whereby the morphology of the outer shell is determined by the concentration of metallic ions used in the solution during the galvanic replacement process. In principle, this allows one to recover precious metal ions from solution in their metallic form, which are immobilized on the liquid metal and therefore easy to recover. The reaction is also undertaken at liquid metal microdroplets created via sonication to produce Ag- and Au-based galinstan nanorice particles. These materials are characterized with SEM, XRD, TEM, SAED, EDX, XPS, UV-visible spectroscopy, and open-circuit potential versus time experiments to understand the galvanic replacement process. Finally, the nanosized materials are investigated for their catalytic activity toward the reduction of methylene blue in the presence of sodium borohydride. This approach illustrates a new avenue of research for the galvanic replacement process and, in principle, could be applied to many more systems.

  9. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  10. Rebound of continuous droplet streams from an immiscible liquid pool

    NASA Astrophysics Data System (ADS)

    Doak, William J.; Laiacona, Danielle M.; German, Guy K.; Chiarot, Paul R.

    2016-05-01

    We report on the rebound of high velocity continuous water droplet streams from the surface of an immiscible oil pool. The droplets have diameters and velocities of less than 90 μm and 15 m/s, respectively, and were created at frequencies up to 60 kHz. The impact and rebound of continuous droplet streams at this scale and velocity have been largely unexplored. This regime bridges the gap between single drop and jet impacts. The impinging droplets create a divot at the surface of the oil pool that had a common characteristic shape across a wide-range of droplet and oil properties. After impact, the reflected droplets maintain the same uniformity and periodicity of the incoming droplets but have significantly lower velocity and kinetic energy. This was solely attributed to the generation of a flow induced in the viscous oil pool by the impacting droplets. Unlike normally directed impact of millimeter-scale droplets with a solid surface, our results show that an air film does not appear to be maintained beneath the droplets during impact. This suggests direct contact between the droplets and the surface of the oil pool. A ballistic failure limit, correlated with the Weber number, was identified where the rebound was suppressed and the droplets were driven through the oil surface. A secondary failure mode was identified for aperiodic incoming streams. Startup effects and early time dynamics of the rebounding droplet stream were also investigated.

  11. Electrically induced reorganization phenomena of liquid metal film printed on biological skin

    NASA Astrophysics Data System (ADS)

    Guo, Cangran; Yi, Liting; Yu, Yang; Liu, Jing

    2016-12-01

    Liquid metal has been demonstrated to be directly printable on biological skin as physiological measurement elements. However, many fundamental issues remained unclear so far. Here, we disclosed an intriguing phenomenon of electrically induced reorganization of liquid metal film. According to the experiments, when applying an external electric field to liquid metal films which were spray printed on biological skin, it would induce unexpected transformations of the liquid metals among different morphologies and configurations. These include shape shift from a large liquid metal film into a tiny sphere and contraction of liquid metal pool into spherical one. For comprehensively understanding the issues, the impacts of the size, voltage, orientations of the liquid metal electrodes, etc., were clarified. Further, effects of various substrates such as in vitro skin and in vivo skin affecting the liquid metal transformations were experimentally investigated. Compared to the intact tissues, the contraction magnitude of the liquid metal electrode appears weaker on in vivo skin of nude mice under the same electric field. The mechanisms lying behind such phenomena were interpreted through theoretical modeling. Lastly, typical applications of applying the current effect into practical elements such as electrical gating devices were also illustrated as an example. The present findings have both fundamental and practical values, which would help design future technical strategies in fabricating electronically controlled liquid metal electronics on skin.

  12. An analysis of pool surface deformation due to a plunging liquid jet

    NASA Astrophysics Data System (ADS)

    Bonetto, F.; Drew, D. A.; Lahey, Richard T., Jr.

    1993-10-01

    When a liquid jet impacts a pool containing the same liquid and surrounded by a still gas, a surface depression is produced. The surface shape is determined by the Weber number and the Bond number. In this work the shape of the surface is obtained as a function of the Weber number and Bond number by using a non-singular perturbation technique.

  13. Performance of metal and oxide fuel cores during accidents in large liquid-metal-cooled reactors

    SciTech Connect

    Royl, P.H.; Kussmaul, G. ); Cahalan, J.E.; Wigeland, R.A. ); Friedel, G. ); Moreau, J. ); Perks, M. )

    1992-02-01

    This paper reports on a cooperative effort among European and U.S. analysts, which is an assessment of the comparative safety performance of metal and oxide fuels during accidents in a 3500-MW (thermal), pool-type, liquid-metal-cooled reactor (LMR) is performed. The study focuses on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower, and the unprotected loss-of-heat-sink (ULOHS). Core designs with a similar power output that have been previously analyzed in Europe under ULOF accident conditions are also included in this comparison. Emphasis is placed on identification of design features that provide passive, self-limiting responses to postulated accident conditions and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than do oxide-fueled reactors of the same design.

  14. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    SciTech Connect

    Cahalan, J.; Wigeland, R. ); Friedel, G. , Bergisch Gladbach ); Kussmaul, G.; Royl, P. ); Moreau, J. ); Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs.

  15. Development of a liquid metal slip ring

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1972-01-01

    A liquid metal slip ring/solar orientation mechanism was designed and a model tested. This was a follow-up of previous efforts for the development of a gallium liquid metal slip ring in which the major problem was the formation and ejection of debris. A number of slip ring design approaches were studied. The probe design concept was fully implemented with detail drawings and a model was successfully tested for dielectric strength, shock vibration, acceleration and operation. The conclusions are that a gallium liquid metal slip ring/solar orientation mechanism is feasible and that the problem of debris formation and ejection has been successfully solved.

  16. Liquid metal cooled divertor for ARIES

    SciTech Connect

    Muraviev, E.

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

  17. Electromagnetic flow rate meter. [for liquid metals

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1974-01-01

    A liquid metal, whose flow rate is to be determined, is directed through a chamber made of electrically-insulating material on which there is impressed a magnetic field perpendicular to the direction of flow of the liquid metal. The magnetic field is made to increase in strength in a downstream direction of the flow of liquid metal. At least a pair of electrodes are disposed in the chamber traversely and perpendicular to the direction of flow and an ammeter is connected between the electrodes. Electrodes may be disposed in the top or the bottom of the chamber and each may be segmented. Oppositely disposed electrodes may be used with at least one dividing wall extending from each electrode to cause reversal of the direction of flow of the liquid metal. The magnetic field may be provided by electromagnets or permanent magnets such as shaded pole permanent magnets.

  18. Sewage sludge dewatering using flowing liquid metals

    SciTech Connect

    Carlson, L.W.

    1986-11-04

    A method is described of reducing the moisture content of a moist sewage sludge having a moisture content of about 50-80% and formed of small cellular micro-organism bodies having internally confined water. The method comprises: circulating a hot liquid metal in a loop; forming a mixture of the moist sludge and the hot liquid metal in a portion of the loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies; separating the liquid metal, dried sludge, and vaporized water in a separation zone of the loop; and drawing off the dried sludge and vaporized water from the loop whereby the liquid metal is left to be recirculated in the loop.

  19. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  20. Liquid-Metal-Fed Pulsed Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas

    2003-01-01

    Liquid metal propellants may provide a path toward more reliable and efficient pulsed plasma thrusters (PPTs). Conceptual thruster designs which eliminate the need for high current switches and propellant metering valves are described. Propellant loading techniques are suggested that, at least in principle, show promise to increase propellant utilization, dynamic, and electrical efficiency. Experimental results from a prototype electromagnetically-pumped propellant feed system, and experiments in the initiation of arc discharges in liquid metal droplets, are presented.

  1. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  2. A Framework for Soft Sensing of Liquid Pool Length of Continuous Casting Round Blooms

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Xie, Zhi; Ning, Jing; Liu, Wenhong; Ji, Zhenping

    2014-08-01

    Liquid pool length is a vital parameter for solidification control of continuous casting round bloom but it is difficult to be measured by direct hardware measurement. So in this paper, a framework based on heat transfer model for soft sensing of the liquid pool length has been presented. In the framework, the heat transfer model is the kernel and it has been calibrated for its machine-dependent parameters by solving the inverse heat transfer problem with the surface temperature measurements using a color pyrometer. The inverse heat transfer problem has been solved by the optimizer using chaos particle swarm optimization algorithm. After the calibration, the liquid pool lengths were predicted under different casting conditions. Finally, the predictions were validated by shell-thickness measurements using nail-shooting, as the measurements and calculations showed good agreement with the relative errors less than 1.5 pct. And the application of the framework for final electromagnetic stirring has also been presented.

  3. Numerical simulation of pool boiling of a Lennard-Jones liquid

    NASA Astrophysics Data System (ADS)

    Inaoka, Hajime; Ito, Nobuyasu

    2013-09-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling.

  4. Liquid metal particle popping: Nanoscale to macroscale

    NASA Astrophysics Data System (ADS)

    Lear, Trevor R.

    Liquid metal nanoparticles can be used to produce stretchable electronic devices. Understanding the mechanical properties of liquid metal nanoparticles is crucial to optimizing their use in various applications, especially printing of flexible, stretchable electronics. Smaller nanoparticles are desired for high-resolution printing and compatibility with existing scalable manufacturing methods; however, they contain less liquid metal and are more difficult to rupture than larger particles, making them less desirable for post-processing functionality. This study investigates the mechanics of liquid metal particle rupture as a function of particle size. We employ compression of particle films to characterize the composition of the particle core and derive a minimum particle size required to achieve sintering and subsequent conductance. We further derive the force required to rupture a single particle and validate the results by rupturing individual nanoparticles using atomic force microscopy. In addition, we relate the liquid metal nanoparticles to isotropically-elastic thin-shell microspheres to approximate the particle shell stiffness. Using the results from this study, spray printing has been used as a scalable process that permits the printing of larger particles in high resolution patterns. Furthermore, existent sintering methods are developed, specifically using laser systems, high voltage generators, and exposure to extreme temperatures. An increased understanding of the behavior of liquid metal nanoparticles during rupture reveals limitations of current manufacturing processes and paves the way for the next generation of scalable mass-producible soft electronics using additive manufacturing technologies.

  5. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  6. Stretchable and Soft Electronics using Liquid Metals.

    PubMed

    Dickey, Michael D

    2017-07-01

    The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Analytical model of the time variation of liquid film thickness under saturation pool boiling bubbles

    SciTech Connect

    Yajima, Takeshi; Yabe, Akira; Takahashi, Katsuyuki; Maki, Hiroshi

    1999-07-01

    Zuber's and Katto's models have been proposed for explaining the mechanism of burnout heat flux. But these are static models, and do not account for the EHD (Electro-hydrodynamical) effects. The authors therefore determined the dynamic burnout heat flux mechanisms by measuring the EHD enhancement effect and by measuring the time-dependent thickness of the thin liquid film under pool boiling bubbles. They found that the time variation of the liquid film thickness is controlled by the surface tension around the edge of the bubbles and by the repeated supply and discharge of liquid from the thin liquid film region under the bubbles.

  8. Recent developments in liquid-metal embrittlement

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.

    1979-01-01

    The paper reviews developments in liquid-metal embrittlement of the past 7 years including data on cyclic loading. Embrittlement by solid and liquid metals and by hydrogen has many common features, although the mechanism of embrittler transport differs. Fracture may occur in each type of embrittlement by environmentally assisted shear and by reduced cohesion; embrittlement under cyclic loading has been widely observed, with stress level, temperature, and substrate alloy composition and grain size being the major variables. The degree of embrittlement between any combination of environment (i.e. hydrogen, liquid metal, or solid metal) and substrate depends upon the strength of the interaction with the substrate, the kinetics of embrittler transport, the mutual solubility of embrittler and substrate, and a large number of test and microstructural conditions. A method of calculating the most significant of these variables and the strength of interaction was reviewed and predictions of embrittlement in previously untested couples were made.

  9. Liquid metal porous matrix sliding electrical contact: A concept

    NASA Technical Reports Server (NTRS)

    Ferguson, H.

    1973-01-01

    Concept utilizes porous metal or nonmetal matrix containing liquid metal in porous structure and confines liquid metal to contact area between rotor and brush by capillary forces. System may also be used to lubricate bearing systems.

  10. Vapor explosions during the impact of molten tin droplets into a liquid pool

    NASA Astrophysics Data System (ADS)

    Kouraytem, Nadia; Li, Er Qiang; Thoroddsen, Sigurdur

    2014-11-01

    High-speed video imaging is used to study the impact of a molten tin droplet into a liquid pool. Three different regimes have been identified as nucleation boiling, film boiling or vapor explosion. The latter generally comprises two stages; during the first stage, vapor gets entrapped into the molten tin drop and then, at a second stage, the vapor is superheated by the tin material, creating a violent expansion (explosion). It was observed that the addition of surfactant to the fluid pool could promote the explosion and make it occur at a lower temperature. Furthermore, other parameters such as the pool liquid surface tension, boiling temperature, viscosity and molten tin temperature have been varied to examine the explosion dynamics.

  11. Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)

    2000-01-01

    A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.

  12. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  13. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  14. Mixing in a liquid metal electrode

    SciTech Connect

    Kelley, DH; Sadoway, DR

    2014-05-01

    Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized as a promising and economically viable technology for large-scale energy storage on worldwide electrical grids. But because these batteries are entirely liquid, fluid flow and instabilities may affect battery robustness and performance. Here we present estimates of flow magnitude and ultrasound measurements of the flow in a realistic liquid metal electrode. We find that flow does substantially affect mass transport by altering the electrode mixing time. Above a critical electrical current density, the convective flow organizes and gains speed, which promotes transport and would yield improved battery efficiency. (C) 2014 AIP Publishing LLC.

  15. Na-Zn liquid metal battery

    NASA Astrophysics Data System (ADS)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  16. Liquid Metal Fuel Combustion Mechanics

    DTIC Science & Technology

    1990-12-01

    Mechanics. No such analysis seem to have been done todate . The other way is to calculate the fluid Finally the location of the liquid particles within the...3601, July about 10 axial locations before peaking up . At about y=25, the 1987. 5 3. L.P.Cook and E.R.Plante: Survey of alternate Stored Chemical

  17. Magnetohydrodynamic effects in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Stefani, F.; Galindo, V.; Kasprzyk, C.; Landgraf, S.; Seilmayer, M.; Starace, M.; Weber, N.; Weier, T.

    2016-07-01

    Liquid metal batteries (LMBs) consist of two liquid metal electrodes and a molten salt ionic conductor sandwiched between them. The density ratios allow for a stable stratification of the three layers. LMBs were already considered as part of energy conversion systems in the 1960s and have recently received renewed interest for economical large-scale energy storage. In this paper, we concentrate on the magnetohydrodynamic aspects of this cell type with special focus on electro-vortex flows and possible effects of the Tayler instability.

  18. Liquid-Metal-Fed Pulsed Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas

    2004-01-01

    A short document proposes liquid-metal-fed pulsed plasma thrusters for small spacecraft. The propellant liquid for such a thruster would be a low-melting-temperature metal that would be stored molten in an unpressurized, heated reservoir and would be pumped to the thruster by a magnetohydrodynamic coupler. The liquid would enter the thruster via a metal tube inside an electrically insulating ceramic tube. A capacitor would be connected between the outlet of the metal tube and the outer electrode of the thruster. The pumping would cause a drop of liquid to form at the outlet, eventually growing large enough to make contact with the outer electrode. Contact would close the circuit through the capacitor, causing the capacitor to discharge through the drop. The capacitor would have been charged with enough energy that the discharge would vaporize, ionize, and electromagnetically accelerate the contents of the metal drop. The resulting plasma would be ejected at a speed of about 50 km/s. The vaporization of the drop would reopen the circuit through the capacitor, enabling recharging of the capacitor. As pumping continued, a new drop would grow and the process would repeat.

  19. Membranes Remove Metal Ions Fron Industrial Liquids

    NASA Technical Reports Server (NTRS)

    Hsu, W. P. L.; May, C.

    1983-01-01

    Use of membrane films affords convenient and economical alternative for removing and recovering metal cations present in low concentrations from large quantities of liquid solutions. Possible applications of membrane films include use in analytical chemistry for determination of small amounts of toxic metallic impurities in lakes, streams, and municipal effluents. Also suitable for use as absorber of certain pollutant gases and odors present in confined areas.

  20. Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel Pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Cai, Jinsheng; Liu, Feng; Sirignano, William A.; Miller, Fletcher J.

    2003-01-01

    Schiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross

  1. Corrosion of refractory metals in liquid metal and gaseous environments

    SciTech Connect

    DiStefano, J.R.

    1991-01-01

    In general, refractory metals and alloys are very compatible with liquid or boiling alkali metals. However, corrosion resistance of niobium and tantalum requires maintaining low oxygen in the system. When the refractory metal contains a strong oxide former (Zr, Hf), additional oxygen in the solid metal can be tolerated if it is tied up as a stable oxide (ZrO{sub 2}, HfO{sub 2}). In sodium or potassium systems, oxygen in either the liquid metal or refractory metal can contribute to reduced corrosion resistance. The mechanical properties of refractory metals are very sensitive to interstitial elements such as oxygen, nitrogen, hydrogen, and carbon. Oxidation in air or other oxidizing environments is rapid above 300 to 400{degree}C, and some type of protection must be provided (vacuum, inert gas, coating) if refractory metals are to be used at high temperatures. Oxidation of niobium and tantalum alloys is more complex than for molybdenum and tungsten due to the formation of different oxide phases that exhibit differing degrees of protectiveness. At low to intermediate temperatures niobium and tantalum also react with hydrogen environments, and embrittlement has been reported both from hydride formation as well as from solid solution effects. At high temperatures niobium and tantalum react with nitrogen or carbon to form very stable compounds while the nitrides and carbides of molybdenum and tungsten are considerably less stable. 10 refs., 10 figs.

  2. Liquid and Solid Metal Embrittlement.

    DTIC Science & Technology

    1981-09-05

    structural parts, as in cadmium on steel or titanium alloys. d) welding , brazing, or soldering operations, as in steels where copper contamination (from...aluminum), by preferential chemical reactions (e.g. lithium on iron containing carbon or carbides), and by corrosion , perhaps aided by cavitation, in... welding electrodes) may occur, or solder contacting stressed iron-base alloys. e) various industrial situations where molten metals are han- dled or where

  3. Critical fields of liquid superconducting metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Jaffe, J.; Ashcroft, N. W.

    1983-01-01

    Liquid metallic hydrogen, in a fully dissociated state, is predicted at certain densities to pass from dirty to clean and from type II to type I superconducting behavior as temperature is lowered. Previously announced in STAR as N82-29374

  4. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.

    1981-01-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  5. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1973-01-01

    Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  6. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1974-01-01

    Electron transport is considered in high-density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere-correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  7. Thermo/Soluto-capillary instabilities in 3D bi-component liquid pools using DNS

    NASA Astrophysics Data System (ADS)

    Williams, Adam; Saenz, Pedro; Valluri, Prashant; Sefiane, Khellil

    2015-11-01

    The behaviour of surface tension dominated flows in the presence of a temperature gradient and phase change is of great importance in designing micro-cooling devices. While evaporating pools and droplets have been investigated numerically and experimentally, these studies have dealt only with pure fluids. For bicomponent liquid mixtures, limited experimental studies have been conducted but a rigorous numerical model is absent. We present a two-phase multicomponent DNS model to simulate thermo/soluto-capillary instabilities in bicomponent liquid layers subject to a horizontal temperature gradient. The strategy fully accounts for a deformable interface using a variant of volume-of-fluid method. The presence of a second component introduces thermophoresis in the liquid phase which then gives rise to solutal Marangoni effects. By combining mixture thermodynamics with multiphase DNS, we investigate thermo/soluto-capillary and interfacial instabilities of a 3D bicomponent liquid pool. An important aspect we quantify is the strength of solutal over thermal Marangoni convection and its effect on stability of resultant interfacial waves and phase-separation in the liquid. The model is robust enough to include phase-change and the advection-diffusion of volatile species in the gas phase. Funded by EPSRC, Grant No. EP/K00963X/1.

  8. Liquid crystal on subwavelength metal gratings

    SciTech Connect

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V.

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  9. Liquid-metal-cooled reactor

    DOEpatents

    Hutter, E.

    A perforated depressor plate extending across the bottom of the instrument tree of a fast breeder reactor cooperates with a circular cylindrical metal bellows forming a part of the upper adapter of each core assembly and bearing on the bottom of the depressor plate to restrict flow of coolant between core assemblies, thereby reducing significantly the pressure differential between the coolant inside the core assemblies and the coolant outside of the core assemblies. Openings in the depressor plate are slightly smaller than the top of the upper adapter so the depressor plate will serve as a backup mechanical holddown for the core. In addition, coolant mixing devices and locating devices are provided attached to the depressor plate.

  10. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    PubMed

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  11. Compact, Lightweight Electromagnetic Pump for Liquid Metal

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Palzin, Kurt

    2010-01-01

    A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.

  12. Liquid metal pump for nuclear reactors

    DOEpatents

    Allen, H.G.; Maloney, J.R.

    1975-10-01

    A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank.

  13. Velocity autocorrelation functions in model liquid metals

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Maclin, A. P.

    1975-01-01

    Starting from interatomic potentials and static radial distribution functions, a self-consistent iteration scheme has been used to calculate velocity autocorrelation functions in liquid metals. The interatomic forces are treated directly. The calculation bypasses the details of the many-body dynamics and it is not necessary to introduce any additional parameters. Several simplifications may be used without introducing appreciable deviations. The results are in good agreement with computer experiments on liquid sodium at 383 K, suggesting that the velocity autocorrelation function may be a simpler quantity than previously supposed.

  14. Reflection of illumination laser from gas metal arc weld pool surface

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoji; Zhang, Yu Ming

    2009-11-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser.

  15. Metal ion separations by supported liquid membranes

    SciTech Connect

    Gyves, J. de; San Miguel, E.R. de

    1999-06-01

    Carrier-mediated transport through supported liquid membranes is currently recognized as a potentially valuable technology for selective separation and concentration of toxic and valuable metal ions. In this paper, a review of the fundamental aspects concerning metal ion transport and the influencing factors are surveyed in terms of data modeling, membrane efficiency (permeability, selectivity, stability), and data acquisition and evaluation. An account of the information reviewed demonstrates the need for critical reflection on system performances in order to accomplish scaling up operations. On the same basis, an attempt to outline some future trends in the field is presented.

  16. Metal-deactivating additives for liquid fuels

    SciTech Connect

    Boneva, M.I.; Ivanov, S.K.; Kalitchin, Z.D.; Tanielyan, S.K.; Terebenina, A.; Todorova, O.I.

    1995-05-01

    The metal-deactivating and the antioxidant properties of 1-phenyl-3-methylpyrazolone-5 derivatives have been investigated both in the model reaction of low temperature oxidation of ethylbenzene and in gasoline oxidation. The study of the ability of these derivatives to reduce the catalytic effect of copper naphthenate demonstrates that they are promising as metal deactivating additives for light fuels. Some of the pyrazolone compounds appear to be of special interest for the long-term storage of liquid fuels due to their action as multifunctional inhibitors.

  17. Integral fast reactor concept. [Pool type; metal fuel; integral fuel cycle

    SciTech Connect

    Chang, Y.I.; Marchaterre, J.F.; Sevy, R.H.

    1984-01-01

    Key features of the IFR consist of a pool-type plant arrangement, a metal fuel-based core design, and an integral fuel cycle with colocated fuel cycle facility. Both the basic concept and the technology base have been demonstrated through actual integral cycle operation in EBR-II. This paper discusses the inherent safety characteristics of the IFR concept. (DLC)

  18. Surface plasmon resonances in liquid metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.

    2017-06-01

    We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition "solid-liquid" in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.

  19. CONTAMINANT TRANSPORT RESULTING FROM MULTICOMPONENT NONAQUEOUS PHASE LIQUID POOL DISSOLUTION IN THREE-DIMENSIONAL SUBSURFACE FORMATIONS (R823579)

    EPA Science Inventory

    A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...

  20. CONTAMINANT TRANSPORT RESULTING FROM MULTICOMPONENT NONAQUEOUS PHASE LIQUID POOL DISSOLUTION IN THREE-DIMENSIONAL SUBSURFACE FORMATIONS (R823579)

    EPA Science Inventory

    A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...

  1. Self-fueled biomimetic liquid metal mollusk.

    PubMed

    Zhang, Jie; Yao, Youyou; Sheng, Lei; Liu, Jing

    2015-04-24

    A liquid metal motor that can "eat" aluminum food and then move spontaneously and swiftly in various solution configurations and structured channels for more than 1 h is discovered. Such a biomimetic mollusk is highly shape self-adaptive by closely conforming to the geometrical space it voyages in. The first ever self-fueled pump is illustrated as one of its typical practical utilizations.

  2. The Liquid Metal Plasma Valve Closing Switch

    DTIC Science & Technology

    1976-11-01

    Specifications Closing HVDC LMPV Switch Converter LMPV Circuit Parameter Parameters Rating Breaker Rating Peak Voltage 50-200 kV 150 kV nominal 30...last column of the table outliner the ratings of the LMPV used in an existing circuit breaker system. The capability of the LMPV to operate at high...1976. W. 0. Eckhardt and G. A. Hofmann, ’’Ohmic Heading DC Circuit Breakers with Liquid-Metal Plasma Valves, 11 Proceedings of the Ninth Symposium on

  3. Liquid metal switches for electromagnetic railgun systems

    SciTech Connect

    Mitcham, A.J.; Prothero, D.H.; Brooks, J.C. )

    1991-01-01

    The need for a reliable and effective commutating switch is essential to the operation of an HPG-driven railgun system. This switch must offer the lowest possible resistance during the current build up time and then must commutate the current quickly and efficiently into the railgun barrel. This paper considers the essential requirements for such a switch and, after briefly reviewing the available switch technologies, describes a new type of switch based on a liquid metal switching medium.

  4. Quantum criticality in a metallic spin liquid.

    PubMed

    Tokiwa, Y; Ishikawa, J J; Nakatsuji, S; Gegenwart, P

    2014-04-01

    When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating 'spin liquid' state down to low temperatures. The magnetic order of local moments can also be suppressed when they are fully screened by conduction electrons through the Kondo effect. Thus, the combination of strong geometrical frustration and Kondo screening may lead to novel types of quantum phase transition. We report low-temperature thermodynamic measurements on the frustrated Kondo lattice Pr₂Ir₂O₇, which exhibits a chiral spin liquid state below 1.5 K as a result of the frustrated interaction between Ising 4f local moments and their interplay with Ir conduction electrons. Our results provide a first clear example of zero-field quantum critical scaling that emerges in a spin liquid state of a highly frustrated metal.

  5. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOEpatents

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  6. Stretchable Loudspeaker using Liquid Metal Microchannel

    NASA Astrophysics Data System (ADS)

    Jin, Sang Woo; Park, Jeongwon; Hong, Soo Yeong; Park, Heun; Jeong, Yu Ra; Park, Junhong; Lee, Sang-Soo; Ha, Jeong Sook

    2015-07-01

    Considering the various applications of wearable and bio-implantable devices, it is desirable to realize stretchable acoustic devices for body-attached applications such as sensing biological signals, hearing aids, and notification of information via sound. In this study, we demonstrate the facile fabrication of a Stretchable Acoustic Device (SAD) using liquid metal coil of Galinstan where the SAD is operated by the electromagnetic interaction between the liquid metal coil and a Neodymium (Nd) magnet. To fabricate a liquid metal coil, Galinstan was injected into a micro-patterned elastomer channel. This fabricated SAD was operated simultaneously as a loudspeaker and a microphone. Measurements of the frequency response confirmed that the SAD was mechanically stable under both 50% uniaxial and 30% biaxial strains. Furthermore, 2000 repetitive applications of a 50% uniaxial strain did not induce any noticeable degradation of the sound pressure. Both voice and the beeping sound of an alarm clock were successfully recorded and played back through our SAD while it was attached to the wrist under repeated deformation. These results demonstrate the high potential of the fabricated SAD using Galinstan voice coil in various research fields including stretchable, wearable, and bio-implantable acoustic devices.

  7. Stretchable Loudspeaker using Liquid Metal Microchannel.

    PubMed

    Jin, Sang Woo; Park, Jeongwon; Hong, Soo Yeong; Park, Heun; Jeong, Yu Ra; Park, Junhong; Lee, Sang-Soo; Ha, Jeong Sook

    2015-07-16

    Considering the various applications of wearable and bio-implantable devices, it is desirable to realize stretchable acoustic devices for body-attached applications such as sensing biological signals, hearing aids, and notification of information via sound. In this study, we demonstrate the facile fabrication of a Stretchable Acoustic Device (SAD) using liquid metal coil of Galinstan where the SAD is operated by the electromagnetic interaction between the liquid metal coil and a Neodymium (Nd) magnet. To fabricate a liquid metal coil, Galinstan was injected into a micro-patterned elastomer channel. This fabricated SAD was operated simultaneously as a loudspeaker and a microphone. Measurements of the frequency response confirmed that the SAD was mechanically stable under both 50% uniaxial and 30% biaxial strains. Furthermore, 2000 repetitive applications of a 50% uniaxial strain did not induce any noticeable degradation of the sound pressure. Both voice and the beeping sound of an alarm clock were successfully recorded and played back through our SAD while it was attached to the wrist under repeated deformation. These results demonstrate the high potential of the fabricated SAD using Galinstan voice coil in various research fields including stretchable, wearable, and bio-implantable acoustic devices.

  8. Stretchable Loudspeaker using Liquid Metal Microchannel

    PubMed Central

    Jin, Sang Woo; Park, Jeongwon; Hong, Soo Yeong; Park, Heun; Jeong, Yu Ra; Park, Junhong; Lee, Sang-Soo; Ha, Jeong Sook

    2015-01-01

    Considering the various applications of wearable and bio-implantable devices, it is desirable to realize stretchable acoustic devices for body-attached applications such as sensing biological signals, hearing aids, and notification of information via sound. In this study, we demonstrate the facile fabrication of a Stretchable Acoustic Device (SAD) using liquid metal coil of Galinstan where the SAD is operated by the electromagnetic interaction between the liquid metal coil and a Neodymium (Nd) magnet. To fabricate a liquid metal coil, Galinstan was injected into a micro-patterned elastomer channel. This fabricated SAD was operated simultaneously as a loudspeaker and a microphone. Measurements of the frequency response confirmed that the SAD was mechanically stable under both 50% uniaxial and 30% biaxial strains. Furthermore, 2000 repetitive applications of a 50% uniaxial strain did not induce any noticeable degradation of the sound pressure. Both voice and the beeping sound of an alarm clock were successfully recorded and played back through our SAD while it was attached to the wrist under repeated deformation. These results demonstrate the high potential of the fabricated SAD using Galinstan voice coil in various research fields including stretchable, wearable, and bio-implantable acoustic devices. PMID:26181209

  9. Liquid suspensions of reversible metal hydrides

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

    1983-12-08

    The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  10. Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis

    NASA Technical Reports Server (NTRS)

    Cai, Jinsheng; Sirignano, William A.

    2001-01-01

    A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.

  11. Gold metal liquid-like droplets.

    PubMed

    Smirnov, Evgeny; Scanlon, Micheál D; Momotenko, Dmitry; Vrubel, Heron; Méndez, Manuel A; Brevet, Pierre-Francois; Girault, Hubert H

    2014-09-23

    Simple methods to self-assemble coatings and films encompassing nanoparticles are highly desirable in many practical scenarios, yet scarcely any examples of simple, robust approaches to coat macroscopic droplets with continuous, thick (multilayer), reflective and stable liquid nanoparticle films exist. Here, we introduce a facile and rapid one-step route to form films of reflective liquid-like gold that encase macroscopic droplets, and we denote these as gold metal liquid-like droplets (MeLLDs). The present approach takes advantage of the inherent self-assembly of gold nanoparticles at liquid-liquid interfaces and the increase in rates of nanoparticle aggregate trapping at the interface during emulsification. The ease of displacement of the stabilizing citrate ligands by appropriate redox active molecules that act as a lubricating molecular glue is key. Specifically, the heterogeneous interaction of citrate stabilized aqueous gold nanoparticles with the lipophilic electron donor tetrathiafulvalene under emulsified conditions produces gold MeLLDs. This methodology relies exclusively on electrochemical reactions, i.e., the oxidation of tetrathiafulvalene to its radical cation by the gold nanoparticle, and electrostatic interactions between the radical cation and nanoparticles. The gold MeLLDs are reversibly deformable upon compression and decompression and kinetically stable for extended periods of time in excess of a year.

  12. Natural Convection Heat Transfer Characteristics of Liquid Metal Cooled by Subcooled Water

    SciTech Connect

    Lee, Il S.; Yu, Yong H.; Son, Hyoung M.; Suh, Kune Y.

    2006-07-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the liquid metal is determined and compared with the correlations in the literature and experimental results. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with subcooled coolant are found to be similar to those predicted by the existing correlations or measured from previous experiments. The current experimental results are utilized to develop new engineering solutions. The new experimental correlations for predicting the natural convection heat transfer are applicable to low Prandtl number (Pr) materials that are heated from below and cooled by the external coolant above. Results from this study are slated to be used to design BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment in remote sites. Tests are performed with air, water and Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool while the lower surface is heated and the upper surface cooled by forced convection of water. The inner dimensions of the test section are 20 cm in length, 11.3 cm in height, and 15 cm in width. Wood's metal has a melting temperature of 78 deg. C. Constant temperature and heat flux condition is adopted for the bottom heating. The test parameters include the heated bottom surface temperature of the liquid metal pool, the input power to the bottom surface of the section, and the coolant temperature. (authors)

  13. Crust formation and its effect on heat transfer in the molten metal pool

    SciTech Connect

    Park, R.J.; Kim, S.B.; Kim, H.D.

    1997-12-01

    Experimental and analytical studies have been performed on crust formation and its effect on heat transfer in a molten metal pool. Two types of tests were performed to investigate the effect of coolant conditions. The experimental results on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool were compared with other correlations. The temperature distribution and the heat transfer rate have been evaluated using the FLOW-3D computer program. The present study has shown that the influential parameter in the solidified crust formation process is the bottom surface temperature beneath the molten metal layer in all of the experimental cases due to the developed natural convection flow. An increase of the Rayleigh number leads to an increase of the Nusselt number in the lower molten metal pool. On the contrary, an increase of the Rayleigh number leads to a decrease of the Nusselt number in the upper coolant layer due to the effect of crust as a conducting thermal barrier. The present experimental results on the relationship between the Nusselt number and the Rayleigh number are more similar to Globe and Dropkin`s correlation than any others. The FLOW-3D results on the temperature profile and on the heat transfer are agreed with the experimental data. 10 refs., 11 figs., 5 tabs.

  14. The coalescence of heterogeneous liquid metal on nano substrate

    NASA Astrophysics Data System (ADS)

    Wang, Long; Li, Yifan; Zhou, Xuyan; Li, Tao; Li, Hui

    2017-06-01

    Molecular dynamics simulation has been performed to study the asymmetric coalescence of heterogeneous liquid metal on graphene. Simulation results show that the anomalies in the drop coalescence is mainly caused by the wettability of heterogeneous liquid metal. The silver atoms incline to distribute on the outer layer of the gold and copper droplets, revealing that the structure is determined by the interaction between different metal atoms. The coalescence and fusion of heterogeneous liquid metal drop can be predicted by comparing the wettability and the atomic mass of metallic liquid drops, which has important implications in the industrial application such as ink-jet printing and metallurgy.

  15. Direct energy conversion using liquid metals

    NASA Astrophysics Data System (ADS)

    Onea, Alexandru; Diez de los Rios Ramos, Nerea; Hering, Wolfgang; Stieglitz, Robert; Moster, Peter

    2014-12-01

    Liquid metals have excellent properties to be used as heat transport fluids due to their high thermal conductivity and their wide applicable temperature range. The latter issue can be used to go beyond limitations of existing thermal solar energy systems. Furthermore, the direct energy converter Alkali Metal Thermo Electric Converter (AMTEC) can be used to make intangible areas of energy conversion suitable for a wide range of applications. One objective is to investigate AMTEC as a complementary cycle for the next generation of concentrating solar power (CSP) systems. The experimental research taking place in the Karlsruhe Institute of Technology (KIT) is focused on the construction of a flexible AMTEC test facility, development, test and improvement of liquid-anode and vapor-anode AMTEC devices as well as the coupling of the AMTEC cold side to the heat storage tank proposed for the CSP system. Within this project, the investigations foreseen will focus on the analyses of BASE-metal interface, electrode materials and deposition techniques, corrosion and erosion of materials brought in contact with high temperature sodium. This prototype demonstrator is planned to be integrated in the KArlsruhe SOdium LAboratory (KASOLA), a flexible closed mid-size sodium loop, completely in-house designed, presently under construction at the Institute for Neutron Physics and Reactor Technology (INR) within KIT.

  16. Interfacial bubbles formed by plunging thin liquid films in a pool

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Schmit, Alexandre; David, Richard; Delvert, Alexandre; Gicquel, Eric; Panizza, Pascal; Courbin, Laurent

    2017-06-01

    We show that the immersion of a horizontally suspended thin film of liquid in a pool of the same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the fluid properties, the film's size, and its immersion velocity, our experiments unveil two formation regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the size of a produced bubble. To rationalize these results, we compare the pressure exerted by the air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which subsequently yields air entrapment and the production of a bubble. This physical model explains the power-law variations of the bubble size with the governing dimensionless number for each regime.

  17. Detection of velocity in high temperature liquid metals

    NASA Technical Reports Server (NTRS)

    Mikrovas, A. C.; Argyropoulos, S. A.

    1993-01-01

    Various efforts have been made to measure velocity in liquid metals. All of these efforts, however, share the same inherent limitation, namely, not being operative at the high temperatures required by liquid metals and liquid slags in an industrial application. In this paper, the current methods used were reviewed, and a new technique was presented for the measurement of velocity in high temperature liquid metals. In using this technique there are two stages. Starting with the calibration stage and then moving to the actual measurement stage by making use of the data obtained from calibration stage. Calibration proceeds in the following manner. Metallic spheres moving with a specific velocity are immersed in liquid metal held under isothermal conditions and at specific temperature. Their melting times are determined very accurately with a novel technique. These measurements are repeated for different metal bath temperatures and for different velocities of metallic spheres. In this manner it is possible to calculate the correlation between velocity and melting times for each metal bath temperature. During the actual measurement stage, when the metal bath temperature is known and its velocity is unknown, the magnitude of the unknown liquid metal velocity can be derived as follows: metallic spheres are immersed into the moving liquid metal and their melting times are determined. Using the above mentioned correlations, it will be shown that the magnitude of the unknown velocity in liquid metal can be deduced. This new technique was applied to high temperature liquid aluminum and liquid steel and these results were presented. The potential applicability of this technique in other liquid metals and liquid slags will also be discussed.

  18. Thermodynamic laws of the oxygen solubility in liquid metals (Ni, Co, Fe, Mn, Cr) and the formation of oxygen-containing solutions in the alloys based on them

    NASA Astrophysics Data System (ADS)

    Paderin, S. N.; Shil'nikov, E. V.

    2015-12-01

    The solubility of oxygen in liquid Ni, Co, Fe, Mn, and Cr metals (Group IV in the periodic table) has been found for the first time. Linear dependences of the oxygen solubility on the standard Gibbs energy for the oxidation reaction of a liquid metal with gaseous oxygen are found. The revealed function of oxygen solubility is of scientific importance and allows one to develop a theory of oxygen solutions in liquid metals and liquid multicomponent metallic compositions and to calculate the energies of mixing of liquid metals with oxygen from Δ G MO ° for metal oxidation reactions with allowance for pseudoregular-solution model equations. Using the energies of mixing and metal compositions, we calculated the equilibrium oxygen concentrations in a metal molten pool at the end of oxidation stage of melting 08Kh18N10T steel in an arc furnace. This fact indicates practical importance of the found function of the oxygen solubility in metals.

  19. Quantum criticality in a metallic spin liquid

    NASA Astrophysics Data System (ADS)

    Tokiwa, Y.; Ishikawa, J. J.; Nakatsuji, S.; Gegenwart, P.

    2014-04-01

    When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating ‘spin liquid’ state down to low temperatures. The magnetic order of local moments can also be suppressed when they are fully screened by conduction electrons through the Kondo effect. Thus, the combination of strong geometrical frustration and Kondo screening may lead to novel types of quantum phase transition. We report low-temperature thermodynamic measurements on the frustrated Kondo lattice Pr2Ir2O7, which exhibits a chiral spin liquid state below 1.5 K as a result of the frustrated interaction between Ising 4f local moments and their interplay with Ir conduction electrons. Our results provide a first clear example of zero-field quantum critical scaling that emerges in a spin liquid state of a highly frustrated metal.

  20. Stretchable Thermoelectric Generators Metallized with Liquid Alloy.

    PubMed

    Jeong, Seung Hee; Cruz, Francisco Javier; Chen, Si; Gravier, Laurent; Liu, Johan; Wu, Zhigang; Hjort, Klas; Zhang, Shi-Li; Zhang, Zhi-Bin

    2017-05-10

    Conventional thermoelectric generators (TEGs) are normally hard, rigid, and flat. However, most objects have curvy surfaces, which require soft and even stretchable TEGs for maximizing efficiency of thermal energy harvesting. Here, soft and stretchable TEGs using conventional rigid Bi2Te3 pellets metallized with a liquid alloy is reported. The fabrication is implemented by means of a tailored layer-by-layer fabrication process. The STEGs exhibit an output power density of 40.6 μW/cm(2) at room temperature. The STEGs are operational after being mechanically stretched-and-released more than 1000 times, thanks to the compliant contact between the liquid alloy interconnects and the rigid pellets. The demonstrated interconnect scheme will provide a new route to the development of soft and stretchable energy-harvesting avenues for a variety of emerging electronic applications.

  1. Statistical Mechanics of Metallic Glasses and Liquids

    NASA Astrophysics Data System (ADS)

    Egami, T.; Levashov, V. A.; Morris, J. R.; Haruyama, O.

    2010-07-01

    It is difficult to formulate the statistical mechanical theory of liquids and glasses, because phonons, which are the basis for the statistical mechanics of lattice dynamics in crystals, are strongly scattered and have a very short lifetime in liquids and glasses. Instead computer simulation and the “free-volume” theory are most frequently used in explaining experimental results on metallic glasses. However, both of them suffer from serious problems, as discussed in this article. We propose an alternative approach based upon the dynamics of the atomic level stresses. We review recent progress with this approach and show that it is possible to calculate thermodynamic quantities, including the glass transition temperature and the kinetics of structural relaxation, by this approach.

  2. Bubble pinch-off and scaling during liquid drop impact on liquid pool

    NASA Astrophysics Data System (ADS)

    Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh

    2012-08-01

    Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.

  3. A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids)

    NASA Astrophysics Data System (ADS)

    Manojkumar, Kasina; Sivaramakrishna, Akella; Vijayakrishna, Kari

    2016-04-01

    Metal nanoparticles (NPs) are a subject of global interest in research community due to their diverse applications in various fields of science. The stabilization of these metal NPs is of great concern in order to avoid their agglomerization during their applications. There is a huge pool of cations and anions available for the selection of ionic liquids (ILs) as stabilizers for the synthesis of metal NPs. ILs are known for their tunable nature allowing the fine tuning of NPs size and solubility by varying the substitutions on the heteroatom as well as the counter anions. However, there has been a debate over the stability of metal NPs stabilized by ILs over a long period of time and also upon their recycling and reuse in organocatalytic reactions. ILs covalently attached to solid supports (SILLPs) have given a new dimension for the stabilization of metal NPs as well as their separation, recovery, and reuse in organocatalytic reactions. Poly(ILs) (PILs) or polyelectrolytes have created a significant revolution in the polymer science owing to their characteristic properties of polymers as well as ILs. This dual behavior of PILs has facilitated the stabilization of PIL-stabilized metal NPs over a long period of time with negligible or no change in particle size, stability, and size distribution upon recycling in catalysis. This review provides an insight into the different types of imidazolium-based ILs, supported ILs, and PILs used so far for the stabilization of metal NPs and their applications as a function of their cations and counter anions.

  4. A Coupled Approach to Weld Pool, Phase and Residual Stress Modelling of Laser Direct Metal Deposition (LDMD) Processes

    NASA Astrophysics Data System (ADS)

    Vogel, Michael; Khan, Mushtaq; Ibara-Medina, Juansethi; Pinkerton, Andrew; N'Dri, Narcisse; Megahed, Mustafa

    This paper describes a complete CFD model of the laser metal deposition process. The model covers the complete process, starting from the simulation of powder particles in the deposition head and finishing with the final part. Individual phenomena that are considered in the gas-phase stage of the model include the ricocheting of particles within the head, the flow of powder particles, their interaction with the laser and powder catchment/bouncing. Phenomena considered in the liquid phase (melt pool) stage of the model include particle enthalpy effects, buoyancy, temperature-dependent material properties and Marangoni forces. The CFD model is coupled with a metallurgical database to predict the phase and material properties of the solidified deposit and heat affected area and residual stresses in the part. Modelled and experimental characteristics of multi-track deposits of M2 steel show good agreement.

  5. Liquid oxygen/metal gelled monopropellants

    NASA Technical Reports Server (NTRS)

    Wickman, John H.

    1991-01-01

    The objectives of this program were to establish the feasibility of metallized/liquid oxygen monopropellants and select the best monopropellant formulation for continued study. The metal powders mixed with the liquid oxygen were aluminum/magnesium (80/20), silicon and iron (Iron was only tested for burning properties). The formulations were first evaluated on whether they detonated when ignited or burned. The formulations only burned when ignited. The viscosity for the formulations ranged from 900 cps to 100 cps at shear rates up to 300 seconds(sup -1). Two percent (by weight) of Cab-O-Sil was added to the aluminum and aluminum/magnesium formulations for gelling while the silicon formulation used three percent. Within a seven hour period, settling was suggested only in the 29 percent aluminum and 29 percent aluminum/magnesium formulations. The monopropellants were burned in a cylinder submerged in a liquid nitrogen bath. Experimental data at ambient pressure indicated that the monopropellants were extinguished when the flame front reached regions submerged under the liquid nitrogen. The burn rate increased dramatically when burned in a cylinder enclosure with less heat sink available to the monopropellant. The test results were inconclusive as to whether the increased burn rate was due to the lower heat sink capacity or the small amount of pressure (2 psi) generated during the burning of the monopropellant. The burning of the aluminum and aluminum/magnesium resulted in a brilliant white flame similar to that of an arc welder. These monopropellants burned in a pulsating manner with the aluminum/magnesium appearing to have less pulsating combustion. The silicon monopropellant burned with an orange glow. No sparks or energetic burning was apparent as with the aluminum or aluminum/magnesium.

  6. Thermal convection in a liquid metal battery

    NASA Astrophysics Data System (ADS)

    Shen, Yuxin; Zikanov, Oleg

    2016-08-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few centimeters in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  7. Process for preparing liquid metal electrical contact device

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.; Berkopec, F. D.; Culp, D. H. (Inventor)

    1977-01-01

    The parts of an electrical contact device are treated by sputter etching to remove the parent metal oxide. Prior to exposure of the electrodes to any oxygen, a sacrificial metal is sputter deposited on the parts. Preferably this sacrificial metal is one that oxidizes slowly and is readily dissolved by the liquid metal. The sacrificial metal may then be removed from unwanted areas. The remainder of the ring and the probe to be wet by the liquid metal are submerged in the liquid metal or the liquid metal is flushed over these areas, preferably while they are being slightly abraded, unitl all the sacrificial material on these portions is wet by the liquid metal. In doing so the liquid metal dissolves the sacrificial metal and permanently wets the parent metal. Preferred materials used in the process and for the electrodes of electrical contact devices are high purity (99.0%) nickel or AISI type 304 stainless steel for the electrical contact devices, gallium as the liquid metal, and gold as the sacrificial material.

  8. Forces on a pipe bend resulting from clearing a pool of liquid upstream

    SciTech Connect

    Neumann, A.; Griffith, P.

    1991-12-31

    The forces experienced by a bend in a pipe when a pool of water upstream is cleared by a rush of air have been measured. These forces are found to be negligible as long as a transition to slug flow does not occur. This transition does not occur as long as the maximum liquid fraction in the pool is less than 20%. The forces experienced at the bend are greatly reduced if the slug has traveled more than 6 L/D`s, a distance which is more than sufficient to insure that the slug has entrained air. The effect of an upstream expansion on the force experienced by the bend as a cleared air-water plug passes through it has also been measured. A conservative estimate of the maximum force can be made by assuming that the plug is composed entirely of liquid and moves at the mixture velocity characteristic of the small pipe. The measured maximum force decreases rapidly with increasing distance. These measurements will help in designing piping supports for lines which cannot be properly sloped or are downstream of a pressure relief valve. 2 refs.

  9. Forces on a pipe bend resulting from clearing a pool of liquid upstream

    SciTech Connect

    Neumann, A. ); Griffith, P. )

    1991-01-01

    The forces experienced by a bend in a pipe when a pool of water upstream is cleared by a rush of air have been measured. These forces are found to be negligible as long as a transition to slug flow does not occur. This transition does not occur as long as the maximum liquid fraction in the pool is less than 20%. The forces experienced at the bend are greatly reduced if the slug has traveled more than 6 L/D's, a distance which is more than sufficient to insure that the slug has entrained air. The effect of an upstream expansion on the force experienced by the bend as a cleared air-water plug passes through it has also been measured. A conservative estimate of the maximum force can be made by assuming that the plug is composed entirely of liquid and moves at the mixture velocity characteristic of the small pipe. The measured maximum force decreases rapidly with increasing distance. These measurements will help in designing piping supports for lines which cannot be properly sloped or are downstream of a pressure relief valve. 2 refs.

  10. A model for electromigration induced flow in liquid metals

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Kumar, Praveen; Pratap, Rudra

    2017-10-01

    Electromigration in liquid metals can be used for mass transport over a considerable length with micro- and nano-scale flow features. Exploitation of this phenomenon, however, requires a sound understanding of the liquid metal flow under an applied electric field. Depending on the sign of the effective charge number, Z *, liquid metals flow along a set direction under the applied electric field. A few liquid metals, e.g. Ga, Sn, etc, flow in the direction of the electric field, while a few others, e.g. Pb, flow in the opposite direction. Here, we propose a new model for predicting the direction of the aforementioned flow for a given liquid metal. Our model incorporates Lennard-Jones potential into the cell model of liquids in order to calculate the value of Z * as a function of temperature. We then carry out experiments on a few metals to validate the model and show that it indeed correctly predicts the ensuing flow.

  11. High-Power Liquid-Metal Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Fujita, Toshio

    1991-01-01

    Proposed closed-loop system for transfer of thermal power operates at relatively high differential pressure between vapor and liquid phases of liquid-metal working fluid. Resembles "capillary-pumped" liquid-metal heat-transfer loop except electric field across permselective barrier of beta alumina keeps liquid and vapor separate at heat-input end. Increases output thermal power, contains no moving parts, highly reliable and well suited to long-term unattended operation.

  12. Modern Aspects of Liquid Metal Engineering

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank

    2017-02-01

    Liquid metal engineering (LME) refers to a variety of physical and/or chemical treatments of molten metals aimed at influencing their solidification characteristics. Although the fundamentals have been known for decades, only recent progress in understanding solidification mechanisms has renewed an interest in opportunities this technique creates for an improvement of castings. This review covers conventional and novel concepts of LME with their application to modern manufacturing techniques based not only on liquid but also on semisolid routes. The role of external forces applied to the melt combined with grain nucleation control is explained along with laboratory- and commercial-scale equipment designed for implementation of various concepts exploring mechanical, electromagnetic, and ultrasound principles. An influence of melt treatments on quality of the final product is considered through distinguishing between internal integrity of net shape components and the alloy microstructure. Recent global developments indicate that exploring the synergy of melt chemistry and physical treatments achieved through LME allows creating the optimum conditions for nucleation and growth during solidification, positively affecting quality of castings.

  13. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    NASA Astrophysics Data System (ADS)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  14. Liquid metal cooled reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Vaidyanathan, S.; Van Hoomissen, J.

    1985-01-01

    The technology basis for evaluation of liquid metal cooled space reactors is summarized. Requirements for space nuclear power which are relevant to selection of the reactor subsystem are then reviewed. The attributes of liquid metal cooled reactors are considered in relation to these requirements in the areas of liquid metal properties, neutron spectrum characteristics, and fuel form. Key features of typical reactor designs are illustrated. It is concluded that liquid metal cooled fast spectrum reactors provide a high confidence, flexible option for meeting requirements for SP-100 and beyond.

  15. Self-Actuation of Liquid Metal via Redox Reaction.

    PubMed

    Gough, Ryan C; Dang, Jonathan H; Moorefield, Matthew R; Zhang, George B; Hihara, Lloyd H; Shiroma, Wayne A; Ohta, Aaron T

    2016-01-13

    Presented here is a method for actuating a gallium-based liquid-metal alloy without the need for an external power supply. Liquid metal is used as an anode to drive a complementary oxygen reduction reaction, resulting in the spontaneous growth of hydrophilic gallium oxide on the liquid-metal surface, which induces flow of the liquid metal into a channel. The extent and duration of the actuation are controllable throughout the process, and the induced flow is both reversible and repeatable. This self-actuation technique can also be used to trigger other electrokinetic or fluidic mechanisms.

  16. Small Liquid Metal Cooled Reactor Safety Study

    SciTech Connect

    Minato, A; Ueda, N; Wade, D; Greenspan, E; Brown, N

    2005-11-02

    The Small Liquid Metal Cooled Reactor Safety Study documents results from activities conducted under Small Liquid Metal Fast Reactor Coordination Program (SLMFR-CP) Agreement, January 2004, between the Central Research Institute of the Electric Power Industry (CRIEPI) of Japan and the Lawrence Livermore National Laboratory (LLNL)[1]. Evaluations were completed on topics that are important to the safety of small sodium cooled and lead alloy cooled reactors. CRIEPI investigated approaches for evaluating postulated severe accidents using the CANIS computer code. The methods being developed are improvements on codes such as SAS 4A used in the US to analyze sodium cooled reactors and they depend on calibration using safety testing of metal fuel that has been completed in the TREAT facility. The 4S and the small lead cooled reactors in the US are being designed to preclude core disruption from all mechanistic scenarios, including selected unprotected transients. However, postulated core disruption is being evaluated to support the risk analysis. Argonne National Laboratory and the University of California Berkeley also supported LLNL with evaluation of cores with small positive void worth and core designs that would limit void worth. Assessments were also completed for lead cooled reactors in the following areas: (1) continuing operations with cladding failure, (2) large bubbles passing through the core and (3) recommendations concerning reflector control. The design approach used in the US emphasizes reducing the reactivity in the control mechanisms with core designs that have essentially no, or a very small, reactivity change over the core life. This leads to some positive void worth in the core that is not considered to be safety problem because of the inability to identify scenarios that would lead to voiding of lead. It is also believed that the void worth will not dominate the severe accident analysis. The approach used by 4S requires negative void worth throughout

  17. NUCLEAR MAGNETIC RELAXATION IN LIQUID METALS, ALLOYS, AND SALTS.

    DTIC Science & Technology

    NUCLEAR MAGNETIC RESONANCE, *ALKALI METAL ALLOYS, *LIQUID METALS, * SALTS , NUCLEAR MAGNETIC RESONANCE, NUCLEAR MAGNETIC RESONANCE, RELAXATION TIME... SODIUM , GALLIUM, SODIUM ALLOYS, THALLIUM, THALLIUM COMPOUNDS, MELTING, NUCLEAR SPINS, QUANTUM THEORY, OPERATORS(MATHEMATICS), BIBLIOGRAPHIES, INTEGRAL EQUATIONS, TEST EQUIPMENT, MATHEMATICAL ANALYSIS.

  18. Recent applications of liquid metals featuring nanoscale surface oxides

    NASA Astrophysics Data System (ADS)

    Neumann, Taylor V.; Dickey, Michael D.

    2016-05-01

    This proceeding describes recent efforts from our group to control the shape and actuation of liquid metal. The liquid metal is an alloy of gallium and indium which is non-toxic, has negligible vapor pressure, and develops a thin, passivating surface oxide layer. The surface oxide allows the liquid metal to be patterned and shaped into structures that do not minimize interfacial energy. The surface oxide can be selectively removed by changes in pH or by applying a voltage. The surface oxide allows the liquid metal to be 3D printed to form free-standing structures. It also allows for the liquid metal to be injected into microfluidic channels and to maintain its shape within the channels. The selective removal of the oxide results in drastic changes in surface tension that can be used to control the flow behavior of the liquid metal. The metal can also wet thin, solid films of metal that accelerates droplets of the liquid along the metal traces .Here we discuss the properties and applications of liquid metal to make soft, reconfigurable electronics.

  19. Liquid-liquid transition in a strong bulk metallic glass-forming liquid.

    PubMed

    Wei, Shuai; Yang, Fan; Bednarcik, Jozef; Kaban, Ivan; Shuleshova, Olga; Meyer, Andreas; Busch, Ralf

    2013-01-01

    Polymorphic phase transitions are common in crystalline solids. Recent studies suggest that phase transitions may also exist between two liquid forms with different entropy and structure. Such a liquid-liquid transition has been investigated in various substances including water, Al2O3-Y2O3 and network glass formers. However, the nature of liquid-liquid transition is debated due to experimental difficulties in avoiding crystallization and/or measuring at high temperatures/pressures. Here we report the thermodynamic and structural evidence of a temperature-induced weak first-order liquid-liquid transition in a bulk metallic glass-forming system Zr(41.2)Ti(13.8)Cu(12.5)Ni10Be(22.5) characterized by non- (or weak) directional bonds. Our experimental results suggest that the local structural changes during the transition induce the drastic viscosity changes without a detectable density anomaly. These changes are correlated with a heat capacity maximum in the liquid. Our findings support the hypothesis that the 'strong' kinetics (low fragility) of a liquid may arise from an underlying lambda transition above its glass transition.

  20. Red Sea Atlantis II brine pool nitrilase with unique thermostability profile and heavy metal tolerance.

    PubMed

    Sonbol, Sarah A; Ferreira, Ari J S; Siam, Rania

    2016-02-11

    Nitrilases, which hydrolyze nitriles in a one-step reaction into carboxylic acids and ammonia, gained increasing attention because of the abundance of nitrile compounds in nature and their use in fine chemicals and pharmaceutics. Extreme environments are potential habitats for the isolation and characterization of extremozymes including nitrilases with unique resistant properties. The Red Sea brine pools are characterized by multitude of extreme conditions. The Lower Convective Layer (LCL) of the Atlantis II Deep Brine Pool in the Red Sea is characterized by elevated temperature (68 °C), high salt concentrations (250 ‰), anoxic conditions and high heavy metal concentrations. We identified and isolated a nitrilase from the Atlantis II Deep Brine Pool in the Red Sea LCL. The isolated 338 amino-acid nitrilase (NitraS-ATII) is part of a highly conserved operon in different bacterial phyla with indiscernible function. The enzyme was cloned, expressed and purified. Characterization of the purified NitraS-ATII revealed its selectivity towards dinitriles, which suggests a possible industrial application in the synthesis of cyanocarboxylic acids. Moreover, NitraS-ATII showed higher thermal stability compared to a closely related nitrilase, in addition to its observed tolerance towards high concentrations of selected heavy metals. This enzyme sheds light on evolution of microbes in the Atlantis II Deep LCL to adapt to the diverse extreme environment and can prove to be valuable in bioremediation processes.

  1. Steering liquid metal flow in microchannels using low voltages.

    PubMed

    Tang, Shi-Yang; Lin, Yiliang; Joshipura, Ishan D; Khoshmanesh, Khashayar; Dickey, Michael D

    2015-10-07

    Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.

  2. Marangoni Convection Instabilities Induced by Evaporation of Liquid Layer in an Open Rectangular Pool

    NASA Astrophysics Data System (ADS)

    Shi, Wan-Yuan; Rong, Shang-Ming; Feng, Lin

    2016-12-01

    In order to investigate the Marangoni convection instability of 0.65cSt silicone oil induced by evaporation in liquid layer, a series of experiments are carried out in an open rectangular pool. The effects of side wall temperature as well as ambient temperature on competitions between BM convection and thermocapillary convection are analyzed thoroughly. Increasing of the side wall temperature would inevitably enhance thermocapillary convection and suppress the formation of BM cells by transferring hot fluid from border to surface. As long as the side wall temperature is high enough, BM cells would disappear completely and multicellular rolls as well as hydrothermal waves would occur in the whole layer. Increasing ambient temperature would enhance both BM convection and thermocapillary convection, but the later one benefits more from it because hydrothermal waves can occur at a lower Ma number. Critical Marangoni numbers for the incipience of hydrothermal waves and that disappearance of BM convection cells are obtained under different ambient temperatures.

  3. Marangoni Convection Instabilities Induced by Evaporation of Liquid Layer in an Open Rectangular Pool

    NASA Astrophysics Data System (ADS)

    Shi, Wan-Yuan; Rong, Shang-Ming; Feng, Lin

    2017-02-01

    In order to investigate the Marangoni convection instability of 0.65cSt silicone oil induced by evaporation in liquid layer, a series of experiments are carried out in an open rectangular pool. The effects of side wall temperature as well as ambient temperature on competitions between BM convection and thermocapillary convection are analyzed thoroughly. Increasing of the side wall temperature would inevitably enhance thermocapillary convection and suppress the formation of BM cells by transferring hot fluid from border to surface. As long as the side wall temperature is high enough, BM cells would disappear completely and multicellular rolls as well as hydrothermal waves would occur in the whole layer. Increasing ambient temperature would enhance both BM convection and thermocapillary convection, but the later one benefits more from it because hydrothermal waves can occur at a lower Ma number. Critical Marangoni numbers for the incipience of hydrothermal waves and that disappearance of BM convection cells are obtained under different ambient temperatures.

  4. Ordered pairing in liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Carlsson, A. E.; Ashcroft, N. W.

    1983-01-01

    We study two possible types of pairing involving the protons of a proposed low-temperature liquid phase metallic hydrogen. Electron-proton pairing, which can result in an insulating phase, is investigated by using an approximate solution of an Eliashberg-type equation for the anomalous self-energy. A very low estimate of the transition temperature is obtained by including proton correlations in the effective interaction. For proton-proton pairing, we derive a new proton pair potential based on the Abrikosov wave function. This potential includes the electron-proton interaction to all orders and has a much larger well depth than is obtained with linear screening methods. This suggests the possibility of either a superfluid paired phase analogous to that in He-3, or alternatively a phase with true molecular pairing.

  5. Thermodynamics of wetting by liquid metals

    NASA Astrophysics Data System (ADS)

    Yost, F. G.; Romig, A. D., Jr.

    The wetting of metal surfaces by molten solder is usually considered to be driven solely by an interfacial energy imbalance. The effect of chemical reactions on the wetting process is neglected, although the growth of an intermetallic layer in the wetted interface is commonly observed. In this work, the energy release during the incremental advance of a spreading solder droplet due to the interfacial energy imbalance and the formation of the intermetallic layer is calculated. The free energy of formation, (DELTA)G, of the intermetallic layer is shown to be an important driving force for solder wetting. This approach to setting has been applied to three systems, Cu-Sn, Cu-Sb and Cu-Cd. Liquid Sn, Sb and Cd react with solid Cu to form Cu6Sn5(eta), Cu2Sb(GAMMA) and CuCd3(epsilon), respectively.

  6. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  7. New physics of metals: fermi surfaces without Fermi liquids.

    PubMed Central

    Anderson, P W

    1995-01-01

    I relate the historic successes, and present difficulties, of the renormalized quasiparticle theory of metals ("AGD" or Fermi liquid theory). I then describe the best-understood example of a non-Fermi liquid, the normal metallic state of the cuprate superconductors. PMID:11607559

  8. Heavy liquid metals: Research programs at PSI

    SciTech Connect

    Takeda, Y.

    1996-06-01

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  9. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  10. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  11. Soluble metal pool as affected by soil addition with organic inputs.

    PubMed

    Hernandez-Soriano, Maria C; Peña, Aránzazu; Mingorance, Maria Dolores

    2013-04-01

    The potential impact of diverse inputs of organic matter (hay, maize straw, and peat) on the mobility and bioavailability of Cd, Cu, Pb, and Zn was examined at laboratory scale for three soils with contrasting properties and for two moisture regimes: field capacity and saturated conditions. Soil solution was characterized for total soluble metals, dissolved soil organic carbon, and ultraviolet absorbance at 254 nm. Speciation analyses were performed with WHAM VI. For field capacity conditions, metal mobility increased (Pb>Cu>Zn>Cd) for all soils and treatments compared with controls and was significantly correlated (p<0.05) with dissolved organic matter (r=0.540). Solubilization of organic matter was mostly driven by Al mobilization (r=0.580, p<0.05) and variations in solution pH. The bioavailable pool of metals, estimated as free ion activities, decreased with the increasing occurrence of metal-organic matter complexes, which was accompanied by an increase in solution of highly aromatic organic matter. Soil saturation generally decreased metal mobility and the ratio of metal-organo matter complexes in solution. Consistently, such effects were accompanied by a decrease in the solubilization of organic matter and lower mobilization of Al, Fe, and Mn. Copyright © 2013 SETAC.

  12. Contactless Inductive Bubble Detection in a Liquid Metal Flow.

    PubMed

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-06

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy.

  13. Contactless Inductive Bubble Detection in a Liquid Metal Flow

    PubMed Central

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  14. Tokamak with liquid metal for inducing toroidal electrical field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.

  15. Ionic imbalance induced self-propulsion of liquid metals.

    PubMed

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F; O'Mullane, Anthony P; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-04

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  16. Measurement of the differential pressure of liquid metals

    DOEpatents

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  17. Ionic imbalance induced self-propulsion of liquid metals

    PubMed Central

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-zadeh, Kourosh

    2016-01-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems. PMID:27488954

  18. Ionic imbalance induced self-propulsion of liquid metals

    NASA Astrophysics Data System (ADS)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  19. Effects of water in film boiling over liquid metal melts

    SciTech Connect

    Greene, G.A.; Finfrock, C.; Burson, S.B.

    1986-01-01

    Liquid-liquid boiling experiments have been performed with H/sub 2/O and liquid metal melts in the 100-series test matrix (Runs 121, 126, 127) and the VE test matrix. Some of the pre-explosion unstable film boiling data as well as observations from the explosive series have been previously reported.

  20. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  1. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  2. Optical and thermodynamic property measurements of liquid metals and alloys

    NASA Technical Reports Server (NTRS)

    Weber, J. K. R.; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1991-01-01

    Optical properties and spectral emissivities of liquid silicon, titanium, niobium, and zirconium were investigated by HeNe laser polarimetry at 632.8 nm. The metals were of a high purity and, except for zirconium, clean. The more demanding environmental requirements for eliminating oxide or nitride phases from zirconium were not met. Containerless conditions were achieved by electromagnetic levitation and heating. CO2 laser beam heating was also used to extend the temperature range for stable levitation and to heat solid silicon to form the metallic liquid phase. Corrections to previously reported calorimetric measurements of the heat capacity of liquid niobium were derived from the measured temperature dependence of its spectral emissivity. Property measurements were obtained for supercooled liquid silicon and supercooling of liquid zirconium was accomplished. The purification of liquid metals and the extension of this work on liquids to the measurement of thermodynamic properties and phase equilibria are discussed.

  3. Optical and thermodynamic property measurements of liquid metals and alloys

    NASA Astrophysics Data System (ADS)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    Optical properties and spectral emissivities of liquid silicon, titanium, niobium, and zirconium were investigated by HeNe laser polarimetry at λ = 632.8 nm. The metals were of a high purity and, except for zirconium, clean. The more demanding environmental requirements for eliminating oxide or nitride phases from zirconium were not met. Containerless conditions were achieved by electromagnetic levitation and heating. CO2 laser beam heating was also used to extend the temperature range for stable levitation and to heat solid silicon to form the metallic liquid phase. Corrections to previously reported calorimetric measurements of the heat capacity of liquid niobium were derived from the measured temperature dependence of its spectral emissivity. Property measurements were obtained for supercooled liquid silicon and supercooling of liquid zirconium was accomplished. The purification of liquid metals and the extension of this work on liquids to the measurement of thermodynamic properties and phase equilibria are discussed.

  4. Optical and thermodynamic property measurements of liquid metals and alloys

    NASA Technical Reports Server (NTRS)

    Weber, J. K. R.; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1991-01-01

    Optical properties and spectral emissivities of liquid silicon, titanium, niobium, and zirconium were investigated by HeNe laser polarimetry at 632.8 nm. The metals were of a high purity and, except for zirconium, clean. The more demanding environmental requirements for eliminating oxide or nitride phases from zirconium were not met. Containerless conditions were achieved by electromagnetic levitation and heating. CO2 laser beam heating was also used to extend the temperature range for stable levitation and to heat solid silicon to form the metallic liquid phase. Corrections to previously reported calorimetric measurements of the heat capacity of liquid niobium were derived from the measured temperature dependence of its spectral emissivity. Property measurements were obtained for supercooled liquid silicon and supercooling of liquid zirconium was accomplished. The purification of liquid metals and the extension of this work on liquids to the measurement of thermodynamic properties and phase equilibria are discussed.

  5. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets

    NASA Astrophysics Data System (ADS)

    Castillo-Orozco, Eduardo; Davanlou, Ashkan; Choudhury, Pretam K.; Kumar, Ranganathan

    2015-11-01

    The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds. Further, using numerical simulations, we show that Rayleigh-Plateau instability is influenced by these parameters, and capillary time scale is the appropriate scale to normalize the breakup time. Based on Ohnesorge number (Oh) and impact Weber number (We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested. Interestingly, crown splash is observed to occur at all Ohnesorge numbers; however, at high Oh, a large portion of kinetic energy is dissipated, and thus the Rayleigh jet is suppressed regardless of high impact velocity. The normalized required time for the Rayleigh jet to reach its peak varies linearly with the critical height of the jet.

  6. Liquid metal actuation by electrical control of interfacial tension

    NASA Astrophysics Data System (ADS)

    Eaker, Collin B.; Dickey, Michael D.

    2016-09-01

    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm length scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.

  7. Liquid metal actuation by electrical control of interfacial tension

    SciTech Connect

    Eaker, Collin B.; Dickey, Michael D.

    2016-09-15

    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm length scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.

  8. Effect of metal spiking on different chemical pools and chemically extractable fractions of heavy metals in sewage sludge.

    PubMed

    Kandpal, Geeta; Ram, Bali; Srivastava, P C; Singh, S K

    2004-01-30

    A laboratory experiment was conducted to study the effect of metal spiking and incubation on some properties and sequentially extractable chemical pools of some heavy metals (F1, two extractions with 0.1 M Sr(NO3)2; F2, one extraction with 1 M NaOAc (pH 5.0); F3, three extractions with 5% NaOCl (pH 8.5) at 90-95 degrees C; F4, three extractions with 0.2 M oxalic acid + 0.2 M ammonium oxalate + 0.1 M ascorbic acid (pH 3.0); and F5, dissolution of sample residue in HF-HClO4 (residual fraction,) and also 1 M CaCl2 and 0.005 M DTPA extractable heavy metals in sewage sludge. Metal spiking and incubation decreased pH and easily oxidizable organic C content of sludge but increased electrical conductivity. Metal spiking and incubation increased F1 fraction of all heavy metals, F2 fraction of Ni, Pb, Cu, and Cd, F3 fraction of Pb, Cu, and Cd, F4 or reducible fraction of Ni, Cu, and Cd and residual fraction of Zn and Pb, but decreased F2 fraction of Zn, F3 of Zn and Ni, F4 fraction of Zn and F5 fraction of Ni, Cu, and Cd. Metal spiking and incubation increased 1 M CaCl2 and 0.005 M DTPA extractable amounts of all heavy metals in sludge except for 0.005 M DTPA extractable Zn, which registered only very marginal decrease.

  9. RAPID ANALYSIS OF CYANURIC ACID IN SWIMMING POOL WATERS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY USING POROUS GRAPHITIC CARBON

    EPA Science Inventory

    An innovative approach is presented for reducing analysis times of cynuric acid in swimming pool waters by high performance liquid chromatography (HPLC). The HPLC method exploits the unique selectivity of porous graphitic carbon (PGC) to fully resolve within 10 minutes cyanuric ...

  10. RAPID ANALYSIS OF CYNANURIC ACID IN SWIMMING POOL WATERS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY USING POROUS GRAPHITIC CARBON COLUMN

    EPA Science Inventory

    An innovative approach is presented for reducing analysis times of cyanuric acid in swimming pool waters by high performance liquid chromatography (HPLC). The HPLC method exploits the unique selectivity of porous graphitic carbon (PGC) to fully resolve cyanuric acid from other p...

  11. Liquid Metal Walls and the Belt Pinch

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, Michael; Dorland, W.; Manickam, J.; Menard, J.; Miller, R.

    2000-10-01

    High flux reactor designs have placed the MHD stabilizing shell well away from the first wall due to breeding and reliability issues. Liquid metal shells containing Li may allow close shells, with much higher elongation (kappa), beta and power density. MHD stability of equilibria with kappa = 2 - 6 and high bootstrap fraction are examined using JSOLVER plus PEST and TOQ plus BALOO. Compared to kappa = 2, stable beta increases by 2.5 for kappa = 3 and 5 for kappa = 6 (with little change in normalized beta). External mode stability (n = 1-10 ) with a wall is similar for kappa = 2-6; a wall at b/a 1.2-1.3 give stability. Resistive wall mode evolution is examined using the new code WALLMODE; feedback power is evaluated using dynamic Monte Carlo simulations (similar to ARIES studies). N = 0 vertical modes are acceptable with a 2-4 cm Li shell at b/a 1.05 -1.1. Resistive wall kink modes for model current profiles are stabilizable by feedback and/or liquid flow as low as 20 m/s; interfacing with PEST is in progress to examinine realistic equilibria. Modest indendation gives bootstrap island stability. Comprehensive gyrokinetic simulations with GS2 find a strong improvement with kappa for 1) ExB shearing compared to ITG/drift mode growth rates and 2) transport in nonlinear ETG simulations. Also, low edge recycling (density) boundary conditions substantially improve H mode pedestal stabilty, for additional global confinement improvement. Even with H mode scaling law confinement, kappa =6 gives ignition in a .8 m major radius device with Cu coils (12T at the coil).

  12. Structural disorder in metallic glass-forming liquids.

    PubMed

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  13. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  14. Ultrafine Pitch Stencil Printing of Liquid Metal Alloys.

    PubMed

    Lazarus, Nathan; Bedair, Sarah S; Kierzewski, Iain M

    2017-01-18

    With high conductivity and stretchable for large cross-sections, liquid metals such as galinstan are promising for creating stretchable devices and interconnects. Creating high resolution features in parallel is challenging, with most techniques limited to a hundred micrometers or more. In this work, multilevel electroplated stencils are investigated for printing liquid metals, with galinstan features as small as ten micrometers printed on soft elastomers, a factor of 10 reduction over past liquid metal stencil printing. Capacitors and resistive strain sensors are also demonstrated, showing the potential for creating stretchable conductors and devices.

  15. Diverse transformations of liquid metals between different morphologies.

    PubMed

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-09-10

    Transformation from a film into a sphere, rapid merging of separate objects, controlled self-rotation, and planar locomotion are the very unusual phenomena observed in liquid metals under application of an electric field to a liquid metal immersed in or sprayed with water. A mechanism for these effects is suggested and potential applications - for example the recovery of liquid metal previously injected into the body for therapeutic purposes - are outlined. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reconfigurable liquid metal circuits by Laplace pressure shaping

    NASA Astrophysics Data System (ADS)

    Cumby, Brad L.; Hayes, Gerard J.; Dickey, Michael D.; Justice, Ryan S.; Tabor, Christopher E.; Heikenfeld, Jason C.

    2012-10-01

    We report reconfigurable circuits formed by liquid metal shaping with <10 pounds per square inch (psi) Laplace and vacuum pressures. Laplace pressure drives liquid metals into microreplicated trenches, and upon release of vacuum, the liquid metal dewets into droplets that are compacted to 10-100× less area than when in the channel. Experimental validation includes measurements of actuation speeds exceeding 30 cm/s, simple erasable resistive networks, and switchable 4.5 GHz antennas. Such capability may be of value for next generation of simple electronic switches, tunable antennas, adaptive reflectors, and switchable metamaterials.

  17. Diffusion of oxygen in liquid-metal systems

    SciTech Connect

    Stevenson, D.A.

    1983-01-01

    A research program is described on the topic of kinetic and thermodynamic measurements in liquid metal-oxygen systems. This study has utilized electrochemical cells with solid oxide electrolytes in several different configurations. The principal properties that were studied include: activities of the components in binary metal-metal alloy systems; oxygen solubility and oxygen diffusivity in pure liquid metals and liquid metal alloys; and the free energy of formation of pure metal oxides. The techniques of solid state electrochemistry were developed and the limitations of the techniques were studied. There were sufficient problems with the zirconia electrolytes to motivate a separate study on the degradation of zirconia electrolytes during their use. The electrolytic properties, as measured by complex impedance spectroscopy, was correlated with the microstructure, as evaluated by x-ray, optical microscopy, scanning electron miscoscopy and transmission electron microscopy. Mechanisms for electrolyte degradation were proposed.

  18. Thermal behaviors of liquid La-based bulk metallic glasses

    SciTech Connect

    Zhang, D. W.; Wang, X. D. E-mail: jiangjz@zju.edu.cn; Lou, H. B.; Cao, Q. P.; Jiang, J. Z. E-mail: jiangjz@zju.edu.cn; Wang, L. W.; Zhang, D. X.

    2014-12-14

    Thermal behaviors of liquid La-based bulk metallic glasses have been measured by using the dilatometer with a self-sealed sample cell. It is demonstrated that the strong glass forming liquid not only has the small thermal expansion coefficient but also shows the slow variation rate. Moreover, the strong glass former has relatively dense atomic packing and also small density change in the liquid state. The results suggest that the high glass forming ability of La-based metallic glasses would be closely related to the slow atomic rearrangements in liquid melts.

  19. Kinetics, Thermodynamics, and Structure of Bulk Metallic Glass Forming Liquids

    NASA Astrophysics Data System (ADS)

    Busch, Ralf; Gallino, Isabella

    2017-09-01

    Bulk metallic glass forming melts are viscous liquids compared with pure metals and conventional alloys. They show intermediate kinetic fragility and low thermodynamic driving force for crystallization, leading to sluggish crystallization kinetics, leaving time for good glass forming ability and bulk casting thickness. We relate the kinetics to the thermodynamics of the supercooled liquid using the Adam-Gibbs equation. The kinetic fragility is also connected to the structural changes in the liquid and can be quantitatively linked to the robustness of medium-range order in the supercooled liquid with increasing temperature. Liquid-liquid transitions from fragile behavior at high temperature to strong behavior at low temperature in the supercooled liquid and in the vicinity of the glass transition emerge as a common phenomenon.

  20. Vacuum filling of complex microchannels with liquid metal.

    PubMed

    Lin, Yiliang; Gordon, Olivia; Khan, M Rashed; Vasquez, Neyanel; Genzer, Jan; Dickey, Michael D

    2017-09-12

    This paper describes the utilization of vacuum to fill complex microchannels with liquid metal. Microchannels filled with liquid metal are useful as conductors for soft and stretchable electronics, as well as for microfluidic components such as electrodes, antennas, pumps, or heaters. Liquid metals are often injected manually into the inlet of a microchannel using a syringe. Injection can only occur if displaced air in the channels has a pathway to escape, which is usually accomplished using outlets. The positive pressure (relative to atmosphere) needed to inject fluids can also cause leaks or delamination of the channels during injection. Here we show a simple and hands-free method to fill microchannels with liquid metal that addresses these issues. The process begins by covering a single inlet with liquid metal. Placing the entire structure in a vacuum chamber removes the air from the channels and the surrounding elastomer. Restoring atmospheric pressure in the chamber creates a positive pressure differential that pushes the metal into the channels. Experiments and a simple model of the filling process both suggest that the elastomeric channel walls absorb residual air displaced by the metal as it fills the channels. Thus, the metal can fill dead-ends with features as small as several microns and branched structures within seconds without the need for any outlets. The method can also fill completely serpentine microchannels up to a few meters in length. The ability to fill dense and complex geometries with liquid metal in this manner may enable broader application of liquid metals in electronic and microfluidic applications.

  1. Development of magnetic liquid metal suspensions for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Carle, Florian; Bai, Kunlun; Casara, Joshua; Vanderlick, Kyle; Brown, Eric

    2017-01-01

    We demonstrate how to suspend various magnetic and nonmagnetic particles in liquid metals and characterize their properties relevant to magnetohydrodynamics (MHD). The suspending method uses an acid as a flux to eliminate oxidation from both metal particles and liquid, which allows the particles to be wetted and suspended into the liquid if the particles have higher conductivity than the liquid. With this process we were able to suspend a wide range of particle materials and sizes from 40 nm to 500 μ m into three different liquid metal bases and volume fractions ϕ up to the liquid-solid transition ϕc. By controlling the volume fraction of iron particles in liquid eGaIn, we increased the magnetic permeability by a factor of 5.0 and the electrical conductivity by 13% over that of the pure liquid metal, which gives these materials the potential to exhibit strong MHD effects on the laboratory scale that are usually only observable in the cores of planets and stars. By adding nonmagnetic zinc particles, we increased the viscosity by a factor of 160 while keeping the magnetic and electrical properties nearly constant, which would allow independent control of MHD effects from turbulence. We show that the suspensions flow like Newtonian fluids up to the volume fraction of the liquid-solid transition ϕc.

  2. Liquid Metal Engineering by Application of Intensive Melt Shearing

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun

    In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.

  3. Toxic Metals Found in E-Cigarette Liquid

    MedlinePlus

    ... 8, 2017 WEDNESDAY, Feb. 8, 2017 (HealthDay News) -- Electronic cigarette liquids can contain high levels of toxic and ... the metals end up in the aerosol that e-cigarette users inhale," said study leader Ana Maria Rule, ...

  4. The effect of solid metal composition on solid metal/ liquid metal partitioning of trace elements

    NASA Astrophysics Data System (ADS)

    Rai, N.; van Westrenen, W.

    2010-12-01

    Fundamental understanding of the partitioning behaviour of elements between different core and/or mantle phases is needed to constrain processes of planetary differentiation and evolution. The partitioning behaviour of elements between solid metal and liquid metal in the Fe-S system, of relevance to core crystallisation in planetesimals and the terrestrial planets, has been investigated by several workers [1-6], most of whom [1-5] conclude that variations in partition coefficients can be explained by variations in melt composition. However, recently Stewart et al. [6] showed that the crystal-lattice strain model commonly used to describe silicate mineral - silicate melt partitioning can be applied to partially molten metallic systems. This suggests the structure of the solid metal also plays a role in determining solid metal / molten metal partitioning. Here, we investigate the effect of the structure of the solid metal in the Fe-S system on solid/liquid metal partitioning by obtaining new element partitioning data at pressures between 0.5 and 3 GPa. The effect of the solid metal is isolated from pressure-temperature-melt composition effects by performing experiments at constant P and T with two Fe-S bulk compositions on either side of the eutectic composition. In addition to the effect of solid metal composition we investigate the effects of pressure and S content on trace element partitioning behaviour and the application of the lattice strain model to our results. Starting mixtures were doped with several hundred ppm levels of trace elements Ni, Co, W, Mo, V, Nb, Ta, Sn, Cu, Pb, Zn, Cr, Mn, P, Ge,. Experiments were performed using a QUICKPress piston cylinder apparatus at the VU University, Amsterdam using alumina capsules. Experiments were heated to 1073 K at pressure and allowed to sinter for a duration of 10 hours before the temperature was raised at a rate of 50 K / min to the target value. Preliminary EPMA data for a 1 GPa experiment with FeS as the solid

  5. Liquid Metal Cooled Reactor for Space Power

    NASA Astrophysics Data System (ADS)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  6. Investigation of a liquid-metal magnetohydrodynamic power system.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.; Cerini, D. J.; Bogdanoff, D. W.

    1972-01-01

    Liquid-metal magnetohydrodynamic power conversion is being investigated for nuclear-electric propulsion. A liquid-metal MHD converter has no moving mechanical parts and requires a heat source temperature of only 1300 K. Cycle efficiencies of 5% to 8% for single-stage converters and 10% for multistage converters appear attainable. The specific weight of a 240 kWe MHD power plant has been estimated as 30 kg/kWe with shielding for unmanned science missions.

  7. Investigation of a liquid-metal magnetohydrodynamic power system.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.; Cerini, D. J.; Bogdanoff, D. W.

    1972-01-01

    Liquid-metal magnetohydrodynamic power conversion is being investigated for nuclear-electric propulsion. A liquid-metal MHD converter has no moving mechanical parts and requires a heat source temperature of only 1300 K. Cycle efficiencies of 5% to 8% for single-stage converters and 10% for multistage converters appear attainable. The specific weight of a 240 kWe MHD power plant has been estimated as 30 kg/kWe with shielding for unmanned science missions.

  8. Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  9. Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  10. Analysis of liquid metal embrittlement from a bond energy viewpoint

    NASA Technical Reports Server (NTRS)

    Kelley, M. J.; Stoloff, N. S.

    1975-01-01

    Absorption induced embrittlement of solid metals by certain liquid metals is analyzed through an Engel-Brewer calculation of the solid-liquid interaction energy, and of the effect of the latter in reducing fracture surface energy. The reduction in fracture surface energy is estimated by comparison of the electronic contribution to the solid-liquid interaction energy with solid-solid bond energy for some 40 liquid-solid couples. Regular solution theory is used to estimate mutual solubility as the relative difference in parameter values. Embrittlement can be predicted by using reduction in fracture surface energy and solubility parameter difference as critical variables. The effect of solute additions to the liquid on the degree of embrittlement is interpreted via the same two variables; the principal effect of solutes is to modify solubility relationships at the solid-liquid interface.

  11. Printable tiny thermocouple by liquid metal gallium and its matching metal

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Yang, Yang; Liu, Jing

    2012-08-01

    Direct printing of thermocouples by the liquid metal was proposed. The fabricated temperature sensor composed of gallium and its matching metal exhibited excellent linear dependence between thermoelectric voltage and temperature within the range from 0 to 200 °C. Further, it was disclosed that liquid metals with high purity could be used for high precision thermocouples with tiny size, which were quite convenient to be used in micro channel measurement due to their fluidity in making sensors; while liquid metals with a small amount of oxides were handy for depositing on the substrate by "hand-written" style, with thin film thickness of approximately 50 μm.

  12. Surfing liquid metal droplet on the same metal bath via electrolyte interface

    NASA Astrophysics Data System (ADS)

    Zhao, Xi; Tang, Jianbo; Liu, Jing

    2017-09-01

    We report a phenomenon that when exerting an electric field gradient across a liquid metal/electrolyte interface, a droplet of the same liquid metal can persistently surf on the interface without coalescence. A thin layer of the intermediate solution, which separates the droplet from direct metallic contacting and provides levitating force, is responsible for such surfing effect. The electric resistance of this solution film is measured, and the film thickness is further theoretically calculated. The fact that the levitating state can be switched on and off via a controlled manner paves the way for reliably manipulating liquid metal droplets or devices.

  13. Glass-to-Metal Seal Against Liquid Helium

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Gatewood, John R.

    1987-01-01

    Simple compression joint with indium gasket forms demountable seal for superfluids. Seal developed for metal lid on glass jar used in experiments on liquid helium. Glass container allows contents to be viewed for such purposes as calibration of liquid-level detectors and adjustments of displacement plungers. Seal contains liquid helium even when temperature drops below 2.19K. Made from inexpensive, commercially available materials and parts.

  14. REMOVAL OF CERTAIN FISSION PRODUCT METALS FROM LIQUID BISMUTH COMPOSITIONS

    DOEpatents

    Dwyer, O.E.; Howe, H.E.; Avrutik, E.R.

    1959-11-24

    A method is described for purifying a solution of urarium in liquid bismuth containing at least one metal from the group consisting of selenium, tellurium, palladium, ruthenium, rhodium, niobium, and zirconium. The solution is contacted with zinc in an inert atmosphere to form a homogeneous melt, a solid zinc phase is formed, and the zinc phase containing the metal is separated from the melt.

  15. Visualization study of nucleate pool boiling of liquid nitrogen with quasi-steady heat input

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobin; Chen, Jianye; Xiong, Wei; Jin, Tao

    2015-12-01

    A visualization experimental device has been built to investigate the bubble behaviors in the nucleate pool boiling of cryogenic fluids at atmospheric pressure. The general morphologies of the bubbles are analyzed based on the captured films using a high-speed camera. The bubble behaviors leaving the wall at different heat flux can be divided into three regimes (low heat flux regime, fully developed nucleate boiling regime and intermediate regime) according to the availability of bubble parameters. In the low heat flux regime, the bubble is discrete and the interactive effects are ignorable. In the fully developed nucleate boiling regime close to CHF, the bubbles depart in the form of bubble cluster with a neck. In the intermediate regime, the interactive effect between the bubbles is significant and the bubbles follow a random pattern neither discretely nor as cluster neck. The information about the bubble departure diameter, the detachment frequency and the number density of activated sites are specially investigated. These data are used to evaluate the existing semi-empirical correlations widely applied to either the room-temperature or cryogenic fluids. It is found that the Kim's correlation for the departure diameter predicts a satisfactory agreement with the experimental results in the isolated bubble regime. For the predictions of the detachment frequency, the correlation by Katto and Yokoya is recommended after comparison. The relation between the diameter and frequency can also be well determined by the correlation proposed by Mcfadden et al. The number density of active sites for liquid nitrogen still can be considered to be linearly proportional to ΔTm as it is for water, except that the exponent absolute m is much smaller.

  16. A superconductor to superfluid phase transition in liquid metallic hydrogen.

    PubMed

    Babaev, Egor; Sudbø, Asle; Ashcroft, N W

    2004-10-07

    Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report a topological analysis of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.

  17. Experimental investigation on coupling flows between liquid and liquid metal layers

    NASA Astrophysics Data System (ADS)

    Yano, Kanako; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi; Yanagisawa, Takatoshi

    2008-11-01

    This study aims to clarify coupling of flows between liquid metal and other usual liquids, e.g. water or oil, in fluid dynamical systems. In past studies for two-layer Rayleigh-Bénard system where the immiscible two liquids are layered, two types of coupling were observed; these are called as ``mechanical coupling'' and ``thermal coupling.'' As a typical character of low Pr fluid, large-scale structure in the liquid metal layer has oscillating motion. In this study we investigate ``thermal coupling'' especially how the oscillation of cells in the liquid metal layer propagates to the upper liquid layer and vice versa by changing a ratio of the height of the layers and viscosity of the upper layer fluid. Visualization of the liquid metal motion was conducted by means of ultrasonic velocity profiling, and then the oscillating motion is expressed on the space-time velocity map. PIV measurement of the upper, transparent fluid layer shows the modulation of the convective motion due to the oscillation in the liquid metal layer. Point-wise measurement of temperature at several positions in the fluid layer represents the modulation quantitatively.

  18. Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene

    PubMed Central

    Li, Xiongying; He, Yezeng; Wang, Yong; Dong, Jichen; Li, Hui

    2014-01-01

    In this work, we report simulation evidence that the graphene surface decorated by carbon nanotube pillars shows strong dewettability, which can give it great advantages in dewetting and detaching metallic nanodroplets on the surfaces. Molecular dynamics (MD) simulations show that the ultrathin liquid film first contracts then detaches from the graphene on a time scale of several nanoseconds, as a result of the inertial effect. The detaching velocity is in the order of 10 m/s for the droplet with radii smaller than 50 nm. Moreover, the contracting and detaching behaviors of the liquid film can be effectively controlled by tuning the geometric parameters of the liquid film or pillar. In addition, the temperature effects on the dewetting and detaching of the metallic liquid film are also discussed. Our results show that one can exploit and effectively control the dewetting properties of metallic nanodroplets by decorating the surfaces with nanotube pillars. PMID:24487279

  19. The emissivities of liquid metals at their fusion temperatures

    NASA Technical Reports Server (NTRS)

    Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave, J. L.

    1972-01-01

    A survey of the literature through 1969 shows an almost total lack of experimental emissivity data for metals in the liquid state. The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperatures. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point. Better emissivities may be recalculated as better melting point data become available.

  20. Vitrification and crystallization of metallic liquid under pressures.

    PubMed

    Wang, Li; Peng, Chuanxiao; Wang, Yuqing; Zhang, Yanning

    2006-08-16

    Using molecular dynamics simulation with the embedded atom method, the structural properties of liquid NiAl in a pressure range of 0-20 GPa are investigated with a quenching rate of 2 K ps(-1). Not only is vitrification of liquid at low temperature detected, but also crystallization by change of average atomic volume as a function of temperature. Convincing evidence is presented that the applied pressure strongly affects the vitrification and crystallization of metallic liquid. The simulated glass transition temperature T(g) increases with pressure by 38.4 K GPa(-1) within the range 0-10 GPa, while external pressure induces crystallization of metallic liquid within the pressure range 10-20 GPa, and the crystallization temperature T(c) increases with a slope of 6.4 K GPa(-1). Therefore, the critical pressure for the formation of metallic glass at this cooling rate is estimated to be 10 GPa. The competition between the densification and the suppression of atomic diffusion in the liquid by pressure is able to explain the vitrification and crystallization behaviours of the liquid. Our present work provides a possible guidance for an experiment to study the pressure effect on the glass transition and crystallization process in metallic liquid.

  1. Dispersion relations of the acoustic modes in divalent liquid metals

    NASA Astrophysics Data System (ADS)

    Inui, Masanori; Kajihara, Yukio; Kimura, Koji; Matsuda, Kazuhiro; Miyatake, Tetsu; Chiba, Ayano; Hosokawa, Shinya; Tsutsui, Satoshi; Baron, Alfred Q. R.

    2017-08-01

    Collective dynamics in liquid Ca and liquid Cd was studied by inelastic x-ray scattering (IXS). Using our experimental technique to prepare proper sample cells and high performance of an IXS beamline (BL35XU) at SPring-8 in Japan, the dynamic structure factor with reasonable statistics was obtained for these divalent liquid metals. For both liquids, the dynamic structure factor at low Q exhibits a central peak with a shoulder or small hump clearly visible on each side, and the inelastic excitation energy determined using the model function composed of Lorentzian and the damped harmonic oscillator function disperses with increasing Q. The dispersion curves of these liquids were compared with that of the longitudinal acoustic phonon in each crystalline phase. From these results, clear difference in the interatomic interaction be- tween liquid Ca and liquid Cd was inferred.

  2. Impregnated-electrode-type liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Ishikawa, J.; Gotoh, Y.; Tsuji, H.; Takagi, T.

    We have developed an impregnated-electrode-type liquid metal ion source whose tip is a sintered-porous structure made of a refractory metal such as tungsten. By this structure the ratio of the liquid metal surface area facing the vacuum to the volume is low, which decreases useless metal evaporation from the surface. The maximum vapour pressure of the metal in operation for this ion source is 10 -1-10 0 Torr, which is 2-3 orders of magnitude higher than that for the needle type. Therefore, useful metal ions such as Ga +, Au +, Ag +, In +, Si 2+, Ge 2+, and Sb 2+ can be extracted from single element metals or alloys. The porous structure of the tip has also an effect on the positive control of the liquid metal flow rate to the tip head. Thus, a stable operation with a high current of a few hundreds of μA can be obtained together with a low current high brightness ion beam. Therefore, this ion source is suitable not only for microfocusing but also for a general use as a metal ion source.

  3. Emerging applications of liquid metals featuring surface oxides.

    PubMed

    Dickey, Michael D

    2014-11-12

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide "skin" enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects.

  4. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  5. Compatibility of materials with liquid metal targets for SNS

    SciTech Connect

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.

  6. Galvanic corrosion couple-induced Marangoni flow of liquid metal.

    PubMed

    Tan, Si-Cong; Yang, Xiao-Hu; Gui, Han; Ding, Yu-Jie; Wang, Lei; Yuan, Bin; Liu, Jing

    2017-03-22

    The Marangoni flow of room temperature liquid metal has recently attracted significant attention in developing advanced flexible drivers. However, most of its induction methods are limited to an external electric field. This study disclosed a new Marangoni flow phenomenon of liquid gallium induced by the gallium-copper galvanic corrosion couple. To better understand this effect, the flow field distribution of liquid gallium was modeled and quantitatively calculated. Then, the intrinsic mechanism of this flow phenomenon was interpreted, during which natural convection and temperature gradient were both excluded and the galvanic corrosion couple was identified as the main reason. In addition, this conclusion was further confirmed by combining the experimental measurement of liquid gallium surface potential and the thermocapillary effect. Moreover, the temperature condition was found to be an indirect factor to the Marangoni flow. This finding broadens the classical understanding of liquid metal surface flow, which also suggests a new way for the application of soft machines.

  7. Liquid Metal Target for NLC Positron Source

    SciTech Connect

    Sheppard, John C.

    2002-08-19

    Possibility of creating the liquid lead target with parameters, optimum for the NLC positron source, is investigated. Target has a form of titanium vessel, filled with liquid lead, pumped through. The energy deposition in target is characterized by 35 kW average power and up to 250 J/g specific energy at optimum beam sigma 0.6 mm. The use of pumped through liquid lead as target material solves both the problems of power evacuation and target survival. The window for beam exit is made of both temperature and pressure resistive material--the diamond-like ceramic BN.

  8. Self-expandable metal stents for malignant gastric outlet obstruction: A pooled analysis of prospective literature

    PubMed Central

    van Halsema, Emo E; Rauws, Erik AJ; Fockens, Paul; van Hooft, Jeanin E

    2015-01-01

    AIM: To provide an overview of the clinical outcomes of self-expandable metal stent (SEMS) placement for malignant gastric outlet obstruction (MGOO). METHODS: A systematic literature search was performed in PubMed of the literature published between January 2009 and March 2015. Only prospective studies that reported on the clinical success of stent placement for MGOO were included. The primary endpoint was clinical success, defined according to the definition used in the original article. Data were pooled and analyzed using descriptive statistics. Subgroup analyses were performed for partially covered SEMSs (PCSEMSs) and uncovered SEMSs (UCSEMSs) using Fisher’s exact test. RESULTS: A total of 19 studies, including 1281 patients, were included in the final analysis. Gastric (42%) and pancreatic (37%) cancer were the main causes of MGOO. UCSEMSs were used in 76% of patients and PCSEMSs in 24%. The overall pooled technical success rate was 97.3% and the clinical success rate was 85.7%. Stent dysfunction occurred in 19.6% of patients, mainly caused by re-obstruction (12.6%) and stent migration (4.3%), and was comparable between PCSEMSs and UCSEMSs (21.2% vs 19.1%, respectively, P = 0.412). Re-obstruction was more common with UCSEMSs (14.9% vs 5.1%, P < 0.001) and stent migration was more frequent after PCSEMS placement (10.9% vs 2.2%, P < 0.001). The overall perforation rate was 1.2%. Bleeding was reported in 4.1% of patients, including major bleeding in 0.8%. The median stent patency ranged from 68 to 307 d in five studies. The median overall survival ranged from 49 to 183 d in 13 studies. CONCLUSION: The clinical outcomes in this large population showed that enteral stent placement was feasible, effective and safe. Therefore, stent placement is a valid treatment option for the palliation of MGOO. PMID:26604654

  9. Liquid Galvanic Coatings for Protection of Imbedded Metals

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G. (Inventor); Curran, Joseph J. (Inventor)

    2003-01-01

    Coating compositions and methods of their use are described herein for the reduction of corrosion in imbedded metal structures. The coatings are applied as liquids to an external surface of a substrate in which the metal structures are imbedded. The coatings are subsequently allowed to dry. The liquid applied coatings provide galvanic protection to the imbedded metal structures. Continued protection can be maintained with periodic reapplication of the coating compositions, as necessary, to maintain electrical continuity. Because the coatings may be applied using methods similar to standard paints, and because the coatings are applied to external surfaces of the substrates in which the metal structures are imbedded, the corresponding corrosion protection may be easily maintained. The coating compositions are particularly useful in the protection of metal-reinforced concrete.

  10. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  11. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  12. Electrokinetic actuation of liquid metal for reconfigurable radio frequency devices

    NASA Astrophysics Data System (ADS)

    Gough, Ryan C.

    Liquid metals are an attractive material choice for designers wishing to combine the advantages of metals, such as high electrical conductivity, thermal conductivity, and reflectivity, with the inherently dynamic nature of fluids. Liquid metals have been utilized for a wide variety of applications, but their high electrical conductivity, surface smoothness, and linear response makes them especially attractive as tuning elements within reconfigurable radio frequency (RF) devices. The recent introduction of non-toxic liquid metal alloys onto the commercial market has further fueled interest in this versatile material. Early experiments with liquid metal as an RF tuning element have yielded promising results, but have largely depended on externally applied pressure to actuate the liquid metal. For commercial implementation this would necessitate the use of clunky and inefficient micro-pumps, which can require both high voltages and high power consumption. This reliance on hydraulic pumping has been a significant barrier to the incorporation of liquid metal as an RF tuning element in applications outside of a laboratory setting. Here, several electrical actuation techniques are demonstrated that allow for the rapid and repeatable actuation of non-toxic gallium alloys as tuning elements within reconfigurable RF devices. These techniques leverage the naturally high surface tension of liquid metals, as well as the unique electrochemistry of gallium-based alloys, to exercise wide-ranging and high fidelity control over both the metal's shape and position. Furthermore, this control is exercised with voltage and power levels that are each better than an order of magnitude below that achievable with conventional micro-pumps. This control does not require the constant application of actuation signals in order to maintain an actuated state, and can even be 'self-actuated', with the liquid metal supplying its own kinetic energy via the electrochemical conversion of its native

  13. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    PubMed Central

    2011-01-01

    The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%. PMID:21711730

  14. The Parameterization of Solid Metal-Liquid Metal Partitioning of Siderophile Elements

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Jones, J. H.

    2003-01-01

    The composition of a metallic liquid can significantly affect the partitioning behavior of elements. For example, some experimental solid metal-liquid metal partition coefficients have been shown to increase by three orders of magnitude with increasing S-content of the metallic liquid. Along with S, the presence of other light elements, such as P and C, has also been demonstrated to affect trace element partitioning behavior. Understanding the effects of metallic composition on partitioning behavior is important for modeling the crystallization of magmatic iron meteorites and the chemical effects of planetary differentiation. It is thus useful to have a mathematical expression that parameterizes the partition coefficient as a function of the composition of the metal. Here we present a revised parameterization method, which builds on the theory of the current parameterization of Jones and Malvin and which better handles partitioning in multi-light-element systems.

  15. The Parameterization of Solid Metal-Liquid Metal Partitioning of Siderophile Elements

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Jones, J. H.

    2003-01-01

    The composition of a metallic liquid can significantly affect the partitioning behavior of elements. For example, some experimental solid metal-liquid metal partition coefficients have been shown to increase by three orders of magnitude with increasing S-content of the metallic liquid. Along with S, the presence of other light elements, such as P and C, has also been demonstrated to affect trace element partitioning behavior. Understanding the effects of metallic composition on partitioning behavior is important for modeling the crystallization of magmatic iron meteorites and the chemical effects of planetary differentiation. It is thus useful to have a mathematical expression that parameterizes the partition coefficient as a function of the composition of the metal. Here we present a revised parameterization method, which builds on the theory of the current parameterization of Jones and Malvin and which better handles partitioning in multi-light-element systems.

  16. Liquid metal batteries - materials selection and fluid dynamics

    NASA Astrophysics Data System (ADS)

    Weier, T.; Bund, A.; El-Mofid, W.; Horstmann, G. M.; Lalau, C.-C.; Landgraf, S.; Nimtz, M.; Starace, M.; Stefani, F.; Weber, N.

    2017-07-01

    Liquid metal batteries are possible candidates for massive and economically feasible large-scale stationary storage and as such could be key components of future energy systems based mainly or exclusively on intermittent renewable electricity sources. The completely liquid interior of liquid metal batteries and the high current densities give rise to a multitude of fluid flow phenomena that will primarily influence the operation of future large cells, but might be important for today’s smaller cells as well. The paper at hand starts with a discussion of the relative merits of using molten salts or ionic liquids as electrolytes for liquid metal cells and touches the choice of electrode materials. This excursus into electrochemistry is followed by an overview of investigations on magnetohydrodynamic instabilities in liquid metal batteries, namely the Tayler instability and electromagnetically excited gravity waves. A section on electro-vortex flows complements the discussion of flow phenomena. Focus of the flow related investigations lies on the integrity of the electrolyte layer and related critical parameters.

  17. Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors.

    PubMed

    Sun, Xuyang; Yuan, Bo; Rao, Wei; Liu, Jing

    2017-11-01

    Electrochemical treatment of tumors (EChT) has recently been identified as a very effective way for local tumor therapy. However, hindered by the limited effective area of a single rigid electrode, multiple electrodes are often recruited when tackling large tumors, where too many electrodes not only complicate the clinical procedures but also aggravate patients' pain. Here we present a new conceptual electric stimulation tumor therapy through introducing the injectable liquid metal electrodes, which can adapt to complex tumor shapes so as to achieve desired therapeutic performance. This approach can offer evident merits for dealing with the complex physiological situations, especially for those irregular body cavities like stomach, colon, rectum or even blood vessel etc., which are hard to tackle otherwise. As it was disclosed from the conceptual experiments that, Unlike traditional rigid and uncomfortable electrodes, liquid metal possesses high flexibility to attach to any crooked biological position to deliver and adjust targeted electric field to fulfill anticipated tumor destruction. And such amorphous electrodes exhibit rather enhanced treatment effect of tumors. Further, we also demonstrate that EChT with liquid metal electrodes produced more electrochemical products during electrolysis. Transformations with the shapes of liquid metal provided an easily regulatable strategy to improve EChT efficiency, which can conveniently aid to achieve better output compared to multiple electrodes. In vivo EChT of tumors further clarified the effect of liquid metal electrodes in retarding tumor growth and increasing life spans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  19. Atomic caging in multicomponent glass-forming metallic liquids

    NASA Astrophysics Data System (ADS)

    Wong, Kaikin; Chen, Changjiu; Koza, Michael Marek; Samwer, Konrad; Mavila Chathoth, Suresh

    2015-05-01

    We have examined the effect of density on atomic caging in highly dense glass-forming metallic liquids, Ni59.5Nb40.5 and Ni60Nb34.8Sn5.2 using quasielastic neutron scattering. The density of the liquids is unusually high and close to the mode-coupling dynamic transition. The self-correlation function obtained from the QENS data shows stretching and the temperature dependence of the diffusion coefficient shows non-Arrhenius behavior. The mean relaxation time exhibits a non-linear variation with Q 2, which is an indicative of a jump diffusion process in these highly dense liquids. We use a simple jump diffusion model to obtain the residence time of Ni atoms in these alloy liquids. The residence time of Ni atoms exhibits a linear dependence with density of these alloy liquids, but shows an abrupt change in the slope approximately at a density of 7.5 \\text{g cm}-3 . The present observation indicates that the time at which the atoms are trapped in cages is not a monotonic function of density in hard-sphere-like metallic liquids. Our results indicate the existence of a hidden dynamic transition in glass-forming metallic liquids.

  20. Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tsai, H. L.

    2001-06-01

    This article presents a mathematical model simulating the effects of surface tension (Maragoni effect) on weld pool fluid flow and weld penetration in spot gas metal arc welding (GMAW). Filler droplets driven by gravity, electromagnetic force, and plasma arc drag force, carrying mass, thermal energy, and momentum, periodically impinge onto the weld pool. Complicated fluid flow in the weld pool is influenced by the droplet impinging momentum, electromagnetic force, and natural convection due to temperature and concentration gradients, and by surface tension, which is a function of both temperature and concentration of a surface active element (sulfur in the present study). Although the droplet impinging momentum creates a complex fluid flow near the weld pool surface, the momentum is damped out by an “up-and-down” fluid motion. A numerical study has shown that, depending upon the droplet’s sulfur content, which is different from that in the base metal, an inward or outward surface flow of the weld pool may be created, leading to deep or shallow weld penetration. In other words, it is primarily the Marangoni effect that contributes to weld penetration in spot GMAW.

  1. Review of liquid metal heat pipe work at Los Alamos

    SciTech Connect

    Reid, R.S.; Merrigan, M.A.; Sena, J.T. )

    1991-01-10

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found.

  2. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS).

    PubMed

    Kim, Kyeongseob; Lee, Dongju; Eom, Seunghyun; Lim, Sungjoon

    2016-04-11

    A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS). To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm) to 6.4 cm.

  3. Review of liquid metal heat pipe work at Los Alamos

    SciTech Connect

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs.

  4. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS)

    PubMed Central

    Kim, Kyeongseob; Lee, Dongju; Eom, Seunghyun; Lim, Sungjoon

    2016-01-01

    A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS). To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm) to 6.4 cm. PMID:27077861

  5. Free surface stability of liquid metal plasma facing components

    NASA Astrophysics Data System (ADS)

    Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.

    2016-10-01

    An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.

  6. Temperature-dependent liquid metal flowrate control device

    DOEpatents

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  7. Separation of metals by supported liquid membranes

    SciTech Connect

    Takigawa, D.Y.

    1990-12-31

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  8. Gelled liquid oxygen/metal powder monopropellants

    NASA Technical Reports Server (NTRS)

    Wickman, John H.; James, Eric

    1992-01-01

    Al, Al-80/Mg-20 wt pct, Si, and Fe powders were mixed with LOX and gelled with 2-3 wt pct Cab-o-Sil to viscosities of 100 to 900 cps, at shear rates of up to 300/sec. These monopropellants were burned in a cylinder that was submerged in a liquid nitrogen bath. Ambient pressure data have shown that the monopropellants were extinguished when the flame front reached regions that had been submerged under the liquid nitrogen. Burning occurred in a pulsed fashion, and was most nearly steady in the case of the Al-Mg mixture. No sparking or energetic burning occurred in any of the cases tested.

  9. Separation of metals by supported liquid membrane

    DOEpatents

    Takigawa, Doreen Y.

    1992-01-01

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  10. Influence of electrode geometry on liquid metal ion source performance

    SciTech Connect

    Swanson, L.W.; Li, J.Z.

    1988-07-01

    The surface electric field distribution along the axis of a wetted needle type liquid metal ion source has been determined by numerical methods and is shown to exhibit a secondary maximum at the intersection of the cylindrical and conical sections. It is shown that the volume flow rate of the liquid metal film along the cylindrical portion of the emitter is adequate to resupply the ionized portion at the needle apex. However, a pressure minimum in the liquid film, which decreases with increasing apex cone angle, occurs at the cone/cylinder intersection and the pressure gradient formed on the conical section of the emitter opposes flow to the apex region. It is shown that, by chemically roughening the conical section of the emitter, liquid film flow via microcapillary action occurs in such a way as to provide a low flow impedance to the apex.

  11. Universal scaling laws of diffusion: application to liquid metals.

    PubMed

    Samanta, Alok; Musharaf Ali, Sk; Ghosh, Swapan K

    2005-08-22

    This work focuses on the universal scaling laws, which relate scaled diffusivity to excess entropy in fluids and their mixtures. The derivation of the new scaling law for diffusivity proposed recently [A. Samanta, Sk. M. Ali, and S. K. Ghosh, Phys. Rev. Lett. 92, 145901 (2004)] is discussed in details highlighting the nature of approximations involved. Also the applicability of the scaling law is extended to a new class of liquids, viz., liquid metals. The results calculated based on the scaling laws are shown to be in very good agreement with the simulation results for liquid Rb and Cs metals along the liquid-vapor coexistence curve corresponding to a wide variation of temperature and density. The new universal scaling law discussed here is superior to the earlier empirically proposed scaling laws and provides a very simple route to calculate a dynamical quantity such as diffusivity from an equilibrium property such as the radial distribution function.

  12. Distinct metallization and atomization transitions in dense liquid hydrogen.

    PubMed

    Mazzola, Guglielmo; Sorella, Sandro

    2015-03-13

    We perform molecular dynamics simulations driven by accurate quantum Monte Carlo forces on dense liquid hydrogen. There is a recent report of a complete atomization transition between a mixed molecular-atomic liquid and a completely dissociated fluid in an almost unaccessible pressure range [Nat. Commun. 5, 3487 (2014)]. Here, instead, we identify a different transition between the fully molecular liquid and the mixed-atomic fluid at ∼400  GPa, i.e., in a much more interesting pressure range. We provide numerical evidence supporting the metallic behavior of this intermediate phase. Therefore, we predict that the metallization at finite temperature occurs in this partially dissociated molecular fluid, well before the complete atomization of the liquid. At high temperature this first-order transition becomes a crossover, in very good agreement with the experimental observation. Several systematic tests supporting the quality of our large scale calculations are also reported.

  13. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    PubMed Central

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  14. A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope

    PubMed Central

    Lee, Byeongchan; Lee, Geun Woo

    2016-01-01

    Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements. PMID:27762334

  15. A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope.

    PubMed

    Lee, Byeongchan; Lee, Geun Woo

    2016-10-20

    Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements.

  16. A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope

    NASA Astrophysics Data System (ADS)

    Lee, Byeongchan; Lee, Geun Woo

    2016-10-01

    Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements.

  17. A Heat Transfer Model for a Stratified Corium-metal Pool in the Lower Plenum of a Nuclear Reactor

    SciTech Connect

    Sohal, Manohar Singh; Siefken, Larry James

    1999-08-01

    This preliminary design report describes a model for heat transfer in a corium-metal stratified pool. It was decided to make use of the existing COUPLE model. Currently available correlations for natural convection heat transfer in a pool with and without internal heat generation were obtained. The appropriate correlations will be incorporated in the existing COUPLE model. Heat conduction and solidification modeling will be done with existing algorithms in the COUPLE. Assessment of the new model will be done by simple energy conservation problems.

  18. A Heat Transfer Model for a Stratified Corium-Metal Pool in the Lower Plenum of a Nuclear Reactor

    SciTech Connect

    M. S. Sohal; L. J. Siefken

    1999-08-01

    This preliminary design report describes a model for heat transfer in a corium-metal stratified pool. It was decided to make use of the existing COUPLE model. Currently available correlations for natural convection heat transfer in a pool with and without internal heat generation were obtained. The appropriate correlations will be incorporated in the existing COUPLE model. Heat conduction and solidification modeling will be done with existing algorithms in the COUPLE. Assessment of the new model will be done by simple energy conservation problems.

  19. Correlation between surface tension and critical temperatures of liquid metals.

    PubMed

    Blairs, Sidney; Abbasi, Mohammad Hassan

    2006-12-15

    The inter-relationship of surface tension sigma, molar volume V, and critical temperature Tc has been examined using experimental values for eighteen liquid metals. Hard-sphere diameters a correlate with the equation a(5/2) = 8.9733 x 10(-19) V (sigma/Tc)(1/4) - 1.0459 x 10(-25). Unknown Tc may be estimated using surface tension and liquid density values.

  20. Task-specific ionic liquid for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations.

  1. Dense simple plasmas as high-temperature liquid simple metals

    NASA Technical Reports Server (NTRS)

    Perrot, F.

    1990-01-01

    The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.

  2. Coalescence of Immiscible Liquid Metal Drop on Graphene

    PubMed Central

    Li, Tao; Li, Jie; Wang, Long; Duan, Yunrui; Li, Hui

    2016-01-01

    Molecular dynamics simulations were performed to investigate the wetting and coalescence of liquid Al and Pb drops on four carbon-based substrates. We highlight the importance of the microstructure and surface topography of substrates in the coalescence process. Our results show that the effect of substrate on coalescence is achieved by changing the wettability of the Pb metal. Additionally, we determine the critical distance between nonadjacent Al and Pb films required for coalescence. These findings improve our understanding of the coalescence of immiscible liquid metals at the atomistic level. PMID:27667589

  3. Development of oxygen sensors for use in liquid metal

    SciTech Connect

    Van Nieuwenhove, Rudi; Ejenstam, Jesper; Szakalos, Peter

    2015-07-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  4. Current collector geometry and mixing in liquid metal electrodes

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan; Kelley, Douglas

    2015-11-01

    Liquid metal batteries are emerging as an efficient and cost effective technology for large-scale energy storage on electrical grids. In these batteries, critical performance related factors such as the limiting current density and life cycle are strongly influenced by fluid mixing and transport of electrochemical species to and from the electrode-electrolyte interface. In this work, ultrasound velocimetry is used to investigate the role of negative current collector location on the induced velocity, flow pattern, and mixing time in liquid metal electrodes. Ultrasound velocity measurements are obtained at a range of operating current densities. Furthermore, a comparison between velocity profiles produced by current collectors with different sizes is also presented.

  5. Characteristics of the boat inductor for keeping liquid metal in the suspended state

    NASA Technical Reports Server (NTRS)

    Fogel, A. A.; Siforova, T. A.; Mezdrogina, M. M.

    1985-01-01

    Characteristics of the boat inductor for keeping liquid metal in the suspended state are examined. Behavioral features of the liquid metal, and the suspension boundary of liquid metal in the lower position are discussed. It is concluded that the inductor can be used to crystallize metals in the suspended state.

  6. Factors Affecting Liquid-Metal Embrittlement in C-103

    NASA Technical Reports Server (NTRS)

    Mclemore, R.; Lampson, F. K.

    1982-01-01

    Results of a study of weld cracks on Space Shuttle control thrustors point toward better understanding of cracking problem in columbium metal, which has also plagued nonaerospace users. Although liquid-metal embrittlement is known to be cause of problem, factors affecting growth and severity of cracks are not well understood. New results tie crack growth to type of contaminants present, grain size and level of stress present while welding is done.

  7. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of

  8. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of

  9. The structure of liquid metals probed by XAS

    NASA Astrophysics Data System (ADS)

    Filipponi, Adriano; Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela

    2017-08-01

    X-ray absorption spectroscopy (XAS) is a powerful technique to investigate the short-range order around selected atomic species in condensed matter. The theoretical framework and previous applications to undercooled elemental liquid metals are briefly reviewed. Specific results on undercooled liquid Ni obtained using a peak fitting approach validated on the spectra of solid Ni are presented. This method provides a clear evidence that a signature from close packed triangular configurations of nearest neighbors survives in the liquid state and is clearly detectable below k ≈ 5 Å-1, stimulating the improvement of data-analysis methods that account properly for the ensemble average, such as Reverse Monte Carlo.

  10. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    SciTech Connect

    Lan, S.; Ma, J. L.; Fan, J.; Blodgett, M.; Kelton, K. F.; Wang, X.-L.

    2016-05-23

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ∼1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  11. Designing Kitaev Spin Liquids in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiko G.; Fujita, Hiroyuki; Oshikawa, Masaki

    2017-08-01

    Kitaev's honeycomb lattice spin model is a remarkable exactly solvable model, which has a particular type of spin liquid (Kitaev spin liquid) as the ground state. Although its possible realization in iridates and α -RuCl3 has been vigorously discussed recently, these materials have substantial non-Kitaev direct exchange interactions and do not have a spin liquid ground state. We propose metal-organic frameworks (MOFs) with Ru3 + (or Os3 + ), forming the honeycomb lattice as promising candidates for a more ideal realization of Kitaev-type spin models, where the direct exchange interaction is strongly suppressed. The great flexibility of MOFs allows generalization to other three-dimensional lattices for the potential realization of a variety of spin liquids, such as a Weyl spin liquid.

  12. The Bonding Forces In Liquid Metals And Ultrasonic Field Action

    SciTech Connect

    Moraru, Luminita; Murariu, Gabriel

    2007-04-23

    The understanding of the liquid metals properties is still imperfect. Assuming that the liquids are isotropic and show some elasticity properties, there are no physical reasons for rejecting the applicability of the fundamental ideas of the Debye theory to the description of the properties of liquid state. The approach is intended to relate the temperature Debye to the intensity of bonding forces between neighboring atoms and, in turn, to correlate this with the high power ultrasonic field action.In order to highlight the effect of the ultrasonic wave on the Debye temperature values, the experiments were carried out under similar conditions both with and without sonication. The relationship between the Debye temperature for both liquid and solid state is {theta}{sub D}{sup solid} / {theta}{sub D}{sup liquid} = 0.85.

  13. A sliding cell technique for diffusion measurements in liquid metals

    SciTech Connect

    Geng, Yongliang; Zhu, Chunao; Zhang, Bo

    2014-03-15

    The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liquid diffusion measurements in the conventional long capillary method) can be eliminated. Time-dependent diffusion measurements at the same isothermal temperature were carried out in Al-Cu liquids. Compared with the previous results measured by in-situ X-ray radiography, the obtained liquid diffusion coefficient in this work is believed to be influenced by convective flow. The present work further supports the idea that to obtain accurate diffusion constants in liquid metals, the measurement conditions must be well controlled, and there should be no temperature gradients or other disturbances.

  14. A sliding cell technique for diffusion measurements in liquid metals

    NASA Astrophysics Data System (ADS)

    Geng, Yongliang; Zhu, Chunao; Zhang, Bo

    2014-03-01

    The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new "sliding cell technique" to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liquid diffusion measurements in the conventional long capillary method) can be eliminated. Time-dependent diffusion measurements at the same isothermal temperature were carried out in Al-Cu liquids. Compared with the previous results measured by in-situ X-ray radiography, the obtained liquid diffusion coefficient in this work is believed to be influenced by convective flow. The present work further supports the idea that to obtain accurate diffusion constants in liquid metals, the measurement conditions must be well controlled, and there should be no temperature gradients or other disturbances.

  15. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface.

    PubMed

    Yang, Zhilin; Chen, Shu; Fang, Pingping; Ren, Bin; Girault, Hubert H; Tian, Zhongqun

    2013-04-21

    Unlike the solid-air and solid-liquid interfaces, the optical properties of metal nanoparticles adsorbed at the liquid-liquid interface have not been theoretically exploited to date. In this work, the three dimensional finite difference time domain (3D-FDTD) method is employed to clarify the localized surface plasmon resonance (LSPR) based optical properties of gold nanoparticles (NPs) adsorbed at the water-oil interface, including near field distribution, far field absorption and their relevance. The LSPR spectra of NPs located at a liquid-liquid interface are shown to differ significantly from those in a uniform liquid environment or at the other interfaces. The absorption spectra exhibit two distinct LSPR peaks, the positions and relative strengths of which are sensitive to the dielectric properties of each liquid and the exact positions of the NPs with respect to the interface. Precise control of the particles' position and selection of the appropriate wavelength of the excitation laser facilitates the rational design and selective excitation of localized plasmon modes for interfacial NPs, a necessary advance for the exploration of liquid-liquid interfaces via surface enhanced Raman spectroscopy (SERS). According to our calculations, the SERS enhancement factor for Au nanosphere dimers at the water-oil interface can be as high as 10(7)-10(9), implying significant promise for future investigations of interfacial structure and applications of liquid-liquid interfaces towards chemical analysis.

  16. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    NASA Astrophysics Data System (ADS)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  17. Electronic properties of hybrid metal-discotic liquid crystal nanostructures

    NASA Astrophysics Data System (ADS)

    Kelsall, R. W.; Pecchia, A.; Bourlange, A.; Movaghar, B.; Evans, S. D.; Hickey, B. J.; Boden, N.

    2003-04-01

    A new class of hybrid organic/inorganic nanostructures, comprising self-organised discotic liquid crystal layers deposited on ultrathin metal films, has been investigated both experimentally and theoretically. Calculations show that the periodic self-organised molecular layer gives rise to a new, hybrid electronic bandstructure, resulting in modulation of the metal film conductivity. In situ conductivity measurements during deposition of such self-organised layers confirm that the metal film conductivity is altered. Theoretical modeling also shows that the AC conductivity should show structure related to the carrier trapping and one-dimensional transport features of the self-organised layer.

  18. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    PubMed Central

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  19. Solubility data are compiled for metals in liquid zinc

    NASA Technical Reports Server (NTRS)

    Dillon, I. G.; Johnson, I.

    1967-01-01

    Available data is compiled on the solubilities of various metals in liquid zinc. The temperature dependence of the solubility data is expressed using the empirical straight line relationship existing between the logarithm of the solubility and the reciprocal of the absolute temperature.

  20. Generation and characterization of gas bubbles in liquid metals

    SciTech Connect

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empirical nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.

  1. Turbulent convection in liquid metal with and without rotation

    PubMed Central

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional buoyancy forcing and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer . In general, we find that the convective behavior of liquid metal differs substantially from that of moderate fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of and fluids, respectively. PMID:23569262

  2. Turbulent convection in liquid metal with and without rotation.

    PubMed

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr < 1. Most analog models of planetary dynamos, however, use moderate Pr fluids, and the systematic influence of reducing Pr is not well understood. We perform rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr < 1 and Pr > 1 fluids, respectively.

  3. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-22

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  4. Heat transfer in free-surface, flowing liquid metal

    NASA Astrophysics Data System (ADS)

    Rhoads, J.; Spence, E.; Edlund, E.; Sloboda, P.; Ji, H.

    2012-10-01

    The presence of a strong external magnetic field affects structures within the flow of conducting fluids such as liquid metals, which may have significant implications for thermal convection in proposed liquid-metal divertor concepts. Experiments have been conducted in the Liquid Metal Experiment (LMX) using a GaInSn eutectic alloy as a working fluid to investigate the anisotropization due to the magnetic field on turbulent structures in the flow and the resulting effects on convective heat transfer. These experiments considered free-surface, wide aspect-ratio flow through a channel situated in a magnetic field (up to Ha 50). Heat was injected into the fluid via resistive heaters located either on the surface or submerged in the fluid. The thermal profile was tracked on the surface of the flow by a mid-wavelength IR camera and at the bottom of the flow by a dense array of fine gage thermocouples. Along with internal velocity measurements, the temporal and spatial thermal profiles show the effects of the magnetic field on convection, yielding valuable insight into the behavior of heat transfer in free-surface, liquid metal flows. Experimental results and proposed explanations will be presented.

  5. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  6. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  7. Performance of solar thermal systems with liquid metal MHD conversion

    NASA Astrophysics Data System (ADS)

    Pierson, E. S.; Jackson, W. D.; Berry, G.; Petrick, M.; Dennis, C.

    1984-06-01

    Liquid metal magnetohydrodynamic conversion (LMMHD) is found to be compatible with concentrating solar receivers employing a liquid metal as a heat transfer medium and offers significant increases in the system thermal efficiency over the 33% considered attainable with conventional turbo-machinery. There are two candidate liquid metals - sodium and lithium. With sodium at a temperature of 1150 F (922 K), the maximum calculated efficiency is 39.5% while with lithium at 1400 F (1033 K) a peak efficiency for 46.5% is predicted. Up to two percentage points may be added by temperature increase and/or parameter limit relaxation in the sodium case. The sodium steam heat exchanger is eliminated in liquid metal systems. Where LMMHD systems employ the same working fluid as the solar receiver, no recirculating pump is required as pumping power is provided directly by the cycle. For sodium, coupling with either a gas turbine or a steam turbine is beneficial and provides similar performance. With lithium, the gas turbine cycle is clearly superior.

  8. Ordering and dimensional crossovers in metallic glasses and liquids

    NASA Astrophysics Data System (ADS)

    Chen, David Z.; An, Qi; Goddard, William A.; Greer, Julia R.

    2017-01-01

    The atomic-level structures of liquids and glasses are amorphous, lacking long-range order. We characterize the atomic structures by integrating radial distribution functions (RDF) from molecular dynamics (MD) simulations for several metallic liquids and glasses: C u46Z r54 , N i80A l20 , N i33.3Z r66.7 , and P d82S i18 . Resulting cumulative coordination numbers (CN) show that metallic liquids have a dimension of d =2.55 ±0.06 from the center atom to the first coordination shell and metallic glasses have d =2.71 ±0.04 , both less than 3. Between the first and second coordination shells, both phases crossover to a dimension of d =3 , as for a crystal. Observations from discrete atom center-of-mass position counting are corroborated by continuously counting Cu glass- and liquid-phase atoms on an artificial grid, which accounts for the occupied atomic volume. Results from Cu grid analysis show short-range d =2.65 for Cu liquid and d =2.76 for Cu glass. Cu grid structures crossover to d =3 at ξ ˜8 Å (˜3 atomic diameters). We study the evolution of local structural dimensions during quenching and discuss its correlation with the glass transition phenomenon.

  9. Topology-generating interfacial pattern formation during liquid metal dealloying

    PubMed Central

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  10. Topology-generating interfacial pattern formation during liquid metal dealloying

    SciTech Connect

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  11. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGES

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; ...

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  12. Surface entropy of liquid transition and noble metals

    NASA Astrophysics Data System (ADS)

    Gosh, R. C.; Das, Ramprosad; Sen, Sumon C.; Bhuiyan, G. M.

    2015-07-01

    Surface entropy of liquid transition and noble metals has been investigated using an expression obtained from the hard-sphere (HS) theory of liquid. The expression is developed from the Mayer's extended surface tension formula [Journal of Non-Crystalline Solids 380 (2013) 42-47]. For interionic interaction in metals, Brettonet-Silbert (BS) pseudopotentials and embedded atom method (EAM) potentials have been used. The liquid structure is described by the variational modified hypernetted chain (VMHNC) theory. The essential ingredient of the expression is the temperature dependent effective HS diameter (or packing fraction), which is calculated from the aforementioned potentials together with the VMHNC theory. The obtained results for the surface entropy using the effective HS diameter are found to be good in agreement with the available experimental as well as other theoretical values.

  13. Capillary freezing of ionic liquids confined between metallic interfaces

    NASA Astrophysics Data System (ADS)

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Bocquet, Lydéric; Siria, Alessandro

    2016-11-01

    Using a quartz tuning fork based AFM, we investigate the behavior of ionic liquids under confinement. Using nanorheological measurements, we show that nanometric confinements can lead to solidification and capillary freezing of the ionic liquid. We find that the critical confinement at which the liquid-solid transition occurs depends strongly on the bulk electronic properties of the confining substrate, with stronger effects observed for more metallic surfaces. This behavior is rationalized on the basis of a Gibbs-Thompson framework for the shift of the freezing transition, taking into account surface energies with the imperfect metal at the level of a Thomas-Fermi model. Finally, we show that capillary freezing can also be tuned by electrifying the confining interfaces.

  14. TOPICAL REVIEW: State dependent particle dynamics in liquid alkali metals

    NASA Astrophysics Data System (ADS)

    Pilgrim, W.-C.; Morkel, Chr

    2006-09-01

    This paper gives a survey of the particle dynamics in the liquid alkali metals observed with inelastic x-ray and neutron scattering experiments. Liquid rubidium and sodium are chosen as model fluids to represent the behaviour of this group of fluids. In the dense metallic monatomic melt the microscopic dynamics is characterized by collective excitations similar to those in the corresponding solids. The collective particle behaviour is appropriately described using a memory function formalism with two relaxation channels for the density correlation. A similar behaviour is found for the single particle motion where again two relaxation mechanisms are needed to accurately reproduce the experimental findings. Special emphasis is given to the density dependence of the particle dynamics. An interesting issue in liquid metals is the metal to non-metal transition, which is observed if the fluid is sufficiently expanded with increasing temperature and pressure. This causes distinct variations in the interparticle interactions, which feed back onto the motional behaviour. The associated variations in structure and dynamics are reflected in the shape of the scattering laws. The experimentally observed features are discussed and compared with simple models and with the results from computer simulations.

  15. Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities.

    PubMed

    Mohammed, Mohammed; Sundaresan, Rishi; Dickey, Michael D

    2015-10-21

    This paper describes a new method to spontaneously accelerate droplets of liquid metal (eutectic gallium indium, EGaIn) to extremely fast velocities through a liquid medium and along predefined metallic paths. The droplet wets a thin metal trace (a film ∼100 nm thick, ∼ 1 mm wide) and generates a force that simultaneously delaminates the trace from the substrate (enhanced by spontaneous electrochemical reactions) while accelerating the droplet along the trace. The formation of a surface oxide on EGaIn prevents it from moving, but the use of an acidic medium or application of a reducing bias to the trace continuously removes the oxide skin to enable motion. The trace ultimately provides a sacrificial pathway for the metal and provides a mm-scale mimic to the templates used to guide molecular motors found in biology (e.g., actin filaments). The liquid metal can accelerate along linear, curved and U-shaped traces as well as uphill on surfaces inclined by 30 degrees. The droplets can accelerate through a viscous medium up to 180 mm/sec which is almost double the highest reported speed for self-running liquid metal droplets. The actuation of microscale objects found in nature (e.g., cells, microorganisms) inspires new mechanisms, such as these, to manipulate small objects. Droplets that are metallic may find additional applications in reconfigurable circuits, optics, heat transfer elements, and transient electronic circuits; the paper demonstrates the latter.

  16. Liquid Metal Propellant Feed System for Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.

    2004-01-01

    High-power plasma thrusters that utilize molten metallic propellants (e.g., the Lithium Lorentz Force Accelerator) are currently being investigated as a primary propulsion option for in-space nuclear-electric systems. A critical component of the thruster is the propellant feed system, which must reliably and accurately pump liquid metal into the thruster discharge chamber. We present design details and calibration results for a compact liquid metal propellant feed system that contains no moving parts, for use in laboratory testing of plasma thrusters. Feed line pressure is maintained using an MHD flow coupler, and the flow rate is monitored using a simple voltage divider, which is submerged in the propellant reservoir. Results for lithium and gallium propellants show capability to meter propellant at flow rates up to 10 +/- 0.1 mg/s.

  17. Assembly of metal nanoparticle-carbon nanotube composite materials at the liquid/liquid interface.

    PubMed

    Lee, Kang Yeol; Kim, Minjung; Hahn, Joeoong; Suh, Jung Sang; Lee, Inhyung; Kim, Kwan; Han, Sang Woo

    2006-02-14

    Carbon nanotubes (CNTs)-mediated self-assembly of metal (Au and Ag) nanoparticles at the liquid/liquid interface in the form of a stable nanocomposite film is reported. The metallic luster results from the electronic coupling of nanoparticles, suggesting the formation of closely packed nanoparticle thin films. The interfacial film could be transferred to mica substrates and carbon-coated transmission electron microscopy (TEM) grids. The transferred films were very stable for a prolonged time. The samples were characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), TEM, and X-ray photoelectron spectroscopy (XPS). SEM and TEM results show that the films formed at the liquid/liquid interface are indeed composite materials consisting of CNTs and nanoparticles. XPS measurements further indicate the presence of the interaction between nanoparticles and CNTs.

  18. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  19. Liquid metal embrittlement susceptibility of ferritic martensitic steel in liquid lead alloys

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Bosch, R. W.; Sapundjiev, D.; Almazouzi, A.

    2008-06-01

    The susceptibility of the ferritic-martensitic steels T91 and EUROFER97 to liquid metal embrittlement (LME) in lead alloys has been examined under various conditions. T91, which is currently the most promising candidate material for the high temperature components of the future accelerator driven system (ADS) was tested in liquid lead bismuth eutectic (LBE), whereas the reduced activation steel, EUROFER97 which is under consideration to be the structural steel for fusion reactors was tested in liquid lead lithium eutectic. These steels, similar in microstructure and mechanical properties in the unirradiated condition were tested for their susceptibility to LME as function of temperature (150-450 °C) and strain rate (1 × 10 -3-1 × 10 -6 s -1). Also, the influence of pre-exposure and surface stress concentrators was evaluated for both steels in, respectively, liquid PbBi and PbLi environment. To assess the LME effect, results of the tests in liquid metal environment are compared with tests in air or inert gas environment. Although both unirradiated and irradiated smooth ferritic-martensitic steels do not show any or little deterioration of mechanical properties in liquid lead alloy environment compared to their mechanical properties in gas as function of temperature and strain rate, pre-exposure or the presence of surface stress concentrators does lead to a significant decrease in total elongation for certain test conditions depending on the type of liquid metal environment. The results are discussed in terms of wetting enhanced by liquid metal corrosion or crack initiation processes.

  20. An Isotopic Exchange Kinetic Model to Assess the Speciation of Metal Available Pool in Soil: The Case of Nickel.

    PubMed

    Zelano, I O; Sivry, Y; Quantin, C; Gélabert, A; Maury, A; Phalyvong, K; Benedetti, M F

    2016-12-06

    In this study an innovative approach is proposed to predict the relative contribution of each mineral phase to the total metal availability in soils, which, in other words, could be called the available metal fractionation. Through the use of isotopic exchange kinetics (IEK) performed on typical Ni bearing phases (i.e., two types of serpentines, chlorite, smectite, goethite, and hematite) the isotopic exchange and metal-solid interaction processes are connected, considering both the thermodynamic and kinetic aspects. Results of Ni IEK experiments on mineral phases are fitted with a pseudo-first order kinetic model. For each Ni bearing phase, this allows to (i) determine the number and size of exchangeable pools (ENi(i)), (ii) assess their corresponding kinetic constants (k(i)), and (iii) discuss the mechanism of Ni isotopic exchange at mineral surfaces. It is shown that all the phases investigated, with the only exception of hematite, present at least two distinct reactive pools with significantly different k(i) values. Results suggest also that metal involved in outer-sphere complexes would display isotopic exchange between 100 and 1000 times faster than metal involved in inner-sphere complexes, and that the presence of high and low affinity sites may influence the rate of isotopic exchange up to 1 order of magnitude. Moreover, the method developed represents a tool to predict and estimate Ni mobility and availability in natural soil samples on the basis of soil mineral composition, providing information barely obtained with other techniques.

  1. Surface Attack on Metals in the Presence of Liquid Metals.

    DTIC Science & Technology

    1986-04-10

    Lo *stics Age y. DITiUTION STATEMENT A 4 C. St r fene TecN al forma on C iter b Cmeon tatzooe on7500 17. UPPLEMAR NOTES * D ~III 1473EENAR NOESINO O... metalI . is to be controlled, and this problem is covered more fully in the section on diffusion characteristics of alloy combinations. Reaction models on...antimony and arsenic are stable additions but bismuth 40 removal is rapid by an evaporation mechanism. Anti - mony provides a stronger creep resistant

  2. Liquid Metals: Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions (Adv. Mater. 19/2016).

    PubMed

    Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel

    2016-05-01

    An all-soft-matter composite consisting of liquid metal microdroplets embedded in a soft elastomer matrix is presented by C. Majidi and co-workers on page 3726. This composite exhibits a high dielectric constant while maintaining exceptional elasticity and compliance. The image shows the composite's microstructure captured by 3D X-ray imaging using a nano-computed tomographic scanner.

  3. Testing of T91 steel in heavy liquid metals

    NASA Astrophysics Data System (ADS)

    Chocholoušek, M.; Fulín, Z.; Janoušek, J.; Špirit, Z.

    2017-02-01

    Tests of candidate construction materials for a heavy liquid metal environment are performed at Centrum Vyzkumu Rez. Tests are focused among other things on the influence of corrosive environments on the mechanical properties of T91 steel. Non-standard environments require special testing devices, which must be able to perform tests in liquid lead or liquid lead bismuth eutectic. An important issue is also the monitoring of the oxygen volume, which has an influence on the production and stability of oxide layers and therefore on crack initiation. This article presents the issue of testing steel T91 and the associated development of a testing device for slow strain rate tests, especially in liquid lead bismuth eutectic environment.

  4. Corrosion behavior of surface treated steel in liquid sodium negative electrode of liquid metal battery

    NASA Astrophysics Data System (ADS)

    Lee, Jeonghyeon; Shin, Sang Hun; Lee, Jung Ki; Choi, Sungyeol; Kim, Ji Hyun

    2016-03-01

    While liquid metal batteries are attractive options for grid-scale energy storage applications as they have flexible siting capacities and small footprints, the compatibility between structural materials such as current collectors and negative electrode such as sodium is one of major issues for liquid metal batteries. Non-metallic elements such as carbon, oxygen, and nitrogen in the liquid sodium influence the material behaviors of the cell construction materials in the battery system. In this study, the compatibility of structural materials with sodium is investigated in high temperature liquid sodium, and electrochemical impedance spectroscopy (EIS) is used to monitor in-situ the corrosion behavior at the surface of materials in sodium. Chemical vapor deposition (CVD) coatings of SiC and Si3N4 are applied as protective barriers against dissolution and corrosion on the steel surface. The results show that CVD coating of Si compounds can delay corrosion of steel in high temperature liquid sodium comparing to the result of as-received specimens, while SiC coating is more durable than Si3N4 coating in high temperature liquid sodium.

  5. Friction and wear of selected metals and of carbons in liquid natural gas

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.

    1971-01-01

    Friction and wear experiments were conducted with hemispherically tipped (4.76-mm radius) rider specimens in sliding contact with a rotating disk submerged in liquid natural gas (LNG). The program included metal combinations and carbon-metal combinations. These experiments revealed that the metal combinations were not lubricated by the LNG. Carbons had much lower wear in LNG than in liquid hydrogen or in liquid nitrogen. (Wear of carbon in liquid hydrogen was 100 times that in LNG.) The friction coefficients obtained in LNG (0.6 for metal-metal and 0.2 for carbon-metal) are similar to those obtained in liquid hydrogen.

  6. Laser-induced metal reduction from liquid electrolyte precursor.

    PubMed

    Kim, Dongsoo; Choi, Choljin

    2013-11-01

    A special sort of laser methods such as direct writing of metal and thin film deposition from liquid precursors was developed for the surface processing and the localized metallization of different kinds of materials. Laser radiation initiates the chemical reaction resulted in the reduction of the metal complexes to the metals in the liquid electrolyte, followed by the metal deposition on the substrate with a high degree of the adhesion. In this study, continuous wave of Ar+ laser generated in multiwave regime with laser power from 5 to 500 mW was chosen for the Copper reduction and deposition on SiO2 substrate. In order to investigate the effect of salt precursors on the properties of the deposited structures, two kinds of electrolyte solution were prepared on the base of CuSO4 and CuCl2. It was shown that metal deposition can be initiated at the laser power of 50 mW. The width of the deposits was found to be substantially dependent on the applied laser power. Deposits were revealed as conductive layers and the resistance of the layers depends strongly on the solution temperature and the salt precursor.

  7. Plasticity in the Supercooled Liquid Region of Bulk Metallic Glasses

    SciTech Connect

    Nieh, T G; Wadsworth, J; Liu, C T; Ice, G E

    2000-10-30

    Intensive efforts have been carried out over the past decade to develop means to slow down the phase transformation kinetics during the forming of metallic glasses. As a result of these efforts, some metallic glasses can now be fabricated in bulk forms (BMG) from the liquid state at cooling rates on the order of 1-10 K/s, which is close to that of conventional casting. This enables the production of bulk amorphous alloys with a thickness of {approx}10 mm. While advances in amorphous metallic alloy development have been impressive, they have been made largely through experience [1]. Three main conclusions drawn from this study are: (1) Bulk metallic glasses generally have excellent mechanical formability in the supercooled liquid region. (2) Bulk metallic glasses may not be necessarily behave like a Newtonian fluid (i.e. m=1). The non-Newtonian behavior is associated with glass instability during deformation. (3) Multi-component Bulk metallic glasses can be used as the precursor of a nanocrystalline solid. However, the nanocrystalline solid is not necessarily superplastic. The non-superplastic behavior is caused by the difficult strain accommodation at grain triple junctions.

  8. Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review

    NASA Astrophysics Data System (ADS)

    Sree Manu, K. M.; Ajay Raag, L.; Rajan, T. P. D.; Gupta, Manoj; Pai, B. C.

    2016-10-01

    Metal matrix composites (MMC) are one of the advanced materials widely used for aerospace, automotive, defense, and general engineering applications. MMC can be tailored to have superior properties such as enhanced high-temperature performance, high specific strength and stiffness, increased wear resistance, better thermal and mechanical fatigue, and creep resistance than those of unreinforced alloys. To fabricate such composites with ideal properties, the processing technique has to ensure high volume fraction of reinforcement incorporation, uniform distribution of the reinforcement, and acceptable adhesion between the matrix and the reinforcing phase without unwanted interfacial reactions which degrades the mechanical properties. A number of processing techniques such as stir casting/vortex method, powder metallurgy, infiltration, casting etc. have been developed to synthesize MMC employing a variety of alloy and the reinforcement's combinations. Among these, infiltration process is widely used for making MMC with high volume fraction of reinforcements and offers many more advantages compared to other conventional manufacturing processes. The present paper critically reviews the various infiltration techniques used for making the MMC, their process parameters, characteristics, and selected studies carried out worldwide and by authors on the development of metal ceramic composites by squeeze infiltration process.

  9. Note on heat conduction in liquid metals. A comparison of laminar and turbulent flow effects

    NASA Astrophysics Data System (ADS)

    Talmage, G.

    1994-05-01

    The difference between heat transfer in liquid metals with electric currents and magnetic fields on the one hand and heat transfer in electrically insulating fluids and in conducting solids on the other is pointed out. Laminar and turbulent flow effects in liquid metal sliding electric contacts for homopolar machines are considered. Large temperature gradients can develop within a small region of liquid metal. A model of a liquid-metal sliding electrical contact is developed and analyzed.

  10. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir; Chowdhury, Debanjan

    2016-12-01

    We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.

  11. Experiments on liquid-metal fast breeder reactor aerosol source terms after severe accidents

    SciTech Connect

    Berthoud, G.; Longest, A.W.; Wright, A.L.; Schutz, W.P.

    1988-05-01

    In the extremely unlikely event of a liquid-metal fast breeder reactor core disruptive accident, expanding core material or sodium vapor inside the sodium pool may cause leaks in the vessel head and transport of radioactive material, mostly aerosols, in one large bubble or several smaller bubbles under energetic conditions to the cover gas and through leaks to the inner containment (''instantaneous source term''). Out-of-pile experiments on bubble expansion from a pressurized source inside a liquid (water or sodium) and related phenomena like heat transfer, condensation, entrainment, rise, and aerosol transport were carried out in France and the United States and are continuing in the Federal Republic of Germany. Parameters and results of these experiments are described and discussed, mainly concerning the aerosol problem. It appears that several mechanisms exist for a very efficient removal of particles from the bubble. Retention factors larger than 10,000 were found in most cases. In addition, a short survey is given of French and German experiments on fuel and fission product release from evaporating or burning sodium pools (delayed source term).

  12. Improving heat transfer with pool boiling by covering of heating surface with metallic spheres

    SciTech Connect

    Matijevic, M.; Djuric, M.; Zavargo, Z.; Novakovic, M. )

    1992-01-01

    In this paper, boiling heat transfer (BHT) is investigated experimentally. Smooth copper walls were covered with single sphere layer and corresponding temperature difference and heat flux were measured. The results were compared with published data for several types of heating surfaces. Comparative analysis shows that surfaces covered with spheres have characteristics as good as the other systems, if not better. There are many ways to enhance boiling heat transfer. One of them is to cover the heating surface with a layer of solid particles, which either remain on the surface during the process or circulate through the boiling liquid, generating a porous two-component, three-phase system. Particles are made of various materials (glass, alumosilicate, corundum, sand, mullite some metals, etc.), which are shaped as spheres mostly, but sometimes are irregular bodies. Many different parameters were proposed to characterize the porous layer. The influence of particles can be expressed by introducing the effective thermal-physical properties of a complex medium. Also, if the working regime can be described as any kind of fluidization, then all quantities developed to be applied to this matter can be used in the case of heat fluidization.

  13. Kinematic and thermodynamic effects on liquid metal sputtering

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Ruzic, D. N.

    2000-10-01

    The absolute sputtering yields of D+, He+ and Li+ on solid, liquid lithium and liquid tin-lithium have been successfully measured and modeled at low energies [1-3]. The Ion-surface InterAction Experiment (IIAX) is used to determine the dependence of Li erosion on temperature and physical sputtering. Preliminary data shows that for He+ bombardment of liquid phase lithium, the physical sputtering yield increases with increasing target temperature. A Colutron ion source is used to create and accelerate gaseous or metal ions onto a molten metal target. The liquid metal targets are heated past their melting point to various temperatures, where the surface oxide layer is plasma cleaned and immediately irradiated with D+, Li+ or He+ ion beams, at each temperature. The evaporated flux at each temperature is measured before and after beam irradiation. The fraction of Li atoms sputtered as ions, is also measured as a function of temperature. Modeling of the absolute sputtering yield is accomplished by VFTRIM-3D, a variant of the TRIM-SP code [4]. [1] J.P. Allain and D.N. Ruzic, submitted Nuclear Fusion April 2000. [2] J.P. Allain, M.R. Hendricks, D.N. Ruzic, submitted J. Nucl. Mater. May 2000 [3] J.P. Allain, M.R. Hendricks, D.N. Ruzic, submitted J. Nucl. Mater. May 2000 [4] D.N. Ruzic, Nuclear Instrum. and Methods in Phys. Res. B47 (1990) pp. 118-125

  14. First-principles calculation of entropy for liquid metals.

    PubMed

    Desjarlais, Michael P

    2013-12-01

    We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two-phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard sphere) and solid-like (harmonic) subsystems. The hard sphere model for the gas-like component is shown to give systematically high entropies for liquid metals as a direct result of the unphysical Lorentzian high-frequency tail. Using a memory function framework we derive a generally applicable velocity autocorrelation and frequency spectrum for the diffusive component which recovers the low-frequency (long-time) behavior of the hard sphere model while providing for realistic short-time coherence and high-frequency tails to the spectrum. This approach provides a significant increase in the accuracy of the calculated entropies for liquid metals and is compared to ambient pressure data for liquid sodium, aluminum, gallium, tin, and iron. The use of this method for the determination of melt boundaries is demonstrated with a calculation of the high-pressure bcc melt boundary for sodium. With the significantly improved accuracy available with the memory function treatment for softer interatomic potentials, the 2PT model for entropy calculations should find broader application in high energy density science, warm dense matter, planetary science, geophysics, and material science.

  15. Plasma/Liquid-Metal Interactions During Tokamak Operation

    SciTech Connect

    Hassanein, A.; Allain, J.P.; Insepov, Z.; Konkashbaev, I.

    2005-04-15

    One of the critical technological challenges of future tokamak fusion devices is the ability for plasma-facing components to handle both normal and abnormal plasma/surface interaction events that compromise their lifetime and operation of the machine. Under normal operation plasma/surface interactions that are important include: sputtering, particle implantation and recycling, He pumping and ELM (edge localized modes)-induced erosion. In abnormal or off-normal operation: disruptions and vertical displacement events (VDEs) are important. To extend PFC lifetime under these conditions, liquid-metals have been considered as candidate PFCs (Plasma-Facing Components), including: liquid lithium, tin-lithium, gallium and tin.Liquid lithium has been measured to have nonlinear increase of physical sputtering with rise in temperature. Such increase can be a result of exposure to ELM-level particle fluxes. The significant increase in particle flux to the divertor and nearby PFCs can enhance sputtering erosion by an order of magnitude or more. In addition from the standpoint of hydrogen recycling and helium pumping liquid lithium appears to be a good candidate plasma-facing material (PFM). Advanced designs of first wall and divertor systems propose the application of liquid-metals as an alternate PFC to contend with high-heat flux constraints of large-scale tokamak devices. Additional issues include PFC operation under disruptions and long temporal instabilities such as VDEs. A comprehensive two-fluid model is developed to integrate core and SOL (scrape-off layer) parameters during ELMs with PFC surface evolution using the HEIGHTS package. Special emphasis is made on the application of lithium as a candidate plasma-facing liquid-metal.

  16. Plasma/liquid metal interactions during tokamak operation.

    SciTech Connect

    Hassanein, A.; Allain, J. P.; Insepov, Z.; Konkashbaev, I.; Energy Technology

    2005-04-01

    One of the critical technological challenges of future tokamak fusion devices is the ability for plasma-facing components to handle both normal and abnormal plasma/surface interaction events that compromise their lifetime and operation of the machine. Under normal operation plasma/surface interactions that are important include: sputtering, particle implantation and recycling, He pumping and ELM (edge localized modes)-induced erosion. In abnormal or off-normal operation: disruptions and vertical displacement events (VDEs) are important. To extend PFC lifetime under these conditions, liquid-metals have been considered as candidate PFCs (Plasma-Facing Components), including: liquid lithium, tin-lithium, gallium and tin. Liquid lithium has been measured to have nonlinear increase of physical sputtering with rise in temperature. Such increase can be a result of exposure to ELM-level particle fluxes. The significant increase in particle flux to the divertor and nearby PFCs can enhance sputtering erosion by an order of magnitude or more. In addition from the standpoint of hydrogen recycling and helium pumping liquid lithium appears to be a good candidate plasma-facing material (PFM). Advanced designs of first wall and divertor systems propose the application of liquid-metals as an alternate PFC to contend with high-heat flux constraints of large-scale tokamak devices. Additional issues include PFC operation under disruptions and long temporal instabilities such as VDEs. A comprehensive two-fluid model is developed to integrate core and SOL (scrape-off layer) parameters during ELMs with PFC surface evolution using the HEIGHTS package. Special emphasis is made on the application of lithium as a candidate plasma-facing liquid-metal.

  17. Large gem diamonds from metallic liquid in Earth's deep mantle.

    PubMed

    Smith, Evan M; Shirey, Steven B; Nestola, Fabrizio; Bullock, Emma S; Wang, Jianhua; Richardson, Stephen H; Wang, Wuyi

    2016-12-16

    The redox state of Earth's convecting mantle, masked by the lithospheric plates and basaltic magmatism of plate tectonics, is a key unknown in the evolutionary history of our planet. Here we report that large, exceptional gem diamonds like the Cullinan, Constellation, and Koh-i-Noor carry direct evidence of crystallization from a redox-sensitive metallic liquid phase in the deep mantle. These sublithospheric diamonds contain inclusions of solidified iron-nickel-carbon-sulfur melt, accompanied by a thin fluid layer of methane ± hydrogen, and sometimes majoritic garnet or former calcium silicate perovskite. The metal-dominated mineral assemblages and reduced volatiles in large gem diamonds indicate formation under metal-saturated conditions. We verify previous predictions that Earth has highly reducing deep mantle regions capable of precipitating a metallic iron phase that contains dissolved carbon and hydrogen.

  18. Liquid-solid joining of bulk metallic glasses

    DOE PAGES

    Huang, Yongjiang; Xue, Peng; Guo, Shu; ...

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. In conclusion, the liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  19. Coupling liquids acoustic velocity effects on elastic metallic bioglass properties

    NASA Astrophysics Data System (ADS)

    Metiri, W.; Hadjoub, F.; Doghmane, A.; Hadjoub, Z.

    2009-11-01

    The effect of surface acoustic wave, SAW, velocities of coupling liquids on acoustical properties of several bulk metallic glasses, BMG, has been investigated using simulation program based on acoustic microscopy. Thus, we determined variations of critical angles at which the excitation of longitudinal mode, θL and Rayleigh mode, θR occurs as a function of wave velocities in different coupling liquids, Vliq. Linear relations of the form θi =ai0 +βiVliq were deduced. The importance of such formula, used with Snell's law, lies in the direct determination of SAW velocities and consequently mechanical properties of BMGs.

  20. Liquid-solid joining of bulk metallic glasses

    PubMed Central

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-01-01

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components. PMID:27471073

  1. Liquid-solid joining of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-07-01

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  2. Surface tension of liquid metals and alloys--recent developments.

    PubMed

    Egry, I; Ricci, E; Novakovic, R; Ozawa, S

    2010-09-15

    Surface tension measurements are a central task in the study of surfaces and interfaces. For liquid metals, they are complicated by the high temperatures and the consequently high reactivity characterising these melts. In particular, oxidation of the liquid surface in combination with evaporation phenomena requires a stringent control of the experimental conditions, and an appropriate theoretical treatment. Recently, much progress has been made on both sides. In addition to improving the conventional sessile drop technique, new containerless methods have been developed for surface tension measurements. This paper reviews the experimental progress made in the last few years, and the theoretical framework required for modelling and understanding the relevant physico-chemical surface phenomena.

  3. Liquid-solid joining of bulk metallic glasses.

    PubMed

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  4. High temperature interaction behavior at liquid metal-ceramic interfaces.

    SciTech Connect

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.; Chemical Engineering; Integrated Thermal Sciences, Inc.

    2002-08-01

    Liquid metal/ceramic interaction experiments were undertaken at elevated temperatures with the purpose of developing reusable crucibles for melting reactive metals. The metals used in this work included zirconium (Zr), Zr-8 wt.% stainless steel, and stainless steel containing 15 wt.% Zr. The ceramic substrates include yttria, Zr carbide, and hafnium (Hf) carbide. The metal-ceramic samples were placed on top of a tungsten (W) dish. These experiments were conducted with the temperature increasing at a controlled rate until reaching set points above 2000 C; the systems were held at the peak temperature for about five min and then cooled. The atmosphere in the furnace was argon (Ar). An outside video recording system was used to monitor the changes on heating up and cooling down. All samples underwent a post-test metallurgical examination. Pure Zr was found to react with yttria, resulting in oxygen (O) evolution at the liquid metal-ceramic interface. In addition, dissolved O was observed in the as-cooled Zr metal. Yttrium (Y) was also present in the Zr metal, but it had segregated to the grain boundaries on cooling. Despite the normal expectations for reactive wetting, no transition interface was developed, but the Zr metal was tightly bound to yttria ceramic. Similar reactions occurred between the yttria and the Zr-stainless steel alloys. Two other ceramic samples were Zr carbide and Hf carbide; both carbide substrates were wetted readily by the molten Zr, which flowed easily to the sides of the substrates. The molten Zr caused a very limited dissolution of the Zr carbide, and it reacted more strongly with the Hf carbide. These reactive wetting results are relevant to the design of interfaces and the development of reactive filler metals for the fabrication of high temperature components through metal-ceramic joining. Parameters that have a marked impact on this interface reaction include the thermodynamic stability of the substrate, the properties of the modified

  5. Magnetorotational Instability in a Rotating Liquid Metal Annulus

    SciTech Connect

    Hantao Ji; Jeremy Goodman; Akira Kageyama

    2001-03-10

    Although the magnetorotational instability (MRI) has been widely accepted as a powerful accretion mechanism in magnetized accretion disks, it has not been realized in the laboratory. The possibility of studying MRI in a rotating liquid-metal annulus (Couette flow) is explored by local and global stability analysis and magnetohydrodynamic (MHD) simulations. Stability diagrams are drawn in dimensionless parameters, and also in terms of the angular velocities at the inner and outer cylinders. It is shown that MRI can be triggered in a moderately rapidly rotating table-top apparatus, using easy-to-handle metals such as gallium. Practical issues of this proposed experiment are discussed.

  6. Effects of gas bubble production on heat transfer from a volumetrically heated liquid pool

    NASA Astrophysics Data System (ADS)

    Bull, Geoffrey R.

    Aqueous solutions of uranium salts may provide a new supply chain to fill potential shortfalls in the availability of the most common radiopharmaceuticals currently in use worldwide, including Tc99m which is a decay product of Mo99. The fissioning of the uranium in these solutions creates Mo99 but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution. Bubbles in the solution affect both the fission power and the heat transfer out of the solution. As a result, for safety and production calculations, the effects of the bubbles on heat transfer must be understood. A high aspect ratio tank was constructed to simulate a section of an annulus with heat exchangers on the inner and outer steel walls to provide cooling. Temperature measurements via thermocouples inside the tank and along the outside of the steel walls allowed the calculation of overall and local heat transfer coefficients. Different air injection manifolds allowed the exploration of various bubble characteristics and patterns on heat transfer from the pool. The manifold type did not appear to have significant impact on the bubble size distributions in water. However, air injected into solutions of magnesium sulfate resulted in smaller bubble sizes and larger void fractions than those in water at the same injection rates. One dimensional calculations provide heat transfer coefficient values as functions of the superficial gas velocity in the pool.

  7. Upper stages using liquid propulsion and metallized propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1992-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel. Typically, aluminum particles are the metal additive. These propellants increase the density and/or the specific impulse of the propulsion system. Using metallized propellants for volume- and mass-constrained upper stages can deliver modest increases in performance for low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and other Earth-orbital transfer missions. However, using metallized propellants for planetary missions can deliver great reductions in flight time with a single-stage, upper-stage system. Tradeoff studies comparing metallized propellant stage performance with nonmetallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages, launched from the STS and STS-C, are both one- and two-stage vehicles that provide the added energy to send payloads to high altitude orbits and onto interplanetary trajectories that are unattainable with only the Space Transportation System (STS) and the Space Transportation System-Cargo (STS-C). The stage designs are controlled by the volume and the mass constraints of the STS and STS-C launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  8. Vision detection of weld pool shape parameters and numerical simulation

    NASA Astrophysics Data System (ADS)

    Yuan, Youzhi; Liu, Nansheng; Wang, Yanfeng; Luo, Wei; Liu, Xiaorui

    2008-12-01

    An active vision sensing system which established by low power laser and common CCD is used to shoot GTAW welding pool images. Based on choose the appropriate LASER and filters, projected angle of laser and shoot angle of CCD, we avoid the disturbance of arc effectively and obtain clear images of the welding pool. The shape parameters of welding pool can obtain by demarcated and calculated. And then a three-dimentional numerical model of GTAW welding pool is established based on the theories of fluid dynamics and heat transfer. It considered the convection heat transfer of liquid metal and heat conduction of solid metal. And FLUENT software is used for simulate the GTAW welding pool. Extract the weld pool shape parameters and done comparative study with the vision detection of pool. This will be beneficial to avoid repeat experiments and improve work efficiency.

  9. Two cylinder permanent magnet stirrer for liquid metals

    NASA Astrophysics Data System (ADS)

    Bojarevičs, A.; Baranovskis, R.; Kaldre, I.; Milgrāvis, M.; Beinerts, T.

    2017-07-01

    To achieve a uniform liquid metal composition and temperature distribution, stirring is often necessary for industrial processes. Here, a novel permanent magnet system for liquid melt stirring is proposed. It promises very low energy consumption and options for multiple different flow types compared to traditional travelling magnetic field inductors or mechanical stirrers. The proposed system has a simple design: it consists of two rotating permanent magnet cylinders, which are magnetized transversely to the axis of the cylinders. The experimental device was developed and tested under various regimes using GaInSn alloy in a cylindrical crucible. Aluminum stirring by permanent magnets in laboratory scale is tested, and stirring impact on directional solidification of metallic alloys is experimentally investigated.

  10. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    SciTech Connect

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-08-27

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.

  11. Sloshing instability and electrolyte layer rupture in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Weber, Norbert; Beckstein, Pascal; Herreman, Wietze; Horstmann, Gerrit Maik; Nore, Caroline; Stefani, Frank; Weier, Tom

    2017-05-01

    Liquid metal batteries (LMBs) are discussed today as a cheap grid scale energy storage, as required for the deployment of fluctuating renewable energies. Built as stable density stratification of two liquid metals separated by a thin molten salt layer, LMBs are susceptible to short-circuit by fluid flows. Using direct numerical simulation, we study a sloshing long wave interface instability in cylindrical cells, which is already known from aluminium reduction cells. After characterising the instability mechanism, we investigate the influence of cell current, layer thickness, density, viscosity, conductivity and magnetic background field. Finally we study the shape of the interface and give a dimensionless parameter for the onset of sloshing as well as for the short-circuit.

  12. Liquid-metal dip seal with pneumatic spring

    DOEpatents

    Poindexter, Allan M.

    1977-01-01

    An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.

  13. Fabrication of Short Graphite Fiber Preforms for Liquid Metal Infiltration

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; He, Xinbo; Liu, Qian; Zhang, Lin; Wang, Ling; Kang, Qiping; Qu, Xuanhui

    2013-06-01

    Starch-based and paraffin wax (PW)-based binders were used to fabricate short graphite fiber preforms for liquid metal infiltration. The effects of different binder components and debinding process parameters on the properties of short graphite fiber preforms were investigated. The results indicate that the graphite fiber preforms with appropriate porosity of 58-62% and relatively high compressive strength of about 2-3 MPa can be made by starch-based and PW-based binders. The graphite fiber preforms made from the PW-based binder exhibit higher compressive strength than that of the starch-based binder. Graphite fiber reinforced aluminum composites fabricated by utilizing these preforms through vacuum pressure infiltration have relatively high density of 98.5% and thermal conductivity of 186.3 W/m K, proving the applicability of the prepared preforms for liquid metal infiltration.

  14. Harvesting human kinematical energy based on liquid metal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Jia, Dewei; Liu, Jing; Zhou, Yixin

    2009-03-01

    A flexible human energy harvesting generator - Liquid Metal Magnetohydrodynamics Generator (LMMG) is proposed and fabricated. Conceptual experiments were performed to investigate this electricity harvesting principle. Theoretical analysis predicts that the present method is promising at converting otherwise wasted human kinematical energy via a directional selective generation paradigm. In vitro experiment demonstrates output of 1.4 V/3.61 μW by 5.68 g Ga 62In 25Sn 13 liquid metal with a rather high efficiency of more than 45%. The in vivo experiment actuated by a wrist swing during brisk walking with the plastic valve to rectify the flow, verified the potentiality of unidirectional actuation. This concept based on the flexible movement of LMMG is robust to supply electricity which would be important for future wearable micro/nano devices as a voltage constrained charge provider.

  15. Nucleation and the spall strength of liquid metals

    NASA Astrophysics Data System (ADS)

    Lopanitsyna, N. Yu; Kuksin, A. Yu

    2016-11-01

    This article presents calculation of the nucleation rate for liquid metals (Al, Fe, Mo) based on molecular dynamic simulation for embedded atom method (EAM) potentials. The dependence of nucleation rate on pressure and temperature could be approximated accurately in the form of classical nucleation theory taking into account surface tension dependency on pore radius σ = σ0/(1 + 2δ/r), where σ—surface tension, δ—the Tolman length. Basing on the results of the calculations, we have developed a model allowing calculating the spall strength of liquid metals under tension using such parameters as surface tension, viscosity, which could be measured experimentally. The obtained results for Mo and Al are consistent with experimental data and direct MD calculations at strain rates approx. 1010-1011 s-1.

  16. Instabilities of structured liquid metal geometries on nanoscale

    NASA Astrophysics Data System (ADS)

    Dong, Nanyi; Wu, Yueying; Fowlkes, Jason; Rack, Philip; Kondic, Lou

    2014-03-01

    Directed assembly on nanoscale is one of quickly growing fields in materials science, and understanding basic physical mechanisms that lead to formation of desired patterns is crucial for future progress. This contribution, motivated by the experiments carried out with structured metal geometries liquefied by laser irradiation, centers on formulating simple but realistic models that allow to reach this understanding. The model is based on long-wave limit of Navier-Stokes equations relevant to evolution of liquid metals. Liquid-solid interaction forces are included and we show that these are crucial for instability development. We carry out fully nonlinear simulations of the derived model, and find that the computational results are fully consistent with the experimental ones, thus confirming that the main feature of the experiments could be captured by a simplified continuum model. In addition, our simulations suggest that stochastic effects, possibly due to thermal noise, may play an important role. Supported by NSF Grant No. CBET-1235710

  17. Catalysis and surface properties of liquid metals and alloys

    SciTech Connect

    Ogino, Y.

    1987-01-01

    This book presents a historical review of the subject in order to clarify its own role in advancing the study of heterogenous catalysis. In addition, this authoritative volume; discusses the catalytic properties of liquid metals and alloys, giving a useful, schematic account of various experimental techniques; examines the mechanism of catalysis at the atomic and particle levels, defining the structures of liquid metals; covers a variety of reactions, including dehydrogenation, hydrogen transfer, coal liquefaction, and other, suggesting practical uses and additional areas for investigation; addresses basic and microscopic aspects of catalysis, exploring such advanced topics as kinetics and stereochemistry as well as optical properties and surface transition zones; and provides examples of applications, illustrating fundamental research with specific technologies that extend the range of future research possibilities.

  18. Excess Entropy Scaling Law for Diffusivity in Liquid Metals

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2016-02-01

    Understanding how dynamic properties depend on the structure and thermodynamics in liquids is a long-standing open problem in condensed matter physics. A very simple approach is based on the Dzugutov contribution developed on model fluids in which a universal (i.e. species-independent) connection relates the pair excess entropy of a liquid to its reduced diffusion coefficient. However its application to “real” liquids still remains uncertain due to the ability of a hard sphere (HS) reference fluid used in reducing parameters to describe complex interactions that occur in these liquids. Here we use ab initio molecular dynamics simulations to calculate both structural and dynamic properties at different temperatures for a wide series of liquid metals including Al, Au, Cu, Li, Ni, Ta, Ti, Zn as well as liquid Si and B. From this analysis, we demonstrate that the Dzugutov scheme can be applied successfully if a self-consistent method to determine the packing fraction of the hard sphere reference fluid is used as well as the Carnahan-Starling approach to express the excess entropy.

  19. Excess Entropy Scaling Law for Diffusivity in Liquid Metals

    PubMed Central

    Jakse, N.; Pasturel, A.

    2016-01-01

    Understanding how dynamic properties depend on the structure and thermodynamics in liquids is a long-standing open problem in condensed matter physics. A very simple approach is based on the Dzugutov contribution developed on model fluids in which a universal (i.e. species-independent) connection relates the pair excess entropy of a liquid to its reduced diffusion coefficient. However its application to “real” liquids still remains uncertain due to the ability of a hard sphere (HS) reference fluid used in reducing parameters to describe complex interactions that occur in these liquids. Here we use ab initio molecular dynamics simulations to calculate both structural and dynamic properties at different temperatures for a wide series of liquid metals including Al, Au, Cu, Li, Ni, Ta, Ti, Zn as well as liquid Si and B. From this analysis, we demonstrate that the Dzugutov scheme can be applied successfully if a self-consistent method to determine the packing fraction of the hard sphere reference fluid is used as well as the Carnahan-Starling approach to express the excess entropy. PMID:26862002

  20. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques.

    PubMed

    Provazi, Kellie; Campos, Beatriz Amaral; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-01-01

    The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted.

  1. Liquid Metal Thermal Electric Converter bench test module

    SciTech Connect

    Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

    1988-04-01

    This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

  2. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  3. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated incorporation into a reactor system. The thermoelectric electromagnetic pump is recommended for inclusion in the present system based on favorable quantitative and qualitative measures relative to the other options under consideration.

  4. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated incorporation into a reactor system. The thermoelectric electromagnetic pump is recommended for inclusion in the present system based on favorable quantitative and qualitative measures relative to the other options under consideration.

  5. Proposal for Universality in the Viscosity of Metallic Liquids

    SciTech Connect

    Blodgett, M. E.; Egami, Takeshi; Nussinov, Z.; Kelton, K. F.

    2015-09-09

    The range of magnitude of the liquid viscosity, η, as a function of temperature is one of the most impressive of any physical property, changing by approximately 17 orders of magnitude from its extrapolated value at infinite temperature (ηo) to that at the glass transition temperature, Tg. We present experimental measurements of containerlessly processed metallic liquids that suggest that log(η/ηo) as a function of TA/T is a potentially universal scaled curve. In stark contrast to previous approaches, the scaling requires only two fitting parameters, which are on average predictable. The temperature TA corresponds to the onset of cooperative motion and is strongly correlated with Tg, suggesting that the processes underlying the glass transition first appear in the high temperature liquid.

  6. Proposal for universality in the viscosity of metallic liquids

    PubMed Central

    Blodgett, M. E.; Egami, T.; Nussinov, Z.; Kelton, K. F.

    2015-01-01

    The range of magnitude of the liquid viscosity, η, as a function of temperature is one of the most impressive of any physical property, changing by approximately 17 orders of magnitude from its extrapolated value at infinite temperature (ηo) to that at the glass transition temperature, Tg. We present experimental measurements of containerlessly processed metallic liquids that suggest that log(η/ηo) as a function of TA/T is a potentially universal scaled curve. In stark contrast to previous approaches, the scaling requires only two fitting parameters, which are on average predictable. The temperature TA corresponds to the onset of cooperative motion and is strongly correlated with Tg, suggesting that the processes underlying the glass transition first appear in the high temperature liquid. PMID:26350788

  7. Proposal for Universality in the Viscosity of Metallic Liquids

    DOE PAGES

    Blodgett, M. E.; Egami, Takeshi; Nussinov, Z.; ...

    2015-09-09

    The range of magnitude of the liquid viscosity, η, as a function of temperature is one of the most impressive of any physical property, changing by approximately 17 orders of magnitude from its extrapolated value at infinite temperature (ηo) to that at the glass transition temperature, Tg. We present experimental measurements of containerlessly processed metallic liquids that suggest that log(η/ηo) as a function of TA/T is a potentially universal scaled curve. In stark contrast to previous approaches, the scaling requires only two fitting parameters, which are on average predictable. The temperature TA corresponds to the onset of cooperative motion andmore » is strongly correlated with Tg, suggesting that the processes underlying the glass transition first appear in the high temperature liquid.« less

  8. Ultrasound Velocity Measurement in a Liquid Metal Electrode.

    PubMed

    Perez, Adalberto; Kelley, Douglas H

    2015-08-05

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries.

  9. Ultrasound Velocity Measurement in a Liquid Metal Electrode

    PubMed Central

    Perez, Adalberto; Kelley, Douglas H.

    2015-01-01

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries. PMID:26273726

  10. Single-magnet rotary flowmeter for liquid metals

    NASA Astrophysics Data System (ADS)

    Priede, Janis; Buchenau, Dominique; Gerbeth, Gunter

    2011-08-01

    We present a theory of single-magnet flowmeter for liquid metals and compare it with experimental results. The flowmeter consists of a freely rotating permanent magnet, which is magnetized perpendicularly to the axle it is mounted on. When such a magnet is placed close to a tube carrying liquid metal flow, it rotates so that the driving torque due to the eddy currents induced by the flow is balanced by the braking torque induced by the rotation itself. The equilibrium rotation rate, which varies directly with the flow velocity and inversely with the distance between the magnet and the tube, is affected neither by the electrical conductivity of the metal nor by the magnet strength. We obtain simple analytical solutions for the force and torque on slowly moving and rotating magnets due to eddy currents in a layer of infinite horizontal extent. The predicted equilibrium rotation rates qualitatively agree with the magnet rotation rate measured on a liquid sodium flow in stainless steel duct.

  11. Theoretical Studies of the Surface Tension of Liquid Metal System

    NASA Technical Reports Server (NTRS)

    Stroud, D. G.; Shih, W. H.

    1985-01-01

    A major goal of this project is to understand the surface tension and other thermophysical properties of liquid metals and alloys from a fundamental viewpoint. The approach is to calculate these quantities by a first principles technique which combines the statistical-mechanical theory of the liquid state with an electronic pseudopotential theory of electrons in metals. The inhomogeneity of the surface is treated using an ionic-density-functional formalism developed with the support of NASA. Of particular interest are the variation of surface tension with temperature and impurity concentration: such variations strongly influence the types of convection which make take place in a low-gravity environment. Some progress has already been achieved in computing the reduction of surface tension due to the presence of low-surface-tension impurities, and the corresponding surface segregation of such impurities. In the coming year, it is planned to concentrate on the surface properties of materials of particular interest to the MSA program: Si, Ga and GaSn alloys. An additional goal is to gain some theoretical understanding of the high temperature thermophysical properties of liquid metals, particularly high melting point materials which have not been studied extensively from a theoretical viewpoint.

  12. Theoretical Studies of the Surface Tension of Liquid Metal System

    NASA Technical Reports Server (NTRS)

    Stroud, D. G.; Shih, W. H.

    1985-01-01

    A major goal of this project is to understand the surface tension and other thermophysical properties of liquid metals and alloys from a fundamental viewpoint. The approach is to calculate these quantities by a first principles technique which combines the statistical-mechanical theory of the liquid state with an electronic pseudopotential theory of electrons in metals. The inhomogeneity of the surface is treated using an ionic-density-functional formalism developed with the support of NASA. Of particular interest are the variation of surface tension with temperature and impurity concentration: such variations strongly influence the types of convection which make take place in a low-gravity environment. Some progress has already been achieved in computing the reduction of surface tension due to the presence of low-surface-tension impurities, and the corresponding surface segregation of such impurities. In the coming year, it is planned to concentrate on the surface properties of materials of particular interest to the MSA program: Si, Ga and GaSn alloys. An additional goal is to gain some theoretical understanding of the high temperature thermophysical properties of liquid metals, particularly high melting point materials which have not been studied extensively from a theoretical viewpoint.

  13. Natural convection in a liquid metal locally heated from above

    NASA Astrophysics Data System (ADS)

    Khalilov, R.; Kolesnichenko, I.; Teimurazov, A.; Mamykin, A.; Frick, P.

    2017-06-01

    A convective flow of liquid sodium generated nearby a hot round in the upper solid end face of a vertical cylinder has been studied experimentally and numerically. A developed turbulent flow is observed in the upper part of the cylinder. Strong velocity pulsations penetrate in the bulk of the metal up to a distance of about the diameter of the cylinder. Mean velocity fields reveal a toroidal vortex, which is localized in a narrow upper zone. Numerical simulations were done for two types of thermal boundary conditions (BCs): fixed temperature and fixed homogeneous heat flux on both heat exchangers. Experimental values of time-averaged velocity and temperature in the vortex are in good agreement with numerical data. The size and the intensity of the vortex weakly depend on BCs. The whole bulk of the metal is not involved in the motion. The temperature field depends much more on the BCs. Under fixed heat fluxes the temperature pulsations become much stronger and penetrate essentially deeper in the liquid metal, though the flow is slightly stronger under fixed boundary temperature. The considered flow is supposed to be a simplified model of the liquid magnesium flow in a reactor of metallothermic titanium reduction.

  14. Nanoparticulate gellants for metallized gelled liquid hydrogen with aluminum

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Starkovich, John; Adams, Scott

    1996-01-01

    Gelled liquid hydrogen was experimentally formulated using sol-gel technology. As a follow-on to work with cryogenic simulants, hydrogen was gelled with an alkoxide material: BTMSE. Initial results demonstrated that gellants with a specific surface area of 1000 m(exp 2)/g could be repeatably fabricated. Gelled hexane and metallized gelled hexane (with 13.8-wt% Al) were produced. Propellant settling testing was conducted for acceleration levels of 2 to 10 times normal gravity and a minimum gellant percentage was determined for stable gelled hexane and metalized gelled hexane. A cryogenic capillary rheometer was also designed, constructed, and used to determine the viscosity of gelled hydrogen. Small volumes of liquid hydrogen were gelled with a 7- to 8-wt% gellant level. The gelled H2 viscosity was 1.5 to 3.7 times that of liquid hydrogen: 0.048 to 0.116 mPa-s versus 0.03 mPa-s for liquid H2 (at 16 K and approximately 1 atm pressure).

  15. The phytotoxicity of ionic liquids from natural pool of (-)-menthol with tetrafluoroborate anion.

    PubMed

    Biczak, Robert; Pawłowska, Barbara; Feder-Kubis, Joanna

    2015-08-01

    Over the last several decades, ionic liquids have become a promising alternative to conventional organic solvents. Initially, ionic liquids were described as "environmentally friendly" substances. However, the results of numerous studies proved that the effects of these compounds on individual ecosystems might be adverse. The presented paper discusses the effect of ionic salts containing natural chiral substituent: (1R,2S,5R)-(-)-menthol in cation and a tetrafluoroborate anion of a general formula of [Cn-Im-Men][BF4] of implementation into the soil on the growth of spring barley and common radish in their early development stages. The obtained results showed that the greatest phytotoxicity was exhibited by ionic liquids containing substituents with the smallest possible number of carbon atoms. The further increase in the length of the chain did not increase the toxicity of these salts for terrestrial plants. Moreover, a compound with a substituent having a chain length of 11 carbon atoms was found to be non-toxic to common radish. The experiment under discussion showed also the effect of these tetrafluoroborates, used in the form of spray, on the development of common sorrel, gallant soldier and white goosefoot. The tests carried out also showed that the most toxic were the compounds with 1 and 3 carbon atoms. The phytotoxicity of tetrafluoroborates was positively correlated with the concentration of these compounds in the soil and was dependent on the genetic features of the genres and varieties of plants used in the experiment.

  16. Liquid metal embrittlement of steel with galvanized coatings

    NASA Astrophysics Data System (ADS)

    Mendala, J.

    2012-05-01

    Article presents the state of knowledge relating occurrences of liquid metals embrittlement. The results of experimental investigations of the LME phenomenon, reasons of its formation and influence of different parameters are described. Selected ideas of the applied research methods accessible in different works are presented. Samples made of C70D steel with tensions stretching (400-800 MPa) at different values and kinds of loading during the hot dip metallization were investigated. Coating processes in two bath: zinc and zinc with 2 % tin addition were made. The processes of hot dip metallization were done at 450 °C temperature and immersion time 180 s. Coated samples were investigated by light microscope to specify possibility appear of LME effect.

  17. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  18. Nanostructured elastomers: From smectic liquid crystals to noble metal nanocomposites

    NASA Astrophysics Data System (ADS)

    Lentz, Daniel M.

    method of the nanoinfusion process has been demonstrated that displays significant enhancements to nanoparticle concentration (volume fraction) in thermoplastic polyurethane elastomers (TPUs), as well as decreased average particle size. This latter method involves the creation of an interpenetrating layer of a functionalized monomer via an infusion-polymerization approach. Said functional group is subsequently used to reduce the metal precursor as it is infused using the same processing step as the above method. TEM images show significantly higher volume fraction of nanoparticles using this method, providing the potential for more drastic improvements in optical and other properties. Another material of interest for synthesis of nanocomposites are liquid crystalline elastomers. Liquid crystalline elastomers have received attention for their unique mechanical properties, which underlie their potential for use in applications such as artificial muscles (due to the electroclinic effect) and constrained vibration damping applications (due to their broad peak in tan delta versus either temperature or frequency). An interesting feature observed in the liquid crystalline elastomers produced in our groups is the formation of a neck in the sample under uniaxial tension. The mechanical response of these smectic main-chain liquid crystalline elastomers (MCLCE) has been characterized at a variety of strain rates and temperatures in order to understand the cause of the observed neck formation. A well-defined yield stress is observed at a critical strain that is essentially independent of strain rate, followed by necking and cold-drawing. Cold-drawing is rarely observed in liquid crystalline elastomers, but we believe that it is observed in MCLCE due to the unfolding of hairpin chains at the start of the polydomain to monodomain transition. A neck forms as the hairpins straighten out, resulting in a decreased cross-sectional area that promotes yielding. Infusions of both metal

  19. On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers

    SciTech Connect

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

    1994-05-01

    Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

  20. A handy liquid metal based electroosmotic flow pump.

    PubMed

    Gao, Meng; Gui, Lin

    2014-06-07

    A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions.

  1. Liquid-liquid extraction applied to metals separation from Waelz oxide

    SciTech Connect

    Almela, A.; Elizalde, M.P.; Danobeitia, I.

    1998-11-01

    Metal recovery from Waelz oxide, the product obtained from steel foundry dusts through a pyrometallurgical process, and the slag obtained in this process has been carried out by liquid-liquid extraction. For this purpose, leaching of the solid samples was attained by microwave digestion with HCl. The extraction of 13 elements in the leachates was studied using the alkylthiophosphinic acid Cyanex 302 in kerosene and varying the acidity conditions and the extractant concentration. The experimental results on the extraction of cadmium, lead, and zinc have been compared with the theoretical behavior obtained by taking into account equilibrium extraction data reported for the extraction of these elements from synthetic individual solutions.

  2. An Investigation of Flame Spread over Shallow Liquid Pools in Microgravity and Nonair Environments

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Sotos, Raymond G.

    1989-01-01

    Experiments of interest to combustion fundamentals and spacecraft fire safety investigated flame spread of alcohol fuels over shallow, 15 cm diameter pools in a 5.2 sec free-fall, microgravity facility. Results showed that, independent O2 concentration, alcohol fuel, and diluent types, microgravity flame spread rates were nearly identical to those corresponding normal-gravity flames for conditions where the normal gravity flames spread uniformly. This similarity indicated buoyancy-related convection in either phase does not affect flame spread, at least for the physical scale of the experiments. However, microgravity extinction coincided with the onset conditions for pulsating spread in normal gravity, implicating gas phase, buoyant flow as a requirement for pulsating spread. When the atmospheric nitrogen was replaced with argon, the conditions for the onset of normal-gravity pulsating flame spread and microgravity flame extinction were changed, in agreement with the expected lowering of the flash point through the thermal properties of the diluent. Helium-diluted flames, however, showed unexpected results with a shift to apparently higher flash-point temperatures and high normal gravity pulsation amplitudes.

  3. Thermal Interaction Between Molten Metal Jet and Sodium Pool: Effect of Principal Factors Governing Fragmentation of the Jet

    SciTech Connect

    Nishimura, Satoshi; Kinoshita, Izumi; Sugiyama, Ken-Ichiro; Ueda, Nobuyuki

    2005-02-15

    To clarify the effects of the principal factors that govern the thermal fragmentation of a molten metallic fuel jet in the course of fuel-coolant interaction, which is important in evaluating the sequence of core disruptive accidents (CDAs) for metallic fuel fast reactors, basic experiments were carried out using molten metallic fuel simulants (copper and silver) and a sodium pool.Fragmentation of a molten metal jet with a solid crust was caused by internal pressure produced by the boiling of sodium, which is locally entrapped inside the jet due to hydrodynamic motion between the jet and the coolant. The superheating and the latent heat of fusion of the jet are the principal factors governing this type of thermal fragmentation. On the other hand, the effect of the initial sodium temperature is regarded as negligible in the case of thermal conditions expected to result in CDAs for practical metallic fuel cores. Based on the fragmentation data for several kinds of jets (Cu, Ag, SUS, U, and U-5 wt% Zr alloy), an empirical correlation is proposed that is applicable to the calculation of a mass median diameter of fragments produced by the thermal fragmentation of the jet with a solid crust under low ambient Weber number conditions.

  4. Use of the liquid-liquid interface for generating ultrathin nanocrystalline films of metals, chalcogenides, and oxides.

    PubMed

    Rao, C N R; Kulkarni, G U; Agrawal, Ved Varun; Gautam, Ujjal K; Ghosh, Moumita; Tumkurkar, Usha

    2005-09-15

    The air-water interface has traditionally been employed to prepare particle assemblies and films of metals and semiconductors. The interface between water and an organic liquid, however, has not been investigated sufficiently for possible use in preparing nanocrystals and thin films of materials. In this article, we demonstrate the use of the liquid-liquid interface as a medium for preparing ultrathin films of metals, chalcogenides and oxides. The method involves the reaction at the interface between a metal-organic compound in the organic layer and an appropriate reagent for reduction, sulfidation, etc. in the aqueous layer. Some of the materials discussed are nanocrystalline films of gold, CuS, CuSe, CuO, and Cu(OH)2 formed at the liquid-liquid interface. The results reported in this article should demonstrate the versatility and potential of the liquid-liquid interface for preparing nanomaterials and ultrathin films and encourage further research in this area.

  5. Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water.

    PubMed

    Fischer, Lisa; Falta, Thomas; Koellensperger, Gunda; Stojanovic, Anja; Kogelnig, Daniel; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Hann, Stephan

    2011-10-01

    In a fundamental study the potential of ionic liquids based on quaternary ammonium- and phosphonium cations and thiol-, thioether-, hydroxyl-, carboxylate- and thiocyanate-functionalized anions has been assessed for future application in advanced sewage treatment. The elimination of the metal(oid)s Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Pt, Sn, Zn and the cancerostatic platinum compounds cisplatin and carboplatin was screened using a liquid phase micro-extraction set-up. The analytical tool-set consisted of ICP-SFMS and LC-ICP-MS for quantification of metal(oid)s and cancerostatic platinum compounds, respectively. The purity of the ILs was assessed for the investigated metal(oid)s on the base of present EU environmental quality standards and was found to be sufficient for the intended use. In model solutions at environmental relevant concentrations extraction efficiencies≥95% could be obtained for Ag, Cu, Hg and Pt with both phosphonium- and ammonium-based ILs bearing sulphur functionality in the form of thiosalicylate and 2-(methylthiobenzoate) anions, as well as with tricaprylmethylammonium thiocyanate within an extraction time of 120 min. All other metals were extracted to a lower extent (7-79%). In the case of cancerostatic platinum compounds a phosphonium-based IL bearing thiosalicylate functionality showed high extraction efficiency for monoaquacisplatin. For the first time, liquid phase micro extraction with ionic liquids was applied to industrial and communal waste water samples. The concentration of all investigated metal(oid)s could be significantly reduced. The degree of elimination varied with the initial concentration of metals, pH and the amount of suspended particulate matter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Quantum simulation of low-temperature metallic liquid hydrogen.

    PubMed

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew I J; Pickard, Chris J; Needs, Richard J; Michaelides, Angelos; Wang, Enge

    2013-01-01

    The melting temperature of solid hydrogen drops with pressure above ~65 GPa, suggesting that a liquid state might exist at low temperatures. It has also been suggested that this low-temperature liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Here we report results for hydrogen at high pressures using ab initio methods, which include a description of the quantum motion of the protons. We determine the melting temperature as a function of pressure and find an atomic solid phase from 500 to 800 GPa, which melts at <200 K. Beyond this and up to 1,200 GPa, a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature reported, as simulations with classical nuclei lead to considerably higher melting temperatures of ~300 K across the entire pressure range considered.

  7. Study of liquid metals as a basis for nanoscience.

    PubMed

    Yao, Makoto; Ohmasa, Yoshinori

    2008-03-19

    There are two ways to proceed with nanoscience: so-called top-down and bottom-up methods. Usually, the former methods are thought of as in the province of physicists and the latter in that of chemists. However, this is not entirely true because the physics of disordered matter, especially liquid metals, is well-developed bottom-up science and it has indeed provided nanoscience with basic ideas and theoretical tools such as ab initio molecular dynamics (MD) simulations. Here we wish to present experimental studies on such phenomena that originate from quantum mechanical properties and subsequently lead to classical non-equilibrium processes: among these are slow dynamics due to metal-nonmetal transitions in liquids, and wetting and dewetting transitions of liquid semiconductors. Since all these phenomena are related to a spatiotemporal range far wider than that treated by the present ab initio MD simulations, it is desirable that new progress in theoretical physics be stimulated, resulting in further developments in nanoscience.

  8. Numerical Modeling of Inclusion Behavior in Liquid Metal Processing

    NASA Astrophysics Data System (ADS)

    Bellot, Jean-Pierre; Descotes, Vincent; Jardy, Alain

    2013-09-01

    Thermomechanical performance of metallic alloys is directly related to the metal cleanliness that has always been a challenge for metallurgists. During liquid metal processing, particles can grow or decrease in size either by mass transfer with the liquid phase or by agglomeration/fragmentation mechanisms. As a function of numerical density of inclusions and of the hydrodynamics of the reactor, different numerical modeling approaches are proposed; in the case of an isolated particle, the Lagrangian technique coupled with a dissolution model is applied, whereas in the opposite case of large inclusion phase concentration, the population balance equation must be solved. Three examples of numerical modeling studies achieved at Institut Jean Lamour are discussed. They illustrate the application of the Lagrangian technique (for isolated exogenous inclusion in titanium bath) and the Eulerian technique without or with the aggregation process: for precipitation and growing of inclusions at the solidification front of a Maraging steel, and for endogenous inclusions in the molten steel bath of a gas-stirred ladle, respectively.

  9. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    SciTech Connect

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  10. Metal ion adsorption at the ionic liquid-mica interface

    NASA Astrophysics Data System (ADS)

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G.; Atkin, Rob

    2015-12-01

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ~60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al3+ system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made.Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete

  11. Liquid-solid joining of bulk metallic glasses

    SciTech Connect

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. In conclusion, the liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  12. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    SciTech Connect

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; Fowlkes, Jason D.; Kondic, Lou; Vincenti, Maria A.; de Ceglia, Domenico; Rack, Philip D.

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, as an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.

  13. ‘Crystal Genes’ in Metallic Liquids and Glasses

    SciTech Connect

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Zhang, Yue; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ho, Kai-Ming

    2016-03-31

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems.

  14. ‘Crystal Genes’ in Metallic Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Zhang, Yue; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ho, Kai-Ming

    2016-03-01

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems.

  15. Analyzing the dynamic structure of liquid metals and alloys

    NASA Astrophysics Data System (ADS)

    Wax, Jean-François; Bryk, Taras

    2017-08-01

    Experimental and numerical improvements have stimulated a great interest in the dynamic structure of liquids during the last decades. Many unexpected features have been unveiled among which fast sound, positive dispersion and possible coupling between transverse and longitudinal excitations can be mentioned. Models used to analyze these data have to be sound and more and more rigorous. In this study, we discuss the capability of a recently proposed fitting scheme (Wax J.-F. and Bryk T. J. Phys.: Condens. Matter 25 325104 (2013); 26 168002 (2014). Wax J.-F., Johnson M.R., and Bryk T. J. Phys.: Condens. Matter 28 185102 (2016).) to interpret these features of the dynamic structure of liquid metals and alloys.

  16. Zn Penetration in Liquid Metal Embrittled TWIP Steel

    NASA Astrophysics Data System (ADS)

    Kang, Heeseung; Cho, Lawrence; Lee, Changwook; De Cooman, Bruno C.

    2016-06-01

    Hot-dip Zn-coated high manganese twinning-induced plasticity (TWIP) steel is sensitive to liquid metal embrittlement (LME). The microstructure of Zn-coated TWIP steel after brittle fracture at 1123 K (850 °C) was investigated. The grain boundaries at the tip of the Zn penetration were analyzed by electron microscopy and atom probe tomography. Γ-(Fe,Mn)3Zn10 was found at the tip of the Zn penetration in the TWIP steel, implying that liquid Fe- and Mn-saturated Zn-rich alloy had percolated along the grain boundaries to the tip of the Zn penetration. Evidence for extensive Zn grain boundary diffusion ahead of the Zn-rich alloy percolation path was also observed. Both the Stoloff-Johnson-Westwood-Kamdar model and the Krishtal-Gordon-An model for LME crack formation are compatible with the present in-depth microanalysis of the Zn penetration.

  17. ‘Crystal Genes’ in Metallic Liquids and Glasses

    PubMed Central

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Zhang, Yue; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ho, Kai-Ming

    2016-01-01

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems. PMID:27030071

  18. Impinging jet separators for liquid metal magnetohydrodynamic power cycles

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1973-01-01

    In many liquid metal MHD power, cycles, it is necessary to separate the phases of a high-speed liquid-gas flow. The usual method is to impinge the jet at a glancing angle against a solid surface. These surface separators achieve good separation of the two phases at a cost of a large velocity loss due to friction at the separator surface. This report deals with attempts to greatly reduce the friction loss by impinging two jets against each other. In the crude impinging jet separators tested to date, friction losses were greatly reduced, but the separation of the two phases was found to be much poorer than that achievable with surface separators. Analyses are presented which show many lines of attack (mainly changes in separator geometry) which should yield much better separation for impinging jet separators).

  19. Breakdown voltage of metal-oxide resistors in liquid argon

    SciTech Connect

    Bagby, L. F.; Gollapinni, S.; James, C. C.; Jones, B. J.P.; Jostlein, H.; Lockwitz, S.; Naples, D.; Raaf, J. L.; Rameika, R.; Schukraft, A.; Strauss, T.; Weber, M. S.; Wolbers, S. A.

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  20. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    DOE PAGES

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; ...

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less

  1. ‘Crystal Genes’ in Metallic Liquids and Glasses

    DOE PAGES

    Sun, Yang; Zhang, Feng; Ye, Zhuo; ...

    2016-03-31

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disordermore » transitions in condensed matter systems.« less

  2. Evaluation of Shearing Time Sufficient for Effective Liquid Metal Processing

    NASA Astrophysics Data System (ADS)

    Dybalska, Agnieszka; Eskin, Dmitry; Patel, Jayesh B.

    2017-04-01

    Melt shearing has been suggested to be an efficient means of structure refinement through oxide dispersion and fragmentation. One of the process parameters that needs to be optimized is the shearing time. In this paper, the effect of shearing time on alumina powder refinement was studied in a model system with water as a working fluid. The established time was taken as a first approximation for experiments with the liquid metals processing by a high shear device based on a rotor-stator technology. The water model findings were confirmed experimentally on liquid aluminum alloys, and indicate that the optimal time of mixing is equal to 4 min in fully agitated conditions for the volume of 2.7 dm3.

  3. Evaluation of Shearing Time Sufficient for Effective Liquid Metal Processing

    NASA Astrophysics Data System (ADS)

    Dybalska, Agnieszka; Eskin, Dmitry; Patel, Jayesh B.

    2017-03-01

    Melt shearing has been suggested to be an efficient means of structure refinement through oxide dispersion and fragmentation. One of the process parameters that needs to be optimized is the shearing time. In this paper, the effect of shearing time on alumina powder refinement was studied in a model system with water as a working fluid. The established time was taken as a first approximation for experiments with the liquid metals processing by a high shear device based on a rotor-stator technology. The water model findings were confirmed experimentally on liquid aluminum alloys, and indicate that the optimal time of mixing is equal to 4 min in fully agitated conditions for the volume of 2.7 dm3.

  4. Present status of liquid metal research for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Tabarés, Francisco L.

    2016-01-01

    Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.

  5. Electrowetting-actuated liquid metal for RF applications

    NASA Astrophysics Data System (ADS)

    Diebold, A. V.; Watson, A. M.; Holcomb, S.; Tabor, C.; Mast, D.; Dickey, M. D.; Heikenfeld, J.

    2017-02-01

    Electrowetting is well-established as a fluid manipulation technique in such areas as lab-on-a-chip, visible light optics, and displays, yet has seen far less implementation in the field of radio-frequency (RF) electronics and electromagnetics. This is primarily due to a lack of appropriate materials selection and control in these devices. Low loss RF conductive fluids such as room temperature liquid metals (i.e. Hg, EGaIn, Galinstan) are by far the leading choice of active material due to their superior electrical properties but require high actuating voltages due to their inherently high surface tensions (>400 mN m-1) which often lead to dielectric breakdown. While the toxicity of Hg encourages the pursuit of non-toxic alternatives such as gallium alloys, the native surface oxide formation often prohibits reliable device functionality. Additionally, traditional electrowetting architectures rely on lossy electrode materials which degrade RF transmission efficiencies and result in non-reversible material diffusion at the electrode/liquid metal contact. In this work, we report on approaches to utilize liquid metals in electrowetting on dielectric (EWOD) devices that resolve all of these challenges by judicious choice of novel electrode materials, dielectric fluid, and device architecture. A functional RF device, namely an electromagnetic polarizer, is demonstrated that can be activated on demand through EWOD and provides an average signal attenuation of 12.91 dB in the on state and 1.46 dB in the off state over the range of 8-9.2 GHz, with a switching speed of about 12 ms. These results can be further extended to other RF applications such as tunable antennas, transmission lines, and switchable metasurfaces.

  6. Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Campbell, A. J.; Humayun, M.

    2004-01-01

    If the measured Os isotopic ratios are a signature from the Earth's outer core, understanding them is a unique opportunity to understand more about the Earth's core. The distribution of elements between the Earth's solid inner core and the liquid outer core will depend on their solid metal-liquid metal partition coefficients (D). Solid metal-liquid metal partitioning data are loosely consistent with the needed fractionations between Re-Os and Pt-Os to account for the Os isotopic signature; D(Os) is greater than both D(Re) and D(Pt), and the magnitude of the partition coefficients are similar to those needed [e.g. 7, 8]. The pressure in the core, the composition of the core, and the crystal structure of the solid Fe alloy in the inner core may influence the specific values of the partition coefficients. It may thus be possible to use these sensitivities of the partition coefficients to gain insight into the conditions within the Earth's core. In this abstract, we focus on the compositional influence of C, a potential component of the light element in the Earth's core [9], on the partitioning behaviors of Pt, Re, and Os.

  7. Thermal Control Using Liquid-Metal Bridge Switches

    NASA Technical Reports Server (NTRS)

    Hirsa, Amir H.; Olles, Joseph; Tilger, Christopher

    2013-01-01

    A short term effort (3-months) was undertaken to demonstrate the feasibility of a novel method to locally control the heat transfer rate and demonstrate the potential to achieve a turndown ratio of approximately 10:1. The technology had to be demonstrated to be at a TRL of 2-3, with a plan to advance it to a TRL 5-6. Here, we show that the concept recently developed in our laboratory, namely the pinned-contact, double droplet switch made by overfilling a hole drilled in a suitable substrate can be implemented with a low-melting temperature metal. When toggled near a second substrate, a liquid bridge can be reversibly connected or disconnected, on demand. We have shown experimentally that liquid-metal bridge switches can be made from gallium with a suitable choice of substrate materials, activation strategies, and control techniques. Individual as well as arrays of gallium bridge switches were shown to be feasible and can be robustly controlled. The very short response time of the bridge connection and disconnection (on the order of 1 millisecond) provides for utility in a wide range of applications. The liquid bridge switches may be controlled actively or passively. We have shown through computations and analysis that liquid bridge switches provide locally large turndown ratios (on the order of 103:1), so a relatively sparse packing of them would be needed to obtain the desired turndown ratio of 10:1. For the laboratory demonstrations, pressure activation was utilized. Simple designs for a passive control strategy are presented which are highly attractive for several reasons, including i) large turndown ratio, ii) no solid-moving parts, and iii) stable operation. Finally, we note that passive systems do not require any electronics for their control. This along with the relatively small molecular weight of candidate materials for the system, makes for a robust design outside of Earth?s magnetic field, where spacecraft are subject to significant radiation bombardment.

  8. Optical properties and emissivities of liquid metals and alloys

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Nordine, Paul C.

    1993-01-01

    This paper presents the results from our on-going program to investigate the optical properties of liquid metals and alloys at elevated temperatures. Ellipsometric and polarimetric techniques have been used to investigate the optical properties of materials in the 1000 - 3000 K temperature range and in the 0.3 - 0.1 mu m wavelength range. The ellipsometric and polarimetric techniques are described and the characteristics of the instruments are presented. The measurements are conducted by reflecting a polarized laser beam from an electromagnetically levitated liquid metal or alloy specimen. A Rotating Analyzer Ellipsometer (RAE) or a four-detector Division-of-Amplitude Photopolarimeter (DOAP) is used to determine the polarimetric properties of the light reflected at an angle of incidence of approximately 68 deg. Optical properties of the specimen which are calculated from these measurements include the index of refraction, extinction coefficient, normal spectral emissivity, and spectral hemispherical emissivity. These properties have been determined at various wavelengths and temperatures for liquid Ag, Al, Au, Cu, Nb, Ni, Pd, Pt, Si, Ti, Ti-Al alloys, U, and Zr. We also describe new experiments using pulsed-dye laser spectroscopic ellipsometry for studies of the wavelength dependence of the emissivities and optical properties of materials at high temperature. Preliminary results are given for liquid Al. The application of four-detector polarimetry for rapid determination of surface emissivity and true temperature is also described. Characteristics of these devices are presented. An example of the accuracy of this instrument in measurements of the melting point of zirconium is illustrated.

  9. UDV study of a liquid metal vortex flow

    NASA Astrophysics Data System (ADS)

    Losev, G.; Khalilov, R.; Kolesnichenko, I.

    2017-06-01

    The characteristics of an oscillating vortex flow of liquid metal were studied experimentally using an ultrasound Doppler velocimeter (UDV). The flow was generated by a local alternating magnetic field induced in a rectangular thin cell filled with gallium eutectic. The influence of medium temperature change and stirring on the UDV measurements was considered. The best set of parameters providing the reliability of long-term measurements were determined. The non-monotonic behavior of dependence of the local kinetic energy on the external alternating magnetic field intensity was found.

  10. Hydrogen permeation resistant layers for liquid metal reactors

    SciTech Connect

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented.

  11. Nuclear fuel for liquid metal cooled nuclear reactors

    SciTech Connect

    Duncombe, E.; Adamson, J.; Gratton, C.P.

    1983-11-22

    In a cluster of nuclear fuel rods cooled by liquid metal an obstruction to coolant flow results in overheating in the wake of the obstruction. By the provision of open ended heat transfer tubes in the flow channels, a guaranteed supply of coolant is maintained and this supply holds the temperature to below saturation. Heat transfer via the tubes is highly efficient and ensures that a sufficient temperature rise occurs at the cluster exit to provoke a response from the outlet temperature transducer sensing average temperature.

  12. Liquid-metal atomization for hot working preforms

    NASA Technical Reports Server (NTRS)

    Grant, N. J.; Pelloux, R. M.

    1974-01-01

    Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.

  13. Liquid metal thermal-electric converter electrode development

    SciTech Connect

    Martinez, J.I.

    1988-02-01

    This report describes work done in support of distributed receiver technology development. Dish-electric systems are being pursued in an effort to circumvent the need for energy transport by providing for heat-to-electricity energy conversion by individual heat engines at the focal point of parabolic dish concentrators. The Liquid Metal Thermal-Electric Converter is an engine that can convert thermal energy to electricity without the need for moving parts. The report documents the results of contracted work in the development of a long-lifetime, high-performance electrode for LMTEC, including the materials prepared for it. 17 refs., 20 figs., 3 tabs.

  14. Laser-Driven Corrugation Instability of Liquid Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Keilmann, Fritz

    1983-12-01

    During intense CO2-laser irradiation deep corrugations build up on liquid metals such as Hg, In, Sn, Al, and Pb. Spacing, orientation, growth, and decay of the corrugations are studied, by visible light diffraction; support is found for a model of stimulated scattering where the incident light parametrically decays into both the surface corrugation and a surface plasmon. Thermal evaporation supplies the nonlinearity. The instability provides polarization-dependent absorption and can be expected in laser-metalworking and laser-plasma situations.

  15. Mott Transition in a Metallic Liquid: Gutzwiller Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei; Barros, Kipton; Batista, Cristian D.; Kress, Joel D.; Kotliar, Gabriel

    2017-06-01

    We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.

  16. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  17. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  18. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  19. The stress analysis of a heavy liquid metal pump impeller

    NASA Astrophysics Data System (ADS)

    Ma, X. D.; Li, X. L.; Zhu, Z. Q.; Li, C. J.; Gao, S.

    2016-05-01

    Lead-based coolant reactor is a promising Generation-IV reactor. In the lead-based coolant reactor, the coolant is liquid lead or lead-bismuth eutectic. The main pump in the reactor is a very important device. It supplies force for the coolant circulation. The liquid metal has a very large density which is about ten times of the water. Also, the viscosity of the coolant is small which is about one sixth of the water. When the pump transports heavy liquid, the blade loading is heavy. The large force can cause the failure of the blade when the fatigue stress exceeds the allowable stress. The impeller fraction is a very serious accident which is strictly prohibited in the nuclear reactor. In this paper, the numerical method is used to simulate the flow field of a heavy liquid metal pump. The SST k-w turbulent model is used in the calculation to get a more precise flow structure. The hydraulic force is obtained with the one way fluid solid coupling. The maximum stress in the impeller is analyzed. The stress in the liquid metal pump is compared with that in the water pump. The calculation results show that the maximum stress of the impeller blade increases with increase of flow rate. In the design of the impeller blade thickness, the impeller strength in large operating condition should be considered. The maximum stress of the impeller blade located in the middle and near the hub of the leading edge. In this position, the blade is easy to fracture. The maximum deformation of the impeller firstly increase with increase of flow rate and then decrease with increase of flow rate. The maximum deformation exists in the middle of the leading edge when in small flow rate and in the out radius of the impeller when in large flow rate. Comparing the stress of the impeller when transporting water and LBE, the maximum stress is almost one-tenth of that in the LBE impeller which is the same ratio of the density. The static stress in different medium is proportional to the pressure

  20. Magnesium-Antimony Liquid Metal Battery for Stationary Energy Storage

    SciTech Connect

    Bradwell, DJ; Kim, H; Sirk, AHC; Sadoway, DR

    2012-02-01

    Batteries are an attractive option for grid: scale energy storage applications because of their small footprint and flexible siting. A high-temperature (700 degrees C) magnesium antimony (MgllSb) liquid metal battery comprising a negative electrode of Mg, a molten salt electrolyte (MgCL2-KCl-NaCl), and a positive electrode of Sb is proposed and characterized. Because of the immiscibility of the contiguous salt and metal phases, they stratify by density into three distinct layers. Cells were cycled at rates ranging from 50 to 200 mA/cm(2) and demonstrated up to 69% DC-DC energy efficiency. The self-segregating nature of the battery components and the use Of low-cost materials results in a promising technology for stationary energy storage applications.

  1. Angstrom-Resolved Metal-Organic Framework-Liquid Interfaces.

    PubMed

    Chiodini, Stefano; Reinares-Fisac, Daniel; Espinosa, Francisco M; Gutiérrez-Puebla, Enrique; Monge, Angeles; Gándara, Felipe; Garcia, Ricardo

    2017-09-11

    Metal-organic frameworks (MOFs) are a class of crystalline materials with a variety of applications in gas storage, catalysis, drug delivery or light harvesting. The optimization of those applications requires the characterization of MOF structure in the relevant environment. Dynamic force microscopy has been applied to follow dynamic processes of metal-organic-framework material. We provide images with spatial and time resolutions, respectively, of angstrom and seconds that show that Ce-RPF-8 surfaces immersed in water and glycerol experience a surface reconstruction process that is characterized by the diffusion of the molecular species along the step edges of the open terraces. The rate of the surface reconstruction process depends on the liquid. In water it happens spontaneously while in glycerol is triggered by applying an external force.

  2. Azimuthal swirl in liquid metal electrodes and batteries

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan; Kelley, Douglas

    2016-11-01

    Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.

  3. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    The state of the art in the field of liquid and amorphous metals and alloys is regularly updated through two series of complementary international conferences, the LAM (Liquid and Amorphous Metals) and the RQ (Rapidly Quenched Materials). The first series of the conferences started as LM-1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semi conductors, quasicrystals etc, were accepted as well. The conference tradition strongly encourages the participation of junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and Ural State Pedagogical University (USPU) and held on 8-13 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). There were 242 active and about 60 guest participants from 20 countries who attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale (25 min) and brief (15 min) oral reports. The program included 10 sessions, ranging from purely theoretical subjects to technological application of molten and amorphous alloys. The following sessions took place: A) Electronic structure and transport, magnetic properties; B) Phase transitions; C) Structure; D) Atomic dynamics and transport; E) Thermodynamics; F) Modelling, simulation; G) Surface and interface; H) Mechanical properties

  4. On-demand magnetic manipulation of liquid metal in microfluidic channels for electrical switching applications.

    PubMed

    Jeon, Jinpyo; Lee, Jeong-Bong; Chung, Sang Kug; Kim, Daeyoung

    2016-12-20

    We report magnetic-field-driven on-demand manipulation of liquid metal in microfluidic channels filled with base or acid. The liquid metal was coated with iron (Fe) particles and treated with hydrochloric acid to have strong bonding strength with the Fe particles. The magnetic liquid metal slug inserted in the microchannel is manipulated, merged, and separated. In addition, corresponding to the repositioning of an external magnet, the liquid metal slug can be readily moved in microfluidic channels with different angles (>90°) and cross-linked channels in any direction. We demonstrated the functionality of the liquid metal in the microfluidic channel for electrical switching applications by manipulation of the liquid metal, resulting in the sequential turning on of light emitting diodes (LEDs).

  5. Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis.

    PubMed

    Zhang, Wei; Naidu, Boddu S; Ou, Jian Zhen; O'Mullane, Anthony P; Chrimes, Adam F; Carey, Benjamin J; Wang, Yichao; Tang, Shi-Yang; Sivan, Vijay; Mitchell, Arnan; Bhargava, Suresh K; Kalantar-Zadeh, Kourosh

    2015-01-28

    Solvothermally synthesized Ga2O3 nanoparticles are incorporated into liquid metal/metal oxide (LM/MO) frameworks in order to form enhanced photocatalytic systems. The LM/MO frameworks, both with and without incorporated Ga2O3 nanoparticles, show photocatalytic activity due to a plasmonic effect where performance is related to the loading of Ga2O3 nanoparticles. Optimum photocatalytic efficiency is obtained with 1 wt % incorporation of Ga2O3 nanoparticles. This can be attributed to the sub-bandgap states of LM/MO frameworks, contributing to pseudo-ohmic contacts which reduce the free carrier injection barrier to Ga2O3.

  6. Beam and radiation tests of a fast, warm liquid {open_quotes}swimming pool{close_quotes} calorimeter

    SciTech Connect

    Kadyk, J.; WALIC Collaboration

    1993-09-01

    A fast, warm liquid calorimeter module with lead absorber immersed in tetramethyl pentane (TMP) as the liquid medium (i.e. a {open_quotes}swimming pool{close_quotes} configuration) has been built and tested in a high energy beam at FNAL, and exposed to intense radiation from a strong Co{sup 60} source. A two-tower prototype, incorporating the concept of the electrostatic transformer for fast readout, exhibited very good uniformity and small cross-talk in the beam test. This same calorimeter was exposed to over 10 Mrad of radiation from the Co{sup 60} source, and the electron drift lifetime was measured as a function of accumulated dose. The lifetime improved significantly with small doses of radiation, up to a few hundred krad, then decreased gradually at higher doses, and extrapolated to a minimum useful lifetime of 0.1 {mu}s at over 150 Mrad. This result was confirmed by measurements on a small single-electrode test cell which was irradiated to more than 25 Mrad. In this case, the lifetime decreased from 10{mu}s to 0.1 {mu}s when extrapolated to a dose of over 600 Mrad. This cell was also used to measure the effect of positive ion {open_quotes}space charge{close_quotes} buildup under intense radiation. The results suggest that such effects are small even at the highest intensity available, about 1.3 Mrad/day, for applied fields {ge}25 kV/cm.

  7. Specific power of liquid-metal-cooled reactors

    SciTech Connect

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs.

  8. High Temperature Concentrated Solar Power Using Liquid Metal

    NASA Astrophysics Data System (ADS)

    Henry, Asegun

    One of the most attractive ways to try and reduce the cost of concentrated solar power (CSP) is to increase the system efficiency and the biggest loss in the system occurs in the conversion of heat to electricity via heat engine. Heat engines that utilize turbomachinery currently operate near their thermodynamic limitations and thus one of the only ways to improve heat engine efficiency is to increase the turbine inlet temperature. Significant effort is being devoted to the development of supercritical CO2 heat engines, but the most efficient heat engines are combined cycles, which reach efficiencies as high as 60%. However, such heat engines require turbine inlet temperatures ~1300-1500C, which is far beyond what is currently feasible with the state of the art molten salt infrastructure. In working towards the development of a system that can operate in the 1300-1500C temperature range, the most significant challenges lie in the materials and forming functional and reliable components out of new materials. One of the most attractive options from a cost and heat transfer perspective is to use liquid metals, such as tin and aluminum-silicon alloys along with a ceramic based infrastructure. This talk will overview ongoing efforts in the Atomistic Simulation and Energy (ASE) research group at Georgia Tech to develop prototype components such as an efficient high temperature cavity receiver, pumps and valves that can make a liquid metal based CSP infrastructure realizable.

  9. Performance of Liquid Metals in Natural Circulation Cooled Nuclear Reactors

    SciTech Connect

    Ceballos, Carlos; Lathouwers, Danny; Verkooijen, Adrian

    2004-07-01

    The inherent safety capability of natural circulation makes reactor design more reliable. Additionally, the construction and operation of a nuclear power plant with natural circulation in the primary cooling circuit is an interesting alternative for nuclear plant designers, due to their lower operational and investment costs obtained by simplifying systems and controls. This paper deals with the feasibility of application of natural circulation in the primary cooling circuit of a liquid metal fast reactor. The methodology employed is a non-dimensional analysis, which describes the relationship between the physical properties and system variables. The performance criterion is bounded by a safety argument, referring to the maximum cladding temperature allowed during operation. The study considers several coolants, which can play a part in reactor cooling systems, such as lead, lead-bismuth and sodium. Bismuth and gallium are included in this analysis, in order to extend the range of properties for reference purposes. The results present a characterization of natural circulation flow in a reactor and compare the cooling capabilities from different liquid metals coolants. (authors)

  10. On-demand frequency tunability of fluidic antenna implemented with gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung; Doo, Seok Joo; Won, Heong Sup; Lee, Woojin; Jeon, Jinpyo; Chung, Sang Kug; Lee, Gil-Young; Oh, Semyoung; Lee, Jeong-Bong

    2017-04-01

    We investigated frequency tunability of a microfluidic-based antenna using on-demand manipulation of a gallium-based liquid metal alloy. The fluidic antenna was fabricated by polydimethylsiloxane (PDMS) and filled with the gallium-based liquid metal alloy (Galinstan®). It is composed of a digital number "7"-shaped feedline, and a square-shaped and a digital number "6"-shaped patterns, which are all implemented with the liquid metal. The gallium-based liquid metal was adhered to the channel surface due to its viscous oxide layer originating from the gallium oxide forming when it exposed to the air environment. We treated the liquid metal with hydrochloric acid solution to remove the oxide layer on the surface resulting in easy movement of the liquid metal in the channel, as the liquid metal surface has been transformed to be non-wettable. We controlled the physical length of the liquid metal slug filled in feedline with an applied air pressure, resulting in tuning the resonant frequency ranging from 2.2 GHz to 9.3 GHz. The fluidic antenna properties using the liquid metal's electrical conductivity and mobility were characterized by measuring the return loss (S11), and also simulated with CST Microwave Studio.

  11. The Atomic scale structure of liquid metal-electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Murphy, B. M.; Festersen, S.; Magnussen, O. M.

    2016-07-01

    Electrochemical interfaces between immiscible liquids have lately received renewed interest, both for gaining fundamental insight as well as for applications in nanomaterial synthesis. In this feature article we demonstrate that the atomic scale structure of these previously inaccessible interfaces nowadays can be explored by in situ synchrotron based X-ray scattering techniques. Exemplary studies of a prototypical electrochemical system - a liquid mercury electrode in pure NaCl solution - reveal that the liquid metal is terminated by a well-defined atomic layer. This layering decays on length scales of 0.5 nm into the Hg bulk and displays a potential and temperature dependent behaviour that can be explained by electrocapillary effects and contributions of the electronic charge distribution on the electrode. In similar studies of nanomaterial growth, performed for the electrochemical deposition of PbFBr, a complex nucleation and growth behaviour is found, involving a crystalline precursor layer prior to the 3D crystal growth. Operando X-ray scattering measurements provide detailed data on the processes of nanoscale film formation.

  12. Thermodynamic properties of lanthanide metals in liquid bismuth

    NASA Astrophysics Data System (ADS)

    Yamana, Hajimu; Sheng, Jiawei; Souda, Naohiko; Moriyama, Hirotake

    2001-04-01

    Thermodynamic quantities of La, Gd, Tb, and Dy in liquid bismuth were experimentally determined by electromotive force (EMF) measurement using a cell consisting of molten alkaline chloride and liquid bismuth. Excess Gibbs energy changes and activity coefficients were determined at varying concentrations and temperatures. Through their temperature dependence, corresponding enthalpy changes and entropy changes were determined. The excess enthalpy changes of La, Gd, Tb, and Dy in liquid bismuth in a temperature range from 850 to 1100 K were evaluated to be, -221.54±2.31, -202.25±1.80, -199.83±0.55, and -193.80±0.99 kJ/mol, respectively. The systematic variation of excess enthalpy change of lanthanides along the 4f-series was discussed. As a result, it was found that the excess enthalpy changes of La, Gd, Tb, Dy, and Er are likely to depend linearly on the 2/3 power of their metallic volume.

  13. Liquid metal micro heat pipes for space radiator applications

    NASA Technical Reports Server (NTRS)

    Gerner, F. M.; Henderson, H. T.

    1995-01-01

    Micromachining is a chemical means of etching three-dimensional structures, typically in single-crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (micro electro mechanical systems), where in addition to the ordinary two dimensional (planar) microelectronics, it is possible to build three-dimensional micromotors, electrically-actuated microvalves, hydraulic systems, and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor microfabrication. The University of Cincinnati group in collaboration with NASA Lewis formed micro heat pipes in silicon by the above techniques. Work is ongoing at a modest level, but several essential bonding and packaging techniques have been recently developed. Currently, we have constructed and filled water/silicon micro heat pipes. Preliminary thermal tests of arrays of 125 micro heat pipes etched in a 1 inch x 1 inch x 250 micron silicon wafer have been completed. These pipes are instrumented with extremely small P-N junctions to measure their effective conductivity and their maximum operating power. A relatively simple one-dimensional model has been developed in order to predict micro heat pipes' operating characteristics. This information can be used to optimize micro heat pipe design with respect to length, hydraulic diameter, and number of pipes. Work is progressing on the fabrication of liquid-metal micro heat pipes. In order to be compatible with liquid metal (sodium or potassium), the inside of the micro heat pipes will be coated with a refractory metal (such as tungsten, molybdenum, or titanium).

  14. Mechanical annealing in the flow of supercooled metallic liquid

    SciTech Connect

    Zhang, Meng; Dai, Lan Hong; Liu, Lin

    2014-08-07

    Flow induced structural evolution in a supercooled metallic liquid Vit106a (Zr{sub 58.5}Cu{sub 15.6}Al{sub 10.3}Ni{sub 12.8}Nb{sub 2.8}, at. %) was investigated via uni-axial compression combined with differential scanning calorimeter (DSC). Compression tests at strain rates covering the transition from Newtonian flow to non-Newtonian flow and at the same strain rate 2 × 10{sup −1} s{sup −1} to different strains were performed at the end of glass transition (T{sub g-end} = 703 K). The relaxation enthalpies measured by DSC indicate that the samples underwent non-Newtonian flow contain more free volume than the thermally annealed sample (703 K, 4 min), while the samples underwent Newtonian flow contain less, namely, the free volume of supercooled metallic liquids increases in non-Newtonian flow, while decreases in Newtonian flow. The oscillated variation of the relaxation enthalpies of the samples deformed at the same strain rate 2 × 10{sup −1} s{sup −1} to different strains confirms that the decrease of free volume was caused by flow stress, i.e., “mechanical annealing.” Micro-hardness tests were also performed to show a similar structural evolution tendency. Based on the obtained results, the stress-temperature scaling in the glass transition of metallic glasses are supported experimentally, as stress plays a role similar to temperature in the creation and annihilation of free volume. In addition, a widening perspective angle on the glass transition of metallic glasses by exploring the 3-dimensional stress-temperature-enthalpy phase diagram is presented. The implications of the observed mechanical annealing effect on the amorphous structure and the work-hardening mechanism of metallic glasses are elucidated based on atomic level stress model.

  15. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  16. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  17. Electron transport across metal/discotic liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Boden, N.; Bushby, R. J.; Clements, J.; Movaghar, B.

    1998-03-01

    Electron transport across micron thick films of columnar hexagonal discotic liquid crystal phases homeotropically aligned between metal electrode surfaces has been studied both experimentally and theoretically. These molecules are unique in their combination of charge transport along individual molecular columns with liquidlike self-organization. Typical of organic insulators, a high resistance Ohmic regime is evident at fields of less than 0.05 MV cm-1, due to a low concentration of chemical impurities (n<109cm-3), and a space-charge injection regime at higher fields. Breakdown fields are reasonably high: in hexakis(hexyloxy)triphenylene they reach ˜5 MV cm-1 at room temperature. Our results show that triphenylene-based discotics form an excellent class of highly ordered optically transparent insulators. At high temperatures and high fields the current is injection controlled and exhibits typical tunneling and space charge limited, nonlinear I-V characteristics. Dramatic jumps in injection currents are observed at phase transitions. The change at the crystalline to liquid crystalline phase transition is mainly due to more efficient "wetting" of the electrode surface in the liquid crystalline phase, whilst at the liquid crystalline to isotropic phase transition it arises from the enhancement in the molecular mobility. The concepts of semiconducting gaps, band mobilities, and carrier injection rates are extended to these new materials. The experimental observations are interpreted in a framework which takes into account the important role played by liquidlike dynamics in establishing the microscopic structural order in, what is, otherwise a highly anisotropic and weakly bonded "molecular crystal."

  18. A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath

    NASA Astrophysics Data System (ADS)

    Matveichev, A.; Jardy, A.; Bellot, J. P.

    2016-07-01

    In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.

  19. Jumping liquid metal droplet in electrolyte triggered by solid metal particles

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Wang, Junjie; Liu, Jing; Zhou, Yuan

    2016-05-01

    We report the electron discharge effect due to point contact between liquid metal and solid metal particles in electrolyte. Adding nickel particles induces drastic hydrogen generating and intermittent jumping of a sub-millimeter EGaIn droplet in NaOH solution. Observations from different orientations disclose that such jumping behavior is triggered by pressurized bubbles under the assistance of interfacial interactions. Hydrogen evolution around particles provides clear evidence that such electric instability originates from the varied electric potential and morphology between the two metallic materials. The point-contact-induced charge concentration significantly enhances the near-surface electric field intensity at the particle tips and thus causes electric breakdown of the electrolyte.

  20. Jumping liquid metal droplet in electrolyte triggered by solid metal particles

    SciTech Connect

    Tang, Jianbo; Wang, Junjie; Liu, Jing E-mail: zhouyuan@mail.ipc.ac.cn; Zhou, Yuan E-mail: zhouyuan@mail.ipc.ac.cn

    2016-05-30

    We report the electron discharge effect due to point contact between liquid metal and solid metal particles in electrolyte. Adding nickel particles induces drastic hydrogen generating and intermittent jumping of a sub-millimeter EGaIn droplet in NaOH solution. Observations from different orientations disclose that such jumping behavior is triggered by pressurized bubbles under the assistance of interfacial interactions. Hydrogen evolution around particles provides clear evidence that such electric instability originates from the varied electric potential and morphology between the two metallic materials. The point-contact-induced charge concentration significantly enhances the near-surface electric field intensity at the particle tips and thus causes electric breakdown of the electrolyte.

  1. Kinetics of gas-to-liquid and liquid-to-solid transfer of particles in metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Rana, F.; Moitra, A.; Kacar, S.

    1990-01-01

    Analytical models for transfer of particles from gas to liquid and from liquid to solid are introduced. The model for calculation of the pushing/engulfment transition in directionally solidified particulate metal matrix composites, considers process thermodynamics, process kinetics, thermophysical properties and buoyant forces. Based on processing variables (solidification velocity and direction) and on material variables (interface energies, particle size, particle and liquid density, volume fraction of particles and particle/liquid thermal conductivity ratio) four types of behavior were predicted. Also, two numerical models for liquid-to-solid transfer are discussed, as well as the limitations of presently available models.

  2. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates.

    PubMed

    Wolf, Stephan E; Müller, Lars; Barrea, Raul; Kampf, Christopher J; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten; Emmerling, Franziska; Tremel, Wolfgang

    2011-03-01

    During the mineralisation of metal carbonates MCO3 (M=Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed.

  3. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

    PubMed Central

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten

    2011-01-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241

  4. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    SciTech Connect

    Hunsbedt, A.; Boardman, C.E.

    1993-06-29

    A dual passive cooling system for liquid metal cooled nuclear fission reactors is described, comprising the combination of: a reactor vessel for containing a pool of liquid metal coolant with a core of heat generating fissionable fuel substantially submerged therein, a side wall of the reactor vessel forming an innermost first partition; a containment vessel substantially surrounding the reactor vessel in spaced apart relation having a side wall forming a second partition; a first baffle cylinder substantially encircling the containment vessel in spaced apart relation having an encircling wall forming a third partition; a guard vessel substantially surrounding the containment vessel and first baffle cylinder in spaced apart relation having a side wall forming a forth partition; a sliding seal at the top of the guard vessel edge to isolate the dual cooling system air streams; a second baffle cylinder substantially encircling the guard vessel in spaced part relationship having an encircling wan forming a fifth partition; a concrete silo substantially surrounding the guard vessel and the second baffle cylinder in spaced apart relation providing a sixth partition; a first fluid coolant circulating flow course open to the ambient atmosphere for circulating air coolant comprising at lent one down comer duct having an opening to the atmosphere in an upper area thereof and making fluid communication with the space between the guard vessel and the first baffle cylinder and at least one riser duct having an opening to the atmosphere in the upper area thereof and making fluid communication with the space between the first baffle cylinder and the containment vessel whereby cooling fluid air can flow from the atmosphere down through the down comer duct and space between the forth and third partitions and up through the space between the third and second partition and the riser duct then out into the atmosphere; and a second fluid coolant circulating flow.

  5. Gallium-Based Room Temperature Liquid Metals and its Application to Single Channel Two-Liquid Hyperelastic Capacitive Strain Sensors

    NASA Astrophysics Data System (ADS)

    Liu, Shanliangzi

    Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because of their strong adhesion to a majority of substrates. This unusual high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In the first part of the thesis, we described a multiscale study aiming at understanding the fundamental mechanisms governing wetting and adhesion of gallium-based liquid metals. In particular, macroscale dynamic contact angle measurements were coupled with Scanning Electron Microscope (SEM) imaging to relate macroscopic drop adhesion to morphology of the liquid metal-surface interface. In addition, room temperature liquid-metal microfluidic devices are also attractive systems for hyperelastic strain sensing. Currently two types of liquid metal-based strain sensors exist for inplane measurements: single-microchannel resistive and two-microchannel capacitive devices. However, with a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter, limiting the number of sensors that can be embedded into. In the second part of the thesis, firstly, simulations and an experimental setup consisting of two GaInSn filled tubes submerged within a dielectric liquid bath are used to quantify the effects of the cylindrical electrode geometry including diameter, spacing, and meniscus shape as well as dielectric constant of the insulating liquid and the presence of tubing on the overall system's capacitance. Furthermore, a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel is developed. Lastly, capacitance and response of this compact device to strain and operational issues arising from complex hydrodynamics near liquid-liquid and liquid

  6. Clustomesogens: Liquid Crystalline Hybrid Nanomaterials Containing Functional Metal Nanoclusters.

    PubMed

    Molard, Yann

    2016-08-16

    Inorganic phosphorescent octahedral metal nanoclusters fill the gap between metal complexes and nanoparticles. They are finite groups of metal atoms linked by metal-metal bonds, with an exact composition and structure at the nanometer scale. As their phosphorescence internal quantum efficiency can approach 100%, they represent a very attractive class of molecular building blocks to design hybrid nanomaterials dedicated to light energy conversion, optoelectronic, display, lighting, or theragnostic applications. They are obtained as AnM6X(i)8X(a)6 ternary salt powders (A = alkali cation, M = Mo, Re, W, X(i): halogen inner ligand, X(a) = halogen apical ligand) by high temperature solid state synthesis (750-1200 °C). However, their ceramic-like behavior has largely restricted their use as functional components in the past. Since these last two decades, several groups, including ours, started to tackle the challenge of integrating them in easy-to-process materials. Within this context, we have extensively explored the nanocluster ternary salt specificities to develop a new class of self-organized hybrid organic-inorganic nanomaterials known as clustomesogens. These materials, combine the specific properties of nanoclusters (magnetic, electronic, luminescence) with the anisotropy-related properties of liquid crystals (LCs). This Account covers the research and development of clustomesogens starting from the design concepts and synthesis to their introduction in functional devices. We developed three strategies to build such hybrid super- or supramolecules. In the covalent approach, we capitalized on the apical ligand-metal bond iono-covalent character to graft tailor-made organic LC promoters on the {M6X(i)8}(n+) nanocluster cores. The supramolecular approach relies on the host-guest complexation of the ternary cluster salt alkali cations with functional crown ether macrocycles. We showed that the hybrid LC behavior depends on the macrocycles structural features

  7. Reliability and Maintainability Data for Liquid Metal Cooling Systems

    SciTech Connect

    Cadwallader, Lee Charles

    2015-05-01

    One of the coolants of interest for future fusion breeding blankets is lead-lithium. As a liquid metal it offers the advantages of high temperature operation for good station efficiency, low pressure, and moderate flow rate. This coolant is also under examination for use in test blanket modules to be used in the ITER international project. To perform reliability, availability, maintainability and inspectability (RAMI) assessment as well as probabilistic safety assessment (PSA) of lead-lithium cooling systems, component failure rate data are needed to quantify the system models. RAMI assessment also requires repair time data and inspection time data. This paper presents a new survey of the data sets that are available at present to support RAMI and PSA quantification. Recommendations are given for the best data values to use when quantifying system models.

  8. Capture of liquid hydrogen boiloff with metal hydride absorbers

    NASA Technical Reports Server (NTRS)

    Rosso, M. J.; Golben, P. M.

    1984-01-01

    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.

  9. Heterogeneous fragmentation of metallic liquid microsheet with high velocity gradient

    NASA Astrophysics Data System (ADS)

    An-Min, He; Pei, Wang; Jian-Li, Shao

    2016-01-01

    Large-scale molecular dynamics simulations are performed to study the fragmentation of metallic liquid sheets with high velocity gradient. Dynamic fragmentation of the system involves the formation of a network of fragments due to the growth and coalescence of holes, decomposition of the network into filaments, and further breakup of the filaments into spherical clusters. The final size distribution of the fragmented clusters in the large volume limit is found to obey a bilinear exponential form, which is resulted from the heterogeneous breakup of quasi-cylindrical filaments. The main factors contributing to fragmentation heterogeneity are introduced, including strain rate inhomogeneity and matter distribution nonuniformity of fragments produced during decomposition of the network structure. Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2013A0201010 and 2015B0201039) and the National Natural Science Foundation of China (Grant No. 11402032).

  10. Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.

  11. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  12. Note: Fabrication of roughened tips for liquid metal ion sources

    NASA Astrophysics Data System (ADS)

    Guo, Dengshuai; Kang, Xiaoming; Hu, Jing; Liu, Xinyu; He, Weiguo

    2017-06-01

    In a liquid metal ion source (LMIS), the radius and the surface texture of the LMIS needle tip are demonstrated to have great effect on the I-V characteristics and the threshold voltages. In this paper, the dependence of the AC electrochemical etching parameters on the radius and the surface texture of the needle tip is investigated experimentally. A new method for fabricating the needle tip with the designed radius and texture for the LMIS is proposed. In this method, the roughening of a needle tip consists of two processes: a short time high AC voltage etching process and a long time low AC voltage etching process. The performances of the presented method are validated by a number of experiments.

  13. Light-driven liquid metal nanotransformers for biomedical theranostics

    NASA Astrophysics Data System (ADS)

    Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro

    2017-05-01

    Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging.

  14. High current liquid metal ion source using porous tungsten multiemitters.

    PubMed

    Tajmar, M; Vasiljevich, I; Grienauer, W

    2010-12-01

    We recently developed an indium Liquid-Metal-Ion-Source that can emit currents from sub-μA up to several mA. It is based on a porous tungsten crown structure with 28 individual emitters, which is manufactured using Micro-Powder Injection Molding (μPIM) and electrochemical etching. The emitter combines the advantages of internal capillary feeding with excellent emission properties due to micron-size tips. Significant progress was made on the homogeneity of the emission over its current-voltage characteristic as well as on investigating its long-term stability. This LMIS seems very suitable for space propulsion as well as for micro/nano manufacturing applications with greatly increased milling/drilling speeds. This paper summarizes the latest developments on our porous multiemitters with respect to manufacturing, emission properties and long-term testing. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Light-driven liquid metal nanotransformers for biomedical theranostics

    PubMed Central

    Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro

    2017-01-01

    Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging. PMID:28561016

  16. Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.

  17. Method of shielding a liquid-metal-cooled reactor

    DOEpatents

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  18. Review of experimental investigations of liquid-metal heat transfer

    NASA Technical Reports Server (NTRS)

    Lubarsky, Bernard; Kaufman, Samuel J

    1956-01-01

    Experimental data of various investigators of liquid-metal heat-transfer characteristics were reevaluated using as consistent assumptions and methods as possible and then compared with each other and with theoretical results. The reevaluated data for both local fully developed and average Nusselt numbers in the turbulent flow region were found still to have considerable spread, with the bulk of the data being lower than predicted by existing analysis. An equation based on empirical grounds which represents most of the fully developed heat-transfer data is nu = 0.625 pe(0.4) where nu represents the Nusselt number and pe the Peclet number. The theoretical prediction of the heat transfer in the entrance region was found to give lower values, in most cases, than those found in the experimental work.

  19. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

  20. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  1. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.; Pearson, J. Boise

    2010-01-01

    The Early Flight Fission Test Facility (EFF-TF) was established by the Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations. The EFF-TF is currently supporting an effort to develop an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled (Sodium-Potassium eutectic, NaK-78) reactor design. This design was derived from the only fission system that the United States has deployed for space operation, the Systems for Nuclear Auxiliary Power (SNAP) 10A reactor, which was launched in 1965. Two prototypical components recently tested at MSFC were a pair of Stirling power conversion units that would be used in a reactor system to convert heat to electricity, and an annular linear induction pump (ALIP) that uses travelling electromagnetic fields to pump the liquid metal coolant through the reactor loop. First ever tests were conducted at MSFC to determine baseline performance of a pair of 1 kW Stirling convertors using NaK as the hot side working fluid. A special test rig was designed and constructed and testing was conducted inside a vacuum chamber at MSFC. This test rig delivered pumped NaK for the hot end temperature to the Stirlings and water as the working fluid on the cold end temperature. These test were conducted through a hot end temperature range between 400 to 550C in increments of 50 C and a cold end temperature range from 30 to 70 C in 20 C increments. Piston amplitudes were varied from 6 to 1 1mm in .5 mm increments. A maximum of 2240 Watts electric was produced at the design point of 550 hot end, 40 C cold end with a piston amplitude of 10.5mm. This power level was reached at a gross thermal

  2. Lessons Learned about Liquid Metal Reactors from FFTF Experience

    SciTech Connect

    Wootan, David W.; Casella, Andrew M.; Omberg, Ronald P.; Burke, Thomas M.; Grandy, Christopher

    2016-09-20

    The Fast Flux Test Facility (FFTF) is the most recent liquid-metal reactor (LMR) to operate in the United States, from 1982 to 1992. FFTF is located on the DOE Hanford Site near Richland, Washington. The 400-MWt sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission test reactor was designed specifically to irradiate Liquid Metal Fast Breeder Reactor (LMFBR) fuel and components in prototypical temperature and flux conditions. FFTF played a key role in LMFBR development and testing activities. The reactor provided extensive capability for in-core irradiation testing, including eight core positions that could be used with independent instrumentation for the test specimens. In addition to irradiation testing capabilities, FFTF provided long-term testing and evaluation of plant components and systems for LMFBRs. The FFTF was highly successful and demonstrated outstanding performance during its nearly 10 years of operation. The technology employed in designing and constructing this reactor, as well as information obtained from tests conducted during its operation, can significantly influence the development of new advanced reactor designs in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor operations. The FFTF complex included the reactor, as well as equipment and structures for heat removal, containment, core component handling and examination, instrumentation and control, and for supplying utilities and other essential services. The FFTF Plant was designed using a “system” concept. All drawings, specifications and other engineering documentation were organized by these systems. Efforts have been made to preserve important lessons learned during the nearly 10 years of reactor operation. A brief summary of Lessons Learned in the following areas will be discussed: Acceptance and Startup Testing of FFTF FFTF Cycle Reports

  3. Electric current induced flow of liquid metals: Mechanism and substrate-surface effects

    SciTech Connect

    Kumar, P.; Howarth, J.; Dutta, I.

    2014-01-28

    Long range, continuous flow of liquid metals occurs upon application of an electric current. Here, we report experimental results elucidating the mechanism of current-induced liquid metal flow, and its dependence on substrate surface condition. It is shown that the observed flow is diffusion-controlled, with the flow-rate depending linearly on applied current density, indicating that it is driven by electromigration. The effective charge number for liquid electromigration, Z*, of several pure metals, such as Al, Bi, Ga, Sn, and Pb, were deduced from the experimental results and were found to be close to the elemental valency. With the exception of liquid Pb, Z* for all liquid metals tested in this study were positive, indicating that: (i) electron wind contributes much less to Z* in liquid metals than in solids, and (ii) with a few exceptions, liquid metals generally flow in the direction of the electric current. On smooth substrates which are wetted well by the liquid metal, flow occurs in a thin, continuous stream. On rough surfaces which are poorly wetted, on the other hand, discrete beads of liquid form, with mass transport between adjacent beads occurring by surface diffusion on the substrate. A rationale for the role of substrate roughness in fostering this observed transition in flow mechanism is presented.

  4. Gravitational effects on the GTA weld pool size of a pure metal

    NASA Astrophysics Data System (ADS)

    Domey, Jeffrey John

    Understanding the physical phenomena involved in the welding process is of substantial value to improving the weldability of materials. The nature of arc welding restricts direct observation during the welding process to surface phenomena, and physical observation of the weld is limited to solidified welds. Thus, accurate computational simulations are needed to provide a better understanding of the transient phenomena that are present during the welding process. One of the major factors affecting the motion within the molten weld pool is the gravity-driven buoyancy force. This force opposes the electromagnetic force induced flow for the straight polarity (direct-current electrode negative) GTA weld. The buoyancy force can also act to oppose or enhance the Marangoni convective flow within the weld pool depending on the sign of the surface tension temperature coefficient. An extensive study involving both numerical as well as physical experiments of the GTA welding process covering a variety of gravitational fields has been performed. Numerical experiments, utilizing the WELDER code, were conducted for stationary GTA welds onto an aluminum alloy. It was found that at a g-level of 0.1g, the convective flow was dominated by the electromagnetic force, while at higher g-levels, 1.0g and 2.0g, the convective flow was dominated by the buoyancy force. It was also found that the depth-to-width (d/w) ratio decreased as the g-level increased for 0.1g to 2.0g. Numerical experiments were also performed in the 1.0g to 10.0g range for stationary GTA welds onto commercially pure nickel. It was found that the electro-magnetic force dominated all of the simulations, although as the g-level increased, the buoyancy force increased causing a decrease in the depth of the fusion zone. This decrease in depth caused a decrease in the d/w ratio of the fusion zone as the g-level increased. Physical experiments for GTA welding of commercially pure nickel in the high-g range (up to 10.0g) were

  5. The Dounreay PFR Liquid-Metal Disposal Project

    SciTech Connect

    Sherwood, D.V.; Comline, A.; Small, J.; Blyth, J

    2005-04-15

    The UKAEA Prototype Fast Reactor at Dounreay had a liquid sodium-cooled core. Following its shutdown in 1994, the liquid metal is being removed from the reactor and other vessels by means of specialized equipment and reacted with an aqueous solution of sodium hydroxide in a special vessel. The reaction products are neutralized with hydrochloric acid to produce a saline solution.The reactor sodium delivery and processing equipment is all of novel design. As sodium has been withdrawn from the vessel, it has been necessary to switch off the primary sodium pumps (used to heat the sodium), and the reactor is now kept at temperature by a purpose-designed electric heater and a NaK loop heater.A primary sodium extract pump has currently removed [approximately]450 tonnes of primary sodium from the reactor. As the level falls special equipment will be used to punch a hole in the primary circuit pipe work and to drill the strongback to allow trapped sodium to drain for extraction.

  6. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity

    SciTech Connect

    Wang, M.; Adams, J. J.; Trlica, C.; Khan, M. R.; Dickey, M. D.

    2015-05-21

    We describe a new electrochemical method for reversible, pump-free control of liquid eutectic gallium and indium (EGaIn) in a capillary. Electrochemical deposition (or removal) of a surface oxide on the EGaIn significantly lowers (or increases) its interfacial tension as a means to induce the liquid metal in (or out) of the capillary. A fabricated prototype demonstrates this method in a reconfigurable antenna application in which EGaIn forms the radiating element. By inducing a change in the physical length of the EGaIn, the operating frequency of the antenna tunes over a large bandwidth. This purely electrochemical mechanism uses low, DC voltages to tune the antenna continuously and reversibly between 0.66 GHz and 3.4 GHz resulting in a 5:1 tuning range. Gain and radiation pattern measurements agree with electromagnetic simulations of the device, and its measured radiation efficiency varies from 41% to 70% over its tuning range.

  7. Characterization of Ceramic Foam Filters Used for Liquid Metal Filtration

    NASA Astrophysics Data System (ADS)

    Kennedy, Mark William; Zhang, Kexu; Fritzsch, Robert; Akhtar, Shahid; Bakken, Jon Arne; Aune, Ragnhild E.

    2013-06-01

    In the current study, the morphology including tortuosity, and the permeability of 50-mm thick commercially available 30, 40, 50, and 80 pores per inch (PPI) alumina ceramic foam filters (CFFs) have been investigated. Measurements have been taken of cell (pore), window, and strut sizes, porosity, tortuosity, and liquid permeability. Water velocities from ~0.015 to 0.77 m/s have been used to derive both first-order (Darcy) and second-order (Non-Darcy) terms for being used with the Forchheimer equation. Measurements were made using 49-mm "straight through" and 101-mm diameter "expanding flow field" designs. Results from the two designs are compared with calculations made using COMSOL 4.2a® 2D axial symmetric finite element modeling (FEM), as a function of velocity and filter PPI. Permeability results are correlated using directly measurable parameters and compared with the previously published results. Development of improved wall sealing (49 mm) and elimination of wall effects (101 mm) have led to a high level of agreement between experimental, analytic, and FEM methods (±0 to 7 pct on predicted pressure drop) for both types of experiments. Tortuosity has been determined by two inductive methods, one using cold-solidified samples at 60 kHz and the other using liquid metal at 50 Hz, giving comparable results.

  8. Correlation of the fragility of metallic liquids with the high temperature structure, volume, and cohesive energy

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A. K.; Pueblo, C. E.; Dai, R.; Johnson, M. L.; Ashcraft, R.; Van Hoesen, D.; Sellers, M.; Kelton, K. F.

    2017-04-01

    The thermal expansion coefficients, structure factors, and viscosities of twenty-five equilibrium and supercooled metallic liquids have been measured using an electrostatic levitation (ESL) facility. The structure factor was measured at the Advanced Photon Source, Argonne, using the ESL. A clear connection between liquid fragility and structural and volumetric changes at high temperatures is established; the observed changes are larger for the more fragile liquids. It is also demonstrated that the fragility of metallic liquids is determined to a large extent by the cohesive energy and is, therefore, predictable. These results are expected to provide useful guidance in the future design of metallic glasses.

  9. Experimental Partitioning of As and SB Among Metal, Troilite, Schreibersite, Barringerite, and Metallic Liquid

    NASA Astrophysics Data System (ADS)

    Jones, J. H.; Casanova, I.

    1993-07-01

    We have performed a series of experiments to evaluate the behaviors of As and Sb in metallic systems. Because of the reputed chalcophile nature of these elements, we wrongly anticipated that they would follow S and that, compared to the Fe-X systems [1], (solid metal/liquid metal) partition coefficients would be considerably lower in S-bearing systems. Experimental and Analytical: Experiments were performed in sealed silica tubes as in [2]. Starting materials were high-purity metals, natural pyrite, and natural stibnite. Charges were doped either with As or Sb. Experiments were held at either 950 degrees C for six days or 1250 degrees C for three days. Typical experimental assemblages consisted either of taenite and coexisting Fe-Ni-S-X liquid (1250 degrees and 950 degrees C) or an assemblage of troilite, schreibersite, and Fe-Ni-S-P-X liquid (950 degrees C). The schreibersite-bearing, As-doped charge also contained barringerite (Fe,Ni)2P. Charges were mounted in epoxy, polished, and analyzed using a Cameca SX-50 electron microprobe and standard techniques. Results: Phases appeared homogeneous. Our results, along with partition coefficients inferred for the S-free system, are given in Table 1. Table 1 appears here in the hard copy. Discussion: Our results indicate that As behaves as a siderophile element at low temperatures, very analogous to Au. While the siderophility of Sb increases with decreasing temperature, it remains incompatible in solid metal. In this regard Sb is unique. Both As and Sb are very incompatible in troilite. Arsenic is weakly incompatible in schreibersite and strongly compatible in barringerite. Nickel shows no preference for either phosphide. Nickel partition coefficients for metal and schreibersite are similar to those measured previously [3]. On a lnD vs. ln(1-2 alpha X(S)) diagram [4], the data for Sb and As subparallel each other, indicating similar dependencies on S, despite their very different partition coefficients. Arsenic behaves

  10. Relaxational Dynamics of a Model Glass-forming Metallic Liquid

    NASA Astrophysics Data System (ADS)

    Jaiswal, Abhishek; O'Keeffe, Stephanie; Podlesnyak, Andrey; Ehlers, Georg; Mills, Rebecca; Lokshin, Konstantin; Dmowski, Wojciech; Egami, Takeshi; Zhang, Yang

    2015-03-01

    Understanding the diffusional behavior of multi-component glass-forming metallic liquids is of critical importance to the development of novel alloy systems such as bulk metallic glasses (BMG). However, such diffusions are highly activated and complicated because of structural disorder induced by quenching, and chemical disorders induced by size mismatch. Herein, we report temperature and wave-vector transfer (Q) dependence of two-step collective relaxations in the BMG (LM601: ZrCuNiAl) melt measured by quasi-elastic neutron scattering. Q-dependence of both fast and slow relaxation time, and the adiabatic sound speed are found to obey the principle of de Gennes narrowing. The measured spectra show a distinct vibrational mode at around 15 meV. Classical Molecular Dynamics (MD) simulation of CuZrAl system, using EAM potential shows that this acoustic mode arises from local vibrations of Al in the cage formed by Cu and Zr atoms. Furthermore, we observed a breakdown of Stokes-Einstein relation in the MD simulated system well above its melting temperature. Accompanied dynamical clustering was detected using unsupervised machine learning techniques. These mechanisms in tandem can be responsible for the excellent glass-forming ability of this material.

  11. Space- and time-resolved resistive measurements of liquid metal wall thickness.

    PubMed

    Mirhoseini, S M H; Volpe, F A

    2016-11-01

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  12. Space- and time-resolved resistive measurements of liquid metal wall thickness

    SciTech Connect

    Mirhoseini, S. M. H.; Volpe, F. A.

    2016-11-15

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  13. Space- and time-resolved resistive measurements of liquid metal wall thickness

    NASA Astrophysics Data System (ADS)

    Mirhoseini, S. M. H.; Volpe, F. A.

    2016-11-01

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  14. Diffusion in liquid metal systems. [information on electrical resistivity and thermal conductivity

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.

    1975-01-01

    Physical properties of twenty liquid metals are reported; some of the data on such liquid metal properties as density, electrical resistivity, thermal conductivity, and heat capacity are summarized in graphical form. Data on laboratory handling and safety procedure are summarized for each metal; heat-transfer-correlations for liquid metals under various conditions of laminar and turbulent flow are included. Where sufficient data were available, temperature equations of properties were obtained by the method of least-squares fit. All values of properties given are valid in the given liquid phase ranges only. Additional tabular data on some 40 metals are reported in the appendix. Included is a brief description of experiments that were performed to investigate diffusion in liquid indium-gallium systems.

  15. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  16. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  17. Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.

  18. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOEpatents

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  19. The Internal Pressure and Cohesive Energy Density of Liquid Metallic Elements

    NASA Astrophysics Data System (ADS)

    Marcus, Yizhak

    2017-02-01

    The internal pressures, P_{int}, of practically all the liquid metallic elements in the periodic table up to plutonium (except highly radioactive ones) at their melting points were calculated from data in the literature. They are compared with the respective cohesive energy densities, ced, obtained from the literature data too. The ratios P_{int}{/}ced for various liquids are ranked as follows: molten salts < polar/hydrogen-bonded molecular solvents ˜ liquid metals < room temperature ionic liquids < nonpolar molecular solvents, and the reverse of this list reflects the relative strengths of the mutual interactions of the particles constituting these liquids.

  20. Young Investigator Program: Quasi-Liquid Grain Boundary Films in Refractory Metals

    DTIC Science & Technology

    2010-01-15

    Barabash VR, Prokofyev YG. Effects of Neutron- Irradiation on Properties of Refractory- Metals . J. Nucl. Mater. 1992. 191:421. [104] Singh BN, Evans...Final Technical Report Young Investigator Program: Quasi-Liquid Grain Boundary Films in Refractory Metals Grant. No.: FA9550-07-1-0125...5a. CONTRACT NUMBER Nanoscale Quasi-Liquid Grain Boundary Films in Refractory Metals FA9550-07-1-0125 5b. GRANT NUMBER 5c. PROGRAM

  1. Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping.

    PubMed

    Li, Nian-Wu; Yin, Ya-Xia; Li, Jin-Yi; Zhang, Chang-Huan; Guo, Yu-Guo

    2017-02-01

    Hybrid electrolyte of ionic liquid and ethers is used to passivate the surface of Li metal surface via modification of the as-formed solid electrolyte interphase with N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide (Py13TFSI), thereby reducing the side reactions between the Li metal and electrolyte, leading to remarkably suppressed Li dendrite growth and mitigating Li metal corrosion.

  2. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  3. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  4. A Liquid Metal Dynamo and MRI Experiment; Rm ≃ 120

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling

    2003-10-01

    A liquid metal (sodium) model of an α ω dynamo has been build and initially tested with water. The measured torque confirms the designed stable Couette flow, the required power, and hence the minimum level of turbulence. The experiment is designed to simulate what we believe is the highest gain, e^10^11 and highest power ˜ 3 ot 10^46 ergs/s, dynamo, which presumably occurs in the accretion disk forming the massive black hole, ˜ 10^8 M_⊙, of every galaxy. The experiment also simulates the fast dynamo gain at the resistivity truncated end of the turbulence spectrum as well as stellar convection driven helicity. In the experiment the Keplerian shear in a conducting fluid is approximated as limiting stable Couette flow in liquid sodium between two cylinders 30 and 15 cm radius rotating at 30 and 120 Hz respectively. The driven plumes are approximated by a pair of forced axial jets driven axially (30 cm length and at ˜ 10 Hz). Numerical simulations and flux rotation arguments both predict positive gain, ˜ 0.2 Ω_0, at the design Couette flow magnetic Reynolds number, Rm = Ω0 R_0^2/ η ≃ 120 and plume Rm ≃ 10. Initially, without the jets, we plan on applying an external quadrupole field which allows us to measure the Ω gain, B_φ≃ Rm/2π ≃ 20 B_r. An axial external field allows us to test for up to six modes of MRI growth. The resulting MRI driven turbulence allows us to test for an MRI dynamo effect at the level of 10-4 of the applied field. Mean-field dynamo theory can be compared to a heuristic coherent flux rotation analysis. Supported by NSF, NMIMT, and LANL.

  5. An advanced selective liquid-metal plating technique for stretchable biosensor applications.

    PubMed

    Li, Guangyong; Lee, Dong-Weon

    2017-08-29

    This paper presents a novel stretchable pulse sensor fabricated by a selective liquid-metal plating process (SLMP), which can conveniently attach to the human skin and monitor the patient's heartbeat. The liquid metal-based stretchable pulse sensor consists of polydimethylsiloxane (PDMS) thin films and liquid metal functional circuits with electronic elements that are embedded into the PDMS substrate. In order to verify the utility of the fabrication process, various complex liquid-metal patterns are achieved by using the selective wetting behavior of the reduced liquid metal on the Cu patterns of the PDMS substrate. The smallest liquid-metal pattern is approximately 2 μm in width with a uniform surface. After verification, a transparent flowing LED light with programmed circuits is realized and exhibits stable mechanical and electrical properties under various deformations (bending, twisting and stretching). Finally, based on SLMP, a wireless pulse measurement system is developed which is composed of the liquid metal-based stretchable pulse sensor, a Bluetooth module, an Arduino development board, a laptop computer and a self-programmed visualized software program. The experimental results reveal that the portable non-invasive pulse sensor has the potential to reduce costs, simplify biomedical diagnostic procedures and help patients to improve their life in the future.

  6. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Brown, Heather M.; Zhang, Z. Conrad

    2007-06-15

    Sugars were converted to hydroxymethylfurfural (HMF) at high yield in ionic liquids without the addition of Bronsted acids. Very small amount of certain metal halides significantly reduced the fructose dehydration barrier in ionic liquids producing HMF at high yields. Most remarkably, glucose, a common sugar molecule, was selectively converted to HMF in good yield in ionic liquids containing a small amount of CrCl2. Thus CrCl2 is unique among metal chlorides tested for its effectiveness in both isomerizing glucose as well as dehydrating fructose. Only negligble amount of levulinic acid was formed in the reactions. The catalytic activity of metal chlorides for sugar conversion in ionic liquids is perhaps related to hydroxyl group of the sugar forming metal complexes with the unsaturated metal center.

  7. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Alloys for a liquid metal fast breeder reactor

    DOEpatents

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  9. Safety and control of modular liquid-metal reactors

    SciTech Connect

    Sackett, J.I. ); Sevy, R.H.; Wei, T.Y.C. )

    1989-01-01

    As part of recent development efforts on advanced reactor designs Argonne National Laboratory has proposed the integral fast reactor (IFR) concept. The IFR concept is currently being applied to modular-sized reactors, which would be built in multiple power packs together with an integrated fuel-cycle facility. It has been amply demonstrated that the concept, as applied to modular designs, has significant advantages in regard to anticipated transients without scram (ATWS). Attention is now focused on whether or not those advantages derived from the IFR traits can be translated to the operational/design-basis-accident class of transients. Inherent operability, in which reactor power control is effected through the use of primary pumps and balance-of-plant (BOP) swings rather than through the active motion of control rods, is a proposal to utilize the enhanced inherent feedback response of the IFR to improve the operating characteristics of liquid-metal reactors (LMRs). The scheme has associated with it potential advantages in the areas of plant control and design simplification. This study on inherent operability in modular LMRs therefore has implications for both operational and ATWS events. Current intentions are to analytically explore possibilities of applying various schemes to advanced LMRs with the aid of the SASSYS system code and then to test viable alternatives in the Experimental Breeder Reactor II (EBR-II) plant under the auspices of the inherent safety operability testing program.

  10. An investigation of corrosion in liquid-metal heat pipes

    SciTech Connect

    Adkins, D.R.; Rawlinson, K.S.; Andraka, C.E.; Showalter, S.K.; Moreno, J.B.; Moss, T.A.; Cordiero, P.G.

    1998-08-01

    Research is underway to develop a 75-kW heat pipe to transfer solar energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. The high flux levels and high total power level encountered in this application have made it necessary to use a high-performance wick structure with fibers on the order of 4 to 8 microns in diameter. This fine wick structure is highly susceptible to corrosion damage and plugging, as dissolved contaminants plate out on the evaporator surface. Normal operation of the heat pipe also tends to concentrate contaminants in localized areas of the evaporator surface where heat fluxes are the highest. Sandia National Laboratories is conducting a systematic study to identify procedures that reduce corrosion and contamination problems in liquid-metal heat pipes. A series of heat pipes are being tested to explore different options for cleaning heat-pipe systems. Models are being developed to help understand the overall importance of operating parameters on the life of heat-pipe systems. In this paper, the authors present their efforts to reduce corrosion damage.

  11. Design study for a liquid metal slip ring solar array orientation mechanism

    NASA Technical Reports Server (NTRS)

    Clark, R. B.

    1972-01-01

    The design of a single axis orientation mechanism for solar arrays on high power synchronous satellites is studied primarily with respect to providing 116 liquid metal slip rings for reduced friction and improved electrical characteristics. Designs and tradeoff studies for the slip rings and other components are presented. An assembly containing 33 slip rings of three design approaches was designed, fabricated, and vacuum tested to 30 amperes and 30,000 volts. Containment of the liquid metal gallium in large diameter slip rings was difficult. A design approach is presented which is expected to provide improved retention of the liquid metal.

  12. Micro mold filling kinetics of metallic glasses in supercooled liquid state

    NASA Astrophysics Data System (ADS)

    Ma, J.; Huo, L. S.; Zhao, D. Q.; Wang, W. H.

    2013-03-01

    The unique thermoplastic forming ability of metallic glasses in their supercooled liquid state makes them the ideal embossing materials for miniature fabrication. However, the understanding and controlling of micro filling process that is crucial for miniature fabrication and their applications remain fundamental, yet presently unresolved issues. Here, the mold filling kinetics of a model Pd-based metallic glass in supercooled liquid state is studied using different Si micro molds with different channels. A universal kinetic equation, which can describe the filling kinetics of viscous metallic supercooled liquid in micro molds with irregular shapes, is obtained.

  13. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy.

    PubMed

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-11-06

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%.

  14. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  15. Resistive sensor and electromagnetic actuator for feedback stabilization of liquid metal walls in fusion reactors

    NASA Astrophysics Data System (ADS)

    Mirhoseini, S. M. H.; Volpe, F. A.

    2016-12-01

    Liquid metal walls in fusion reactors will be subject to instabilities, turbulence, induced currents, error fields and temperature gradients that will make them locally bulge, thus entering in contact with the plasma, or deplete, hence exposing the underlying solid substrate. To prevent this, research has begun to actively stabilize static or flowing free-surface liquid metal layers by locally applying forces in feedback with thickness measurements. Here we present resistive sensors of liquid metal thickness and demonstrate \\mathbf{j}× \\mathbf{B} actuators, to locally control it.

  16. Coupled reactor physics and coolant dynamics of heavy liquid metal coolant systems.

    SciTech Connect

    Cahalan, J. E.; Dunn, F. E.; Taiwo, T. A.

    1999-07-15

    Cooling of advanced nuclear designs with heavy liquid metals such as lead or lead-bismuth eutectic offers the potential for plant simplifications and higher operating efficiencies compared to previously considered liquid metal coolants such as sodium or NaK. Such applications would however also introduce additional safety concerns and design challenges, therefore necessitating a verifiable computational tool for transient design-basis analysis of heavy liquid metal coolant (HLMC) systems. This capability would enable analysts to compare operational and safety characteristics of design alternatives, and to evaluate relative performance advantages with a consistent, deterministic measure.

  17. Review of the highlights of X-ray studies of liquid metal surfaces

    SciTech Connect

    Pershan, P. S.

    2014-12-14

    X-ray studies of the interface between liquid metals and their coexisting vapor are reviewed. After a brief discussion of the few elemental liquid metals for which the surface Debye-Waller effect is sufficiently weak to allow measurement, this paper will go on to discuss the various types of surface phenomena that have been observed for liquid metal alloys. These include surface adsorption, surface freezing, surface aggregation of nm size atomic clusters, and surface chemistry that leads to new 3D crystalline phases.

  18. Combined experimental and numerical analysis of a bubbly liquid metal flow

    NASA Astrophysics Data System (ADS)

    Krull, B.; Strumpf, E.; Keplinger, O.; Shevchenko, N.; Fröhlich, J.; Eckert, S.; Gerbeth, G.

    2017-07-01

    The paper proposes a combined experimental and numerical procedure for the investigation of bubbly liquid-metal flows. It describes the application to a model configuration consisting of a recirculating GaInSn flow driven by an argon bubble chain. The experimental methods involve X-ray measurements to detect the bubbles and UDV measurements to gain velocity information about the liquid metal. The chosen numerical method is an immersed boundary method extended to deformable bubbles. The model configuration includes typical phenomena occurring in industrial applications and allows insight into the physics of bubbly liquid-metal flows. It constitutes an attractive test case for assessing further experimental and numerical methods.

  19. Application of IR imaging for free-surface velocity measurement in liquid-metal systems

    DOE PAGES

    Hvasta, M. G.; Kolemen, E.; Fisher, A.

    2017-01-05

    Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. Lastly, this method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.

  20. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.