Sample records for liquid metallic elements

  1. Electrokinetic actuation of liquid metal for reconfigurable radio frequency devices

    NASA Astrophysics Data System (ADS)

    Gough, Ryan C.

    Liquid metals are an attractive material choice for designers wishing to combine the advantages of metals, such as high electrical conductivity, thermal conductivity, and reflectivity, with the inherently dynamic nature of fluids. Liquid metals have been utilized for a wide variety of applications, but their high electrical conductivity, surface smoothness, and linear response makes them especially attractive as tuning elements within reconfigurable radio frequency (RF) devices. The recent introduction of non-toxic liquid metal alloys onto the commercial market has further fueled interest in this versatile material. Early experiments with liquid metal as an RF tuning element have yielded promising results, but have largely depended on externally applied pressure to actuate the liquid metal. For commercial implementation this would necessitate the use of clunky and inefficient micro-pumps, which can require both high voltages and high power consumption. This reliance on hydraulic pumping has been a significant barrier to the incorporation of liquid metal as an RF tuning element in applications outside of a laboratory setting. Here, several electrical actuation techniques are demonstrated that allow for the rapid and repeatable actuation of non-toxic gallium alloys as tuning elements within reconfigurable RF devices. These techniques leverage the naturally high surface tension of liquid metals, as well as the unique electrochemistry of gallium-based alloys, to exercise wide-ranging and high fidelity control over both the metal's shape and position. Furthermore, this control is exercised with voltage and power levels that are each better than an order of magnitude below that achievable with conventional micro-pumps. This control does not require the constant application of actuation signals in order to maintain an actuated state, and can even be 'self-actuated', with the liquid metal supplying its own kinetic energy via the electrochemical conversion of its native oxide layer. Several proof-of-concept devices are designed and tested to demonstrate the effectiveness of these electrical actuation techniques. A pair of tunable slot antennas are presented that achieve frequency reconfigurability through different implementations of liquid metal tuning elements - the first uses liquid metal as a dynamic short-circuit boundary condition for the magnetic current within the resonant aperture, and the second as a variable-length transmission stub that adds and removes reactance from the antenna. The two antennas are tunable across effective bandwidths of 19% and 15%, respectively. In addition, a tunable bandpass filter is demonstrated in which a central liquid-metal resonant element is 'stretched' to lower the passband of the filter by 10% without impacting the insertion loss. Finally, it is demonstrated how liquid metal can be formed into arbitrary shapes at high speeds (approximately 2.5 cm/s) without the need for an external power supply.

  2. A Model for Siderophile Element Distribution in Planetary Differentiation

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Rushmer, T.; Rankenburg, K.; Brandon, A. D.

    2005-01-01

    Planetary differentiation begins with partial melting of small planetesimals. At low degrees of partial melting, a sulfur-rich liquid segregates by physical mechanisms including deformation-assisted porous flow. Experimental studies of the physical mechanisms by which Fe-S melts segregate from the silicate matrix of a molten H chondrite are part of a companion paper. Geochemical studies of these experimental products revealed that metallic liquids were in equilibrium with residual metal in the H chondrite matrix. This contribution explores the geochemical signatures produced by early stages of core formation. Particularly, low-degree partial melt segregation of Fe-S liquids leaves residual metal in the silicate matrix. Some achondrites appear to be residues of partial melting, e.g., ureilites, which are known to contain metal. The metal in these achondrites may show a distinct elemental signature. To quantify the effect of sulfur on siderophile element contents of residual metal we have developed a model based on recent parametrizations of equilibrium solid metal-liquid metal partitioning experiments.

  3. Electrically induced reorganization phenomena of liquid metal film printed on biological skin

    NASA Astrophysics Data System (ADS)

    Guo, Cangran; Yi, Liting; Yu, Yang; Liu, Jing

    2016-12-01

    Liquid metal has been demonstrated to be directly printable on biological skin as physiological measurement elements. However, many fundamental issues remained unclear so far. Here, we disclosed an intriguing phenomenon of electrically induced reorganization of liquid metal film. According to the experiments, when applying an external electric field to liquid metal films which were spray printed on biological skin, it would induce unexpected transformations of the liquid metals among different morphologies and configurations. These include shape shift from a large liquid metal film into a tiny sphere and contraction of liquid metal pool into spherical one. For comprehensively understanding the issues, the impacts of the size, voltage, orientations of the liquid metal electrodes, etc., were clarified. Further, effects of various substrates such as in vitro skin and in vivo skin affecting the liquid metal transformations were experimentally investigated. Compared to the intact tissues, the contraction magnitude of the liquid metal electrode appears weaker on in vivo skin of nude mice under the same electric field. The mechanisms lying behind such phenomena were interpreted through theoretical modeling. Lastly, typical applications of applying the current effect into practical elements such as electrical gating devices were also illustrated as an example. The present findings have both fundamental and practical values, which would help design future technical strategies in fabricating electronically controlled liquid metal electronics on skin.

  4. A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope

    PubMed Central

    Lee, Byeongchan; Lee, Geun Woo

    2016-01-01

    Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements. PMID:27762334

  5. Chemical reactions of metal powders with organic and inorganic liquids during ball milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1975-01-01

    Chromium and/or nickel powders were milled in metal chlorides and in organic liquids representative of various functional groups. The powders always reacted with the liquid and became contaminated with elements from them. The milled powders had specific surface areas ranging from 0.14 to 37 sq m/g, and the total contamination with elements from the milling liquid ranged from 0.01 to 56 weight percent. Compounds resulting from substitution, addition, or elimination reactions formed in or from the milling liquid.

  6. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.

  7. Modeling and experimental investigation of x-ray spectra from a liquid metal anode x-ray tube

    NASA Astrophysics Data System (ADS)

    David, Bernd R.; Thran, Axel; Eckart, Rainer

    2004-11-01

    This paper presents simulated and measured spectra of a novel type of x-ray tube. The bremsstrahlung generating principle of this tube is based on the interaction of high energetic electrons with a turbulently flowing liquid metal separated from the vacuum by a thin window. We simulated the interaction of 50-150 keV electrons with liquid metal targets composed of the elements Ga, In, Sn, as well as the solid elements C, W and Re used for the electron windows. We obtained x-ray spectra and energy loss curves for various liquid metal/window combinations and thicknesses of the window material. In terms of optimum heat transport a thin diamond window in combination with the liquid metal GaInSn is the best suited system. If photon flux is the optimization criteria, thin tungsten/rhenium windows cooled by GaInSn should be preferred.

  8. Siderophile Element Partitioning between Cohenite and Liquid in Fe-Ni-S-C System and Implications for Geochemistry of Planetary Cores and Mantles

    NASA Astrophysics Data System (ADS)

    Buono, A. S.; Dasgupta, R.; Walker, D.

    2011-12-01

    Secular cooling of terrestrial planets is known to cause crystallization of a solid inner core from metallic liquid core. Fractionation of light and siderophile elements is important during such crystallization for evolution of outer core and possible core-mantle interaction. Thus far studies focused on a pure Fe inner core in simple binary systems but the effects of possible formation of a carbide inner core component on siderophile element partitioning in a multi-component system has yet to be looked at in detail. We investigated the effects of pressure and S content on partition coefficients (D) between cohenite and liquid in the Fe-Ni-S-C system. Multi-anvil experiments were performed at 3 and 6 GPa at 1150 °C, in an Fe-rich mix containing a constant C and Ni to which S contents of 0, 5, and 14 wt.% were added. All the mixes were doped with W, Re, Os, Pt, and Co. Samples were imaged and analyzed for Fe, Ni, S, and C using an EPMA. Fe, Ni, and trace elements were analyzed using a LA-ICP-MS. All the experiments produced cohenite and Fe-Ni-C±S liquid. Compared to solid-Fe/melt Ds [1-2], cohenite/melt Ds are lower for all elements except W. The light element (S+C) content of the liquid is the dominant controlling factor in siderophile element partitioning between cohenite and liquid as it is between crystalline Fe and liquid. In the cohenite-metallic melt experiments, D Ni decreases as S+C increases. Ni is excluded from the crystallizing solid if the solid is cohenite. We also find that in the Fe-Ni-S-C system, cohenite is stabilized to higher P than in the Fe-S-C system [3-5]. Similar to the Fe-metallic liquid systems the non-metal avoidance model [6] is applicable to the Fe3C-metallic liquid system studied here. Our study has implications for both the cores of smaller planets and the mantles of larger planets. If inner core forms a cohenite layer we would predict that depletions in the outer core will be less than they might be for Fe metal crystallization. For the mantle of the earth, which is thought to become Fe-Ni metal-saturated as shallow as 250 km, the sub-system Fe-Ni + C + S becomes relevant and Fe-Ni carbide rather than metallic Fe-Ni alloy may become the crystalline phase of interest. Our study implies that because the partition coefficients between cohenite and Fe-C-S melts are significantly lower than those between Fe-metal and S-rich liquid, in the presence of cohenite and Fe-C-S melt in the mantle, the mantle budget of Ni, Co, and Pt may be dominated by Fe-C-S liquid. W, Re, and Os will also be slightly enriched in C-rich Fe-Ni liquid over cohenite if the metal sub-system of interest is S-free. [1] Chabot et al., GCA 70, 1322-1335, 2006 [2] Chabot et al., GCA 72, 4146-4158, 2008 [3] Chabot et al., Meteorit. Planet. Sci. 42, 1735-1750, 2007 [4] Stewart et al., EPSL 284, 302-309, 2009 [5] Van Orman et al., EPSL 274, 250-257, 2008 [6] Jones, J.H., Malvin, D.J., Metall Mater Trans B 21, 697-706, 1990

  9. The iron-nickel-phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites

    NASA Astrophysics Data System (ADS)

    Corrigan, Catherine M.; Chabot, Nancy L.; McCoy, Timothy J.; McDonough, William F.; Watson, Heather C.; Saslow, Sarah A.; Ash, Richard D.

    2009-05-01

    To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems. Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element's natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.

  10. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  11. Liquid metals: fundamentals and applications in chemistry.

    PubMed

    Daeneke, T; Khoshmanesh, K; Mahmood, N; de Castro, I A; Esrafilzadeh, D; Barrow, S J; Dickey, M D; Kalantar-Zadeh, K

    2018-04-03

    Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.

  12. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The inner core of these planets crystallized at the center of the core and it has the relatively Si rich inner core and the S enriched outer core. Based on melting and solid-liquid partitioning, the equation of state, and sound velocity of iron-light element alloys, we examined the plausible distribution of light elements in the liquid outer and solid inner cores of the terrestrial planets.

  13. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  14. Equilibrium distribution of rare earth elements between molten KCl-LiCl eutectic salt and liquid cadmium

    NASA Astrophysics Data System (ADS)

    Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi

    1991-11-01

    Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.

  15. Computer simulation of liquid metals

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.

    2013-12-01

    Methods for and the results of the computer simulation of liquid metals are reviewed. Two basic methods, classical molecular dynamics with known interparticle potentials and the ab initio method, are considered. Most attention is given to the simulated results obtained using the embedded atom model (EAM). The thermodynamic, structural, and diffusion properties of liquid metal models under normal and extreme (shock) pressure conditions are considered. Liquid-metal simulated results for the Groups I - IV elements, a number of transition metals, and some binary systems (Fe - C, Fe - S) are examined. Possibilities for the simulation to account for the thermal contribution of delocalized electrons to energy and pressure are considered. Solidification features of supercooled metals are also discussed.

  16. Distribution behavior of uranium, neptunium, rare-earth elements ( Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiClKCI eutectic salt and liquid cadmium or bismuth

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-12-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system.

  17. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  18. Effect of silicon on trace element partitioning in iron-bearing metallic melts

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Safko, Trevor M.; McDonough, William F.

    2010-08-01

    Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe-Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1MPa experiments with two coexisting immiscible metallic liquids in the Fe-S-Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si-free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite-rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.

  19. Effect of silicon on activity coefficients of siderophile elements (Au, Pd, Pt, P, Ga, Cu, Zn, and Pb) in liquid Fe: Roles of core formation, late sulfide matte, and late veneer in shaping terrestrial mantle geochemistry

    NASA Astrophysics Data System (ADS)

    Righter, K.; Pando, K.; Humayun, M.; Waeselmann, N.; Yang, S.; Boujibar, A.; Danielson, L. R.

    2018-07-01

    Earth's core contains ∼10% of a light element that may be a combination of Si, S, C, O or H, with Si potentially being the major light element. Metal-silicate partitioning of siderophile elements can place important constraints on the P-T-fO2 and composition of the early Earth, but the effect of Si alloyed in Fe liquids is unknown for many of these elements. In particular, the effect of Si on the partitioning of highly siderophile elements (Au, Re and PGE) is virtually unknown. To address this gap in understanding, we have undertaken a systematic study of the highly siderophile elements Au, Pd, and Pt, and the volatile siderophile elements P, Ga, Cu, Zn, and Pb at variable Si content of metal, and 1600 °C and 1 GPa. From our experiments we derive epsilon interaction parameters between these elements and Si in Fe metallic liquids. The new parameters are used to update an activity model for trace siderophile elements in Fe alloys; Si causes large variation in the magnitude of activity coefficients of these elements in FeSi liquids. Because the interaction parameters are all positive, Si causes a decrease in their metal/silicate partition coefficients. We combine these new activity results with experimental studies of Au, Pd, Pt, P, Ga, Cu, Zn and Pb, to derive predictive expressions for metal/silicate partition coefficients which can then be applied to Earth. The expressions are applied to two scenarios for continuous accretion of Earth; specifically for constant and increasing fO2 during accretion. The results indicate that mantle concentrations of P, Ga, Cu, Zn, and Pb can be explained by metal-silicate equilibrium during accretion of the Earth where Earth's early magma ocean deepens to pressures of 40-60 GPa. Au, Pd, and Pt, on the other hand become too high in the mantle in such a scenario, and require a later removal mechanism, rather than an addition as traditionally argued. A late reduction event that removes 0.5% metal from a shallow magma ocean can lower the Au, Pd, and Pt contents to values near the current day BSE. On the other hand, removal of 0.2-1.0% of a late sulfide-rich matte to the core would lower the Au, Pd, and Pt concentrations in the mantle, but not to chondritic relative concentrations observed in the BSE. If sulfide matte is called upon to remove HSEs, they must be later added via a late veneer to re-establish the high and chondritic relative PUM concentrations. These results suggest that although accretion and core formation (involving a Si, S, and C-bearing metallic liquid) were the primary processes establishing many of Earth's mantle volatile elements and HSE, a secondary removal process is required to establish HSEs at their current and near-chondritic relative BSE levels. Mn and P - two siderophile elements that are central to biochemical processes (photosynthesis and triphosphates, respectively) - have significant and opposite interactions with FeSi liquids, and their mantle concentrations would be notably different if Earth had a Si-free core.

  20. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGES

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; ...

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  1. Topology-generating interfacial pattern formation during liquid metal dealloying.

    PubMed

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  2. Si and O partitioning between core metal and lower mantle minerals during core formation

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Frost, D. J.; Rubie, D. C.

    2010-12-01

    In addition to Fe and Ni, the Earth’s core contains light alloying elements (e.g., H, C, O, Si, and/or S) in order to explain the 10% core density deficit (e.g., Birch, 1964, JGR). Experimental data on the partitioning behavior of siderophile elements such as Ni and Co between liquid Fe and mantle minerals indicate that equilibration between core-forming metal and a silicate magma ocean likely occurred at lower-mantle pressures (e.g., Li and Agee, 1996 Nature). If core-mantle differentiation has occurred under such conditions, significant quantities of O or Si could have entered the core. At these conditions the nature of the dominant light element in the core will depend strongly on the oxygen fugacity at which equilibration occurred. High pressure experiments were carried out at 25 GPa and 2400-2950 K using a Kawai-type multi-anvil apparatus in order to investigate the partitioning of Si and O between liquid Fe and (Mg,Fe)SiO3 perovskite (Pv), silicate melt, and (Mg,Fe)O ferropericlace (Fp). Starting materials consisting of metallic Fe (+-Si) and olivine (Fo70-95) were contained in single-crystal MgO capsules. Over the oxygen fugacity range IW-0.5 to -3, the Si molar partition coefficient D* (= [Si]metal /[Si]silicate) between metal and Pv increases linearly with decreasing oxygen fugacity at a fixed given temperature. The partition coefficient between metal and silicate melt is of a similar magnitude but is less dependent on the oxygen fugacity. The obtained oxygen distribution coefficient Kd (= [Fe]metal[O]metal /[FeO]Fp) is in agreement with that determined in the Fe-Fp binary system (Asahara et al., 2007 EPSL) below the silicate liquidus temperature. In contrast, a correlation between the O partitioning and Si concentration in Fe is observed above 2700 K where liquid metal coexists with silicate melt + Fp. With an increasing concentration of Si in the liquid metal, O partitioning into Fp is strongly enhanced. Five atomic% Si in the metal reduces the metal-silicate O partition coefficient by about 1 order magnitude. Near the base of a deep magma ocean where pressures exceed 20 GPa, liquid metal could have coexisted with silicate melt, Pv, and Fp. Our results show that Si would readily partitioned into core-forming metal from both perovskite and silicate liquid at a relevant oxygen fugacity (e.g., IW-2). Simultaneously, the Si solubility would hinder the dissolution of O in the liquid metal. This implies that the presence of Si in liquid metal must be included in models of O partitioning.

  3. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  4. Development of a Non-Contact, Inductive Depth Sensor for Free-Surface, Liquid-Metal Flows

    NASA Astrophysics Data System (ADS)

    Bruhaug, Gerrit; Kolemen, Egemen; Fischer, Adam; Hvasta, Mike

    2017-10-01

    This paper details a non-contact based, inductive depth measurement system that can sit behind a layer of steel and measure the depth of the liquid metal flowing over the steel. Free-surface liquid metal depth measurement is usually done with invasive sensors that impact the flow of the liquid metal, or complex external sensors that require lasers and precise alignment. Neither of these methods is suitable for the extreme environment encountered in the diverter region of a nuclear fusion reactor, where liquid metal open channel flows are being investigated for future use. A sensor was developed that used the inductive coupling of a coil to liquid metal to measure the height of the liquid metal present. The sensor was built and tested experimentally, and modeled with finite element modeling software to further understand the physics involved. Future work will attempt to integrate the sensor into the Liquid Metal eXperiment (LMX) at the Princeton Plasma Physics Laboratory for more refined testing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  5. Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U

    DOE PAGES

    Jaworski, M. A.; Brooks, A.; Kaita, R.; ...

    2016-08-08

    Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less

  6. Core formation in the shergottite parent body and comparison with the earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treiman, A.H.; Jones, J.H.; Drake, M.J.

    1987-03-30

    The mantle of the shergottite parent body (SPB) is depleted relative to the bulk SPB in siderophile and chalcophile elements; these elements are inferred to reside in the SPB's core. Our chemical model of these depletions rests on a physically plausible process of segregation of partially molten metal form partially molten silicates as the SPB grows and is heated above silicate and metallic solidi during accretion. Metallic and silicate phases equilibrate at low pressures as new material is accreted to the SPB surface. Later movement of the metallic phases to the planet's center is so rapid that high-pressure equilibration ismore » insignificant. Partitioning of siderophile and chalcophile elements among solid and liquid metal and silicate determines their abundances in the SPB mantle. Using partition coefficients and the SPB mantle composition determined in earlier studies, we model the abundances of Ag, Au, Co, Ga, Mo, Ni, P, Re, S, and W with free parameters being oxygen fugacity, proportion of solid metal formed, proportion of metallic liquid formed, and proportion of silicate that is molten.« less

  7. LIQUID METAL REACTOR COOLING SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aberdam, M.; Gros, G.

    1965-02-01

    This report is part of a series of bibliographies. The specific purpose of this report is to describe the various elements of the cooling systems in the principal liquid-metal-cooled reactors now operating, being contsructed, or in the design stage. The information given is drawn from reports or publicatios received during or before September 1964.

  8. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  9. History of Metal Veins in Acapulcoite-Lodranite Clan Meteorite GRA 95209

    NASA Technical Reports Server (NTRS)

    Herrin, J. S.; Mittlefehldt, D. W.; Humayun, M.

    2006-01-01

    Graves Nunataks (GRA) 95209 has been hailed as the missing link of core formation processes in the acapulcoitelodranite parent asteroid because of the presence of a complex cm-scale metal vein network. Because the apparent liquid temperature of the metal vein (approximately 1500 C) is higher than inferred for the metamorphic grade of the meteorite, questions regarding the vein s original composition, temperature, and mechanism of emplacement have arisen. We have determined trace siderophile element compositions of metals in veins and surrounding matrix in an effort to clarify matters. We analyzed metals in GRA 95209 in a portion of thick metal vein and adjacent metal-rich (30-40 modal%), sulfide poor (less than 1%) matrix by EPMA and LA-ICP-MS for major and trace siderophile elements using methods described by [3]. We also examined metals from a metal-poor (approximately 15 modal%) and relatively sulfide-rich (2-5 modal%) region of the sample. Kamacite is the dominant metal phase in all portions of the sample. In comparison to matrix metal, vein metal contains more schreibersite and less tetrataenite, and is less commonly associated with Fe,Mn,Mg-bearing phosphates and graphite. Vein kamacite contains higher Co, P, and Cr and lower Cu and Ge. These minor variations aside, all metal types in GRA 95209 are fairly homogeneous in terms of their levels of enrichment of compatible siderophile elements (e.g. Pt, Ir, Os) relative to incompatible siderophile elements (e.g. As, Pd, Au), consistent with the loss of metal-sulfide partial melt that characterizes much of the clan. Whatever compositional differences between matrix and vein metal that may have originally existed, they have since largely co-equilibrated to similar restitic trace element compositions. We agree with [2] that metal veins, in their present state, do not represent a liquid composition. The original vein liquid was much more S-rich and emplaced at correspondingly lower liquid temperatures. Much of the Fe,Ni component solidified in cm scale conduits while S-rich melts were expelled and continued to migrate by percolation. The higher troilite content in metal poor regions of the sample results mostly from trapping of a small portion of these melts. The troilite is not remnant primary sulfide. Strong depletions of W, Mo, and especially Ga (greater than 50%, greater than 60%, and greater than 90% depletion, respectively) in metals of the metalpoor GRA 95209 lithology are localized at scales of 10-100 micrometers in the vicinity of graphite spherules. These depletions must have occurred below the temperatures at which cm-scale equilibration occurred, and future work will seek to determine their cause.

  10. An advanced selective liquid-metal plating technique for stretchable biosensor applications.

    PubMed

    Li, Guangyong; Lee, Dong-Weon

    2017-10-11

    This paper presents a novel stretchable pulse sensor fabricated by a selective liquid-metal plating process (SLMP), which can conveniently attach to the human skin and monitor the patient's heartbeat. The liquid metal-based stretchable pulse sensor consists of polydimethylsiloxane (PDMS) thin films and liquid metal functional circuits with electronic elements that are embedded into the PDMS substrate. In order to verify the utility of the fabrication process, various complex liquid-metal patterns are achieved by using the selective wetting behavior of the reduced liquid metal on the Cu patterns of the PDMS substrate. The smallest liquid-metal pattern is approximately 2 μm in width with a uniform surface. After verification, a transparent flowing LED light with programmed circuits is realized and exhibits stable mechanical and electrical properties under various deformations (bending, twisting and stretching). Finally, based on SLMP, a wireless pulse measurement system is developed which is composed of the liquid metal-based stretchable pulse sensor, a Bluetooth module, an Arduino development board, a laptop computer and a self-programmed visualized software program. The experimental results reveal that the portable non-invasive pulse sensor has the potential to reduce costs, simplify biomedical diagnostic procedures and help patients to improve their life in the future.

  11. Mineral resource of the month: gallium

    USGS Publications Warehouse

    Jaskula, Brian W.

    2009-01-01

    The metal element gallium occurs in very small concentrations in rocks and ores of other metals — native gallium is not known. As society gets more and more high-tech, gallium becomes more useful. Gallium is one of only five metals that are liquid at or close to room temperature. It has one of the longest liquid ranges of any metal (29.8 degrees Celsius to 2204 degrees Celsius) and has a low vapor pressure even at high temperatures. Ultra-pure gallium has a brilliant silvery appearance, and the solid metal exhibits conchoidal fracture similar to glass.

  12. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  13. Platinum Partitioning at Low Oxygen Fugacity: Implications for Core Formation Processes

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Lanziroti, A.; Newville, M.

    2016-01-01

    Highly siderophile elements (HSE = Au, Re, and the Pt-group elements) are tracers of silicate / metal interactions during planetary processes. Since most core-formation models involve some state of equilibrium between liquid silicate and liquid metal, understanding the partioning of highly siderophile elements (HSE) between silicate and metallic melts is a key issue for models of core / mantle equilibria and for core formation scenarios. However, partitioning models for HSE are still inaccurate due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variable like temperature, pressure, and oxygen fugacity. In this abstract, we describe a self-consistent set of experiments aimed at determining the valence of platinum, one of the HSE, in silicate melts. This is a key information required to parameterize the evolution of platinum partitioning with oxygen fugacity.

  14. NEUTRONIC REACTOR CHARGING AND DISCHARGING

    DOEpatents

    Zinn, W.H.

    1959-07-14

    A method and arrangement is presented for removing a fuel element from a neutronic reactor tube through which a liquid coolant is being circulaled. The fuel element is moved into a section of the tube beyond the reactor proper, and then the coolant in the tube between the fuel element and the reactor proper is frozen, so that the fuel element may be removed from the tube without loss of the coolant therein. The method is particularly useful in the case of a liquid metal- cooled reactor.

  15. The solubility of metals in Pb17Li liquid alloy

    NASA Astrophysics Data System (ADS)

    Borgstedt, H. U.; Feuerstein, H.

    1992-09-01

    The solubility data of iron in the eutectic alloy Pb17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels.A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentrations of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum.

  16. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  17. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    DOEpatents

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  18. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of both Os isotope correlations, Os-W isotope systematics, and Fe/Mn evidence for core-mantle interaction over the entire Hawaiian source.

  19. Electrical resistivity of liquid iron with high concentration of light element impurities

    NASA Astrophysics Data System (ADS)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  20. Incorporation of metal nanoparticles into wood substrate and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rector, Kirk D; Lucas, Marcel

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation processmore » at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.« less

  1. Direct carbon fuel cell and stack designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorte, Raymond J.; Oh, Tae-Sik

    Disclosed are novel configurations of Direct Carbon Fuel Cells (DCFCs), which optionally comprise a liquid anode. The liquid anode comprises a molten salt/metal, preferably Sb, and a fuel, which has significant elemental carbon content (coal, bio-mass, etc.). The supply of fuel is continuously replenished in the anode. In addition, a stack configuration is suggested where combining a large number of planar or tubular fuel elements.

  2. Protected Nuclear Fuel Element

    DOEpatents

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  3. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  4. Alloy and method of producing the same

    DOEpatents

    Hufnagel, Todd C.; Ott, Ryan T.; Fan, Cang; Kecskes, Laszlo

    2005-07-19

    In accordance with a preferred embodiment of the invention, an alloy or other composite material is provided formed of a bulk metallic glass matrix with a microstructure of crystalline metal particles. The alloy preferably has a composition of (X.sub.a Ni.sub.b Cu.sub.c).sub.100-d-c Y.sub.d Al.sub.c, wherein the sum of a, b and c equals 100, wherein 40.ltoreq.a.ltoreq.80, 0.ltoreq.b.ltoreq.35, 0.ltoreq.c.ltoreq.40, 4.ltoreq.d.ltoreq.30, and 0.ltoreq.e.ltoreq.20, and wherein preferably X is composed of an early transition metal and preferably Y is composed of a refractory body-centered cubic early transition metal. A preferred embodiment of the invention also provides a method of producing an alloy composed of two or more phases at ambient temperature. The method includes the steps of providing a metastable crystalline phase composed of at least two elements, heating the metastable crystalline phase together with at least one additional element to form a liquid, casting the liquid, and cooling the liquid to form the alloy. In accordance with a preferred embodiment of the invention, the composition and cooling rate of the liquid can be controlled to determine the volume fraction of the crystalline phase and determine the size of the crystalline particles, respectively.

  5. Extraterrestrial processing and manufacturing of large space systems, volume 2, chapters 7-14 and appendices

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Production and support equipment specifications are described for the space manufacturing facility (SMF). Defined production equipment includes electromagnetic pumps for liquid metal, metal alloying furnaces, die casters, electron beam welders and cutters, glass forming for structural elements, and rolling. A cost analysis is presented which includes the development, the aquisition of all SMF elements, initial operating cost, maintenance and logistics cost, cost of terrestrial materials, and transportation cost for each major element. Computer program listings and outputs are appended.

  6. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  7. The Combined Strength of Thermodynamics and Comparative Planetology: Application of Activity Models to Core Formation in Terrestrial Bodies

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K. M.; Danielson, L. R.

    2015-01-01

    Recent models for accretion of terrestrial bodies involve metal-silicate equilibrium as the metallic core formed during growth. Most elements considered are either refractory or well studied elements for which effects of pressure, temperature, oxygen fugacity, and metallic liquid composition are well known. There are a large number of elements that are both siderophile and volatile, whose fate in such models is unknown, largely due to a lack of data at comparable conditions and com-positions (FeNi core with light elements such as S, C, Si, and O). We have focused on Ge, In, As, Sb and determined the effect of Si and C on metal-silicate partitioning, and developed a thermo-dynamic model that allows application of these new data to a wide range of planetary bodies. New experiments: We have previously carried out experiments with FeSi metallic liquid at C-saturated conditions at 1600 and 1800 C [4]. In a new series of experiments we investigate the effect of Si in carbon-free systems at 1600 C for comparison. Experiments were carried out at 1 GPa in MgO capsules using the same basaltic starting composition as in previous studies. The MgO capsule reacts with the silicate melt to form more MgO-rich liquids that have 22-26 wt% MgO. Experimental met-als and silicates were analyzed using a combination of electron microprobe analysis and laser ablation ICP-MS. Results: The new results can be interpreted by considering Ge as an example, in the simple exchange equilibrium Fe + GeO = FeO + Ge, where the equilibrium constant Kd can be examined as a function of Si content of the metal. The slope of lnKd vs. (1-XSi) for this new series allows derivation of the epsilon interaction parameter for each of these four elements and Si (both C-saturated and C-free).All four elements have positive epsilon values, indicating that Si causes a decrease in the partition coefficients; values are 6.6, 6.5, 27.8 and 25.2 for In, Ge, As, and Sb, respectively, at 1 GPa and 1600 C. As an example of how large the effect of Si can be, these epsilon values correspond to activity coefficients (gamma) for As of 0.01 when XSi = 0, and up to gamma = 23 when XSi = 0.2. Combining these new results with previous determinations [5,6] of epsilon parameters for S and C for these elements allows us calculate activity of Ge, In, As, and Sb in Fe-Ni-Si-S-C-O metallic liquids. We apply this new model to sever-al terrestrial bodies such as Earth (Si-rich core), Mars (S-rich core), Moon (S-, C-, and Si-poor core), and Vesta, and examine the resulting core and mantle concentrations of these elements. Mantle concentrations of these four elements are well explained for Earth and Mars in models that call for mid-mantle equilibration between Si-bearing and S-bearing FeNi cores, respectively. Modeling results for the Moon and Vesta will also be presented.

  8. Formation of microporous NiTi by transient liquid phase sintering of elemental powders.

    PubMed

    Ismail, Muhammad Hussain; Goodall, Russell; Davies, Hywel A; Todd, Iain

    2012-08-01

    Porous metallic structures are attractive for biomedical implant applications as their open porosity simultaneously improves the degree of fixation and decreases the mismatch in stiffness between bone and implant, improving bonding and reducing stress-shielding effects respectively. NiTi alloys exhibit both the shape memory effect and pseudoelasticity, and are of particular interest, though they pose substantial problems in their processing. This is because the shape memory and pseudoelastic behaviours are exceptionally sensitive to the presence of oxygen, and other minor changes in alloy chemistry. Thus in processing careful control of composition and contamination is vital. In this communication, we investigate these issues in a novel technique for producing porous NiTi parts via transient liquid phase sintering following metal injection moulding (MIM) of elemental Ni and Ti powders, and report a new mechanism for pore formation in the powder processing of metallic materials from elemental powders. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The structure of liquid metals probed by XAS

    NASA Astrophysics Data System (ADS)

    Filipponi, Adriano; Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela

    2017-08-01

    X-ray absorption spectroscopy (XAS) is a powerful technique to investigate the short-range order around selected atomic species in condensed matter. The theoretical framework and previous applications to undercooled elemental liquid metals are briefly reviewed. Specific results on undercooled liquid Ni obtained using a peak fitting approach validated on the spectra of solid Ni are presented. This method provides a clear evidence that a signature from close packed triangular configurations of nearest neighbors survives in the liquid state and is clearly detectable below k ≈ 5 Å-1, stimulating the improvement of data-analysis methods that account properly for the ensemble average, such as Reverse Monte Carlo.

  10. Effect of Silicon on the Activity Coefficient of Rhenium in Fe-Si Liquids: Implications for HSE and Os Isotopes in Planetary Mantles

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Yang, S.; Humayun, M.

    2018-01-01

    Metallic cores contain light alloying elements that can be a combination of S, C, Si, and O, all of which have important chemical and physical influences. For Earth, Si may be the most abundant light element in the core. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE), and thus the partitioning behavior of those elements between core and mantle. The effect of Si on the highly siderophile elements is only beginning to be studied and the effects on Au, Pd and Pt are significant. Here we report new experiments designed to quantify the effect of Si on the partitioning of Re between metal and silicate melt. A solid understanding of Re partitioning is required for a complete understanding of the Re-Os isotopic systems. The results will be applied to understanding the HSEs and Os isotopic data for planetary mantles, and especially Earth.

  11. Corrosion protected, multi-layer fuel cell interface

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  12. Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method.

    PubMed

    Yi, Rongxing; Yang, Xinyan; Zhou, Ran; Li, Jiaming; Yu, Huiwu; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Lu, Yongfeng; Zeng, Xiaoyan

    2018-05-18

    To detect available heavy metals in soil using laser-induced breakdown spectroscopy (LIBS) and improve its poor detection sensitivity, a simple and low cost sample pretreatment method named solid-liquid-solid transformation was proposed. By this method, available heavy metals were extracted from soil through ultrasonic vibration and centrifuging and then deposited on a glass slide. Utilization of this solid-liquid-solid transformation method, available Cd and Pb elements in soil were detected successfully. The results show that the regression coefficients of calibration curves for soil analyses reach to more than 0.98. The limits of detection could reach to 0.067 and 0.94 ppm for available Cd and Pb elements in soil under optimized conditions, respectively, which are much better than those obtained by conventional LIBS.

  13. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    NASA Astrophysics Data System (ADS)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  14. The Influence of Oxygen and Sulfur on Uranium Partitioning Into the Core

    NASA Astrophysics Data System (ADS)

    Moore, R. D., Jr.; Van Orman, J. A.; Hauck, S. A., II

    2017-12-01

    Uranium, along with K and Th, may provide substantial long-term heating in planetary cores, depending on the magnitude of their partitioning into the metal during differentiation. In general, non-metallic light elements are known to have a large influence on the partitioning of trace elements, and the presence of sulfur is known to enhance the partitioning of uranium into the metal. Data from the steelmaking literature indicate that oxygen also enhances the solubility of oxygen in liquid iron alloys. Here we present experimental data on the partitioning of U between immiscible liquids in the Fe-S-O system, and use these data along with published metal-silicate partitioning data to calibrate a quantitative activity model for U in the metal. We also determined partition coefficients for Th, K, Nb, Nd, Sm, and Yb, but were unable to fully constrain activity models for these elements with available data. A Monte Carlo fitting routine was used to calculate U-S, U-O, and U-S-O interaction coefficients, and their associated uncertainties. We find that the combined interaction of uranium with sulfur and oxygen is predominant, with S and O together enhancing the solubility of uranium to a far greater degree than either element in isolation. This suggests that uranium complexes with sulfite or sulfate species in the metal. For a model Mars core composition containing 14 at% S and 5 at% O, the metal/silicate partition coefficient for U is predicted to be an order of magnitude larger than for a pure Fe-Ni core.

  15. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  16. A vanadium alloy for the application in a liquid metal blanket of a fusion reactor

    NASA Astrophysics Data System (ADS)

    Borgstedt, H. U.; Grundmann, M.; Konys, J.; Perić, Z.

    1988-07-01

    The vanadium alloy V3Ti1Si has been corrosion tested in liquid lithium and the eutectic alloy Pb-17Li at 550°C. This alloy has a comparable corrosion resistance to the alloy V15Cr5Ti in lithium. In this molten metal it is superior to stainless steel AISI 316. In the Pb-17Li melt it is even superior to martensitic steels. The alloy has only a weak tendency to be dissolved. It is sensitive to an exchange of non-metallic elements, which causes the formation of a hardened surface layer. These chemical effects are influenced by the mass and surface ratios of the vanadium alloy to the molten metals and other structural materials. These ratios are unfavorable in the two test loops. The effects might be less pronounced in a vanadium alloy/liquid metal fusion reactor blanket.

  17. Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates.

    PubMed

    Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin

    2016-12-01

    The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.

  18. The Effect of Pressure on Siderophile-Element (Ni, Co, Mo, W, and P) Metal-Silicate Partition Coefficients

    NASA Astrophysics Data System (ADS)

    Righter, K.; Drake, M. J.

    1995-09-01

    Quantification of the effect of pressure on siderophile element metal-silicate partition coefficients (D) is essential in modelling the accretion histories of the the Earth and terrestrial planets [1], as metal-silicate equilibria may have been set over a range of pressures [2]. We report siderophile element partition coefficients from metal-silicate equilibrium experiments done at 10 and 15 kb, and 1300 degrees C. These new results show that metal-silicate partition coefficients for Ni (Fig. 1), Co, and P decrease with increasing pressure (at constant T and relative fO(sub)2), while those for Mo and W increase. Experiments were done in a 1/2" piston cylinder apparatus, with T, P and fO(sub)2 controlled and monitored as described in a previous study [3]. Synthetic basalt [see 3] powder, doped with 5 wt% levels of either MoO3, WO3 or apatite, was loaded into Fe54Ni29Co17 or Fe64Ni36 tubing, which was closed either by welding or plugging the open ends with small, tapered caps of the same alloy composition. The samples were quenched after 4 to 6 hrs. The metal and glass in the run products are then analyzed by electron microprobe to obtain a solid metal/liquid silicate (SM/LS) partition coefficient for a given element (D = wt% element in metal/ wt% element in glass). For several experiments, NiS was added as a sulfur source, and thus stabilizing a sulfur-bearing metallic liquid. For these experiments, both solid metal/ liquid silicate and liquid metal/ liquid silicate (LM/LS) partition coefficients are reported (Table 1). In order to isolate the effect of pressure on siderophile element partition coefficients, we have compared our results at high pressures to calculated 1 bar values at the same T and fO(sub)2 as our experiments (based on experiments of [4 - 11]; see results for Ni in Fig. 1; data from [3] and this study). The effect of pressure and other intensive variables on metal-silicate D's can be quantified using the thermodynamically-based relation: lnD (metal/silicate) = a/T + b + clnfO(sub)2 + dln(1-2X(sub)S) + e(P-1)/T. (1) Values for a, b, c, d and e were determined by multiple linear regression of the 1 bar experimental data cited above, together with data from this study and available high pressure experimental data [3, 12 - 16]. Equation 1 can be used to predict the abundances of the siderophile elements in a planetary mantle that has undergone a metal separation event, at a specific T, P, fO(sub)2 and metal sulfur content. Such calculations for Mars indicate that metal segregation in the Martian mantle (based on SNC meteorite analyses) may have occurred at low pressures, in agreement with the conclusions of several other studies [17, 18, 19]. Similar calculations for Earth indicate that the upper mantle abundances of the siderophile elements are unlikely to have been set by simple metal-silicate equilibrium at pressures less than 100 kb. References: [1] Drake M. J. (1989) Z. Naturforsch., 44a, 883-890. [2] Newsom H. (1992] LPI Tech. Rpt. 92-03, 42-43. [3] Righter K. et al. (1995) LPS XXVI, 1169-1170. [4] Hillgren V. J. (1993) Ph.D. Thesis, Univ. of Arizona, Tucson. [5] Capobianco C. J. and Amelin A. (1994) GCA, 58, 125-140. [6] Schmitt et al. (1989) GCA, 53, 173-186. [7] Newsom H. and Drake M. J. (1982) GCA, 46, 2483-2489. [8] Newsom H. and Drake M. J. (1983) GCA, 47, 93-100. [9] Lodders K. and Palme H. (1991) EPSL, 113, 311-324. [10] Jones J. H. and Drake M. J. (1986) Nature, 322, 221-228. [11] Holzheid A. et al. (1994) GCA, 58, 1975-1981. [12] Thibault Y. and Walter M. J. (1994) GCA, 59, 991-1002. [13] Hillgren V. J. et al. (1994) Science, 264, 1442-1445. [14] Walker D. et al. (1993) Science, 262, 1858-1861. [15] Peach C. L. and Mathez E. A. (1993) GCA, 57, 3013-3032. [16] Seifert et al. (1988) GCA, 52, 603-616. [17] Drake M. J. et al. (1995) LPS XXVI, 345-346. [18] Gaetani G. A. and Grove T. L. (1995) LPS XXVI, 437-438. [19] Treiman A. H. et al. (1986) GCA, 50, 1071-1091. Acknowledgment: NASA Grant NAGW 3348 Table 1 shows a summary of experimental results.

  19. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed before chemical purification. Initial results provide an equilibrium 98Mo/95Mo isotope fractionation factor between metal and silicate liquids of -0.18±0.10% (2σ) at 1400°C and 1 GPa. Although the relative mass difference of these Mo isotopes is smaller than for Fe isotopes, this result implies that metal-silicate segregation may have led to mass-dependent stable Mo isotope fractionation, as opposed to Fe isotopes. A possible explanation is that the bonding environment of Mo may counterbalance its relatively small mass separation. At reducing conditions, Mo occurs in 4+ valence state in silicates [4] and thus its bond strength difference between metal and silicate may be more similar to that of Si than Fe. Stable Mo isotopes may thus become an important tool for constraining the conditions of core formation in asteroids and terrestrial planets. [1] Rubie et al. (2011) EPSL 301, 31-42. [2] Shahar et al. (2009) EPSL 288, 228-234. [3] Poitrasson et al. (2009) EPSL 278, 376-385. [4] Farges et al. (2006) Can. Min. 44, 731-753.

  20. Deformation of Ordinary Chondrite Under Very Reducing Conditons: Implications for Liquid Metal Compositions, HSE Partitioning and Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    Rushmer, T.; Corgne, A.

    2008-12-01

    One important method in which to gain insight into metallic liquid compositions and their ability to control HSE (highly siderophile element) distribution is through experimentation. Deformation experiments can additionally provide information into mechanisms and chemical consequences of dynamic liquid metal segregation under a variety of conditions. We report results on metallic liquid HSE compositions and their distribution from a set of deformation experiments on a natural H6 ordinary chondrite, performed under very reducing conditions and a series of phase equilibria experiments focused on HSE partitioning between Si-rich and S-rich Fe molten alloys. The deformation experiments were conducted at temperatures between 925°C and 950°C, at 1.3 GPa confining pressure with a strain rate of 10-4/s. Major element analyses of both silicate and metal phases show that they are considerably reduced and the typically lithophile elements are behaving like siderophiles. Fe-Ni-Si compositions are found in the shear zones produced during the deformation experiment. Metallic compositions also include (Mg,Fe,Ca)S, Fe-Ni-Si, FeP, and Fe-Ni-S quench metal. Silicate phases include forsterite (Fo92-96) and enstatite (En98). Highly siderophile element (HSE) concentrations have been measured in the sulphide ((Fe,Mg,Ca)S) and metal (Fe- Ni-Si) phases by LA-ICPMS and compared with results from an earlier set of experiments on the same material but which were not performed under reducing conditions. The partitioning of the PGE is modified by the changing conditions with elements such as Ir and Os having higher DMetal/Sulphide values under reducing conditions. Partitioning experiments between molten FeS and Ni-, Si-bearing molten Fe were performed at 1.5-5.0 GPa and 1500-1750° to further investigate this observation. The starting material is synthetic, doped with a range of trace and HSE elements. The results confirm the preference of the HSE for the metallic phase with DMetal/Sulphide > 100 in most cases, in contrast to Cu and Ag, which have D values near or below 1, respectively. Our results also suggest the possibility of significant PGE fractionation since D values are larger for Ir and Os and smaller for Pd and Au, with Pt, Ru, Rh having intermediate values. It is not clear with the present data set whether T and P variations can affect significantly HSE partitioning. These results have been applied to the most naturally reduced material we know, the Enstatite chondrites. Several E chondrites have bulk HSE data available, but no HSE data available on sulphide and metallic phases themselves. We have now a set of HSE data for individual metallic phases in several enstatite chondrites, both EH and ELs. The bulk data show that for elements such as Os and Pd, the abundances are positively correlated and overall Pd is much higher in abundance. We find in the experiments that DPd ranges between 10-100, but do not fully explain the bulk trends. Additional phases, such as FeP have therefore been analyzed and we find that Pd is concentrated in FeP and the presence of schreibersite may help explain the high Pd ratios (e.g. Pd/Ir) observed in the Enstatite chondrites.

  1. 77 FR 18987 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Nonattainment New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... sulfate (SO 4 ); nitrate (NO 3 ); ammonium; elemental carbon; a great variety of organic compounds; and inorganic material (including metals, dust, sea salt, and other trace elements) generally referred to as... the air as a solid or liquid particle (e.g., elemental carbon from diesel engines or fire activities...

  2. Melting relations and elemental distribution of portion of the system Fe-S-Si-O to 32 KB with planetary application

    NASA Technical Reports Server (NTRS)

    Huang, W. L.

    1980-01-01

    The melting relations and distribution of K and Cs in portions of the system was determined at high pressures. Ferrosilite is stable as a primary phase at high pressures because of the incongruent melting of ferrosilite to quartz plus liquid and the boundary between the one and two liquid fields on the joint Fe(1-x) O-FeS-SiO2 shifts away from silica with increasing pressures. Potassium K was found to have limited solubility in metal sulfide liquids at pressures up to 45 kb. The speculation that K may dissolve significantly in metal-metal sulfide liquids after undergoing first order isomorphic transition was tested by determining the distribution of Cs between sulfide and silicate liquids as an analogy to K. At 45 kb, 1400 C and 27 kb, 1300 C only limited amounts of Cs were detected in quench sulfide liquids even at pressures beyond the isomorphic transition of Cs.

  3. Comparative analysis of the possibility of applying low-melting metals with the capillary-porous system in tokamak conditions

    NASA Astrophysics Data System (ADS)

    Lyublinski, I. E.; Vertkov, A. V.; Semenov, V. V.

    2016-12-01

    The use of capillary-porous systems (CPSs) with liquid Li, Ga, and Sn is considered as an alternative for solving the problem of creating plasma-facing elements (PFEs) of the fusion neutron source (FNS) and the DEMO-type reactor. The main advantages of CPSs with liquid metal compared with hard materials are their stability with respect to the degradation of properties in tokamak conditions and capability of surface self-restoration. The evaluation of applicability of liquid metals is performed on the basis of the analysis of their physical and chemical properties, the interaction with the tokamak plasma, and constructive and process features of in-vessel elements with CPSs implementing the application of these metals in a tokamak. It is shown that the upper limit of the PFE working temperature for all low-melting metals under consideration lies in the range of 550-600°C. The decisive factor for PFEs with Li is the limitation on the admissible atomic flux into plasma, while for those with Ga and Sn it is the corrosion resistance of construction materials. The upper limit of thermal loads in the steady-state operating mode for the considered promising PFE design with the use of Li, Ga, and Sn is close to 18-20 MW/m2. It is seen from the analysis that the use of metals with a low equilibrium vapor pressure of (Ga, Sn) gives no gain in extension of the region of admissible working temperatures of PFEs. However, with respect to the totality of properties, the possibility of implementing the self-restoration and stabilization effect of the liquid surface, the influence on the plasma discharge parameters, and the ability to protect the PFE surface in conditions of plasma perturbations and disruption, lithium is the most attractive liquid metal to create CPS-based PFEs for the tokamak.

  4. Comparative analysis of the possibility of applying low-melting metals with the capillary-porous system in tokamak conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyublinski, I. E., E-mail: lyublinski@yandex.ru; Vertkov, A. V., E-mail: avertkov@yandex.ru; Semenov, V. V., E-mail: darkfenix2006@mail.ru

    2016-12-15

    The use of capillary-porous systems (CPSs) with liquid Li, Ga, and Sn is considered as an alternative for solving the problem of creating plasma-facing elements (PFEs) of the fusion neutron source (FNS) and the DEMO-type reactor. The main advantages of CPSs with liquid metal compared with hard materials are their stability with respect to the degradation of properties in tokamak conditions and capability of surface self-restoration. The evaluation of applicability of liquid metals is performed on the basis of the analysis of their physical and chemical properties, the interaction with the tokamak plasma, and constructive and process features of in-vesselmore » elements with CPSs implementing the application of these metals in a tokamak. It is shown that the upper limit of the PFE working temperature for all low-melting metals under consideration lies in the range of 550–600°Ð¡. The decisive factor for PFEs with Li is the limitation on the admissible atomic flux into plasma, while for those with Ga and Sn it is the corrosion resistance of construction materials. The upper limit of thermal loads in the steady-state operating mode for the considered promising PFE design with the use of Li, Ga, and Sn is close to 18–20 MW/m{sup 2}. It is seen from the analysis that the use of metals with a low equilibrium vapor pressure of (Ga, Sn) gives no gain in extension of the region of admissible working temperatures of PFEs. However, with respect to the totality of properties, the possibility of implementing the self-restoration and stabilization effect of the liquid surface, the influence on the plasma discharge parameters, and the ability to protect the PFE surface in conditions of plasma perturbations and disruption, lithium is the most attractive liquid metal to create CPS-based PFEs for the tokamak.« less

  5. Three-Dimensional Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying [3D Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying

    DOE PAGES

    Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent; ...

    2017-09-04

    Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less

  6. Three-Dimensional Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying [3D Morphological and Chemical Evolution of Nanoporous Stainless Steel by Liquid Metal Dealloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent

    Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less

  7. Experimental partitioning of Tc, Mo, Ru, and Re between solid and liquid during crystallization in Fe-Ni-S 1

    NASA Astrophysics Data System (ADS)

    Lazar, C.; Walker, D.; Walker, R. J.

    2004-02-01

    Technetium isotopes 97Tc, 98Tc and 99Tc decay to 97Mo, 98Ru and 99Ru, with half-lives of 2.6 My, 4.1 My, and 0.21 My respectively. If there were early solar system processes that resulted in significant fractionation of Tc from the daughter elements, decay of extant Tc could have led to the creation of Mo and Ru isotopic heterogeneities. To assess the potential of metallic core crystallization to fractionate these elements, we examine the partitioning behavior of Tc relative to Re, Mo and Ru in the Fe-Ni-S system between solid metal and liquid metal alloy. The experimental evidence shows that Tc behaves more like the modestly compatible siderophile element Ru than the more highly compatible siderophile element Re, and that Tc is substantially more compatible than Mo. We also demonstrate a pressure effect in the partitioning of Mo during the crystallization of Fe-Ni-S melts. For a sulfur concentration in the liquid fraction of the core of 10 wt% (16.3 at%), the Jones and Malvin (1990) parameter is -ln(1-2 × 1.09 × 0.163) ≅ 0.44, which yields: D(Re) ≅ 4.1; D(Ru) ≅ 2.3; D(Tc) ≅ 1.7; D(Mo) Lo-P ≅ 1.0;.and D(Mo) Hi-P ≅ 0.5. Our results suggest that detectable Tc-induced isotopic anomalies (≥0.1 ɛ unit) in Ru and Mo could only be produced by unrealistically extreme degrees of crystallization of metal during asteroidal core fractionation, regardless of the time scales and initial Tc abundances involved.

  8. A liquid metal-based structurally embedded vascular antenna: I. Concept and multiphysical modeling

    NASA Astrophysics Data System (ADS)

    Hartl, D. J.; Frank, G. J.; Huff, G. H.; Baur, J. W.

    2017-02-01

    This work proposes a new concept for a reconfigurable structurally embedded vascular antenna (SEVA). The work builds on ongoing research of structurally embedded microvascular systems in laminated structures for thermal transport and self-healing and on studies of non-toxic liquid metals for reconfigurable electronics. In the example design, liquid metal-filled channels in a laminated composite act as radiating elements for a high-power planar zig-zag wire log periodic dipole antenna. Flow of liquid metal through the channels is used to limit the temperature of the composite in which the antenna is embedded. A multiphysics engineering model of the transmitting antenna is formulated that couples the electromagnetic, fluid, thermal, and mechanical responses. In part 1 of this two-part work, it is shown that the liquid metal antenna is highly reconfigurable in terms of its electromagnetic response and that dissipated thermal energy generated during high power operation can be offset by the action of circulating or cyclically replacing the liquid metal such that heat is continuously removed from the system. In fact, the SEVA can potentially outperform traditional copper-based antennas in high-power operational configurations. The coupled engineering model is implemented in an automated framework and a design of experiment study is performed to quantify first-order design trade-offs in this multifunctional structure. More rigorous design optimization is addressed in part 2.

  9. Fundamental Investigation of Interactions and Behavior Between Phase Change Materials and Liquid Metals in Nano-Micro Scale Volumes

    DTIC Science & Technology

    2009-10-26

    low-melting solders, low-melting casting metal and fire-melted valve elements in sprinkler systems. The main properties of the two LMPs are shown in...signal amplitude has been set to make the test chip accelerate periodically with 3.37G. Subsequently, the signal amplitude has been change in order to...pattern even at strong acceleration with liquid paraffin flowing freely around the LMP. Slight deformation can be detected due to the strong

  10. Formation of Apollo 16 impactites and the composition of late accreted material: Constraints from Os isotopes, highly siderophile elements and sulfur abundances

    NASA Astrophysics Data System (ADS)

    Gleißner, Philipp; Becker, Harry

    2017-03-01

    Fe-Ni metal-schreibersite-troilite intergrowths in Apollo 16 impact melt rocks and new highly siderophile element (HSE) and S abundance data indicate that millimeter-scale closed-system fractional crystallization processes during cooling of impactor-derived metal melt droplets in impact-melts are the main reason for compositional variations and strong differences in abundances and ratios of HSE in multiple aliquots from Apollo 16 impact melt rocks. Element ratios obtained from linear regression of such data are therefore prone to error, but weighted averages take into account full element budgets in the samples and thus represent a more accurate estimate of their impactor contributions. Modeling of solid metal-liquid metal partitioning in the Fe-Ni-S-P system and HSE patterns in impactites from different landing sites suggest that bulk compositions of ancient lunar impactites should be representative of impact melt compositions and that large-scale fractionation of the HSE by in situ segregation of solid metal or sulfide liquid in impact melt sheets most likely did not occur. The compositional record of lunar impactites indicates accretion of variable amounts of chondritic and non-chondritic impactor material and the mixing of these components during remelting of earlier ejecta deposits. The non-chondritic composition appears most prominently in some Apollo 16 impactites and is characterized by suprachondritic HSE/Ir ratios which increase from refractory to moderately volatile HSE and exhibit a characteristic enrichment of Ru relative to Pt. Large-scale fractional crystallization of solid metal from sulfur and phosphorous rich metallic melt with high P/S in planetesimal or embryo cores is currently the most likely process that may have produced these compositions. Similar materials or processes may have contributed to the HSE signature of the bulk silicate Earth (BSE).

  11. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  12. Role of Coordination and Chelation in Utilization of Nutritionally Essential Trace Elements.

    DTIC Science & Technology

    BIOCHEMISTRY, *TRANSITION METALS), (*CHELATE COMPOUNDS, BIOCHEMISTRY), (*DIALYSIS, CHEMICAL ANALYSIS), NUTRITION , IRON, CHROMIUM, PHOSPHATES, AMINO ACIDS, HYDROXIDES, ALCOHOLS, PEPTIDES, MEMBRANES, LIQUID FILTERS

  13. Determination of Thermodynamic Properties of Alkaline Earth-liquid Metal Alloys Using the Electromotive Force Technique

    PubMed Central

    Nigl, Thomas P.; Smith, Nathan D.; Lichtenstein, Timothy; Gesualdi, Jarrod; Kumar, Kuldeep; Kim, Hojong

    2017-01-01

    A novel electrochemical cell based on a CaF2 solid-state electrolyte has been developed to measure the electromotive force (emf) of binary alkaline earth-liquid metal alloys as functions of both composition and temperature in order to acquire thermodynamic data. The cell consists of a chemically stable solid-state CaF2-AF2 electrolyte (where A is the alkaline-earth element such as Ca, Sr, or Ba), with binary A-B alloy (where B is the liquid metal such as Bi or Sb) working electrodes, and a pure A metal reference electrode. Emf data are collected over a temperature range of 723 K to 1,123 K in 25 K increments for multiple alloy compositions per experiment and the results are analyzed to yield activity values, phase transition temperatures, and partial molar entropies/enthalpies for each composition. PMID:29155770

  14. An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials

    NASA Astrophysics Data System (ADS)

    Sharifi, Hamid; Larouche, Daniel

    2015-09-01

    The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium-copper alloy (Al-5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie-Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected.

  15. Trace Metals Derived from Electronic Cigarette (ECIG) Generated Aerosol: Potential Problem of ECIG Devices That Contain Nickel

    PubMed Central

    Palazzolo, Dominic L.; Crow, Andrew P.; Nelson, John M.; Johnson, Robert A.

    2017-01-01

    Introduction: ECIGs are currently under scrutiny concerning their safety, particularly in reference to the impact ECIG liquids (E-liquids) have on human health. One concern is that aerosolized E-liquids contain trace metals that could become trapped in respiratory tissues and induce pathology. Methods: To mimic this trapping, peristaltic pumps were used to generate and transport aerosol onto mixed cellulose ester (MCE) membranes where aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were subsequently captured and quantified. The presence of trace metals on unexposed MCE membranes and on MCE membranes exposed to mainstream smoke served as control and comparison, respectively. The presence of these metals was also determined from the E-liquid before aerosolization and untouched by the ECIG device. All metals were quantified using ICP-MS. The ECIG core assembly was analyzed using scanning electron microscopy with elemental analysis capability. Results: The contents (μg) of Al, As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn on control MCE membranes were 1.2 ± 0.2, 0.050 ± 0.002, 0.047 ± 0.003, 0.05 ± 0.01, 0.001 ± 0.001, 0.16 ± 0.04, 0.005 ± 0.003, 0.014 ± 0.006, and 0.09 ± 0.02, respectively. The contents of all trace metals on MCE membranes exposed to aerosol were similar to controls, except Ni which was significantly (p < 0.01) higher (0.024 ± 0.004 μg). In contrast, contents of Al, As, Fe, Mn, and Zn on MCE membranes exposed to smoke were significantly higher (p < 0.05) than controls. The contents of Al, As, Cu, Fe, and Mn on smoke-exposed MCE membranes were also significantly higher (p < 0.05) than their content on aerosol-exposed membranes. The contents per cigarette equivalent of metals in E-liquid before aerosolization were negligible compared to amounts of aerosolized E-liquid, except for Fe (0.002 μg before and 0.001 μg after). Elemental analysis of the core assembly reveals the presence of several of these trace metals, especially Al, Fe, Ni, and Zn. Conclusions: In general, from the single ECIG-device/E-liquid combination used, the amount of trace metals from ECIG-generated aerosol are lower than in traditional mainstream smoke, Only Ni in the ECIG-generated aerosol was higher than control. The most probable source of Ni in this aerosol is the core assembly. PMID:28119618

  16. Chromatographic separation of the platinum-group elements, gold, base metals and sulfur during degassing of a compacting and solidifying igneous crystal pile

    NASA Astrophysics Data System (ADS)

    Boudreau, A. E.; Meurer, W. P.

    The major platinum-group elements (PGE) concentrations in layered intrusions are typically associated with zones in which the sulfide abundance begins to increase. In a number of layered intrusions, there is also a distinct stratigraphic separation in the peak concentrations of the PGE from those of the base metals, gold and sulfur through these zones. These stratigraphic ``offsets'' are characterized by a lower, typically S-poor, Pt- and Pd-enriched zone overlain by a zone enriched in the base metals, S and Au. The separations amount to a few decimeters to several tens of meters. In some instances, the high Pt and Pd concentrations are associated with trivial amounts of sulfide. Theoretical considerations suggest that these offsets can be modeled as chromatographic peaks that develop during an infiltration/reaction process. Using Pd as a typical PGE and Cu as a typical base metal, a numeric model is developed that illustrates how metal separations can develop in a vapor-refining zone as fluid evolved during solidification of a cumulus pile leaches sulfide and redeposits it higher in the crystal pile. The solidification/degassing ore-element transport is coupled with a compaction model for the crystal pile. Solidification resulting from conductive cooling through the base of the compacting column leads to an increasing volatile concentration in the intercumulus liquid until it reaches fluid saturation. Separation and upward migration of this fluid lead to an upward-migrating zone of increasingly higher bulk water contents as water degassed from underlying cumulates enriches overlying, fluid-undersaturated interstitial liquids. Sulfide is resorbed from the degassing regions and is reprecipitated in these vapor-undersaturated interstitial liquids, producing a zone of relatively high modal sulfide that also migrates upward with time. Owing to its strong preference for sulfide, Pd is not significantly mobile until all sulfide is resorbed. The result is a zone of increasing PGE enrichment that follows the sulfide resorption front as solidification/degassing continues. In detail, the highest Pd concentrations occur stratigraphically below the peak in S and base metals. The high Pd/S ratio mimics values conventionally interpreted as the result of high (silicate liquid)/(sulfide liquid) mass ratios (``R'' values). However, in this case, the high Pd/S ratio is the result of a chromatographic/reaction front enrichment and not a magmatic sulfide-saturation event.

  17. Method and composition for testing for the presence of an alkali metal

    DOEpatents

    Guon, Jerold

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.

  18. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  19. Fracture-induced flow and liquid metal transport during core formation

    NASA Astrophysics Data System (ADS)

    Jones, V.; Petford, N.; Rushmer, T.; Wertheim, D.

    2008-12-01

    The most important event in the early history of the earth was the separation of its iron-rich core. Core formation induced profound chemical fractionations and extracted into the core most of Earth's iron and siderophile elements (Ni, Co, Au, Pt, W, Re), leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, 'raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation

  20. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis.

    PubMed

    Lin, Kuo-Hsiung; Chiang, Hung-Lung

    2014-04-30

    Non-metal fractions of waste printed circuit boards (PCBs) were thermally treated (200-500°C) under nitrogen atmosphere. Carbon, hydrogen, and nitrogen were determined by elemental analyzer, bromine by instrumental neutron activation analysis (INAA), phosphorus by energy dispersive X-ray spectrometer (EDX), and 29 trace elements by inductively coupled plasma atomic emission spectrometer (ICP-AES) and mass spectrometry (ICP-MS) for raw material and pyrolysis residues. Organic compositions of liquid oil were identified by GC (gas chromatography)-MS, trace element composition by ICP system, and 12 water-soluble ions by IC (ionic chromatography). Elemental content of carbon was >450 mg/g, oxygen 300 mg/g, bromine and hydrogen 60 mg/g, nitrogen 30 mg/g, and phosphorus 28 mg/g. Sulfur was trace in PCBs. Copper content was 25-28 mg/g, iron 1.3-1.7 mg/g, tin 0.8-1.0mg/g and magnesium 0.4-1.0mg/g; those were the main metals in the raw materials and pyrolytic residues. In the liquid products, carbon content was 68-73%, hydrogen was 10-14%, nitrogen was 4-5%, and sulfur was less than 0.05% at pyrolysis temperatures from 300 to 500°C. Phenol, 3-bromophenol, 2-methylphenol and 4-propan-2-ylphenol were major species in liquid products, accounting for >50% of analyzed organic species. Bromides, ammonium and phosphate were the main species in water sorption samples for PCB pyrolysis exhaust. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Surface Tension of Liquid Alkali, Alkaline, and Main Group Metals: Theoretical Treatment and Relationship Investigations

    NASA Astrophysics Data System (ADS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-09-01

    An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.

  2. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE PAGES

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu 40Zr 51Al 9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at T x ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (T m ~ 900K),more » and the crossover temperature is roughly twice of the glass-transition temperature (T g). Below T x, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below T x and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  3. Petroleum.

    ERIC Educational Resources Information Center

    McManus, T. R.; And Others

    1989-01-01

    This review of petroleum covers: crude oil; fuels, gaseous and liquid; lubricants, oils, and greases; asphalts, bitumens, tars, and pitches; hydrocarbons; physical properties; metals in oil; nonmetallic elements and heterocompounds; and analytical methods and apparatus. (MVL)

  4. Highly concentrated, ring-shaped phase conversion laser-induced breakdown spectroscopy technology for liquid sample analysis.

    PubMed

    Lin, Qingyu; Wei, Zhimei; Guo, Hongli; Wang, Shuai; Guo, Guangmeng; Zhang, Zhi; Duan, Yixiang

    2017-06-10

    A highly concentrated, ring-shaped phase conversion (RSPC) method was developed for liquid sample analysis using the laser-induced breakdown spectroscopy (LIBS) technique. In this work, test samples were prepared by mixing the metal particles with polyvinyl alcohol (PVA) supporter in liquid phase. With heat, the PVA solution solidified inside a modified glass petri dish, forming a metal-enriched polymer ring film. Distinguished from other traditional liquid-to-solid conversing methods, the proposed new method takes advantage of enhanced homogeneity for the target elements inside the ring film. The modified glass petri dish was used to control the ring-shaped concentration. Due to the specially designed circular groove at the bottom of this dish, where the PVA solution and liquid sample mixture accumulated, the target elements were concentrated in this small ring, which is beneficial for enhancing and stabilizing the plasma signals compared to the direct liquid sample analysis using LIBS. The limits of detection for Ag, Cu, Cr, and Ba obtained with the RSPC-LIBS technology were 0.098  μg·mL -1 , 0.18  μg·mL -1 , 0.83  μg·mL -1 , and 0.046  μg·mL -1 , respectively, which provided greater improvement than the direct bulk liquid analysis using LIBS.

  5. Metallic wire grid behavior and testing in a low pressure gaseous noble elements detector

    NASA Astrophysics Data System (ADS)

    Ji, W.

    2018-05-01

    High voltage performance has been a challenge for noble element detectors. One piece of this challenge is the emission of electrons from metal electrodes when applying high voltage. This has become a major concern for low-background detectors such as LUX-ZEPLIN (LZ). LZ is a liquid xenon Time Projection Chamber (TPC) searching for Weakly Interactive Massive Particles (WIMPs). In this work, we demonstrate a method to measure electron emission from metallic electrode grids via detection of proportional scintillation light. We find consistency with Fowler-Nordheim emission with a surface parameter β = 1988 after electro-polishing treatment of a stainless steel grid.

  6. Mineral Resource of the Month: Bromine

    USGS Publications Warehouse

    Schnebele, Emily

    2015-01-01

    Bromine, along with mercury, is one of only two elements that are liquid at room temperature. Bromine is a highly volatile and corrosive reddish-brown liquid that evaporates easily and converts to a metal at extreme pressures — above about 540,000 times atmospheric pressure. Bromine occurs in seawater, evaporitic (salt) lakes and underground brines associated with petroleum deposits. 

  7. Effect of Silicon on Activity Coefficients of Platinum in Liquid Fe-Si, With Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.

    2017-01-01

    Earth's core contains approximately 10% of a light element that is likely a combination of S, C, Si, and O, with Si possibly being the most abundant light element. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Pt (with Re and Ru in progress or planned) between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle Pt concentrations.

  8. Measuring DAC metal-silicate partitioning experiments by electron microprobe: Thickness, fluorescence, and oxide spheres

    NASA Astrophysics Data System (ADS)

    Jennings, E. S.; Wade, J.; Laurenz, V.; Kearns, S.; Buse, B.; Rubie, D. C.

    2017-12-01

    The process by which the Earth's core segregated, and its resulting composition, can be inferred from the composition of the bulk silicate Earth if the partitioning of various elements into metal at relevant conditions is known. As such, partitioning experiments between liquid metal and liquid silicate over a wide range of pressures and temperatures are frequently performed to constrain the partitioning behaviour of many elements. The use of diamond anvil cell experiments to access more extreme conditions than those achievable by larger volume presses is becoming increasingly common. With a volume several orders of magnitude smaller than conventional samples, these experiments present unique analytical challenges. Typically, sample preparation is performed by FIB as a 2 mm thick slice, containing a small iron ball surrounded by a layer of silicate melt. This implies that analyses made by EPMA will be made near boundaries where fluoresced X-rays from the neighbouring phase may be significant. By measuring and simulating synthetic samples, we investigate thickness and fluorescence limitations. We find that for typical sample geometries, a thickness of 2 μm contains the entire analytical volume for standard 15kV analyses of metals. Fluoresced X-rays from light elements into the metal are below detection limits if there is no direct electron interaction with the silicate. Continuum fluorescence from higher atomic number elements from the metal into silicate poses significant difficulties [1]. This can cause metal-silicate partition coefficients of siderophile elements to be underestimated. Finally, we examine the origin and analytical consequences of oxide-rich exsolutions that are frequently found in the metal phase of such experiments. These are spherical with diameters of 100 nm and can be sparsely to densely packed. They appear to be carbon-rich and result in low analytical totals by violating the assumption of homogeneity in matrix corrections (e.g. φρz), which results in incorrect relative abundances. Using low kV analysis, we explore their origin i.e. whether they originate from quench exsolution or dynamic processes. Identifying their composition is key to understanding their origin and the interpretation of DAC experimental results.[1] Wade J & Wood B. J. (2012) PEPI 192-193, 54-58.

  9. Core-Mantle Partitioning of Volatile Siderophile Elements and the Origin of Volatile Elements in the Earth

    NASA Technical Reports Server (NTRS)

    Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2012-01-01

    There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.

  10. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  11. NEUTRONIC REACTOR CORE

    DOEpatents

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  12. Soft-Matter Resistive Sensor for Measuring Shear and Pressure Stresses

    NASA Astrophysics Data System (ADS)

    Tepayotl-Ramirez, Daniel; Roberts, Peter; Majidi, Carmel

    2013-03-01

    Building on emerging paradigms in soft-matter electronics, we introduce liquid-phase electronic sensors that simultaneously measures elastic pressure and shear deformation. The sensors are com- posed of a sheet of elastomer that is embedded with fluidic channels containing eutectic Gallium- Indium (EGaIn), a metal alloy that is liquid at room temperature. Applying pressure or shear traction to the surface of the surrounding elastomer causes the elastomer to elastically deform and changes the geometry and electrical properties of the embedded liquid-phase circuit elements. We introduce analytic models that predict the electrical response of the sensor to prescribed surface tractions. These models are validated with both Finite Element Analysis (FEA) and experimental measurements.

  13. Kinetic model of mass transfer through gas liquid interface in laser surface alloying

    NASA Astrophysics Data System (ADS)

    Gnedovets, A. G.; Portnov, O. M.; Smurov, I.; Flamant, G.

    1997-02-01

    In laser surface alloying from gas atmosphere neither surface concentration nor the flux of the alloying elements are known beforehand. They should be determined from the combined solution of heat and mass transfer equations with an account for the kinetics of interaction of a gas with a melt. Kinetic theory description of mass transfer through the gas-liquid interface is applied to the problem of laser surface alloying of iron from the atmosphere of molecular nitrogen. The activation nature of gas molecules dissociation at the surface is considered. It is shown that under pulsed-periodic laser action the concentration profiles of the alloying element have maxima situated close to the surface of the metal. The efficiency of surface alloying increases steeply under laser-plasma conditions which results in the formation of highly supersaturated gas solutions in the metal.

  14. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation

    NASA Astrophysics Data System (ADS)

    Rubie, David C.; Laurenz, Vera; Jacobson, Seth A.; Morbidelli, Alessandro; Palme, Herbert; Vogel, Antje K.; Frost, Daniel J.

    2016-09-01

    Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth’s core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the “Hadean matte”) stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.

  15. The deficiency of siderophile elements in the moon

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.; Urey, H. C.

    1977-01-01

    An attempt is made to reconcile a plausible origin of the moon with the observed deficiency of siderophile elements in the moon. A numerical analysis is performed which indicates that at least 1% metal was needed to extract nickel successfully from the moon and that the deficiency of lunar siderophiles can be explained on the basis of a fission hypothesis. It is suggested that leaching by liquid metallic iron caused the lunar deficiency and that the leaching took place in the protoearth from which the moon subsequently formed by fission.

  16. Simultaneous Evaporation of Cu and Sn from Liquid Steel

    NASA Astrophysics Data System (ADS)

    Jung, Sung-Hoon; Kang, Youn-Bae

    2016-08-01

    In order to understand evaporation refining of tramp elements in molten ferrous scrap, Cu and Sn, a series of experiments were carried out using liquid-gas reaction in a levitation melting equipment. Effect of S and C, which are abundant in hot metal from ironmaking process, was examined and analyzed by employing a comprehensive evaporation kinetic model developed by the present authors (Jung et al. in Metall Mater Trans B 46B:250-258, 2014; Jung et al. in Metall Mater Trans B 46B:259-266, 2014; Jung et al. in Metall Mater Trans B 46B:267-277, 2014; Jung and Kang in Metall Mater Trans B 10.1007/s11663-016-0601-5, 2016). Evaporation of Cu and Sn were treated by evaporation of individual species such as Cu(g), CuS(g), Sn(g), and SnS(g), along with CS2(g). Decrease of Cu and Sn content in liquid steel was in good agreement with the model prediction. Optimum conditions of steel composition for the rapid evaporation of Cu and Sn were proposed by utilizing the model predictions.

  17. Thermophysical properties of simple liquid metals: A brief review of theory

    NASA Technical Reports Server (NTRS)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the suspended microspheres behave like ions screened by the salt solution in which they are suspended). We conclude with a brief discussion of some non-equilibrium (i.e., transport) properties which can be treated by an extension of these methods. These include electrical resistivity, thermal conductivity, viscosity, atomic self-diffusion coefficients, concentration diffusion coefficients in alloys, surface tension and thermal emissivity. Finally, we briefly mention two methods by which the theory might be extended to non-simple liquid metals: these are empirical techniques (i.e., empirical two- and three-body potentials), and numerical many-body approaches. Both may be potentially applicable to extremely complex systems, such as nonstoichiometric liquid semiconductor alloys.

  18. Partitioning of Re and Os between liquid metal and magnesiowüstite at high pressure

    NASA Astrophysics Data System (ADS)

    Fortenfant, S. S.; Rubie, D. C.; Reid, J.; Dalpé, C.; Capmas, F.; Gessmann, C. K.

    2003-09-01

    In order to study the partitioning of Re and Os between liquid iron-rich alloy and magnesiowüstite at high pressure, multi-anvil experiments have been performed on samples of Fe-Ni-Os-Re-O (4-8 wt.% Os and 4-12 wt.% Re) metal contained in MgO single crystal capsules. The range of pressure-temperature conditions was 5-10 GPa and 1900-2200 °C with experimental run durations of 6-30 min. During the experiments, the MgO reacted with the liquid metal to form magnesiowüstite. Compositions of the quenched liquid metal and the FeO, MgO and NiO contents of magnesiowüstite were determined by electron microprobe. Re and Os concentrations in magnesiowüstite were determined by LA-ICP-MS using a Re-Os-doped silicate glass standard. Based on the experimental results and assuming a valence of +2 for both Re and Os in magnesiowüstite, liquid metal-magnesiowüstite distribution coefficients ( KDmet/mw) are 60-240 for Re and 1.3×10 4 to 3.1×10 4 for Os. Within the uncertainties, there is no observable effect of either temperature or pressure on the partitioning of Re and Os over the range of experimental conditions. However, the values are very low compare to metal-silicate KDmet/mw values determined at 1 bar and 1400 °C (3×10 9 for Re and 7×10 6 for Os [Geochim. Cosmochim. Acta 65 (2001) 2161; Am. Mineral. 85 (2000) 912]). KDmet/mw values, assuming core-mantle equilibrium, are estimated to be ˜68 for both elements. Thus, although mantle concentrations of Re may be explained by core-mantle equilibration at high pressure and temperature, the experimentally determined distribution coefficients for Os are several orders of magnitude too high. Our results are therefore consistent with the "late veneer" hypothesis as an explanation for the mantle concentrations of highly siderophile elements. However, a consequence of the late veneer would be domains in the deep mantle with suprachondritic Re/Os ratios.

  19. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  20. Terrestrial magma ocean and core segregation in the earth

    NASA Technical Reports Server (NTRS)

    Ohtani, Eiji; Yurimoto, Naoyoshi

    1992-01-01

    According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower mantle conditions in the first stage, and subsequent downwards separation of the ultrabasic liquid (and magnesiowustite) and flotation of Mg-perovskite in the lower mantle.

  1. 3D Printed Wearable Sensors with Liquid Metals for the Pose Detection of Snakelike Soft Robots.

    PubMed

    Zhou, Luyu; Gao, Qing; Zhan, Jun-Fu; Xie, Chao-Qi; Fu, Jianzhong; He, Yong

    2018-06-18

    Liquid metal-based flexible sensors, which utilize advanced liquid conductive material to serve as sensitive element, is emerging as a promising solution to measure large deformations. Nowadays, one of the biggest challenges for precise control of soft robots is the detection of their real time positions. Existing fabrication methods are unable to fabricate flexible sensors that match the shape of soft robots. In this report, we firstly described a novel 3D printed multi-function inductance flexible and stretchable sensor with liquid metals (LMs), which is capable of measuring both axial tension and curvature. This sensor is fabricated with a developed coaxial liquid metal 3D printer by co-printing of silicone rubber and LMs. Due to the solenoid shape, this sensor can be easily installed on snakelike soft robots and can accurately distinguish different degrees of tensile and bending deformation. We determined the structural parameters of the sensor and proved its excellent stability and reliability. As a demonstration, we used this sensor to measure the curvature of a finger and feedback the position of endoscope, a typical snakelike structure. Because of its bending deformation form consistent with the actual working status of the soft robot and unique shape, this sensor has better practical application prospects in the pose detection.

  2. Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Terrestrial Planets: Building Blocks and Differentiation: included the following topics:Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS; Meteoritic Constraints on Collision Rates in the Primordial Asteroid Belt and Its Origin; New Constraints on the Origin of the Highly Siderophile Elements in the Earth's Upper Mantle; Further Lu-Hf and Sm-Nd Isotopic Data on Planetary Materials and Consequences for Planetary Differentiation; A Deep Lunar Magma Ocean Based on Neodymium, Strontium and Hafnium Isotope Mass Balance Partial Resetting on Hf-W System by Giant Impacts; On the Problem of Metal-Silicate Equilibration During Planet Formation: Significance for Hf-W Chronometry ; Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon; Siderophile Element Abundances in Fe-S-Ni-O Melts Segregated from Partially Molten Ordinary Chondrite Under Dynamic Conditions; Activity Coefficients of Silicon in Iron-Nickel Alloys: Experimental Determination and Relevance for Planetary Differentiation; Reinvestigation of the Ni and Co Metal-Silicate Partitioning; Metal/Silicate Paritioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition; and Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation.

  3. Speciation analysis and bioaccessibility evaluation of trace elements in goji berries (Lycium Barbarum, L.).

    PubMed

    Wojcieszek, Justyna; Kwiatkowski, Piotr; Ruzik, Lena

    2017-04-07

    Goji berries (Lycium Barbarum, L.) are known for their nutritional potential as a great source of trace metals (e.g., copper, zinc and manganese) which are present in the form of highly bioaccessible compounds. In order to assess the bioaccessibility of trace elements and to identify compounds responsible for better bioaccessibility of copper and zinc, an in vitro simulation of gastrointestinal digestion was used in this study. The total content of trace metals was evaluated using sample digestion followed by inductively coupled plasma mass spectrometry. Bioaccessibility of trace elements was estimated by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. These analytical methods were used to analyse samples of goji berries to determine the highest amount of elements. For total trace metal content in goji berries, Zn had the highest level of the three studied (10.6μgg -1 ), while the total content of manganese and copper was 9.9μgg -1 and 6.1μgg -1 , respectively. Additionally, the analysed metals were found to be highly bioaccessible to the human body (about 56% for Mn, 72% for Cu and 64% for Zn in the gastric extract and approximately 35% for Mn, 23% for Cu and 31% for Zn in the case of gastrointestinal extract). To obtain information about metal complexes present in goji berries, extraction treatment using different solutions (ionic liquid, HEPES, SDS, Tris-HCl, ammonium acetate, water) was performed. Enzymatic treatment using pectinase and hemicellulase was also checked. Extracts of berries were analysed by SEC-ICP-MS and μHPLC-ESI-MS/MS techniques. The ionic liquid and pectinase extraction helped efficiently extract copper (seven compounds) and zinc (four compounds) complexes. Compounds identified in goji berries are most likely to be responsible for better bioaccessibility of those elements to the human organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Reduction of heavy metal from soil in Bakri Landfill, Muar, Johor by using Electrokinetic method

    NASA Astrophysics Data System (ADS)

    Azhar, ATS; Muhammad, E.; Zaidi, E.; Ezree, AM; Aziman, M.; Hazreek, ZAM; Nizam, ZM; Norshuhaila, MS

    2017-08-01

    The present study focuses on the contamination levels and distribution of heavy metals in soil samples located at Bakri Landfill area, Muar, Johor, Malaysia. The aim of this study is to determine the type of heavy metal elements that contribute towards soil contamination and to reduce them based on the comparison of elemental analysis between pre and post Electrokinetic (EK) processes. The ppm level concentration of elements in this landfill soil is measured by using X-ray Fluorescence analysis. ICP-MS testing was carried out for liquid samples analysis. There were two set of EK experiments conducted. In first phase, voltage was maintained at 3 Vcm-1 and prolonged for 3 hours, while second phase was operated at 1 Vcm-1 for 48 hours. In this work, distilled water was used as an electrolyte for the process and two identical copper foil were used as electrodes due to high electrical conductivity. The application of EK remediation revealed that successful removal of Rb and Ba elements in the soil were observed by 2-3%, however other heavy metals have not changed.

  5. Effective removal of hazardous trace metals from recovery boiler fly ashes.

    PubMed

    Kinnarinen, Teemu; Golmaei, Mohammad; Jernström, Eeva; Häkkinen, Antti

    2018-02-15

    The objective of this study is to introduce a treatment sequence enabling straightforward and effective recovery of hazardous trace elements from recovery boiler fly ash (RBFA) by a novel method, and to demonstrate the subsequent removal of Cl and K with the existing crystallization technology. The treatment sequence comprises two stages: dissolution of most other RBFA components than the hazardous trace elements in water in Step 1 of the treatment, and crystallization of the process chemicals in Step 2. Solid-liquid separation has an important role in the treatment, due to the need to separate first the small solid residue containing the trace elements, and to separate the valuable crystals, containing Na and S, from the liquid rich in Cl and K. According to the results, nearly complete recovery of cadmium, lead and zinc can be reached even without pH adjustment. Some other metals, such as Mg and Mn, are removed together with the hazardous metals. Regarding the removal of Cl and K from the process, in this non-optimized case the removal efficiency was satisfactory: 60-70% for K when 80% of sodium was recovered, and close to 70% for Cl when 80% of sulfate was recovered. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Experiments on Lunar Core Composition: Phase Equilibrium Analysis of A Multi-Element (Fe-Ni-S-C) System

    NASA Technical Reports Server (NTRS)

    Go, B. M.; Righter, K.; Danielson, L.; Pando, K.

    2015-01-01

    Previous geochemical and geophysical experiments have proposed the presence of a small, metallic lunar core, but its composition is still being investigated. Knowledge of core composition can have a significant effect on understanding the thermal history of the Moon, the conditions surrounding the liquid-solid or liquid-liquid field, and siderophile element partitioning between mantle and core. However, experiments on complex bulk core compositions are very limited. One limitation comes from numerous studies that have only considered two or three element systems such as Fe-S or Fe-C, which do not supply a comprehensive understanding for complex systems such as Fe-Ni-S-Si-C. Recent geophysical data suggests the presence of up to 6% lighter elements. Reassessments of Apollo seismological analyses and samples have also shown the need to acquire more data for a broader range of pressures, temperatures, and compositions. This study considers a complex multi-element system (Fe-Ni-S-C) for a relevant pressure and temperature range to the Moon's core conditions.

  7. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuelsmore » suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.« less

  8. Trace metal mapping by laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Jozef; Novotny, Dr. Karel; Hrdlicka, A

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  9. Structure and property of metal melt I: The number of residual bonds after solid-liquid phase changes

    NASA Astrophysics Data System (ADS)

    Mi, Guangbao; Li, Peijie; He, Liangju

    2010-09-01

    Based on the mechanism of metal solid-liquid phase change and the theory of liquid metal’s micro-inhomogeneity, a physical model is established between latent heats of fusion and vaporization and the numbers of residual bonds and short-range ordered atoms at the melting point inside a metal melt. Meanwhile, the mathematical derivation and proof are also offered. This model produces the numbers of residual bonds and short-range ordered atoms after the solid-liquid phase change only by using basic parameters and thermophysical properties of the crystal structure. Therefore, it presents a more effective way to analyze the melt’s structural information. By using this model, this study calculates the numbers of residual bonds and short-range ordered atoms in Al and Ni melts. The calculated results are consistent with the experimental results. Simultaneously, this study discusses the atomic number’s influence on the numbers of residual bonds and short-range ordered atoms in the melts within the first (IA) and second main group (IIA) elements.

  10. Thermodynamics of Liquid Alkali Metals and Their Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Patel, Minal H.; Gajjar, P. N.; Jani, A. R.

    2009-07-01

    The theoretical investigation of thermodynamic properties like internal energy, entropy, Helmholtz free energy, heat of mixing (ΔE) and entropy of mixing (ΔS) of liquid alkali metals and their binary alloys are reported in the present paper. The effect of concentration on the thermodynamic properties of Ac1Bc2 alloy of the alkali-alkali elements is investigated and reported for the first time using our well established local pseudopotential. To investigate influence of exchange and correlation effects, we have used five different local field correction functions viz; Hartree(H), Taylor(T), Ichimaru and Utsumi(IU), Farid et al. (F) and Sarkar et al. (S). The increase of concentration C2, increases the internal energy and Helmholtz free energy of liquid alloy Ac1Bc2. The behavior of present computation is not showing any abnormality in the outcome and hence confirms the applicability of our model potential in explaining the thermodynamics of liquid binary alloys.

  11. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  12. Effects of Reoxidation of Liquid Steel and Slag Composition on the Chemistry Evolution of Inclusions During Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Shi, Chengbin; Wang, Hui; Li, Jing

    2018-06-01

    Electroslag remelting (ESR) is increasingly used to produce some varieties of special steels and alloys, mainly because of its ability to provide extreme cleanliness and an excellent solidification structure simultaneously. In the present study, the combined effects of varying SiO2 contents in slag and reoxidation of liquid steel on the chemistry evolution of inclusions and the alloying element content in steel during ESR were investigated. The inclusions in the steel before ESR refining were found to be oxysulfides of patch-type (Ca,Mn)S adhering to a CaO-Al2O3-SiO2-MgO inclusion. The oxide inclusions in both the liquid metal pool and remelted ingots are CaO-Al2O3-MgO and MgAl2O4 together with CaO-Al2O3-SiO2-MgO inclusions (slightly less than 30 pct of the total inclusions), which were confirmed to originate from the reduction of SiO2 from the original oxide inclusions by dissolved Al in liquid steel during ESR. CaO-Al2O3-MgO and MgAl2O4 are newly formed inclusions resulting from the reactions taking place inside liquid steel in the liquid metal pool caused by reoxidation of liquid steel during ESR. Increasing the SiO2 content in slag not only considerably reduced aluminum pickup in parallel with silicon loss during ESR, but also suppressed the decrease in SiO2 content in oxide inclusions. (Ca,Mn)S inclusions were fully removed before liquid metal droplets collected in the liquid metal pool.

  13. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry.

    PubMed

    Kamilari, Eleni; Farsalinos, Konstantinos; Poulas, Konstantinos; Kontoyannis, Christos G; Orkoula, Malvina G

    2018-06-01

    Electronic cigarettes are considered healthier alternatives to conventional cigarettes containing tobacco. They produce vapor through heating of the refill liquids (e-liquids) which consist of propylene glycol, vegetable glycerin, nicotine (in various concentrations), water and flavoring agents. Heavy metals may enter the refill liquid during the production, posing a risk for consumer's health due to their toxicity. The objective of the present study was the development of a methodology for the detection and quantitative analysis of cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), arsenic (As) and chromium (Cr), employing Total Reflection X-Ray Fluorescence Spectroscopy (TXRF) as an alternative technique to ICP-MS or ICP-OES commonly used for this type of analysis. TXRF was chosen due to its advantages, which include short analysis time, promptness, simultaneous multi-element analysis capability and minimum sample preparation, low purchase and operational cost. The proposed methodology was applied to a large number of electronic cigarette liquids commercially available, as well as their constituents, in order to evaluate their safety. TXRF may be a valuable tool for probing heavy metals in electronic cigarette refill liquids to serve for the protection of human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Solvent extraction of Cu, Mo, V, and U from leach solutions of copper ore and flotation tailings.

    PubMed

    Smolinski, Tomasz; Wawszczak, Danuta; Deptula, Andrzej; Lada, Wieslawa; Olczak, Tadeusz; Rogowski, Marcin; Pyszynska, Marta; Chmielewski, Andrzej Grzegorz

    2017-01-01

    Flotation tailings from copper production are deposits of copper and other valuable metals, such as Mo, V and U. New hydrometallurgical technologies are more economical and open up new possibilities for metal recovery. This work presents results of the study on the extraction of copper by mixed extractant consisting p -toluidine dissolved in toluene. The possibility of simultaneous liquid-liquid extraction of molybdenum and vanadium was examined. D2EHPA solutions was used as extractant, and recovery of individual elements compared for the representative samples of ore and copper flotation tailings. Radiometric methods were applied for process optimization.

  15. Liquid-metal atomization for hot working preforms

    NASA Technical Reports Server (NTRS)

    Grant, N. J.; Pelloux, R. M.

    1974-01-01

    Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.

  16. Effect of Silicon on Activity Coefficients of P, Bi, Cd, Sn, and Ag in Liquid Fe-Si, and Implications for Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Ross, D. K.; Righter, M.; Lapen, T. J.

    2018-01-01

    Cores of differentiated bodies (Earth, Mars, Mercury, Moon, Vesta) contain light elements such as S, C, Si, and O. We have previously measured small effects of Si on Ni and Co, and larger effects on Mo, Ge, Sb, As metal/silicate partitioning. The effect of Si on metal-silicate partitioning has been quantified for many siderophile elements, but there are a few key elements for which the effects are not yet quantified. Here we report new experiments designed to quantify the effect of Si on the partitioning of Bi, Cd, Sn, Ag, and P between metal and silicate melt. The results will be applied to Earth, Mars, Moon, and Vesta, for which we have good constraints on the mantle Bi, Cd, Sn, Ag, and P concentrations from mantle and/or basalt samples.

  17. Method of treating waste water

    DOEpatents

    Deininger, James P.; Chatfield, Linda K.

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  18. Storage, generation, and use of hydrogen

    DOEpatents

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  19. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to <1400 °C, while variable Fe-oxide contents were used to vary oxygen fugacity in graphite and MgO capsules. Isotopic analyses were performed using a double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  20. The Role of Dissolved Gas in Ionic Liquid Electrolytes for Secondary Lithium Metal Batteries

    DTIC Science & Technology

    2013-01-07

    devices use lithium-ion batteries comprised of a graphite anode and metal oxide cathode . Lithium, being the third-lightest element, is already synonymous...support shuttling lithium ions (battery cycling) such as the separator, electrolyte, and cathode and anode superstructures contribute most of the...ability of electro-deposit lithium non-dendritically. When lithium is electrodeposited , as during battery charging, it tends to form needle-like

  1. Composition and Elution Behavior of Various Elements from Printed Circuit Boards, Cathode-ray Tube Glass, and Liquid-crystal Displays in Waste Consumer Electronics.

    PubMed

    Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka

    2018-01-01

    The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.

  2. IUPAC-NIST Solubility Data Series. 75. Nonmetals in Liquid Alkali Metals

    NASA Astrophysics Data System (ADS)

    Borgstedt, Hans Ulrich; Guminski, Cezary; Borgstedt, Hans Ulrich; Guminski, Cezary

    2001-07-01

    Liquid alkali metals have several physical properties which favor their use in a number of important applications. For example, their large liquidus temperature range and their excellent heat transfer properties are important for use as heat transfer media. They are used in large nuclear reactors in which hundreds of tons of sodium are circulating, and in small parts of engines for cooling of valves. Since these metals are among the most electropositive elements, several of them (Li, Na) can be used in high specific capacity and high energy density batteries at moderately elevated temperatures. The compatibility of metallic constructional materials which are used to contain the liquid metals is strongly influenced by nonmetals present in the liquids. The physical properties of the liquid metals are also influenced by dissolved substances. Several nonmetals dissolved in alkali metals are able to form ternary compounds with components of the constructional materials. Thus, corrosion and compatibility studies have been accompanied by extensive chemical work related to the solutions of non-metallic substances in liquid alkali metals. All available solubility data of nonmetallic elements and some of their compounds in the five liquid alkali metal solvents (Li, Na, K, Rb, and Cs) are collected and compiled. Original publications with reliable data and information on the methods used to generate them are reported in individual Compilations. When numerical data are not given in a publication, the data are often read out from figures and converted into numerical data by the compilers. The precision of this procedure is indicated in the Compilations under Estimated Error. Evaluated solubility data are tabulated at the end of the Critical Evaluations: if there is agreement of at least two independent studies within the experimental error, the solubility values are assigned to the "recommended" category. Values are assigned as "tentative," if only one reliable result was reported, or if the mean value of two or more reliable studies was outside the error limits. In the tabulation, three, two, or one significant figures are assigned for respective precisions that are better than ±1% and ±10% and worse than ±10%. If necessary, the solubilities are recalculated into mol %. The completeness of this investigation of the literature has been confirmed and extended by studying several reviews dealing with the solution chemistry of substances in the alkali metals. Solubility data are sometimes measured under parameters, which are not standard conditions of such measurements. Frequently measurements are performed under constrained pressure. The solubility of noble gases or other gases, which do not form compounds with the alkali metals, depends on the gas pressures. This dependency is documented in the data sheets. Schematic phase diagrams are presented in systems for which they assist the understanding of the data and the conclusions. They are based on the most recent state of knowledge and generally presented in the Critical Evaluations. Some solubility diagrams are shown in form of a log solubility versus reciprocal temperature function. These figures illustrate the larger scatter of data for systems in which interfering reactions cause unstable behavior of solutions. While several solutes are well defined substances, other systems need still additional studies to define the equilibrium solid state compound. One should realize that estimations of the stoichiometry and thermal stability of ternary compounds are experimentally difficult, and their results are often uncertain.

  3. Modeling of liquid flow in surface discontinuities

    NASA Astrophysics Data System (ADS)

    Lobanova, I. S.; Meshcheryakov, V. A.; Kalinichenko, A. N.

    2018-01-01

    Polymer composite and metallic materials have found wide application in various industries such as aviation, rocket, car manufacturing, ship manufacturing, etc. Many design elements need permanent quality control. Ensuring high quality and reliability of products is impossible without effective nondestructive testing methods. One of these methods is penetrant testing using penetrating substances based on liquid penetration into defect cavities. In this paper, we propose a model of liquid flow to determine the rates of filling the defect cavities with various materials and, based on this, to choose optimal control modes.

  4. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.; Mittlefehldt, D. W.

    2017-07-01

    Initially small liquid metal drops must grow to about 10 cm in size before sinking through the convecting silicate magma ocean to form a core. The required magma temperature is consistent with moderately siderophile element abundances in eucrites.

  5. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular details chosen for ec-LLS. Third, the rate of introduction of zero-valent materials into the liquid metal is precisely gated with a high degree of resolution by the applied potential/current. The intent of this Account is to summarize the key elements of ec-LLS identified to date, first contextualizing this method with respect to other semiconductor crystal growth methods and then highlighting some unique capabilities of ec-LLS. Specifically, we detail ec-LLS as a platform to prepare Ge and Si crystals from bulk- (∼1 cm(3)), micro- (∼10(-10) cm(3)), and nano-sized (∼10(-16) cm(3)) liquid metal electrodes in common solvents at low temperature. In addition, we describe our successes in the preparation of more compositionally complex binary covalent III-V semiconductors.

  6. Biological and Bioelectrochemical Recovery of Critical and Scarce Metals.

    PubMed

    Nancharaiah, Y V; Mohan, S Venkata; Lens, P N L

    2016-02-01

    Metal-bearing solid and liquid wastes are increasingly considered as secondary sources of critical and scarce metals. Undoubtedly, microorganisms are a cost-effective resource for extracting and concentrating diffuse elements from secondary sources. Microbial biotechnology for extracting base metals from ores and treatment of metal-laden wastewaters has already been applied at full scale. By contrast, microbe-metal interactions in the recovery of scarce metals and a few critical metals have received attention, whereas the recovery of many others has been barely explored. Therefore, this article explores and details the potential application of microbial biotechnologies in the recovery of critical and scarce metals. In the past decade bioelectrochemical systems have emerged as a new technology platform for metal recovery coupled to the removal of organic matter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The solvated electron battery

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Harney, D.; Mitchell, T.

    A novel ambient temperture secondary battery using sodium and sulfur dissolved in liquid ammonia is being developed at ELTECH Systems corpooration. The key element of the system is the solvated electron electrode, a metallic liquid which is formed by ammonia and a number of alkali and alkaline earth metals. These solutions are excellent ionic and electronic conductors and have been shown to contain 'free' solvated electrons as the anionic species in solution. Sulfur was chosen as the cathodic reactant because of its high solubility in ammonia, and also because of the high solubiity and good conductivity of the polysulfide reaction products. Development efforts have thus far concentrated on basic electrochemical measurements and establishment of system feasibility.

  8. Liquid Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  9. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  10. Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator.

    PubMed

    Zhu, Jiu Yang; Thurgood, Peter; Nguyen, Ngan; Ghorbani, Kamran; Khoshmanesh, Khashayar

    2017-11-07

    Generating customised temperature gradients in miniaturised flow-free liquid chambers is challenging due to the dominance of diffusion. Inducing internal flows in the form of vortices is an effective strategy for overcoming the limitations of diffusion in such environments. Vortices can be produced by applying pressure, temperature and electric potential gradients via miniaturised actuators. However, the difficulties associated with the fabrication, integration, maintenance and operation of such actuators hinder their utility. Here, we utilise liquid metal enabled pumps to induce vortices inside a miniaturised liquid chamber. The configuration and rotational velocity of these vortices can be controlled by tuning the polarity and frequency of the energising electrical signal. This allows creation of customised spatial temperature gradients inside the chamber. The absence of conventional moving elements in the pumps facilitates the rapid reconfiguration of vortices. This enables quick transition from one temperature profile to another, and creates customised spatiotemporal temperature gradients. This allows temperature oscillation from 35 to 62 °C at the hot spot, and from 25 to 27 °C at the centre of the vortex within 15 seconds. Our liquid metal enabled vortex generator can be fabricated, integrated and operated easily, and offers opportunities for studying thermo-responsive materials and biological samples.

  11. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.

  12. Self-healing fuse

    NASA Technical Reports Server (NTRS)

    Jones, N. D.; Kinsinger, R. E.; Harris, L. P.

    1974-01-01

    Fast-acting current limiting device provides current overload protection for vulnerable circuit elements and then re-establishes conduction path within milliseconds. Fuse can also perform as fast-acting switch to clear transient circuit overloads. Fuse takes advantage of large increase in electrical resistivity that occurs when liquid metal vaporizes.

  13. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  14. The synthesis of ternary acetylides with tellurium: Li 2 TeC 2 and Na 2 TeC 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Németh, Károly; Unni, Aditya K.; Kalnmals, Christopher

    The synthesis of ternary acetylides Li 2TeC 2 and Na 2TeC 2 is presented as the first example of ternary acetylides with metalloid elements instead of transition metals. The synthesis was carried out by the direct reaction of the corresponding bialkali acetylides with tellurium powder in liquid ammonia. Alternatively, the synthesis of Na 2TeC 2 was also carried out by the direct reaction of tellurium powder and two equivalents of NaC 2H in liquid ammonia leading to Na 2TeC 2 and acetylene gas through an equilibrium containing the assumed NaTeC 2H molecules besides the reactants and the products. The resultingmore » disordered crystalline materials were characterized by X-ray diffraction and Raman spectroscopy. Implications of these new syntheses on the synthesis of other ternary acetylides with metalloid elements and transition metals are also discussed.« less

  15. Experimental segregation of iron-nickel metal, iron-sulfide, and olivine in a thermal gradient: Preliminary results

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, J. H.

    1993-01-01

    Speculation about the possible mechanisms for core formation in small asteroids raises more questions than answers. Petrologic evidence from iron meteorites, pallasites, and astronomical observations of M asteroids suggests that many small bodies were capable of core formation. Recent work by Taylor reviews the geochemical evidence and examines the possible physical/mechanical constraints on segregation processes. Taylor's evaluation suggests that extensive silicate partial melting (preferably 50 vol. percent or greater) is required before metal can segregate from the surrounding silicate and form a metal core. The arguments for large degrees of silicate partial melting are two-fold: (1) elemental trends in iron meteorites require that the metal was at is liquidus; and (2) experimental observations of metal/sulfide inclusions in partially molten silicate meteorites show that the metal/sulfide tends to form spherules in the liquid silicate due to surface tension effects. Taylor points out that for these metal spherules to sink through a silicate mush, high degrees of silicate partial melting are required to lower the silicate yield strength. Although some qualitative experimental data exists, little is actually known about the behavior of metals and liquid sulfides dispersed in silicate systems. In addition, we have been impressed with the ability of cumulative olivine to expel trapped liquid when placed in a thermal gradient. Consequently, we undertook to accomplish the following: (1) experimentally evaluate the potential for metal/sulfide/silicate segregation in a thermal gradient; and (2) obtain quantitative data of the wetting parameters of metal-sulfide melts among silicate grains.

  16. Implications for Core Formation of the Earth from High Pressure-Temperature Au Partitioning Experiments

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Sharp, T. G.; Hervig, R. L.

    2005-01-01

    Siderophile elements in the Earth.s mantle are depleted relative to chondrites. This is most pronounced for the highly siderophile elements (HSEs), which are approximately 400x lower than chondrites. Also remarkable is the relative chondritic abundances of the HSEs. This signature has been interpreted as representing their sequestration into an iron-rich core during the separation of metal from silicate liquids early in the Earth's history, followed by a late addition of chondritic material. Alternative efforts to explain this trace element signature have centered on element partitioning experiments at varying pressures, temperatures, and compositions (P-T-X). However, first results from experiments conducted at 1 bar did not match the observed mantle abundances, which motivated the model described above, a "late veneer" of chondritic material deposited on the earth and mixed into the upper mantle. Alternatively, the mantle trace element signature could be the result of equilibrium partitioning between metal and silicate in the deep mantle, under P-T-X conditions which are not yet completely identified. An earlier model determined that equilibrium between metal and silicate liquids could occur at a depth of approximately 700 km, 27(plus or minus 6) GPa and approximately 2000 (plus or minus 200) C, based on an extrapolation of partitioning data for a variety of moderately siderophile elements obtained at lower pressures and temperatures. Based on Ni-Co partitioning, the magma ocean may have been as deep as 1450 km. At present, only a small range of possible P-T-X trace element partitioning conditions has been explored, necessitating large extrapolations from experimental to mantle conditions for tests of equilibrium models. Our primary objective was to reduce or remove the additional uncertainty introduced by extrapolation by testing the equilibrium core formation hypothesis at P-T-X conditions appropriate to the mantle.

  17. In Vitro Investigations of Human Bioaccessibility from Reference Materials Using Simulated Lung Fluids

    PubMed Central

    Pelfrêne, Aurélie; Cave, Mark R.; Wragg, Joanna; Douay, Francis

    2017-01-01

    An investigation for assessing pulmonary bioaccessibility of metals from reference materials is presented using simulated lung fluids. The objective of this paper was to contribute to an enhanced understanding of airborne particulate matter and its toxic potential following inhalation. A large set of metallic elements (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) was investigated using three lung fluids (phosphate-buffered saline, Gamble’s solution and artificial lysosomal fluid) on three standard reference materials representing different types of particle sources. Composition of the leaching solution and four solid-to-liquid (S/L) ratios were tested. The results showed that bioaccessibility was speciation- (i.e., distribution) and element-dependent, with percentages varying from 0.04% for Pb to 86.0% for Cd. The higher extraction of metallic elements was obtained with the artificial lysosomal fluid, in which a relative stability of bioaccessibility was observed in a large range of S/L ratios from 1/1000 to 1/10,000. For further investigations, it is suggested that this method be used to assess lung bioaccessibility of metals from smelter-impacted dusts. PMID:28125027

  18. Core formation in the shergottite parent body and comparison with the earth

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Jones, John H.; Drake, Michael J.

    1987-01-01

    Abundances of elements in shergottite, nakhlite, and Chassigny meteorites which originated on a single planet, the shergottite parent body (SPB), were examined with the aim of elucidating the chemical conditions of metal separation and core formation in the SPB and of testing present models of planetary core formation. Using partition coefficients and the SPB mantle composition determined in earlier studies, the abundances of Ag, Au, Co, Ga, Mo, Ni, P, Re, S, and W were modeled, with free parameters being oxygen fugacity, proportion of solid metal formed, proportion of metallic liquid formed, and proportion of silicate that is molten. It is shown that the abundances of all elements (except Mo) could be reproduced using models with these four free parameters. In contrast to the SPB, an equivalent model used to predict element abundances in the earth's mantle was shown by Jones and Drake (1986) to be inadequate; there is at present no hypothesis capable of quantitatively reproducing the elemental abundances of the earth's mantle. The contrast suggests that these two terrestrial planets (assuming that the SPB is Mars) may have accreted or differentiated differently.

  19. Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.

    PubMed

    Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren

    2017-11-01

    Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.

  20. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from idealmore » solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard; Alvare, Javier

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution andmore » may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.« less

  2. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    PubMed

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  3. Transport properties and Stokes-Einstein relation in Al-rich liquid alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakse, N.; Pasturel, A.

    We use ab initio molecular dynamics simulations to study the transport properties and the validity of the Stokes-Einstein relation in Al-rich liquid alloys with Ni, Cu, and Zn as alloying elements. First, we show that the composition and temperature dependence of their transport properties present different behaviors, which can be related to their local structural ordering. Then, we evidence that the competition between the local icosahedral ordering and the local chemical ordering may cause the breakdown of the Stokes–Einstein relation even in the liquid phase. We demonstrate that this breakdown can be captured by entropy-scaling relationships developed by Rosenfeld andmore » using the two-body excess entropy. Our findings provide a unique framework to study the relation between structure, thermodynamics, and dynamics in metallic melts and pave the way towards the explanation of various complex transport properties in metallic melts.« less

  4. Transport properties and Stokes-Einstein relation in Al-rich liquid alloys

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2016-06-01

    We use ab initio molecular dynamics simulations to study the transport properties and the validity of the Stokes-Einstein relation in Al-rich liquid alloys with Ni, Cu, and Zn as alloying elements. First, we show that the composition and temperature dependence of their transport properties present different behaviors, which can be related to their local structural ordering. Then, we evidence that the competition between the local icosahedral ordering and the local chemical ordering may cause the breakdown of the Stokes-Einstein relation even in the liquid phase. We demonstrate that this breakdown can be captured by entropy-scaling relationships developed by Rosenfeld and using the two-body excess entropy. Our findings provide a unique framework to study the relation between structure, thermodynamics, and dynamics in metallic melts and pave the way towards the explanation of various complex transport properties in metallic melts.

  5. Ab Initio Predictions of K, He and Ar Partitioning Between Silicate Melt and Liquid Iron Under High Pressure

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Tsuchiya, T.

    2017-12-01

    Element partitioning is an important property in recording geochemical processes during the core-mantle differentiation. However, experimental measurements of element partitioning coefficients under extreme temperature and pressure condition are still challenging. Theoretical modeling is also not easy, because it requires estimation of high temperature Gibbs free energy, which is not directly accessible by the standard molecular dynamics method. We recently developed an original technique to simulate Gibbs free energy based on the thermodynamics integration method[1]. We apply it to element partitioning of geochemical intriguing trace elements between molten silicate and liquid iron such as potassium, helium and argon as starting examples. Radiogenic potassium in the core can provide energy for Earth's magnetic field, convection in the mantle and outer core[2]. However, its partitioning behavior between silicate and iron remains unclear under high pressure[3,4]. Our calculations suggest that a clear positive temperature dependence of the partitioning coefficient but an insignificant pressure effect. Unlike sulfur and silicon, oxygen dissolved in the metals considerably enhances potassium solubility. Calculated electronic structures reveal alkali-metallic feature of potassium in liquid iron, favoring oxygen with strong electron affinity. Our results suggest that 40K could serve as a potential radiogenic heat source in the outer core if oxygen is the major light element therein.­­ We now further extend our technique to partitioning behaviors of other elements, helium and argon, to get insides into the `helium paradox' and `missing argon' problems. References [1] T. Taniuchi, and T. Tsuchiya, Phys.Rev.B. In press [2] B.A. Buffett, H.E. Huppert, J.R. Lister, and A.W. Woods, Geophys.Res.Lett. 29 (1996) 7989-8006. [3] V.R. Murthy, W. Westrenen, and Y. Fei, Nature. 426 (2003) 163-165. [4] A. Corgne, S.Keshav, Y. Fei, and W.F. McDonough, Earth.Planet.Sci.Lett. 256 (2007) 567-576

  6. Planetary Protection Considerations in EVA System Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    To better constrain their origin, we have performed systematic studies of the siderophile element distribution in metal from Enstatite achondrites and iron-rich meteorites linked to Enstatite achondrites. Humayun (2010) reported 20 siderophile elements in the metal of Horse Creek, Mt. Egerton and Tucson, three iron meteorites known for their high Si content in their metal. The Horse Creek and Mt. Egerton irons have elemental patterns identical to metallic solids derived from partially molten enstatite chondrites. Tucson has an unusual siderophile element pattern that is reminiscent of IVA irons, except for the most volatile siderophiles with condensation temperatures below that of Cu (Sb, Ge, Sn) which are more depleted. The origin of Tucson metal is likely linked to an impact involving a reduced chondritic body that provided the silicates, and IVA iron. In a related study, van Acken et al. (2010) reported siderophile element abundances in metal and sulfides from aubrites, chondritic inclusions in aubrites, and other enstatite achondrites (including a separate section of Mt. Egerton). They found that aubrite metal was linked to metal in enstatite chondrites by low degree partial melting forming sulfur-rich metallic liquids. A restite origin of aubrites is not consistent with these metal compositions. The link between the metal compositions and cumulate silicates is not simple. The metal must have been incorporated from enstatite chondritic material that was assimilated by the aubrite magma. A manuscript is in preparation (van Acken et al., 2010). In a related study, van Acken et al. (2010, submitted) reported new precise Os isotope ratios and highly siderophile element abundances in Enstatite chondrites, Enstatite achondrites, Rumurutite chondrites to explore the range of nucleosynthetic variation in s-process Os. They observed nucleosynthetic anomalies, deficiencies of s-process Os, in most primitive enstatite chondrites, but showed the Rumurutite chondrites have very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  7. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam.

  8. Effect of atomic size on undercoolability of binary solid solution alloy liquids with Zr, Ti, and Hf using electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Jeon, S.; Kang, D.-H.; Lee, Y. H.; Lee, S.; Lee, G. W.

    2016-11-01

    We investigate the relationship between the excess volume and undercoolability of Zr-Ti and Zr-Hf alloy liquids by using electrostatic levitation. Unlike in the case of Zr-Hf alloy liquids in which sizes of the constituent atoms are matched, a remarkable increase of undercoolability and negative excess volumes are observed in Zr-Ti alloy liquids as a function of their compositional ratios. In this work, size mismatch entropies for the liquids were obtained by calculating their hard sphere diameters, number densities, and packing fractions. We also show that the size mismatch entropy, which arises from the differences in atomic sizes of the constituent elements, plays an important role in determining the stabilities of metallic liquids.

  9. Determining the Metal/Silicate Partition Coefficient of Germanium: Implications for Core and Mantle Differentiation.

    NASA Technical Reports Server (NTRS)

    King, C.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2010-01-01

    Currently there are several hypotheses for the thermal state of the early Earth. Some hypothesize a shallow magma ocean, or deep magma ocean, or heterogeneous accretion which requires no magma ocean at all. Previous models are unable to account for Ge depletion in Earth's mantle relative to CI chondrites. In this study, the element Ge is used to observe the way siderophile elements partition into the metallic core. The purpose of this research is to provide new data for Ge and to further test these models for Earth's early stages. The partition coefficients (D(sub Ge) = c(sub metal)/c(sub silicate), where D = partition coefficient of Ge and c = concentration of Ge in the metal and silicate, respectively) of siderophile elements were studied by performing series of high pressure, high temperature experiments. They are also dependent on oxygen fugacity, and metal and silicate composition. Ge is a moderately siderophile element found in both the mantle and core, and has yet to be studied systematically at high temperatures. Moreover, previous work has been limited by the low solubility of Ge in silicate melts (less than 100 ppm and close to detection limits for electron microprobe analysis). Reported here are results from 14 experiments studying the partitioning of Ge between silicate and metallic liquids. The Ge concentrations were then analyzed using Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) which is sensitive enough to detect ppm levels of Ge in the silicate melt.

  10. Ambient Air Pollution and Increases in Blood Pressure: Role for biological constituents of particulate matter

    EPA Science Inventory

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...

  11. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  12. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  13. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  14. Dissolution Behaviour of Metal Elements from Several Types of E-waste Using Leaching Test

    NASA Astrophysics Data System (ADS)

    Nor, Nik Hisyamudin Muhd; Amira Nordin, Nurul; Mohamad, Fariza; Jaibee, Shafizan; Ismail, Al Emran; Omar, Badrul; Fauzi Ahmad, Mohd; Rahim, Abd Khalil Abd; Kamaruddin, Muhamad Khalif Ikhwan Mohd; Turan, Faiz Mohd; Abu Bakar, Elmi; Yokoyama, Seiji

    2017-08-01

    Rapid development of the electrical and electronic was increasing annually due to the demand by the human being. Increasing production of electrical and electronic product led to the increasing of electric and electronic waste or can be called as the e-waste. The UN Environment Programme estimates that the world generates 20-50 million tons of the e-waste each year and the amount is raising three times faster than other forms of municipal waste. This study is focusing on the investigation of the dissolution behaviour of metal element from several types of e-waste by hydrometallurgical process. Leaching test was conducted on the e-waste by using acid as the reagent solution. Prior to the leaching test, manual dismantling, separation, and crushing process were carried out to the e-waste. The e-waste were characterized by Scanning Electron Microcopy (SEM) and the Energy Dispersive X-ray Spectroscopy (EDX) to define the elements inside the sample of e-waste. While the liquid residue from leaching test was analyzed by using Inductively Couple Plasma-Mass Spectrometer (ICP-MS) to define the dissolution behaviour of the metal element that contain in the e-waste. It was found that the longest time for dismantling process was the dismantling of laptop. The dissolution behaviour of Fe, Al, Zn and Pb elements in the e-waste has affected to the increase of pH. The increasing pH led to the reduction of the metals element during leaching process.

  15. Controlling the intermediate structure of an ionic liquid for f-block element separations

    DOE PAGES

    Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...

    2017-04-19

    Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less

  16. Core segregation mechanism and compositional evolution of terretrial planets

    NASA Astrophysics Data System (ADS)

    Petford, N.; Rushmer, T.

    2009-04-01

    A singular event in the formation of the earth and terrestrial planets was the separation iron-rich melt from mantle silicate to form planetary cores. On Earth, and by implication other rocky planets, this process induced profound internal chemical fractionation, with siderophile elements (Ni, Co, Au, Pt, W, Re) following Fe into the core, leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, ‘raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation. The potential for flow of metal-rich melt to induce local magnetic anomalies will also be addressed.

  17. Determination of Metal Elements in Wine Using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Bocková, Jana; Tian, Ye; Yin, Hualiang; Delepine-Gilon, Nicole; Chen, Yanping; Veis, Pavel; Yu, Jin

    2017-08-01

    We developed a method for sensitive elemental analysis of wines using laser-induced breakdown spectroscopy (LIBS). In order to overcome the inefficiency of direct ablation of bulk wine (an organic liquid), a thin layer of wine residue was prepared on a metallic target according to an appropriated heating procedure applied to an amount of liquid wine dropped on the target surface. The obtained ensemble was thus ablated. Such a sample preparation procedure used a very small volume of 2 mL of wine and took only 30 min without reagent or solvent. The results show the detection of tens of metal and non-metal elements including majors (Na, Mg, K, Ca), minors, and traces (Li, B, Si, P, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Ba, and Pb) in wines purchased from local supermarkets and from different production places in France. Commercially available wines were then spiked with certified standard solutions of Ti and Fe. Three series of laboratory reference samples were thus prepared using three different wines (a red wine and a white wine from a same production region and a red wine from another production region) with concentrations of Ti and Fe in the range of 1-40 mg/L. Calibration graphs established with the spiked samples allowed extracting the figures-of-merit parameters of the method for wine analysis such as the coefficient of determination ( R 2 ) and the limits of detection and quantification (LOD and LOQ). The calibration curves built with the three wines were then compared. We studied the residual matrix effect between these wines in the determination of the concentrations of Ti and Fe.

  18. Deformation of contact surfaces in a vacuum interrupter after high-current interruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haoran; Wang, Zhenxing, E-mail: zxwang@xjtu.edu.cn; Zhou, Zhipeng

    2016-08-07

    In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal canmore » be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E{sup −3}, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.« less

  19. Early metal-silicate differentiation during planetesimal formation revealed by acapulcoite and lodranite meteorites

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Corder, Christopher A.; Tait, Kim T.; Marti, Kurt; Assayag, Nelly; Cartigny, Pierre; Rumble, Doug; Taylor, Lawrence A.

    2017-11-01

    In order to establish the role and expression of silicate-metal fractionation in early planetesimal bodies, we have conducted a highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance and 187Re-187Os study of acapulcoite-lodranite meteorites. These data are reported with new petrography, mineral chemistry, bulk-rock major and trace element geochemistry, and oxygen isotopes for Acapulco, Allan Hills (ALHA) 81187, Meteorite Hills (MET) 01195, Northwest Africa (NWA) 2871, NWA 4833, NWA 4875, NWA 7474 and two examples of transitional acapulcoite-lodranites, Elephant Moraine (EET) 84302 and Graves Nunataks (GRA) 95209. These data support previous studies that indicate that these meteorites are linked to the same parent body and exhibit limited degrees (<2-7%) of silicate melt removal. New HSE and osmium isotope data demonstrate broadly chondritic relative and absolute abundances of these elements in acapulcoites, lower absolute abundances in lodranites and elevated (>2 × CI chondrite) HSE abundances in transitional acapulcoite-lodranite meteorites (EET 84302, GRA 95209). All of the meteorites have chondritic Re/Os with measured 187Os/188Os ratios of 0.1271 ± 0.0040 (2 St. Dev.). These geochemical characteristics imply that the precursor material of the acapulcoites and lodranites was broadly chondritic in composition, and were then heated and subject to melting of metal and sulfide in the Fe-Ni-S system. This resulted in metallic melt removal and accumulation to form lodranites and transitional acapulcoite-lodranites. There is considerable variation in the absolute abundances of the HSE, both among samples and between aliquots of the same sample, consistent with both inhomogeneous distribution of HSE-rich metal, and of heterogeneous melting and incomplete mixing of silicate material within the acapulcoite-lodranite parent body. Oxygen isotope data for acapulcoite-lodranites are also consistent with inhomogeneous melting and mixing of accreted components from different nebular sources, and do not form a well-defined mass-dependent fractionation line. Modeling of HSE inter-element fractionation suggests a continuum of melting in the Fe-Ni-S system and partitioning between solid metal and sulfur-bearing mineral melt, where lower S contents in the melt resulted in lower Pt/Os and Pd/Os ratios, as observed in lodranites. The transitional meteorites, EET 84302 and GRA 95209, exhibit the most elevated HSE abundances and do not follow modelled Pt/Os and Pd/Os solid metal-liquid metal partitioning trends. We interpret this to reflect metal melt pooling into domains that were sampled by these meteorites, suggesting that they may originate from deeper within the acapulcoite-lodranite parent body, perhaps close to a pooled metallic 'core' region. Petrographic examination of transitional samples reveals the most extensive melting, pooling and networking of metal among the acapulcoite-lodranite meteorites. Overall, our results show that solid metal-liquid metal partitioning in the Fe-Ni-S system in primitive achondrites follows a predictable sequence of limited partial melting and metal melt pooling that can lead to significant HSE inter-element fractionation effects in proto-planetary materials.

  20. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, M.J.; Capobianco, C.J.; Newsom, H.E.

    1989-08-01

    The abundances of V, Cr, and Mn inferred for the mantles of the Earth and Moon decrease in that order and are similar, but are distinct from those inferred for the mantles of the Eucrite Parent Body (EPB) and Shergottite Parent Body (SPB). This similarity between Earth and Moon has been used to suggest that the Moon is derived substantially or entirely from Earth mantle material following terrestrial core formation. To test this hypothesis, the authors have determined the partitioning of V, Cr, and Mn between solid iron metal, S-rich metallic liquid, and synthetic basaltic silicate liquid at 1,260{degree}C andmore » one bar pressure. The sequence of compatibility in the metallic phases is Cr > V > Mn at high oxygen fugacity and V > Cr > Mn at low oxygen fugacities. Solubilities in liquid metal always exceed solubilities in solid metal. These partition coefficients suggest that the abundances of V, Cr, and Mn do not reflect core formation in the Earth. Rather, they are consistent with the relative volatilities of these elements. The similarity in the depletion patterns of V, Cr, and Mn inferred for the mantles of the Earth and Moon is a necessary, but not sufficient, condition for the Moon to have been derived wholly or in part from the Earth's mantle.« less

  1. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    NASA Astrophysics Data System (ADS)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-08-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  2. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method

    NASA Astrophysics Data System (ADS)

    Etesami, S. Alireza; Asadi, Ebrahim

    2018-01-01

    Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

  3. Application of ICP-MS as a multi-element detector for sulfur and metal hydride impurities in hydrocarbon matrices.

    PubMed

    Geiger, William M; McSheehy, Shona; Nash, Martin J

    2007-01-01

    Maturation of inductively coupled plasma-mass spectrometry (ICP-MS) in terms of size, reliability, and cost has had a significant impact on its consideration as a viable detector for gas chromatography. Its generally excellent sensitivity for those elements it can measure has been a contributing factor. A method for sulfur speciation in various hydrocarbon products is investigated, as well as sulfur and metal hydride contaminants in high purity hydrocarbon feed stocks. Detection limits for sulfur species in hydrocarbon liquids and gases are approximately 5 and 10 ppb, respectively, as sulfur. Lower detection limits on the order of 100 parts per trillion are achieved for arsine. The use of collision cell technology (CCT) is exploited to remove interferences. CCT has been described elsewhere (1) using helium or helium-hydrogen mixtures for suppression of (16)O(16)O(+) interference with (32)S. In this work, a novel approach is investigated which uses oxygen to remove this interference by shifting it in a comprehensive fashion. The advantage of operating the system at full power with a tandem gas and liquid interface is also discussed.

  4. Noble metal abundances in komatiite suites from Alexo, Ontario and Gorgona Island, Colombia

    NASA Astrophysics Data System (ADS)

    Brügmann, G. E.; Arndt, N. T.; Hofmann, A. W.; Tobschall, H. J.

    1987-08-01

    The distribution of the chalcophile and siderophile metals Cu, Ni, Au, Pd, Ir, Os and Ru in an Archaean komatiite flow from Alexo, Ontario and in a Phanerozoic komatiitic suite of Gorgona Island, Colombia, provides new information about the geochemical behaviour of these elements. Copper, Au and Pd behave as incompatible elements during the crystallization of these ultramafic magmas. In contrast, Ni, Ir, Os and Ru concentrations systematically decrease with decreasing MgO contents, a pattern characteristic of compatible elements. These trends are most probably controlled by olivine crystallization, which implies that Ir, Os and Ru are compatible in olivine. Calculated partition coefficients for Ir, Os and Ru between olivine and the melt are about 1.8. Compared to primitive mantle, parental komatiitic liquids are enriched in (incompatible) Cu, Au and Pd and depleted in (compatible) Ir, Os and Ru. Within both Archaean and Phanerozoic komatiites, noble metal ratios such as Au/Pd, Ir/Os, Os/Ru and Ru/Ir and ratios of lithophile and siderophile elements such as Ti/Pd, Ti/Au are constant and similar to primitive mantle values. This implies that Au and Pd are moderately incompatible elements and that there has been no significant fractionation of siderophile and lithophile elements since the Archaean. Platinum-group element abundances of normal MORB are highly variable and always much lower than in komatiites, because MORB magma is saturated with sulfur and a variable but minor amount of sulfide segregated during mantle melting or during the ascent of magma to the surface. Sulfide deposits associated with komatiites display similar chalcophile element patterns to those of komatiites. Noble metal ratios such as Pd/Ir, Au/Ir, Pd/Os and Pd/Ru can be used to determine the composition of the host komatiite at the time of sulfide segregation.

  5. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  6. Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250-1300 °C and its cosmochemical consequences

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Schmidt, Max W.; Bourdon, Bernard

    2012-09-01

    Iron isotope fractionation during metal-silicate differentiation has been proposed as a cause for differences in iron isotope compositions of chondrites, iron meteorites and the bulk silicate Earth. Stable isotope fractionation, however, rapidly decreases with increasing temperature. We have thus performed liquid metal-liquid silicate equilibration experiments at 1250-1300 °C and 1 GPa to address whether Fe isotope fractionation is resolvable at the lowest possible temperatures for magmatic metal-silicate differentiation. A centrifuging piston cylinder apparatus enabled quantitative metal-silicate segregation. Elemental tin or sulphur was used in the synthetic metal-oxide mixtures to lower the melting temperature of the metal. The analyses demonstrate that eight of the 10 experimental systems equilibrated in a closed isotopic system, as was assessed by varying run durations and starting Fe isotope compositions. Statistically significant iron isotope fractionation between quenched metals and silicates was absent in nine of the 10 experiments and all 10 experiments yield an average metal-silicate fractionation factor of 0.01 ± 0.04‰, independent of whether graphite or silica glass capsules were used. This implies that Fe isotopes do not fractionate during low pressure metal-silicate segregation under magmatic conditions. In large bodies such as the Earth, fractionation between metal and high pressure (>20 GPa) silicate phases may still be a possible process for equilibrium fractionation during metal-silicate differentiation. However, the 0.07 ± 0.02‰ heavier composition of bulk magmatic iron meteorites relative to the average of bulk ordinary/carbonaceous chondrites cannot result from equilibrium Fe isotope fractionation during core segregation. The up to 0.5‰ lighter sulphide than metal fraction in iron meteorites and in one ordinary chondrite can only be explained by fractionation during subsolidus processes.

  7. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  8. Element and PAH constituents in the residues and liquid oil from biosludge pyrolysis in an electrical thermal furnace.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Lai, Nina; Shieh, Zhu-Xin

    2014-05-15

    Biosludge can be pyrolyzed to produce liquid oil as an alternative fuel. The content of five major elements, 22 trace elements and 16 PAHs was investigated in oven-dried raw material, pyrolysis residues and pyrolysis liquid products. Results indicated 39% carbon, 4.5% hydrogen, 4.2% nitrogen and 1.8% sulfur were in oven dried biosludge. Biosludge pyrolysis, carried out at temperatures from 400 to 800°C, corresponded to 34-14% weight in pyrolytic residues, 32-50% weight in liquid products and 31-40% weight in the gas phase. The carbon, hydrogen and nitrogen decreased and the sulfur content increased with an increase in the pyrolysis temperature at 400-800°C. NaP (2 rings) and AcPy (3 rings) were the major PAHs, contributing 86% of PAHs in oven-dried biosludge. After pyrolysis, the PAH content increased with the increase of pyrolysis temperature, which also results in a change in the PAH species profile. In pyrolysis liquid oil, NaP, AcPy, Flu and PA were the major species, and the content of the 16 PAHs ranged from 1.6 to 19 μg/ml at pyrolysis temperatures ranging from 400 to 800°C. Ca, Mg, Al, Fe and Zn were the dominant trace elements in the raw material and the pyrolysis residues. In addition, low toxic metal (Cd, V, Co, and Pb) content was found in the liquid oil, and its heat value was 7,800-9,500 kcal/kg, which means it can be considered as an alternative fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selle, J E

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussedmore » in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.« less

  10. Metal/Silicate Partitioning of W, Ge, Ga and Ni: Dependence on Silicate Melt Composition

    NASA Astrophysics Data System (ADS)

    Singletary, S.; Drake, M. J.

    2004-12-01

    Metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle (Drake and Righter, 2002; Jones and Drake, 1986; Righter et al. 1997). The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. In this work, we investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid. Experiments were performed in the Experimental Geochemistry Laboratory at the University of Arizona utilizing a non-end loaded piston cylinder apparatus with a barium carbonate pressure medium. Starting materials were created by combining the mafic and silicic compositions of Jaeger and Drake (2000) with Fe powder (~25 wt% of the total mixture) to achieve metal saturation. Small amounts of W, Ge, Ga2O3 and NiO powder (less than 2 wt% each) were also added to the starting compositions. The experiments were contained in a graphite capsule and performed with temperature and pressure fixed at 1400ºC and 1.5 GPa. Experimental run products were analyzed with the University of Arizona Cameca SX50 electron microprobe with four wavelength dispersive spectrometers and a PAP ZAF correction program. All experiments in our set are saturated with metal and silicate liquid, indicating that oxygen fugacity is below IW. Several of the runs also contain a gallium-rich spinel as an additional saturating phase. Quench phases are also present in the silicate liquid in all runs. The experimentally produced liquids have nbo/t values (calculated using the method of Mills, 1993) that range from 1.10 to 2.97. These values are higher than those calculated for the liquids in the Jaeger and Drake (2000) study. The higher nbo/t values are due to uptake of Fe by the melt. The initial silicate composition contained no FeO, however the experimentally produced silicate liquids contained from 15 to 26 wt % FeO. We find that W is incompatible over the range of compositions used in this study. However, W compatibility increases as melts become more silicic, with D(W) = 0.0005 at nbo/t = 2.97 and D(W) = 0.09 at nbo/t = 1.1. The slope of the best fit line for the W data when plotted in nbo/t vs Log D space is -1.22 and close to the value of -1.34 found by Jaeger and Drake (2000). Ge is compatible at all compositions and follows a similar pattern to that of W becoming more compatible with decreasing nbo/t (D(Ge)= 14 at nbo/t = 2.97 and D(Ge) = 100 at nbo/t = 1.1). Ni and Ga display essentially flat slopes within the error of our analysis, with D(Ni) = 395 at nbo/t = 2.97 and D(Ni) = 870 at nbo/t 1.10 and D(Ga) = 0.08 at nbo/t = 2.97 and D(Ga) = 0.02 at nbo/t = 1.1. A second series of experiments is in progress to verify these data and extend the study to lower values of nbo/t. References: Drake, M.J. and Righter, K. (2002) Nature, v. 416, 39-44; Jones, J.H. and Drake, M.J. (1986) Nature, v. 323, 470-471; Righter, K., et al. (1997) Physics Earth and Planet. Int., v. 100, 115-134; Jaeger, W.L. and Drake, M.J. (2000) Geo. Cosmo. Acta, v. 64, 3887-3895; Mills, K.C. (1993) ISIJ International, v. 33, 148-155.

  11. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides

    NASA Astrophysics Data System (ADS)

    Kiseeva, Ekaterina S.; Wood, Bernard J.

    2015-08-01

    We develop a comprehensive model to describe trace and minor element partitioning between sulphide liquids and anhydrous silicate liquids of approximately basaltic composition. We are able thereby to account completely for the effects of temperature and sulphide composition on the partitioning of Ag, Cd, Co, Cr, Cu, Ga, Ge, In, Mn, Ni, Pb, Sb, Ti, Tl, V and Zn. The model was developed from partitioning experiments performed in a piston-cylinder apparatus at 1.5 GPa and 1300 to 1700 °C with sulphide compositions covering the quaternary FeSsbnd NiSsbnd CuS0.5sbnd FeO. Partitioning of most elements is a strong function of the oxygen (or FeO) content of the sulphide. This increases linearly with the FeO content of the silicate melt and decreases with Ni content of the sulphide. As expected, lithophile elements partition more strongly into sulphide as its oxygen content increases, while chalcophile elements enter sulphide less readily with increasing oxygen. We parameterised the effects by using the ε-model of non-ideal interactions in metallic liquids. The resulting equation for partition coefficient of an element M between sulphide and silicate liquids can be expressed as We used our model to calculate the amount of sulphide liquid precipitated along the liquid line of descent of MORB melts and find that 70% of silicate crystallisation is accompanied by ∼0.23% of sulphide precipitation. The latter is sufficient to control the melt concentrations of chalcophile elements such as Cu, Ag and Pb. Our partition coefficients and observed chalcophile element concentrations in MORB glasses were used to estimate sulphur solubility in MORB liquids. We obtained between ∼800 ppm (for primitive MORB) and ∼2000 ppm (for evolved MORB), values in reasonable agreement with experimentally-derived models. The experimental data also enable us to reconsider Ce/Pb and Nd/Pb ratios in MORB. We find that constant Ce/Pb and Nd/Pb ratios of 25 and 20, respectively, can be achieved during fractional crystallisation of magmas generated by 10% melting of depleted mantle provided the latter contains >100 ppm S and about 650 ppm Ce, 550 ppm Nd and 27.5 ppb Pb. Finally, we investigated the hypothesis that the pattern of chalcophile element abundances in the mantle was established by segregation of a late sulphide matte. Taking the elements Cu, Ag, Pb and Zn as examples we find that the Pb/Zn and Cu/Ag ratios of the mantle can, in principle, be explained by segregation of ∼0.4% sulphide matte to the core.

  12. Method of foaming a liquid metal

    DOEpatents

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  13. MBE Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1987-06-30

    metal lattice sites using the liquid phase epitaxy. However, group V elements have not been successfully Incorporated Into MBE grown HgCdTe layer as...narrow-gap side was first Both groups used the liquid pweepitaxy (LPE) growth made with a thicknem of 2 to 3/pm before the growth condi- technique and...higher quasiequilibrium pressure than with the shutter opened. This study shows that with the particular geometry 27 used the time constant required

  14. Dual-plane ultrasound flow measurements in liquid metals

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  15. Metallic hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Dias, Ranga

    2018-06-01

    Hydrogen is the simplest and most abundant element in the Universe. There are two pathways for creating metallic hydrogen under high pressures. Over 80 years ago Wigner and Huntington predicted that if solid molecular hydrogen was sufficiently compressed in the T  =  0 K limit, molecules would dissociate to form atomic metallic hydrogen (MH). We have observed this transition at a pressure of 4.95 megabars. MH in this form has probably never existed on Earth or in the Universe; it may be a room temperature superconductor and is predicted to be metastable. If metastable it will have an important technological impact. Liquid metallic hydrogen can also be produced at intermediate pressures and high temperatures and is believed to make up ~90% of the planet Jupiter. We have observed this liquid–liquid transition, also known as the plasma phase transition, at pressures of ~1–2 megabar and temperatures ~1000–2000 K. However, in this paper we shall focus on the Wigner–Huntington transition. We shall discuss the methods used to observe metallic hydrogen at extreme conditions of static pressure in the laboratory, extending our understanding of the phase diagram of the simplest atom in the periodic table.

  16. Explicit demonstration of the role of Marangoni effect in the breakup of nanoscale liquid filaments

    NASA Astrophysics Data System (ADS)

    Seric, Ivana; Mahady, Kyle; Afkhami, Shahriar; Hartnett, Chris; Fowlkes, Jason; Rack, Philip; Kondic, Lou

    2016-11-01

    We consider a breakup of bi-metal filaments deposited on a solid substrate. These filaments are exposed to laser irradiation and, while in the liquid phase, evolve by a process resembling breakup of a liquid jet governed by the Rayleigh-Plateau instability. The novel element is that the Marangoni effect, resulting from a different surface tension of the two metals from which the filament is built, is crucial in understanding the instability development. In particular, Marangoni effect may lead to the inversion of the breakup process, producing droplets at the locations where according to the Rayleigh-Plateau theory dry spots would be expected. We present experimental results carried out with Cu-Ni filaments, as well as direct numerical simulations based on a novel algorithm that includes variable surface tension in a Volume-of-Fluid based Navier-Stokes solver. These results suggest the possibility of using Marangoni effect for the purpose of self- and directed-assembly on the nanoscale. Supported by the NSF Grant No. CBET-1604351.

  17. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.; Adams, J. J., E-mail: jjadams2@ncsu.edu; Trlica, C.

    2015-05-21

    We describe a new electrochemical method for reversible, pump-free control of liquid eutectic gallium and indium (EGaIn) in a capillary. Electrochemical deposition (or removal) of a surface oxide on the EGaIn significantly lowers (or increases) its interfacial tension as a means to induce the liquid metal in (or out) of the capillary. A fabricated prototype demonstrates this method in a reconfigurable antenna application in which EGaIn forms the radiating element. By inducing a change in the physical length of the EGaIn, the operating frequency of the antenna tunes over a large bandwidth. This purely electrochemical mechanism uses low, DC voltagesmore » to tune the antenna continuously and reversibly between 0.66 GHz and 3.4 GHz resulting in a 5:1 tuning range. Gain and radiation pattern measurements agree with electromagnetic simulations of the device, and its measured radiation efficiency varies from 41% to 70% over its tuning range.« less

  18. Planar optics with patterned chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0-2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

  19. Titan as the Abode of Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  20. Titan as the Abode of Life

    NASA Astrophysics Data System (ADS)

    McKay, Christopher P.

    2016-02-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms.

  1. Titan as the Abode of Life.

    PubMed

    McKay, Christopher P

    2016-02-03

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H₂O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic-polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms.

  2. Titan as the Abode of Life

    PubMed Central

    McKay, Christopher P.

    2016-01-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan’s atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic—polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms. PMID:26848689

  3. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    NASA Astrophysics Data System (ADS)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2012-07-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  4. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory.

    PubMed

    Correa, Alfredo A; Bonev, Stanimir A; Galli, Giulia

    2006-01-31

    At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at approximately 850 GPa and approximately 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, molten carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.

  5. Solid-liquid and liquid-solid transitions in metal nanoparticles.

    PubMed

    Hou, M

    2017-02-22

    The melting and solidification temperatures of nanosystems may differ by several hundred Kelvin. To understand the origin of this difference, transitions in small metallic nanoparticles on the atomic scale were analyzed using molecular dynamics (MD). Palladium was used as a case study, which was then extended to a range of other elemental metals. It was argued that in realistic environments, such as gases at low pressure (of the order of 1 mbar), heat transfers allow the microcanonical thermal equilibrium evolution of the nanoparticles between successive collisions with gas atoms. This is shown to have no significant influence on the mechanism of melting, whereas in an isolated nanoparticle, solidification triggers a huge and rapid increase in temperature. A simple relationship between the melting and solidification temperatures was found, indicating that the magnitude of the latent heat of melting governs undercooling. Whereas melting occurs via heterogeneous nucleation, solidification displays characteristics of spinodal decomposition. Consistently, the melting temperature scales with the surface-to-volume ratio, whereas the solidification temperature displays no significant dependence on the particle size.

  6. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory

    DOE PAGES

    Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia

    2006-01-23

    At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at ≈ 850 GPa and ≈ 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, moltenmore » carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Lastly, our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.« less

  7. U-based metallic glasses with superior glass forming ability

    NASA Astrophysics Data System (ADS)

    Xu, Hongyang; Ke, Haibo; Huang, Huogen; Zhang, Pengguo; Pu, Zhen; Zhang, Pei; Liu, Tianwei

    2018-02-01

    By using Al as the third and B as the fourth but minor alloying elements for the U66.7Co33.3 basic metallic glass, a series of U-Co-Al(-B) alloys were designed. The quaternary U-Co-Al-B alloys exhibit significantly improved glass-forming ability (GFA) than previously reported U-based metallic glasses. Low fragility (∼24) is found for these new U-based metallic glasses. The improvement in GFA would result from denser atomic packing in the undercooled liquids due to the presence of small B atoms. Some U-Co-Al(-B) glasses showed corrosion resistance comparable to that of U64Co34Al2 glass, known for premium anti-corrosive performance among the unveiled U-based glasses.

  8. Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition

    NASA Astrophysics Data System (ADS)

    Righter, K.; Pando, K. M.; Danielson, L.; Lee, Cin-Ty

    2010-03-01

    Metal-silicate partition coefficients can provide information about the earliest differentiation histories of terrestrial planets and asteroids. Systematic studies of the effects of key parameters such as temperature and melt composition are lacking for many elements. In particular, data for Mo is scarce, but given its refractory nature, is of great value in interpreting metal-silicate equilibrium. Two series of experiments have been carried out to study Mo and P partitioning between Fe metallic liquid and basaltic to peridotitic silicate melt, at 1 GPa and temperatures between 1500 and 1900 °C. Because the silicate melt utilized was natural basalt, there are also measurable quantities of 9 other siderophile elements (Ni, Co, W, Sn, Cu, Mn, V, Cr, Ga and Zn). The Ni and Co data can be used to assess consistency with previous studies. In addition, the new data also allow a first systematic look at the temperature dependence of Cu, Ga, Sn, Cr, Mn V and W for basaltic to peridotitic melts. Many elements exhibit an increase in siderophile behavior at higher temperature, contrary to popular belief, but consistent with predictions from thermodynamics. Using these new data we examine DMomet/sil and DPmet/sil in detail and show that increasing temperature causes a decrease in the former and an increase in the latter, whereas both increase with MgO content of the silicate melt. The depletions of Mo and P in the mantle of the Earth can be explained by metal-silicate equilibrium at magma ocean conditions — both elements are satisfied at PT conditions of an intermediate depth magma ocean for the Earth 22.5 GPa and 2400 °C.

  9. Comparative studies on acid leaching of zinc waste materials

    NASA Astrophysics Data System (ADS)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  10. The effects of pressure, temperature and composition on olivine-liquid exchange coefficients

    NASA Astrophysics Data System (ADS)

    Matzen, A. K.; Wood, B. J.

    2017-12-01

    It has recently been observed that there is a correlation between trace element (Ni and Mn) concentrations in olivine (ol) phenocrysts and thickness of the lithosphere on which they were erupted [1]. There are a number of potential explanations for this observation: the mantle may have interacted with the Ni-rich core; the trace element concentrations reflect presence of recycled crust in the mantle; or it arises from melting of peridotite at different temperatures (T) and pressures (P). Discriminating between these hypotheses requires accurate models of olivine-silicate liquid (liq) partitioning. The three variables that control the observed variations in experimentally-derived ol-liq partition coefficients are T, P, and the composition of the silicate liquid (and to a lesser extent the olivine composition). However, experiments cannot unambiguously disentangle the effects of these variables. For olivine-saturated liquids at constant P, any change in T results in the crystallization or dissolution of olivine and thus a change in liquid composition, resulting in a correlation between T and silicate liquid composition (note that changing the bulk composition such that olivine saturation occurs at a different T also results in a correlation with composition and T). Alternatively, P and T can be varied in concert such that liquid and olivine compositions remain approximately constant [e.g., 2], resulting in a correlation between T and P. In an attempt to resolve the conflation of T, P and compositional effects we turned to metal (met)-liq partitioning studies. Experiments show that, unlike most other elements, P has a strong effect on the partitioning of Ni between Fe-rich metal and silicate melt. Assuming that the pressure dependence of K_{D, Ni-Fe}^{met-liq} (0-25 GPa) [3] is driven primarily by the changing activities in the silicate melt, we can approximate the effect that pressure will have on K_{D, Ni-Fe}^{ol-liq} as measured by [2], using Kress and Carmichael [4] to calculate Fe3+/Fe2+. We find that the pressure effect should be a significant contributor to the observed systematics of K_{D, Ni-Fe}^{ol-liq} between 1 atm and 3 GPa [2]. [1] Sobolev et al (2007) Science, 316, 412-417, [2] Matzen et al (2017) CMP 172:3, [3] Kegler et al (2008) EPSL 268, 28-40, [4] Kress & Carmichael (1991) CMP 108, 82-92.

  11. Experimental Partitioning of As and SB Among Metal, Troilite, Schreibersite, Barringerite, and Metallic Liquid

    NASA Astrophysics Data System (ADS)

    Jones, J. H.; Casanova, I.

    1993-07-01

    We have performed a series of experiments to evaluate the behaviors of As and Sb in metallic systems. Because of the reputed chalcophile nature of these elements, we wrongly anticipated that they would follow S and that, compared to the Fe-X systems [1], (solid metal/liquid metal) partition coefficients would be considerably lower in S-bearing systems. Experimental and Analytical: Experiments were performed in sealed silica tubes as in [2]. Starting materials were high-purity metals, natural pyrite, and natural stibnite. Charges were doped either with As or Sb. Experiments were held at either 950 degrees C for six days or 1250 degrees C for three days. Typical experimental assemblages consisted either of taenite and coexisting Fe-Ni-S-X liquid (1250 degrees and 950 degrees C) or an assemblage of troilite, schreibersite, and Fe-Ni-S-P-X liquid (950 degrees C). The schreibersite-bearing, As-doped charge also contained barringerite (Fe,Ni)2P. Charges were mounted in epoxy, polished, and analyzed using a Cameca SX-50 electron microprobe and standard techniques. Results: Phases appeared homogeneous. Our results, along with partition coefficients inferred for the S-free system, are given in Table 1. Table 1 appears here in the hard copy. Discussion: Our results indicate that As behaves as a siderophile element at low temperatures, very analogous to Au. While the siderophility of Sb increases with decreasing temperature, it remains incompatible in solid metal. In this regard Sb is unique. Both As and Sb are very incompatible in troilite. Arsenic is weakly incompatible in schreibersite and strongly compatible in barringerite. Nickel shows no preference for either phosphide. Nickel partition coefficients for metal and schreibersite are similar to those measured previously [3]. On a lnD vs. ln(1-2 alpha X(S)) diagram [4], the data for Sb and As subparallel each other, indicating similar dependencies on S, despite their very different partition coefficients. Arsenic behaves similarly to P. The As and Sb partition coefficients for the S-free system, inferred for kamacite (alpha-iron) from the Fe-As and Fe-Sb phase diagrams [1], are probably not applicable to taenite (gamma-iron). Extrapolation of our data to zero S indicates that the taenite partition coefficients for As and Sb are likely to be much lower than for kamacite. In discussing the fractional crystallization of iron meteorites, Scott [5] originally grouped Au, As, Sb, and Co and assigned them a (solid metal/liquid metal) partition coefficient of about 0.4. This distinguished them from P, which was given a partition coefficient of 0.2. Given the strong decoupling of As and Sb in our experiments, the general coherence of As and Sb in iron meteorites [5] is surprising. To explore this further, we have derived a new equation for the slopes of LogEl vs. LogNi diagrams, which takes into account changes in D. References: [1] Moffatt W. G. (1986) Handbook of Binary Phase Diagrams, Genium. [2] Jones J. H. and Drake M. J. (1983) GCA, 47, 1199. [3] Jones J. H. et al. (1993) GCA, 57, 453-460. [4] Jones J. H. and Malvin D. J. (1990) Metall. Trans., 21B, 697-706. [5] Scott E. R. D. (1972) GCA, 36, 1205.

  12. Infrared photoemitting diode having reduced work function

    DOEpatents

    Hirschfeld, T.B.

    1982-05-06

    In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid meidum of the formula NR/sub 3/ and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

  13. Infrared photoemitting diode having reduced work function

    DOEpatents

    Hirschfeld, Tomas B.

    1984-01-01

    In electro-optical detectors which include as elements a photoemitting photocathode and anode, a photoemitting diode is fabricated which lowers the diode's work function, thus reducing the cooling requirement typically needed for this type of device. The work function is reduced by sandwiching between the photocathode and anode a liquid medium of the formula NR.sub.3 and having an electron affinity for the electrons of the photocathode, which liquid medium permits free electrons leaving the photocathode to remain as stable solvated species in the liquid medium. Thus, highly light-absorbent, and therefore thin, metallic layers can be used for detection, thereby reducing dark current at a given temperature, with a consequent reduction in cooling requirements at constant detector performance.

  14. A method of measuring a molten metal liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  15. Fragmentation and Thermochemical Exchanges during Planetary Core Formation - an Experimental Approach

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Wacheul, J. B.

    2015-12-01

    Telluric planet formation involved the settling of large amounts of liquid iron coming from impacting planetesimals into an ambient viscous magma ocean. The initial state of planets was mostly determined by exchanges of heat and elements during this iron rain. Up to now, most models of planet formation simply assume that the metal rapidly equilibrated with the whole mantle. Other models account for simplified dynamics of the iron rain, involving the settling of single size drops at the Stokes velocity. But the fluid dynamics of iron sedimentation is much more complex, and influenced by the large viscosity ratio between the metal and the ambient fluid, as shown in studies of rising gas bubbles (e.g. Bonometti and Magnaudet 2006). We aim at developing a global understanding of the iron rain dynamics. Our study relies on a model experiment, consisting in popping a balloon of heated metal liquid at the top of a tank filled with viscous liquid. The experiments reach the relevant turbulent planetary regime, and tackle the whole range of expected viscosity ratios. High-speed videos allow determining the dynamics of drop clouds, as well as the statistics of drop sizes, shapes, and velocities. We also develop an analytical model of turbulent diffusion during settling, validated by measuring the temperature decrease of the metal blob. We finally present consequences for models of planet formation.

  16. Properties of iron alloys under the Earth's core conditions

    NASA Astrophysics Data System (ADS)

    Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann

    2014-05-01

    The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.

  17. Impact Interaction of Projectile with Conducting Wall at the Presence of Electric Current

    NASA Astrophysics Data System (ADS)

    Chemerys, Volodymyr T.; Raychenko, Aleksandr I.; Karpinos, Boris S.

    2002-07-01

    The paper introduces with schemes of possible electromagnetic armor augmentation. The interaction of projectile with a main wall of target after penetration across the pre-defense layer is of interest here. The same problem is of interest for the current-carrying elements of electric guns. The theoretical analysis is done in the paper for the impact when the kinetic energy of projectile is enough to create the liquid layer in the crater of the wall's metal. Spherical head of projectile and right angle of inclination have been taken for consideration. The solution of problem for the liquid layer of metal around the projectile head has resulted a reduction of the resistant properties of wall material under current influence, in view of electromagnetic pressure appearance, what is directed towards the wall likely the projectile velocity vector.

  18. Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS.

    PubMed

    Bello, Liciane Toledo; da Ana, Patricia Aparecida; Santos, Dário; Krug, Francisco José; Zezell, Denise Maria; Vieira, Nilson Dias; Samad, Ricardo Elgul

    2017-04-01

    In this work the diffusion of mercury and other elements from amalgam tooth restorations through the surrounding dental tissue (dentin) was evaluated using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). To achieve this, seven deciduous and eight permanent extracted human molar teeth with occlusal amalgam restorations were half-sectioned and analyzed using pulses from a femtosecond laser. The measurements were performed from the amalgam restoration along the amalgam/dentin interface to the apical direction. It was possible to observe the presence of metallic elements (silver, mercury, copper and tin) emission lines, as well as dental constituent ones, providing fingerprints of each material and comparable data for checking the consistence of the results. It was also shown that the elements penetration depth values in each tooth are usually similar and consistent, for both deciduous and permanent teeth, indicating that all the metals diffuse into the dentin by the same mechanism. We propose that this diffusion mechanism is mainly through liquid dragging inside the dentin tubules. The mercury diffused further in permanent teeth than in deciduous teeth, probably due to the longer diffusion times due to the age of the restorations. It was possible to conclude that the proposed femtosecond-LIBS system can detect the presence of metals in the dental tissue, among the tooth constituent elements, and map the distribution of endogenous and exogenous chemical elements, with a spatial resolution that can be brought under 100 µm.

  19. Stability of dense liquid carbon dioxide.

    PubMed

    Boates, Brian; Teweldeberhan, Amanuel M; Bonev, Stanimir A

    2012-09-11

    We present ab initio calculations of the phase diagram of liquid CO(2) and its melting curve over a wide range of pressure and temperature conditions, including those relevant to the Earth. Several distinct liquid phases are predicted up to 200 GPa and 10,000 K based on their structural and electronic characteristics. We provide evidence for a first-order liquid-liquid phase transition with a critical point near 48 GPa and 3,200 K that intersects the mantle geotherm; a liquid-liquid-solid triple point is predicted near 45 GPa and 1,850 K. Unlike known first-order transitions between thermodynamically stable liquids, the coexistence of molecular and polymeric CO(2) phases predicted here is not accompanied by metallization. The absence of an electrical anomaly would be unique among known liquid-liquid transitions. Furthermore, the previously suggested phase separation of CO(2) into its constituent elements at lower mantle conditions is examined by evaluating their Gibbs free energies. We find that liquid CO(2) does not decompose into carbon and oxygen up to at least 200 GPa and 10,000 K.

  20. The influence of biosolids treatment files on the mobility of metal trace elements.

    PubMed

    Maisonnave, V; Montrejaud-Vignoles, M; Bonnin, C; Revel, J C; Vignoles, C

    2001-01-01

    The production of sludge in France is estimated to be about 900,000 metric tons dry matter per year and 60% of this is recycled onto agricultural land. At present, the long term future of this procedure is open to question and among the different arguments being put forward are the levels of metallic trace elements and the risk of accumulation in soils. This study presents the behaviour of metallic trace elements in sludges from three different treatment procedures: thickened liquid sludges, dewatered sludges and dried sludges. These biosolids are mixed with a clay soil and then placed in a temperature and humidity controlled glasshouse. Several containers are seeded with ryegrass and compared with controls. For the three harvests, covering all the amendments studied (including non-amended soil), the differences are not really representative. Absorption by the ryegrass is low in all cases. For the cadmium, the chromium, the nickel and the lead, the roots are 5 to 10 times more concentrated than the leaves. The majority of these elements stay absorbed in the roots, regardless of the amendment used. The addition of the sludges has considerably reduced the uptake of water in ryegrass throughout its growth cycle. Quite apart from their fertilizing qualities, wastewater treatment plant sludges could offer important implications for irrigation.

  1. Geochemical variations of rare earth elements in Marcellus shale flowback waters and multiple-source cores in the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Noack, C.; Jain, J.; Hakala, A.; Schroeder, K.; Dzombak, D. A.; Karamalidis, A.

    2013-12-01

    Rare earth elements (REE) - encompassing the naturally occurring lanthanides, yttrium, and scandium - are potential tracers for subsurface groundwater-brine flows and geochemical processes. Application of these elements as naturally occurring tracers during shale gas development is reliant on accurate quantitation of trace metals in hypersaline brines. We have modified and validated a liquid-liquid technique for extraction and pre-concentration of REE from saline produced waters from shale gas extraction wells with quantitative analysis by ICP-MS. This method was used to analyze time-series samples of Marcellus shale flowback and produced waters. Additionally, the total REE content of core samples of various strata throughout the Appalachian Basin were determined using HF/HNO3 digestion and ICP-MS analysis. A primary goal of the study is to elucidate systematic geochemical variations as a function of location or shale characteristics. Statistical testing will be performed to study temporal variability of inter-element relationships and explore associations between REE abundance and major solution chemistry. The results of these analyses and discussion of their significance will be presented.

  2. Soil quality changes in response to their pollution by heavy metals, Georgia.

    PubMed

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  3. Synthesis of electroactive ionic liquids for flow battery applications

    DOEpatents

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  4. Improving catchment scale water quality modelling with continuous high resolution monitoring of metals in runoff

    NASA Astrophysics Data System (ADS)

    Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu

    2017-04-01

    High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.

  5. Formation of Metal and Silicate Globules in Gujba: A New Bencubbin-like Meteorite Fall

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.; Clayton, Robert N.; Mayeda, Toshiko; Grady, Monica; Verchovsky, Alexander B.; Eugster, Otto; Lorenzetti, Silvio

    2006-01-01

    Gujba is a coarse-grained meteorite fall composed of 41 vol% large kamacite globules, 20 vol% large light-colored silicate globules with cryptocrystalline, barred pyroxene and barred olivine textures, 39 vol% dark-colored, silicate-rich matrix, and rare refractory inclusions. Gujba resembles Bencubbin and Weatherford in texture, oxygen-isotopic composition and in having high bulk delta N-15 values (approximately +685%0). The He-3 cosmic-ray exposure age of Gujba (26 +/- 7 Ma) is essentially identical to that of Bencubbin, suggesting that they were both reduced to meter-size fragments in the same parent-body collision. The Gujba metal globules exhibit metal-troilite quench textures and vary in their abundances of troilite and volatile siderophile elements. We suggest that the metal globules formed as liquid droplets either via condensation in an impact-generated vapor plume or by evaporation of preexisting metal particles in a plume. The lower the abundance of volatile elements in the metal globules, the higher the globule quench temperature. We infer that the large silicate globules also formed from completely molten droplets; their low volatile-element abundances indicate that they also formed at high temperatures, probably by processes analogous to those that formed the metal globules. The coarse-grained Bencubbin-Weatherford-Gujba meteorites may represent a depositional component from the vapor cloud enriched in coarse and dense particles. A second class of Bencubbin-like meteorites (represented by Hammadah a1 Hamra 237 and QUE 94411) may be a finer fraction derived from the same vapor cloud

  6. Recent applications of liquid metals featuring nanoscale surface oxides

    NASA Astrophysics Data System (ADS)

    Neumann, Taylor V.; Dickey, Michael D.

    2016-05-01

    This proceeding describes recent efforts from our group to control the shape and actuation of liquid metal. The liquid metal is an alloy of gallium and indium which is non-toxic, has negligible vapor pressure, and develops a thin, passivating surface oxide layer. The surface oxide allows the liquid metal to be patterned and shaped into structures that do not minimize interfacial energy. The surface oxide can be selectively removed by changes in pH or by applying a voltage. The surface oxide allows the liquid metal to be 3D printed to form free-standing structures. It also allows for the liquid metal to be injected into microfluidic channels and to maintain its shape within the channels. The selective removal of the oxide results in drastic changes in surface tension that can be used to control the flow behavior of the liquid metal. The metal can also wet thin, solid films of metal that accelerates droplets of the liquid along the metal traces .Here we discuss the properties and applications of liquid metal to make soft, reconfigurable electronics.

  7. Porous Media Approach for Modeling Closed Cell Foam

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Sullivan, Roy M.

    2006-01-01

    In order to minimize boil off of the liquid oxygen and liquid hydrogen and to prevent the formation of ice on its exterior surface, the Space Shuttle External Tank (ET) is insulated using various low-density, closed-cell polymeric foams. Improved analysis methods for these foam materials are needed to predict the foam structural response and to help identify the foam fracture behavior in order to help minimize foam shedding occurrences. This presentation describes a continuum based approach to modeling the foam thermo-mechanical behavior that accounts for the cellular nature of the material and explicitly addresses the effect of the internal cell gas pressure. A porous media approach is implemented in a finite element frame work to model the mechanical behavior of the closed cell foam. The ABAQUS general purpose finite element program is used to simulate the continuum behavior of the foam. The soil mechanics element is implemented to account for the cell internal pressure and its effect on the stress and strain fields. The pressure variation inside the closed cells is calculated using the ideal gas laws. The soil mechanics element is compatible with an orthotropic materials model to capture the different behavior between the rise and in-plane directions of the foam. The porous media approach is applied to model the foam thermal strain and calculate the foam effective coefficient of thermal expansion. The calculated foam coefficients of thermal expansion were able to simulate the measured thermal strain during heat up from cryogenic temperature to room temperature in vacuum. The porous media approach was applied to an insulated substrate with one inch foam and compared to a simple elastic solution without pore pressure. The porous media approach is also applied to model the foam mechanical behavior during subscale laboratory experiments. In this test, a foam layer sprayed on a metal substrate is subjected to a temperature variation while the metal substrate is stretched to simulate the structural response of the tank during operation. The thermal expansion mismatch between the foam and the metal substrate and the thermal gradient in the foam layer causes high tensile stresses near the metal/foam interface that can lead to delamination.

  8. Statistical mechanics of light elements at high pressure. IV - A model free energy for the metallic phase. [for Jovian type planet interiors

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Hubbard, W. B.

    1976-01-01

    A large quantity of data on the thermodynamic properties of hydrogen-helium metallic liquids have been obtained in extended computer calculations in which a Monte Carlo code essentially identical to that described by Hubbard (1972) was used. A model free energy for metallic hydrogen with a relatively small mass fraction of helium is discussed, taking into account the definition of variables, a procedure for choosing the free energy, values for the fitting parameters, and the evaluation of the entropy constants. Possibilities concerning a use of the obtained data in studies of the interiors of the outer planets are briefly considered.

  9. Improvement of glass-forming ability and phase separation in Cu Ti-rich

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, E S; Chang, H J; Kim, D H

    2010-01-01

    Present study reports improvement of glass-forming ability (GFA) and phase separation in Cu Ti-rich Cu Ti Zr Ni Si bulk metallic glasses (BMGs) by tailoring the constituent elements. The MA of metalloid element, Sn having relatively large negative enthalpy of mixing can lead to improve GFA (up to 8mm in diameter) as well as thermal stability (up toTx = 48K) by optimizing the substitution element. And the addition of elements having relatively large positive enthalpy of mixing (partial substitution of Zr or Ti with Y) can lead to the liquid state phase separation in Cu Ti Sn Zr Ni Simore » BMG, although the addition lead to drastic deterioration of the GFA.« less

  10. Melting Experiments in the Fe-FeSi System at High Pressure

    NASA Astrophysics Data System (ADS)

    Ozawa, H.; Hirose, K.

    2013-12-01

    The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.

  11. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  12. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  13. Microwave plasma torch mass spectrometry for the direct detection of copper and molybdenum ions in aqueous liquids.

    PubMed

    Xiong, Xiaohong; Jiang, Tao; Zhou, Runzhi; Wang, Shangxian; Zou, Wei; Zhu, Zhiqiang

    2016-05-01

    Microwave plasma torch (MPT) is a simple and low power-consumption ambient ion source. And the MPT Mass spectra of many metal elements usually exhibit some novel features different from their inductively coupled plasma (ICP) mass spectra, which may be helpful for metal element analysis. Here, we presented the results about the MPT mass spectra of copper and molybdenum elements by a linear ion trap mass spectrometer (LTQ). The generated copper or molybdenum contained ions in plasma were characterized further in collision-induced dissociated (CID) experiments. These researches built a novel, direct and sensitive method for the direct analysis of trace levels of copper and molybdenum in aqueous liquids. Quantitative results showed that the limit of detection (LOD) by using MS(2) procedure was estimated to be 0.265 µg/l (ppb) for copper and 0.497 µg/l for molybdenum. The linear dynamics ranges cover at least 2 orders of magnitude and the analysis of a single aqueous sample can be completed in 5-6 min with a reasonable semi-quantitative sense. Two practical aqueous samples, milk and urine, were also analyzed qualitatively with reasonable recovery rates and RSD. These experimental data demonstrated that the MPT MS is able to turn into a promising and hopeful tool in field analysis of copper and molybdenum ions in water and some aqueous media, and can be applied in many fields, such as environmental controlling, hydrogeology, and water quality inspection. Moreover, MPT MS could also be used as the supplement of ICP-MS for the rapid and in-situ analysis of metal ions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Processing industrial wastes with the liquid-phase reduction romelt process

    NASA Astrophysics Data System (ADS)

    Romenets, V.; Valavin, V.; Pokhvisnev, Yu.; Vandariev, S.

    1999-08-01

    The Romelt technology for liquid-phase reduction has been developed for processing metallurgical wastes containing nonferrousmetal components. Thermodynamic calculations were made to investigate the behavior of silver, copper, zinc, manganese, vanadium, chrome, and silicon when reduced from the slag melt into the metallic solution containing iron. The process can be applied to all types of iron-bearing wastes, including electric arc furnace dust. The distribution of elements between the phases can be controlled by adjusting the slag bath temperature. Experiments at a pilot Romelt plant proved the possibility of recovering the metallurgical wastes and obtaining iron.

  15. Hidden scale invariance of metals

    NASA Astrophysics Data System (ADS)

    Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.; Pedersen, Ulf R.

    2015-11-01

    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general "hidden" scale invariance of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals (Ga, In, Sn, and Tl), and the metalloids Si and Ge cannot be explained by the IPL assumption. The virial-energy correlation coefficients of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules.

  16. Heat transfer, fluid flow and mass transfer in laser welding of stainless steel with small length scale

    NASA Astrophysics Data System (ADS)

    He, Xiuli

    Nd: YAG Laser welding with hundreds of micrometers in laser beam diameter is widely used for assembly and closure of high reliability electrical and electronic packages for the telecommunications, aerospace and medical industries. However, certain concerns have to be addressed to obtain defect-free and structurally sound welds. During laser welding, Because of the high power density used, the pressures at the weld pool surface can be greater than the ambient pressure. This excess pressure provides a driving force for the vaporization to take place. As a result of vaporization for different elements, the composition in the weld pool may differ from that of base metal, which can result in changes in the microstructure and degradation of mechanical properties of weldments. When the weld pool temperatures are very high, the escaping vapor exerts a large recoil force on the weld pool surface, and as a consequence, tiny liquid metal particles may be expelled from the weld pool. Vaporization of alloying elements and liquid metal expulsion are the two main mechanisms of material loss. Besides, for laser welds with small length scale, heat transfer and fluid flow are different from those for arc welds with much larger length scale. Because of small weld pool size, rapid changes of temperature and very short duration of the laser welding process, physical measurements of important parameters such as temperature and velocity fields, weld thermal cycles, solidification and cooling rates are very difficult. The objective of the research is to quantitatively understand the influences of various factors on the heat transfer, fluid flow, vaporization of alloying elements and liquid metal expulsion in Nd:YAG laser welding with small length scale of 304 stainless steel. In this study, a comprehensive three dimensional heat transfer and fluid flow model based on the mass, momentum and energy conservation equations is relied upon to calculate temperature and velocity fields in the weld pool, weld thermal cycle, weld pool geometry and solidification parameters. Surface tension and buoyancy forces were considered for the calculation of transient weld pool convection. Very fine grids and small time steps were used to achieve accuracy in the calculations. The calculated weld pool dimensions were compared with the corresponding measured values to validate the model. (Abstract shortened by UMI.)

  17. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  18. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    PubMed Central

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-01-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks. PMID:25408295

  19. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects.

    PubMed

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-19

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  20. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  1. Dehydrated Carbon Coupled with Laser-Induced Breakdown Spectrometry (LIBS) for the Determination of Heavy Metals in Solutions.

    PubMed

    Niu, Guanghui; Shi, Qi; Xu, Mingjun; Lai, Hongjun; Lin, Qingyu; Liu, Kunping; Duan, Yixiang

    2015-10-01

    In this article, a novel and alternative method of laser-induced breakdown spectroscopy (LIBS) analysis for liquid sample is proposed, which involves the removal of metal ions from a liquid to a solid substrate using a cost-efficient adsorbent, dehydrated carbon, obtained using a dehydration reaction. Using this new technique, researchers can detect trace metal ions in solutions qualitatively and quantitatively, and the drawbacks of performing liquid analysis using LIBS can be avoided because the analysis is performed on a solid surface. To achieve better performance using this technique, we considered parameters potentially influencing both adsorption performance and LIBS analysis. The calibration curves were evaluated, and the limits of detection obtained for Cu(2+), Pb(2+), and Cr(3+) were 0.77, 0.065, and 0.46 mg/L, respectively, which are better than those in the previous studies. In addition, compared to other absorbents, the adsorbent used in this technique is much cheaper in cost, easier to obtain, and has fewer or no other elements other than C, H, and O that could result in spectral interference during analysis. We also used the recommended method to analyze spiked samples, obtaining satisfactory results. Thus, this new technique is helpful and promising for use in wastewater analysis and management.

  2. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    NASA Astrophysics Data System (ADS)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2011-01-01

    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.

  3. Friction and wear of selected metals and of carbons in liquid natural gas

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.

    1971-01-01

    Friction and wear experiments were conducted with hemispherically tipped (4.76-mm radius) rider specimens in sliding contact with a rotating disk submerged in liquid natural gas (LNG). The program included metal combinations and carbon-metal combinations. These experiments revealed that the metal combinations were not lubricated by the LNG. Carbons had much lower wear in LNG than in liquid hydrogen or in liquid nitrogen. (Wear of carbon in liquid hydrogen was 100 times that in LNG.) The friction coefficients obtained in LNG (0.6 for metal-metal and 0.2 for carbon-metal) are similar to those obtained in liquid hydrogen.

  4. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries

    PubMed Central

    Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries. PMID:29515848

  5. Planetoid core crystallisation and fractionation - Evidence from the Agpalilik mass of the Cape York iron meteorite shower

    NASA Astrophysics Data System (ADS)

    Esbensen, K. H.; Buchwald, V. F.

    1982-09-01

    Metallographic and chemical study of the Agpalik mass of the Cape York iron meteorite shower reveals evidence of the mode of crystallization and fractionation of key elements consistent with a dendritic solidification of at least part of the once fully molten parent body's metallic core. Chemical gradients of Ir and Au are assessed across an 85 cm section that is inferred to be perpendicular to the parent body's gravitational field, and are interpreted as representing a dendritic growth mode. The characteristic elongated and orientated sulfide nodules found in Agpalik signify trapped liquid of the latest stages of crystallization. Detailed mineralogical and chemical characterization of the Agpalik liquid-solid transformation products allow modelling of the entire crystallization history commencing with dendritic metal precipitation through an ultimate troilite-taenite-Cu eutectic, representing a crystallization range spanning approximately 1350-700 C.

  6. Solubility of oxygen in liquid Fe at high pressure and consequences for the early differentiation of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Rubie, D. C.; Gessmann, C. K.; Frost, D. J.

    2003-04-01

    Knowledge of the solubility of oxygen in liquid iron enables the partitioning of oxygen between metal and silicates and the oxidation state of residual silicates to be constrained during core formation in planetary bodies. We have determined oxygen solubility experimentally at 5--23 GPa, 2100--2700 K and oxygen fugacities 1--4 log units below the iron-wüstite buffer in samples of liquid Ni-Fe alloy contained in magnesiowüstite capsules using a multianvil apparatus. Results show that oxygen solubility increases with increasing temperature but decreases slightly with increasing pressure over the range of experimental conditions, at constant oxygen fugacity. Using an extrapolation of the results to higher pressures and temperatures, we have modeled the geochemical consequences of metal-silicate separation in magma oceans in order to explain the contrasting FeO contents of the mantles of Earth and Mars. We assume that both Earth and Mars accreted originally from material with a chondritic composition; because the initial oxidation state is uncertain, we vary this parameter by defining the initial oxygen content. Two metal-silicate fractionation models are considered: (1) Metal and silicate are allowed to equilibrate at fictive conditions that approximate the pressure and temperature at the base of a magma ocean. (2) The effect of settling Fe droplets in a magma ocean is determined using a simple polybaric metal-silicate fractionation model. We assume that the temperature at the base of a magma ocean is close to the peridotite liquidus. In the case of Earth, high temperatures in a magma ocean with a depth >1200 km would have resulted in significant quantities of oxygen dissolving in the liquid metal with the consequent extraction of FeO from the residual silicate. In contrast, on Mars, even if the magma ocean extended to the depth of the current core-mantle boundary, temperatures would not have been sufficiently high for oxygen solubility in liquid metal to be significant. The results show that Earth and Mars could have accreted from similar material, with an initial FeO content around 18 wt%. On Earth, oxygen was extracted from silicates by the segregating metal during core formation, leaving the mantle with its present FeO content of ˜8 wt%. On Mars, in contrast, the segregating metal extracted little or no oxygen and left the FeO content unaltered at ˜18 wt%. A consequence of this model is that oxygen should be an important light element in the Earth's core but not in the Martian core.

  7. Significance of floods in metal dynamics and export in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Roussiez, Vincent; Probst, Anne; Probst, Jean-Luc

    2013-08-01

    High-resolution monitoring of water discharge and water sampling were performed between early October 2006 and late September 2007 in the Montoussé River, a permanent stream draining an experimental agricultural catchment in Gascogne region (SW France). Dissolved and particulate concentrations of major elements and trace metals (i.e. Al, Fe, Mn, As, Cd, Cr, Cu, Ni, Pb, Sc and Zn) were examined. Our results showed that contamination levels were deficient to moderate, as a result of sustainable agricultural practices. Regarding dynamics, metal partitioning between particulate and dissolved phases was altered during flood conditions: the particulate phase was diluted by coarser and less contaminated particles from river bottom and banks, whereas the liquid phase was rapidly enriched owing to desorption mechanisms. Soluble/reactive elements were washed-off from soils at the beginning of the rain episode. The contribution of the flood event of May 2007 (by far the most significant episode over the study period) to the annual metal export was considerable for particulate forms (72-82%) and moderate for dissolved elements (0-20%). The hydrological functioning of the Montoussé stream poses dual threat on ecosystems, the consequences of which differ from both temporal and spatial scales: (i) desorption processes at the beginning of floods induce locally a rapid enrichment (up to 3.4-fold the pre-flood signatures on average for the event of May 2007) of waters in bioavailable metals, and (ii) labile metals - enriched by anthropogenic sources - associated to particles (mainly via carbonates and Fe/Mn oxides), were predominantly transferred during floods into downstream-connected rivers.

  8. Characteristics of the boat inductor for keeping liquid metal in the suspended state

    NASA Technical Reports Server (NTRS)

    Fogel, A. A.; Siforova, T. A.; Mezdrogina, M. M.

    1985-01-01

    Characteristics of the boat inductor for keeping liquid metal in the suspended state are examined. Behavioral features of the liquid metal, and the suspension boundary of liquid metal in the lower position are discussed. It is concluded that the inductor can be used to crystallize metals in the suspended state.

  9. Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Dragun, Zrinka; Krasnići, Nesrete; Kolar, Nicol; Filipović Marijić, Vlatka; Ivanković, Dušica; Erk, Marijana

    2018-05-15

    Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. FORMING PROTECTIVE FILMS ON METAL

    DOEpatents

    Gurinsky, D.H.; Kammerer, O.F.; Sadofsky, J.; Weeks, J.R.

    1958-12-16

    Methods are described of inhibiting the corrosion of ferrous metal by contact with heavy liquid metals such as bismuth and gallium at temperatures above 500 icient laborato C generally by bringing nltrogen and either the metal zirconium, hafnium, or titanium into reactlve contact with the ferrous metal to form a thin adherent layer of the nitride of the metal and thereafter maintaining a fractional percentage of the metal absorbed in the heavy liquid metal in contact with the ferrous metal container. The general purpose for uslng such high boiling liquid metals in ferrous contalners would be as heat transfer agents in liquid-metal-fueled nuclear reactors.

  11. Calculations of the surface tensions of liquid metals

    NASA Technical Reports Server (NTRS)

    Stroud, D. G.

    1981-01-01

    The understanding of the surface tension of liquid metals and alloys from as close to first principles as possible is discussed. The two ingredients which are combined in these calculations are: the electron theory of metals, and the classical theory of liquids, as worked out within the framework of statistical mechanics. The results are a new theory of surface tensions and surface density profiles from knowledge purely of the bulk properties of the coexisting liquid and vapor phases. It is found that the method works well for the pure liquid metals on which it was tested; work is extended to mixtures of liquid metals, interfaces between immiscible liquid metals, and to the temperature derivative of the surface tension.

  12. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  13. Bivalent metal-based MIL-53 analogues: Synthesis, properties and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yongxin; University of the Chinese Academy of Science, Beijing 100049; Liu, Dan, E-mail: liudan2007@ciac.ac.cn

    Trivalent metal-based MIL-53 (Al{sup 3+}, Cr{sup 3+}, Fe{sup 3+}, In{sup 3+}) compounds are interesting metal–organic frameworks (MOFs) with breathing effect and are promising gas sorption materials. Replacing bridging μ{sub 2}-OH group by neutral ligands such as pyridine N-oxide and its derivatives (PNOs), the trivalent metal-based MIL-53 analogous structures could be extended to bivalent metal systems. The introduction of PNOs and bivalent metal elements endows the frameworks with new structural features and physical and chemical properties. This minireview summarizes the recent development of bivalent metal-based MIL-53 analogues (Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}), typically, focusing on the synthetic strategies and potentialmore » applications based on our own works and literatures. We present the synthetic strategy to achieve structures evolution from single-ligand-walled to double-ligand-walled channel. Properties and application of these new materials in a wide range of potential areas are discussed including thermal stability, gas adsorption, magnetism and liquid-phase separation. Promising directions of this research field are also highlighted. - Graphical abstract: The recent development of bivalent metal-based MIL-53 analogues (Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}) on their synthetic strategies, properties and potential applications was reviewed. - Highlights: • Structure features of bivalent metal-based MIL-53 analogues are illustrated. • Important properties and application are presented. • Host–guest interactions are main impetus for liquid-phase separation. • Promising directions of bivalent metal-based MIL-53 analogues are highlighted.« less

  14. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  15. Little Chondrules and Giant Impacts

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2005-10-01

    Alexander (Sasha) Krot (University of Hawaii), Yuri Amelin (University of Toronto), Pat Cassen (SETI Institute), and Anders Meibom (Museum National d'Histoire Naturelle, Paris) studied and then extracted frozen droplets of molten silicate (chondrules) from unusual meteorites rich in metallic iron-nickel. Called CB (Bencubbin-like) chondrites, these rare but fascinating meteorites contain chondrules with different properties than those in other types of chondrites. Most notably, the chondrules contain very small concentrations of volatile elements and variable concentrations of refractory elements. (Volatile elements condense from a gas at a relatively low temperature, or are boiled out of solids or liquids at relatively low temperature. Refractory elements are the opposite.) Some of the metal grains in CB chondrites are chemically zoned, indicating that they formed by condensation in a vapor cloud. The most intriguing feature of chondrules in CB chondrites is their relatively young age. Lead-lead isotopic dating of chondrules separated from two CB chondrites show that they formed 5 million years after formation of the first solids in the solar system (calcium-aluminum-rich inclusions), which is about at least two million years after formation of other chondrules, and after energetic events in the solar nebula stopped. Krot and his colleagues suggest that the CB chondrules formed as the result of an impact between Moon- to Mars-sized protoplanets. Such impacts were so energetic that huge amounts of material were vaporized and then condensed as chondrules or chemically zoned metal grains. This event enriched refractory elements and depleted volatile elements. Such large impacts appear to play important roles in planet formation, including the formation of the Moon.

  16. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Allard, Patrick; D'Alessandro, Walter; Michel, Agnes; Parello, Francesco; Treuil, Michel; Valenza, Mariano

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO 2 and the contribution of aqueous transport to the overall metal discharge of the volcano. We show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO 2-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paternò) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows to evaluate the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. The facts that rock-forming minerals and groundmass dissolve at different rates and secondary minerals are formed are taken into account. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu). The fluxes of metals discharged by the volcanic aquifer of Etna range from 7.0 × 10 -3 t/a (Th) to 7.3 × 10 4 t/a (Na). They are comparable in magnitude to the summit crater plume emissions for a series of elements (Na, K, Ca, Mg, U, V, Li) with lithophile affinity, but are minor for volatile elements. Basalt weathering at Mt Etna also consumes about 2.1 × 10 5 t/a of magma-derived carbon dioxide, equivalent to ca. 7% of contemporaneous crater plume emissions. The considerable transport of some metals in Etna's aquifer reflects a particularly high chemical erosion rate, evaluated at 2.3∗10 5 t/a, enhanced by the initial acidity of magmatic CO 2-rich groundwater.

  17. Thermal conductivity switch: Optimal semiconductor/metal melting transition

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-10-01

    Scrutinizing distinct solid/liquid (s /l ) and solid/solid (s /s ) phase transitions (passive transitions) for large change in bulk (and homogenous) thermal conductivity, we find the s /l semiconductor/metal (S/M) transition produces the largest dimensionless thermal conductivity switch (TCS) figure of merit ZTCS (change in thermal conductivity divided by smaller conductivity). At melting temperature, the solid phonon and liquid molecular thermal conductivities are comparable and generally small, so the TCS requires localized electron solid and delocalized electron liquid states. For cyclic phase reversibility, the congruent phase transition (no change in composition) is as important as the thermal transport. We identify X Sb and X As (X =Al , Cd, Ga, In, Zn) and describe atomic-structural metrics for large ZTCS, then show the superiority of S/M phonon- to electron-dominated transport melting transition. We use existing experimental results and theoretical and ab initio calculations of the related properties for both phases (including the Kubo-Greenwood and Bridgman formulations of liquid conductivities). The 5 p orbital of Sb contributes to the semiconductor behavior in the solid-phase band gap and upon disorder and bond-length changes in the liquid phase this changes to metallic, creating the large contrast in thermal conductivity. The charge density distribution, electronic localization function, and electron density of states are used to mark this S/M transition. For optimal TCS, we examine the elemental selection from the transition, basic, and semimetals and semiconductor groups. For CdSb, addition of residual Ag suppresses the bipolar conductivity and its ZTCS is over 7, and for Zn3Sb2 it is expected to be over 14, based on the structure and transport properties of the better-known β -Zn4Sb3 . This is the highest ZTCS identified. In addition to the metallic melting, the high ZTCS is due to the electron-poor nature of II-V semiconductors, leading to the significantly low phonon conductivity.

  18. 40 CFR Table 4 to Subpart Uuuuu of... - Operating Limits for EGUs

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals... demonstrating compliance with the filterable PM, total non-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals (individual HAP metals including Hg, for liquid oil...

  19. 40 CFR Table 4 to Subpart Uuuuu of... - Operating Limits for EGUs

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals... demonstrating compliance with the filterable PM, total non-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals (individual HAP metals including Hg, for liquid oil...

  20. Nearly ferromagnetic Fermi-liquid behaviour in YFe2Zn20 and high-temperature ferromagnetism of GdFe2Zn20

    NASA Astrophysics Data System (ADS)

    Jia, S.; Bud'Ko, S. L.; Samolyuk, G. D.; Canfield, P. C.

    2007-05-01

    One of the historic goals of alchemy was to turn base elements into precious ones. Although the practice of alchemy has been superseded by chemistry and solid-state physics, the desire to dramatically change or tune the properties of a compound, preferably through small changes in stoichiometry or composition, remains. This desire becomes even more compelling for compounds that can be tuned to extremes in behaviour. Here, we report that the RT2Zn20 (R=rare earth and T=transition metal) family of compounds manifests exactly this type of versatility, even though they are more than 85% Zn. By tuning T, we find that YFe2Zn20 is closer to ferromagnetism than elemental Pd, the classic example of a nearly ferromagnetic Fermi liquid. By submerging Gd in this highly polarizable Fermi liquid, we tune the system to a remarkably high-temperature ferromagnetic (TC=86K) state for a compound with less than 5% Gd. Although this is not quite turning lead into gold, it is essentially tuning Zn to become a variety of model compounds.

  1. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA).

    PubMed

    Fang, Le; Li, Jiang-Shan; Guo, Ming Zhi; Cheeseman, C R; Tsang, Daniel C W; Donatello, Shane; Poon, Chi Sun

    2018-02-01

    Chemical extraction of phosphorus (P) from incinerated sewage sludge ash (ISSA) is adversely influenced by co-dissolution of metals and metalloids. This study investigated P recovery and leaching of Zn, Cu, Pb, As and Ni from ISSA using inorganic acids (sulphuric acid and nitric acid), organic acids (oxalic acid and citric acid), and chelating agents (ethylenediaminetetraacetic acid (EDTA) and ethylene diamine tetramethylene phosphonate (EDTMP)). The aim of this study was to optimize a leaching process to recover P-leachate with high purity for P fertilizer production. The results show that both organic and inorganic acids extract P-containing phases but organic acids leach more trace elements, particularly Cu, Zn, Pb and As. Sulphuric acid was the most efficient for P recovery and achieved 94% of total extraction under the optimal conditions, which were 2-h reaction with 0.2 mol/L H 2 SO 4 at a liquid-to-solid ratio of 20:1. EDTA extracted only 20% of the available P, but the leachates were contaminated with high levels of trace elements under optimum conditions (3-h reaction with EDTA at 0.02 mol/L, pH 2, and liquid-to-solid ratio of 20:1). Therefore, EDTA was considered an appropriate pre-treatment agent for reducing the total metal/metalloid content in ISSA, which produced negligible changes in the structure of ISSA and reduced contamination during subsequent P extraction using sulphuric acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Geochemical cartography as a tool for assessing the degree of soil contamination with heavy metals in Poland

    NASA Astrophysics Data System (ADS)

    Szymon Borkowski, Andrzej; Kwiatkowska-Malina, Jolanta

    2016-04-01

    Spatial disposition of chemical elements including heavy metals in the soil environment is a very important information during preparation of the thematic maps for the environmental protection and/or spatial planning. This knowledge is also essential for the earth's surface and soil's monitoring, designation of areas requiring improvement including remediation. The main source of anthropogenic pollution of soil with heavy metals are industry related to the mining coal and liquid fuels, mining and metallurgy, chemical industry, energy production, waste management, agriculture and transport. The geochemical maps as a kind of specific thematic maps made on the basis of datasets obtained from the Polish Geological Institute's resources allow to get to know the spatial distribution of different chemical elements including heavy metals in soil. The results of the research carried out by the Polish Geological Institute showed strong contamination in some regions in Poland mainly with arsenic, cadmium, lead and nickel. For this reason it was the point to prepare geochemical maps showing contamination of soil with heavy metals, and determine main sources of contamination and zones where heavy metals concentration was higher than acceptable contents. It was also presented a summary map of soil contamination with heavy metals. Additionally, location of highly contaminated zones was compiled with predominant in those areas types of arable soils and then results were thoroughly analyzed. This information can provide a base for further detailed studies on the soil contamination with heavy metals.

  3. Ni, Cu, Au, and platinum-group element contents of sulphides associated with intraplate magmatism: A synthesis

    USGS Publications Warehouse

    Barnes, S.-J.; Zientek, M.L.; Severson, M.J.

    1997-01-01

    The tectonic setting of intraplate magmas, typically a plume intersecting a rift, is ideal for the development of Ni - Cu - platinum-group element-bearing sulphides. The plume transports metal-rich magmas close to the mantle - crust boundary. The interaction of the rift and plume permits rapid transport of the magma into the crust, thus ensuring that no sulphides are lost from the magma en route to the crust. The rift may contain sediments which could provide the sulphur necessary to bring about sulphide saturation in the magmas. The plume provides large volumes of mafic magma; thus any sulphides that form can collect metals from a large volume of magma and consequently the sulphides will be metal rich. The large volume of magma provides sufficient heat to release large quantities of S from the crust, thus providing sufficient S to form a large sulphide deposit. The composition of the sulphides varies on a number of scales: (i) there is a variation between geographic areas, in which sulphides from the Noril'sk - Talnakh area are the richest in metals and those from the Muskox intrusion are poorest in metals; (ii) there is a variation between textural types of sulphides, in which disseminated sulphides are generally richer in metals than the associated massive and matrix sulphides; and (iii) the massive and matrix sulphides show a much wider range of compositions than the disseminated sulphides, and on the basis of their Ni/Cu ratio the massive and matrix sulphides can be divided into Cu rich and Fe rich. The Cu-rich sulphides are also enriched in Pt, Pd, and Au; in contrast, the Fe-rich sulphides are enriched in Fe, Os, Ir, Ru, and Rh. Nickel concentrations are similar in both. Differences in the composition between the sulphides from different areas may be attributed to a combination of differences in composition of the silicate magma from which the sulphides segregated and differences in the ratio of silicate to sulphide liquid (R factors). The higher metal content of the disseminated sulphides relative to the massive and matrix sulphides may be due to the fact that the disseminated sulphides equilibrated with a larger volume of magma than massive and matrix sulphides. The difference in composition between the Cu- and Fe-rich sulphides may be the result of the fractional crystallization of monosulphide solid solution from a sulphide liquid, with the Cu-rich sulphides representing the liquid and the Fe-rich sulphides representing the cumulate.

  4. Redox Conditions on Small Bodies

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    2004-01-01

    The Eucrite Parent Body (4 Vesta). The eucrites are basalts that contain approx. 18 wt% FeO and contain trace metal. The eucrites are very depleted in siderophile elements, so it appears that the source regions of these basalts once equilibrated with Fe-Ni metal. Therefore, it is of interest to ask what fo2 is required to precipitate metal from a liquid of eucrite composition. Or in other words, what f02 did eucrites form under? This fo2 has been determined experimentally by and was found to be IW-1. Therefore, eucrites formed at about IW-1. In addition, it is interesting to note that assuming X(sub feo) = alpha(sub FeO) allows calculation of eucrite fo2 (assuming equilibrium with Fe metal). This calculation yields the same result as the experiments to within approx. 0.25 log units, reinforcing this result.

  5. Radioactive nondestructive test method

    NASA Technical Reports Server (NTRS)

    Obrien, J. R.; Pullen, K. E.

    1971-01-01

    Various radioisotope techniques were used as diagnostic tools for determining the performance of spacecraft propulsion feed system elements. Applications were studied in four tasks. The first two required experimental testing involving the propellant liquid oxygen difluoride (OF2): the neutron activation analysis of dissolved or suspended metals, and the use of radioactive tracers to evaluate the probability of constrictions in passive components (orifices and filters) becoming clogged by matter dissolved or suspended in the OF2. The other tasks were an appraisal of the applicability of radioisotope techniques to problems arising from the exposure of components to liquid/gas combinations, and an assessment of the applicability of the techniques to other propellants.

  6. Feasibility for direct rapid energy dispersive X-ray fluorescence (EDXRF) and scattering analysis of complex matrix liquids by partial least squares.

    PubMed

    Angeyo, K H; Gari, S; Mustapha, A O; Mangala, J M

    2012-11-01

    The greatest challenge to material characterization by XRF technique is encountered in direct trace analysis of complex matrices. We exploited partial least squares (PLS) in conjunction with energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry to rapidly (200 s) analyze lubricating oils. The PLS-EDXRFS method affords non-invasive quality assurance (QA) analysis of complex matrix liquids as it gave optimistic results for both heavy- and low-Z metal additives. Scatter peaks may further be used for QA characterization via the light elements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Solubility of hydrogen in metals and its effect of pore-formation and embrittlement. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shahani, H. R.

    1984-01-01

    The effect of alloying elements on hydrogen solubility were determined by evaluating solubility equations and interaction coefficients. The solubility of dry hydrogen at one atmosphere was investigated in liquid aluminum, Al-Ti, Al-Si, Al-Fe, liquid gold, Au-Cu, and Au-Pd. The design of rapid heating and high pressure casting furnaces used in meta foam experiments is discussed as well as the mechanism of precipitation of pores in melts, and the effect of hydrogen on the shrinkage porosity of Al-Cu and Al-Si alloys. Hydrogen embrittlement in iron base alloys is also examined.

  8. Note on heat conduction in liquid metals. A comparison of laminar and turbulent flow effects

    NASA Astrophysics Data System (ADS)

    Talmage, G.

    1994-05-01

    The difference between heat transfer in liquid metals with electric currents and magnetic fields on the one hand and heat transfer in electrically insulating fluids and in conducting solids on the other is pointed out. Laminar and turbulent flow effects in liquid metal sliding electric contacts for homopolar machines are considered. Large temperature gradients can develop within a small region of liquid metal. A model of a liquid-metal sliding electrical contact is developed and analyzed.

  9. Origin of spinel-rich chondrules and inclusions in carbonaceous and ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Kornacki, A. S.; Fegley, B., Jr.

    1984-01-01

    The evaluation of three models of the origin of spinel-rich chondrules and inclusions presented here includes new calculations of the major-element refractory mineral condensation sequence from a gas of solar composition over a wide pressure interval. Condensation calculations show that spinel-rich chondrules did not crystallize from metastable liquid condensates, and that spinel-rich inclusions are not aggregates of refractory nebular condensates. It is proposed that spinel-rich objects are fractionated distillation residues of small aggregates of primitive dust that lost Ca, Si-rich partial melts by evaporation, ablation, or splashing during collisions. This model also explains why spinel-rich chondrules and inclusions (1) are usually smaller than melilite-rich chondrules and inclusions; (2) often have highly fractionated trace-element compositions; and (3) usually do not contain Pt-metal nuggets even when they are more enriched in the Pt-group metals than nugget-bearing melilite-rich objects.

  10. Effect of Silicon on Activity Coefficients of P, Bl, CD, SN, and AG in Liquid Fe-Si, and Implications for Differentiation and Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Ross, D. K.

    2017-01-01

    Cores of differentiated bodies (Earth, Mars, Mercury, Moon, Vesta) contain light elements such as S, C, Si, and O. We have previously measured small effects of Si on metal-silicate partitioning of Ni and Co [1,2], and larger effects for Mo, Ge, Sb, As [2]. The effect of Si on many siderophile elements could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Bi, Cd, Sn, Ag, and P between metal and silicate melt. The results will be applied to Earth, Mars, Mercury, Moon, and Vesta, for which we have excellent constraints on the mantle Bi, Cd, Sn, Ag, and P concentrations from mantle and/or basalt samples.

  11. Solute effects on deformation and fracture of beta brass

    NASA Technical Reports Server (NTRS)

    Shea, M. M.; Stoloff, N. S.

    1973-01-01

    It is shown that the ductility of several ternary beta brass alloys in air and in several liquid metals can be related to the operative slip and grain boundary relaxation processes. Nickel and manganese were chosen as alloying elements because they are expected to respectively enhance and suppress cross slip in beta brass. Single-phase binary and ternary beta brass alloys were used in both polycrystalline and single crystal form.

  12. Fuels and Lubricants for Aircraft

    DTIC Science & Technology

    1975-02-27

    probable but fundamentally possible is the use of hydrides, i.e., compounds of hydrogen "with other elements .(boranes, hydra-zine, ammonia ), alcohols...mixtures; 24. Liquid hydrogen; 25. Nitrogen hydrides and their derivatives ( ammonia , hydrazine, amines, DMH); 26. Boron, Al, Mg, Li, Be and other metals... method . For inflammation to occur, it is necessary that th’e rate of liberation of heat due to exochermic reactions in an initially heated volume of

  13. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  14. Evaluating the capabilities of aerosol-to-liquid particle extraction system (ALPXS)/ICP-MS for monitoring trace metals in indoor air.

    PubMed

    Jayawardene, Innocent; Rasmussen, Pat E; Chenier, Marc; Gardner, H David

    2014-09-01

    This study investigates the application of the Aerosol-to-Liquid Particle Extraction System (ALPXS), which uses wet electrostatic precipitation to collect airborne particles, for multi-element indoor stationary monitoring. Optimum conditions are determined for capturing airborne particles for metal determination by inductively coupled plasma-mass spectrometry (ICP-MS), for measuring field blanks, and for calculating limits of detection (LOD) and quantification (LOQ). Due to the relatively high flow rate (300 L min(-1)), a sampling duration of 1 hr to 2 hr was adequate to capture airborne particle-bound metals under the investigated experimental conditions. The performance of the ALPXS during a building renovation demonstrated signal-to-noise ratios appropriate for sampling airborne particles in environments with elevated metal concentrations, such as workplace settings. The ALPXS shows promise as a research tool for providing useful information on short-term variations (transient signals) and for trapping particles into aqueous solutions where needed for subsequent characterization. As the ALPXS does not provide size-specific samples, and its efficiency at different flow rates has yet to be quantified, the ALPXS would not replace standard filter-based protocols accepted for regulatory applications (e.g., exposure measurements), but rather would provide additional information if used in conjunction with filter based methods. Implications: This study investigates the capability of the Aerosol-to-Liquid Particle Extraction System (ALPXS) for stationary sampling of airborne metals in indoor workplace environments, with subsequent analysis by ICP-MS. The high flow rate (300 L/min) permits a short sampling duration (< 2 hr). Results indicated that the ALPXS was capable of monitoring short-term changes in metal emissions during a renovation activity. This portable instrument may prove to be advantageous in occupational settings as a qualitative indicator of elevated concentrations of airborne metals at short time scales.

  15. Liquid metals for solar power systems

    NASA Astrophysics Data System (ADS)

    Flesch, J.; Niedermeier, K.; Fritsch, A.; Musaeva, D.; Marocco, L.; Uhlig, R.; Baake, E.; Buck, R.; Wetzel, T.

    2017-07-01

    The use of liquid metals in solar power systems is not new. The receiver tests with liquid sodium in the 1980s at the Plataforma Solar de Almería (PSA) already proved the feasibility of liquid metals as heat transfer fluid. Despite the high efficiency achieved with that receiver, further investigation of liquid metals in solar power systems was stopped due to a sodium spray fire. Recently, the topic has become interesting again and the gained experience during the last 30 years of liquid metals handling is applied to the concentrated solar power community. In this paper, recent activities of the Helmholtz Alliance LIMTECH concerning liquid metals for solar power systems are presented. In addition to the components and system simulations also the experimental setup and results are included.

  16. Liquid-metal flows: Magnetohydrodynamics and applications; Proceedings of the Fifth Beersheba International Seminar on Magnetohydrodynamic Flows and Turbulence, University of the Negev, Beersheba, Israel, Mar. 2-6, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branover, H.; Mond, M.; Unger, Y.

    The present collection of papers on MHD-related uses of liquid metal flows and their applications discusses topics in laminar MHD flows, MHD power generation, metallurgical MHD applications, and two-phase MHD flows. Attention is given to MHD flows with closed streamlines, nonlinear waves in liquid metals under a transverse magnetic field, liquid-metal MHD conversion of nuclear energy to electricity, the testing of optimized MHD conversion (OMACON) systems, and aspects of a liquid-metal induction generator. Also discussed are MHD effects in liquid-metal breeder reactors, a plasma-driven MHD powerplant, modeling the recirculating flows in channel-induction surfaces, the hydrodynamics of aluminum reduction cells, free-surfacemore » determination in a levitation-melting process, the parametric interactions of waves in bubbly liquid metals, and the occurrence of cavitation in water jets.« less

  17. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  18. An Electrochemical Investigation of the Chemical Diffusivity in Liquid Metal Alloys

    NASA Astrophysics Data System (ADS)

    Barriga, Salvador A.

    The liquid metal battery has been shown to be a viable candidate for grid-scale energy storage, due to its fast kinetics and ability to be constructed from economically feasible materials. Various of the liquid metal couples that form high stable voltages, such as the calcium chemistries, are rate limited because they tend to form solid intermetallic compounds with high melting points. In order to understand and better engineer these batteries, the kinetic properties of these liquid alloys, in particular the chemical diffusivity, must be known accurately so that it can be used as input in computational simulations to avoid the nucleation of any solids. Unfortunately, the dominant experimental methods for measuring diffusion in liquid metals today are unreliable because the measurement timescales are on the order of days, require long capillaries susceptible to buoyancy-driven flow from temperature fluctuations, and composition analysis must be done ex-situ as a solid. To counter all these problems, a new and novel method for measuring the chemical diffusivity of metals in liquid alloys derived from electrochemical principles is presented in this thesis. This new method has the advantage of operating in shorter times scales of minutes rather than days, and requires the use of small capillaries which collectively minimize the effect of convectively-driven flow caused from temperature gradients. This new method was derived by solving the same boundary conditions required by the galvanostatic intermittent titration technique for solid-state electrodes. To verify the validity of the new theoretical derivation, the method was used to measure the chemical diffusivity of calcium in liquid bismuth within the temperature range of 550 - 700 °C using a three-electrode setup with a ternary molten salt electrolyte. Three compositions where studied (5% Ca-Bi, 10% Ca-Bi, and 15% Ca-Bi) for comparison. The chemical diffusion coefficient was found to range between (6.77 +/- 0.21)x10-5 cm2/s - (10.9 +/- 0.21 )x10-5 cm2/s at 5% Ca-Bi, (4.95 +/- 0.65)x10-5 cm2/s - (7.93 +/- 0.37)x10 -5 cm2/s at 10% Ca-Bi, and (6.22 +/- 1.2)x10 -5 cm2/s- (10.2 +/- 0.26)x10-5 cm2/s at 15% Ca-Bi which, to our knowledge, are the first successful measurements of calcium diffusivity in the liquid state. Arrhenius fits with good correlations revealed the activation energy for diffusion to be (21.4+/-1.7) kJ/mol, (23 .0+/-2.4) kJ/mol, and (17.7+/-5.9) kJ/mol as the calcium concentration increased, which are in excellent agreement with literature published values and lie in the same range of 15-30 kJ/mol that is reported for most liquid metals. The chemical diffusivity value was then used as input in finite element simulations to model how convection affects the overall transport inside a 20-Ah liquid bismuth electrode under the influence of different thermal boundary conditions. Also, a phase field model was created to simulate the motion of the two interfaces inside a liquid metal battery during operation, which to our knowledge, is the first time phase field has been extended beyond two phases. Experimental kinetic values can then be used as input in these numerical models to help characterize and optimize the entire battery. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  19. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    NASA Technical Reports Server (NTRS)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  20. Semiconductor apparatus utilizing gradient freeze and liquid-solid techniques

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)

    1998-01-01

    Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a substantial increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.

  1. Dismantlement of the TSF-SNAP Reactor Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peretz, Fred J

    2009-01-01

    This paper describes the dismantlement of the Tower Shielding Facility (TSF)?Systems for Nuclear Auxiliary Power (SNAP) reactor, a SNAP-10A reactor used to validate radiation source terms and shield performance models at Oak Ridge National Laboratory (ORNL) from 1967 through 1973. After shutdown, it was placed in storage at the Y-12 National Security Complex (Y-12), eventually falling under the auspices of the Highly Enriched Uranium (HEU) Disposition Program. To facilitate downblending of the HEU present in the fuel elements, the TSF-SNAP was moved to ORNL on June 24, 2006. The reactor assembly was removed from its packaging, inspected, and the sodium-potassiummore » (NaK) coolant was drained. A superheated steam process was used to chemically react the residual NaK inside the reactor assembly. The heat exchanger assembly was removed from the top of the reactor vessel, and the criticality safety sleeve was exchanged for a new safety sleeve that allowed for the removal of the vessel lid. A chain-mounted tubing cutter was used to separate the lid from the vessel, and the 36 fuel elements were removed and packaged in four U.S. Department of Transportation 2R/6M containers. The fuel elements were returned to Y-12 on July 13, 2006. The return of the fuel elements and disposal of all other reactor materials accomplished the formal objectives of the dismantlement project. In addition, a project model was established for the handling of a fully fueled liquid-metal?cooled reactor assembly. Current criticality safety codes have been benchmarked against experiments performed by Atomics International in the 1950s and 1960s. Execution of this project provides valuable experience applicable to future projects addressing space and liquid-metal-cooled reactors.« less

  2. Liquid metal actuation by electrical control of interfacial tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaker, Collin B.; Dickey, Michael D., E-mail: michael-dickey@ncsu.edu

    2016-09-15

    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm lengthmore » scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.« less

  3. Electrochemically induced actuation of liquid metal marbles

    NASA Astrophysics Data System (ADS)

    Tang, Shi-Yang; Sivan, Vijay; Khoshmanesh, Khashayar; O'Mullane, Anthony P.; Tang, Xinke; Gol, Berrak; Eshtiaghi, Nicky; Lieder, Felix; Petersen, Phred; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-06-01

    Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00185g

  4. Ionic Liquids as Extraction Media for Metal Ions

    NASA Astrophysics Data System (ADS)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  5. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non-wetting property and became moveable by applying a magnetic field. Finally, using its metallic and liquid properties, microfluidic-based applications of gallium-based liquid metal alloy such as inkjet printing and reconfigurable photomask were investigated. A clog-free and oxide-free inkjet printing technique was developed by incorporating HCl-impregnated paper as orifice. Inkjet-printed liquid metal line can be used as a metallic interconnect even with significant deformation of the flexible substrate. Additionally, based on its ultraviolet light blocking property, a reconfigurable photolithography using gallium-based liquid metal alloy was demonstrated in a PDMS-based 7-segments microfluidic channel by showing single digit numbers ('0'˜'9') with attainable minimum feature size of 10 microm.

  6. Maximum Oxygen Content of Flowing Eutectic NaK in a Stainless Steel System.

    DTIC Science & Technology

    EUTECTICS, ALKALI METAL ALLOYS), (*LIQUID METALS, OXYGEN), (*POTASSIUM ALLOYS, SODIUM ALLOYS), LIQUID METAL PUMPS , FLUID FLOW, CONCENTRATION...CHEMISTRY), HIGH TEMPERATURE, FLOWMETERS, STAINLESS STEEL, ELECTROMAGNETIC PUMPS , TEMPERATURE, SAMPLING, LIQUID METAL COOLANTS, OXIDES, CRYSTALLIZATION.

  7. Liquid metal porous matrix sliding electrical contact: A concept

    NASA Technical Reports Server (NTRS)

    Ferguson, H.

    1973-01-01

    Concept utilizes porous metal or nonmetal matrix containing liquid metal in porous structure and confines liquid metal to contact area between rotor and brush by capillary forces. System may also be used to lubricate bearing systems.

  8. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.

    2008-06-01

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

  9. Gallium-rich Pd-Ga phases as supported liquid metal catalysts

    NASA Astrophysics Data System (ADS)

    Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.

    2017-09-01

    A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

  10. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2001-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.

  11. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-Less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2001-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and Fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub element tests will be presented.

  12. Metal Matrix Composite LOX Turbopump Housing Via Novel Tool-less Net-Shape Pressure Infiltration Casting Technology

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.; hide

    2002-01-01

    Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary toolless pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.

  13. Technique for detecting liquid metal leaks

    DOEpatents

    Bauerle, James E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.

  14. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  15. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  16. Diffusion in liquid metal systems. [information on electrical resistivity and thermal conductivity

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.

    1975-01-01

    Physical properties of twenty liquid metals are reported; some of the data on such liquid metal properties as density, electrical resistivity, thermal conductivity, and heat capacity are summarized in graphical form. Data on laboratory handling and safety procedure are summarized for each metal; heat-transfer-correlations for liquid metals under various conditions of laminar and turbulent flow are included. Where sufficient data were available, temperature equations of properties were obtained by the method of least-squares fit. All values of properties given are valid in the given liquid phase ranges only. Additional tabular data on some 40 metals are reported in the appendix. Included is a brief description of experiments that were performed to investigate diffusion in liquid indium-gallium systems.

  17. Transient Liquid Phase Bonding of Cu-Cr-Zr-Ti Alloy Using Ni and Mn Coatings: Microstructural Evolution and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Venkateswaran, T.; Ravi, K. R.; Sivakumar, D.; Pant, Bhanu; Janaki Ram, G. D.

    2017-08-01

    High-strength copper alloys are used extensively in the regenerative cooling parts of aerospace structures. Transient liquid phase (TLP) bonding of a Cu-Cr-Zr-Ti alloy was attempted in the present study using thin layers of elemental Ni and Mn coatings applied by electroplating. One of the base metals was given a Ni coating of 4 µm followed by a Mn coating of 15 µm, while the other base metal was given only the Ni coating (4 µm). The bonding cycle consisted of the following: TLP stage—heating to 1030 °C and holding for 15 min; homogenization stage—furnace cooling to 880 °C and holding for 2 h followed by argon quenching to room temperature. Detailed microscopy and electron probe microanalysis analysis of the brazed joints were carried out. The braze metal was found to undergo isothermal solidification within the 15 min of holding time at 1030 °C. At the end of TLP stage, the braze metal showed a composition of Cu-17Ni-9Mn (wt.%) at the center of the joint with a steep gradient in Ni and Mn concentrations from the center of the braze metal to the base metal interfaces. After holding for 2 h at 880 °C (homogenization stage), the compositional gradients were found to flatten significantly and the braze metal was found to develop a homogeneous composition of Cu-11Ni-7Mn (wt.%) at the center of the joint. In lap-shear tests, failures were always found to occur in the base metal away from the brazed region. The copper alloy base metal was found to undergo significant grain coarsening due to high-temperature exposure during brazing and, consequently, suffer considerable reduction in yield strength.

  18. E-cigarettes as a source of toxic and potentially carcinogenic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Catherine Ann, E-mail: chess@prev.org

    Background and aims: The popularity of electronic cigarette devices is growing worldwide. The health impact of e-cigarette use, however, remains unclear. E-cigarettes are marketed as a safer alternative to cigarettes. The aim of this research was the characterization and quantification of toxic metal concentrations in five, nationally popular brands of cig-a-like e-cigarettes. Methods: We analyzed the cartomizer liquid in 10 cartomizer refills for each of five brands by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Results: All of the tested metals (cadmium, chromium, lead, manganese and nickel) were found in the e-liquids analyzed. Across all analyzed brands, mean (SD) concentrations rangedmore » from 4.89 (0.893) to 1970 (1540) μg/L for lead, 53.9 (6.95) to 2110 (5220) μg/L for chromium and 58.7 (22.4) to 22,600 (24,400) μg/L for nickel. Manganese concentrations ranged from 28.7 (9.79) to 6910.2 (12,200) μg/L. We found marked variability in nickel and chromium concentration within and between brands, which may come from heating elements. Conclusion: Additional research is needed to evaluate whether e-cigarettes represent a relevant exposure pathway for toxic metals in users. - Highlights: • Certain brands of cig-a-like e-cigarettes contain high levels of nickel and chromium. • Cig-a-likes contain low levels of cadmium, compared to tobacco cigarettes. • Nickel and chromium in the e-liquid of cig-a-likes may come from nichrome heating coils.« less

  19. Acoustic wave-driven oxidized liquid metal-based energy harvester

    NASA Astrophysics Data System (ADS)

    Jeon, Jinpyo; Chung, Sang Kug; Lee, Jeong-Bong; Doo, Seok Joo; Kim, Daeyoung

    2018-06-01

    We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates.

  20. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    PubMed

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  1. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring

    NASA Astrophysics Data System (ADS)

    Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud

    2018-06-01

    In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.

  3. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOEpatents

    Woolley, Robert D.

    1999-01-01

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  4. The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys

    NASA Astrophysics Data System (ADS)

    Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.

    2014-12-01

    Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.

  5. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Surface order in cold liquids: X-ray reflectivity studies of dielectric liquids and comparison to liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S.; Ehrlich, S.; Uysal, A.

    2010-05-17

    Oscillatory surface-density profiles layers have previously been reported in several metallic liquids, one dielectric liquid, and in computer simulations of dielectric liquids. We have now seen surface layers in two other dielectric liquids, pentaphenyl trimethyl trisiloxane, and pentavinyl pentamethyl cyclopentasiloxane. These layers appear below T?285 K and T?130 K, respectively; both thresholds correspond to T/Tc?0.2 where Tc is the liquid-gas critical temperature. All metallic and dielectric liquid surfaces previously studied are also consistent with the existence of this T/Tc threshold, first indicated by the simulations of Chacon et al. The layer width parameters, determined using a distorted-crystal fitting model, followmore » common trends as functions of Tc for both metallic and dielectric liquids.« less

  7. Partitioning of Pd Between Fe-S-C and Mantle Liquids at High Pressure and Temperature: Implications for Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Humayun, M.; Danielson, L.

    2007-01-01

    One of the most elusive geochemical aspects of the early Earth has been explaining the near chondritic relative abundances of the highly siderophile elements (HSE; Au, Re and the platinum group elements) in Earth's primitive upper mantle (PUM). Perhaps they were delivered to the Earth after core formation, by late addition of carbonaceous chondrite material. However, the recognition that many moderately siderophile elements can be explained by high pressure and temperature (PT) metal-silicate equilibrium, leads to the question whether high PT equilibrium can also explain the HSE concentrations. Answers to this question have been slowed by experimental difficulties (nugget effect and very low solubilities). But two different perspectives have emerged from recent studies. One perspective is that D(M/S) for HSE at high PT are not low enough to explain terrestrial mantle depletions of these elements (for Pd and Pt). A second perspective is D(M/S) are reduced substantially at high PT and even low enough to explain terrestrial mantle depletions (for Au and Pt). Issues complicating interpretation of all experiments include use of MgO- and FeO-free silicate melts, and S-free and FeNi metal-free systems. In addition, conclusions for Pt rest on an interpretation that the tiny metallic nuggets plaguing many such experiments, were formed upon quench. There is not agreement on this issue, and the general question of HSE solubility at high PT remains unresolved

  8. Metal-silicate interaction in quenched shock-induced melt of the Tenham L6-chondrite

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues; Doukhan, Jean-Claude; Guyot, François

    2000-07-01

    The metal-silicate microstructures in the shock-induced melt pockets of the Tenham (L6) chondrite have been investigated by analytical transmission electron microscopy. The melt areas, formed under high-pressure, high-temperature dynamic shock conditions, consist of spherical Fe-Ni metal/iron sulfide globules embedded in a silicate glass matrix, showing that the melt was quenched at high cooling rate. The Fe-Ni fraction in the globules is two-phase, composed of a bcc phase (˜5 wt% Ni) and an fcc phase (˜49 wt% Ni), indicating that fractional crystallisation of the metal occurred during the fast cooling. The metal fraction also contains appreciable amounts of non-siderophile elements (mostly Si, Mg and O) suggesting that these elements were trapped in the metal, either as alloying components or as tiny silicate or oxide inclusions. In the iron sulfide fraction, the Na content is high (>3 wt%), suggesting chalcophile behaviour for Na during the shock event. The composition of the silicate glass reflects non-equilibrium melting of several silicate phases (olivine, pyroxene and plagioclase). Moreover, the FeO content is high compared to the FeO contents of the unmelted silicates. Some Fe redistribution took place between metal and silicate liquids during the shock event. The silicate glass also contains tiny iron sulfide precipitates which most probably originated by exsolution during quench, suggesting that the molten silicate retained significant amounts of S, dissolved at high temperature and high pressure. Based on these observations, we suggest that non-equilibrium phenomena may be important in determining the compositions of metal and silicate reservoirs during their differentiation.

  9. Electrochemical Impedance Spectroscopic Study on Eu 2+ and Sr 2+ Using Liquid Metal Cathodes in Molten Chlorides

    NASA Astrophysics Data System (ADS)

    Matsumiya, Masahiko; Takagi, Ryuzo

    2000-08-01

    For the pyrochemical reprocessing of spent metallic nuclear fuels in molten salt baths it is important to investigate the behavior of the electrochemically negative elements Eu and Sr, which are significant fission products. Voltammetric and chronopotentiometric studies have shown that the reduction of Eu 2+ and Sr 2+ on liquid Pb cathodes in molten chloride baths at 1073 K follows the alloy formation reaction: Eu 2+ + 2e- + 3Pb → EuPb 3 and Sr 2+ + 2e- + 3Pb → SrPb 3 . In the present work these alloy formation reactions were studiedby electrochemical impedance spectroscopy. Analysis of the spectra showed that the electronic exchange of Eu 2+ /Eu and Sr 2+ /Sr is quasi-re-versible. Moreover, the experimental results allowed the determination of the kinetic parameters of EU 2+ /EU and Sr 2+ /Sr, the diffusion coefficients of these species in molten chloride baths, and also the diffusion layer thickness.

  10. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails.

    PubMed

    Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M

    2003-01-01

    Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  11. The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures and its implications for the genesis of magmatic-hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Zajacz, Zoltán; Candela, Philip A.; Piccoli, Philip M.

    2017-06-01

    The partition coefficients of Cu, Au and Mo between liquid and vapor were determined at P = 130 MPa and T = 900 °C, and P = 90 MPa and T = 650 °C and redox conditions favoring the dominance of reduced S species in the fluid. The experiments at 900 °C were conducted in rapid-quench Molybdenum-Hafnium Carbide externally-heated pressure vessel assemblies, whereas those at 650 °C were run in René41 pressure vessels. The fluids were sampled at run conditions using the synthetic fluid inclusion technique. The host quartz was fractured in situ during the experiments ensuring the entrapment of equilibrium fluids. A new method was developed to quantify the composition of the vapor inclusions from LA-ICPMS analyses relying on the use of boron as an internal standard, an element that fractionates between vapor and liquid to a very small degree. The bulk starting fluid compositions closely represented those expected to exsolve from felsic silicate melts in upper crustal magma reservoirs (0.64 m NaCl, 0.32 m KCl, ±0.2 m HCl and/or 4 wt% S). The experiments were conducted in Au97Cu3 alloy capsules allowing the simultaneous determination of apparent Au and Cu solubilities in the liquid and the vapor phase. Though the apparent metal solubilities were strongly affected by the addition of HCl and S in both phases, all three elements were found to preferentially partition to a liquid phase at all studied conditions with an increasing degree of preference for the liquid in the following order Au < Cu < Mo. The presence of HCl and S did not have a significant effect on the liquid/vapor partition coefficients of either Au or Cu, whereas the presence of HCl slightly shifted the partitioning of Mo in favor of the vapor. Ore metal partition coefficients normalized to that of Na (Ki-Naliq/ vap =Diliq/vap /DNaliq/vap) fall in the following ranges respectively for each studied metal: KAu-Naliq / vap = 0.20 ± 0.07-0.50 ± 0.19 (1σ); KCu-Naliq / vap = 0.36 ± 0.12-0.76 ± 0.22; KMo-Naliq/ vap = 0.67 ± 0.15-2.5 ± 0.8. Decreasing T from 900 °C to 650 °C slightly shifted KAu-Naliq / vap and KCu-Naliq / vap to the lower end of the reported ranges. A consequence of KAu-Naliq / vap and KCu-Naliq / vap being significantly smaller than 1 is that much of the Au and a significant fraction of Cu may be carried to shallower levels of magmatic-hydrothermal systems by residual vapors despite potentially extensive brine condensation.

  12. Apparatus and method for making metal chloride salt product

    DOEpatents

    Miller, William E [Naperville, IL; Tomczuk, Zygmunt [Homer Glen, IL; Richmann, Michael K [Carlsbad, NM

    2007-05-15

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  13. Acid-switched Eu(III) coordination inside reverse aggregates: Insights into a synergistic liquid-liquid extraction system

    DOE PAGES

    Ellis, Ross J.

    2016-08-09

    Determining the structure of complex solutions bearing metal ions is challenging, but crucial for developing important technologies such as liquid-liquid extraction for metal refining and separation purposes. Herein, the structure of an organic Eu(III) solution consisting a binary mixture of lipophilic ligands di-2-ethylhexyl phosphoric acid (HDEHP) and tetraoctyl diglycolamide (TODGA) in dodecane is studied using synchrotron small angle X-ray scattering (SAXS) and X-ray absorption fine structure spectroscopy (EXAFS). This system is of technological importance in f-element separation for nuclear fuel cycle applications, where extraction is controlled by varying nitric acid concentration. Extraction is promoted at low and high concentration, butmore » is retarded at intermediate concentration, leading to a U-shaped function; the structural origins of which we investigate. At the nanoscale, the solution is apparently comprised of reverse micelles with polar cores of approximately 1 nm in size, and these remain virtually unchanged as acid concentration is varied. Inside the polar cores, the coordination environment of Eu(III) switches from a 9-coordinate [Eu(TODGA) 3] 3+ motif at high acid, to a 6-coordinate HDEHP-dominated complex resembling Eu(HDEHP·DEHP) 3 at low acid. The results show that extraction is controlled within the coordination sphere, where it is promoted under conditions that favor coordination of either one of the two organic ligands, but is retarded under conditions that encourage mixed complexes. Lastly, our results link solution structure with ion transport properties in a technologically-important liquid-liquid ion extraction system.« less

  14. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  15. Measurement of the differential pressure of liquid metals

    DOEpatents

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  16. Surface order in cold liquids: X-ray reflectivity studies of dielectric liquids and comparison to liquid metals

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudeshna; Uysal, Ahmet; Stripe, Benjamin; Ehrlich, Steven; Karapetrova, Evguenia A.; Dutta, Pulak

    2010-05-01

    Oscillatory surface-density profiles (layers) have previously been reported in several metallic liquids, one dielectric liquid, and in computer simulations of dielectric liquids. We have now seen surface layers in two other dielectric liquids, pentaphenyl trimethyl trisiloxane, and pentavinyl pentamethyl cyclopentasiloxane. These layers appear below T˜285K and T˜130K , respectively; both thresholds correspond to T/Tc˜0.2 where Tc is the liquid-gas critical temperature. All metallic and dielectric liquid surfaces previously studied are also consistent with the existence of this T/Tc threshold, first indicated by the simulations of Chacón [Phys. Rev. Lett. 87, 166101 (2001)]. The layer width parameters, determined using a distorted-crystal fitting model, follow common trends as functions of Tc for both metallic and dielectric liquids.

  17. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOEpatents

    Viswanathan, Tito

    2015-10-27

    A method of separating a liquid hydrocarbon material from a body of water, includes: (a) mixing magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the magnetic carbon-metal nanocomposites each to be adhered by the liquid hydrocarbon material to form a mixture; (b) applying a magnetic force to the mixture to attract the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material; and (c) removing the body of water from the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material while maintaining the applied magnetic force. The magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material, for a period of time effective to allow the carbon-metal nanocomposites to be formed.

  18. Experimental design of an interlaboratory study for trace metal analysis of liquid fluids. [for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1983-01-01

    The accurate determination of trace metals and fuels is an important requirement in much of the research into and development of alternative fuels for aerospace applications. Recognizing the detrimental effects of certain metals on fuel performance and fuel systems at the part per million and in some cases part per billion levels requires improved accuracy in determining these low concentration elements. Accurate analyses are also required to ensure interchangeability of analysis results between vendor, researcher, and end use for purposes of quality control. Previous interlaboratory studies have demonstrated the inability of different laboratories to agree on the results of metal analysis, particularly at low concentration levels, yet typically good precisions are reported within a laboratory. An interlaboratory study was designed to gain statistical information about the sources of variation in the reported concentrations. Five participant laboratories were used on a fee basis and were not informed of the purpose of the analyses. The effects of laboratory, analytical technique, concentration level, and ashing additive were studied in four fuel types for 20 elements of interest. The prescribed sample preparation schemes (variations of dry ashing) were used by all of the laboratories. The analytical data were statistically evaluated using a computer program for the analysis of variance technique.

  19. Dissolution Mechanism for High Melting Point Transition Elements in Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Lee, Young E.; Houser, Stephen L.

    When added cold in aluminum melt, the alloying process for compacts of transition metal elements such as Mn, Fe, Cr, Ni, Ti, Cu, and Zn takes a sequence of incubation, exothermic reactions to form intermetallic compounds, and dispersion of the alloying elements into aluminum melt. The experiments with Cr compacts show that the incubation period is affected by the content of ingredient Al and size of compacts and by size of Cr particles. Incubation period becomes longer as the content of ingredient aluminum in compact decreases, and this prolonged incubation period negatively impacts the dissolution of the alloying elements in aluminum. Once liquid aluminum forms at reaction sites, the exothermic reaction takes place quickly and significantly raises the temperature of the compacts. As the result of it, the compacts swell in volume with a sponge like structure. Such porous structure encourages the penetration of liquid aluminum from the melt. The compacts become weak mechanically, and the alloying elements are dispersed and entrained in aluminum melt as discrete and small sized units. When Cr compacts are deficient in aluminum, the unreacted Cr particles are encased by the intermetallic compounds in the dispersed particles. They are carried in the melt flow and continue the dissolution reaction in aluminum. The entire dissolution process of Cr compacts completes within 10 to 15 minutes with a full recovery when the aluminum content is 10 to 20% in compacts.

  20. Space- and time-resolved resistive measurements of liquid metal wall thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirhoseini, S. M. H.; Volpe, F. A., E-mail: fvolpe@columbia.edu

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstratedmore » for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.« less

  1. Space- and time-resolved resistive measurements of liquid metal wall thickness.

    PubMed

    Mirhoseini, S M H; Volpe, F A

    2016-11-01

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  2. Transverse excitations in liquid Fe, Cu and Zn

    NASA Astrophysics Data System (ADS)

    Hosokawa, S.; Inui, M.; Kajihara, Y.; Tsutsui, S.; Baron, A. Q. R.

    2015-05-01

    Transverse acoustic (TA) excitation modes were observed in inelastic x-ray scattering spectra of liquid Fe, Cu and Zn. From the analysis of current correlation functions, we concluded that TA excitation modes can experimentally be detected through the quasi-TA branches in the longitudinal current correlation spectra in these liquid metals. The microscopic elastic constants are estimated and a characteristic difference from macroscopic polycrystalline value was found in Poisson's ratio of liquid Fe, which shows an extremely softer value of ∼0.38 compared with the macroscopic value of ∼0.275. The lifetime of the TA modes were determined to be ∼0.45 ps for liquid Fe and Cu and ∼0.55 ps for liquid Zn, reflecting different interatomic correlations between liquid transition metals and non-transition metals. The propagation length of the TA modes are ∼0.85 nm in all of liquid metals, corresponding to the size of icosahedral or similar size of cages formed instantaneously in these liquid metals.

  3. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  4. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  5. Development of a High Ionization Efficiency Molten Glass Ion Emitter for TIMS

    NASA Astrophysics Data System (ADS)

    Cheversia, M. B.; Farmer, G.; Koval, C.; David, D.

    2006-12-01

    Thermal ionization mass spectrometry (TIMS) remains the method of choice for many high precision isotope ratio determinations but is handicapped by the use of low efficiency ion emitters. For example, ionization efficiencies from molten glass emitters (Si-gel) used for such elements as Pb, Cr, Ru, and Ag are in the range of 0.05-2%, which limits the sample size and the precision to which isotope ratio determinations for these elements can be made. Our aim is to improve the ionization efficiency of the molten glass ion emitter using electrochemical methods. This work builds on recent observations indicating that many metals doped in borosilicate glasses (eg. Bi, Ag), are emitted from the liquid glass (in vacuo) primarily as the neutral metal atom. Our goal is to increase the proportion of singly charged metal atoms in metal-doped molten glasses via oxidation induced by electrochemical methods and to assess whether such in situ oxidation of metal atoms leads to an increase in emitted metal ions. Our experiments are performed in a vacuum chamber that mimics conditions in the sample chamber of the TIMS. A borosilicate glass sample is placed in a miniature ceramic crucible. The crucible contains working and reference Pt electrodes, and a Pt thermocouple. The entire apparatus is wrapped with a resistively heated Ta wire until temperatures in the glass reach approximately 1400°C, to ensure that the glass is molten. By this method, we have produced simple cyclic voltammograms that suggest that over a 100°C temperature range, the borosilicate glass undergoes a transition from resistive behavior as a solid, to a conductive electrolyte, as a molten liquid glass, as expected. The change is evident as an order of magnitude decrease in resistivity of the glass, as interpreted from the voltammograms. The voltammograms produced for the pure borosilicate glasses represent the baseline against which we will compare the electrochemical characteristics of Pb doped glasses. These experiments are currently underway and are designed to determine the speciation of lead in the glass, and to determine the voltages required to induce cathodic currents in the glass corresponding to ionization to Pb+ and Pb2+. By generating a cathodic current and an increased concentration of the oxidized species, we hope to ultimately generate a higher intensity ion beam, higher ionization efficiency for low efficiency elements, and higher precision analyses on small sample sizes for the TIMS.

  6. METHOD OF FORMING A PROTECTIVE COATING ON FERROUS METAL SURFACES

    DOEpatents

    Schweitzer, D.G.; Weeks, J.R.; Kammerer, O.F.; Gurinsky, D.H.

    1960-02-23

    A method is described of protecting ferrous metal surfaces from corrosive attack by liquid metals, such as liquid bismuth or lead-bismuth alloys. The nitrogen content of the ferrous metal surface is first reduced by reacting the metal surface with a metal which forms a stable nitride. Thereafter, the surface is contacted with liquid metal containing at least 2 ppm zirconium at a temperature in the range of 550 to 1100 deg C to form an adherent zirconium carbide layer on the ferrous surface.

  7. Immobilized chiral tropine ionic liquid on silica gel as adsorbent for separation of metal ions and racemic amino acids.

    PubMed

    Qian, Guofei; Song, Hang; Yao, Shun

    2016-01-15

    Tropine-type chiral ionic liquid with proline anion was immobilized on silica gel by chemical modification method for the first time, which was proved by elemental, infrared spectrum and thermogravimetric analysis. Secondly, the performance of this kind of ionic liquid-modified silica gel was investigated in the adsorption of some metal ions, which included Cu(2+), Fe(3+), Mn(2+) and Ni(2+). Then the effects of time, initial concentration and temperature on adsorption for Cu(2+) ions were studied in detail, which was followed by the further research of adsorption kinetics and thermodynamics. The adsorption could be better described by pseudo-second-order kinetics model and that the process was spontaneous, exothermic and entropy decreasing. In the mode of 'reuse after adsorption', the ionic liquid-modified silica gel with saturated adsorption of Cu(2+) was finally used in resolution of racemic amino acids for the first time. The static experiment showed that adsorption rate of two enantiomers was obviously different. Inspired by this, the complex was packed in chromatographic column for the separation of racemic amino acids and d-enantiomers were firstly eluted by water or ethanol. Steric hindrance was found as one of key influencing factors for its effect on the stability of the complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  9. Extending Tabletop XUV Spectroscopy to the Liquid Phase to Examine Transition Metal Catalysts

    NASA Astrophysics Data System (ADS)

    Benke, Kristin; Ryland, Elizabeth S.; Vura-Weis, Josh

    2017-06-01

    M-edge spectroscopy of first row transition metals (3p to 3d excitation) is the low energy analogue of more well-known K- and L-edge spectroscopy, but can be implemented without the use of a synchrotron. Instead, M-edge spectroscopy can be performed as a tabletop method, relying on high harmonic generation (HHG) to produce ultrashort (˜ 20 fs) pulses of extreme ultraviolet (XUV) light in the range of 10-100s of eV. We have shown tabletop M-edge spectroscopy to be a valuable tool in determining the electronic structure of metal-centered coordination complexes and have demonstrated its capacity to yield element-specific information about a compound's oxidation state, spin state, and ligand field. The power of this technique to distinguish these features makes it a promising addition to the arsenal of methods used to study metal-centered catalysts. A catalytic reaction can be initiated photochemically and the XUV probe can be used to track oxidative and structural changes to identify the key intermediates. Until recently tabletop XUV spectroscopy has been performed on thin film samples, but in order to examine homogeneous catalysis, the technique must be adapted to look at samples in the liquid phase. The challenges of adapting tabletop XUV spectroscopy to the liquid phase lie in the lower attenuation length of XUV light compared to soft and hard x-rays and the lower flux compared to synchrotron methods. As a result, the sample must be limited to a sub-micron thickness as well as isolated from the vacuum environment required for x-ray spectroscopy. I am developing a liquid flow cell that relies on confining the sample between two x-ray transmissive SiN membranes, as has been demonstrated for use at synchrotrons, but adapted to the unique difficulties encountered in tabletop XUV spectroscopy.

  10. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  11. Ionic imbalance induced self-propulsion of liquid metals

    PubMed Central

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-zadeh, Kourosh

    2016-01-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems. PMID:27488954

  12. Ionic imbalance induced self-propulsion of liquid metals.

    PubMed

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F; O'Mullane, Anthony P; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-04

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  13. Liquid metal embrittlement of T91 and 316L steels by heavy liquid metals: A fracture mechanics assessment

    NASA Astrophysics Data System (ADS)

    Auger, T.; Hamouche, Z.; Medina-Almazàn, L.; Gorse, D.

    2008-06-01

    LME of the martensitic T91 and the austenitic 316L steels have been investigated in the CCT geometry in the plane-stress condition. Using such a geometry, premature cracking induced by a liquid metal (PbBi and Hg) can be studied using a fracture mechanics approach based on CTOD, J-Δ a and fracture assessment diagram. One is able to measure a reduction of the crack tip blunting and a reduction of the energy required for crack propagation induced by the liquid metal. In spite of some limitations, this qualitative evaluation shows that liquid metals do not induce strong embrittlement on steels in plane-stress condition. Rather, the effect of the liquid metal seems to promote a fracture mode by plastic collapse linked with strain localization. It indicates that the materials, in spite of a potential embrittlement, should still be acceptable in terms of safety criteria.

  14. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  15. Ionic imbalance induced self-propulsion of liquid metals

    NASA Astrophysics Data System (ADS)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  16. Compatibility of structural materials with liquid bismuth, lead, and mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, J.R.

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies,more » the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.« less

  17. Volcanic Metal Emissions and Implications for Geochemical Cycling and Mineralization

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Mather, T. A.

    2016-12-01

    Volcanoes emit substantial fluxes of metals to the atmosphere in volcanic gas plumes in the form of aerosol, adsorbed onto silicate particles and even in some cases as gases.. A huge database of metal emissions has been built over the preceding decades, which shows that volcanoes emit highly volatile metals into the atmosphere, such as As, Bi, Cd, Hg, Re, Se, Tl, among others. Understanding the cycling of metals through the Solid Earth system has importance for tackling a wide range of Earth Science problems, e.g. (1) the environmental impacts of metal emissions; (2) the sulfur and metal emissions of volcanic eruptions; (3) the behavior of metals during subduction and slab devolatilization; (4) the influence of redox on metal behavior in subduction zones; (5) the partitioning of metals between magmatic vapor, brines and melts; and (6) the relationships between volcanism and ore deposit formation. It is clear, when comparing the metal composition and flux in the gases and aerosols emitted from volcanoes, that they vary with tectonic setting. These differences allow insights into how the magmatic vapor was generated and how it interacted with melts and sulfides during magma differentiation and decompression. Hotspot volcanoes (e.g. Kilauea, Hawaii; volcanoes in Iceland) outgas a metal suite that mirrors the sulfide liquid-silicate melt partitioning behaviors reconstructed from experiments (as far as they are known), suggesting that the aqueous fluids (that will later be outgassed from the volcano) receive metals directly from oxidation of sulfide liquids during degassing and ascent of magmas towards the surface. At arc volcanoes, the gaseous fluxes of metals are typically much higher; and there are greater enrichments in elements that partition strongly into vapor or brine from silicate melts such as Cu, Au, Zn, Pb, W. We collate and present data on volcanic metal emissions from volcanoes worldwide and review the implications of the data array for metal cycling through subduction, the potential link between the rise of plate tectonics, metal outgassing and biology, and what we can understand about metal sequestration into ore deposits from volcanic emissions.

  18. The transmission spectrum of sound through a phononic crystal subjected to liquid flow

    NASA Astrophysics Data System (ADS)

    Declercq, Nico F.; Chehami, Lynda; Moiseyenko, Rayisa P.

    2018-01-01

    The influence of liquid-flow up to 7 mm/s is examined on transmission spectra of phononic crystals, revealing a potential use for slow liquid-flow measurement techniques. It is known that transmission of ultrasound through a phononic crystal is determined by its periodicity and depends on the material characteristics of the crystal's constituents. Here, the crystal consists of metal rods with the space in between filled with water. Previous studies have assumed still water in the crystal, and here, we consider flowing liquid. First, the crystal bandgaps are investigated in still water, and the results of transmission experiments are compared with theoretical band structures obtained with the finite element method. Then, changes in transmission spectra are investigated for different speeds of liquid flow. Two situations are investigated: a crystal is placed with a principal symmetry axis in the flow direction ( ΓX) and then at an angle ( ΓM). The good stability of the bandgap structure of the transmission spectrum for both directions is observed, which may be of importance for the application of phononic crystals as acoustic filters in an environment of flowing liquid. Minor transmission amplitude changes on the other hand reveal a possibility for slow liquid flow measurements.

  19. On Thermocapillary Mechanism of Spatial Separation of Metal Melts

    NASA Astrophysics Data System (ADS)

    Demin, V. A.; Mizev, A. I.; Petukhov, M. I.

    2018-02-01

    Theoretical research has been devoted to the study of binary metal melts behavior in a thin capillary. Earlier it has been found experimentally that unusually significant and quick redistribution of melts components takes place along capillary after the cooling. Numerical simulation of concentration-induced convection has been carried out to explain these experimental data. Two-component melt of both liquid metals filling vertical thin capillary with non-uniform temperature distribution on the boundaries is considered. It is assumed that the condition of absolute non-wetting is valid on the sidewalls. Because of this effect there is a free surface on vertical boundaries, where thermocapillary force is appeared due to the external longitudinal temperature gradient. It makes to move liquid elements at a big distance, compared with axial size of capillary. Effects of adsorption-desorption on the surface, thermal and concentration-capillary forces, convective motion in a volume and diffusion generate the large-scale circulation. This process includes the admixture carrying-out on the surface in the more hot higher part of the channel, its following transfer down along the boundary due to the thermocapillary force and its return in the volume over the desorption in the lower part of capillary. Intensity of motion and processes of adsorption-desorption on the free boundary have the decisive influence upon the formation of concentration fields and speed of components redistribution. Thus, one of the possible mechanisms of longitudinal division on components of liquid binary mixtures in thin channels has been demonstrated.

  20. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source.

    PubMed

    Pilz, W; Laufer, P; Tajmar, M; Böttger, R; Bischoff, L

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi 2 + ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  1. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  2. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  3. Liquid-metal-piston MHD generator

    NASA Technical Reports Server (NTRS)

    Palmer, J. P.

    1969-01-01

    Magnetohydrodynamic generator uses a slug or piston of liquid potassium as the working fluid. An expanding vapor of the metal is allowed to reciprocate the liquid-metal-piston through a magnetic field and the expansion energy is converted directly into electrical energy.

  4. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Lai, Mei-Hsiu; Chen, Ting-Chien; Ma, Sen-Yi

    2007-10-01

    A pyrolysis method was employed to recycle the metals and brominated compounds blended into printed circuit boards. This research investigated the effect of particle size and process temperature on the element composition of IC boards and pyrolytic residues, liquid products, and water-soluble ionic species in the exhaust, with the overall goal being to identify the pyrolysis conditions that will have the least impact on the environment. Integrated circuit (IC) boards were crushed into 5-40 mesh (0.71-4.4mm), and the crushed particles were pyrolyzed at temperatures ranging from 200 to 500 degrees C. The thermal decomposition kinetics were measured by a thermogravimetric (TG) analyzer. The composition of pyrolytic residues was analyzed by Energy Dispersive X-ray Spectrometer (EDS), Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In addition, the element compositions of liquid products were analyzed by ICP-AES and ICP-MS. Pyrolytic exhaust was collected by a water-absorption system in an ice-bath cooler, and IC analysis showed that the absorbed solution comprised 11 ionic species. Based on the pyrolytic kinetic parameters of TG analysis and pyrolytic residues at various temperatures for 30 min, the effect of particle size was insignificant in this study, and temperature was the key factor for the IC board pyrolysis. Two stages of decomposition were found for IC board pyrolysis under nitrogen atmosphere. The activation energy was 38-47 kcal/mol for the first-stage reaction and 5.2-9.4 kcal/mol for the second-stage reaction. Metal content was low in the liquid by-product of the IC board pyrolysis process, which is an advantage in that the liquid product could be used as a fuel. Brominate and ammonium were the main water-soluble ionic species of the pyrolytic exhaust. A plan for their safe and effective disposal must be developed if the pyrolytic recycling process is to be applied to IC boards.

  5. Steering liquid metal flow in microchannels using low voltages.

    PubMed

    Tang, Shi-Yang; Lin, Yiliang; Joshipura, Ishan D; Khoshmanesh, Khashayar; Dickey, Michael D

    2015-10-07

    Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.

  6. Storing energy in metal hydrides - A review of the physical metallurgy

    NASA Astrophysics Data System (ADS)

    Ivey, D. G.; Northwood, D. O.

    1983-02-01

    The properties of metal hydrides, which are significant in terms of their potential as a hydrogen storage medium, are discussed. Attention is given to bonding and electronic factors of metal hydrides, which, when combined with hydrogen, form saline, ionic, metallic, and covalent bonds, with the resultant materials being either solid, liquid, or gaseous. Metallic bonds are the most promising for hydrogen storage, and involve most of the elements of groups IIIA-VIIIA in the periodic table. An analysis of the thermodynamics and kinetics of metal hydrides is presented, noting the effects of alloy composition, crystal structure, and contaminants on the effectiveness of the materials as hydrides. Hysteresis has been found to occur when the transition pressure in a pressure-composition-temperature curve is higher for absorption than for desorption, although the actual causes for hysteresis are not understood. The AB group of intermetallics has been determined to store hydrogen at the lowest cost. Examples from tests using the AB compounds are outlined, and attempts to rectify storage requirement deficiencies by adjusting the alloy compositions are described.

  7. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.

    PubMed

    Dong, Xiaoli; Chen, Long; Liu, Jingyuan; Haller, Servane; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Current rechargeable batteries generally display limited cycle life and slow electrode kinetics and contain environmentally unfriendly components. Furthermore, their operation depends on the redox reactions of metal elements. We present an original battery system that depends on the redox of I(-)/I3 (-) couple in liquid cathode and the reversible enolization in polyimide anode, accompanied by Li(+) (or Na(+)) diffusion between cathode and anode through a Li(+)/Na(+) exchange polymer membrane. There are no metal element-based redox reactions in this battery, and Li(+) (or Na(+)) is only used for charge transfer. Moreover, the components (electrolyte/electrode) of this system are environment-friendly. Both electrodes are demonstrated to have very fast kinetics, which gives the battery a supercapacitor-like high power. It can even be cycled 50,000 times when operated within the electrochemical window of 0 to 1.6 V. Such a system might shed light on the design of high-safety and low-cost batteries for grid-scale energy storage.

  8. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, Carlos O.; Nieminen, Juha E.

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  9. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    DOE PAGES

    Maidana, Carlos O.; Nieminen, Juha E.

    2017-02-01

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less

  10. Contactless Inductive Bubble Detection in a Liquid Metal Flow

    PubMed Central

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  11. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  12. Tokamak with liquid metal for inducing toroidal electrical field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.

  13. Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Jonathan; Luhrs, Claudia; Lesman, Zayd

    2010-01-01

    In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current workmore » is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.« less

  14. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    NASA Astrophysics Data System (ADS)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  15. Spin crossover in liquid (Mg,Fe)O at extreme conditions

    NASA Astrophysics Data System (ADS)

    Holmström, E.; Stixrude, L.

    2016-05-01

    We use first-principles free-energy calculations to predict a pressure-induced spin crossover in the liquid planetary material (Mg,Fe)O, whereby the magnetic moments of Fe ions vanish gradually over a range of hundreds of GPa. Because electronic entropy strongly favors the nonmagnetic low-spin state of Fe, the crossover has a negative effective Clapeyron slope, in stark contrast to the crystalline counterpart of this transition-metal oxide. Diffusivity of liquid (Mg,Fe)O is similar to that of MgO, displaying a weak dependence on element and spin state. Fe-O and Mg-O coordination increases from approximately 4 to 7 as pressure goes from 0 to 200 GPa. We find partitioning of Fe to induce a density inversion between the crystal and melt, implying separation of a basal magma ocean from a surficial one in the early Earth. The spin crossover induces an anomaly into the density contrast, and the oppositely signed Clapeyron slopes for the crossover in the liquid and crystalline phases imply that the solid-liquid transition induces a spin transition in (Mg,Fe)O.

  16. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOEpatents

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  17. Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.

  18. Preparation of ceramic materials using liquid metal carboxylate precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, E.H.; Apblett, A.W.

    We have recently discovered a novel class of metal carboxylates which are liquids at room temperature. These metal salts bear polyether organic residues and their physical properties make them highly conducive to the preparation of ceramic films and fibers. Furthermore, the liquid salts are excellent solvents for other metal salts such as nitrates. The resultant solutions are readily converted upon pyrolysis to multi-metallic oxide phases at fairly low temperatures due to the high homogeneity of the cation distribution in the liquid. The preparation of a variety of aluminum, titanium, and iron-containing ceramics in this manner will be reported.

  19. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    DOEpatents

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  20. CAN HANDLING FIXTURES

    DOEpatents

    Kelman, Ler.R.; Yaggee, F.L.

    1958-08-01

    A sleeveless cauning apparatus is described for bonding and canning uranium fuel elements under the surface of a liquid bonding alloy. The can is supported on a pedestal by vertical pegs, and an adjustable collar is placed around the upper, open end of the can, which preferably is flared to assure accurate centering in the fixture and to guide the uranium slug into the can. The fixture with a can in place is then immersed in a liquid aluminum-silicon alloy and the can becomes filled with the liquid alloy. The slug is inserted by a slug guide located vertically above the can opening. The slug settles by gravity into the can, after which a cap is emplaced. A quenching tool lifts the capped can out of the bath by means of a slot provided for it in the pedestal. This apparatus provides a simple means of canning the slug without danger of injury to the uranium metal or the aluminum can.

  1. Rapid Production of High-Purity Hydrogen Fuel through Microwave-Promoted Deep Catalytic Dehydrogenation of Liquid Alkanes with Abundant Metals.

    PubMed

    Jie, Xiangyu; Gonzalez-Cortes, Sergio; Xiao, Tiancun; Wang, Jiale; Yao, Benzhen; Slocombe, Daniel R; Al-Megren, Hamid A; Dilworth, Jonathan R; Thomas, John M; Edwards, Peter P

    2017-08-14

    Hydrogen as an energy carrier promises a sustainable energy revolution. However, one of the greatest challenges for any future hydrogen economy is the necessity for large scale hydrogen production not involving concurrent CO 2 production. The high intrinsic hydrogen content of liquid-range alkane hydrocarbons (including diesel) offers a potential route to CO 2 -free hydrogen production through their catalytic deep dehydrogenation. We report here a means of rapidly liberating high-purity hydrogen by microwave-promoted catalytic dehydrogenation of liquid alkanes using Fe and Ni particles supported on silicon carbide. A H 2 production selectivity from all evolved gases of some 98 %, is achieved with less than a fraction of a percent of adventitious CO and CO 2 . The major co-product is solid, elemental carbon. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.

    NASA Astrophysics Data System (ADS)

    Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.

    2017-12-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.

  3. Thermophysical properties of 22 pure metals in the solid and liquid state - The pulse-heating data collection

    NASA Astrophysics Data System (ADS)

    Hüpf, T.; Cagran, C.; Pottlacher, G.

    2011-05-01

    The workgroup of subsecond thermophysics in Graz has a long tradition in performing fast pulseheating experiments on metals and alloys. Thereby, wire-shaped specimens are rapidly heated (108 K/s) by a large current-pulse (104 A). This method provides thermophysical properties like volume-expansion, enthalpy and electrical resistivity up to the end of the liquid phase. Today, no more experiments on pure metals are to be expected, because almost all elements, which are suitable for pulse-heating so far, have been investigated. The requirements for pulse-heating are: a melting point which is high enough to enable pyrometric temperature measurements and the availability of wire-shaped specimens. These elements are: Co, Cu, Au, Hf, In, Ir, Fe, Pb, Mo, Ni, Nb, Pd, Pt, Re, Rh, Ag, Ta, Ti, W, V, Zn, and Zr. Hence, it is the correct time to present the results in a collected form. We provide data for the above mentioned quantities together with basic information on each material. The uniqueness of this compilation is the high temperature range covered and the homogeneity of the measurement conditions (the same method, the same laboratory, etc.). The latter makes it a good starting point for comparative analyses (e.g. a comparison of all 22 enthalpy traces is in first approximation conform with the rule of Dulong-Petit which states heat capacity - the slope of enthalpy traces - as a function of the number of atoms). The data is useful for input parameters in numerical simulations and it is a major purpose of our ongoing research to provide data for simulations of casting processes for the metal working industry. This work demonstrates some examples of how a data compilation like this can be utilized. Additionally, the latest completive measurement results on Ag, Ni, Ti, and Zr are described.

  4. FLIT: Flowing LIquid metal Torus

    NASA Astrophysics Data System (ADS)

    Kolemen, Egemen; Majeski, Richard; Maingi, Rajesh; Hvasta, Michael

    2017-10-01

    The design and construction of FLIT, Flowing LIquid Torus, at PPPL is presented. FLIT focuses on a liquid metal divertor system suitable for implementation and testing in present-day fusion systems, such as NSTX-U. It is designed as a proof-of-concept fast-flowing liquid metal divertor that can handle heat flux of 10 MW/m2 without an additional cooling system. The 72 cm wide by 107 cm tall torus system consisting of 12 rectangular coils that give 1 Tesla magnetic field in the center and it can operate for greater than 10 seconds at this field. Initially, 30 gallons Galinstan (Ga-In-Sn) will be recirculated using 6 jxB pumps and flow velocities of up to 10 m/s will be achieved on the fully annular divertor plate. FLIT is designed as a flexible machine that will allow experimental testing of various liquid metal injection techniques, study of flow instabilities, and their control in order to prove the feasibility of liquid metal divertor concept for fusion reactors. FLIT: Flowing LIquid metal Torus. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  5. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  6. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  7. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  8. Kinetics of steel slag leaching: Batch tests and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Chaurand, Perrine; Rose, Jerome

    2011-02-15

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can bemore » used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.« less

  9. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    NASA Astrophysics Data System (ADS)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  10. The origin of Cu/Au ratios in porphyry-type ore deposits.

    PubMed

    Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A

    2002-06-07

    Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits.

  11. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    PubMed

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained.

  12. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    PubMed

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Transuranic inventory reduction in repository by partitioning and transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, C.H.; Kazimi, M.S.

    1992-01-01

    The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).

  14. Determination/Validation of Technologies for Treatment/Recycle of Contaminated Sludges: Phase 1 - Site/Sludge Characterization and Laboratory Testing

    DTIC Science & Technology

    1998-08-01

    b. WR-ALC IWTP Plant #2 ........................... 35 2. Analysis of WR-ALC IWTP Streams and Sludges ................. 36 a. RCRA Metal Removal at WR...ECONOMIC ANALYSIS OF MOS-LLX AND USE OF A STOICHIO- METRIC AMOUNT OF FERROUS SULFATE FOR CrvI REDUCTION AT IWTP PLANT #2 AT WR-ALC...per day ICP or ICAP Inductively coupled Argon Plasma Elemental Analysis Technique IWTP Industrial Waste Water Treatment Plant LIX Liquid Ion Exchange

  15. Influence of Inertial, Visous and Capillary Effects on the Apical Behavior of Taylor Cone Formation in Liquid Metals

    NASA Astrophysics Data System (ADS)

    Albertson, Theodore; Troian, Sandra

    Above a critical applied field strength, the surface of a liquid metal can deform into a conical shape whose apex can emit ions. The precursor shape and dynamics to that event have been debated for decades. In a landmark paper, Zubarev (2001) invoked potential flow theory to predict the existence of self-similar apical sharpening for the case of an ideal perfectly conducting liquid. He found that the Maxwell and capillary pressures at the cone tip scale in time as -2/3 upon approach to the singularity. In this talk, we examine the behavior of thin electrified microscale films placed in close proximity to a grounded planar counter electrode to probe how inertial and viscous forces, diminished or neglected in the original analysis, modify the power law exponents governing the apical self-similar regime. We employ finite element, moving mesh simulations to investigate these effects for low, intermediate and high electric Reynolds and capillary numbers. We confirm the robustness of the self-similar regime characterized by power law exponents despite the lack of potential flow - however, the power law exponents, no longer -2/3, assume values which depend on the choice of dimensionless numbers. TGA gratefully acknowledges support from a NASA Space Technology Research Fellowship.

  16. Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals

    NASA Astrophysics Data System (ADS)

    Manoylov, Anton; Lebon, Bruno; Djambazov, Georgi; Pericleous, Koulis

    2017-11-01

    The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters' breakup by cavitation.

  17. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  18. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  19. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

    PubMed Central

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten

    2011-01-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241

  20. Liquid metal batteries - materials selection and fluid dynamics

    NASA Astrophysics Data System (ADS)

    Weier, T.; Bund, A.; El-Mofid, W.; Horstmann, G. M.; Lalau, C.-C.; Landgraf, S.; Nimtz, M.; Starace, M.; Stefani, F.; Weber, N.

    2017-07-01

    Liquid metal batteries are possible candidates for massive and economically feasible large-scale stationary storage and as such could be key components of future energy systems based mainly or exclusively on intermittent renewable electricity sources. The completely liquid interior of liquid metal batteries and the high current densities give rise to a multitude of fluid flow phenomena that will primarily influence the operation of future large cells, but might be important for today’s smaller cells as well. The paper at hand starts with a discussion of the relative merits of using molten salts or ionic liquids as electrolytes for liquid metal cells and touches the choice of electrode materials. This excursus into electrochemistry is followed by an overview of investigations on magnetohydrodynamic instabilities in liquid metal batteries, namely the Tayler instability and electromagnetically excited gravity waves. A section on electro-vortex flows complements the discussion of flow phenomena. Focus of the flow related investigations lies on the integrity of the electrolyte layer and related critical parameters.

  1. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  2. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  3. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  4. Spaceborne power systems preference analyses. Volume 2: Decision analysis

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.

    1985-01-01

    Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study.

  5. Metallurgical technologies, energy conversion, and magnetohydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Branover, Herman; Unger, Yeshajahu

    The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)

  6. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOEpatents

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  7. Case study of water-soluble metal containing organic constituents of biomass burning aerosol.

    PubMed

    Chang-Graham, Alexandra L; Profeta, Luisa T M; Johnson, Timothy J; Yokelson, Robert J; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  8. Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.

    PubMed

    Pesavento, Maria; Alberti, Giancarla; Biesuz, Raffaela

    2009-01-12

    Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species. The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination. Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.

  9. Liquid metal electric pump

    DOEpatents

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  10. Reconfigurable liquid metal circuits by Laplace pressure shaping

    NASA Astrophysics Data System (ADS)

    Cumby, Brad L.; Hayes, Gerard J.; Dickey, Michael D.; Justice, Ryan S.; Tabor, Christopher E.; Heikenfeld, Jason C.

    2012-10-01

    We report reconfigurable circuits formed by liquid metal shaping with <10 pounds per square inch (psi) Laplace and vacuum pressures. Laplace pressure drives liquid metals into microreplicated trenches, and upon release of vacuum, the liquid metal dewets into droplets that are compacted to 10-100× less area than when in the channel. Experimental validation includes measurements of actuation speeds exceeding 30 cm/s, simple erasable resistive networks, and switchable 4.5 GHz antennas. Such capability may be of value for next generation of simple electronic switches, tunable antennas, adaptive reflectors, and switchable metamaterials.

  11. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  12. High thermal conductivity liquid metal pad for heat dissipation in electronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Zuoye; Liu, Huiqiang; Li, Qiuguo; Liu, Han; Chu, Sheng; Yang, Yuhua; Chu, Guang

    2018-05-01

    Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.

  13. Liquid metal heat sink for high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Litt, Amardeep S.; Copeland, Drew A.; Junghans, Jeremy; Durkee, Roger

    2013-02-01

    We report on the development of a novel, ultra-low thermal resistance active heat sink (AHS) for thermal management of high-power laser diodes (HPLD) and other electronic and photonic components. AHS uses a liquid metal coolant flowing at high speed in a miniature closed and sealed loop. The liquid metal coolant receives waste heat from an HPLD at high flux and transfers it at much reduced flux to environment, primary coolant fluid, heat pipe, or structure. Liquid metal flow is maintained electromagnetically without any moving parts. Velocity of liquid metal flow can be controlled electronically, thus allowing for temperature control of HPLD wavelength. This feature also enables operation at a stable wavelength over a broad range of ambient conditions. Results from testing an HPLD cooled by AHS are presented.

  14. The mechanism of liquid metal jet formation in the cathode spot of vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Gashkov, M. A.; Zubarev, N. M.; Mesyats, G. A.; Uimanov, I. V.

    2016-08-01

    We have theoretically studied the dynamics of molten metal during crater formation in the cathode spot of vacuum arc discharge. At the initial stage, a liquid-metal ridge is formed around the crater. This process has been numerically simulated in the framework of the two-dimensional axisymmetric heat and mass transfer problem in the approximation of viscous incompressible liquid. At a more developed stage, the motion of liquid metal loses axial symmetry, which corresponds to a tendency toward jet formation. The development of azimuthal instabilities of the ridge is analyzed in terms of dispersion relations for surface waves. It is shown that maximum increments correspond to instability of the Rayleigh-Plateau type. Estimations of the time of formation of liquid metal jets and their probable number are obtained.

  15. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  16. Study of propellant dynamics in a shuttle type launch vehicle

    NASA Technical Reports Server (NTRS)

    Jones, C. E.; Feng, G. C.

    1972-01-01

    A method and an associated digital computer program for evaluating the vibrational characteristics of large liquid-filled rigid wall tanks of general shape are presented. A solution procedure was developed in which slosh modes and frequencies are computed for systems mathematically modeled as assemblages of liquid finite elements. To retain sparsity in the assembled system mass and stiffness matrices, a compressible liquid element formulation was incorporated in the program. The approach taken in the liquid finite element formulation is compatible with triangular and quadrilateral structural finite elements so that the analysis of liquid motion can be coupled with flexible tank wall motion at some future time. The liquid element repertoire developed during the course of this study consists of a two-dimensional triangular element and a three-dimensional tetrahedral element.

  17. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  18. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  19. Vesicle-metal-sulfide assemblages from the Chelyabinsk meteorite

    NASA Astrophysics Data System (ADS)

    Andronikov, A.; Lauretta, D.; Hill, D.; Andronikova, I.

    2014-07-01

    On February 15, 2013, an ET object entered the Earth's atmosphere over the Russian city of Chelyabinsk. It entered at a preatmospheric velocity of 18.6 km/sec at the angle of 17--20°. The bolide responsible for this event was estimated to be 17-20 m in diameter and had a mass of ˜10 Ktons; the ensuing airburst occurred at an altitude >20 km and released a total energy of ˜440 kT [1,2]. The Chelyabinsk meteorite is an equilibrated LL5 ordinary chondrite, shock stage S4, and weathering grade WG0 similar to other LL5 falls [1,2]. Our studied sample is an impact melt breccia consisting of shock-darkened chondrite clasts (SDC) and vesicular impact melt lithology (IML). The SDC have recrystallized textures and contain barred- and porphyritic-olivine, porphyritic-olivine-pyroxene and radial-pyroxene chondrules in the intrachondrule matrix. A dense network of thin fractures in the SDC is filled up with opaque minerals [cf. 3]. Metals in the SDC are kamacite (4.7--8.5 % Ni), taenite (21.4--33.5 % Ni), and martensite (14.5--18.6 % Ni). The IML consists mostly of tiny (<10 microns) silicate grains surrounded by patches of glass. The IML is characterized by the presence of multiple vesicles (up to 1 mm) in silicate matrix. The vesicles are often filled up with sulfide-metal assemblages or only with sulfide. Metals in the IML are martensite (12.9--18.4 % Ni) and taenite (19.3--47.3 % Ni). Sulfides from both SDC and IML are Ni-bearing troilite (62.2--64.2 % Fe; 35.2--37.2 % S; 3000--5000 ppm Ni), with rare pentlandite (41.2--48.6 % Fe, 33.2--34.3 % S, 19.4--23.9 % Ni). The presence of abundant vesicles in the IML indicates strong heating and volatilization. Since no other phase except for sulfide-metal assemblages were observed to fill up vesicles, the likely source of volatiles is S vapor formed by vaporization of FeS during impact melting [cf. 4]. Molten metal and sulfide coalesced into droplets of metal-sulfide liquids forming eventually sulfide-metal assemblages. A notable compositional difference is observed between sulfides not containing metals and those with metals. The metal-free sulfides display higher concentrations of such elements as Ni, Co, Ga, Ge, As, Mo, Ru, Pd, Sn, Sb, Te, Au, and Hg, and lower amounts of Cu than their metal-bearing counterparts. The metal-free sulfides may represent loci of former ''parental'' Fe-S liquid where separation of Fe-Ni-rich from S-rich compositions had just begun and the process was ''frozen'' by rapid cooling. Troilites from the SDC are much more homogeneous in terms of the trace elements than troilites from the IML. These data suggest that the time was sufficient for equilibration of troilites in the SDC and they formed before the melting impact event, likely, during shock events at earlier stages of the asteroid evolution. The fact that there are so many vesicles in the IML, and that they grow to such a large size indicates that the melt must have been buried at some depth after formation but before solidification, otherwise volatiles would escape to space. After the impact and melting occurred on the asteroid body, the impact-induced pressure relieved sharply, causing ''boiling'' of volatiles and generation of vesicles filled later with S-rich liquid. Degassing of such liquid started immediately after the impact pressure was released, but a time lapse during which the degassing had been active was extremely short, i.e., silicate matrix solidified so quickly that cavities (resulted from the escape of some S-rich vapor) did not collapse, and survived in the meteor body until now. Benedix et al. [5] suggested that such solidification took place within a few hours in the case of the PAT 91501 L chondrite meteorite, and [4] calculated that the time of solidification of the impact melt in the case of the LAR 06299 LL chondrite was less than one hour. The absence of kamacite and instead the presence of martensite in metals from metal-sulfide assemblages of the IML also points to fast solidification after the impact-induced melting occurred. Compositions of martensite and coexisting taenite suggest that Fe-Ni partitioning stopped at temperatures ˜450°C [6] not allowing kamacite to crystallize. A high scatter of trace element amounts between sulfide individuals and between metal individuals in the IML also suggests that the inner equilibration was not reached during the cooling. Therefore, sulfide- metal assemblages were very quickly solidified and cooled down below the temperatures at which the diffusion stopped, which is consistent with fast cooling of the impact-induced melt.

  20. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  1. Artificial Weathering as a Function of CO2 Injection in Pahang Sandstone Malaysia: Investigation of Dissolution Rate in Surficial Condition

    PubMed Central

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-01

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca2+ to 17.42% for Mg2+, with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection. PMID:24413195

  2. Artificial weathering as a function of CO2 injection in Pahang Sandstone Malaysia: investigation of dissolution rate in surficial condition.

    PubMed

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-13

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca(2+) to 17.42% for Mg(2+), with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.

  3. Artificial Weathering as a Function of CO2 Injection in Pahang Sandstone Malaysia: Investigation of Dissolution Rate in Surficial Condition

    NASA Astrophysics Data System (ADS)

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-01

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca2+ to 17.42% for Mg2+, with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.

  4. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  5. Hydrogen storage methods.

    PubMed

    Züttel, Andreas

    2004-04-01

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m(-3), approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is 70.8 kg.m(-3), and large volumes, where the thermal losses are small, can cause hydrogen to reach a system mass ratio close to one. The highest volumetric densities of hydrogen are found in metal hydrides. Many metals and alloys are capable of reversibly absorbing large amounts of hydrogen. Charging can be done using molecular hydrogen gas or hydrogen atoms from an electrolyte. The group one, two and three light metals (e.g. Li, Mg, B, Al) can combine with hydrogen to form a large variety of metal-hydrogen complexes. These are especially interesting because of their light weight and because of the number of hydrogen atoms per metal atom, which is two in many cases. Hydrogen can also be stored indirectly in reactive metals such as Li, Na, Al or Zn. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Since water is the product of the combustion of hydrogen with either oxygen or air, it can be recycled in a closed loop and react with the metal. Finally, the metal hydroxides can be thermally reduced to metals in a solar furnace. This paper reviews the various storage methods for hydrogen and highlights their potential for improvement and their physical limitations.

  6. Hydrogen storage methods

    NASA Astrophysics Data System (ADS)

    Züttel, Andreas

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m-3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is 70.8 kg.m-3, and large volumes, where the thermal losses are small, can cause hydrogen to reach a system mass ratio close to one. The highest volumetric densities of hydrogen are found in metal hydrides. Many metals and alloys are capable of reversibly absorbing large amounts of hydrogen. Charging can be done using molecular hydrogen gas or hydrogen atoms from an electrolyte. The group one, two and three light metals (e.g. Li, Mg, B, Al) can combine with hydrogen to form a large variety of metal-hydrogen complexes. These are especially interesting because of their light weight and because of the number of hydrogen atoms per metal atom, which is two in many cases. Hydrogen can also be stored indirectly in reactive metals such as Li, Na, Al or Zn. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Since water is the product of the combustion of hydrogen with either oxygen or air, it can be recycled in a closed loop and react with the metal. Finally, the metal hydroxides can be thermally reduced to metals in a solar furnace. This paper reviews the various storage methods for hydrogen and highlights their potential for improvement and their physical limitations.

  7. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hvasta, Michael George; Kolemen, Egemen; Fisher, Adam

    Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metalmore » that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. Furthermore, these results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.« less

  8. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    DOE PAGES

    Hvasta, Michael George; Kolemen, Egemen; Fisher, Adam; ...

    2017-10-13

    Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metalmore » that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. Furthermore, these results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.« less

  9. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  10. A size-dependent constitutive model of bulk metallic glasses in the supercooled liquid region

    PubMed Central

    Yao, Di; Deng, Lei; Zhang, Mao; Wang, Xinyun; Tang, Na; Li, Jianjun

    2015-01-01

    Size effect is of great importance in micro forming processes. In this paper, micro cylinder compression was conducted to investigate the deformation behavior of bulk metallic glasses (BMGs) in supercooled liquid region with different deformation variables including sample size, temperature and strain rate. It was found that the elastic and plastic behaviors of BMGs have a strong dependence on the sample size. The free volume and defect concentration were introduced to explain the size effect. In order to demonstrate the influence of deformation variables on steady stress, elastic modulus and overshoot phenomenon, four size-dependent factors were proposed to construct a size-dependent constitutive model based on the Maxwell-pulse type model previously presented by the authors according to viscosity theory and free volume model. The proposed constitutive model was then adopted in finite element method simulations, and validated by comparing the micro cylinder compression and micro double cup extrusion experimental data with the numerical results. Furthermore, the model provides a new approach to understanding the size-dependent plastic deformation behavior of BMGs. PMID:25626690

  11. Compatibility of materials with liquid metal targets for SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocitymore » are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.« less

  12. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft, suggest that Vesta resembles H chondrites in bulk chemical composition, possibly with about 25% of a CM-chondrite like composition added in. For this model, the core is 15% by mass (or 8 volume %) of the asteroid. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. Melting in the Fe-Ni-S system begins at a cotectic temperature of 940 deg. C. Only about 40% of the total metal phase, or 3-4 volume % of Vesta, melts prior to the onset of silicate melting. Liquid iron in solid silicate initially forms isolated pockets of melt; connected melt channels, which are necessary if the metal is to segregate from the silicate, are only possible when the metal phase exceeds about 5 volume %. Thus, metal segregation to form a core does not occur prior to the onset of silicate melting.

  13. Correlation of the fragility of metallic liquids with the high temperature structure, volume, and cohesive energy

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A. K.; Pueblo, C. E.; Dai, R.; Johnson, M. L.; Ashcraft, R.; Van Hoesen, D.; Sellers, M.; Kelton, K. F.

    2017-04-01

    The thermal expansion coefficients, structure factors, and viscosities of twenty-five equilibrium and supercooled metallic liquids have been measured using an electrostatic levitation (ESL) facility. The structure factor was measured at the Advanced Photon Source, Argonne, using the ESL. A clear connection between liquid fragility and structural and volumetric changes at high temperatures is established; the observed changes are larger for the more fragile liquids. It is also demonstrated that the fragility of metallic liquids is determined to a large extent by the cohesive energy and is, therefore, predictable. These results are expected to provide useful guidance in the future design of metallic glasses.

  14. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy

    PubMed Central

    Eom, Seunghyun; Memon, Muhammad Usman; Lim, Sungjoon

    2017-01-01

    In this paper, we have proposed a frequency-switchable complementary split-ring resonator (CSRR)-loaded quarter-mode substrate-integrated-waveguide (QMSIW) band-pass filter. For frequency switching, a microfluidic channel and liquid metal are used. The liquid metal used is eutectic gallium-indium (EGaIn), consisting of 24.5% indium and 75.5% gallium. The microfluidic channels are built using the elastomer polydimethylsiloxane (PDMS) and three-dimensional-printed microfluidic channel frames. The CSRR-loaded QMSIW band-pass filter is designed to have two states. Before the injection of the liquid metal, the measured center frequency and fractional bandwidths are 2.205 GHz and 6.80%, respectively. After injection, the center frequency shifts from 2.205 GHz to 2.56 GHz. Although the coupling coefficient is practically unchanged, the fractional bandwidth changes from 6.8% to 9.38%, as the CSRR shape changes and the external quality factor decreases. After the removal of the liquid metal, the measured values are similar to the values recorded before the liquid metal was injected. The repeatability of the frequency-switchable mechanism is, therefore, verified. PMID:28350355

  15. A search for two types of transverse excitations in liquid polyvalent metals at ambient pressure: An ab initio molecular dynamics study of collective excitations in liquid Al, Tl and Ni

    NASA Astrophysics Data System (ADS)

    Bryk, Taras; Demchuk, Taras; Jakse, Noël; Wax, Jean-François

    2018-02-01

    Recent findings of pressure-induced emergence of unusual high-frequency contribution to transverse current spectral functions in several simple liquid metals at high pressures raised a question whether similar features can be observed in liquid metals at ambient conditions. We report here analysis of ab initio molecular dynamics-derived longitudinal (L) and transverse (T) current spectral functions and corresponding dispersions of collective excitations in liquid polyvalent metals Al, Tl, Ni. We have not found evidences of the second branch of high-frequency transverse modes in liquid Al and Ni, while in the case of liquid Tl they were clearly present in transverse dynamics. The vibrational density of states for liquid Tl has a pronounced high-frequency shoulder, which is located right in the frequency range of the second high-frequency transverse branch, while for liquid Al and Ni the vibrational density of states has only a weak indication of possible high-frequency shoulder. The origin of specific behavior of transverse excitations in liquid Tl is discussed.

  16. Experimental observations on noble metal nanonuggets and Fe-Ti oxides, and the transport of platinum group elements in silicate melts

    NASA Astrophysics Data System (ADS)

    Anenburg, Michael; Mavrogenes, John A.

    2016-11-01

    Platinum group element (PGE) nanonuggets are a nuisance in experimental studies designed to measure solubility or partitioning of noble metals in silicate melts. Instead of treating nanonuggets as experimental artifacts, we studied their behaviour motivated by recent discoveries of PGE nanonuggets in a variety of natural settings. We used an experimental setup consisting of AgPd, Pt or AuPd capsules and Fe(-Ti) oxide-saturated hydrous peralkaline silicate melts to maximise nanonugget production. TABS (Te, As, Bi, Sb, Sn) commonly occur in PGM (platinum group minerals), prompting addition of Bi to our experiments to investigate its properties as well. Three-dimensional optical examination by 100× objective and immersion oil reveals variable colour which correlates with nanonugget size and shape due to plasmon resonance effects. We observe two textural types: (1) intermediate-sized nanonuggets dispersed in the glass and adhering to oxides, and (2) abundant fine nanonuggets dispersed in the glass with coarse euhedral crystals in contact with oxides. Slow cooling removes dispersed nanonuggets and greatly coarsens existing oxide-associated metal crystals. Nanonugget-free halos are commonly observed around oxide grains. All metal phases are composed of major (Ag, Pd) and trace (Pt, Ir, Au) capsule material. Our results show reduction processes, imposed by growing oxides, causing local metal saturation in the oxide rich zones with preferential nucleation on smaller oxide grains. The redox gradient then blocks additional metals from diffusing into oxide rich zones, forming halos. As the entire experimental charge is reduced throughout the run, nanonuggets form in the distal glass. Bismuth contents of metal phases do not depend on Bi2O3 amounts dissolved in the melt. Further PGM crystallisation consumes nanonuggets as feedstock. We conclude that the appearance of metallic PGE phases happens in two stages: first as nanonuggets and then as larger PGM. Once formed, nanonuggets cannot be removed by oxidation or dissolution, but only by PGM coarsening. Sulfur-poor PGE ore deposits commonly contain more PGE than permitted by existing estimates of equilibrium solubility in silicate melts. This is commonly explained by initial scavenging of PGE by sulfide liquids followed by S-loss, but evidence for S-loss is not conclusive. We suggest that nanonuggets may be a means to transport PGE from source regions to form ore deposits, followed by direct PGM crystallisation from silicate melt without intermediate concentration by sulfide liquids.

  17. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE PAGES

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana; ...

    2018-03-08

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less

  18. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences result in significant differences in their environmental metal speciation, and likely impact metal uptake within the rhizosphere of calcareous soils.« less

  19. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less

  20. Feasibility study of total reflection X-ray fluorescence analysis using a liquid metal jet X-ray tube

    NASA Astrophysics Data System (ADS)

    Maderitsch, A.; Smolek, S.; Wobrauschek, P.; Streli, C.; Takman, P.

    2014-09-01

    Total reflection X-ray spectroscopy (TXRF) is a powerful analytical technique for qualitative and quantitative analysis of trace and ultratrace elements in a sample with lower limits of detection (LLDs) of pg/g to ng/g in concentration and absolute high fg levels are attainable. Several X-ray sources, from low power (few W), 18 kW rotating anodes to synchrotron radiation, are in use for the excitation and lead accordingly to their photon flux delivered on the sample the detection limits specified. Not only the power, but also the brilliance and focal shape are of importance for TXRF. A microfocus of 50-100 μm spot size or the line focus of diffraction tubes is best suited. Excillum developed a new approach in the design of a source: the liquid metal jet anode. In this paper the results achieved with this source are described. A versatile TXRF spectrometer with vacuum chamber designed at Atominstitut was used for the experiments. A multilayer monochromator selecting the intensive Ga-Kα radiation was taken and the beam was collimated by 50 μm slits. Excellent results regarding geometric beam stability, high fluorescence intensities and low background were achieved leading to detection limits in the high fg range for Ni. A 100 mm2 silicon drift detector (SDD) collimated to 80 mm2 was used to collect the fluorescence radiation. The results from measurements on single element samples are presented.

  1. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.

    PubMed

    Savvilotidou, Vasiliki; Hahladakis, John N; Gidarakos, Evangelos

    2015-11-01

    The purpose of Directive 2012/19/EU which is related to WEEE (Waste Electrical and Electronic Equipment), also known as "e-waste", is to contribute to their sustainable production and consumption that would most possibly be achieved by their recovery, recycling and reuse. Under this perspective, the present study focused on the recovery of valuable materials, metals and metalloids from LCDs (Liquid Crystal Displays). Indium (In), arsenic (As) and stibium (Sb) were selected to be examined for their Leaching Capacity (R) from waste LCDs. Indium was selected mainly due to its rarity and preciousness, As due to its high toxicity and wide use in LCDs and Sb due to its recent application as arsenic's replacement to improve the optimal clarity of a LCD screen. The experimental procedure included disassembly of screens along with removal and recovery of polarizers via thermal shock, cutting, pulverization and digestion of the shredded material and finally leaching evaluation of the aforementioned elements. Leaching tests were conducted under various temperatures, using various solid:liquid (S/L) ratios and solvents (acid mixtures), to determine the optimal conditions for obtaining the maximum leaching capacities. The examined elements exhibited different leaching behaviors, mainly due to the considerable diversity in their inherent characteristic properties. Indium demonstrated the highest recovery percentages (approximately 60%), while the recovery of As and Sb was unsuccessful, obtaining poor leaching percentages (0.16% and 0.5%, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Conductometric Sensors for Detection of Elemental Mercury Vapor

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Homer, M. L.; Shevade, A. V.; Lara, L. M.; Yen, S.-P. S.; Kisor, A. K.; Manatt, K. S.

    2008-01-01

    Several organic and inorganic materials have been tested for possible incorporation into a sensing array in order to add elemental mercury vapor to the suite of chemical species detected. Materials have included gold films, treated gold films, polymer-carbon composite films, gold-polymer-carbon composite films and palladium chloride sintered films. The toxicity of mercury and its adverse effect on human and animal health has made environmental monitoring of mercury in gas and liquid phases important (1,2). As consumer products which contain elemental mercury, such as fluorescent lighting, become more widespread, the need to monitor environments for the presence of vapor phase elemental mercury will increase. Sensors in use today to detect mercury in gaseous streams are generally based on amalgam formation with gold or other metals, including noble metals and aluminum. Recently, NASA has recognized a need to detect elemental mercury vapor in the breathing atmosphere of the crew cabin in spacecraft and has requested that such a capability be incorporated into the JPL Electronic Nose (3). The detection concentration target for this application is 10 parts-per-billion (ppb), or 0.08 mg/m3. In order to respond to the request to incorporate mercury sensing into the JPL Electronic Nose (ENose) platform, it was necessary to consider only conductometric methods of sensing, as any other transduction method would have required redesign of the platform. Any mercury detection technique which could not be incorporated into the existing platform, such as an electrochemical technique, could not be considered.

  3. Fish gelatin thin film standards for biological application of PIXE

    NASA Astrophysics Data System (ADS)

    Manuel, Jack E.; Rout, Bibhudutta; Szilasi, Szabolcs Z.; Bohara, Gyanendra; Deaton, James; Luyombya, Henry; Briski, Karen P.; Glass, Gary A.

    2014-08-01

    There exists a critical need to understand the flow and accumulation of metallic ions, both naturally occurring and those introduced to biological systems. In this paper the results of fabricating thin film elemental biological standards containing nearly any combination of trace elements in a protein matrix are presented. Because it is capable of high elemental sensitivity, particle induced X-ray emission spectrometry (PIXE) is an excellent candidate for in situ analysis of biological tissues. Additionally, the utilization of microbeam PIXE allows the determination of elemental concentrations in and around biological cells. However, obtaining elemental reference standards with the same matrix constituents as brain tissue is difficult. An excellent choice for simulating brain-like tissue is Norland® photoengraving glue which is derived from fish skin. Fish glue is water soluble, liquid at room temperature, and resistant to dilute acid. It can also be formed into a thin membrane which dries into a durable, self-supporting film. Elements of interest are introduced to the fish glue in precise volumetric additions of well quantified atomic absorption standard solutions. In this study GeoPIXE analysis package is used to quantify elements intrinsic to the fish glue as well as trace amounts of manganese added to the sample. Elastic (non-Rutherford) backscattered spectroscopy (EBS) and the 1.734 MeV proton-on-carbon 12C(p,p)12C resonance is used for a normalization scheme of the PIXE spectra to account for any discrepancies in X-ray production arising from thickness variation of the prepared standards. It is demonstrated that greater additions of the atomic absorption standard cause a viscosity reduction of the liquid fish glue resulting in thinner films but the film thickness can be monitored by using simultaneous PIXE and EBS proton data acquisition.

  4. Transverse excitations in liquid metals

    NASA Astrophysics Data System (ADS)

    Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.-C.; Baron, A. Q. R.; Shimojo, F.; Hoshino, K.

    2013-02-01

    The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga, Cu and Fe in the Q range around 10 nm-1 using a third-generation synchrotron radiation facility, SPring-8, although these liquid metals are mostly described by a simple hard-sphere liquid. Ab initio molecular dynamics simulations clearly support this finding for liquid Ga. From the detailed analyses for the S(Q,ω) spectra with good statistic qualities, the lifetime of less than 1 ps and the propagating length of less than 1 nm can be estimated for the transverse acoustic phonon modes, which correspond to the lifetime and size of cages formed instantaneously in these liquid metals. The microscopic Poisson's ratio estimated from the dynamic velocities of sound is 0.42 for liquid Ga and about -0.2 for liquid transition metals, indicating a rubber-like soft and extremely hard elastic properties of the cage clusters, respectively. The origin of these microscopic elastic properties is discussed in detail.

  5. Bridging the gap between ionic liquids and molten salts: group 1 metal salts of the bistriflamide anion in the gas phase.

    PubMed

    Leal, João P; da Piedade, Manuel E Minas; Canongia Lopes, José N; Tomaszowska, Alina A; Esperança, José M S S; Rebelo, Luís Paulo N; Seddon, Kenneth R

    2009-03-19

    Fourier transform ion cyclotron resonance mass spectrometry experiments showed that liquid Group 1 metal salts of the bistriflamide anion undergoing reduced-pressure distillation exhibit a remarkable behavior that is in transition between that of the vapor-liquid equilibrium characteristics of aprotic ionic liquids and that of the Group 1 metal halides: the unperturbed vapors resemble those of aprotic ionic liquids, in the sense that they are essentially composed of discrete ion pairs. However, the formation of large aggregates through a succession of ion-molecule reactions is closer to what might be expected for Group 1 metal halides. Similar experiments were also carried out with bis{(trifluoromethyl)sulfonyl}amine to investigate the effect of H(+), which despite being the smallest Group 1 cation, is generally regarded as a nonmetal species. In this case, instead of the complex ion-molecule reaction pattern found for the vapors of Group 1 metal salts, an equilibrium similar to those observed for aprotic ionic liquids was observed.

  6. Pumping liquid metal at high temperatures up to 1,673 kelvin

    NASA Astrophysics Data System (ADS)

    Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.

    2017-10-01

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  7. A liquid-metal filling system for pumped primary loop space reactors

    NASA Astrophysics Data System (ADS)

    Crandall, D. L.; Reed, W. C.

    Some concepts for the SP-100 space nuclear power reactor use liquid metal as the primary coolant in a pumped loop. Prior to filling ground engineering test articles or reactor systems, the liquid metal must be purified and circulated through the reactor primary system to remove contaminants. If not removed, these contaminants enhance corrosion and reduce reliability. A facility was designed and built to support Department of Energy Liquid Metal Fast Breeder Reactor tests conducted at the Idaho National Engineering Laboratory. This test program used liquid sodium to cool nuclear fuel in in-pile experiments; thus, a system was needed to store and purify sodium inventories and fill the experiment assemblies. This same system, with modifications and potential changeover to lithium or sodium-potassium (NaK), can be used in the Space Nuclear Power Reactor Program. This paper addresses the requirements, description, modifications, operation, and appropriateness of using this liquid-metal system to support the SP-100 space reactor program.

  8. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.

    PubMed

    Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon

    2016-06-22

    We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.

  9. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  10. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  11. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    PubMed Central

    Dumée, Ludovic F.; Lemoine, Jean-Baptiste; Ancel, Alice; Hameed, Nishar; He, Li; Kong, Lingxue

    2015-01-01

    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation. PMID:28347094

  12. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less

  13. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.

    PubMed

    Bojinova, Darinka; Teodosieva, Ralitsa

    2016-06-01

    The solid industrial wastes generated from thermal power plants (TPPs) can be considered as renewable secondary sources for recovery of valuable metals. This study presents the results from investigations that integrated a thermo-hydro-metallurgical method for treatment of bottom ash obtained from the Enel Maritsa East 3 TPP in Bulgaria. Leaching was performed with 20, 30 and 40 wt% sulphuric acid, respectively, in an autoclave at 100(o)C, 120(o)C and 140(o)C for 120, 240, 360 and 480 min, at a constant value of the liquid/solid ratio. After autoclaving, the samples (suspensions) were diluted with a constant value of water and stirring at 50(o)C for 60 min. On the basis of the experimental data the leaching efficiency (α) of the elements in the liquid phase after filtration was estimated. The leaching of aluminium increases significantly with increasing of the temperature, reaching the maximum value of 70 wt%. The highest leaching efficiency values for the other elements are as follows: Fe (86.4%), Ca (86.6%), Na (86.6%), Ni (83.3%) and Zn (83.3%). The maximum value of leaching for Mg, K, Mn, Cu and Cr is in the interval of 46-70%. © The Author(s) 2016.

  14. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  15. Cathodoluminescence zoning and minor elements in forsterites from the Murchison (C2) and Allende (C3V) carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.; Skirius, C.

    1985-01-01

    Cathodoluminescence has been applied to look for textural features of olivine in carbonaceous meteorites relevant to the unresolved dispute over the origin of the olivine, whether from a vapor or a liquid. Cathodoluminescence photographs of forsterite grains in Murchison (C2) and Allende (C3) meteorites presented here reveal a blue core with planar boundaries to a red or dark rim. High-precision electron microprobe analyses have been performed which reveal unusually large amounts of the 'minor' elements Al, Ti, and Ca in the blue cores of these forsterites, suggesting formation by crystallization at high temperatures from a source rich in these metals. Following conclusions drawn from previous analyses of olivine in meteorites, it is argued that the minor element signature should be able to characterize olivines in micrometeorites and in deep-sea particles.

  16. On the performance of laser-induced breakdown spectroscopy for direct determination of trace metals in lubricating oils

    NASA Astrophysics Data System (ADS)

    Zheng, Lijuan; Cao, Fan; Xiu, Junshan; Bai, Xueshi; Motto-Ros, Vincent; Gilon, Nicole; Zeng, Heping; Yu, Jin

    2014-09-01

    Laser-induced breakdown spectroscopy (LIBS) provides a technique to directly determine metals in viscous liquids and especially in lubricating oils. A specific laser ablation configuration of a thin layer of oil applied on the surface of a pure aluminum target was used to evaluate the analytical figures of merit of LIBS for elemental analysis of lubricating oils. Among the analyzed oils, there were a certified 75cSt blank mineral oil, 8 virgin lubricating oils (synthetic, semi-synthetic, or mineral and of 2 different manufacturers), 5 used oils (corresponding to 5 among the 8 virgin oils), and a cooking oil. The certified blank oil and 4 virgin lubricating oils were spiked with metallo-organic standards to obtain laboratory reference samples with different oil matrix. We first established calibration curves for 3 elements, Fe, Cr, Ni, with the 5 sets of laboratory reference samples in order to evaluate the matrix effect by the comparison among the different oils. Our results show that generalized calibration curves can be built for the 3 analyzed elements by merging the measured line intensities of the 5 sets of spiked oil samples. Such merged calibration curves with good correlation of the merged data are only possible if no significant matrix effect affects the measurements of the different oils. In the second step, we spiked the remaining 4 virgin oils and the cooking oils with Fe, Cr and Ni. The accuracy and the precision of the concentration determination in these prepared oils were then evaluated using the generalized calibration curves. The concentrations of metallic elements in the 5 used lubricating oils were finally determined.

  17. Simple and robust resistive dual-axis accelerometer using a liquid metal droplet

    NASA Astrophysics Data System (ADS)

    Huh, Myoung; Won, Dong-Joon; Kim, Joong Gil; Kim, Joonwon

    2017-12-01

    This paper presents a novel dual-axis accelerometer that consists of a liquid metal droplet in a cone-shaped channel and an electrode layer with four Nichrome electrodes. The sensor uses the advantages of the liquid metal droplet (i.e., high surface tension, electrical conductivity, high density, and deformability). The cone-shaped channel imposes a restoring force on the liquid metal droplet. We conducted simulation tests to determine the appropriate design specifications of the cone-shaped channel. Surface modifications to the channel enhanced the nonwetting performance of the liquid metal droplet. The performances of the sensor were analyzed by a tilting test. When the acceleration was applied along the axial direction, the device showed 6 kΩ/g of sensitivity and negligible crosstalk between the X- and Y-axes. In a diagonal direction test, the device showed 4 kΩ/g of sensitivity.

  18. Liquid Metal Engineering by Application of Intensive Melt Shearing

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun

    In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.

  19. Stretchable and Soft Electronics using Liquid Metals.

    PubMed

    Dickey, Michael D

    2017-07-01

    The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  1. Libs-PCA based discrimination of Malaysian coins

    NASA Astrophysics Data System (ADS)

    Mustapha Imam, Auwal; Safwan Aziz, M.; Chaudhary, Kashif; Rizvi, Zuhaib; Ali, Jalil

    2018-05-01

    The investigations of currency coins dated back to many centuries. Many researchers developed an interest in the investigation of the coin’s weight, size, physical feature and elemental composition. Laser-induced breakdown spectroscopy (LIBS) has the novelty of analytical analyses of various samples. It has the ability for the elemental composition determination of samples of solid (including metals), liquid and/or gases. Malaysia as a country uses Ringgit as a currency, among which are coins of 10, 20 and 50 cents. These coins are in series of release from the Malaysian Central Bank from time to time. There are currently in circulation old and new coins of 5, 10, 20 and 50 cents coins. These coins differ in their physical features and are may be different also in their elemental composition. This paper presents the investigation of the differences in elemental composition between the old and new Malaysian coins of 10, 20 and 50 cents. Principal component analysis (PCA) was used to perform the discrimination between the coins from the LIBS spectra.

  2. Radiopure Metal-Loaded Liquid Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  3. Radiopure metal-loaded liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, Richard; Yeh, Minfang, E-mail: yeh@bnl.gov

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  4. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    NASA Astrophysics Data System (ADS)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  5. Pt, Au, Pd and Ru Partitioning Between Mineral and Silicate Melts: The Role of Metal Nanonuggets

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Charon, E.; Jones, J.; Agranier, A.; Campbell, A.

    2012-01-01

    The partition coefficients of Pt and other Pt Group Elements (PGE) between metal and silicate D(sub Metal-Silicate) and also between silicate minerals and silicate melts D(sub Metal-Silicate) are among the most challenging coefficients to obtain precisely. The PGE are highly siderophile elements (HSE) with D(sub Metal-Silicate) >10(exp 3) due to the fact that their concentrations in silicates are very low (ppb to ppt range). Therefore, the analytical difficulty is increased by the possible presence of HSE-rich-nuggets in reduced silicate melts during experiments). These tiny HSE nuggets complicate the interpretation of measured HSE concentrations. If the HSE micro-nuggets are just sample artifacts, then their contributions should be removed before calculations of the final concentration. On the other hand, if they are produced during the quench, then they should be included in the analysis. We still don't understand the mechanism of nugget formation well. Are they formed during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are they precipitated in situ at high temperature due to oversaturation? As these elements are important tracers of early planetary processes such as core formation, it is important to take up this analytical and experimental challenge. In the case of the Earth for example, chondritic relative abundances of the HSE in some mantle xenoliths have led to the concept of the "late veneer" as a source of volatiles (such as water) and siderophiles in the silicate Earth. Silicate crystal/liquid fractionation is responsible for most, if not all, the HSE variation in the martian meteorite suites (SNC) and Pt is the element least affected by these fractionations. Therefore, in terms of reconstructing mantle HSE abundances for Mars, Pt becomes a very important player. In the present study, we have performed high temperature experiments under various redox conditions in order to determine the abundances of Pt, Au, Ru and Pd in minerals (olivine and diopside) and in silicate melts, but also to characterize the sizes, density and chemistry of HSE nuggets when present in the samples.

  6. Elastomeric Sensing of Pressure with Liquid Metal and Wireless Inductive Coupling

    NASA Technical Reports Server (NTRS)

    Dick, Jacob; Zou, Xiyue; Hogan, Ben; Tumalle, Jonathan; Etikyala, Sowmith; Fung, Diego; Charles, Watley; Gu, Tianye; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This project describes resistance-based soft sensors filled with liquid metal, which permit measurements of large strains (0 percent to 110 percent), associated with small forces of less than 30 Newtons. This work also demonstrates a methodology for wireless transfer of these strain measurements without connected electrodes. These sensors allow intermittent detection of pressure on soft membranes with low force. Adapting these sensors for passive wireless pressure sensing will eliminate the need for embedded batteries, and will allow the sensors to transmit pressure data through non-conductive materials including glass and acrylic. The absence of batteries allows us to embed these sensors into materials for long-term use because the sensors only use passive analog circuit elements. We found the oxidation of the liquid metal (eutectic gallium indium) plays a role in the repeatability of the soft sensors. We investigated how the oxidation layer affected the behavior of the sensor by encapsulating materials (silicone, fluorosilicone, and PVC) with varied permeabilities to oxygen. We measured the effects of mechanical loading on the oxidation layer and the effects of wireless inductive coupling on the oxidation layer. We concluded our research by investigating the effects of embedding self-resonant circuits into polydimethylsiloxane (PDMS). Efforts to design engineered systems with soft materials are a growing field with progress in soft robotics, epidermal electronics, and wearable electronics. In the field of soft robotics, PDMS-based grippers are capable of picking up delicate objects because their form-fitting properties allow them to conform to the shape of objects more easily than conventional robotic grippers. Epidermal devices also use PDMS as a substrate to hold electronic components such as radios, sensors, and power supply circuits. Additionally, PDMS-based soft sensors can monitor human motion with liquid metal embedded within micro-channels. Passive wireless sensors have applications in structural health monitoring and medical health monitoring. Doctors can take wireless blood pressure measurements inside arteries to monitor the progression of heart disease. Glaucoma patients can use this technology to monitor the pressure in their eyes to track the progression of the disease.

  7. A wireless sequentially actuated microvalve system

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ki; Yoon, Yong-Kyu; Jeon, Hye-Seon; Seo, Soonmin; Park, Jung-Hwan

    2013-04-01

    A wireless microvalve system was fabricated based on induction heating for flow control in microfluidics by sequential valve opening. In this approach, we used paraffin wax as a flow plug, which can be changed from solid to liquid with adjacent heating elements operated by induction heating. Programmable opening of valves was devised by using different thermal responses of metal discs to a magnetic field. Copper and nickel discs with a diameter of 2.5 mm and various thicknesses (50, 100 and 200 µm) were prepared as heating elements by a laser cutting method, and they were integrated in the microfluidic channel as part of the microvalve. A calorimetric test was used to measure the thermal properties of the discs in terms of kinds of metal and disc thickness. Sequential openings of the microvalves were performed using the difference in the thermal response of 100 µm thick copper disc and 50 µm thick nickel disc for short-interval openings and 200 µm thick copper disc and 100-µm-thick nickel disc for long-interval openings. The thermal effect on fluid samples as a result of induction heating of the discs was studied by investigating lysozyme denaturation. More heat was generated in heating elements made of copper than in those made of nickel, implying differences in the thermal response of heating elements made of copper and nickel. Also, the thickness of the heating elements affected the thermal response in the elements. Valve openings for short intervals of 1-5 s and long intervals of 15-23 s were achieved by using two sets of heating elements. There was no significant change in lysozyme activity by increasing the temperature of the heating discs. This study demonstrates that a wireless sequentially actuated microvalve system can provide programmed valve opening, portability, ease of fabrication and operation, disposability, and low cost.

  8. Metal Alloy Compositions And Process Background Of The Invention

    DOEpatents

    Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.

    2003-11-11

    A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.

  9. Tokamak with liquid metal toroidal field coil

    DOEpatents

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  10. Design study for a liquid metal slip ring solar array orientation mechanism

    NASA Technical Reports Server (NTRS)

    Clark, R. B.

    1972-01-01

    The design of a single axis orientation mechanism for solar arrays on high power synchronous satellites is studied primarily with respect to providing 116 liquid metal slip rings for reduced friction and improved electrical characteristics. Designs and tradeoff studies for the slip rings and other components are presented. An assembly containing 33 slip rings of three design approaches was designed, fabricated, and vacuum tested to 30 amperes and 30,000 volts. Containment of the liquid metal gallium in large diameter slip rings was difficult. A design approach is presented which is expected to provide improved retention of the liquid metal.

  11. Advances in liquid metals for biomedical applications.

    PubMed

    Yan, Junjie; Lu, Yue; Chen, Guojun; Yang, Min; Gu, Zhen

    2018-04-23

    To date, liquid metals have been widely applied in many fields such as electronics, mechanical engineering and energy. In the last decade, with a better understanding of the physicochemical properties such as low viscosity, good fluidity, high thermal/electrical conductivity and good biocompatibility, gallium and gallium-based low-melting-point (near or below physiological temperature) alloys have attracted considerable attention in bio-related applications. This tutorial review introduces the common performances of liquid metals, highlights their featured properties, as well as summarizes various state-of-the-art bio-applications involving carriers for drug delivery, molecular imaging, cancer therapy and biomedical devices. Challenges for the clinical translation of liquid metals are also discussed.

  12. Development of a liquid metal slip ring

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1972-01-01

    A liquid metal slip ring/solar orientation mechanism was designed and a model tested. This was a follow-up of previous efforts for the development of a gallium liquid metal slip ring in which the major problem was the formation and ejection of debris. A number of slip ring design approaches were studied. The probe design concept was fully implemented with detail drawings and a model was successfully tested for dielectric strength, shock vibration, acceleration and operation. The conclusions are that a gallium liquid metal slip ring/solar orientation mechanism is feasible and that the problem of debris formation and ejection has been successfully solved.

  13. Application of IR imaging for free-surface velocity measurement in liquid-metal systems

    DOE PAGES

    Hvasta, M. G.; Kolemen, E.; Fisher, A.

    2017-01-05

    Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. Lastly, this method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.

  14. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  15. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  16. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  17. Grain boundaries structures and wetting in doped silicon, nickel and copper

    NASA Astrophysics Data System (ADS)

    Meshinchi Asl, Kaveh

    This thesis reports a series of fundamental investigations of grain boundary wetting, adsorption and structural (phases) transitions in doped Ni, Cu and Si with technological relevance to liquid metal embrittlement, liquid metal corrosion and device applications. First, intrinsically ductile metals are prone to catastrophic failure when exposed to certain liquid metals, but the atomic level mechanism for this effect is not fully understood. A nickel sample infused with bismuth atoms was characterized and a bilayer interfacial phase that is the underlying cause of embrittlement was observed. In a second related study, we showed that addition of minor impurities can significantly enhance the intergranular penetration of bismuth based liquids in polycrystalline nickel and copper, thereby increasing the liquid metal corrosion rates. Furthermore, we extended a concept that was initially proposed in the Rice-Wang model for grain boundary embrittlement to explain our observations of the impurity-enhanced intergranular penetration of liquid metals. Finally, a grain-boundary transition from a bilayer to an intrinsic is observed in the Si-Au system. This observation directly shows that a grain boundary can exhibit a first-order "phase" transition, which often implies abrupt changes in properties.

  18. Petrology of enstatite chondrites and anomalous enstatite achondrites

    NASA Astrophysics Data System (ADS)

    van Niekerk, Deon

    2012-01-01

    Chondrites are meteorites that represent unmelted portions of asteroids. The enstatite chondrites are one class of chondrites. They consist of reduced mineral assemblages that formed under low oxygen fugacity in the solar nebula, prior to accretion into asteroids. There are two groups of enstatite chondrites---EH and EL. I studied EL3 meteorites, which are understood to be unmetamorphosed and thus to only preserve primitive nebular products. I show in a petrographic study that the EL3s are in fact melt--breccias in which impact-melting produced new mineral assemblages and textures in portions of the host chondrites, after accretion. I document meta- land sulfide assemblages that are intergrown with silicate minerals (which are often euhedral), and occur outside chondrules; these assemblages probably represent impact-melting products, and are different from those in EH3 chondrites that probably represent nebular products. In situ siderophile trace element compositions of the metal in EL3s, obtained by laser ablation inductively coupled plasma mass spectrometry, are consistent with an impact-melting hypothesis. The trace element concentrations show no clear volatility trend, and are thus probably not the result of volatile-driven petrogenetic processes that operated in the solar nebula. Trace element modeling suggests that the character of the trace element patterns together with deviations from the mean bulk EL metal pattern is consistent with metal that crystallized in a coexisting liquid-solid metal system in which dissolved carbon influenced element partitioning. I also conducted a petrographic and mineral-chemistry study of several anomalous enstatite meteorites. These have igneous textures, but unfractionated mineralogy similar to unmelted chondrites. I show that with the exception of one, the meteorites are related to each other, and probably formed by crystallization from an impact melt instead of metamorphism through the decay of short lived radionuclides. The broad importance of these studies lies in documenting the petrology of extraterrestrial materials that reveal the geological history of the young solar system prior to the existence of planets. Furthermore, they serve to identify which mineral assemblages record nebular processes and which record processes on asteroids, so that future studies may select the correct material to address particular questions.

  19. Biomedical Implementation of Liquid Metal Ink as Drawable ECG Electrode and Skin Circuit

    PubMed Central

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Background Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Methods Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. Results With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as −0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. Conclusions The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent. PMID:23472220

  20. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    PubMed

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent.

  1. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has beenmore » funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  2. The test ability of fish Tawes to leachate garbage dump (TPA) Benowo

    NASA Astrophysics Data System (ADS)

    Juliardi AR, N. R.; Wiyanti, R. I.

    2018-01-01

    Leachate is a liquid from waste containing elements of dissolved and suspended elements. Garbage collected at the landfill site contains organic, inorganic and heavy metal substances. If the rains will produce leachate with mineral content, organic and heavy metals. When the condition or leachate flow in let to the soil surface can cause negative effects to the surrounding environment including for humans. Toxicity test it was conducted to determine the level of leachate toxicity of the test animals living in surface water located around of the “TPA Benowo”. In this study using Tawes fish with length between 4-6 cm. In this toxicity test is done in 2 stages, namely: range finding test, the search for this range is obtained 0% concentrations (as control) 0,3%; 0,6%; 0,9%; 0,12% and 0,15%. The next stage of toxicity acute test, at this stage of toxicity concentration do smaller again that is: 0,18%; 0,36%; 0,54%; 0,72% and 0,9%. The results obtained LC50 value of 0,385%, while eyes, brown stomach skin.

  3. Disposal options for polluted plants grown on heavy metal contaminated brownfield lands - A review.

    PubMed

    Kovacs, Helga; Szemmelveisz, Katalin

    2017-01-01

    Reducing or preventing damage caused by environmental pollution is a significant goal nowadays. Phytoextraction, as remediation technique is widely used, but during the process, the heavy metal content of the biomass grown on these sites special treatment and disposal techniques are required, for example liquid extraction, direct disposal, composting, and combustion. These processes are discussed in this review in economical and environmental aspects. The following main properties are analyzed: form and harmful element content of remains, utilization of the main and byproducts, affect to the environment during the treatment and disposal. The thermal treatment (combustion, gasification) of contaminated biomass provides a promising alternative disposal option, because the energy production affects the rate of return, and the harmful elements are riched in a small amount of solid remains depending on the ash content of the plant (1-2%). The biomass combustion technology is a wildely used energy production process in residential and industrial scale, but the ordinary biomass firing systems are not suited to burn this type of fuel without environmental risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Measurement techniques for trace metals in coal-plant effluents: A brief review

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.

  5. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.

    1999-01-01

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

  6. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

    1999-02-16

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

  7. Design of Circular, Square, Single, and Multi-layer Induction Coils for Electromagnetic Priming Using Inductance Estimates

    NASA Astrophysics Data System (ADS)

    Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.

    2018-02-01

    Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.

  8. Collaborative Research and Development (CR&D) III Task Order 0077: Fundamental Studies of Plasticity, Interfacial Boundaries and Liquid Metals

    DTIC Science & Technology

    2013-06-01

    Interfacial Boundaries and Liquid Metals Dallas Trinkle Independent Contractor JUNE 2013 Final Report Approved for public...SIGNATURE//_________________ CHRISTOPHER WOODWARD, Project Engineer DANIEL EVANS, Chief Metals Branch Metals Branch Structural ...Materials Division Structural Materials Division ____//SIGNATURE//___________________ ROBERT T. MARSHALL, Deputy Chief

  9. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures - Implications for the origin of highly siderophile element concentrations in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Mann, Ute; Frost, Daniel J.; Rubie, David C.; Becker, Harry; Audétat, Andreas

    2012-05-01

    The apparent overabundance of the highly siderophile elements (HSEs: Pt-group elements, Re and Au) in the mantles of Earth, Moon and Mars has not been satisfactorily explained. Although late accretion of a chondritic component seems to provide the most plausible explanation, metal-silicate equilibration in a magma ocean cannot be ruled out due to a lack of HSE partitioning data suitable for extrapolations to the relevant high pressure and high temperature conditions. We provide a new data set of partition coefficients simultaneously determined for Ru, Rh, Pd, Re, Ir and Pt over a range of 3.5-18 GPa and 2423-2773 K. In multianvil experiments, molten peridotite was equilibrated in MgO single crystal capsules with liquid Fe-alloy that contained bulk HSE concentrations of 53.2-98.9 wt% (XFe = 0.03-0.67) such that oxygen fugacities of IW - 1.5 to IW + 1.6 (i.e. logarithmic units relative to the iron-wüstite buffer) were established at run conditions. To analyse trace concentrations of the HSEs in the silicate melt with LA-ICP-MS, two silicate glass standards (1-119 ppm Ru, Rh, Pd, Re, Ir, Pt) were produced and evaluated for this study. Using an asymmetric regular solution model we have corrected experimental partition coefficients to account for the differences between HSE metal activities in the multicomponent Fe-alloys and infinite dilution. Based on the experimental data, the P and T dependence of the partition coefficients (D) was parameterized. The partition coefficients of all HSEs studied decrease with increasing pressure and to a greater extent with increasing temperature. Except for Pt, the decrease with pressure is stronger below ˜6 GPa and much weaker in the range 6-18 GPa. This change might result from pressure induced coordination changes in the silicate liquid. Extrapolating the D values over a large range of potential P-T conditions in a terrestrial magma ocean (peridotite liquidus at P ⩽ 60-80 GPa) we conclude that the P-T-induced decrease of D would not have been sufficient to explain HSE mantle abundances by metal-silicate equilibration at a common set of P-T-oxygen fugacity conditions. Therefore, the mantle concentrations of most HSEs cannot have been established during core formation. The comparatively less siderophile Pd might have been partly retained in the magma ocean if effective equilibration pressures reached 35-50 GPa. To a much smaller extent this could also apply to Pt and Rh providing that equilibration pressures reached ⩾60 GPa in the late stage of accretion. With most of the HSE partition coefficients at 60 GPa still differing by 0.5-3 orders of magnitude, metal-silicate equilibration alone cannot have produced the observed near-chondritic HSE abundances of the mantles of the Earth as well as of the Moon or Mars. Our results show that an additional process, such as the accretion of a late veneer composed of some type of chondritic material, was required. The results, therefore, support recent hybrid models, which propose that the observed HSE signatures are a combined result of both metal-silicate partitioning as well as an overprint by late accretion.

  10. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    NASA Astrophysics Data System (ADS)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (< 0.5 mg.kg-1, < 0.1 mg.kg-1, respectively). To evaluate leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  11. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics.

    PubMed

    Han, Yu Long; Liu, Hao; Ouyang, Cheng; Lu, Tian Jian; Xu, Feng

    2015-07-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded.

  12. Engineering: Liquid metal pumped at a record temperature

    NASA Astrophysics Data System (ADS)

    Lambrinou, Konstantina

    2017-10-01

    Although liquid metals are effective fluids for heat transfer, pumping them at high temperatures is limited by their corrosiveness to solid metals. A clever pump design addresses this challenge using only ceramics. See Article p.199

  13. Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films

    PubMed Central

    Mikheev, Evgeny; Hauser, Adam J.; Himmetoglu, Burak; Moreno, Nelson E.; Janotti, Anderson; Van de Walle, Chris G.; Stemmer, Susanne

    2015-01-01

    Resistances that exceed the Mott-Ioffe-Regel limit (known as bad metal behavior) and non-Fermi liquid behavior are ubiquitous features of the normal state of many strongly correlated materials. We establish the conditions that lead to bad metal and non-Fermi liquid phases in NdNiO3, which exhibits a prototype bandwidth-controlled metal-insulator transition. We show that resistance saturation is determined by the magnitude of Ni eg orbital splitting, which can be tuned by strain in epitaxial films, causing the appearance of bad metal behavior under certain conditions. The results shed light on the nature of a crossover to a non-Fermi liquid metal phase and provide a predictive criterion for Anderson localization. They elucidate a seemingly complex phase behavior as a function of film strain and confinement and provide guidelines for orbital engineering and novel devices. PMID:26601140

  14. Coincidence of collective relaxation anomaly and specific heat peak in a bulk metallic glass-forming liquid

    DOE PAGES

    Jaiswal, Abhishek; Podlesynak, Andrey; Ehlers, Georg; ...

    2015-07-21

    The study of multicomponent metallic liquids' relaxational behavior is still the key to understanding and improving the glass-forming abilities of bulk metallic glasses. Here, we report measurements of the collective relaxation times in a melted bulk metallic glass (LM601Zr 51Cu 36Ni 4Al 9) in the kinetic regime (Q: 1.5–4.0Å –1) using quasielastic neutron scattering. The results reveal an unusual slope change in the Angell plots of this metallic liquid's collective relaxation time around 950°C, beyond the material's melting point. Measurement of specific heat capacity also reveals a peak around the same temperature. Adams-Gibbs theory is used to rationalize the coincidence,more » which motivates more careful experimental and computational studies of the metallic liquids in the future.« less

  15. Microgravity

    NASA Image and Video Library

    2000-07-29

    An entranced youngster watches a demonstration of the enhanced resilience of undercooled metal alloys as compared to conventional alloys. Steel bearings are dropped onto plates made of steel, titanium alloy, and zirconium liquid metal alloy, so-called because its molecular structure is amorphous and not crystalline. The bearing on the liquid metal plate bounces for a minute or more longer than on the other plates. Experiments aboard the Space Shuttle helped scientists refine their understanding of the physical properties of certain metal alloys when undercooled (i.e., kept liquid below their normal solidification temperature). This new knowledge then allowed scientists to modify a terrestrial production method so they can now make limited quantities marketed under the Liquid Metal trademark. The exhibit was a part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  16. Assembly of metals and nanoparticles into novel nanocomposite superstructures

    PubMed Central

    Xu, Jiaquan; Chen, Lianyi; Choi, Hongseok; Konish, Hiromi; Li, Xiaochun

    2013-01-01

    Controlled assembly of nanoscale objects into superstructures is of tremendous interests. Many approaches have been developed to fabricate organic-nanoparticle superstructures. However, effective fabrication of inorganic-nanoparticle superstructures (such as nanoparticles linked by metals) remains a difficult challenge. Here we show a novel, general method to assemble metals and nanoparticles rationally into nanocomposite superstructures. Novel metal-nanoparticle superstructures are achieved by self-assembly of liquid metals and nanoparticles in immiscible liquids driven by reduction of free energy. Superstructures with various architectures, such as metal-core/nanoparticle-shell, nanocomposite-core/nanoparticle-shell, network of metal-linked core/shell nanostructures, and network of metal-linked nanoparticles, were successfully fabricated by simply tuning the volume ratio between nanoparticles and liquid metals. Our approach provides a simple, general way for fabrication of numerous metal-nanoparticle superstructures and enables a rational design of these novel superstructures with desired architectures for exciting applications.

  17. Effects of surface tension and viscosity on gold and silver sputtered onto liquid substrates

    NASA Astrophysics Data System (ADS)

    De Luna, Mark M.; Gupta, Malancha

    2018-05-01

    In this paper, we study DC magnetron sputtering of gold and silver onto liquid substrates of varying viscosities and surface tensions. We were able to separate the effects of viscosity from surface tension by depositing the metals onto silicone oils with a range of viscosities. The effects of surface tension were studied by depositing the metals onto squalene, poly(ethylene glycol), and glycerol. It was found that dispersed nanoparticles were formed on liquids with low surface tension and low viscosity whereas dense films were formed on liquids with low surface tension and high viscosity. Nanoparticles were formed on both the liquid surface and within the bulk liquid for high surface tension liquids. Our results can be used to tailor the metal and liquid interaction to fabricate particles and films for various applications in optics, electronics, and catalysis.

  18. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  19. A robust molecular probe for Ångstrom-scale analytics in liquids

    PubMed Central

    Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike

    2016-01-01

    Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157

  20. Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer.

    PubMed

    Singh, Mandeep; Palazzo, Gerardo; Romanazzi, Giuseppe; Suranna, Gian Paolo; Ditaranto, Nicoletta; Di Franco, Cinzia; Santacroce, Maria Vittoria; Mulla, Mohammad Yusuf; Magliulo, Maria; Manoli, Kyriaki; Torsi, Luisa

    2014-01-01

    Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na(+) doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.

  1. Sodium Handling Technology and Engineering Design of the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Forest, C. B.; O'Connell, R.; Wright, A.; Robinson, K.

    1998-11-01

    A new liquid metal MHD experiment is being constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 degrees Celsius. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurazation are presented, and safety elements are highlighted.

  2. Initial operation with sodium in the Madison Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Spence, Ej; Forest, C. B.; O'Connell, R.; Nornberg, Md; Canary, Hw; Wright, A.; Robinson, K.

    1999-11-01

    A new liquid metal MHD experiment has been constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 ^circC. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurization are presented, and safety elements are highlighted.

  3. Density Functional Theory (dft) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-12-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-06-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1989-03-01

    Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.

  6. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    PubMed

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    NASA Astrophysics Data System (ADS)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  8. Numerical Simulation of Liquid Metal RF MEMS Switch Based on EWOD

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gao, Yang; Yang, Tao; Guo, Huihui

    2018-03-01

    Conventional RF MEMS switches rely on metal-to-dielectric or metal-to-metal contacts. Some problems in the “solid-solid” contact, such as contact degradation, signal bounce and poor reliability, can be solved by using “liquid-solid” contact. The RF MEMS switch based on liquid metal is characterized by small contact resistance, no moving parts, high reliability and long life. Using electrowetting-on-dielectric (EWOD) way to control the movement of liquid metal in the RF MEMS switch, to achieve the “on” and “off” of the switch. In this paper, the electrical characteristics and RF characteristics of RF MEMS switches are simulated by fluid mechanics software FLUENT and electromagnetic simulation software HFSS. The effects of driving voltage, switching time, dielectric layer, hydrophobic layer material and thickness, switching channel height on the RF characteristics are studied. The results show that to increase the external voltage to the threshold voltage of 58V, the liquid metal began to move, and the switching time from “off” state to “on” state is 16ms. In the 0~20GHz frequency range, the switch insertion loss is less than 0.28dB, isolation is better than 23.32dB.

  9. Low gravity liquid level sensor rake

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D. (Inventor); Craddock, Jeffrey C. (Inventor)

    2003-01-01

    The low gravity liquid level sensor rake measures the liquid surface height of propellant in a propellant tank used in launch and spacecraft vehicles. The device reduces the tendency of the liquid propellant to adhere to the sensor elements after the bulk liquid level has dropped below a given sensor element thereby reducing the probability of a false liquid level measurement. The liquid level sensor rake has a mast attached internal to a propellant tank with an end attached adjacent the tank outlet. Multiple sensor elements that have an arm and a sensor attached at a free end thereof are attached to the mast at locations selected for sensing the presence or absence of the liquid. The sensor elements when attached to the mast have a generally horizontal arm and a generally vertical sensor.

  10. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  11. Oxidation-Mediated Fingering in Liquid Metals

    NASA Astrophysics Data System (ADS)

    Eaker, Collin B.; Hight, David C.; O'Regan, John D.; Dickey, Michael D.; Daniels, Karen E.

    2017-10-01

    We identify and characterize a new class of fingering instabilities in liquid metals; these instabilities are unexpected due to the large interfacial tension of metals. Electrochemical oxidation lowers the effective interfacial tension of a gallium-based liquid metal alloy to values approaching zero, thereby inducing drastic shape changes, including the formation of fractals. The measured fractal dimension (D =1.3 ±0.05 ) places the instability in a different universality class than other fingering instabilities. By characterizing changes in morphology and dynamics as a function of droplet volume and applied electric potential, we identify the three main forces involved in this process: interfacial tension, gravity, and oxidative stress. Importantly, we find that electrochemical oxidation can generate compressive interfacial forces that oppose the tensile forces at a liquid interface. The surface oxide layer ultimately provides a physical and electrochemical barrier that halts the instabilities at larger positive potentials. Controlling the competition between interfacial tension and oxidative (compressive) stresses at the interface is important for the development of reconfigurable electronic, electromagnetic, and optical devices that take advantage of the metallic properties of liquid metals.

  12. Development of Axial Continuous Metal Expeller for melt conditioning of alloys

    NASA Astrophysics Data System (ADS)

    Cassinath, Z.; Prasada Rao, A. K.

    2016-02-01

    ACME (Axial, centrifugal metal expeller) is a novel processing technology developed independently for conditioning liquid metal prior to solidification processing. The ACME process is based on an axial compressor and uses a rotor stator mechanism to impose a high shear rate and a high intensity of turbulence to the liquid metal, so that the conditioned liquid metal has uniform temperature and uniform chemical composition as it is expelled. The microstructural refinement is achieved through the process of dendrite fragmentation while taking advantage of the thixotropic property of semisolid metal slurry so that it can be conveyed for further downstream operations. This paper introduces the concept and its advantages over current technologies.

  13. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses.

    PubMed

    Dmowski, W; Gierlotka, S; Wang, Z; Yokoyama, Y; Palosz, B; Egami, T

    2017-07-26

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.

  14. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    NASA Astrophysics Data System (ADS)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  15. Multi-podant diglycolamides and room temperature ionic liquid impregnated resins: An excellent combination for extraction chromatography of actinides.

    PubMed

    Gujar, R B; Ansari, S A; Verboom, W; Mohapatra, P K

    2016-05-27

    Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (RTIL: C4mimTf2N) on Chromosorb-W (an inert solid support), gave excellent results for the removal of trivalent actinides from acidic waste solutions. Distribution coefficient measurements on several metal ions showed selective sorption of Am(III) over hexavalent uranyl ions and other fission product elements such as strontium and cesium. The sorbed metal ions could be efficiently desorbed with a complexing solution containing guanidine carbonate and EDTA buffer. The sorption of Am(III) on both resins followed pseudo-second order rate kinetics with rate constants of 1.37×10(-6) and 6.88×10(-7)g/cpmmin for T-DGA and C4DGA resins, respectively. The metal sorption on both resins indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) sorption capacities of 4.83±0.21 and 0.52±0.05mg per g of T-DGA and C4DGA resins, respectively. The results of column studies show that these resins are of interest for a possible application for the recovery of hazardous trivalent actinides from dilute aqueous solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. High-temperature experimental analogs of primitive meteoritic metal-sulfide-oxide assemblages

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Lauretta, Dante S.

    2010-03-01

    We studied the oxidation-sulfidation behavior of an Fe-based alloy containing 4.75 wt.% Ni, 0.99 wt.% Co, 0.89 wt.% Cr, and 0.66 wt.% P in H 2-H 2O-CO-CO 2-H 2S gas mixtures at 1000 °C. The samples were cooled at rates of ˜3000 °C/h, comparable to estimates of the conditions after a chondrule-formation event in the early Solar System. Gas compositions were monitored in real time by a quadrupole mass spectrometer residual gas analyzer. Linear rate constants associated with gas-phase adsorption were determined. Reaction products were analyzed by optical microscopy, wavelength-dispersive-spectroscopy X-ray elemental mapping, and electron probe microanalysis. Based on analysis of the Fe-Ni-S ternary phase diagram and the reaction products, the primary corrosion product is a liquid of composition 66.6 wt.% Fe, 3.5 wt.% Ni, 29.9 wt.% S, and minor amounts of P, Cr, and Co. Chromite (FeCr 2O 4) inclusions formed by oxidation and are present in the metal foil and at the outer boundary between the sulfide and experimental atmosphere. During cooling the liquid initially crystallizes into taenite (average composition ˜15 wt.% Ni), monosulfide solid solution [mss, (Fe,Ni,Co,Cr) 1-xS], and Fe-phosphates. Upon further cooling, kamacite exsolves from this metal, enriching the taenite in Ni. The remnant metal core is enriched in P and Co and depleted in Cr at the reaction interface, relative to the starting composition. The unreacted metal core composition remains unchanged, suggesting the reactions did not reach equilibrium. We present a detailed model of reaction mechanisms based on the observed kinetics and sample morphologies, and discuss meteoritic analogs in the CR chondrite MacAlpine Hills 87320.

  17. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    NASA Astrophysics Data System (ADS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-03-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.

  18. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.

    PubMed

    Efthimiadis, Jim; Neil, Wayne C; Bunter, Andrew; Howlett, Patrick C; Hinton, Bruce R W; MacFarlane, Douglas R; Forsyth, Maria

    2010-05-01

    The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg-Zn-Rare Earth (RE)-Zr, nominal composition approximately 4 wt % Zn, approximately 1.7 wt % RE (Ce), approximately 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P(6,6,6,14)][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of -200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

  19. Fluctuating magnetic moments in liquid metals.

    PubMed

    Patty, Mark; Schoen, Keary; Montfrooij, Wouter

    2006-02-01

    We reanalyze literature data on neutron scattering by liquid metals and show that there is an additional broad (in energy) quasielastic mode present that is absent in x-ray scattering. This mode cannot be accounted for by the standard coherent and incoherent scattering mechanisms. We argue that this mode indicates that nonmagnetic liquid metals possess a magnetic moment which fluctuates on a picosecond time scale. This time scale is the same as the time scale of the cage-diffusion process in which an ion rattles around in the cage formed by its neighbors. We find that these fluctuating magnetic moments are present in liquid Hg, Al, Ga, and Pb and possibly also in the alkali metals.

  20. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  1. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  2. On the occurrence of metallic character in the periodic table of the chemical elements.

    PubMed

    Hensel, Friedrich; Slocombe, Daniel R; Edwards, Peter P

    2015-03-13

    The classification of a chemical element as either 'metal' or 'non-metal' continues to form the basis of an instantly recognizable, universal representation of the periodic table (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23; Poliakoff M. & Tang S. 2015 Phil. Trans. R. Soc. A 373: , 20140211). Here, we review major, pre-quantum-mechanical innovations (Goldhammer DA. 1913 Dispersion und Absorption des Lichtes; Herzfeld KF. 1927 Phys. Rev. 29: , 701-705) that allow an understanding of the metallic or non-metallic status of the chemical elements under both ambient and extreme conditions. A special emphasis will be placed on recent experimental advances that investigate how the electronic properties of chemical elements vary with temperature and density, and how this invariably relates to a changing status of the chemical elements. Thus, the prototypical non-metals, hydrogen and helium, becomes metallic at high densities; and the acknowledged metals, mercury, rubidium and caesium, transform into their non-metallic forms at low elemental densities. This reflects the fundamental fact that, at temperatures above the absolute zero of temperature, there is therefore no clear dividing line between metals and non-metals. Our conventional demarcation of chemical elements as metals or non-metals within the periodic table is of course governed by our experience of the nature of the elements under ambient conditions. Examination of these other situations helps us to examine the exact divisions of the chemical elements into metals and non-metals (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing.

    PubMed

    Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad

    2015-03-07

    Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.

  4. Turbulent convection in liquid metal with and without rotation

    PubMed Central

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional buoyancy forcing and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer . In general, we find that the convective behavior of liquid metal differs substantially from that of moderate fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of and fluids, respectively. PMID:23569262

  5. Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs

    NASA Astrophysics Data System (ADS)

    Mae, Yoshiharu

    2018-04-01

    A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.

  6. Evolution of KREEP - Further petrologic evidence. [igneous rocks from Apollo 15 site

    NASA Technical Reports Server (NTRS)

    Crawford, M. L.; Hollister, L. S.

    1977-01-01

    It is hypothesized that KREEP samples from the Apollo 15 site are igneous. To support the hypothesis, comparisons are made with other crystalline KREEP samples, especially 14310. It is noted that the low siderophile element content and lack of high pressure phenocrysts in the Apollo 15 KREEP may be indications of a slower rise of KREEP melt to the surface, when contrasted with sample 14310. Gravitational separation of Fe-Ni metal is proposed as a mechanism to account for the depletion of siderophile elements relative to the Si-rich component. It is further suggested that KREEP may be the parent of Apollo 12 and 15 basalts, as well as of granitic rocks, due to the liquid immiscibility occurring during the KREEP melt crystallization, and the subsequent independent evolution of the components.

  7. High temperature liquid level sensor

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  8. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  9. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics

    PubMed Central

    Long Han, Yu; Liu, Hao; Ouyang, Cheng; Jian Lu, Tian; Xu, Feng

    2015-01-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded. PMID:26129723

  10. Platinum-group element, Gold, Silver and Base Metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril'sk, Russia

    USGS Publications Warehouse

    Barnes, S.-J.; Cox, R.A.; Zientek, M.L.

    2006-01-01

    Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril'sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite. ?? Springer-Verlag 2006.

  11. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    PubMed

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  13. RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi

    DOEpatents

    Wiswall, R.H.

    1960-05-10

    Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

  14. Shape-transformable liquid metal nanoparticles in aqueous solution† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00057j Click here for additional data file.

    PubMed Central

    Lin, Yiliang; Liu, Yang

    2017-01-01

    Stable suspensions of eutectic gallium indium (EGaIn) liquid metal nanoparticles form by probe-sonicating the metal in an aqueous solution. Positively-charged molecular or macromolecular surfactants in the solution, such as cetrimonium bromide or lysozyme, respectively, stabilize the suspension by interacting with the negative charges of the surface oxide that forms on the metal. The liquid metal breaks up into nanospheres via sonication, yet can transform into rods of gallium oxide monohydroxide (GaOOH) via moderate heating in solution either during or after sonication. Whereas heating typically drives phase transitions from solid to liquid (via melting), here heating drives the transformation of particles from liquid to solid via oxidation. Interestingly, indium nanoparticles form during the process of shape transformation due to the selective removal of gallium. This dealloying provides a mechanism to create indium nanoparticles at temperatures well below the melting point of indium. To demonstrate the versatility, we show that it is possible to shape transform and dealloy other alloys of gallium including ternary liquid metal alloys. Scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS) mapping, and X-ray diffraction (XRD) confirm the dealloying and transformation mechanism. PMID:28580116

  15. Wick-and-pool electrodes for electrochemical cell

    DOEpatents

    Roche, Michael F.; Faist, Suzan M.; Eberhart, James G.; Ross, Laurids E.

    1977-01-01

    An electrode system includes a reservoir of liquid-metal reactant, and a wick extending from a submersed location within the reservoir into the molten electrolyte of an electrochemical cell structure. The wick is flooded with the liquid metal and thereby serves as one electrode within the cell. This electrode system has application in high-temperature batteries employing molten alkali metals or their alloys as active material within an electrode submersed within a molten salt electrolyte. It also can be used in electrochemical cells where the purification, separation or electrowinning of liquid metals is accomplished.

  16. Wick-and-pool electrodes for electrochemical cell

    DOEpatents

    Roche, Michael F.; Faist, Suzan M.; Eberhart, James G.; Ross, Laurids E.

    1980-01-01

    An electrode system includes a reservoir of liquid-metal reactant, and a wick extending from a submersed location within the reservoir into the molten electrolyte of an electrochemical cell structure. The wick is flooded with the liquid metal and thereby serves as one electrode within the cell. This electrode system has application in high-temperature batteries employing molten alkali metals or their alloys as active material within an electrode submersed within a molten salt electrolyte. It also can be used in electrochemical cells where the purification, separation or electrowinning of liquid metals is accomplished.

  17. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    DOEpatents

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  18. Solutal separation in a binary nanofluid due to thermodiffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saghir, M.Z.; Yousefi, T.; Farahbakhsh, B.

    2015-03-10

    Transport phenomena in porous media have received considerable attention due to an increasing interest in geothermal processes, chemical catalytic reactors, waste storage (especially geological or ocean storage of carbon dioxide), etc. Among others, oil industry has shown an increasing interest in studying diffusion phenomenon. Nanofluid is a term used to describe the suspension of low concentration of metallic and non-metallic nanoparticles in a base fluid. The size of a nanoparticle ranges from 10 to 100nm, and the conventional fluids used are water, ethylene glycol (C{sub 2}H{sub 6}O{sub 2}) or engine oil. Various studies have proven that nanoparticles improve the heatmore » transfer of a base fluid. However, using various nanofluids it has been shown that the results could vary depending on different initial concentrations. The main objective of this paper is to study the diffusion and the thermodiffusion effect in a nanofluid for different fluid/porous media configurations. In this configuration, a liquid layer surrounds a porous layer. The full Brinkman equation coupled with the heat and mass transfer equations have been solved numerically for the porous layer using the finite element technique. The full Navier stokes equation coupled with heat and mass transfer equations have been solved for the liquid layer using the finite element method. A constraint between the liquid and porous layer has been applied to ensure heat flow and mass transfer continuity is maintained. A square cavity filled with hydrocarbon nanofluid of a mixture of fullerene-toluene with varying concentration of fullerene has been subject to different heating conditions. The entire cavity has been considered to be fully wetted with nanofluid. Results have confirmed that in the presence of a nanofluid a heat transfer enhancement is present up to certain initial concentration of the fullerene. The heat convection coefficient has been found to be 16% higher when a nanofluid is used as the working fluid.« less

  19. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... leaching characteristics for storage or disposal. (a) Existing accumulations of non-liquid, non-metal PCB bulk product waste. (b) Non-liquid, non-metal PCB bulk product waste from processes that continuously generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  20. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal

    DOE PAGES

    Modestov, M.; Kolemen, E.; Fisher, A. E.; ...

    2017-11-06

    The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces onmore » flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.« less

Top