Šmigovec Ljubič, Tina; Pahovnik, David; Žigon, Majda; Žagar, Ema
2012-01-01
The separation of a mixture of three poly(styrene-block-t-butyl methacrylate) copolymers (PS-b-PtBMA), consisting of polystyrene (PS) blocks of similar length and t-butyl methacrylate (PtBMA) blocks of different lengths, was performed using various chromatographic techniques, that is, a gradient liquid chromatography on reversed-phase (C18 and C8) and normal-phase columns, a liquid chromatography under critical conditions for polystyrene as well as a fully automated two-dimensional liquid chromatography that separates block copolymers by chemical composition in the first dimension and by molar mass in the second dimension. The results show that a partial separation of the mixture of PS-b-PtBMA copolymers can be achieved only by gradient liquid chromatography on reversed-phase columns. The coelution of the two block copolymers is ascribed to a much shorter PtBMA block length, compared to the PS block, as well as a small difference in the length of the PtBMA block in two of these copolymers, which was confirmed by SEC-MALS and NMR spectroscopy. PMID:22489207
Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves
2006-02-14
Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.
"Pressure Blocking" Effect in the Growing Vapor Bubble in a Highly Superheated Liquid
NASA Astrophysics Data System (ADS)
Zudin, Yu. B.; Zenin, V. V.
2016-09-01
The problem on the growth of a vapor bubble in a liquid whose superheating enthalpy exceeds the phase transition heat has been considered. A physical model of the "pressure blocking" in the bubble is presented. The problem for the conditions of the experiment on the effervescence of a butane drop has been solved numerically. An algorithm for constructing an analytical solution of the problem on the bubble growth in a highly superheated liquid is proposed.
Liquid cooling applications on automotive exterior LED lighting
NASA Astrophysics Data System (ADS)
Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin
2018-02-01
In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.
Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.
2009-01-01
In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835
Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T
2008-10-01
In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.
Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.
A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less
Tercjak, A; Garcia, I; Mondragon, I
2008-07-09
Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.
Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M
2016-09-23
Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Elbert, Donald L.
2010-01-01
Macroporous hydrogels may have direct applications in regenerative medicine as scaffolds to support tissue formation. Hydrogel microspheres may be used as drug delivery vehicles or as building blocks to assemble modular scaffolds. A variety of techniques exist to produce macroporous hydrogels and hydrogel microspheres. A subset of these relies on liquid-liquid two phase systems. Within this subset, vastly different types of polymerization processes are found. In this review, the history, terminology and classification of liquid-liquid two phase polymerization and crosslinking are described. Instructive examples of hydrogel microsphere and macroporous scaffold formation by precipitation/dispersion, emulsion and suspension polymerizations are used to illustrate the nature of these processes. The role of the kinetics of phase separation in determining the morphology of scaffolds and microspheres is also delineated. Brief descriptions of miniemulsion, microemulsion polymerization and ionotropic gelation are also included. PMID:20659596
2016-01-01
Monodisperse oligodimethylsiloxanes end-functionalized with the hydrogen-bonding ureidopyrimidinone (UPy) motif undergo phase separation between their aromatic end groups and dimethylsiloxane midblocks to form ordered nanostructures with domain spacings of <5 nm. The self-assembly behavior of these well-defined oligomers resembles that of high degree of polymerization (N)–high block interaction parameter (χ) linear diblock copolymers despite their small size. Specifically, the phase morphology varies from lamellar to hexagonal to body-centered cubic with increasing asymmetry in molecular volume fraction. Mixing molecules with different molecular weights to give dispersity >1.13 results in disorder, showing importance of molecular monodispersity for ultrasmall ordered phase separation. In contrast, oligodimethylsiloxanes end-functionalized with an O-benzylated UPy derivative self-assemble into lamellar nanostructures regardless of volume fraction because of the strong preference of the end groups to aggregate in a planar geometry. Thus, these molecules display more classically liquid-crystalline self-assembly behavior where the lamellar bilayer thickness is determined by the siloxane midblock. Here the lamellar nanostructure is tolerant to molecular polydispersity. We show the importance of end groups in high χ–low N block molecules, where block-copolymer-like self-assembly in our UPy-functionalized oligodimethylsiloxanes relies upon the dominance of phase separation effects over directional end group aggregation. PMID:27054381
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
Hybrid molecular-colloidal liquid crystals.
Mundoor, Haridas; Park, Sungoh; Senyuk, Bohdan; Wensink, Henricus H; Smalyukh, Ivan I
2018-05-18
Order and fluidity often coexist, with examples ranging from biological membranes to liquid crystals, but the symmetry of these soft-matter systems is typically higher than that of the constituent building blocks. We dispersed micrometer-long inorganic colloidal rods in a nematic liquid crystalline fluid of molecular rods. Both types of uniaxial building blocks, while freely diffusing, interact to form an orthorhombic nematic fluid, in which like-sized rods are roughly parallel to each other and the molecular ordering direction is orthogonal to that of colloidal rods. A coarse-grained model explains the experimental temperature-concentration phase diagram with one biaxial and two uniaxial nematic phases, as well as the orientational distributions of rods. Displaying properties of biaxial optical crystals, these hybrid molecular-colloidal fluids can be switched by electric and magnetic fields. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
A simple theory of molecular organization in fullerene-containing liquid crystals
NASA Astrophysics Data System (ADS)
Peroukidis, S. D.; Vanakaras, A. G.; Photinos, D. J.
2005-10-01
Systematic efforts to synthesize fullerene-containing liquid crystals have produced a variety of successful model compounds. We present a simple molecular theory, based on the interconverting shape approach [Vanakaras and Photinos, J. Mater. Chem. 15, 2002 (2005)], that relates the self-organization observed in these systems to their molecular structure. The interactions are modeled by dividing each molecule into a number of submolecular blocks to which specific interactions are assigned. Three types of blocks are introduced, corresponding to fullerene units, mesogenic units, and nonmesogenic linkage units. The blocks are constrained to move on a cubic three-dimensional lattice and molecular flexibility is allowed by retaining a number of representative conformations within the block representation of the molecule. Calculations are presented for a variety of molecular architectures including twin mesogenic branch monoadducts of C60, twin dendromesogenic branch monoadducts, and conical (badminton shuttlecock) multiadducts of C60. The dependence of the phase diagrams on the interaction parameters is explored. In spite of its many simplifications and the minimal molecular modeling used (three types of chemically distinct submolecular blocks with only repulsive interactions), the theory accounts remarkably well for the phase behavior of these systems.
Lyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.
Chen, Zhengfei; Greaves, Tamar L; Fong, Celesta; Caruso, Rachel A; Drummond, Calum J
2012-03-21
Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at <40 wt%, only micelles or polydisperse crystals were present. With the exception of Brij 97, the thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.
Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.
Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng
2018-03-01
Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aqueous Lyotropic Liquid Crystalline Frank-Kasper Mesophases
NASA Astrophysics Data System (ADS)
Mahanthappa, Mahesh; Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun
Amphiphilic molecules undergo water concentration-dependent self-assembly to form lyotropic liquid crystal (LLC) mesophases. LLC morphology selection is directed by cooperative optimization of preferred molecular packing arrangements, which stem from a subtle balance of local, non-covalent interactions. We recently discovered a class of amphiphiles that form a progression of discontinuous micellar LLCs, including two tetrahedrally-closest packed Frank-Kasper phases that exhibit exceptional long range order. This discovery complements recent reports of their formation in thermotropic liquid crystals, neat diblock and tetrablock polymers, and in lyotropic mesophases of block polymers in ionic liquids. Using a combination of MD simulations and experiments, we provide new insights into the mechanisms of formation for these low symmetry micelle phases.
Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong
2015-03-01
As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitazawa, Yuzo; Ueki, Takeshi; McIntosh, Lucas D.
2016-04-29
Here we investigate a hierarchical morphology change and accompanying sol–gel transition using a doubly thermosensitive ABC-triblock copolymer in an ionic liquid (IL). The triblock copolymer contains two different lower critical solution temperature (LCST) thermosensitive polymers, poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA), as the end blocks and poly(methyl methacrylate) (PMMA) as the middle block (PBnMA-b-PMMA-b-PPhEtMA: BMP). BMP undergoes a hierarchical phase transition corresponding to the self-assembly of each of the thermosensitive blocks in the IL, and a sol–gel transition was observed in concentrated, above 10 wt %, polymer solutions. The gelation behavior was affected by polymer concentration, and at 20more » wt %, the BMP/IL composite showed a phase transition, with increasing temperature, from solution through a jammed micelle suspension to a physically cross-linked gel. For each phase was formed reversibly and rapidly over the corresponding temperature range. Finally, the jammed micelle and cross-linked gel states were characterized using viscoelastic measurements and small-angle X-ray scattering (SAXS).« less
Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete
NASA Technical Reports Server (NTRS)
Curran, Joseph John; Curran, Jerry; MacDowell, Louis
2004-01-01
Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).
Block Copolymers and Ionic Liquids: A New Class of Functional Nanocomposites
NASA Astrophysics Data System (ADS)
Lodge, Timothy
2009-03-01
Block copolymers provide a remarkably versatile platform for achieving desired nanostructures by self-assembly, with lengthscales varying from a few nanometers up to several hundred nanometers. Ionic liquids are an emerging class of solvents, with an appealing set of physical attributes. These include negligible vapor pressure, high chemical and thermal stability, tunable solvation properties, high ionic conductivity, and wide electrochemical windows. For various applications it will be necessary to solidify the ionic liquid into particular spatial arrangements, such as membranes or gels, or to partition the ionic liquid in coexisting phases, such as microemulsions and micelles. One example includes formation of spherical, cylindrical, and vesicular micelles by poly(butadiene-b-ethylene oxide) and poly(styrene-b-methylmethacrylate) in the common hydrophobic ionic liquids [BMI][PF6] and [EMI][TFSI]. This work has been extended to the formation of reversible micelle shuttles between ionic liquids and water, whereby entire micelles transfer from one phase to the other, reversibly, depending on temperature and solvent quality. Formation of ion gels has been achieved by self-assembly of poly(styrene-b-ethylene oxide-b-styrene) triblocks in ionic liquids, and by the thermoreversible system poly(N-isopropylacrylamide-b-ethylene oxide-b-N-isopropylacrylamide), using as little as 4% copolymer. Further, these gels have been shown to be remarkably effective as gate dielectrics in organic thin film transistors. The remarkably high capacitance of the ion gels (> 10 μF/cm^2) supports a very high carrier density in an organic semiconductor such as poly(3-hexylthiophene), leading to milliamp currents for low applied voltages. Furthermore, the rapid mobility of the ions enables switching speeds approaching 10 kHz, orders of magnitude higher than achievable with other polymer-based dielectrics such as PEO/LiClO4. Finally, we have shown that ordered nanostructures of block copolymers plus ionic liquids show the characteristic self-assembly properties of strongly-segregated systems. Prospects for anisotropic ionic conductivity are also being explored.
NASA Astrophysics Data System (ADS)
Bellomo, Enrico Giuseppe
2005-07-01
Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered chiral macroporous hybrid silica-polypeptide composites. The mineralization of organic templates has been investigated as an effective way to control the size and structure of inorganic frameworks. Hybrid structures incorporating polypeptide with silica have been prepared and characterized using X-ray scattering, TGA, SEM and TEM. The results support the interaction between silica and polymer to form ordered chiral macroporous structures that can be easily controlled by polymer molecular weight and volume fraction.
Phase diagram and universality of the Lennard-Jones gas-liquid system.
Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun
2012-05-28
The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.
Molecular Mobility in Phase Segregated Bottlebrush Block Copolymer Melts
NASA Astrophysics Data System (ADS)
Yavitt, Benjamin; Gai, Yue; Song, Dongpo; Winter, H. Henning; Watkins, James
We investigate the linear viscoelastic behavior of poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymer (BBCP) materials over a range of vol. fractions and with side chain lengths below the entanglement molecular weights. The high chain mobility of the brush architecture results in rapid micro-phase segregation of the brush copolymer segments, which occurs during thermal annealing at mild temperatures. Master curves of the dynamic moduli were obtained by time-temperature superposition. The reduced degree of chain entanglements leads to a unique liquid-like rheology similar to that of bottlebrush homopolymers, even in the phase segregated state. We also explore the alignment of phase segregated domains at exceptionally low strain amplitudes (γ = 0.01) and mild processing temperatures using small angle X-ray scattering (SAXS). Domain orientation occurred readily at strains within the linear viscoelastic regime without noticeable effect on the moduli. This interplay of high molecular mobility and rapid phase segregation that are exhibited simultaneously in BBCPs is in contrast to the behavior of conventional linear block copolymer (LBCP) analogs and opens up new possibilities for processing BBCP materials for a wide range of nanotechnology applications. NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst (CMMI-1025020).
Tercjak, Agnieszka; Mondragon, Iñaki
2008-10-07
Meso/nanostructured thermoresponsive thermosetting materials based on an epoxy resin modified with two different molecular weight amphiphilic poly(styrene- block-ethylene oxide) block copolymers (PSEO) and a low molecular weight liquid crystal, 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC), were investigated. A strong influence of the addition of PSEO on the morphology generated in HOBC--(diglicydyl ether of bisphenol A epoxy resin/ m-xylylenediamine) was detected, especially in the case of the addition of PSEO block copolymers with a higher PEO-block content and a lower molecular weight. The morphologies generated in the ternary systems also influenced the thermoresponsive behavior of the HOBC separated phase provoked by applying an external field, such as a temperature gradient and an electrical field. Thermal analysis of the investigated materials allowed for a better understanding of the relationships between generated morphology/thermo-optical properties/PSEO:HOBC ratio, and HOBC content. Controlling the relationship between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting materials based on a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal allows the development of materials which can find application in thermo- and in some cases electroresponsive devices, with a high contrast ratio between transparent and opaque states.
Analysis of space tug operating techniques. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1972-01-01
The design requirements for space tug systems and cost analysis of the refurbishment phases are discussed. The vehicle is an integral propulsion stage using liquid hydrogen and liquid oxygen as propellants and is capable of operating either as a fully or a partially autonomous vehicle. Structural features are an integral liquid hydrogen tank, a liquid oxygen tank, a meteoroid shield, an aft conical docking and structural support ring, and a staged combustion main engine. The vehicle is constructed of major modules for ease of maintenance. Line drawings and block diagrams are included to explain the maintenance requirements for the subsystems.
Yi, Sijing; Li, Qintang; Liu, Hongguo; Chen, Xiao
2014-10-02
Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.
Ionic Salt Effect on the Phase Transition of PS-b-P2VP Copolymers
NASA Astrophysics Data System (ADS)
Kim, Bokyung; An, Hyungju; Ryu, Du Yeol; Kim, Jehan
2009-03-01
Solid-state electrolytes have long been considered as suitable candidates owing to the simple and easy processes for rechargeable battery manufactures, compared to conventional liquid electrolyte counterparts. Especially, polymer/salt systems involving PMMA and PVP complex forms have been studied since they provide stable electrochemical characteristics as well as mechanical properties. We studied the phase behavior of PS-b-P2VP upon the salt addition by small angle x-ray scattering (SAXS) and depolarized light scattering. Transition temperatures of block copolymer were significantly influenced by the salt addition in addition to the changes of d-spacings, which is caused by the effective coordinative interaction between P2VP block and salt. This study suggests a simple approach to solid-state block copolymer electrolytes.
NASA Astrophysics Data System (ADS)
Burke, Christopher; Reddy, Abhiram; Prasad, Ishan; Grason, Gregory
Block copolymer (BCP) melts form a number of symmetric microphases, e.g. columnar or double gyroid phases. BCPs with a block composed of chiral monomers are observed to form bulk phases with broken chiral symmetry e.g. a phase of hexagonally ordered helical mesodomains. Other new structures may be possible, e.g. double gyroid with preferred chirality which has potential photonic applications. One approach to understanding chirality transfer from monomer to the bulk is to use self consistent field theory (SCFT) and incorporate an orientational order parameter with a preference for handed twist in chiral block segments, much like the texture of cholesteric liquid crystal. Polymer chains in achiral BCPs exhibit orientational ordering which couples to the microphase geometry; a spontaneous preference for ordering may have an effect on the geometry. The influence of a preference for chiral polar (vectorial) segment order has been studied to some extent, though the influence of coupling to chiral tensorial (nematic) order has not yet been developed. We present a computational approach using SCFT with vector and tensor order which employs well developed pseudo-spectral methods. Using this we explore how tensor order influences which structures form, and if it can promote chiral phases.
Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S
2016-09-29
We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.
A Hierarchy of Models for Two-Phase Flows
NASA Astrophysics Data System (ADS)
Bouchut, F.; Brenier, Y.; Cortes, J.; Ripoll, J.-F.
2000-12-01
We derive a hierarchy of models for gas-liquid two-phase flows in the limit of infinite density ratio, when the liquid is assumed to be incompressible. The starting model is a system of nonconservative conservation laws with relaxation. At first order in the density ratio, we get a simplified system with viscosity, while at the limit we obtain a system of two conservation laws, the system of pressureless gases with constraint and undetermined pressure. Formal properties of this constraint model are provided, and sticky blocks solutions are introduced. We propose numerical methods for this last model, and the results are compared with the two previous models.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.
2016-01-01
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823
In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids
NASA Astrophysics Data System (ADS)
Ou, Zihao; Shen, Bonan; Chen, Qian
We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.
Kuroda, Noritaka; Hird, Nick; Cork, David G
2006-01-01
During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.
Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.
2007-01-01
Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; ...
2016-01-28
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less
Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Banerjee, Rupak
Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not been investigated in detail. This study begins to investigate the effects of changing operating conditions on liquid water transport through the reactant channels. It has been identified that rapidly increasing temperature leads to the dry-out of the membrane and rapidly cooling the cell below 55°C results in the start of cell flooding. In changing the operating load of the PEMFC, overshoot in the pressure drop in the reactant channel has been identified for the first time as part of this investigation. A parametric study has been conducted to identify the factors which influence this overshoot behavior.
Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases
NASA Astrophysics Data System (ADS)
Shcherbina, M. A.; Chvalun, S. N.
2018-06-01
The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.
Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Bourdais, Florian, E-mail: florian.lebourdais@cea.fr; Marchand, Benoit, E-mail: florian.lebourdais@cea.fr
2015-03-31
Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of amore » newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.« less
Method for solidification of radioactive and other hazardous waste
Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny
2002-01-01
Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.
Spin-injection optical pumping of molten cesium salt and its NMR diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Kiyoshi
2015-07-15
Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that opticalmore » pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.« less
Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology
NASA Astrophysics Data System (ADS)
vanKonynenburg, Peter; Marsland, Stephen; McCoy, James
1987-11-01
A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.
Zhai, Jiali; Tran, Nhiem; Sarkar, Sampa; Fong, Celesta; Mulet, Xavier; Drummond, Calum J
2017-03-14
We report here the lyotropic liquid crystalline phase behavior of two lipid nanoparticulate systems containing mixtures of monoolein, capric acid, and saturated diacyl phosphatidylcholines dispersed by the Pluronic F127 block copolymer. Synchrotron small-angle X-ray scattering (SAXS) was used to screen the phase behavior of a library of lipid nanoparticles in a high-throughput manner. It was found that adding capric acid and phosphatidylcholines had opposing effects on the spontaneous membrane curvature of the monoolein lipid layer and hence the internal mesophase of the final nanoparticles. By varying the relative concentration of the three lipid components, we were able to establish a library of nanoparticles with a wide range of mesophases including at least the inverse bicontinuous primitive and double diamond cubic phases, the inverse hexagonal phase, the fluid lamellar phase, and possibly other phases. Furthermore, the in vitro cytotoxicity assay showed that the endogenous phospholipid-containing nanoparticles were less toxic to cultured cell lines compared to monoolein-based counterparts, improving the potential of the nonlamellar lipid nanoparticles for biomedical applications.
Liquid crystalline order in mucus
NASA Technical Reports Server (NTRS)
Viney, C.; Huber, A. E.; Verdugo, P.
1993-01-01
Mucus plays an exceptionally wide range of important biological roles. It operates as a protective, exchange, and transport medium in the digestive, respiratory, and reproductive systems of humans and other vertebrates. Mucus is a polymer hydrogel. It is secreted as discrete packages (secretory granules) by specialized secretory cells. Mucus hydrogel is stored in a condensed state inside the secretory granules. Depending upon the architecture of their constituent macromolecules and on the composition of the solvent, polymer gels can form liquid crystalline microstructures, with orientational order being exhibited over optically resolvable distances. Individual mucin molecules consist of alternating rigid segments (heavily glycosylated; hydrophilic) and flexible segments (nonglycosylated; hydrophobic). Polymer molecules consisting of rigid units linked by flexible spacers are frequently associated with liquid crystalline behavior, which again raises the possibility that mucus could form anisotropic fluid phases. Suggestions that mucins may be self-associating in dilute solution have previously been challenged on the basis of sedimentation-equilibrium studies performed on mucus in which potential sites of association were competitively blocked with inhibitors. However, the formation of stable liquid crystalline phases does not depend on the existence of inter- or intramolecular associations; these phases can form on the basis of steric considerations alone.
Bioinspired mineralization of inorganics from aqueous media controlled by synthetic polymers.
Gorna, Katarzyna; Muñoz-Espí, Rafael; Gröhn, Franziska; Wegner, Gerhard
2007-02-12
The formation of inorganic structures in nature is commonly controlled by biogenic macromolecules. The understanding of mineralization phenomena and the nucleation and growth mechanisms involved is still a challenge in science but also of great industrial interest. This article focuses on the formation and mineralization of two archetypical inorganic materials: zinc oxide and amorphous calcium carbonate (ACC). Zinc oxide is selected as a model compound to investigate the role that polymers play in mineralization. Most of the effort has been devoted to the investigation of the effects of double-hydrophilic block and graft copolymers. Recent work has demonstrated that latex particles synthesized by miniemulsion polymerization, properly functionalized by various chemical groups, have similar effects to conventional block copolymers and are excellently suited for morphology control of ZnO crystals. Latex particles might serve as analogues of natural proteins in biomineralization. The second example presented, ACC, addresses the issue of whether this amorphous phase is an intermediate in the biomineralization of calcite, vaterite, or aragonite. Conditions under which amorphous calcium carbonate can be obtained as nanometer-sized spheres as a consequence of a liquid-liquid phase segregation are presented. Addition of specific block copolymers allows control of the particle size from the micrometer to the submicrometer length scale. The physical properties of novel materials synthesized from concentrated solution and their potential applications as a filler of polymers are also discussed.
Block copolymers from ionic liquids for the preparation of thin carbonaceous shells
Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang
2017-01-01
This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials. PMID:28904612
Block copolymers from ionic liquids for the preparation of thin carbonaceous shells.
Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Zentel, Rudolf
2017-01-01
This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO 2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO 2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.
NASA Astrophysics Data System (ADS)
Huyakorn, P. S.; Panday, S.; Wu, Y. S.
1994-06-01
A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Zhang, Yuehong; Rios, Orlando
The increasing demand for intelligent materials has driven the development of polymers with a variety of functionalities. However, combining multiple functionalities within one polymer is still challenging because of the difficulties encountered in coordinating different functional building blocks during fabrication. In this work, we demonstrate the fabrication of a multifunctional liquid crystalline epoxy network (LCEN) using the combination of thermotropic liquid crystals, photo-responsive azobenzene molecules, and exchangeable disulfide bonds. In addition to shape memory behavior enabled by the reversible liquid crystalline phase transition and photo-induced bending behavior resulting from the photo-responsive azobenzene molecules, the introduction of dynamic disulfide bonds intomore » the LCEN resulted in a structurally dynamic network, allowing the reshaping, repairing, and recycling of the material.« less
Zeeb, Mohsen; Mirza, Behrooz
2015-04-30
Carvedilol belongs to a group of medicines termed non-selective beta-adrenergic blocking agents. In the presented approach, a practical and environmentally friendly microextraction method based on the application of ionic liquids (ILs) was followed by fluorescence spectrometry for trace determination of carvedilol in pharmaceutical and biological media. A rapid and simple ionic liquid phase microextraction was utilized for preconcentration and extraction of carvedilol. A hydrophobic ionic liquid (IL) was applied as a microextraction solvent. In order to disperse the IL through the aqueous media and extract the analyte of interest, IL was injected into the sample solution and a proper temperature was applied and then for aggregating the IL-phase, the sample was cooled in an ice water-bath. The aqueous media was centrifuged and IL-phase collected at the bottom of the test tube was introduced to the micro-cell of spectrofluorimeter, in order to determine the concentration of the enriched analyte. Main parameters affecting the accuracy and precision of the proposed approach were investigated and optimized values were obtained. A linear response range of 10-250 μg I(-1) and a limit of detection (LOD) of 1.7 μg I(-1) were obtained. Finally, the presented method was utilized for trace determination of carvedilol in commercial pharmaceutical preparations and biological media.
Thermal convection of liquid metal in the titanium reduction reactor
NASA Astrophysics Data System (ADS)
Teimurazov, A.; Frick, P.; Stefani, F.
2017-06-01
The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.
Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis
NASA Astrophysics Data System (ADS)
Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline
2015-04-01
Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase of the total quantity of amino acids after acid hydrolysis, due to the formation/release of amino acids during the whole water extraction / liquid-phase acid hydrolysis, could have hidden a loss of amino acids. Thus, in extraterrestrial material studies involving liquid-phase acid hydrolysis, the quantities of total amino acids may have been underestimated.
NASA Astrophysics Data System (ADS)
Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan
2016-06-01
In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.
Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.
Iliev, Stanimir; Pesheva, Nina
2016-06-01
We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.
Efficient image projection by Fourier electroholography.
Makowski, Michał; Ducin, Izabela; Kakarenko, Karol; Kolodziejczyk, Andrzej; Siemion, Agnieszka; Siemion, Andrzej; Suszek, Jaroslaw; Sypek, Maciej; Wojnowski, Dariusz
2011-08-15
An improved efficient projection of color images is presented. It uses a phase spatial light modulator with three iteratively optimized Fourier holograms displayed simultaneously--each for one primary color. This spatial division instead of time division provides stable images. A pixelated structure of the modulator and fluctuations of liquid crystal molecules cause a zeroth-order peak, eliminated by additional wavelength-dependent phase factors shifting it before the image plane, where it is blocked with a matched filter. Speckles are suppressed by time integration of variable speckle patterns generated by additional randomizations of an initial phase and minor changes of the signal. © 2011 Optical Society of America
Paired-ion chromatography and high performance liquid chromatography of labetalol in feeds.
Townley, E R; Ross, B
1980-11-01
A high performance liquid chromatographic (HPLC) method using reverse phase paired-ion chromatography and ultraviolet detection at 280 nm has been developed to determine labetalol, an alpha and beta adrenoceptor blocking agent, in Purina No. 5001 rodent chow. The method is simple and rapid, and demonstrates a separation technique applicable to other acidic and basic drugs. It requires only extraction of the drug with methanol--water--acetic acid (66 + 33 + 1) and separation of insoluble material by filtration before HPLC. Labetalol, is chromatographically separated from soluble feed components by means of a microBondapak C18 column and methanol--water--acetic acid (66 + 33 + 1) mobile phase, 0.005M with respect to sodium dioctylsulfosuccinate paired-ion reagent. Average recovery is 98.7% with a relative standard deviation of +/- 2.3% for the equipment described.
Ubeda-Torres, M T; Ortiz-Bolsico, C; García-Alvarez-Coque, M C; Ruiz-Angel, M J
2015-02-06
In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 β-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks
NASA Astrophysics Data System (ADS)
Taylor, Shannon L.; Jakus, Adam E.; Koube, Katie D.; Ibeh, Amaka J.; Geisendorfer, Nicholas R.; Shah, Ramille N.; Dunand, David C.
2018-02-01
The development of in situ fabrication methods for the infrastructure required to support human life on the Moon is necessary due to the prohibitive cost of transporting large quantities of materials from the Earth. Cellular structures, consisting of a regular network (truss) of micro-struts with ∼500 μm diameters, suitable for bricks, blocks, panels, and other load-bearing structural elements for habitats and other infrastructure are created by direct-extrusion 3D-printing of liquid inks containing JSC-1A lunar regolith simulant powders, followed by sintering. The effects of sintering time, temperature, and atmosphere (air or hydrogen) on the microstructures, mechanical properties, and magnetic properties of the sintered lunar regolith micro-trusses are investigated. The air-sintered micro-trusses have higher relative densities, linear shrinkages, and peak compressive strengths, due to the improved sintering of the struts within the micro-trusses achieved by a liquid or glassy phase. Whereas the hydrogen-sintered micro-trusses show no liquid-phase sintering or glassy phase, they contain metallic iron 0.1-2 μm particles from the reduction of ilmenite, which allows them to be lifted with magnets.
Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid
NASA Astrophysics Data System (ADS)
Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.
2017-03-01
Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier.
Cleaveland, S.; Barrat, J.; Barrat, M. J.; Selve, M.; Kaare, M.; Esterhuysen, J.
1999-01-01
During a serosurvey of domestic dogs in Tanzania, a rapid fluorescent focus inhibition test (RFFIT) and a liquid-phase blocking ELISA (LPBE) were used to measure rabies antibodies in vaccinated and unvaccinated dogs. Post-vaccination titres measured by LPBE correlated closely with those found by RFFIT. Of 567 unvaccinated dogs tested using the LPBE, 42 (7.4%) were seropositive, with titres exceeding 32. Of this group, 233 dogs were tested using the RFFIT and 115 (49.4%) were seropositive, with titres exceeding 0.5 IU/ml. Two lines of evidence pointed to the greater specificity of the LPBE when measuring rabies antibodies induced by natural infections: (a) no seropositive dogs were detected among the 162 unvaccinated dogs from the rabies-free island of Pemba, Tanzania, when using LPBE, whereas 15/145 (10.3%) dogs of the same group were seropositive using RFFIT; (b) among Tanzanian dogs there was a close association between the location of rabies cases and location of seropositive dogs when using LPBE, but not when using RFFIT. These results suggest that LPBE may be of value in rabies seroepidemiological studies and could be developed as a reference technique for the detection of rabies antibody in domestic dogs. PMID:10487652
31 CFR 537.209 - Expenses of maintaining blocked property; liquidation of blocked account.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Expenses of maintaining blocked property; liquidation of blocked account. 537.209 Section 537.209 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY...
31 CFR 537.209 - Expenses of maintaining blocked property; liquidation of blocked account.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Expenses of maintaining blocked property; liquidation of blocked account. 537.209 Section 537.209 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY...
Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J
2012-07-16
Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains
NASA Astrophysics Data System (ADS)
Mandare, Prashant N.
2007-12-01
Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.
Cooling apparatus and couplings therefor
NASA Technical Reports Server (NTRS)
Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)
1993-01-01
The present invention relates generally to the field of thermal transfer and, more specifically, to a direct-interface, fusible heat sink for non-venting, regenerable, and self-contained thermal regulation. A quick connect coupling includes a male and a female portion. The female portion is frozen in a container of solid-phase coolant fluid, i.e., water, so that passages in the housing are blocked by ice initially. The ice is melted by direct interface with liquid coolant fluid delivered from the male portion. The present invention has advantages in that the phase change material remains sealed at all times, including during regeneration. Also, it uses quick-disconnect couplings that allow the phase change material to completely fill the container and is easily handled in microgravity without spills, leakage, or handling of phase change material.
Fate and Transport of TCE Solvents Through Saturated Karst Aquifer
NASA Astrophysics Data System (ADS)
Padilla, I. Y.; Carmona, M.; Anaya, A. A.
2014-12-01
Dense Nonaqueous-Phase Liquids (DNAPLs) are a group of organic compounds that have been a serious problem for groundwater pollution in karst. The industrial production and utilization of these chemicals spread since 1940, and are present at tens of thousands of contaminated sites worldwide. The physic-chemical properties of DNAPLs in conjunction with the hydraulic properties of the karst systems create the perfect condition for DNAPLs to penetrate the epikarst, reach the groundwater, and more within the karst system to zones of potential exposure, such as wells, streams and wetlands. Trichloroethylene (TCE) is the most common DNPAL found in the subsurface environment. This research studies the fate and transport of TCE DNAPL in a karstified limestone physical model (KLPM). Experiments are carried out in KLPM. The KLPM is an enclosed stainless steel tank packed with a rectangular limestone block (15cm x 15cm x 76cm) that simulates a saturated confine karst aquifer. DNAPL experiment involve the injection of 40 ml of pure TCE into steady groundwater flow at the upstream boundary of the KLPM model, while sampling spatially and temporally along the block. Samples are analyzed for TCE on the pure and dissolved phase. Pure TCE is analyzed volumetrically and dissolved phase concentrations are analyze using a High Performance Liquid Chromatography (HPLC). TCE data is used to construct temporal distributions curves (TDCs) at different spatial locations. Results show that pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port and along preferential flow paths. TCE concentration TDCs show spatial variations related to the limestone block heterogeneously. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response and long tailing of TCE of TCE concentration are associated with diffusive transport in rock matrix and mass transport rates limitations. Bimodal distributions are associated with multiple flow path connectivity. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase. Response times to TCE concentrations depend on the mode of transport, and region of flow paths.
A new lumped-parameter approach to simulating flow processes in unsaturated dual-porosity media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.
We have developed a new lumped-parameter dual-porosity approach to simulating unsaturated flow processes in fractured rocks. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but unlike the Warren-Root equation, is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module, compatible with the TOUGH simulator, to serve as a source/sink term for fracture elements.more » The new approach achieves accuracy comparable to simulations in which the matrix blocks are discretized, but typically requires an order of magnitude less computational time.« less
Critical fluid thermal equilibration experiment (19-IML-1)
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
1992-01-01
Gravity sometimes blocks all experimental techniques of making a desired measurement. Any pure fluid possesses a liquid-vapor critical point. It is defined by a temperature, pressure, and density state in thermodynamics. The critical issue that this experiment attempts to understand is the time it takes for a sample to reach temperature and density equilibrium as the critical point is approached; is it infinity due to mass and thermal diffusion, or do pressure waves speed up energy transport while mass is still under diffusion control. The objectives are to observe: (1) large phase domain homogenization without and with stirring; (2) time evolution of heat and mass after temperature step is applied to a one phase equilibrium sample; (3) phase evolution and configuration upon going two phase from a one phase equilibrium state; (4) effects of stirring on a low g two phase configuration; (5) two phase to one phase healing dynamics starting from a two phase low g configuration; and (6) effects of shuttle acceleration events on spatially and temporally varying compressible critical fluid dynamics.
40 CFR Table 2 to Subpart Jjjjj of... - Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Kiln equipped with a WS a. Maintain the average scrubber pressure drop for each 3-hour block period at... average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test; and c. Maintain the average scrubber liquid flow rate for each 3-hour...
40 CFR Table 2 to Subpart Jjjjj of... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Kiln equipped with a WS a. Maintain the average scrubber pressure drop for each 3-hour block period at... average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test; and c. Maintain the average scrubber liquid flow rate for each 3-hour...
NASA Technical Reports Server (NTRS)
2004-01-01
Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.
High-concentration graphene dispersion stabilized by block copolymers in ethanol.
Perumal, Suguna; Lee, Hyang Moo; Cheong, In Woo
2017-07-01
This article describes a comprehensive study for the preparation of graphene dispersions by liquid-phase exfoliation using amphiphilic diblock copolymers; poly(ethylene oxide)-block-poly(styrene) (PEO-b-PS), poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-PVP), and poly(ethylene oxide)-block-poly(pyrenemethyl methacrylate) (PEO-b-PPy) with similar block lengths. Block copolymers were prepared from PEO using the Steglich coupling reaction followed by reversible addition-fragmentation chain transfer (RAFT) polymerization. Graphite platelets (G) and reduced graphene oxide (rGO) were used as graphene sources. The dispersion stability of graphene in ethanol was comparatively investigated by on-line turbidity, and the graphene concentration in the dispersions was determined gravimetrically. Our results revealed that the graphene dispersions with PEO-b-PVP were much more stable and included graphene with fewer defects than that with PEO-b-PS or PEO-b-PPy, as confirmed by turbidity and Raman analyses. Gravimetry confirmed that graphene concentrations up to 1.7 and 1.8mg/mL could be obtained from G and rGO dispersions, respectively, using PEO-b-PVP after one week. Distinctions in adhesion forces of PS, VP, PPy block units with graphene surface and the variation in solubility of the block copolymers in ethanol medium significantly affected the stability of the graphene dispersion. Copyright © 2017 Elsevier Inc. All rights reserved.
40 CFR Table 8 to Subpart Sssss of... - Continuous Compliance with Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... subpart; andii. Reducing the scrubber pressure drop data to 1-hour and 3-hour block averages; and iii.... Reducing the scrubber liquid pH data to 1-hour and 3-hour block averages; and iii. Maintaining the 3-hour... subpart; andii. Reducing the scrubber liquid flow rate data to 1-hour and 3-hour block averages; and iii...
Hydration effects on the electronic properties of eumelanin building blocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assis Oliveira, Leonardo Bruno; Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO; Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO
2016-08-28
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in themore » electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.« less
Hydration effects on the electronic properties of eumelanin building blocks.
Assis Oliveira, Leonardo Bruno; L Fonseca, Tertius; Costa Cabral, Benedito J; Coutinho, Kaline; Canuto, Sylvio
2016-08-28
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.
Hydration effects on the electronic properties of eumelanin building blocks
NASA Astrophysics Data System (ADS)
Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio
2016-08-01
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.
A new lumped-parameter model for flow in unsaturated dual-porosity media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Robert W.; Hadgu, Teklu; Bodvarsson, Gudmundur S.
A new lumped-parameter approach to simulating unsaturated flow processes in dual-porosity media such as fractured rocks or aggregated soils is presented. Fluid flow between the fracture network and the matrix blocks is described by a non-linear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. Unlike a Warren-Root-type equation, this equation is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into an existing unsaturated flow simulator, to serve as a source/sink term for fracture gridblocks. Flow processes are then simulated usingmore » only fracture gridblocks in the computational grid. This new lumped-parameter approach has been tested on two problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new procedure seems to accurately simulate flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks. [References: 37]« less
Crackling sound generation during the formation of liquid bridges: A lattice gas model
NASA Astrophysics Data System (ADS)
Almeida, Alexandre B.; Buldyrev, Sergey V.; Alencar, Adriano M.
2013-08-01
Due to abnormal mechanical instabilities, liquid bridges may form in the small airways blocking airflow. Liquid bridge ruptures during inhalation are the major cause of the crackling adventitious lung sound, which can be heard using a simple stethoscope. Recently, Vyshedskiy and colleagues (2009) [1] described and characterized a crackle sound originated during expiration. However, the mechanism and origin of the expiratory crackle are still controversial. Thus, in this paper, we propose a mechanism for expiratory crackles. We hypothesize that the expiratory crackle sound is a result of the energy released in the form of acoustic waves during the formation of the liquid bridge. The magnitude of the energy released is proportional to the difference in free energy prior and after the bridge formation. We use a lattice gas model to describe the liquid bridge formation between two parallel planes. Specifically, we determine the surface free energy and the conditions of the liquid bridge formation between two parallel planes separated by a distance 2h by a liquid droplet of volume Ω and contact angle Θ, using both Monte Carlo simulation of a lattice gas model and variational calculus based on minimization of the surface area with the volume and the contact angle constrained. We numerically and analytically determine the phase diagram of the system as a function of the dimensionless parameter hΩ and Θ. We can distinguish two different phases: one droplet and one liquid bridge. We observe a hysteresis curve for the energy changes between these two states, and a finite size effect in the bridge formation. We compute the release of free energy during the formation of the liquid bridge and discuss the results in terms of system size. We also calculate the force exerted from liquid bridge on the planes by studying the dependence of the free energy on the separation between the planes 2h. The simulation results are in agreement with the analytical solution.
Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.
Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan
2018-05-15
A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.
Nanoporous Gold as a Platform for a Building Block Catalyst
Wittstock, Arne; Wichmann, Andre; Baeumer, Marcus
2012-09-25
The porous bulk materials are of great interest in catalysis because they can be employed in heterogeneous gas and liquid phase catalysis, electrocatalysis, and in electrocatalytic sensing. Nanoporous gold gained considerable attraction in this context because it is the prime example of a corrosion-derived nanoporous bulk metal. Moreover, the material was shown to be a very active and selective Au type catalyst for a variety of oxidation reactions. In leveraging the functionalization of the surface of the material with various additives, its catalytic applications can be extended and tuned. In this review, we will summarize recent developments in using nanoporousmore » gold as the platform for the development of high performance catalytic materials by adding metals, metal oxides, and molecular functionalities as building blocks.« less
Smectic phase in suspensions of gapped DNA duplexes
Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; ...
2016-11-15
Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, in spite of the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue thatmore » this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. These results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals.« less
Schaer, S; Herrli-Gygi, M; Kosmeas, N; Boschung, H; Steiner, A
2005-09-01
Abomasal emptying plays an important role in the incidence of digestive problems in calves. Our aim was to evaluate the acetaminophen absorption test (APAT) for characterization of the oroduodenal transit (ODT) of liquid meals in unweaned calves. Six healthy, unweaned Simmental x Red Holstein crossbred calves were involved in the project. The study was performed in three blocks at 3, 6 and 9 weeks of the calves' age. Within blocks, APAT was performed twice at an interval of at least 24 h. Once per each block, liquid transit was carried out with non-coagulating electrolyte solution (NES). The second test within a block was performed either while atropine sulphate was administered (block I), or by feeding a coagulating milk replacer (block II), or by administration of NES by ruminal tube (block III). Data were compared within and among blocks. Significant differences of several APAT traits were present for the different types of feeding, the different types of meals, the administration of atropine sulphate and the different ages of the calves. The emptying index T(max)/C(max) was suggested to be a valuable kinetic parameter for the characterization of ODT in these calves. We conclude that APAT represents a valid technique for characterization of ODT of liquid meals in healthy unweaned calves and may be a valuable tool for the evaluation of the reticular groove mechanism, the abomasal emptying and the absorption capacity of the duodenum.
NASA Astrophysics Data System (ADS)
Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun
2013-01-01
Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33188h
Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang
2017-10-13
Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Hofman, Anton H; Reza, Mehedi; Ruokolainen, Janne; Ten Brinke, Gerrit; Loos, Katja
2017-09-01
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chandler, Curran Matthew
Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts -- the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-bisoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2--3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern transfer template. In this scenario, block copolymer thin films on domain thick with self-assembled feature sizes of only 6--7 nm were used as plasma etch resists. Here the block copolymer's pattern was successfully transferred into the underlying SiO2 substrate using CF4--based reactive ion etching. The result was a parallel, cylindrical nanostructure etched into SiO2.
Method for Predicting Hypergolic Mixture Flammability Limits
2017-02-01
liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition and the interactions...of what happens in the liquid phase, in the gas phase, at the liquid / liquid interface and at the gas / liquid interface during hypergolic ignition...and the interactions of all these phases. The ignition happens in the gas -phase but products formed here and there (in the liquid phase or at
NASA Astrophysics Data System (ADS)
Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R.; Bergström, Lennart
2013-04-01
This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.
Faure, Bertrand; Salazar-Alvarez, German; Ahniyaz, Anwar; Villaluenga, Irune; Berriozabal, Gemma; De Miguel, Yolanda R; Bergström, Lennart
2013-01-01
This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed. PMID:27877568
Fabrication of metal nanoelectrodes by interfacial reactions.
Zhu, Xinyu; Qiao, Yonghui; Zhang, Xin; Zhang, Sensen; Yin, Xiaohong; Gu, Jing; Chen, Ye; Zhu, Zhiwei; Li, Meixian; Shao, Yuanhua
2014-07-15
Despite great improvements in the past decades, the controllable fabrication of metal nanoelectrodes still remains very challenging. In this work, a simple and general way to fabricate metal nanoelectrodes (Ag, Au, and Pt) is developed. On the basis of interfacial reactions at nano-liquid/liquid interfaces supported at nanopipettes, the nanoparticles can be formed in situ and have been used to block the orifices of pipettes to make nanoelectrodes. The effect of the driving force for interfacial reaction at the liquid/liquid interface, the ratio of redox species in organic and aqueous phases, and the surface charge of the inner wall of a pipette have been studied. The fabricated nanoelectrodes have been characterized by scanning electron microscopy (SEM) and electrochemical techniques. A silver electrode with about 10 nm in radius has been employed as the scanning electrochemical microscopy (SECM) probe to explore the thickness of a water/nitrobenzene (W/NB) interface, and this value is equal to 0.8 ± 0.1 nm (n = 5). This method of fabrication of nanoelectrodes can be extended to other metal or semiconductor electrodes.
Huber, Patrick
2015-03-18
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
NASA Astrophysics Data System (ADS)
Huber, Patrick
2015-03-01
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
Merrill, John T.
1984-01-01
A liquid blocking check valve useful particularly in a pneumatic system utilizing a pressurized liquid fill chamber. The valve includes a floatable ball disposed within a housing defining a chamber. The housing is provided with an inlet aperture disposed in the top of said chamber, and an outlet aperture disposed in the bottom of said chamber in an offset relation to said inlet aperture and in communication with a cutaway side wall section of said housing.
Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds
Rios, Orlando; Chen, Jihua; Li, Yuzhan; ...
2016-06-01
Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. Lastly, all three functionalmore » building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively.« less
Sharma, Kamendra P; Zhang, Yixiong; Thomas, Michael R; Brogan, Alex P S; Perriman, Adam W; Mann, Stephen
2014-10-02
An anisotropic glucose oxidase-polymer surfactant nanoconjugate is synthesized and shown to exhibit complex temperature-dependent phase behavior in the solvent-free state. At close to room temperature, the nanoconjugate crystallizes as a mesolamellar soft solid with an expanded interlayer spacing of ca. 12 nm and interchain correlation lengths consistent with alkyl tail-tail and PEO-PEO ordering. The soft solid displays a birefringent spherulitic texture and melts at 40 °C to produce a solvent-free liquid protein without loss of enzyme secondary structure. The nanoconjugate melt exhibits a birefringent dendritic texture below the conformation transition temperature (Tc) of glucose oxidase (58 °C) and retains interchain PEO-PEO ordering. Our results indicate that the shape anisotropy of the protein-polymer surfactant globular building block plays a key role in directing mesolamellar formation in the solvent-free solid and suggests that the microstructure observed in the solvent-free liquid protein below Tc is associated with restrictions in the intramolecular motions of the protein core of the nanoconjugate.
Monte Carlo simulation of liquid bridge rupture: Application to lung physiology
NASA Astrophysics Data System (ADS)
Alencar, Adriano M.; Wolfe, Elie; Buldyrev, Sergey V.
2006-08-01
In the course of certain lung diseases, the surface properties and the amount of fluids coating the airways changes and liquid bridges may form in the small airways blocking the flow of air, impairing gas exchange. During inhalation, these liquid bridges may rupture due to mechanical instability and emit a discrete sound event called pulmonary crackle, which can be heard using a simple stethoscope. We hypothesize that this sound is a result of the acoustical release of energy that had been stored in the surface of liquid bridges prior to its rupture. We develop a lattice gas model capable of describing these phenomena. As a step toward modeling this process, we address a simpler but related problem, that of a liquid bridge between two planar surfaces. This problem has been analytically solved and we use this solution as a validation of the lattice gas model of the liquid bridge rupture. Specifically, we determine the surface free energy and critical stability conditions in a system containing a liquid bridge of volume Ω formed between two parallel planes, separated by a distance 2h , with a contact angle Θ using both Monte Carlo simulation of a lattice gas model and variational calculus based on minimization of the surface area with the volume and the contact angle constraints. In order to simulate systems with different contact angles, we vary the parameters between the constitutive elements of the lattice gas. We numerically and analytically determine the phase diagram of the system as a function of the dimensionless parameters hΩ-1/3 and Θ . The regions of this phase diagram correspond to the mechanical stability and thermodynamical stability of the liquid bridge. We also determine the conditions for the symmetrical versus asymmetrical rupture of the bridge. We numerically and analytically compute the release of free energy during rupture. The simulation results are in agreement with the analytical solution. Furthermore, we discuss the results in connection to the rupture of similar bridges that exist in diseased lungs.
NASA Astrophysics Data System (ADS)
Gin, Douglas
2003-03-01
The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for tailoring the nanoscale chemical environment and architecture of these materials through molecular design will be presented. Finally, the development of methods for controlling macroscopic orientation through processing will also be discussed.
Greer, Derek; Pfahl, Les; Rieck, Jim; Daniels, Tim; Garza, Oscar
2008-10-08
This research studied a novel form of distillation (high vacuum distillation) as a method for preserving volatile aroma chemicals important to the organoleptic attributes of a four botanical model gin as well as the degradation products generated during the heating required in traditional methods of gin distillation. A 2 (5) factorial experiment was conducted in a partially confounded incomplete block design and analyzed using the PROC MIXED procedure from SAS. A model gin was made of dried juniper berries (Juniperus communis), coriander seed (Coriandrum sativum), angelica root (Angelica archangelica), and dry lemon peel (Citrus limonum). This was distilled on a traditional still utilizing atmospheric pressure and a heating mantel to initiate phase separation as well as a novel still (high vacuum) utilizing high vacuum pressures below 0.1 mmHg and temperatures below -15 degrees C to initiate phase separation. The degradation products (alpha-pinene, alpha-phellandrene, E-caryophyllene, and beta-myrcene) were present at greater levels (approximately 10 times) in the traditional still-made gin as compared to the novel gin.
Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui; ...
2017-10-07
The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less
NASA Astrophysics Data System (ADS)
Wells, Gary; Ledesma-Aguillar, Ridrigo; McHale, Glen; Sefiane, Khellil
2015-11-01
The Leidenfrost effect, the sustained levitation of evaporating liquid droplets by a cushion of their on vapour on very hot surfaces, has received increased attention over the past few years. On patterned surfaces, rectification of the vapour layer flow can lead to rich dynamics of evaporating drops or sublimating blocks of dry ice, including self-propulsion, orbiting and conjoint rotation. In this paper we show that the Leidenfrost effect can be exploited to drive the rotation of rigid objects, such as solid hydrophilic plates coupled to water droplets and blocks of dry ice, by using turbine-like substrates. Using a hydrodynamic model, we show that drag-based rotation is achieved at low-Reynolds number by a rectification mechanism of the flow in the vapour layer caused by the underlying turbine-like geometry. Our theoretical model determines the maximum weight of Leidenfrost rotors and the net torque driving their motion in terms of operational parameters, showing an excellent agreement with experiments using dry-ice blocks. We generalise the concept of rotation into a new concept for a heat engine capable of harvesting thermal energy using either thin-film boiling or sublimation as a phase-change mechanism. As a proof principle, we implement the new sublimation engine in the lab to create a simple electromagnetic generator. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.
40 CFR Table 2 to Subpart Kkkkk of... - Operating Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Maintain the average scrubber pressure drop for each 3-hour block period at or above the average pressure drop established during the performance test; andb. Maintain the average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test...
Mechanism for detecting NAPL using electrical resistivity imaging.
Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark
2017-10-01
The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
Foamed emulsion drainage: flow and trapping of drops.
Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina
2017-06-07
Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.
Chirality-selected phase behaviour in ionic polypeptide complexes
Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...
2015-01-14
In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less
Liquid Crystals in Chromatography
NASA Astrophysics Data System (ADS)
Witkiewicz, Zygfryd
The following sections are included: * INTRODUCTION * LIQUID CRYSTALS SUITABLE FOR GAS CHROMATOGRAPHY * Monomeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Conventional Analytical Columns * Capillary Columns * FACTORS AFFECTING THE CHROMATOGRAPHIC SEPARATIONS ON LIQUID CRYSTAL STATIONARY PHASES * Kind of Mesophase of the Liquid Crystal * Molecular Structure of the Liquid Crystals and of the Chromatographed Substances * Substrate on which the Liquid Crystal is Deposited * ANALYTICAL APPLICATIONS OF LIQUID CRYSTAL STATIONARY PHASES IN GAS CHROMATOGRAPHY * Separation of Isomers of Benzene and Naphthalene Derivatives * Separation of Alkane and Alkene Isomers * Separation of Mixtures of Benzene and Aliphatic Hydrocarbon Derivatives Containing Heteroatoms * Separation of Polynuclear Hydrocarbons * INVESTIGATION OF THE PROPERTIES OF LIQUID CRYSTALS BY GAS CHROMATOGRAPHY * APPLICATION OF LIQUID CRYSTALS IN LIQUID CHROMATOGRAPHY * Column Chromatography * Thin-Layer Chromatography * APPLICATION OF LIQUID CRYSTAL STATIONARY PHASES IN SUPERCRITICAL FLUID CHROMATOGRAPHY * FINAL REMARKS * References
Nanoporous Films with Sub-10 nm in Pore Size from Acid-Cleavable Block Copolymers.
Li, Yayuan; Xu, Yawei; Cao, Shubo; Zhao, Yongbin; Qu, Ting; Iyoda, Tomokazu; Chen, Aihua
2017-03-01
Nanoporous thin films with pore size of sub-10 nm are fabricated using an acid-cleavable block copolymer (BCP), a benzoic imine junction between poly(ethylene oxide) (PEO) and poly(methacrylate) (PMAAz) bearing an azobenzene side chain (denoted as PEO-bei-PMAAz) as the precursor. After a thermal annealing, the block copolymers are self-assembled to form highly ordered PEO cylinders within a PMAAz matrix normal to the film, even in the case of low BCP molecular weight due to the existing of the liquid crystalline (LC) azobenzene rigid segment. Thus, PMAAz thin films with pore size of ≈7 nm and density of ≈10 12 cm -2 are obtained after removal of the PEO minor phase by breaking the benzoic imine junction under mild acidic conditions. This work enriches the nanoporous polymer films from BCP precursors and introduces the LC property as a functionality which can further enhance the mechanical properties of the films and broaden their applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hudson, Zachary M.; Boott, Charlotte E.; Robinson, Matthew E.; Rupar, Paul A.; Winnik, Mitchell A.; Manners, Ian
2014-10-01
Recent advances in the self-assembly of block copolymers have enabled the precise fabrication of hierarchical nanostructures using low-cost solution-phase protocols. However, the preparation of well-defined and complex planar nanostructures in which the size is controlled in two dimensions (2D) has remained a challenge. Using a series of platelet-forming block copolymers, we have demonstrated through quantitative experiments that the living crystallization-driven self-assembly (CDSA) approach can be extended to growth in 2D. We used 2D CDSA to prepare uniform lenticular platelet micelles of controlled size and to construct precisely concentric lenticular micelles composed of spatially distinct functional regions, as well as complex structures analogous to nanoscale single- and double-headed arrows and spears. These methods represent a route to hierarchical nanostructures that can be tailored in 2D, with potential applications as diverse as liquid crystals, diagnostic technology and composite reinforcement.
1995-04-17
KENNEDY SPACE CENTER, FLA. - A Space Shuttle Main Engine (SSME) hoist prepares to lift the first Block 1 engine to be installed in an orbiter into the number one position on Discovery while the spaceplane is being prepared for the STS-70 mission in the high bay of Orbiter Processing Facility 2. The new engine, SSME No. 2036, features a new high-pressure liquid oxygen turbopump, a two-duct powerhead, a baffleless main injector, a single-coil heat exchanger and start sequence modifications. The other two main engines to be used during the liftoff of the STS-70 mission are of the existing Phase II design.
Siriwardana, Gamini; Seligman, Paul A
2013-12-01
Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.
31 CFR 588.205 - Expenses of maintaining blocked property; liquidation of blocked account.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WESTERN BALKANS STABILIZATION REGULATIONS Prohibitions § 588.205 Expenses of maintaining blocked property... license or permit granted before 12:01 a.m., eastern daylight time, June 27, 2001, all expenses incident...
Lu, Haiyun; Lee, Dong Hyun; Russell, Thomas P
2010-11-16
Highly ordered and stable micelles formed from both symmetric and asymmetric block copolymers of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) at the Si-ionic liquid (IL) interface have been investigated by scanning force microscopy (SFM) and transmission electron microscopy (TEM). The 1-butyl-3-methylimidazolium trifluoromethanesulfonate IL, a selective and temperature-tunable solvent for the P2VP block, was used and gave rise to block copolymer micelles having different morphologies that strongly depended on the annealing temperature. The effects of film thickness, molecular weight of block copolymers, and experimental conditions, such as preannealing, rinsing, and substrate properties, on the morphologies of block copolymer micelles were also studied. In addition, spherical micelles consisting of PS core and P2VP shell could also be obtained by core-corona inversion by annealing the as-coated micellar film in the IL at high temperatures. The possible mechanism for micelle formation is discussed.
Three-dimensional textures and defects of soft material layering revealed by thermal sublimation.
Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I; Clark, Noel A; Jung, Hee-Tae
2013-11-26
Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal.
NASA Astrophysics Data System (ADS)
Tao, Yuefei
Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous techniques have been demonstrated for classical block copolymers, the pi conjugation in the rod blocks allow for additional control mechanisms. Liquid crystals are traditionally aligned in magnetic fields. Here, it is demonstrated that if the rod-like blocks are aligned unidirectionally, the block copolymer interfaces follow to create macroscopic alignment of the nanostructures. Organic Light Emitting Diodes (OLEDs) are generally composed of electron transporting and hole transporting moieties to balance charge recombination. Here, a new multifunctional bipolar rod-coil block copolymer containing the hole transporting and electron transporting materials is synthesized. Self-assembly of this new block copolymer results in 15nm lamellae oriented in grains both parallel and perpendicula to the anode. The self-assembled block copolymer shows superior device performance to controls consisting of a luminescent, analogous homopolymer, and a blend of the two component homopolymers. The effects of the morphologies and chemical structure on photovoltaics is explored with a rod-coil block copolymer, (poly(3-hexylthiophene-b-acrylic perylene)). By varying the kinetics of self-assembly through processing, the block copolymer can be disordered, ordered with only short range registry between the nanodomains, or with long-range order. The short range ordered samples showed the best device performance suggesting that the connectivity that is a biproduct of poor order is beneficial for device performance.
Phase noise suppression for coherent optical block transmission systems: a unified framework.
Yang, Chuanchuan; Yang, Feng; Wang, Ziyu
2011-08-29
A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.
Siriwardana, Gamini; Seligman, Paul A.
2013-01-01
Abstract Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid‐G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid‐G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856
Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride.
Ahmed, Osama Abdelhakim Aly; Zidan, Ahmed Samir; Khayat, Maan
2016-01-01
The study aims at applying pharmaceutical nanotechnology and D-optimal fractional factorial design to screen and optimize the high-risk variables affecting the performance of a complex drug delivery system consisting of glimepiride-Zein nanoparticles and inclusion of the optimized formula with thermoresponsive triblock copolymers in in situ gel. Sixteen nanoparticle formulations were prepared by liquid-liquid phase separation method according to the D-optimal fractional factorial design encompassing five variables at two levels. The responses investigated were glimepiride entrapment capacity (EC), particle size and size distribution, zeta potential, and in vitro drug release from the prepared nanoparticles. Furthermore, the feasibility of embedding the optimized Zein-based glimepiride nanoparticles within thermoresponsive triblock copolymers poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) in in situ gel was evaluated for controlling glimepiride release rate. Through the systematic optimization phase, improvement of glimepiride EC of 33.6%, nanoparticle size of 120.9 nm with a skewness value of 0.2, zeta potential of 11.1 mV, and sustained release features of 3.3% and 17.3% drug released after 2 and 24 hours, respectively, were obtained. These desirability functions were obtained at Zein and glimepiride loadings of 50 and 75 mg, respectively, utilizing didodecyldimethylammonium bromide as a stabilizer at 0.1% and 90% ethanol as a common solvent. Moreover, incorporating this optimized formulation in triblock copolymers-based in situ gel demonstrated pseudoplastic behavior with reduction of drug release rate as the concentration of polymer increased. This approach to control the release of glimepiride using Zein nanoparticles/triblock copolymers-based in situ gel forming intramuscular implants could be useful for improving diabetes treatment effectiveness.
Umapathi, Reddicherla; Venkatesu, Pannuru
2017-01-01
Different biophysical techniques such as fluorescence spectroscopy, dynamic light scattering (DLS), viscosity (η) and Fourier transform infrared (FTIR) spectroscopy have been carried out to characterize the effect of imidazolium-based ionic liquids (ILs) on the thermo-responsive triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly-(ethylene glycol) (PEG-PPG-PEG). In addition, to demonstrate the distinct morphological changes of various self-assembled morphologies, we further employed field emission scanning electron microscope (FESEM). To investigate the effect of alkyl chain length of the cation, concentration of the ILs and the related Hofmeister series on the phase behaviour of PEG-PPG-PEG, we used a series of ILs possessing same Cl - anion and a set of cation [C n mim] + with increasing alkyl chain length of cation such as 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]) and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]). The critical micellization temperature (CMT) of the copolymer in the presence of well hydrated cations is directly correlated to their hydration. The overall specific ranking of ILs in decreasing the CMT of PEG-PPG-PEG in aqueous solution was [Emim][Cl]>[Bmim][Cl]>[Hmim][Cl]>[Dmim][Cl]. The trend of these ILs followed the well-known Hofmeister series of cations of ILs. The present study provides important information about the solution properties that can be helpful to tune the IL or temperature-sensitive copolymer CMT and micelle shapes which are crucial for understanding the drug delivery mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao; ...
2016-08-30
Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubblemore » evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao
Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubblemore » evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.« less
NASA Astrophysics Data System (ADS)
Xu, Fei; Zhang, Yaning; Jin, Guangri; Li, Bingxi; Kim, Yong-Song; Xie, Gongnan; Fu, Zhongbin
2018-04-01
A three-phase model capable of predicting the heat transfer and moisture migration for soil freezing process was developed based on the Shen-Chen model and the mechanisms of heat and mass transfer in unsaturated soil freezing. The pre-melted film was taken into consideration, and the relationship between film thickness and soil temperature was used to calculate the liquid water fraction in both frozen zone and freezing fringe. The force that causes the moisture migration was calculated by the sum of several interactive forces and the suction in the pre-melted film was regarded as an interactive force between ice and water. Two kinds of resistance were regarded as a kind of body force related to the water films between the ice grains and soil grains, and a block force instead of gravity was introduced to keep balance with gravity before soil freezing. Lattice Boltzmann method was used in the simulation, and the input variables for the simulation included the size of computational domain, obstacle fraction, liquid water fraction, air fraction and soil porosity. The model is capable of predicting the water content distribution along soil depth and variations in water content and temperature during soil freezing process.
Images reveal that atmospheric particles can undergo liquid-liquid phase separations.
You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L; Zhang, Xiaolu; Weber, Rodney J; Shilling, John E; Dabdub, Donald; Martin, Scot T; Bertram, Allan K
2012-08-14
A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).
Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen
2017-02-15
This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.
Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip
2008-11-01
To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.
NASA Astrophysics Data System (ADS)
Tournier, Robert F.
2018-01-01
Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.
Combining Hard with Soft Materials in Nanoscale Under High-Pressure High-Temperature Conditions
NASA Technical Reports Server (NTRS)
Palosz, B.; Gierlotka, S.; Swiderska-Sroda, A.; Fietkiewicz, K.; Kalisz, G.; Grzanka, E.; Stel'makh, S.; Palosz, W.
2004-01-01
Nano-composites with a primary nanocrystalline ceramic matrix and a secondary nanocrystalline material (metal or semiconductor) were synthesized by infiltration of an appropriate liquid into ceramic compacts under pressures of up to 8 GPa and temperatures of up to 2000 K. The purpose of our work is to obtain nanocomposites which constitute homoger?ous mixtures of two phases, both forming nano- grains of about 10 nm in size. The high pressure is used to bring the porosity of the compacted powders down to the nano-scale and force a given liquid into the nano-sized pores. The advantage of the infiltration technique is that, in a single, continuous process, we start with a nanocrystalline powder, compress it to form the matrix of the composite, and crystallize and/or synthesize a second nanomaterial in the matrix pores. The key limitation of this technology is, that the pores in the matrix need to stay open during the entire process of infiltration. Thus the initial powder should form a rigid skeleton, otherwise the so-called self-stop process can limit cr block a further flow of the liquid phase and hinder the process of the composite formation. Therefore powders of only very hard ceramic materials like diamond, Sic, or Alz03, which can withstand a substantial external load without undesired deformation, can be used as the primary phase. With this technique, using diamond and S i c ceramic powders infiltrated by liquid metals (AI, Zn, Sn, Ag, Au) and semiconductors (Si, Ge, GaAs, CdTe), we obtained nano-composites with the grain size in the range of 10 - 30 nm. Our work addresses the key problem in manufacturing bulk nanocrystalline materials, i.e. preservation of nano-scale during the fabrication process. In this paper we discuss basic technical and methodological problems associated with nano-infiltration based on the results obtained for Zn-Sic composites.
Floating liquid phase in sedimenting colloid-polymer mixtures.
Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre
2004-08-20
Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.
NASA Astrophysics Data System (ADS)
Song, M.; Liu, P.; Martin, S. T.; Bertram, A. K.; Ham, S.
2016-12-01
Particles consisting of secondary organic materials (SOMs) are ubiquitous in the atmosphere. In order to predict the role of these particles in climate, visibility, and atmospheric chemistry, knowledge of the phase states of the particles is required. However, the phase states of the SOMs are still poorly understood. Herein we focused on liquid-liquid phase separation in different types of SOM particles free of inorganic salts produced by the ozonolysis of β-caryophyllene, ozonolysis of limonene, photo-oxidation of isoprene, and photo-oxidation of toluene. Liquid-liquid phase separation was investigated using optical microscopy and SOM particle mass concentrations ranging from 15 µg·m-3 to 7000 µg·m-3. During humidity cycles, liquid-liquid phase separation was observed in β-caryophyllene-derived SOM and limonene-derived SOM particles while no liquid-liquid phase separation was observed in isoprene-derived SOM and toluene-derived SOM particles. Results from the studies will be presented.
Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice
NASA Astrophysics Data System (ADS)
Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias
2018-02-01
Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.
NASA Astrophysics Data System (ADS)
Abustam, E.; Said, M. I.; Yusuf, M.
2018-02-01
This study aims to look at the role of liquid smoke as an antioxidant added in feed supplement block and administered to cattle for 45 days on the functional properties of meat. The level of liquid smoke in the feed and the time of maturation in Muscle Longissimus dorsi after slaughtering cattle were the two treatment factors observed for the functional properties of meat. The study used a complete randomized design in which factor 1 was a 10% smoke level in the feed (0, 1, 2%) and factor 2 was maturation time (0, 2, 4, 6, 8 days). The parameters observed were water holding capacity (WHC), raw meat shear force (RMSF), fat oxidation rate (thiobarbituric acid reactive substance) and antioxidant activity (DPPH). The results showed that liquid smoke levels lowered the WHC, RMSF more or less the same, increased fat oxidation rate, and antioxidant activity more or less the same. While maturation tends to increase WHC, increase RMSF, fat oxidation rate, and antioxidant activity. It can be concluded that liquid smoke as an antioxidant in the diet of block supplements can maintain the functional properties of Muscle Longissimus dorsi of Bali cattle during maturation.
NASA Astrophysics Data System (ADS)
Thelen, Jacob Lloyd
One of the major barriers to expanding the capacity of large-scale electrochemical energy storage within batteries is the threat of a catastrophic failure. Catastrophic battery pack failure can be initiated by a defect within a single battery cell. If the failure of a defective battery cell is not contained, the damage can spread and subsequently compromise the integrity of the entire battery back, as well as the safety of those in its surroundings. Replacing the volatile, flammable liquid electrolyte components found in most current lithium ion batteries with a solid polymer electrolyte (SPE) would significantly improve the cell-level safety of batteries; however, poor ionic conductivity and restricted operating temperatures compared to liquid electrolytes have plagued the practical application of SPEs. Rather than competing with the performance of liquid electrolytes directly, our approach to developing SPEs relies on increasing electrolyte functionality through the use of block copolymer architectures. Block copolymers, wherein two or more chemically dissimilar polymer chains are covalently bound, have a propensity to microphase separate into nanoscale domains that have physical properties similar to those of each of the different polymer chains. For instance, the block copolymer, polystyrene-b-poly(ethylene oxide) (SEO), has often been employed as a solid polymer electrolyte because the nanoscale domains of polystyrene (PS) can provide mechanical reinforcement, while the poly(ethylene oxide) microphases can solvate and conduct lithium ions. Block copolymer electrolytes (BCEs) formed from SEO/salt mixtures result in a material with the bulk mechanical properties of a solid, but with the ion conducting properties of a viscoelastic fluid. The efficacy SEO-based BCEs has been demonstrated; the enhanced mechanical functionality provided by the PS domains resist the propagation of dendritic lithium structures during battery operation, thus enabling the use of a lithium metal anode. The increase in the specific energy of a battery upon replacing a graphite anode with lithium metal can offset the losses in performance due to the poor ion conduction of SPEs. However, BCEs that enable the use of a lithium anode and have improved performance would represent a major breakthrough for the development of high capacity batteries. The electrochemical performance of BCEs has a complex relationship with the nature of the microphase separated domains, which is not well-understood. The objective of this dissertation is to provide fundamental insight into the nature of microphase separation and self-assembly of block copolymer electrolytes. Specifically, I will focus on how the ion-polymer interactions within a diverse set of BCEs dictate nanostructure. Combining such insight with knowledge of how nanostructure influences ion motion will enable the rational design of new BCEs with enhanced performance and functionality. In order to facilitate the study of BCE nanostructure, synchrotron-based X-ray scattering techniques were used to study samples over a wide range of length-scales under conditions relevant to the battery environment. The development of the experimental aspects of the X-ray scattering techniques, as well as an improved treatment of scattering data, played a pivotal role in the success of this work. The dissemination of those developments will be the focus of the first section. The thermodynamic impact of adding salt to a neutral diblock copolymer was studied in a model BCE composed of a low molecular weight SEO diblock copolymer mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a common salt used in lithium batteries. In neutral block copolymers (BCPs), self-assembly is a thermodynamically driven process governed by a balance between unfavorable monomer contacts and the entropy of mixing. When the enthalpic and entropic contributions to free energy are similar in magnitude, a block copolymer can undergo a thermally reversible phase transition from an ordered to a disordered nanostructure. We used temperature-dependent small angle X-ray scattering (SAXS) to observe this transition in the model SEO/LiTFSI system. Unlike neutral BCPs, which to a first approximation are single component systems, the SEO/LiTFSI system demonstrated the thermodynamically stable coexistence phases of ordered lamellae and disordered polymer over a finite temperature window. Analysis of the lamellar domains revealed an increase in salt concentration during the ODT, indicating local salt partitioning due to the presence of nanostructure. The performance of BCEs can also be improved by chemically functionalizing one of the polymer blocks by covalently attaching the salt anion. Since the cation is the only mobile species, these materials are coined single-ion conducting block copolymers. Single ion conduction can improve the efficiency of battery operation. In order for cation motion to occur in single-ion conducting block copolymers, it must dissociate from the backbone of the anion-containing polymer block. This direct coupling of ion dissociation (and hence conduction) and nanostructure has interesting implications for BCE performance. (Abstract shortened by ProQuest.).
Nazaripour, Ali; Yamini, Yadollah; Ebrahimpour, Behnam; Fasihi, Javad
2016-07-01
In this study, two-phase hollow-fiber liquid-phase microextraction and three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6-200 and 0.9-200 μg L(-1) and the limits of detection were 0.2 and 0.3 μg L(-1) for oxazepam and lorazepam, respectively. For two-phase hollow fiber liquid-phase microextraction, the calibration curves were found to be linear in the range of 1-200 and 1.5-200 μg L(-1) and the limits of detection were 0.3 and 0.5 μg L(-1) for oxazepam and lorazepam, respectively. In a urine sample, for three-phase hollow-fiber-based liquid-phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2-4.5% and preconcentration factors in the range of 70-180 were obtained for oxazepam and lorazepam, respectively. Also for the two-phase hollow-fiber liquid-phase microextraction, preconcentration factors in the range of 101-257 were obtained for oxazepam and lorazepam, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid-liquid phase transition in an ionic model of silica
NASA Astrophysics Data System (ADS)
Chen, Renjie; Lascaris, Erik; Palmer, Jeremy C.
2017-06-01
Recent equation of state calculations [E. Lascaris, Phys. Rev. Lett. 116, 125701 (2016)] for an ionic model of silica suggest that it undergoes a density-driven, liquid-liquid phase transition (LLPT) similar to the controversial transition hypothesized to exist in deeply supercooled water. Here, we perform extensive free energy calculations to scrutinize the model's low-temperature phase behavior and confirm the existence of a first-order phase transition between two liquids with identical compositions but different densities. The low-density liquid (LDL) exhibits tetrahedral order, which is partially disrupted in the high-density liquid (HDL) by the intrusion of additional particles into the primary neighbor shell. Histogram reweighting methods are applied to locate conditions of HDL-LDL coexistence and the liquid spinodals that bound the two-phase region. Spontaneous liquid-liquid phase separation is also observed directly in large-scale molecular dynamics simulations performed inside the predicted two-phase region. Given its clear LLPT, we anticipate that this model may serve as a paradigm for understanding whether similar transitions occur in water and other tetrahedral liquids.
The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
Distortion of liquid film discharging from twin-fluid atomizer
NASA Astrophysics Data System (ADS)
Mehring, C.; Sirignano, W. A.
2001-11-01
The nonlinear distortion and disintegration of a thin liquid film exiting from a two-dimensional twin-fluid atomizer is analyzed numerically. Pulsed gas jets impacting on both sides of the discharging liquid film at the atomizer exit generate dilational and/or sinuous deformations of the film. Both liquid phase and gas phase are inviscid and incompressible. For the liquid phase the so-called long-wavelength approximation is employed yielding a system of unsteady one-dimensional equations for the planar film. Solution of Laplace's equation for the velocity potential yields the gas-phase velocity field on both sides of the liquid stream. Coupling between both phases is described through kinematic and dynamic boundary conditions at the phase interfaces, and includes the solution of the unsteady Bernoulli equation to determine the gas-phase pressure along the interfaces. Both gas- and liquid-phase equations are solved simultaneously. Solution of Laplace's equation for the gas streams is obtained by means of a boundary-element method. Numerical solutions for the liquid phase use the Lax-Wendroff method with Richtmyer splitting. Sheet distortion resulting from the stagnation pressure of the impacting gas jets and subsequent disturbance amplification due to Kelvin-Helmholtz effects are studied for various combinations of gas-pulse timing, gas-jet impact angles, gas-to-liquid-density ratio, liquid-phase Weber number and gas-jet-to-liquid-jet-momentum ratio. Dilational and sinuous oscillations of the liquid are examined and film pinch-off is predicted.
Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo; ...
2016-08-16
Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo
Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less
Parametric study on the compressive strength geopolymer paving block
NASA Astrophysics Data System (ADS)
Aman; Awaluddin, A.; Ahmad, A.; Olivia, M.
2018-04-01
This paper reported about the investigated of sodium hidroxida concentration, effect of ratio liquid to solid (L/S), temperature and time on the compressive strength of geopolymer paving block using fly ash and fine aggregate as base material and combination of sodium hidroxida and sodium silicate as alkaline activator and the ratio of Na2SiO3/NaOH was 2 and fly ash to aggregate of 1: 3. The experiments were conducted with variation of the sodium hidroxida concentration of (10-16 M) liquid to solid (L/S) 0.1- 0.7 ratio, curing temperature 30-100 °C and curing time (7-28 day). The main evaluation techniques in this experimental were Compressive strength, X-ray diffraction (XRD),and Scaning Electron Microscope (SEM). The result showed that the compressive strength of Geopolymer Paving block has increased with an increasing of concentration, liquid to solid ratio, curing temperature and curing time.
Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko
2016-01-01
Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.
NASA Astrophysics Data System (ADS)
Eredia, Matilde; Ciesielski, Artur; Samorì, Paolo
2016-12-01
Graphene is a two-dimensional (2D) material holding unique optical, mechanical, thermal and electrical properties. The combination of these exceptional characteristics makes graphene an ideal model system for fundamental physical and chemical studies as well as technologically ground breaking material for a large range of applications. Graphene can be produced either following a bottom-up or top-down method. The former is based on the formation of covalent networks suitably engineered molecular building blocks undergoing chemical reaction. The latter takes place through the exfoliation of bulk graphite into individual graphene sheets. Among them, ultrasound-induced liquid-phase exfoliation (UILPE) is an appealing method, being very versatile and applicable to different environments and on various substrate types. In this chapter, we describe the recently reported methods to produce graphene via molecule-assisted UILPE of graphite, aiming at the generation of high-quality graphene. In particular, we will focus on the supramolecular approach, which consists in the use of suitably designed organic molecules during the UILPE of graphite. These molecules act as graphene dispersion-stabilizing agents during the exfoliation. This method relying on the joint effect of a solvent and ad hoc molecules to foster the exfoliation of graphite into graphene in liquid environment represents a promising and modular method toward the improvement of the process of UILPE in terms of the concentration and quality of the exfoliated material. Furthermore, exfoliations in aqueous and organic solutions are presented and discussed separately.
LIQUID-LIQUID EXTRACTION COLUMNS
Thornton, J.D.
1957-12-31
This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.
Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions
Tsouris, Constantinos; Dong, Junhang
2002-01-01
The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.
An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L
2017-06-02
The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol.
Putzel, G Garbès; Schick, M
2008-11-15
We present a phenomenological theory for the phase behavior of ternary mixtures of cholesterol and saturated and unsaturated lipids, one that describes both liquid and gel phases. It leads to the following description of the mechanism of the phase behavior: In a binary system of the lipids, phase separation occurs when the saturated chains are well ordered, as in the gel phase, simply due to packing effects. In the liquid phase, the saturated ones are not sufficiently well ordered for separation to occur. The addition of cholesterol, however, increases the saturated lipid order to the point that phase separation is once again favorable. Our theory addresses this last mechanism-the means by which cholesterol-mediated ordering of membrane lipids leads to liquid-liquid immiscibility. It produces, for the system above the main chain transition of the saturated lipid, phase diagrams in which there can be liquid-liquid phase separation in the ternary system but not in any of the binary ones, while below that temperature it yields the more common phase diagram in which a gel phase, rich in saturated lipid, appears in addition to the two liquid phases.
Molenaar, Heike; Boehm, Robert; Piepho, Hans-Peter
2017-01-01
Robust phenotypic data allow adequate statistical analysis and are crucial for any breeding purpose. Such data is obtained from experiments laid out to best control local variation. Additionally, experiments frequently involve two phases, each contributing environmental sources of variation. For example, in a former experiment we conducted to evaluate production related traits in Pelargonium zonale , there were two consecutive phases, each performed in a different greenhouse. Phase one involved the propagation of the breeding strains to obtain the stem cutting count, and phase two involved the assessment of root formation. The evaluation of the former study raised questions regarding options for improving the experimental layout: (i) Is there a disadvantage to using exactly the same design in both phases? (ii) Instead of generating a separate layout for each phase, can the design be optimized across both phases, such that the mean variance of a pair-wise treatment difference (MVD) can be decreased? To answer these questions, alternative approaches were explored to generate two-phase designs either in phase-wise order (Option 1) or across phases (Option 2). In Option 1 we considered the scenarios (i) using in both phases the same experimental design and (ii) randomizing each phase separately. In Option 2, we considered the scenarios (iii) generating a single design with eight replicates and splitting these among the two phases, (iv) separating the block structure across phases by dummy coding, and (v) design generation with optimal alignment of block units in the two phases. In both options, we considered the same or different block structures in each phase. The designs were evaluated by the MVD obtained by the intra-block analysis and the joint inter-block-intra-block analysis. The smallest MVD was most frequently obtained for designs generated across phases rather than for each phase separately, in particular when both phases of the design were separated with a single pseudo-level. The joint optimization ensured that treatment concurrences were equally balanced across pairs, one of the prerequisites for an efficient design. The proposed alternative approaches can be implemented with any model-based design packages with facilities to formulate linear models for treatment and block structures.
Krishnan, Sitaraman; Wang, Nick; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Hexemer, Alexander; Sohn, Karen E; Kramer, Edward J; Fischer, Daniel A
2006-05-01
To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates.
Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev
2008-03-03
Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.
77 FR 9655 - Mobility Fund Phase I Auction Updated List of Potentially Eligible Census Blocks
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
... Updated List of Potentially Eligible Census Blocks AGENCY: Federal Communications Commission. ACTION... Bureaus provide an updated list of potentially eligible census blocks for Auction 901 scheduled to... summary of the Mobility Fund Phase I Auction Updated List of Potentially Eligible Census Blocks Public...
Park, Jong Baek; Isik, Mehmet; Park, Hea Jung; Jung, In Hwan; Mecerreyes, David; Hwang, Do-Hoon
2018-02-07
Interfacial layers play a critical role in building up the Ohmic contact between electrodes and functional layers in organic photovoltaic (OPV) solar cells. These layers are based on either inorganic oxides (ZnO and TiO 2 ) or water-soluble organic polymers such as poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)] and polyethylenimine ethoxylated (PEIE). In this work, we have developed a series of novel poly(ionic liquid) nonconjugated block copolymers for improving the performance of inverted OPV cells by using them as work function modifiers of the indium tin oxide (ITO) cathode. Four nonconjugated polyelectrolytes (n-CPEs) based on polystyrene and imidazolium poly(ionic liquid) (PSImCl) were synthesized by reversible addition-fragmentation chain transfer polymerization. The ratio of hydrophobic/hydrophilic block copolymers was varied depending on the ratio of polystyrene to the PSImCl block. The ionic density, which controls the work function of the electrode by forming an interfacial dipole between the electrode and the block copolymers, was easily tuned by simply changing the PSImCl molar ratio. The inverted OPV device with the ITO/PS 29 -b-PSImCl 60 cathode achieved the best power conversion efficiency (PCE) of 7.55% among the synthesized block copolymers, exhibiting an even higher PCE than that of the reference OPV device with PEIE (7.30%). Furthermore, the surface properties of the block copolymers films were investigated by contact angle measurements to explore the influence of the controlled hydrophobic/hydrophilic characters on the device performances.
Nearest-neighbor Kitaev exchange blocked by charge order in electron-doped α -RuCl3
NASA Astrophysics Data System (ADS)
Koitzsch, A.; Habenicht, C.; Müller, E.; Knupfer, M.; Büchner, B.; Kretschmer, S.; Richter, M.; van den Brink, J.; Börrnert, F.; Nowak, D.; Isaeva, A.; Doert, Th.
2017-10-01
A quantum spin liquid might be realized in α -RuCl3 , a honeycomb-lattice magnetic material with substantial spin-orbit coupling. Moreover, α -RuCl3 is a Mott insulator, which implies the possibility that novel exotic phases occur upon doping. Here, we study the electronic structure of this material when intercalated with potassium by photoemission spectroscopy, electron energy loss spectroscopy, and density functional theory calculations. We obtain a stable stoichiometry at K0.5RuCl3 . This gives rise to a peculiar charge disproportionation into formally Ru2 + (4 d6 ) and Ru3 + (4 d5 ). Every Ru 4 d5 site with one hole in the t2 g shell is surrounded by nearest neighbors of 4 d6 character, where the t2 g level is full and magnetically inert. Thus, each type of Ru site forms a triangular lattice, and nearest-neighbor interactions of the original honeycomb are blocked.
NASA Astrophysics Data System (ADS)
OBrien, R. E.; Wang, B.; Neu, A.; Kelly, S. T.; Lundt, N.; Epstein, S. A.; MacMillan, A.; You, Y.; Laskin, A.; Nizkorodov, S.; Bertram, A. K.; Moffet, R.; Gilles, M.
2013-12-01
The phase state and liquid-liquid phase separations of ambient and laboratory generated aerosol particles were investigated using (1) scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) coupled to a relative humidity (RH) controlled in-situ chamber and (2) environmental scanning electron microscopy (ESEM). The phase states of the particles were determined from measurements of their size and optical density. A comparison is made between the observed phase states of ambient samples and of laboratory generated aerosols to determine how well laboratory samples represent the phase of ambient samples. In addition, liquid-liquid phase separations in laboratory generated particles were investigated. Preliminary results showing that liquid-liquid phase separations occur at RH's between the deliquescence and efflorescence points and that the organic phase surrounds the inorganic phase will be presented. The STXM/NEXAFS technique provides insight into the degree of mixing at the deliquescence point and the degree of phase separation for particles of atmospherically relevant sizes.
Level set immersed boundary method for gas-liquid-solid interactions with phase-change
NASA Astrophysics Data System (ADS)
Dhruv, Akash; Balaras, Elias; Riaz, Amir; Kim, Jungho
2017-11-01
We will discuss an approach to simulate the interaction between two-phase flows with phase changes and stationary/moving structures. In our formulation, the Navier-Stokes and heat advection-diffusion equations are solved on a block-structured grid using adaptive mesh refinement (AMR) along with sharp jump in pressure, velocity and temperature across the interface separating the different phases. The jumps are implemented using a modified Ghost Fluid Method (Lee et al., J. Comput. Physics, 344:381-418, 2017), and the interface is tracked with a level set approach. Phase transition is achieved by calculating mass flux near the interface and extrapolating it to the rest of the domain using a Hamilton-Jacobi equation. Stationary/moving structures are simulated with an immersed boundary formulation based on moving least squares (Vanella & Balaras, J. Comput. Physics, 228:6617-6628, 2009). A variety of canonical problems involving vaporization, film boiling and nucleate boiling is presented to validate the method and demonstrate the its formal accuracy. The robustness of the solver in complex problems, which are crucial in efficient design of heat transfer mechanisms for various applications, will also be demonstrated. Work supported by NASA, Grant NNX16AQ77G.
Ionic Liquid Fuels for Chemical Propulsion
2016-10-31
nucleophilicity in the ionic liquid is critical. Both gas -phase and condensed-phase (CPCM-GIL) density functional theory calculations support the...stability trends in dialkylimidazolium ionic liquids and could be used as a higher accuracy method than the gas -phase DFT approach for predicting thermal...stabilities of ionic liquids in general. One important finding from the comparison of the gas -phase basicities relative to the GIL condensed- phase
Chimeric Plastics : a new class of thermoplastic
NASA Astrophysics Data System (ADS)
Sonnenschein, Mark
A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.
Maltais, René; Hospital, Audrey; Delhomme, Audrey; Roy, Jenny; Poirier, Donald
2014-04-01
The aminosteroid derivative RM-133 has been reported to be a promising pro-apoptotic agent showing activity on various cancer cell lines. Following the development of solid-phase synthesis that generated a series of libraries of aminosteroid derivatives, we now report the development of a convenient liquid phase chemical synthesis of RM-133, the most promising candidate, in order to obtain sufficient quantities to proceed with the first preclinical assays. A simple and convergent six-step synthesis was designed and allowed the preparation of a gram-quantity scale of RM-133. This aminosteroid derivative was also fully characterized by NMR experiments which revealed an interesting mixture of conformers. Finally, the in vivo potency of RM-133 was evaluated on a xenograft model in nude mice with HL-60 tumors, which has resulted in the blocking of tumor progression by 57%. Copyright © 2014 Elsevier Inc. All rights reserved.
Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.
Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K
2017-10-24
The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.
Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A
2014-07-23
We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.
Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan
2015-06-01
An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.
1998-09-08
A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.
1998-01-01
A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.
Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey
1986-01-01
An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.
NASA Astrophysics Data System (ADS)
Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.
2017-09-01
Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.
Anderson, M A; Wachs, T; Henion, J D
1997-02-01
A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.
NASA Astrophysics Data System (ADS)
Hofmann, James A.
An increasing threat to the aviation industry is laser light illumination on airplanes during critical phases of flight. If a laser hits the cockpit, it not only distracts the pilots, but it can cause flash blindness or permanently damage the vision of the pilots. This research attempts to mitigate these lasers illuminations through the application of both liquid crystal (LC's) technologies and dye sensitized solar cell (DSSC) technologies. The LC of choice is N-(4-Methoxybenzylidene)-4-butylaniline, or MBBA, because it has special optical properties including the ability to undergo phase transitions when exposed to an electric field. By applying an external electric field, MBBA switches from its transparent nematic phase, to its non-transparent crystalline phase, blocking the laser light. This research optimized the application of MBBA by reducing the triggering voltage and relaxation time of the LC using spacer thicknesses and scratching techniques. The liquid to solid phase transition was reduced to a 3V differential, and the time required for the crystals to relax into its transparent liquid phase was reduced to less than ten seconds. The phase transition was studied using an external electric field generated by DSSCs constructed from a titanium dioxide (TiO2) nanocomposite layer coated with dye. To maximize the voltage output by the DSSCs, layer thickness and dye sensitizer were studied to investigate their impact on the performance of the DSSC when illuminated by solar lamps and green light (532nm). Three different layer thicknesses and five different dyes were tested: Eosin Y, Eriochrome Black, Congo Red, Fast Green, and Alizarine Yellow. The experimental results showed a thin layer of nanocomposite sensitized with Eosin Y dye produced the most efficient DSSCs for the scope of this research. Experimental testing showed the DSSCs can generate 381 +/- 10mV under solar lamp exposure, 356 +/- 10mV under laser light exposure, and a voltage increase of 60 +/- 16mV when exposed to both light sources. Additionally, the performance of the DSSCs were correlated to molecular modeling predictions using Spartan software. The stability of TiO2-dye interactions indicated that dye adsorption to the surface of the nanocomposite directly impacted the performance of the DSSCs. Implementation of a LC and DSSC system forces the LCs to transition between its nematic and crystalline phases depending on the wavelength of light that is illuminating the DSSC. This research explores the practicality of using LCs and DSSCs as a preliminary approach to mitigating green laser light illumination on aircraft. Experimental results have shown that DSSCs alone are not capable of forcing a phase transitions in LCs which can entirely mitigate incoming laser light. The intense laser light required to generate substantial voltage (3V) from the DSSCs penetrates the crystalline phase of the LC with minimal attenuation of 5%.
Janiszewski, J; Schneider, P; Hoffmaster, K; Swyden, M; Wells, D; Fouda, H
1997-01-01
The development and application of membrane solid phase extraction (SPE) in 96-well microtiter plate format is described for the automated analysis of drugs in biological fluids. The small bed volume of the membrane allows elution of the analyte in a very small solvent volume, permitting direct HPLC injection and negating the need for the time consuming solvent evaporation step. A programmable liquid handling station (Quadra 96) was modified to automate all SPE steps. To avoid drying of the SPE bed and to enhance the analytical precision a novel protocol for performing the condition, load and wash steps in rapid succession was utilized. A block of 96 samples can now be extracted in 10 min., about 30 times faster than manual solvent extraction or single cartridge SPE methods. This processing speed complements the high-throughput speed of contemporary high performance liquid chromatography mass spectrometry (HPLC/MS) analysis. The quantitative analysis of a test analyte (Ziprasidone) in plasma demonstrates the utility and throughput of membrane SPE in combination with HPLC/MS. The results obtained with the current automated procedure compare favorably with those obtained using solvent and traditional solid phase extraction methods. The method has been used for the analysis of numerous drug prototypes in biological fluids to support drug discovery efforts.
Gateless AlGaN/GaN HEMT response to block co-polymers
NASA Astrophysics Data System (ADS)
Kang, B. S.; Louche, G.; Duran, R. S.; Gnanou, Y.; Pearton, S. J.; Ren, F.
2004-05-01
Gateless AlGaN/GaN high electron mobility transistor (HEMT) structures exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. The polar nature of some of these polymer chains lead to a change of surface charges in gate region on the HEMT, producing a change in surface potential at the semiconductor/liquid interface. The nitride sensors appear to be promising for a wide range of chemical gas, combustion gas, liquid and strain sensing.
Imidazolium-organic solvent mixtures as electrolytes for lithium batteries
NASA Astrophysics Data System (ADS)
Chagnes, A.; Diaw, M.; Carré, B.; Willmann, P.; Lemordant, D.
γ-Butyrolactone (BL) has been mixed to the room temperature ionic liquid (RTIL) 1-butyl 3-methyl-imidazolium tetrafluoroborate (BMIBF 4) (ratio: 3/2, v/v) in the presence of lithium tetrafluoroborate (LiBF 4) for use as electrolyte in lithium-ion batteries. This mixture exhibits a larger thermal stability than the reference electrolyte EC/DEC/DMC (2/2/1) + LiPF 6 (1 M) and can be considered as a new RTIL as no free BL molecules are present in the liquid phase. The cycling ability of this electrolyte has been investigated at a graphite, a titanate oxide (Li 4Ti 5O 12) and a cobalt oxide (Li xCoO 2) electrodes. The ionic liquid is strongly reduced at the graphite electrode near 1 V and leads to the formation of a blocking film, which prevents any further cycling. The titanate oxide electrode can be cycled with a high capacity without any significant fading. Cycling of the positive cobalt oxide electrode was unsuccessfully owing to an oxidation reaction at the electrode surface, which prevents the intercalation or de-intercalation of Li ions in and from the host material. Less reactive cathode material than cobalt oxide must be employed with this RTIL.
Vapor-Compression Heat Pumps for Operation Aboard Spacecraft
NASA Technical Reports Server (NTRS)
Ruemmele, Warren; Ungar, Eugene; Cornwell, John
2006-01-01
Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.
Functional and Multifunctional Polymers: Materials for Smart Structures
NASA Technical Reports Server (NTRS)
Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.
1996-01-01
The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three examples of multifunctional polymers developed in our labs will be reported. The first class of multifunctional polymers are the microphase separated mixed (ionic and electronic) conducting or MIEC block copolymers. The second class being developed in our labs are the biocompatible conductive materials and the conductive fluids. The final class may be considered microwave active smart polymers.
Evaluation of the pathways of tropospheric nitrophenol formation using a multiphase model
NASA Astrophysics Data System (ADS)
Harrison, M. A. J.; Heal, M. R.; Cape, J. N.
2005-03-01
Phenols are a major class of volatile organic compounds (VOC) whose reaction within, and partitioning between, the gas and liquid phases affects their lifetime within the atmosphere, the local oxidising capacity, and the extent of production of nitrophenols, which are toxic chemicals. In this work, a zero-dimension box model was constructed to quantify the relative nitration pathways, and partitioning into the liquid phase, of mono-aromatic compounds in order to help elucidate the formation pathways of 2- and 4-nitrophenol in the troposphere. The liquid phase contributed significantly to the production of nitrophenols for liquid water content (Lc) values exceeding 3×10-9, and for a range of assumed liquid droplet diameter, even though the resultant equilibrium partitioning to the liquid phase was much lower. For example, in a ''typical'' model scenario, with Lc=3×10-7, 58% of nitrophenol production occurred in the liquid phase but only 2% of nitrophenol remained there, i.e. a significant proportion of nitrophenol observed in the gas phase may actually be produced via the liquid phase. The importance of the liquid phase was enhanced at lower temperatures, by a factor ~1.5-2 at 278 K cf. 298 K. The model showed that nitrophenol production was particularly sensitive to the values of the rate coefficients for the liquid phase reactions between phenol and OH or NO3 reactions, but insensitive to the rate coefficient for the reaction between benzene and OH, thus identifying where further experimental data are required.
NASA Astrophysics Data System (ADS)
Park, Cheolmin
2016-09-01
1D photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied due to their potential use in low-power reflective mode displays, e-books and sensors, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid swollen block copolymer films. Placement of a polymer/ionic liquid (IL) film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2vinyl pyridine) (PS-b-QP2VP) copolymer SC film allowed the development of R, G and B full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3V to +6V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.
Nakamura, Issei
2014-05-29
We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shum, Andrew D.; Parkinson, Dilworth Y.; Xiao, Xianghui
The performance of polymer-electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass-transport losses. At higher temperatures, evaporation of water becomes a dominant water-removal mechanism and specifically phase-change-induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X-ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through-plane distancemore » quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the 2 GDLs on the micro-scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.« less
Study of liquid?liquid demixing from drug solution
NASA Astrophysics Data System (ADS)
Lafferrère, Laurent; Hoff, Christian; Veesler, Stéphane
2004-09-01
In pharmaceutical industry, a deep understanding of the phase diagram is required in design of crystallization processes. We have investigated the phase diagram of a pharmaceutical compound (C 35H 41Cl 2N 3O 2) in a mixture of ethanol/water. This phase diagram exhibits a solid-solid (polymorphism) and a liquid-liquid-phase separation (LLPS) as a function of temperature and drug substance concentration. This study focuses on the LLPS which is metastable with respect to the crystallization of the two polymorphs FI and FII of C 35H 41Cl 2N 3O 2 in an ethanol/water mixture. The LLPS is metastable towards the solubility curve on the whole solvent-solute concentrations and temperature range studied. The LLPS occurred within the metastable zone for crystallization. In our experiments the liquid-liquid-phase transition prevented the drug from crystallizing, while it changed the medium and the conditions of crystallization, which consequently affected the process. The coexistence curves for the liquid phases, also named TL-L boundary, and the spinodal line were measured for a ternary mixture of water-drug-ethanol at atmospheric pressure over a temperature range of 10-50°C. This temperature range corresponds to that used in the crystallization process. Static Light Scattering, HPLC measurements and Karl-Fischer titration were applied to investigate the drug-phase diagram. The isoplethe section of the phase diagram exhibits four regions: one homogeneous (one liquid) and three two-phases (two regions with one liquid+one solid and one region with two liquids), the two solids phases being two polymorphs.
Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei
2017-11-17
The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.
Gas-liquid chromatography with a volatile "stationary" liquid phase.
Wells, P S; Zhou, S; Parcher, J F
2002-05-01
A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.
Hydrogen, lithium, and lithium hydride production
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.
2017-06-20
A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.
Structure analysis of turbulent liquid phase by POD and LSE techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I.
2014-10-24
In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energymore » containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.« less
Phase-Quantized Block Noncoherent Communication
2013-07-01
2828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 7, JULY 2013 Phase-Quantized Block Noncoherent Communication Jaspreet Singh and Upamanyu...in a carrier asynchronous system. Specifically, we consider transmission over the block noncoherent additive white Gaussian noise channel, and...block noncoherent channel. Several results, based on the symmetry inherent in the channel model, are provided to characterize this transition density
Phase separations in mixtures of a liquid crystal and a nanocolloidal particle.
Matsuyama, Akihiko
2009-11-28
We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.
Isoda, Haruo; Takehara, Yasuo; Fujino, Hitoshi; Sone, Kazuya; Suzuki, Takeshi; Tsuzaki, Yoshinari; Miyazaki, Kouji; Fujie, Michio; Sakahara, Harumi; Maekawa, Yasuaki
2015-01-01
ABSTRACT Cryosurgery is a minimally invasive treatment for certain types of cancers. Argon-based cryosurgical devices are available at present, however a large compressed gas cylinder with the pressure of 300 atmospheres is needed. To overcome these drawbacks, we developed a new cryosurgical probe measuring about 50 cm in length with separate lumens inside for liquid and gaseous ethylene to be used as a thermosiphon and liquid nitrogen-cooled aluminum thermal storage blocks. The probe needle was 8 cm in length and 3 mm in outer diameter. To investigate the freezing capabilities of our new cryosurgical system we inserted the needle 5cm into a poly-acrylamide gel phantom warmed to 36.5 ℃. Thermal storage blocks made of aluminum, cooled at –196 ℃ in liquid nitrogen, were attached to the condenser of the probe and replaced with thermal storage blocks every 4 to 5 minutes to compensate for warming. We took digital camera images of the ice ball at the needle and measured the temperature in certain locations of the cryoprobe. Ice ball formation started at one minute after cooling. The sizes (longest diameter × minimum diameter) at 10, 20 and 30 minutes after the start of the procedure were 4.5×2.1, 4.5×3.1 and 4.6×3.7 cm, respectively. During the procedure the minimum temperature of the condenser was –85 ℃ and the needle was –65 ℃. This newly developed compact cryosurgical probe with thermosiphon effect and cooled thermal storage blocks created an ice ball that can be used for cryosurgery within 20 minutes. PMID:26412886
Liquid-liquid phase transformations and the shape of the melting curve.
Makov, G; Yahel, E
2011-05-28
The phase diagram of elemental liquids has been found to be surprisingly rich, including variations in the melting curve and transitions in the liquid phase. The effect of these transitions in the liquid state on the shape of the melting curve is analyzed. First-order phase transitions intersecting the melting curve imply piecewise continuous melting curves, with solid-solid transitions generating upward kinks or minima and liquid-liquid transitions generating downward kinks or maxima. For liquid-liquid phase transitions proposed for carbon, phosphorous selenium, and possibly nitrogen, we find that the melting curve exhibits a kink. Continuous transitions imply smooth extrema in the melting curve, the curvature of which is described by an exact thermodynamic relation. This expression indicates that a minimum in the melting curve requires the solid compressibility to be greater than that of the liquid, a very unusual situation. This relation is employed to predict the loci of smooth maxima at negative pressures for liquids with anomalous melting curves. The relation between the location of the melting curve maximum and the two-state model of continuous liquid-liquid transitions is discussed and illustrated by the case of tellurium. © 2011 American Institute of Physics
Fluid inclusions in minerals from the geothermal fields of Tuscany, Italy
Belkin, H.; de Vivo, B.; Gianelli, G.; Lattanzi, P.
1985-01-01
A reconnaissance study on fluid inclusions from the geothermal fields of Tuscany indicates that the hydrothermal minerals were formed by fluids which were, at least in part, boiling. Four types of aqueous inclusions were recognized: (A) two-phase (liquid + vapor) liquid rich, (B) two-phase (vapor + liquid) vapor rich, (C) polyphase hypersaline liquid rich and (D) three phase-H2O liquid + CO2 liquid + CO2-rich vapor. Freezing and heating microthermometric determinations are reported for 230 inclusions from samples from six wells. It is suggested that boiling of an originally homogeneous, moderately saline, CO2-bearing liquid phase produced a residual hypersaline brine and a CO2-rich vapor phase. There are indications of a temperature decrease in the geothermal field of Larderello, especially in its peripheral zones. ?? 1985.
Optical reversible programmable Boolean logic unit.
Chattopadhyay, Tanay
2012-07-20
Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.
Stability of dense liquid carbon dioxide.
Boates, Brian; Teweldeberhan, Amanuel M; Bonev, Stanimir A
2012-09-11
We present ab initio calculations of the phase diagram of liquid CO(2) and its melting curve over a wide range of pressure and temperature conditions, including those relevant to the Earth. Several distinct liquid phases are predicted up to 200 GPa and 10,000 K based on their structural and electronic characteristics. We provide evidence for a first-order liquid-liquid phase transition with a critical point near 48 GPa and 3,200 K that intersects the mantle geotherm; a liquid-liquid-solid triple point is predicted near 45 GPa and 1,850 K. Unlike known first-order transitions between thermodynamically stable liquids, the coexistence of molecular and polymeric CO(2) phases predicted here is not accompanied by metallization. The absence of an electrical anomaly would be unique among known liquid-liquid transitions. Furthermore, the previously suggested phase separation of CO(2) into its constituent elements at lower mantle conditions is examined by evaluating their Gibbs free energies. We find that liquid CO(2) does not decompose into carbon and oxygen up to at least 200 GPa and 10,000 K.
Modelling Phase Transition Phenomena in Fluids
2015-07-01
Sublimation line r @@I Triple point ? Vapourisation liner @@I Critical point -Fusion line Solid Liquid Gas Figure 1: Schematic of a phase diagram means that the...velocity field can be set zero, and only the balance of energy constitutes the Stefan model. In contrast to this the liquid - gas phase transitions...defined by requiring that the phase-transition line is crossed in a direction from solid to liquid or from liquid to gas (vapour) phases. The term T∗ δs is
Phase equilibrium measurements on nine binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilding, W.V.; Giles, N.F.; Wilson, L.C.
1996-11-01
Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region existsmore » in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.« less
Nano-structured polymer composites and process for preparing same
Hillmyer, Marc; Chen, Liang
2013-04-16
A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.
Transport and fate of viruses in sediment and stormwater from a Managed Aquifer Recharge site
NASA Astrophysics Data System (ADS)
Sasidharan, Salini; Bradford, Scott A.; Šimůnek, Jiří; Torkzaban, Saeed; Vanderzalm, Joanne
2017-12-01
Enteric viruses are one of the major concerns in water reclamation and reuse at Managed Aquifer Recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and ΦX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column experiments were conducted using SW, stormwater in equilibrium with the aquifer sediment (EQ-SW), and two pore-water velocities (1 and 5 m day-1) to encompass expected behavior at the MAR site. The aquifer sediment removed >92.3% of these viruses under all of the considered MAR conditions. However, much greater virus removal (4.6 logs) occurred at the lower pore-water velocity and in EQ-SW that had a higher ionic strength and Ca2+ concentration. Virus removal was greatest for MS2, followed by PRD1, and then ΦX174 for a given physicochemical condition. The vast majority of the attached viruses were irreversibly attached or inactivated on the solid phase, and injection of Milli-Q water or beef extract at pH = 10 only mobilized a small fraction of attached viruses (<0.64%). Virus breakthrough curves (BTCs) were successfully simulated using an advective-dispersive model that accounted for rates of attachment (katt), detachment (kdet), irreversible attachment or solid phase inactivation (μs), and blocking. Existing MAR guidelines only consider the removal of viruses via liquid phase inactivation (μl). However, our results indicated that katt > μs > kdet > μl, and katt was several orders of magnitude greater than μl. Therefore, current microbial risk assessment methods in the MAR guideline may be overly conservative in some instances. Interestingly, virus BTCs exhibited blocking behavior and the calculated solid surface area that contributed to the attachment was very small. Additional research is therefore warranted to study the potential influence of blocking on virus transport and potential implications for MAR guidelines.
Effect of nanoscale morphology on selective ethanol transport through block copolymer membranes
USDA-ARS?s Scientific Manuscript database
We report on the effect of block copolymer domain size on transport of liquid mixtures through the membranes by presenting pervaporation data of an 8 wt% ethanol/water mixture through A-B-A and B-A-B triblock copolymer membranes. The A-block was chosen to facilitate ethanol transport while the B-blo...
Stabilizing liquid drops of arbitrary shape by the interfacial jamming of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Thomas P.; Cui, Mengmeng; Emrick, Todd
A stabilized assembly including a first liquid phase of non-spherical droplets in a second liquid phase, wherein the second liquid phase is immiscible with the first phase, and nanoparticle surfactants assembled at an interface of the non-spherical droplets and the second phase is disclosed. The nanoparticle surfactants include nanoparticles and end-functionalized polymers that can interact through ligand type interactions, and the first phase is stabilized by a disordered, jammed layer of nanoparticle surfactants. A method of preparing a stabilized assembly is also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J
2017-12-14
The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.
Gallium-rich Pd-Ga phases as supported liquid metal catalysts
NASA Astrophysics Data System (ADS)
Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.
2017-09-01
A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.
NASA Astrophysics Data System (ADS)
Harrison, M. A. J.; Heal, M. R.; Cape, J. N.
2005-07-01
Phenols are a major class of volatile organic compounds (VOC) whose reaction within, and partitioning between, the gas and liquid phases affects their lifetime within the atmosphere, the local oxidising capacity, and the extent of production of nitrophenols, which are toxic chemicals. In this work, a zero-dimension box model was constructed to quantify the relative importance of different nitration pathways, and partitioning into the liquid phase, of mono-aromatic compounds in order to help elucidate the formation pathways of 2- and 4-nitrophenol in the troposphere. The liquid phase contributed significantly to the production of nitrophenols for liquid water content (Lc) values exceeding 3x10-9, and for a range of assumed liquid droplet diameter, even though the resultant equilibrium partitioning to the liquid phase was much lower. For example, in a "typical" model scenario, with Lc=3x10-7, 58% of nitrophenol production occurred in the liquid phase but only 2% of nitrophenol remained there, i.e. a significant proportion of nitrophenol observed in the gas phase may actually be produced via the liquid phase. The importance of the liquid phase was enhanced at lower temperatures, by a factor ~1.5-2 at 278K c.f. 298K. The model showed that nitrophenol production was particularly sensitive to the values of the rate coefficients for the liquid phase reactions between phenol and OH or NO3 reactions, but insensitive to the rate coefficient for the reaction between benzene and OH, thus identifying where further experimental data are required.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.
2010-05-01
Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of the phase diagram. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, C*j, by including water and other inorganics in the absorbing phase. Such a C*j definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.
Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations
NASA Astrophysics Data System (ADS)
Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar
2016-11-01
Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.
Comprehensive modeling of a liquid rocket combustion chamber
NASA Technical Reports Server (NTRS)
Liang, P.-Y.; Fisher, S.; Chang, Y. M.
1985-01-01
An analytical model for the simulation of detailed three-phase combustion flows inside a liquid rocket combustion chamber is presented. The three phases involved are: a multispecies gaseous phase, an incompressible liquid phase, and a particulate droplet phase. The gas and liquid phases are continuum described in an Eulerian fashion. A two-phase solution capability for these continuum media is obtained through a marriage of the Implicit Continuous Eulerian (ICE) technique and the fractional Volume of Fluid (VOF) free surface description method. On the other hand, the particulate phase is given a discrete treatment and described in a Lagrangian fashion. All three phases are hence treated rigorously. Semi-empirical physical models are used to describe all interphase coupling terms as well as the chemistry among gaseous components. Sample calculations using the model are given. The results show promising application to truly comprehensive modeling of complex liquid-fueled engine systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakovec, P.; Kranjec, I.; Fettich, J.J.
1985-01-01
Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combinedmore » electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashraf, Arman R.; Ryan, Justin J.; Satkowski, Michael M.
Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms ofmore » the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.« less
Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials
NASA Astrophysics Data System (ADS)
Missonnier, Marc; Heuzé, Olivier
2006-07-01
When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.
Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid
McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.
2010-01-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196
Evaporative mass transfer behavior of a complex immiscible liquid.
McColl, Colleen M; Johnson, Gwynn R; Brusseau, Mark L
2008-09-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult's law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium.
Method and apparatus for determining two-phase flow in rock fracture
Persoff, Peter; Pruess, Karsten; Myer, Larry
1994-01-01
An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.
NASA Astrophysics Data System (ADS)
Kidnay, A. J.; Miller, R. C.; Sloan, E. D.; Hiza, M. J.
1985-07-01
The available experimental data for vapor-liquid equilibria, heat of mixing, change in volume on mixing for liquid mixtures, and gas-phase PVT measurements for nitrogen+methane have been reviewed and where possible evaluated for consistency. The derived properties chosen for analysis and correlation were liquid mixture excess Gibbs free energies, and Henry's constants.
A Novel Liquid-Liquid Transition in Undercooled Ti-Zr-Ni Liquids
NASA Technical Reports Server (NTRS)
Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Bradshaw, R. C.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.
2004-01-01
If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, T(sub l), finally 'freezing' into a glass below a characteristic temperature called the glass transition temperature, T(sub g). In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of H2O and Si. Such phase transitions have been predicted in some stable liquids, ie. above T(sub l) at atmospheric pressure, for SiO2 and BeF2, but these have not been verified experimentally. They have been observed in liquids of P, Si and C, but only under high pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity metallic liquid that is driven by an approach to a constant entropy configuration state and correlated with a growing icosahedral order in the liquid. A maximum in the specific heat at constant pressure, similar to what is normally observed near T(sub g), is reported for undercooled liquids of quasicrystal-forming Ti-Zr-Ni alloys. A two-state excitation model that includes cooperativity by incorporating a temperature-dependent excitation energy, fits the specific heat data well, signaling a phase transition. An inflection in the liquid density with decreasing temperature instead of a discontinuity indicates that this is not a typical first order phase transition; it could be a weakly first order or higher order transition. While showing many similarities to a glass transition, this liquid-liquid phase transition occurs in a mobile liquid, making it novel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor
2007-10-01
The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.
Liquid phase sintering of silicon carbide
Cutler, R.A.; Virkar, A.V.; Hurford, A.C.
1989-05-09
Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.
Liquid phase sintering of silicon carbide
Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.
1989-01-01
Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.
Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.
Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok
2011-04-28
A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.
Recent development of ionic liquid stationary phases for liquid chromatography.
Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang
2015-11-13
Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.
49 CFR 179.400-19 - Valves and gages.
Code of Federal Regulations, 2014 CFR
2014-10-01
... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...
49 CFR 179.400-19 - Valves and gages.
Code of Federal Regulations, 2012 CFR
2012-10-01
... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...
49 CFR 179.400-19 - Valves and gages.
Code of Federal Regulations, 2013 CFR
2013-10-01
... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...
Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2011-03-01
To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.
NASA Astrophysics Data System (ADS)
Ramírez-Santiago, Guillermo; Díaz-Herrera, Enrique; Moreno Razo, José A.
2004-03-01
We have carried out extensive equilibrium MD simulations to study wetting phenomena in the liquid-vapor phase coexistence of a partially miscible binary LJ mixture. We find that in the temperature range 0.60 ≤ T^* < 0.80, the system separates forming a liquid A-liquid B interface in coexistence with the vapor phase. At higher temperatures, 0.80 ≤ T^* < 1.25 the liquid phases are wet by the vapor phase. By studying the behavior of the surface tension as a function of temperature we estimate the wetting transition temperature (WTT) to be T^*_w≃ 0.80. The adsorption of molecules at the liquid-liquid interface shows a discontinuity at about T^*≃ 0.79 suggesting that the wetting transition is a first order phase transition. These results are in agreement with some experiments carried out in fluid binary mixtures. In addition, we estimated the consolute temperature to be T^* _cons≃ 1.25. The calculated phase diagram of the mixture suggest the existence of a tricritical point.
The heat source of Ruapehu crater lake; deductions from the energy and mass balances
NASA Astrophysics Data System (ADS)
Hurst, A. W.; Bibby, H. M.; Scott, B. J.; McGuinness, M. J.
1991-05-01
Regular observations of temperature, outflow rates and water chemistry of Crater Lake, Mt. Ruapehu, New Zealand have been made for the last 25 years. These data have been used to derive a model of the dynamics of the lake, and determine the input of energy, mass, and chloride from the volcano to the Crater Lake. The recent, relatively quiescent state of the volcano, when virtually no heat has been input to the lake, has also enabled an assessment to be made of the surface heat loss characteristics, which play an important role in the model of the lake. The modelling suggests that since about 1982 the ratio of the volcanic heat to mass added to the base of the lake is about 6 MJ/kg, which is not compatible with heating of the lake by magmatic steam alone. Thus, only about 50% of the heating has been by magmatic steam. It is suggested that heat could be transferred from a magmatic source to the region below the lake by a heat-pipe mechanism, commonly associated with geothermal systems. The simultaneous upward movement of vapour phase, and downward movement of liquid phase from condensed vapour allows efficient heat transfer without overall mass transfer. The permeability necessary to supply the required heat is of the order of 10 darcy, and is consistent with a rubble filled vent. For at least the last five years, there has been a characteristic pattern in the Crater Lake temperature record, with alternate heating and cooling phases. The heating phase generally lasts for one or two months, while the cooling phase lasts for six months to a year. A possible explanation for this cyclic behaviour is the presence of a layer of liquid sulphur under Crater Lake, acting as a partial barrier between the heat-pipe and the lake. The unusual variations of the viscosity of liquid sulphur with temperature will mean that at temperatures greater than 160°C, the layer of sulphur becomes highly viscous and would block any upwards steam flow and hence stop the heat input to Crater Lake, so producing a cooling phase. This blockage would last until the heating from below raised the temperature of the sulphur beyond the high-viscosity region, so gases could again pass through the sulphur.
Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems
ERIC Educational Resources Information Center
Sun, Kai
2009-01-01
This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…
NASA Astrophysics Data System (ADS)
Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo
2016-07-01
The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity.
Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao
2018-04-14
Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.
Composition-dependent stability of the medium-range order responsible for metallic glass formation
Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...
2014-09-18
The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less
Drechsel, Lisa; Schulz, Martin; von Stetten, Felix; Moldovan, Carmen; Zengerle, Roland; Paust, Nils
2015-02-07
Lab-on-a-chip devices hold promise for automation of complex workflows from sample to answer with minimal consumption of reagents in portable devices. However, complex, inhomogeneous samples as they occur in environmental or food analysis may block microchannels and thus often cause malfunction of the system. Here we present the novel AutoDip platform which is based on the movement of a solid phase through the reagents and sample instead of transporting a sequence of reagents through a fixed solid phase. A ball-pen mechanism operated by an external actuator automates unit operations such as incubation and washing by consecutively dipping the solid phase into the corresponding liquids. The platform is applied to electrochemical detection of organophosphorus pesticides in real food samples using an acetylcholinesterase (AChE) biosensor. Minimal sample preparation and an integrated reagent pre-storage module hold promise for easy handling of the assay. Detection of the pesticide chlorpyrifos-oxon (CPO) spiked into apple samples at concentrations of 10(-7) M has been demonstrated. This concentration is below the maximum residue level for chlorpyrifos in apples defined by the European Commission.
Phase response curves for models of earthquake fault dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franović, Igor, E-mail: franovic@ipb.ac.rs; Kostić, Srdjan; Perc, Matjaž
We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how themore » profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.« less
NASA Collaborative Design Processes
NASA Technical Reports Server (NTRS)
Jones, Davey
2017-01-01
This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.
Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.
1991-01-01
Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.
Polymer-based platform for microfluidic systems
Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA
2009-10-13
A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.
Escalante, Yolanda; Saavedra, Jose M.; Tella, Victor; Mansilla, Mirella; García-Hermoso, Antonio; Dominguez, Ana M.
2012-01-01
The aims of this study were (i) to compare women’s water polo game-related statistics by match outcome (winning and losing teams) and phase (preliminary, classificatory, and semi-final/bronze medal/gold medal), and (ii) identify characteristics that discriminate performances for each phase. The game-related statistics of the 124 women’s matches played in five International Championships (World and European Championships) were analyzed. Differences between winning and losing teams in each phase were determined using the chi-squared. A discriminant analysis was then performed according to context in each of the three phases. It was found that the game-related statistics differentiate the winning from the losing teams in each phase of an international championship. The differentiating variables were both offensive (centre goals, power-play goals, counterattack goal, assists, offensive fouls, steals, blocked shots, and won sprints) and defensive (goalkeeper-blocked shots, goalkeeper-blocked inferiority shots, and goalkeeper-blocked 5-m shots). The discriminant analysis showed the game-related statistics to discriminate performance in all phases: preliminary, classificatory, and final phases (92%, 90%, and 83%, respectively). Two variables were discriminatory by match outcome (winning or losing teams) in all three phases: goals and goalkeeper-blocked shots. Key pointsThe preliminary phase that more than one variable was involved in this differentiation, including both offensive and defensive aspects of the game.The game-related statistics were found to have a high discriminatory power in predicting the result of matches with shots and goalkeeper-blocked shots being discriminatory variables in all three phases.Knowledge of the characteristics of women’s water polo game-related statistics of the winning teams and their power to predict match outcomes will allow coaches to take these characteristics into account when planning training and match preparation. PMID:24149356
Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.
Pino, Verónica; Afonso, Ana M
2012-02-10
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.; Seinfeld, J. H.
2010-08-01
Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, Cj*, by including water and other inorganics in the absorbing phase. Such a Cj* definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only.
Method and turbine for extracting kinetic energy from a stream of two-phase fluid
NASA Technical Reports Server (NTRS)
Elliott, D. G. (Inventor)
1979-01-01
An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.
Corser-Jensen, Chelsea E.; Goodell, Dayton J.; Freund, Ronald K.; Serbedzija, Predrag; Murphy, Robert C.; Farias, Santiago E.; Dell'Acqua, Mark L.; Frey, Lauren C.; Serkova, Natalie; Heidenreich, Kim A.
2014-01-01
Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells. Here, we investigate the efficacy of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP), in blocking leukotriene synthesis, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. Male Sprague Dawley rats (9-11 weeks) received either MK-886 or vehicle after they were subjected to unilateral moderate fluid percussion injury (FPI) to assess the potential clinical use of FLAP inhibitors for TBI. MK-886 was also administered before FPI to determine the preventative potential of FLAP inhibitors. MK-886 given before or after injury significantly blocked the production of leukotrienes, measured by reverse-phase liquid chromatography coupled to tandem mass spectrometry (RP LC-MS/MS), and brain edema, measured by T2-weighted magnetic resonance imaging (MRI). MK-886 significantly attenuated blood-brain barrier disruption in the CA1 hippocampal region and deficits in long-term potentiation (LTP) at CA1 hippocampal synapses. The prevention of FPI-induced synaptic dysfunction by MK-886 was accompanied by fewer deficits in post-injury spatial learning and memory performance in the radial arms water maze (RAWM). These results indicate that leukotrienes contribute significantly to secondary brain injury and subsequent cognitive deficits. FLAP inhibitors represent a novel anti-inflammatory approach for treating human TBI that is feasible for both intervention and prevention of brain injury and neurologic deficits. PMID:24681156
USDA-ARS?s Scientific Manuscript database
A method for the highly sensitive determination of 2-, 3- and 4- nitrophenols was developed using reverse-phase high-performance liquid chromatography (RP-HPLC) with a UV photodiode array detector. Using a reverse-phase column and 40% aqueous acetonitrile as an eluent (i.e. isocratic elution), the i...
Application of ionic liquid in liquid phase microextraction technology.
Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho
2012-11-01
Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang
2015-05-29
Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, He-Lou; Li, Xiao; Ren, Jiaxing
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of themore » PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... transport natural gas liquids (``NGLs'') extending from a block valve site in St. Clair County, Michigan... Storage LLC., by FERC. Because NOVA intends to place Line 20 facilities back into natural gas liquids... gas liquids would be in the U.S. national interest. DATES: Interested parties are invited to submit...
A Liquid Optical Phase Shifter with an Embedded Electrowetting Actuator
Ashtiani, Alireza Ousati; Jiang, Hongrui
2017-01-01
We demonstrate an electrowetting-based liquid optical phase shifter. The phase shifter consists of two immiscible liquid layers with different refractive indices. Sandwiched between the two liquids is a rigid membrane that moves freely along the optical axis and supported by a compliant surround. When applied with a pressure, the thicknesses of both liquid layers change, which induces a difference in optical path, resulting in a phase shift. A miniaturized electrowetting-based actuator is used to produce hydraulic pressure. A multi-layered SU8 bonded structure was fabricated. A phase shift of 171° was observed when the device was incorporated in a Mach-Zehnder interferometer and driven with 100 V. PMID:29038640
Block copolymers for alkaline fuel cell membrane materials
NASA Astrophysics Data System (ADS)
Li, Yifan
Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC-b-PS. The incorporation of the hydrophilic polymer allows for an investigation of the effect of hydration on ionic conductivity, resulting in the increase in membrane water affinity, enhancement of conductivity and reduced dependence of conductivity on relative humidity. A study of crosslinking of block copolymers was done wherein the crosslinking occurs in the non-matrix phase in order to maintain mechanical properties. The formation of a cationic crosslinked structure improves the mechanical integrity of the membrane in water while showing little deleterious effect on ionic conductivity and mechanical properties.
Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A
2014-11-12
Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.
Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases.
Poole, Colin F; Lenca, Nicole
2014-08-29
Ionic liquids have moved from novel to practical stationary phases for gas chromatography with an increasing portfolio of applications. Ionic liquids complement conventional stationary phases because of a combination of thermophysical and solvation properties that only exist for ionic solvents. Their high thermal stability and low vapor pressure makes them suitable as polar stationary phases for separations requiring high temperatures. Ionic liquids are good solvents and can be used to expand the chemical space for separations. They are the only stationary phases with significant hydrogen-bond acidity in common use; they extend the hydrogen-bond basicity of conventional stationary phases; they are as dipolar/polarizable as the most polar conventional stationary phases; and some ionic liquids are significantly less cohesive than conventional polar stationary phases. Problems in column coating techniques and related low column performance, column activity, and stationary phase reactivity require further exploration as the reasons for these features are poorly understood at present. Copyright © 2014 Elsevier B.V. All rights reserved.
Method and apparatus for the removal of bioconversion of constituents of organic liquids
Scott, Timothy; Scott, Charles D.
1994-01-01
A method and apparatus for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing.
Liquid hyperpolarized 129Xe produced by phase exchange in a convection cell
NASA Astrophysics Data System (ADS)
Su, T.; Samuelson, G. L.; Morgan, S. W.; Laicher, G.; Saam, B.
2004-09-01
We present a method for the production of liquid hyperpolarized Xe129 that employs spin-exchange optical pumping in the gas phase and subsequent phase exchange with a column of xenon liquid. A convection loop inside the sealed glass cell allows efficient transfer of magnetization between the gas and liquid phases. By condensing to liquid a large fraction of the sample, this scheme permits the polarization of many more Xe129 atoms in a given sealed-cell volume than would otherwise be possible. We have thus far produced a steady-state polarization of 8% in 0.1mL of liquid with a characteristic rise time of ≈15min.
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu
2016-07-01
An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.
ERIC Educational Resources Information Center
Koury, Albert M.; Parcher, Jon F.
1979-01-01
Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)
LIGHT NONAQUEOUS PHASE LIQUIDS
Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...
Credit BG. Southeast and northeast facades of concrete block structure ...
Credit BG. Southeast and northeast facades of concrete block structure built in the late 1960s. It is now used to store miscellaneous equipment - Edwards Air Force Base, North Base, Liquid Oxygen Storage Facility, Second Street, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, Brian T.
This dissertation focuses on the development of a fully-implicit, high-order compressible ow solver with phase change. The work is motivated by laser-induced phase change applications, particularly by the need to develop large-scale multi-physics simulations of the selective laser melting (SLM) process in metal additive manufacturing (3D printing). Simulations of the SLM process require precise tracking of multi-material solid-liquid-gas interfaces, due to laser-induced melting/ solidi cation and evaporation/condensation of metal powder in an ambient gas. These rapid density variations and phase change processes tightly couple the governing equations, requiring a fully compressible framework to robustly capture the rapid density variations ofmore » the ambient gas and the melting/evaporation of the metal powder. For non-isothermal phase change, the velocity is gradually suppressed through the mushy region by a variable viscosity and Darcy source term model. The governing equations are discretized up to 4th-order accuracy with our reconstructed Discontinuous Galerkin spatial discretization scheme and up to 5th-order accuracy with L-stable fully implicit time discretization schemes (BDF2 and ESDIRK3-5). The resulting set of non-linear equations is solved using a robust Newton-Krylov method, with the Jacobian-free version of the GMRES solver for linear iterations. Due to the sti nes associated with the acoustic waves and thermal and viscous/material strength e ects, preconditioning the GMRES solver is essential. A robust and scalable approximate block factorization preconditioner was developed, which utilizes the velocity-pressure (vP) and velocity-temperature (vT) Schur complement systems. This multigrid block reduction preconditioning technique converges for high CFL/Fourier numbers and exhibits excellent parallel and algorithmic scalability on classic benchmark problems in uid dynamics (lid-driven cavity ow and natural convection heat transfer) as well as for laser-induced phase change problems in 2D and 3D.« less
Optical isotropy and iridescence in a smectic 'blue phase'.
Yamamoto, Jun; Nishiyama, Isa; Inoue, Miyoshi; Yokoyama, Hiroshi
2005-09-22
When liquid crystal molecules are chiral, the twisted structure competes with spatially uniform liquid crystalline orders, resulting in a variety of modulated liquid crystal phases, such as the cholesteric blue phase, twist grain boundary and smectic blue phases. Here we report a liquid crystal smectic blue phase (SmBP(iso)), formed from a two-component mixture containing a chiral monomer and a 'twin' containing two repeat units of the first molecule connected by a linear hydrocarbon spacer. The phase exhibits the simultaneous presence of finite local-order parameters of helices and smectic layers, without any discontinuity on a mesoscopic length scale. The anomalous softening of elasticity due to a strong reduction in entropy caused by mixing the monomer and the twin permits the seamless coexistence of these two competing liquid crystal orders. The new phase spontaneously exhibits an optically isotropic but uniformly iridescent colour and automatically acquires spherical symmetry, so that the associated photonic band gap maintains the same symmetry despite the local liquid crystalline order. We expect a range of unusual optical transmission properties based on this three-dimensional isotropic structure, and complete tunability due to the intrinsic softness and responsiveness of the liquid crystalline order against external fields.
Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.
Tasaki, Yuiko; Okada, Tetsuo
2011-12-15
A liquid phase coexists with solid water ice in a typical binary system, such as NaCl-water, in the temperature range between the freezing point and the eutectic point (t(eu)) of the system. In ice chromatography with salt-doped ice as the stationary phase, both solid and liquid phase can contribute to solute retention in different fashions; that is, the solid ice surface acts as an adsorbent, while a solute can be partitioned into the liquid phase. Thus, both adsorption and partition mechanisms can be utilized for ice chromatographic separation. An important feature in this approach is that the liquid phase volume can be varied by changing the temperature and the concentration of a salt incorporated into the ice stationary phase. Thus, we can control the relative contribution from the partition mechanism in the entire retention because the liquid phase volume can be estimated from the freezing depression curve. Separation selectivity can thereby be modified. The applicability of this concept has been confirmed for the solutes of different adsorption and partition abilities. The predicted retention based on thermodynamics basically agrees well with the corresponding experimental retention. However, one important inconsistency has been found. The calculation predicts a step-like discontinuity of the solute retention at t(eu) because the phase diagram suggests that the liquid phase abruptly appears at t(eu) when the temperature increases. In contrast, the corresponding experimental plots are continuous over the wider range including the subeutectic temperatures. This discrepancy is explained by the existence of the liquid phase below t(eu). A difference between predicted and measured retention factors allows the estimation of the volume of the subeutectic liquid phase.
As-Cast Icosashedral Quasicrystals in Ti-Zr-Ni Alloys
NASA Astrophysics Data System (ADS)
Lee, Geun Woo; Gangopadhyay, Anup K.; Kelton, Kenneth F.
2002-03-01
Most Ti-based icosahedral quasicrystals (i-phase) obtained by rapid quenching from the melt are metastable and disordered. In contrast, the Ti-Zr-Ni i-phase prepared by low temperature annealing is stable and better ordered. This i-phase is formed by a solid-state transformation from C14 Laves phase and α (Ti/Zr) solid-solution phase. It has not been possible previously to grow this i-phase directly from the liquid. Here, the nucleation and growth of the i-phase from the liquid in as-cast Ti-Zr-Ni alloys is reported. Pentagonal growth ledges in as-cast Ti-Zr-Ni ingots are clearly observed. Transmission electron microscopy and x-ray diffraction studies confirm the phase identity. Differential scanning calorimetry measurements show an endothermic transformation from the i-phase to a phase mixture of the C14 Laves and solid-solution phases, demonstrating that this i-phase is also stable. The short time that the liquid remains in the Laves phase-forming-field and the higher nucleation rate of the i-phase, owing to the presumed similarity between the local atomic structures of the i-phase and liquid, allows the i-phase to nucleate and grow directly from the liquid. Container-less solidification studies using electrostatic levitation (ESL) techniques support this conclusion.
Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Taehun
2015-10-20
The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less
The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...
[High-performance liquid-liquid chromatography in beverage analysis].
Bricout, J; Koziet, Y; de Carpentrie, B
1978-01-01
Liquid liquid chromatography was performed with columns packed with stationary phases chemically bonded to silica microparticules. These columns show a high efficiency and are used very easily. Flavouring compounds like aromatic aldehydes which have a low volatility were analyzed in brandy using a polar phase alkylnitrile. Sapid substances like amarogentin in Gentiana lutea or glyryrrhizin in Glycyrrhiza glabra were determined by reversed phase chromatography. Finally ionizable substances like synthetic dyes can be analyzed by paired ion chromatography witha non polar stationary phase.
Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang
An apparatus to promote gas-liquid contact and facilitate enhanced mass transfer. The dispersed bubble reactor (DBR) operates in the dispersed bubble flow regime to selectively absorb gas phase constituents into the liquid phase. The dispersion is achieved by shearing the large inlet gas bubbles into fine bubbles with circulating liquid and additional pumped liquid solvent when necessary. The DBR is capable of handling precipitates that may form during absorption or fine catalysts that may be necessary to promote liquid phase reactions. The DBR can be configured with multistage counter current flow sections by inserting concentric cylindrical sections into the risermore » to facilitate annular flow. While the DBR can absorb CO.sub.2 in liquid solvents that may lead to precipitates at high loadings, it is equally capable of handling many different types of chemical processes involving solids (precipitates/catalysts) along with gas and liquid phases.« less
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2013-05-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2012-12-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2:1 mixtures of organic polyols (1,2,6-hexanetriol, and 1:1 1,2,6-hexanetriol +2,2,6,6-tetrakis(hydroxymethyl)cycohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicates that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
Inhibition of chlorophyll synthesis and carotenoid accumulation by manganese and cobalt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clairmont, K.B.; Davis, E.; Hagar, W.
1986-05-01
The authors have developed methods for the separation and identification of the major pigments of the photosynthetic apparatus in plants using reversed phase microbore high performance liquid chromatography. Using these methods they have monitored the concentrations of pigments in tissue cultured tobacco callus in the absence and presence of excess manganese and cobalt. Manganese and cobalt were reported to inhibit chlorophyll synthesis in blue green algae. They have found that excess manganese blocks chlorophyll synthesis in tobacco callus also. In the manganese inhibited callus there is an increase in the concentration of protoporphyrin IX- the last common precursor to bothmore » the chlorophyll and heme synthetic pathways. They have found that cobalt also blocks chlorophyll synthesis in tissue cultured tobacco callus, but at a much lower concentration. In addition to the inhibition of chlorophyll synthesis by excess manganese and cobalt, the accumulation of carotenoids is reduced by several orders of magnitude in this tissue. The absence of chlorophyll may prevent assembly of any components of the photosynthetic apparatus in these cells.« less
Distinct Tensile Response of Model Semi-flexible Elastomer Networks
NASA Astrophysics Data System (ADS)
Aguilera-Mercado, Bernardo M.; Cohen, Claude; Escobedo, Fernando A.
2011-03-01
Through coarse-grained molecular modeling, we study how the elastic response strongly depends upon nanostructural heterogeneities in model networks made of semi-flexible chains exhibiting both regular and realistic connectivity. Idealized regular polymer networks have been shown to display a peculiar elastic response similar to that of super-tough natural materials (e.g., organic adhesives inside abalone shells). We investigate the impact of chain stiffness, and the effect of including tri-block copolymer chains, on the network's topology and elastic response. We find in some systems a dual tensile response: a liquid-like behavior at small deformations, and a distinct saw-tooth shaped stress-strain curve at moderate to large deformations. Additionally, stiffer regular networks exhibit a marked hysteresis over loading-unloading cycles that can be deleted by heating-cooling cycles or by performing deformations along different axes. Furthermore, small variations of chain stiffness may entirely change the nature of the network's tensile response from an entropic to an enthalpic elastic regime, and micro-phase separation of different blocks within elastomer networks may significantly enhance their mechanical strength. This work was supported by the American Chemical Society.
Molenaar, Heike; Boehm, Robert; Piepho, Hans-Peter
2018-01-01
Robust phenotypic data allow adequate statistical analysis and are crucial for any breeding purpose. Such data is obtained from experiments laid out to best control local variation. Additionally, experiments frequently involve two phases, each contributing environmental sources of variation. For example, in a former experiment we conducted to evaluate production related traits in Pelargonium zonale, there were two consecutive phases, each performed in a different greenhouse. Phase one involved the propagation of the breeding strains to obtain the stem cutting count, and phase two involved the assessment of root formation. The evaluation of the former study raised questions regarding options for improving the experimental layout: (i) Is there a disadvantage to using exactly the same design in both phases? (ii) Instead of generating a separate layout for each phase, can the design be optimized across both phases, such that the mean variance of a pair-wise treatment difference (MVD) can be decreased? To answer these questions, alternative approaches were explored to generate two-phase designs either in phase-wise order (Option 1) or across phases (Option 2). In Option 1 we considered the scenarios (i) using in both phases the same experimental design and (ii) randomizing each phase separately. In Option 2, we considered the scenarios (iii) generating a single design with eight replicates and splitting these among the two phases, (iv) separating the block structure across phases by dummy coding, and (v) design generation with optimal alignment of block units in the two phases. In both options, we considered the same or different block structures in each phase. The designs were evaluated by the MVD obtained by the intra-block analysis and the joint inter-block–intra-block analysis. The smallest MVD was most frequently obtained for designs generated across phases rather than for each phase separately, in particular when both phases of the design were separated with a single pseudo-level. The joint optimization ensured that treatment concurrences were equally balanced across pairs, one of the prerequisites for an efficient design. The proposed alternative approaches can be implemented with any model-based design packages with facilities to formulate linear models for treatment and block structures. PMID:29354145
Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly
NASA Astrophysics Data System (ADS)
Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles
Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.
Schier, Robert; Guerra, Diana; Aguilar, Jorge; Pratt, Gregory F; Hernandez, Mike; Boddu, Krishna; Riedel, Bernhard
2009-12-01
The best method for identifying the epidural space for neuraxial blocks is controversial. We conducted this meta-analysis to test the hypothesis that loss of resistance with liquid reduces complications with epidural placement. The MEDLINE, EMBASE, and Cochrane databases were searched for prospective, randomized studies comparing air versus liquid as the medium for loss of resistance during epidural space identification in adults. Data were abstracted from 5 studies (4 obstetric and 1 nonobstetric) (n = 4422 patients) that met inclusion criteria and analyzed for the following 6 outcomes: difficult catheter insertion, paresthesia, intravascular catheter insertion, accidental dural puncture, postdural puncture headache, and partial block. The overall risk differences for adverse outcome between the different mediums were not statistically different for the obstetric population. A small, but statistically significant, risk difference for postdural puncture headache was observed when fluid was used during epidural placement for chronic pain management. Larger studies that overcome limitations of heterogeneity across studies and a relatively infrequent occurrence of complications are required to determine the optimal medium for loss of resistance during epidural block.
Method and apparatus for the removal or bioconversion of constituents of organic liquids
Scott, T.; Scott, C.D.
1994-10-25
A method and apparatus are disclosed for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing. 1 fig.
Gas-Liquid Processing in Microchannels
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin
Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less
Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime
2015-07-01
Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid-liquid phase transition and anomalous diffusion in simulated liquid GeO 2
NASA Astrophysics Data System (ADS)
Hoang, Vo Van; Anh, Nguyen Huynh Tuan; Zung, Hoang
2007-03-01
We perform molecular dynamics (MD) simulation of diffusion in liquid GeO 2 at the temperatures ranged from 3000 to 5000 K and densities ranged from 3.65 to 7.90 g/cm 3. Simulations were done in a model containing 3000 particles with the new interatomic potentials for liquid and amorphous GeO 2, which have weak Coulomb interaction and Morse-type short-range interaction. We found a liquid-liquid phase transition in simulated liquid GeO 2 from a tetrahedral to an octahedral network structure upon compression. Moreover, such phase transition accompanied with an anomalous diffusion of particles in liquid GeO 2 that the diffusion constant of both Ge and O particles strongly increases with increasing density (e.g. with increasing pressure) and it shows a maximum at the density around 4.95 g/cm 3. The possible relation between anomalous diffusion of particles and structural phase transition in the system has been discussed.
Xie, Yujiao; Liu, Xiaofeng; Hu, Zhuang; Hou, Zhipeng; Chen, Zhangpei; Hu, Jianshe; Yang, Liqun
2018-01-01
New amphiphilic liquid crystal (LC) polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR) spectrum, 1H NMR, gel permeation chromatographic (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarizing optical microscope (POM), and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td), glass temperature (Tg), and isotropic temperature (Ti) increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX), together with drug release tracking, were evaluated by dynamic light scattering (DLS), SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications. PMID:29584691
Gäde, G
1992-11-01
An identical neuropeptide was isolated by reversed-phase high-performance liquid chromatography from the corpora cardiaca of the king cricket, Libanasidus vittatus, and the two armoured ground crickets, Heterodes namaqua and Acanthoproctus cervinus. The crude gland extracts had adipokinetic activity in migratory locusts, hypertrehalosaemic activity in American cockroaches and a slight hypertrehalosaemic, but no adipokinetic, effect in armoured ground crickets. The primary structure of this neuropeptide was determined by pulsed-liquid phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal 5-oxopyrrolidine-2-carboxylic acid residue. The C-terminus was also blocked, as indicated by the lack of digestion by carboxypeptidase A. The peptide was assigned the structure [symbol: see text]Glu-Leu-Asn-Phe-Ser-Thr-Gly-TrpNH2, previously designated Scg-AKH-II. The corpora cardiaca of the cricket Gryllodes sigillatus contained a neuropeptide which differed in retention time from the one isolated from the king and armoured ground crickets. The structure was assigned as [symbol: see text]Glu-Val-Asn-Phe-Ser-Thr-Gly-TrpNH2, previously designated Grb-AKH. This octapeptide caused hyperlipaemia in its donor species. The presence of the same peptide, Scg-AKH-II, in the two primitive infraorders of Ensifera, and the different peptide, Grb-AKH, in the most advanced infraorder of Ensifera, supports the evolutionary trends assigned formerly from morphological and physiological evidence.
Percec, Virgil; Bera, Tushar K; Glodde, Martin; Fu, Qiongying; Balagurusamy, Venkatachalapathy S K; Heiney, Paul A
2003-02-17
The synthesis and structural analysis of the twin-dendritic benzamide 10, based on the first-generation, self-assembling, tapered dendrons 3,4,5-tris(4'-dodecyloxybenzyloxy)benzoic acid and 3,4,5-tris(4'-dodecyloxybenzyloxy)-1-aminobenzene, and the polymethacrylate, 20, which contains 10 as side groups, are presented. Benzamide 10 self-assembles into a supramolecular cylindrical dendrimer that self-organizes into a columnar hexagonal (Phi(h)) liquid crystalline (LC) phase. Polymer 20 self-assembles into an imperfect four-cylinder-bundle supramolecular dendrimer, and creates a giant vesicular supercylinder that self-organizes into a columnar nematic (N(c)) LC phase which displays short-range hexagonal order. In mixtures of 20 and 10, 10 acts as a guest and 20 as a host to create a perfect four-cylinder-bundle host-guest supramolecular dendrimer that coorganizes with 10. A diversity of Phi(h), simple rectangular columnar (Phi(r-s)) and centered rectangular columnar (Phi(r-c)), superlattices are produced at different ratios between 20 and 10. This diversity of LC lattices and superlattices is facilitated by the architecture of the twin-dendritic building block, polymethacrylate, the host-guest supramolecular assembly, and by hydrogen bonding along the center of the supramolecular cylinders generated from 10 and 20.
Flame spread across liquid pools
NASA Technical Reports Server (NTRS)
Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.
1993-01-01
For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.
Pressure-Induced Phase Transitions of n-Tridecane
NASA Astrophysics Data System (ADS)
Yamashita, Motoi
Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.
Laser-induced separation of hydrogen isotopes in the liquid phase
Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.
1980-01-01
Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.
Solid-liquid critical behavior of water in nanopores.
Mochizuki, Kenji; Koga, Kenichiro
2015-07-07
Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.
Chiral self-assembly of helical particles.
Kolli, Hima Bindu; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille
2016-01-01
The shape of the building blocks plays a crucial role in directing self-assembly towards desired architectures. Out of the many different shapes, the helix has a unique position. Helical structures are ubiquitous in nature and a helical shape is exhibited by the most important biopolymers like polynucleotides, polypeptides and polysaccharides as well as by cellular organelles like flagella. Helical particles can self-assemble into chiral superstructures, which may have a variety of applications, e.g. as photonic (meta)materials. However, a clear and definite understanding of these structures has not been entirely achieved yet. We have recently undertaken an extensive investigation on the phase behaviour of hard helical particles, using numerical simulations and classical density functional theory. Here we present a detailed study of the phase diagram of hard helices as a function of their morphology. This includes a variety of liquid-crystal phases, with different degrees of orientational and positional ordering. We show how, by tuning the helix parameters, it is possible to control the organization of the system. Starting from slender helices, whose phase behaviour is similar to that of rodlike particles, an increase in curliness leads to the onset of azimuthal correlations between the particles and the formation of phases specific to helices. These phases feature a new kind of screw order, of which there is experimental evidence in colloidal suspensions of helical flagella.
ERIC Educational Resources Information Center
Xu, Xinhua; Wang, Xiaogang; Wu, Meifen
2014-01-01
The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…
NASA Astrophysics Data System (ADS)
Chatterjee, Saikat; Li, Donghui; Chattopadhyay, Kinnor
2018-04-01
Multiphase flows are frequently encountered in metallurgical operations. One of the most effective ways to understand these processes is by flow modeling. The process of tundish open eye (TOE) formation involves three-phase interaction between liquid steel, slag, and argon gas. The two-phase interaction involving argon gas bubbles and liquid steel can be modeled relatively easily using the discrete phase modeling technique. However, the effect of an upper slag layer cannot be captured using this approach. The presence of an upper buoyant phase can have a major effect on the behavior of TOEs. Hence, a multiphase model, including three phases, viz. liquid steel, slag, and argon gas, in a two-strand slab caster tundish, was developed to study the formation and evolution of TOEs. The volume of fluid model was used to track the interphase between liquid steel and slag phases, while the discrete phase model was used to trace the movement of the argon gas bubbles in liquid steel. The variation in the TOE areas with different amounts of aspirated argon gas was examined in the presence of an overlying slag phase. The mathematical model predictions were compared against steel plant measurements.
NASA Astrophysics Data System (ADS)
Han, Junwon
The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a gravity column. The second part of this thesis is focused on the liquid chromatography analysis and fractionation of RAFT-polymerized PS-b -PMMA diblock copolymers and AFM studies. In this study, PS- b-PMMA block copolymers were synthesized by a RAFT free radical polymerization process---the PMMA block with a phenyldithiobenzoate end group was synthesized first. The contents of unreacted PS and PMMA homopolymers in as-synthesized PS-b-PMMA block copolymers were quantitatively analyzed by solvent gradient interaction chromatography (SGIC) technique employing bare silica and C18-bonded silica columns, respectively. In addition, by 2-dimensional large-scale IC fractionation method, atomic force microscopy (AFM) study of these fractionated samples revealed various morphologies with respect to the chemical composition of each fraction. The third part of this thesis is to analyze random copolymers with tunable monomer sequence distributions using interaction chromatography. Here, IC was used for characterizing the composition and monomer sequence distribution in statistical copolymers of poly(styrene-co-4-bromostyrene) (PBrxS). The PBrS copolymers were synthesized by the bromination of monodisperse polystyrenes; the degree of bromination (x) and the sequence distribution were adjusted by varying the bromination time and the solvent quality, respectively. Both normal-phase (bare silica) and reversed-phase (C18-bonded silica) columns were used at different combinations of solvents and non-solvents to monitor the content of the 4-bromostyrene units in the copolymer and their average monomer sequence distribution. The fourth part of this thesis is to analyze and fractionate highly branched polymers such as dendronized polymers and star-shaped homo and copolymers. I have developed an interaction chromatography technique to separate polymers with nonlinear chain architecture. Specifically, the IC technique has been used to separate dendronized polymers and PS-based highly branched copolymers and to ultimately obtain well-defined dendronized or branched copolymers with a low polydispersity. The effects of excess arm-polymers on (1) the micellar self-assembly of dendronized polymers and (2) the regularity of the pore morphology in the low-k applications by the sol-gel process have been studied.
Qin, Jian-Hua; Wang, Hua-Rui; Han, Min-Le; Chang, Xin-Hong; Ma, Lu-Fang
2017-11-14
Two pH-stable luminescent metal-organic frameworks (LMOFs), {[Ln 2 (L) 2 (OH)(HCOO)]·[H 2 O]} n (Ln = Eu 1, Tb 2), based on a new π-conjugated organic building block involving both carboxylate and terpyridine groups were rationally synthesized under a combination of hydro/solvothermal and ionothermal conditions (H 2 L = 4'-(4-(3,5-dicarboxylphenoxy)phenyl)-4,2':6',4''-terpyridine). 1 and 2 are isostructural and feature noninterpenetrated open 3D condensed frameworks constructed by rod-shaped lanthanide-carboxylate building units. Their excellent water-stability and pH-stability allow them to be used in aquatic systems. 1 and 2 both exhibit selective and sensitive aqueous phase detection of the well-known nitroaromatic explosive environmental pollutant 2,4,6-trinitrophenol (TNP), which is highly desirable for practical applications. The presence of a free pyridine group on the LMOF particle surface was strategically utilized for the purpose of exclusive TNP-sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, C.; et al.
We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge withmore » the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.« less
NASA Astrophysics Data System (ADS)
Jang, D.; Kim, K.; Park, D.; Kim, G.
2012-09-01
Optically pure D-amino acids are industrially important chiral building blocks for the synthesis of pharmaceuticals, food ingredients, and drug intermediates. Chemoenzymatic dynamic kinetic-resolution processes have recently been developed for deracemization of amino acids. S-ARCA would be a good candidate for the selective adsorption of D amino acid through the imine formation reaction. The organic phase containing S-ARCA adsorbent, TPPC or Ionic Liquid (as a phase transfer catalyst) in MC were coated on the surfaces of mesoporous carbon C-SBA-15(CMK). The aqueous solution of racemic D/L-amino acid and NaOH were added to the carbon support coated with ARCA. The D/L ratios on ARCA and in solution were determined with increasing reaction time. S-ARCA has a unique property for the selective adsorption of D- amino acid (up to 90% selcetivity) in the racemic mixture. The fixed bed reactor containing ARCA/carbon support was also adopted successfully for the selective separation of amino acid.
Shenasa, Mohammad; Josephson, Mark E; Wit, Andrew L
2017-11-01
Paroxysmal atrioventricular (A-V) block is relatively rare, and due to its transient nature, it is often under recognized. It is often triggered by atrial, junctional, or ventricular premature beats, and occurs in the presence of a diseased His-Purkinje system (HPS). Here, we present a 45-year-old white male who was admitted for observation due to recurrent syncope and near-syncope, who had paroxysmal A-V block. The likely cellular electrophysiological mechanisms(s) of paroxysmal A-V block and its differential diagnosis and management are discussed. Continuous electrocardiographic monitoring was done while the patient was in the cardiac unit. Multiple episodes of paroxysmal A-V block were documented in this case. All episodes were initiated and terminated with atrial/junctional premature beats. The patient underwent permanent pacemaker implantation and has remained asymptomatic since then. Paroxysmal A-V block is rare and often causes syncope or near-syncope. Permanent pacemaker implantation is indicated according to the current guidelines. Paroxysmal A-V block occurs in the setting of diseased HPS and is bradycardia-dependent. The detailed electrophysiological mechanisms, which involve phase 4 diastolic depolarization, and differential diagnosis are discussed. © 2017 Wiley Periodicals, Inc.
Phase behavior of metastable liquid silicon at negative pressure: Ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Zhao, G.; Yu, Y. J.; Yan, J. L.; Ding, M. C.; Zhao, X. G.; Wang, H. Y.
2016-04-01
Extensive first-principle molecular dynamics simulations are performed to study the phase behavior of metastable liquid Si at negative pressure. Our results show that the high-density liquid (HDL) and HDL-vapor spinodals indeed form a continuous reentrant curve and the liquid-liquid critical point seems to just coincide with its minimum. The line of density maxima also has a strong tendency to pass through this minimum. The phase behaviour of metastable liquid Si therefore tends to be a critical-point-free scenario rather than a second-critical-point one based on SW potential.
NASA Astrophysics Data System (ADS)
Nowak, Christian; Escobedo, Fernando A.
2017-08-01
Molecular simulations are used to study the effect of synthesis conditions on the tensile response of liquid-crystalline elastomers formed by block copolymer chains. Remarkably, it is found that despite the significant presence of trapped entanglements, these networks can exhibit the sawtooth tensile response previously predicted for ideal unentangled networks. It is also found that the monomer concentration during crosslinking can be tuned to limit the extent of entanglements and inhomogeneities while also maximizing network extensibility. It is predicted that networks synthesized at a "critical" concentration will have the greatest toughness.
Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo
2016-01-26
Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.
Multi-scaling in the critical phenomena in the quenched disordered systems
NASA Astrophysics Data System (ADS)
Wu, X. T.
2018-04-01
The Landau-Ginzburg-Wilson Hamiltonian with random temperature for the phase transition in disordered systems from the Griffiths phase to ordered phase is reexamined. From the saddle point solutions, especially the excited state solutions, it is shown that the system self-organizes into blocks coupled with their neighbors like superspins, which are emergent variables. Taking the fluctuation around these saddle point solutions into account, we get an effective Hamiltonian, including the emergent superspins of the blocks, the fluctuation around the saddle point solutions, and their couplings. Applying Stratonovich-Hubbard transformation to the part of superspins, we get a Landau-Ginzburg-Wilson Hamiltonian for the blocks. From the saddle point equations for the blocks, we can get the second generation blocks, of which sizes are much larger than the first generation blocks. Repeating this procedure again and again, we get many generations of blocks to describe the asymptotic behavior. If a field is applied, the effective field on the superspins is multiplied greatly and proportional to the block size. For a very small field, the effective field on the higher generation superspins can be so strong to cause the superspins polarized radically. This can explain the extra large critical isotherm exponent discovered in the experiments. The phase space of reduced temperature vs. field is divided into many layers , in which different generation blocks dominate the critical behavior. The sizes of the different generation emergent blocks are new relevant length scales. This can explain a lot of puzzles in the experiments and the Monte Carlo simulation.
Images reveal that atmospheric particles can undergo liquid–liquid phase separations
You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.
2012-01-01
A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443
Frozen-Plug Technique for Liquid-Oxygen Plumbing
NASA Technical Reports Server (NTRS)
McCaskey, C. E. " Mac"
2005-01-01
A frozen-plug technique has been conceived as a means of temporarily blocking the flow of liquid oxygen or its vapor through a tube or pipe. The technique makes it possible to perform maintenance, repair, or other work on downstream parts of the cryogenic system in which the oxygen is used, without having to empty an upstream liquid-oxygen reservoir and, hence, without wasting the stored liquid oxygen and without subjecting the reservoir to the stresses of thermal cycling.
Centrifugal lyophobic separator
NASA Technical Reports Server (NTRS)
Booth, F. W.; Bruce, R. A. (Inventor)
1974-01-01
A centrifugal separator is described using a lyophobic filter for removing liquid particles from a mixed stream of gas and liquid under various negative or positive external acceleration conditions as well as zero g or weightless conditions. Rotating the lyophobic filter and inclining the filter to the entering flow improves the lyophobic properties of the filter, provides gross separation of larger liquid particles, and prevents prolonged contact of liquid droplets with the spinning filter which might change the filter properties or block the filter.
Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S.; Yasuoka, Kenji; Zeng, Xiao Cheng
2017-01-01
Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called “no-man’s land” under deeply supercooled condition, where only crystalline ices have been observed. Here, we show MD simulation evidence that, inside an isolated carbon nanotube (CNT) with a diameter of 1.25 nm, both low- and high-density liquid water states can be detected near ambient temperature and above ambient pressure. In the temperature–pressure phase diagram, the low- and high-density liquid water phases are separated by the hexagonal ice nanotube (hINT) phase, and the melting line terminates at the isochore end point near 292 K because of the retracting melting line from 292 to 278 K. Beyond the isochore end point (292 K), low- and high-density liquid becomes indistinguishable. When the pressure is increased from 10 to 600 MPa along the 280-K isotherm, we observe that water inside the 1.25-nm-diameter CNT can undergo low-density liquid to hINT to high-density liquid reentrant first-order transitions. PMID:28373562
Gu, Qun; David, Frank; Lynen, Frédéric; Vanormelingen, Pieter; Vyverman, Wim; Rumpel, Klaus; Xu, Guowang; Sandra, Pat
2011-05-20
Ionic liquid stationary phases were tested for one dimensional gas chromatography-mass spectrometry (GC-MS) and comprehensive two dimensional gas chromatography (GC×GC) of fatty acid methyl esters from algae. In comparison with polyethylene glycol and cyanopropyl substituted polar stationary phases, ionic liquid stationary phases SLB-IL 82 and SLB-IL 100 showed comparable resolution, but lower column bleeding with MS detection, resulting in better sensitivity. The selectivity and polarity of the ionic liquid phases are similar to a highly polar biscyanopropyl-silicone phase (e.g. HP-88). In GC×GC, using an apolar polydimethyl siloxane×polar ionic liquid column combination, an excellent group-type separation of fatty acids with different carbon numbers and number of unsaturations was obtained, providing information that is complementary to GC-MS identification. Copyright © 2011 Elsevier B.V. All rights reserved.
Gerber, Iann C; Jolibois, Franck
2015-05-14
Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.
Beilke, Michael C; Beres, Martin J; Olesik, Susan V
2016-03-04
A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.
Lodge, Timothy P; Ueki, Takeshi
2016-01-01
Room temperature ionic liquids are of great interest for many advanced applications, due to the combination of attractive physical properties with essentially unlimited tunability of chemical structure. High chemical and thermal stability, favorable ionic conductivity, and complete nonvolatility are just some of the most important physical characteristics that make ionic liquids promising candidates for emerging technologies. Examples include separation membranes, actuators, polymer gel electrolytes, supercapacitors, ion batteries, fuel cell membranes, sensors, printable plastic electronics, and flexible displays. However, in these and other applications, it is essential to solidify the ionic liquid, while retaining the liquid state properties of interest. A broadly applicable solidification strategy relies on gelation by addition of suitable triblock copolymers with the ABA architecture, producing ion gels or ionogels. In this paradigm, the A end blocks are immiscible with the ionic liquid, and consequently self-assemble into micellar cores, while some fraction of the well-solvated B midblocks bridge between micelles, forming a percolating network. The chemical structures of the A and B repeat units, the molar mass of the blocks, and the concentration of the copolymer in the ionic liquid are all independently tunable to attain desired property combinations. In particular, the modulus of the resulting ion gel can be readily varied between 100 Pa and 1 MPa, with little sacrifice of the transport properties of the ionic liquid, such as ionic conductivity or gas diffusivity. Suitable A blocks can impart thermoreversible gelation (with solidification either on heating or cooling) or even photoreversible gelation. By virtue of the nonvolatility of ionic liquids, a wide range of processing strategies can be employed directly to prepare ion gels in thin or thick film forms, including solvent casting, spin coating, aerosol jet printing, photopatterning, and transfer printing. For higher modulus ion gels it is even possible to employ a manual "cut and stick" strategy for easy device fabrication. Ion gels prepared from common triblock copolymers, for example, with A = polystyrene and B = poly(ethylene oxide) or poly(methyl methacrylate), in imidazolium based ionic liquids provide exceptional performance in membranes for separating CO 2 from N 2 or CH 4 . The same materials also are the best available gate dielectrics for printed plastic electronics, because their high capacitance endows organic transistors with milliamp output currents for sub-1 V applied bias, with switching speeds that can go well beyond 100 kHz, while being amenable to large area roll-to-roll printing. Incorporation of well-designed electroluminescent (e.g., Ru(bpy) 3 -based) or electrochromic (e.g., viologen-based) moieties into ion gels held between transparent electrodes yields flexible color displays operating with sub-1 V dc inputs.
Microgravity Studies of Liquid-Liquid Phase Transitions in Alumina-Yttria Melts
NASA Technical Reports Server (NTRS)
Guynes, Buddy (Technical Monitor); Weber, Richard; Nordine, Paul
2004-01-01
The scientific objective of this research is to increase the fundamental knowledge base for liquid- phase processing of technologically important oxide materials. The experimental objective is to define conditions and hardware requirements for microgravity flight experiments to test and expand the experimental hypotheses that: 1. Liquid phase transitions can occur in undercooled melts by a diffusionless process. 2. Onset of the liquid phase transition is accompanied by a large change in the temperature dependence of melt viscosity. Experiments on undercooled YAG (Y3A15012)- and rare earth oxide aluminate composition liquids demonstrated a large departure from an Arrhenian temperature dependence of viscosity. Liquid YAG is nearly inviscid at its 2240 K melting point. Glass fibers were pulled from melts undercooled by ca. 600 K indicating that the viscosity is on the order of 100 Pans (1000 Poise) at 1600 K. This value of viscosity is 500 times greater than that obtained by extrapolation of data for temperatures above the melting point of YAG. These results show that the liquids are extremely fragile and that the onset of the highly non-Arrhenian viscosity-temperature relationship occurs at a temperature considerably below the equilibrium melting point of the solid phases. Further results on undercooled alumina-yttria melts containing 23-42 mole % yttrium oxide indicate that a congruent liquid-liquid phase transition occurs in the undercooled liquids. The rates of transition are inconsistent with a diffusion-limited process. This research is directed to investigation of the scientifically interesting phenomena of polyamorphism and fragility in undercooled rare earth oxide aluminum oxide liquids. The results bear on the technologically important problem of producing high value rare earth-based optical materials.
Hugoniots of aerogels involving carbon and resorcinol formaldehyde
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrubesh, L H; Ree, F H; Schmidt, R D
1999-06-24
Recently, a first-order phase transition is predicted in liquid carbon using atomistic simulation and Brenner's bond order potential. There are also experimental data suggesting a possibility for a first-order phase transition. In light of this, a thermochemical equilibrium code (CHEQ) is used to provide guidance to experiments to find a liquid-liquid phase change in carbon foam and carbon-rich aerogel, resorcinol formaldehyde. Isotherms and Hugoniots were computed based on the previous analysis by van Thiel and Ree. The present calculations predict the liquid-liquid-graphite triple point to be at 5000 K and 5.2 GPa and its critical point to be at 6000more » K and 8.8 GPa. The present Hugoniot calculations suggest that the liquid-liquid phase transition may be detected by performing a shock experiment with initial density of approximately 0.15 gm/cm{sup 3}.« less
Wang, Zhangjie; Li, Daoyuan; Sun, Xiaojun; Bai, Xue; Jin, Lan; Chi, Lianli
2014-04-15
Low molecular weight heparins (LMWHs) are important artificial preparations from heparin polysaccharide and are widely used as anticoagulant drugs. To analyze the structure and composition of LMWHs, identification and quantitation of their natural and modified building blocks are indispensable. We have established a novel reversed-phase high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry approach for compositional analysis of LMWHs. After being exhaustively digested and labeled with 2-aminoacridone, the structural motifs constructing LMWHs, including 17 components from dalteparin and 15 components from enoxaparin, were well separated, identified, and quantified. Besides the eight natural heparin disaccharides, many characteristic structures from dalteparin and enoxaparin, such as modified structures from the reducing end and nonreducing end, 3-O-sulfated tetrasaccharides, and trisaccharides, have been unambiguously identified based on their retention time and mass spectra. Compared with the traditional heparin compositional analysis methods, the approach described here is not only robust but also comprehensive because it is capable of identifying and quantifying nearly all components from lyase digests of LMWHs. Copyright © 2014 Elsevier Inc. All rights reserved.
Nanostructured membranes based on polysulfone homopolymers and copolymers
NASA Astrophysics Data System (ADS)
Nunes, Suzana
Polyethersulfone is one of the most successful polymers for membranes with applications varying from seawater desalination to hemodialysis. Their manufacture however is traditionally done by solution casting and phase inversion using solvents, which are now considered negative for the environment. We have been working on the membrane manufacture using ionic liquids as green solvent alternative. Polyethersulfone, and polyetherimide sulfone membranes, as flat-sheet and hollow fibers, were prepared from solutions in different ionic liquids. Thermodynamic and rheological investigation were conducted to optimize the membrane morphology, leading to permeances of 20-65 Lm-2h-1bar-1 useful for instance for separations of peptides with molecular weight in the range of 800 to 3500 gmol-1. We also synthesized block copolymers with polysulfone segments and explored them for membrane preparation with low fouling, high porosity and narrow pore size distribution. The self-assembly of the copolymer in solution, leading to the membrane formation was investigated by cryo electron microscopy, supported by modeling (dissipative particle dynamics). In collaboration with: Dooli Kim, Yihui xie, Burhannudin Sutisna, King Abdullah University of Science and Technology
NASA Astrophysics Data System (ADS)
Provata, Astero; Prassas, Vassilis D.; Theodorou, Doros N.
1997-10-01
A thin liquid film of lattice fluid in equilibrium with its vapor is studied in 2 and 3 dimensions with canonical Monte Carlo simulation (MC) and Self-Consistent Field Theory (SCF) in the temperature range 0.45Tc to Tc, where Tc the liquid-gas critical temperature. Extending the approach of Oates et al. [Philos. Mag. B 61, 337 (1990)] to anisotropic systems, we develop a method for the MC computation of the transverse and normal pressure profiles, hence of the surface tension, based on virtual removals of individual sites or blocks of sites from the system. Results from implementation of this new method, obtained at very modest computational cost, are in reasonable agreement with exact values and other MC estimates of the surface tension of the 2-d and 3-d model systems, respectively. SCF estimates of the interfacial density profiles, the surface tension, the vapor pressure curve and the binodal curve compare well with MC results away from Tc, but show the expected deviations at high temperatures.
Grasso, A.P.
1984-02-21
A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.
Grasso, Albert P.
1986-01-01
A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.
Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
Characterization of On-Orbit U.S. Lab Condensate Vacuum Venting
NASA Astrophysics Data System (ADS)
Schmidl, W. D.; Alred, J. A.; Mikatarian, R.; Soares, C.; Miles, E.
2002-01-01
The venting of liquid streams into a vacuum has been studied extensively for many years. An experiment was performed aboard the International Space Station (ISS) to video tape the U.S. Lab's condensate venting event with cameras located on the Space Station Remote Manipulator System (SSRMS). Images of the vent plume were acquired close to both the port and starboard vent nozzles. The imaging started with a wider view and then zoomed in closer before the shutdown phase of the vent event occurred. The objective of this experiment was to extend our understanding of the properties of venting liquids into space. Data from the video images were analyzed to obtain the approximate cone angle encompassing the core of the vent plume. The condensate vent plume was characterized as having three phases, a startup phase, a nominal phase, and a shutdown phase. The startup phase consisted of the initial period when the vent first started and the liquid first entered the heated line. The nominal phase was the period when the majority of the liquid was vented. The shutdown phase occurs close to the end of the vent event. The shutdown phase was further divided into two parts, the shutdown initial phase, and a later shutdown sputtering phase. The shutdown initial phase occurs when gas becomes entrained in the condensate liquid being vented. The sputtering phase occurred after the vent valve was closed, and the liquid/ice in the line was removed by continuing to heat the line to bake it out. It was determined that the ice particles were ejected at higher angles, but lower velocities, during the startup and shutdown phases. The number and velocities of ice particles ejected outside of the core region, during the startup, initial shutdown and shutdown sputtering phases were determined. The core of liquid ejected during the startup and shutdown phases was contained within a half cone angle of less than 60 degrees. The startup phase took approximately 36 seconds, the shutdown initial phase took approximately 22 seconds, and the shutdown sputtering phase took approximately 32 seconds. Results from the experiment were correlated with the Boeing ISS vent plume model.
Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates.
Holzammer, Christine; Schicks, Judith M; Will, Stefan; Braeuer, Andreas S
2017-09-07
We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO 2 ) gas hydrates using Raman spectroscopy. The CO 2 hydrates were formed from sodium chloride/water solutions with salinities of 0-10 wt %, which were pressurized with liquid CO 2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO 2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, x H , and the fraction of the dispersed liquid water-rich phase, x L , from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate x H contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO 2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO 2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO 2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect.
31 CFR 515.407 - Administration of blocked estates of decedents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Administration of blocked estates of decedents. 515.407 Section 515.407 Money and Finance: Treasury Regulations Relating to Money and Finance... qualification of personal representatives, the collection and liquidation of assets, the payment of claims, and...
31 CFR 515.407 - Administration of blocked estates of decedents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Administration of blocked estates of decedents. 515.407 Section 515.407 Money and Finance: Treasury Regulations Relating to Money and Finance... qualification of personal representatives, the collection and liquidation of assets, the payment of claims, and...
31 CFR 500.407 - Administration of blocked estates of decedents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Administration of blocked estates of decedents. 500.407 Section 500.407 Money and Finance: Treasury Regulations Relating to Money and Finance... qualification of personal representatives, the collection and liquidation of assets, the payment of claims, and...
31 CFR 515.407 - Administration of blocked estates of decedents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Administration of blocked estates of decedents. 515.407 Section 515.407 Money and Finance: Treasury Regulations Relating to Money and Finance... qualification of personal representatives, the collection and liquidation of assets, the payment of claims, and...
31 CFR 515.407 - Administration of blocked estates of decedents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Administration of blocked estates of decedents. 515.407 Section 515.407 Money and Finance: Treasury Regulations Relating to Money and Finance... qualification of personal representatives, the collection and liquidation of assets, the payment of claims, and...
31 CFR 515.407 - Administration of blocked estates of decedents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Administration of blocked estates of decedents. 515.407 Section 515.407 Money and Finance: Treasury Regulations Relating to Money and Finance... qualification of personal representatives, the collection and liquidation of assets, the payment of claims, and...
Systems and methods for analyzing liquids under vacuum
Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua
2013-10-15
Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.
Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester
NASA Technical Reports Server (NTRS)
Vailhe, Christophe
2003-01-01
The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.
NASA Astrophysics Data System (ADS)
Acree, William; Chickos, James S.
2017-03-01
The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.
Raut, Ashlesha S; Kalonia, Devendra S
2016-03-07
Liquid-liquid phase separation (LLPS) and aggregation can reduce the physical stability of therapeutic protein formulations. On undergoing LLPS, the protein-rich phase can promote aggregation during storage due to high concentration of the protein. Effect of different excipients on aggregation in protein solution is well documented; however data on the effect of excipients on LLPS is scarce in the literature. In this study, the effect of four excipients (PEG 400, Tween 80, sucrose, and hydroxypropyl beta-cyclodextrin (HPβCD)) on liquid-liquid phase separation and aggregation in a dual variable domain immunoglobulin protein solution was investigated. Sucrose suppressed both LLPS and aggregation, Tween 80 had no effect on either, and PEG 400 increased LLPS and aggregation. Attractive protein-protein interactions and liquid-liquid phase separation decreased with increasing concentration of HPβCD, indicating its specific binding to the protein. However, HPβCD had no effect on the formation of soluble aggregates and fragments in this study. LLPS and aggregation are highly temperature dependent; at low temperature protein exhibits LLPS, at high temperature protein exhibits aggregation, and at an intermediate temperature both phenomena occur simultaneously depending on the solution conditions.
Humidity-Induced Phase Transitions in Ion-Containing Block Copolymer Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Moon Jeong; Nedoma, Alisyn J.; Geissler, Phillip L.
2008-08-21
The phase behavior of ion-containing block copolymer membranes in equilibrium with humidified air is studied as a function of the relative humidity (RH) of the surrounding air, ion content of the copolymer, and temperature. Increasing RH at constant temperature results in both disorder-to-order and order-to-order transitions. In-situ small-angle neutron scattering experiments on the open block copolymer system, when combined with water uptake measurement, indicate that the disorder-to-order transition is driven by an increase in the partial molar entropy of the water molecules in the ordered phase relative to that in the disordered phase. This is in contrast to most systemsmore » wherein increasing entropy results in stabilization of the disordered phase.« less
Characterization of annular two-phase gas-liquid flows in microgravity
NASA Technical Reports Server (NTRS)
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.
Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao
2016-11-01
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Composition inversion in mixtures of binary colloids and polymer
NASA Astrophysics Data System (ADS)
Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick
2018-05-01
Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.
Quantum Dots obtained by LPE from under-saturated In-As liquid phases on GaAs substrates
NASA Astrophysics Data System (ADS)
Ortiz, F. E.; Mishurnyi, V.; Gorbatchev, A.; De Anda, F.; Prutskij, T.
2011-01-01
In this work we inform about quantum dots (QD) obtained by Liquid Phase Epitaxy (LPE) on GaAs substrates from under-saturated In-As liquid phases. In our processes, we have prepared saturated In-rich liquid phases by dissolving an InAs wafer at one of the temperatures interval from 450 to 414 C for 60 minutes. The contact between In-As liquid phase and the GaAs substrate was always done at a constant temperature of 444 C for 5 seconds. Thus, the growth temperature for most of the samples was higher than the liquidus temperature. We think that the growth driving force is related to a transient process that occurs when the system is trying to reach equilibrium. Under the atom force microscope (AFM) we have observed nano-islands on the surfaces of the samples obtained from under-saturated liquid phases prepared at 438, 432 and 426 C. The 25 K photoluminescence spectrum shows a peak at a 1.33 eV, in addition to the GaAs related line.
Phase equilibrium measurements on twelve binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giles, N.F.; Wilson, H.L.; Wilding, W.V.
1996-11-01
Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model tomore » represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.« less
Nguyen, Luan; Tao, Franklin Feng
2018-02-01
Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.
Wang, Di; Ma, Huihui; Chu, Chunxiao; Hao, Jingcheng; Liu, Hong-Guo
2013-07-15
Composite thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) decorated with Au or Ag nanoclusters and nanoparticles were fabricated at the interfaces of chloroform solution of PS-b-P2VP and aqueous solutions of HAuCl4 or AgNO3. Transmission electron microscopy (TEM) investigations indicated that large area of a single-layer honeycomb structure was formed, which is composed of polygons (most of them are hexagons) whose walls look like spindles with the length of several hundreds of nanometers. Large amount of Au or Ag nanoparticles are embedded in the walls and the undersides of the honeycomb structures. The formation of these novel composite structures was attributed to the adsorption of block copolymer molecules and inorganic species of AuCl4(-) and Ag(+) ions at the liquid-liquid interface, the combination of the polymer molecules and the inorganic ions, and the self-assembly of the composite molecules. After UV-light irradiation and KBH4 aqueous solution treatment, the inorganic species were reduced completely, as confirmed by UV-vis spectra and X-ray photoelectron spectra. These composite films exhibited high catalytic activities for the reduction of 4-nitrophenol (4-NP) by KBH4 in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.
Shieh, Ian C; Zasadzinski, Joseph A
2015-02-24
Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.
NASA Astrophysics Data System (ADS)
Mendelev, M. I.; Schmalian, J.; Wang, C. Z.; Morris, J. R.; Ho, K. M.
2006-09-01
We present molecular dynamics (MD) studies of the liquid structure, thermodynamics, and dynamics in a one-component system described by the Ercolessi-Adams embedded atom method potential for Al. We find two distinct noncrystalline phases in this system. One of them is a liquid phase and the second phase has similar structure but different equation of state. Moreover, this phase has qualitatively different dynamics than that in the liquid phase. The transitions between these two noncrystalline phases can be seen during MD simulation. The hysteresis in this transition suggests that this is a first-order transition. This conclusion is strongly supported by simulations of the two phases that demonstrate that these phases may coexist with a well-defined interface. We find the coexistent temperature and the interface mobility. Finally, we discuss how these results can be explained using modern models of vitrification.
A Liquid-Liquid Transition in an Undercooled Ti-Zr-Ni Liquid
NASA Technical Reports Server (NTRS)
Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.
2003-01-01
If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, TI, finally freezing into a glass below a characteristic temperature called the glass transition temperature, T,. In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of HzO and Si4. Such phase transitions have been predicted in some stable liquids, i.e. above TI at atmospheric pressure, for Si02 and BeF;, but these have not been verified experimentally. They have been observed in liquids of P7, Sis and C9, but only under high pressure. All of these transitions are driven by an anomalous density change, i.e. change in local structure, with temperature or pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity liquid that is not driven by an anomalous density change, but by an approach to a constant configuration state. A maximum in the specific heat at constant pressure, similar to what is normally observed near T,, is reported here for undercooled low viscosity liquids of quasicrystal- forming Ti-Zr-Ni alloys. that includes cooperativity, by incorporating a temperature dependent excitation energy fits the data well, signaling a phase transition.
Ordering of Glass Rods in Nematic and Cholesteric Liquid Crystals
2011-12-01
3), 483–508 (2007). 2. M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid...Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science 303(5658), 652–655 (2004). 17. R. Eelkema, M. M. Pollard, J...Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994). 1. Introduction Incorporating rod-like particles into liquid crystal (LC) media can lead
Apollo CSM Power Generation System Design Considerations, Failure Modes and Lessons Learned
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
The objectives of this slide presentation are to: review the basic design criteria for fuel cells (FC's), review design considerations during developmental phase that affected Block I and Block II vehicles, summarize the conditions that led to the failure of components in the FC's, and state the solution implemented for each failure. It reviews the location of the fuel cells, the fuel cell theory the design criteria going into development phase and coming from the development phase, failures and solutions of Block I and II, and the lessons learned.
Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang
2014-02-21
In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange. Copyright © 2014 Elsevier B.V. All rights reserved.
The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II
NASA Astrophysics Data System (ADS)
Limmer, David T.; Chandler, David
2013-06-01
This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.
The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II.
Limmer, David T; Chandler, David
2013-06-07
This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.
Malijevský, Alexandr; Archer, Andrew J
2013-10-14
We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this.
Ultra fast polymer network blue phase liquid crystals
NASA Astrophysics Data System (ADS)
Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar
2011-06-01
Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).
Nature of the first-order liquid-liquid phase transition in supercooled silicon
NASA Astrophysics Data System (ADS)
Zhao, G.; Yu, Y. J.; Tan, X. M.
2015-08-01
The first-order liquid-liquid phase transition in supercooled Si is revisited by long-time first-principle molecular dynamics simulations. As the focus of the present paper, its nature is revealed by analyzing the inherent structures of low-density liquid (LDL) and high-density liquid (HDL). Our results show that it is a transition between a sp3-hybridization LDL and a white-tin-like HDL. This uncovers the origin of the semimetal-metal transition accompanying it and also proves that HDL is the metastable extension of high temperature equilibrium liquid into the supercooled regime. The pressure-temperature diagram of supercooled Si thus can be regarded in some respects as shifted reflection of its crystalline phase diagram.
New self-assembly strategies for next generation lithography
NASA Astrophysics Data System (ADS)
Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.
2010-04-01
Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.
Rapid removal of nitrobenzene in a three-phase ozone loaded system with gas-liquid-liquid
Li, Shiyin; Zhu, Jiangpeng; Wang, Guoxiang; Ni, Lixiao; Zhang, Yong; Green, Christopher T.
2015-01-01
This study explores the removal rate of nitrobenzene (NB) using a new gas-liquid-liquid (G-L-L) three-phase ozone loaded system consisting of a gaseous ozone, an aqueous solvent phase, and a fluorinated solvent phase (perfluorodecalin, or FDC). The removal rate of NB was quantified in relation to six factors including 1) initial pH, 2) initial NB dosage, 3) gaseous ozone dosage, 4) free radical scavenger, 5) FDC pre-aerated gaseous ozone, and 6) reuse of FDC. The NB removal rate is positively affected by the first three factors. Compared with the conventional gas-liquid (water) (G-L) two-phase ozonation system, the free radical scavenger (tertiary butyl alcohol) has much less influence on the removal rate of NB in the G-L-L system. The FDC loaded ozone acts as an ozone reservoir and serves as the main reactive phase in the G-L-L three-phase system. The reuse of FDC has little influence on the removal rate of NB. These experimental results suggest that the oxidation efficiency of ozonation in the G-L-L three-phase system is better than that in the conventional G-L two-phase system.
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh
2010-08-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA
2009-02-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Separation of gas from liquid in a two-phase flow system
NASA Technical Reports Server (NTRS)
Hayes, L. G.; Elliott, D. G.
1973-01-01
Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.
Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.
2008-01-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.
Prasad, Ishan; Jinnai, Hiroshi; Ho, Rong-Ming; Thomas, Edwin L; Grason, Gregory M
2018-05-09
Triply-periodic networks (TPNs), like the well-known gyroid and diamond network phases, abound in soft matter assemblies, from block copolymers (BCPs), lyotropic liquid crystals and surfactants to functional architectures in biology. While TPNs are, in reality, volume-filling patterns of spatially-varying molecular composition, physical and structural models most often reduce their structure to lower-dimensional geometric objects: the 2D interfaces between chemical domains; and the 1D skeletons that thread through inter-connected, tubular domains. These lower-dimensional structures provide a useful basis of comparison to idealized geometries based on triply-periodic minimal, or constant-mean curvature surfaces, and shed important light on the spatially heterogeneous packing of molecular constituents that form the networks. Here, we propose a simple, efficient and flexible method to extract a 1D skeleton from 3D volume composition data of self-assembled networks. We apply this method to both self-consistent field theory predictions as well as experimental electron microtomography reconstructions of the double-gyroid phase of an ABA triblock copolymer. We further demonstrate how the analysis of 1D skeleton, 2D inter-domain surfaces, and combinations therefore, provide physical and structural insight into TPNs, across multiple length scales. Specifically, we propose and compare simple measures of network chirality as well as domain thickness, and analyze their spatial and statistical distributions in both ideal (theoretical) and non-ideal (experimental) double gyroid assemblies.
Theoretical evidence for a first-order liquid-liquid phase transition in gallium.
Carvajal Jara, Diego Alejandro; Fontana Michelon, Mateus; Antonelli, Alex; de Koning, Maurice
2009-06-14
We report on theoretical results that lend support to recent experimental observations suggesting the existence of a first-order liquid-liquid phase transformation (LLPT) in gallium. Using molecular dynamics simulation based on a modified embedded-atom model, we observe a transition from a high-density to a low-density liquid in the supercooled regime. The first-order character of the transition is established through the detection of the release of latent heat and our findings suggest that the LLPT terminates in a critical point that is located in the tensile-strained domain of the metastable phase diagram.
Miller, Thomas F; Manolopoulos, David E; Madden, Paul A; Konieczny, Martin; Oberhofer, Harald
2005-02-01
We show that the two phase points considered in the recent simulations of liquid para hydrogen by Hone and Voth lie in the liquid-vapor coexistence region of a purely classical molecular dynamics simulation. By contrast, their phase point for ortho deuterium was in the one-phase liquid region for both classical and quantum simulations. These observations are used to account for their report that quantum mechanical effects enhance the diffusion in liquid para hydrogen and decrease it in ortho deuterium.(c) 2005 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.
2017-01-01
This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004-0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.
Wu, Jingming; Ee, Kim Huey; Lee, Hian Kee
2005-08-05
Automated dynamic liquid-liquid-liquid microextraction (D-LLLME) controlled by a programmable syringe pump and combined with HPLC-UV was investigated for the extraction and determination of 5 phenoxy acid herbicides in aqueous samples. In the extraction procedure, the acceptor phase was repeatedly withdrawn into and discharged from the hollow fiber by the syringe pump. The repetitive movement of acceptor phase into and out of the hollow fiber channel facilitated the transfer of analytes into donor phase, from the organic phase held in the pore of the fiber. Parameters such as the organic solvent, concentrations of the donor and acceptor phases, plunger movement pattern, speed of agitation and ionic strength of donor phase were evaluated. Good linearity of analytes was achieved in the range of 0.5-500 ng/ml with coefficients of determination, r2 > 0.9994. Good repeatabilities of extraction performance were obtained with relative standard deviations lower than 7.5%. The method provided up-to 490-fold enrichment within 13 min. In addition, the limits of detection (LODs) ranged from 0.1 to 0.4 ng/mL (S/N = 3). D-LLLME was successfully applied for the analysis of phenoxy acid herbicides from real environmental water samples.
Chen, Xin; Shu, Jiapei; Chen, Qing
2017-04-24
Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.
NASA Astrophysics Data System (ADS)
Elazhary, Amr Mohamed; Soliman, Hassan M.
2012-10-01
An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.
Stability limit of liquid water in metastable equilibrium with subsaturated vapors.
Wheeler, Tobias D; Stroock, Abraham D
2009-07-07
A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair
Composite Materials for Maxillofacial Prostheses.
1981-08-01
necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules
Anomalous phase behavior of first-order fluid-liquid phase transition in phosphorus
NASA Astrophysics Data System (ADS)
Zhao, G.; Wang, H.; Hu, D. M.; Ding, M. C.; Zhao, X. G.; Yan, J. L.
2017-11-01
Although the existence of liquid-liquid phase transition has become more and more convincing, whether it will terminate at a critical point and what is the order parameter are still open. To explore these questions, we revisit the fluid-liquid phase transition (FLPT) in phosphorus (P) and study its phase behavior by performing extensive first-principles molecular dynamics simulations. The FLPT observed in experiments is well reproduced, and a fluid-liquid critical point (FLCP) at T = 3000 ˜ 3500 K, P = 1.5-2.0 Kbar is found. With decreasing temperature from the FLCP along the transition line, the density difference (Δρ) between two coexisting phases first increases from zero and then anomalously decreases; however, the entropy difference (ΔS) continuously increases from zero. These features suggest that an order parameter containing contributions from both the density and the entropy is needed to describe the FLPT in P, and at least at low temperatures, the entropy, instead of the density, governs the FLPT.
Combined heat and mass transfer device for improving separation process
Tran, Thanh Nhon
1999-01-01
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.
Combined heat and mass transfer device for improving separation process
Tran, T.N.
1999-08-24
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.
Micro- and Nano-Liquid Phases Coexistent with Ice as Separation and Reaction Media.
Okada, Tetsuo
2017-04-01
Ice has a variety of scientifically interesting features, some of which have not been reasonably interpreted despite substantial efforts by researchers. Most chemical studies of ice have focused on the elucidation of its physicochemical nature and its roles in the natural environment. Ice often contains impurities, such as salts, and in such cases, a liquid phase coexists with solid ice over a wide temperature range. This impure ice also acts as a cryoreactor, governing the circulation of chemical species of environmental importance. Reactions and phenomena occurring in this liquid phase show features different from those seen in normal bulk aqueous solutions. In the present account, we discuss the chemical characteristics of the liquid phase that develops in a frozen aqueous phase and show how novel analytical systems can be designed based on he features of the liquid phase which are predictable in some cases but unpredictable in others. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Symmetry protected topological Luttinger liquids and the phase transition between them
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2018-01-01
We show that a doped spin-1/2 ladder with antiferromagnetic intra-chain and ferromagnetic inter-chain coupling is a symmetry protected topologically non-trivial Luttinger liquid. Turning on a large easy-plane spin anisotropy drives the system to a topologically-trivial Luttinger liquid. Both phases have full spin gaps and exhibit power-law superconducting pair correlation. The Cooper pair symmetry is singletmore » $$d_{xy}$$ in the non-trivial phase and triplet $$S_z=0$$ in the trivial phase. The topologically non-trivial Luttinger liquid exhibits gapless spin excitations in the presence of a boundary, and it has no non-interacting or mean-field theory analog even when the fluctuating phase in the charge sector is pinned. As a function of the strength of spin anisotropy there is a topological phase transition upon which the spin gap closes. We speculate these Luttinger liquids are relevant to the superconductivity in metalized integer spin ladders or chains.« less
Magnetic Phase Diagram of α-RuCl3
NASA Astrophysics Data System (ADS)
Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey
The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.
Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates
2017-01-01
We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO2) gas hydrates using Raman spectroscopy. The CO2 hydrates were formed from sodium chloride/water solutions with salinities of 0–10 wt %, which were pressurized with liquid CO2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, xH, and the fraction of the dispersed liquid water-rich phase, xL, from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate xH contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect. PMID:28817275
Controlling block copolymer phase behavior using ionic surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, D.; Aswal, V. K.
2016-05-23
The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at highermore » temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.« less
AsS melt under pressure: one substance, three liquids.
Brazhkin, V V; Katayama, Y; Kondrin, M V; Hattori, T; Lyapin, A G; Saitoh, H
2008-04-11
An in situ high-temperature--high-pressure study of liquid chalcogenide AsS by x-ray diffraction, resistivity measurements, and quenching from melt is presented. The obtained data provide direct evidence for the existence in the melt under compression of two transformations: one is from a moderate-viscosity molecular liquid to a high-viscosity nonmetallic polymerized liquid at P approximately 1.6-2.2 GPa; the other is from the latter to a low-viscosity metallic liquid at P approximately 4.6-4.8 GPa. Upon rapid cooling, molecular and metallic liquids crystallize to normal and high-pressure phases, respectively, while a polymerized liquid is easily quenched to a new AsS glass. General aspects of multiple phase transitions in liquid AsS, including relations to the phase diagram of the respective crystalline, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musk, S.R.
1991-03-01
The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.
Changes in apple liquid phase concentration throughout equilibrium in osmotic dehydration.
Barat, J M; Barrera, C; Frías, J M; Fito, P
2007-03-01
Previous results on apple tissue equilibration during osmotic dehydration showed that, at very long processing times, the solute concentrations of the fruit liquid phase and the osmotic solution were the same. In the present study, changes in apple liquid phase composition throughout equilibrium in osmotic dehydration were analyzed and modeled. Results showed that, by the time osmosed samples reached the maximum weight and volume loss, solute concentration of the fruit liquid phase was higher than that of the osmotic solution. The reported overconcentration could be explained in terms of the apple structure shrinkage that occurred during the osmotic dehydration with highly concentrated osmotic solutions due to the elastic response of the food structure to the loss of water and intake of solutes. The fruit liquid phase overconcentration rate was observed to depend on the concentration of the osmotic solution, the processing temperature, the sample size, and shape of the cellular tissue.
NASA Astrophysics Data System (ADS)
Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin
2012-10-01
A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.
Jandera, Pavel; Hájek, Tomáš
2018-01-01
Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Hu
A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less
Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems
Chen, Yulin; Ma, Ping; Gui, Shuangying
2014-01-01
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih
2012-07-01
A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.
Hemming, C J; Patey, G N
2004-10-01
Bridge phases associated with a phase transition between two liquid phases occur when a two-component liquid mixture is confined between chemically patterned walls. In the bulk the liquid mixture with components A, B undergoes phase separation into an A-rich phase and a B-rich phase. The walls bear stripes attractive to A. In the bridge phase A-rich and B-rich regions alternate. Grand canonical Monte Carlo studies are performed with the alignment between stripes on opposite walls varied. Misalignment of the stripes places the nanoscopic liquid bridges under shear strain. The bridges exert a Hookean restoring force on the walls for small displacements from equilibrium. As the strain increases there are deviations from Hooke's law. Eventually there is an abrupt yielding of the bridges. Molecular dynamics simulations show the bridges form or disintegrate on time scales which are fast compared to wall motion and transport of molecules into or from the confined space. Some interesting possible applications of the phenomena are discussed. (c) 2004 American Institute of Physics
NASA Technical Reports Server (NTRS)
Mchale, R. M.
1974-01-01
Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.
Tamoxifen-model membrane interactions: an FT-IR study
NASA Astrophysics Data System (ADS)
Boyar, Handan; Severcan, Feride
1997-06-01
The temperature- and concentration-induced effects of tamoxifen (TAM) on dipalmitoyl phosphatidylcholine (DPPC) model membranes were investigated by the Fourier transform-infrared (FT-IR) spectroscopic technique. An investigation of the C-H stretching region and the CO mode reveals that the inclusion of TAM changes the physical properties of the DPPC multibilayers by (i) shifting the main phase transition to lower temperatures; (ii) broadening the transition profile slightly; (iii) disordering the system in the gel and in the liquid crystalline phases; (iv) increasing the dynamics in the gel phase and decreasing the dynamics of the acyl chains in the liquid crystalline phase; (v) increasing the mobility of the terminal methyl group region of the bilayer in the gel phase and decreasing it in the liquid crystalline phase; (vi) increasing the frequency of the CO stretching mode both in the gel and in the liquid crystalline phases, i.e. non-bonding with carbonyl groups.
Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark
2008-01-01
Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.
Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows
NASA Astrophysics Data System (ADS)
Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.
1999-12-01
Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.
ERIC Educational Resources Information Center
Majors, Ronald E.; And Others
1984-01-01
Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…
Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe
NASA Astrophysics Data System (ADS)
Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.
2018-04-01
The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.
Costello, M; Papasouliotis, K; Barr, F J; Gruffydd-Jones, T J; Caney, S M
1999-10-01
To use nuclear scintigraphy to establish a range of gastric emptying half times (t1/2) following a liquid or solid meal in nonsedated cats. 12 clinically normal 3-year-old domestic shorthair cats. A test meal of 75 g of scrambled eggs labeled with technetium Tc 99m tin colloid was fed to 10 of the cats, and solid-phase gastric emptying t1/2 were determined by use of nuclear scintigraphy. In a separate experiment, 8 of these cats plus an additional 2 cats were fed 18 ml (n = 5) or 36 ml (n = 5) of a nutrient liquid meal labeled with technetium Tc 99m pentetate. Liquid-phase gastric emptying t1/2 then were determined by use of scintigraphy. Solid-phase gastric emptying t1/2 were between 210 and 769 minutes (median, 330 minutes). Median liquid-phase gastric emptying t1/2 after ingestion of 18 or 36 ml of the test meal were 67 minutes (range, 60 to 96 minutes) and 117 minutes (range, 101 to 170 minutes), respectively. The median t1/2 determined for cats receiving 18 ml of the radiolabeled liquid was significantly less than that determined for cats receiving 36 ml of the test meal. The protocol was tolerated by nonsedated cats. Solid-phase gastric emptying t1/2 were prolonged, compared with liquid-phase t1/2, and a major factor governing the emptying rate of liquids was the volume consumed. Nuclear scintigraphy may prove useful in assessing gastric motility disorders in cats.
Aromatherapy: composition of the gaseous phase at equilibrium with liquid bergamot essential oil.
Leggio, Antonella; Leotta, Vanessa; Belsito, Emilia Lucia; Di Gioia, Maria Luisa; Romio, Emanuela; Santoro, Ilaria; Taverna, Domenico; Sindona, Giovanni; Liguori, Angelo
2017-11-02
This work compares the composition at different temperatures of gaseous phase of bergamot essential oil at equilibrium with the liquid phase. A new GC-MS methodology to determine quantitatively the volatile aroma compounds was developed. The adopted methodology involved the direct injection of headspace gas into injection port of GC-MS system and of known amounts of the corresponding authentic volatile compounds. The methodology was validated. This study showed that gaseous phase composition is different from that of the liquid phase at equilibrium with it.
Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W
2017-10-12
Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.
Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank
2018-06-06
The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11 m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody.
Rowe, Jacob B; Cancel, Rachel A; Evangelous, Tyler D; Flynn, Rhiannon P; Pechenov, Sergei; Subramony, J Anand; Zhang, Jifeng; Wang, Ying
2017-10-17
Crystallization of IgG antibodies has important applications in the fields of structural biology, biotechnology, and biopharmaceutics. However, a rational approach to crystallize antibodies is still lacking. In this work, we report a method to estimate the solubility of antibodies at various temperatures. We experimentally determined the full phase diagram of an IgG antibody. Using the full diagram, we examined the metastability gaps, i.e., the distance between the crystal solubility line and the liquid-liquid coexistence curve, of IgG antibodies. By comparing our results to the partial phase diagrams of other IgGs reported in literature, we found that IgG antibodies have similar metastability gaps. Thereby, we present an equation with two phenomenological parameters to predict the approximate location of the solubility line of IgG antibodies with respect to their liquid-liquid coexistence curves. We have previously shown that the coexistence curve of an antibody solution can be readily determined by the polyethylene glycol-induced liquid-liquid phase separation method. Combining the polyethylene glycol-induced liquid-liquid phase separation measurements and the phenomenological equation in this article, we provide a general and practical means to predict the thermodynamic conditions for crystallizing IgG antibodies in the solution environments of interest. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Green aspects, developments and perspectives of liquid phase microextraction techniques.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2014-02-01
Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Saha, Subbroto Kumar; Jo, Sang-Hee; Song, Hee-Nam; Brown, Richard J. C.; Kim, Ki-Hyun
2012-12-01
This study evaluates the relative recovery (RR) of five different carbonyls (CCs) (i.e., acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) following their reaction as 2, 4-dinitrophenylhydrazine (DNPH) derivatives when using gas phase and liquid phase standards. To this end, relative efficiency of CC-DNPH derivatization is compared between two liquid-phase standards (commercially available vs. lab made mixture) and between liquid and gas-phase standard. If the results are compared in terms of response factors (RF) derived for five carbonyls from all different standard phases, the recovery of gaseous CC standard was distinguished from that of liquid counterparts. The RR of the heavier carbonyls (propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) was approximately 60% low relative to their liquid counterparts; however, it was not the case for the lighter carbonyls (acetaldehyde) with the RR of ˜92%. This study thus suggests that the quantification of heavy carbonyls in ambient air, unless made by standards of the same matrix (i.e., gas phase) or compensated by the proper correction factor, may be subject to a large bias due to difference in derivatization reaction efficiency between matrix types. Hence, consideration of the matrix effect at the calibration stage is of particular importance to measure CC quantitatively.
Origins of phase contrast in the atomic force microscope in liquids
Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind
2009-01-01
We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560
Origins of phase contrast in the atomic force microscope in liquids.
Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind
2009-08-18
We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.
X-Ray Radiography Measurements of Shear Coaxial Rocket Injectors
2013-02-01
turbofan engine exhaust, air blast furnaces, and liquid rocket engines) shear coaxial jets have been stud- ied for over sixty years [1]. In all applications...fluids as either single or multiple phases. Most of the fundamental coaxial jet research has been done using a single phase (either gas-gas or liquid ... liquid mixing). A brief review of single-phase coaxial jet research can be found in Schumaker and Driscoll [5]. Single-phase cases also include work
Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications
NASA Technical Reports Server (NTRS)
Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin
2002-01-01
It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.
Description of Adsorption in Liquid Chromatography under Nonideal Conditions.
Ortner, Franziska; Ruppli, Chantal; Mazzotti, Marco
2018-05-15
A thermodynamically consistent description of binary adsorption in reversed-phase chromatography is presented, accounting for thermodynamic nonidealities in the liquid and adsorbed phases. The investigated system involves the adsorbent Zorbax 300SB-C18, as well as phenetole and 4- tert-butylphenol as solutes and methanol and water as inert components forming the eluent. The description is based on adsorption isotherms, which are a function of the liquid-phase activities, to account for nonidealities in the liquid phase. Liquid-phase activities are calculated with a UNIQUAC model established in this work, based on experimental phase equilibrium data. The binary interaction in the adsorbed phase is described by the adsorbed solution theory, assuming an ideal (ideal adsorbed solution theory) or real (real adsorbed solution theory) adsorbed phase. Implementation of the established adsorption model in a chromatographic code achieves a quantitative description of experimental elution profiles, with feed compositions exploiting the entire miscible region, and involving a broad range of different eluent compositions (methanol/water). The quantitative agreement of the model and experimental data serves as a confirmation of the underlying physical (thermodynamic) concepts and of their applicability to a broad range of operating conditions.
Loop Heat Pipe Operation with Thermoelectric Converters and Coupling Blocks
NASA Technical Reports Server (NTRS)
Ku, Jentung; Nagano, Hosei
2007-01-01
This paper presents theoretical and experimental studies on using thermoelectric converters (TECs) and coupling blocks to control the operating temperature of a miniature loop heat pipes (MLHP). The MLHP has two parallel evaporators and two parallel condensers, and each evaporator has its own integral compensation chamber (CC). A TEC is attached to each CC, and connected to the evaporator via a copper thermal strap. The TEC can provide both heating and cooling to the CC, therefore extending the LHP operating temperature over a larger range of the evaporator heat load. A bi-polar power supply is used for the TEC operation. The bipolar power supply automatically changes the direction of the current to the TEC, depending on whether the CC requires heating or cooling, to maintain the CC temperature at the desired set point. The TEC can also enhance the startup success by maintaining a constant CC temperature during the start-up transient. Several aluminum coupling blocks are installed between the vapor line and liquid line. The coupling blocks serve as a heat exchanger which preheats the cold returning liquid so as to reduce the amount of liquid subcooling, and hence the power required to maintain the CC at the desired set point temperature. This paper focuses on the savings of the CC control heater power afforded by the TECs when compared to traditional electric heaters. Tests were conducted by varying the evaporator power, the condenser sink temperature, the CC set point temperature, the number of coupling blocks, and the thermal conductance of the thermal strap. Test results show that the TECs are able to control the CC temperature within k0.5K under all test conditions, and the required TEC heater power is only a fraction of the required electric heater power.
Schmid, A; Kollmer, A; Mathys, R G; Witholt, B
1998-08-01
Many pseudomonads and other bacteria can grow on aliphatic and aromatic hydrocarbons that occur in the environment. We are examining the potential of such organisms as biocatalysts for the oxidation of a variety of substituted aliphatic and aromatic compounds. To attain a high production rate of oxidation products via such biotransformations, we have focused on two-liquid phase culture systems. In these systems, cells are grown in liquid media consisting of an aqueous phase containing water-soluble growth substrates and droplets of a water-immicible organic solvent containing bioconversion substrates and products. For industrial applications of such two-liquid phase processes, several questions remain. What are the maximum rates at which apolar compounds can be transferred from the apolar phase to cells growing in the aqueous phase, i.e., what are the maximum space-time yields attainable in two-liquid phase fermentations under practical conditions? What does an efficient downstream processing of two-liquid phase medium involve? What safety regimes should be considered in working with flammable organic solvents? Can elevated pressure be used to increase oxygen transfer? Based on answers to these questions, we have recently developed a high-pressure, explosion-proof bioreactor system with Bioengineering AG (Wald, Switzerland), which will be installed in our pilot plant and used to explore two-liquid phase bioconversions at a pilot scale.
Vapor-liquid phase separator studies
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.
1983-01-01
Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.
NASA Astrophysics Data System (ADS)
Wang, Yun; Chen, Ken S.
2016-05-01
In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.
Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy
NASA Astrophysics Data System (ADS)
Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.
2015-11-01
The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.
Wang, Yun; Chen, Ken S.
2016-03-21
In the present study, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Here, analysis is performed on a dimensionless parameter Da 0 introduced in our previous paper and the parameter is further evaluated in a realisticmore » fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da 0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.« less
Lokajová, Jana; Railila, Annika; King, Alistair W T; Wiedmer, Susanne K
2013-09-20
The distribution constants of some analytes, closely connected to the petrochemical industry, between an aqueous phase and a phosphonium ionic liquid phase, were determined by ionic liquid micellar electrokinetic chromatography (MEKC). The phosphonium ionic liquids studied were the water-soluble tributyl(tetradecyl)phosphonium with chloride or acetate as the counter ion. The retention factors were calculated and used for determination of the distribution constants. For calculating the retention factors the electrophoretic mobilities of the ionic liquids were required, thus, we adopted the iterative process, based on a homologous series of alkyl benzoates. Calculation of the distribution constants required information on the phase-ratio of the systems. For this the critical micelle concentrations (CMC) of the ionic liquids were needed. The CMCs were calculated using a method based on PeakMaster simulations, using the electrophoretic mobilities of system peaks. The resulting distribution constants for the neutral analytes between the ionic liquid and the aqueous (buffer) phase were compared with octanol-water partitioning coefficients. The results indicate that there are other factors affecting the distribution of analytes between phases, than just simple hydrophobic interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.
1992-01-01
The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.
Kim, Min-Gu; Alrowais, Hommood; Kim, Choongsoon; Yeon, Pyungwoo; Ghovanloo, Maysam; Brand, Oliver
2017-06-27
Lightweight, flexible, stretchable, and wireless sensing platforms have gained significant attention for personal healthcare and environmental monitoring applications. This paper introduces an all-soft (flexible and stretchable), battery-free, and wireless chemical microsystem using gallium-based liquid metal (eutectic gallium-indium alloy, EGaIn) and poly(dimethylsiloxane) (PDMS), fabricated using an advanced liquid metal thin-line patterning technique based on soft lithography. Considering its flexible, stretchable, and lightweight characteristics, the proposed sensing platform is well suited for wearable sensing applications either on the skin or on clothing. Using the microfluidic sensing platform, detection of liquid-phase and gas-phase volatile organic compounds (VOC) is demonstrated using the same design, which gives an opportunity to have the sensor operate under different working conditions and environments. In the case of liquid-phase chemical sensing, the wireless sensing performance and microfluidic capacitance tunability for different dielectric liquids are evaluated using analytical, numerical, and experimental approaches. In the case of gas-phase chemical sensing, PDMS is used both as a substrate and a sensing material. The gas sensing performance is evaluated and compared to a silicon-based, solid-state gas sensor with a PDMS sensing film.
Block Copolymers: Synthesis and Applications in Nanotechnology
NASA Astrophysics Data System (ADS)
Lou, Qin
This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic ring-opening crosslinking and can act as a negative-tone photoresist. The PGMA-b-PS thin films were also studied for phase separation with ˜25 nm patterns using transmission electron microscopy (TEM). Poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer thin films are shown to form perpendicular cylinder phase separated structures, and these may be used to template the formation of ordered titania nanostructures with sub-50 nm diameters on either silicon or indium tin oxide (ITO) substrates. A study of the mechanism of TiO2 formation within the P4VP cylinder phase was developed and tested. It was found that the titania nanostructure morphology is affected by pH and deposition temperatures, and successful deposition required the cross-linking of the P4VP phase in order to obtain individual nanostructures.
NASA Technical Reports Server (NTRS)
Disimile, Peter J.; Heist, Timothy J.
1990-01-01
The fluid behavior in normal gravity of a single phase gas system and a two phase gas/liquid system in an enclosed circular cylinder heated suddenly and nonuniformly from above was investigated. Flow visualization was used to obtain qualitative data on both systems. The use of thermochromatic liquid crystal particles as liquid phase flow tracers was evaluated as a possible means of simultaneously gathering both flow pattern and temperature gradient data for the two phase system. The results of the flow visualization experiments performed on both systems can be used to gain a better understanding of the behavior of such systems in a reduced gravity environment and aid in the verification of a numerical model of the system.
Parameters affecting the frequency of a fluid oscillator
NASA Astrophysics Data System (ADS)
Cheng, R. M. H.; Kwok, C. K.; Lee, R. S.
1983-06-01
A new type of liquid-operated low-frequency oscillator is introduced. The oscillator consists of a cone-shaped housing with a fluid inlet and two outlet discharging tubes. The fluid discharge is controlled by a ball which blocks one of the outlet tubes. A strong vacuum develops due to the inertial effect of the column of liquid moving downward in the blocked tube. When the initial energy and velocity of the liquid slug are reduced to zero, it starts to return toward the ball. Eventually the combined force of the pressure inside the housing and the momentum of the upcoming slug is large enough to displace the ball to the other outlet tube, and the same procedure is then repeated. The main part of the paper consists of an analysis of the time required for the forward and reverse motion of the slug and for the ball to move from one discharge hole to the other.
Controlling the intermediate structure of an ionic liquid for f-block element separations
Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...
2017-04-19
Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less
Characterization of cocaine-induced block of cardiac sodium channels.
Crumb, W J; Clarkson, C W
1990-03-01
Recent evidence suggests that cocaine can produce marked cardiac arrhythmias and sudden death. A possible mechanism for this effect is slowing of impulse conduction due to block of cardiac Na channels. We therefore investigated its effects on Na channels in isolated guinea pig ventricular myocytes using the whole-cell variant of the patch clamp technique. Cocaine (10-50 microM) was found to reduce Na current in a use-dependent manner. The time course for block development and recovery were characterized. At 30 microM cocaine, two phases of block development were defined: a rapid phase (tau = 5.7 +/- 4.9 ms) and a slower phase (tau = 2.3 +/- 0.7 s). Recovery from block at -140 mV was also defined by two phases: (tau f = 136 +/- 61 ms, tau s = 8.5 +/- 1.7 s) (n = 6). To further clarify the molecular mechanisms of cocaine action on cardiac Na channels, we characterized its effects using the guarded receptor model, obtaining estimated Kd values of 328, 19, and 8 microM for channels predominantly in the rested, activated, and inactivated states. These data indicate that cocaine can block cardiac Na channels in a use-dependent manner and provides a possible cellular explanation for its cardiotoxic effects.
Dynamic evolution of liquid–liquid phase separation during continuous cooling
Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; ...
2015-01-06
Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al 90In 10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due tomore » a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.« less
Fluid inclusion study of some Sarrabus fluorite deposits, Sardinia, Italy.
Belkin, H.E.; de Vivo, B.; Valera, R.
1984-01-01
Fluid inclusions in six deposits of fluorite fracture fillings associated with Hercynian (Carboniferous) cycle magmatism were studied by microthermometric techniques. All the inclusions were liquid dominated, aqueous, and homogenized in the liquid phase. One-phase (liquid), two-phase (liquid + vapour) and three-phase (liquid, vapour, and solid NaCl daughter mineral) fluid inclusions were noted. This study indicates that five of the fluorite deposits formed from 95o-125oC fluids with approx 15 wt.% NaCl. One other deposit appears to have been formed by very dilute solutions at approx 125oC. It is suggested that the local fluorite-forming process was the formation of fracture-localized hydrothermal systems in which magmatic water interaction with some other fluid-connate, meteoric, or marine.-G.J.N.
NASA Astrophysics Data System (ADS)
Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2017-01-01
A major limitation to the widespread application of Y-Ba-Cu-O (YBCO) bulk superconductors is the relative complexity and low yield of the top seeded melt growth (TSMG) process, by which these materials are commonly fabricated. It has been demonstrated in previous work on the recycling of samples in which the primary growth had failed, that the provision of an additional liquid-rich phase to replenish liquid lost during the failed growth process leads to the reliable growth of relatively high quality recycled samples. In this paper we describe the adaptation of the liquid phase enrichment technique to the primary TSMG fabrication process. We further describe the observed differences between the microstructure and superconducting properties of samples grown with additional liquid-rich phase and control samples grown using a conventional TSMG process. We observe that the introduction of the additional liquid-rich phase leads to the formation of a higher concentration of Y species at the growth front, which leads, in turn, to a more uniform composition at the growth front. Importantly, the increased uniformity at the growth front leads directly to an increased homogeneity in the distribution of the Y-211 inclusions in the superconducting Y-123 phase matrix and to a more uniform Y-123 phase itself. Overall, the provision of an additional liquid-rich phase improves significantly both the reliability of grain growth through the sample thickness and the magnitude and homogeneity of the superconducting properties of these samples compared to those fabricated by a conventional TSMG process.
Extent and mechanism of phase separation during the extrusion of calcium phosphate pastes.
O'Neill, Rory; McCarthy, Helen O; Cunningham, Eoin; Montufar, Edgar; Ginebra, Maria-Pau; Wilson, D Ian; Lennon, Alex; Dunne, Nicholas
2016-02-01
The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4-0.45), plunger rate (5-20 mm/min), and tapering the barrel exit (45°-90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.
Optical Limiting Based on Liquid-Liquid Immiscibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.
A nonionic surfactant is used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using anmore » alkyl end-capped polyethylene glycol ether. The salt concentration was adjusted so that the index-matched mixture exhibited a large pass band. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is thought to be a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Mie scattering. The presence of many boundaries significantly amplifies the effect. Experiments also were conducted on the phase-inverted system (aqueous phase in organic liquid). Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved limiters based upon this optical deflection approach.« less
Polymer-induced phase separation and crystallization in immunoglobulin G solutions.
Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen
2008-05-28
We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena
2014-09-24
The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms anmore » L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.« less
Method and device for removing a non-aqueous phase liquid from a groundwater system
Looney, Brian B.; Rossabi, Joseph; Riha, Brian D.
2002-01-01
A device for removing a non-aqueous phase liquid from a groundwater system includes a generally cylindrical push-rod defining an internal recess therein. The push-rod includes first and second end portions and an external liquid collection surface. A liquid collection member is detachably connected to the push-rod at one of the first and second end portions thereof. The method of the present invention for removing a non-aqueous phase liquid from a contaminated groundwater system includes providing a lance including an external hydrophobic liquid collection surface, an internal recess, and a collection chamber at the bottom end thereof. The lance is extended into the groundwater system such that the top end thereof remains above the ground surface. The liquid is then allowed to collect on the liquid collection surface, and flow downwardly by gravity into the collection chamber to be pumped upwardly through the internal recess in the lance.
Decompression-induced melting of ice IV and the liquid-liquid transition in water
NASA Astrophysics Data System (ADS)
Mishima, Osamu; Stanley, H. Eugene
1998-03-01
Although liquid water has been the focus of intensive research for over 100 years, a coherent physical picture that unifies all of the known anomalies of this liquid, is still lacking. Some of these anomalies occur in the supercooled region, and have been rationalized on the grounds of a possible retracing of the liquid-gas spinodal (metastability limit) line into the supercooled liquid region, or alternatively the presence of a line of first-order liquid-liquid phase transitions in this region which ends in a critical point,. But these ideas remain untested experimentally, in part because supercooled water can be probed only above the homogeneous nucleation temperature TH at which water spontaneously crystallizes. Here we report an experimental approach that is not restricted by the barrier imposed by TH, involving measurement of the decompression-induced melting curves of several high-pressure phases of ice in small emulsified droplets. We find that the melting curve for ice IV seems to undergo a discontinuity at precisely the location proposed for the line of liquid-liquid phase transitions. This is consistent with, but does not prove, the coexistence of two different phases of (supercooled) liquid water. From the experimental data we calculate a possible Gibbs potential surface and a corresponding equation of state for water, from the forms of which we estimate the coordinates of the liquid-liquid critical point to be at pressure Pc ~ 0.1GPa and temperature Tc ~ 220K.
Pant, H J; Sharma, V K
2016-10-01
A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.
2003-01-01
Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si[3], for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.
NASA Technical Reports Server (NTRS)
Curreri, Peter A. (Technical Monitor); Kelton, K. F.; Gangopadhyay, A.; Lee, G. W.; Hyers, R. W.; Rathz, R. J.; Rogers, J.; Schenk, T.; Simonet, V.; Holland-Moritz, D.
2003-01-01
Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si, for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.; Holland-Moritz, D.;
2002-01-01
Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si(3), for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron X-ray and high flux neutron facilities.
Investigation of Reaction Mechanism on the Lime-Free Roasting of Chromium-Containing Slag
NASA Astrophysics Data System (ADS)
Yu, Kai-ping; Zhang, Hong-ling; Chen, Bo; Xu, Hong-bin; Zhang, Yi
2015-12-01
The lime-free roasting process of trivalent chromium-containing slag was investigated. The effect of Fe and liquid phase on the conversion reaction of chromium was discussed. The oxidation of trivalent chromium depends greatly on the diffusion of Na+ and O2. Both the raw material Na2CO3 and the intermediate product NaFeO2 serve as the carriers of Na+. The Na+ diffusion is improved by the binary liquid phase of Na2CrO4-Na2CO3, whereas excess liquid phase results in a low conversion rate of chromium by hindering the diffusion of oxygen towards the reaction interface. With the increasing of liquid volume, the controlled step of chromium oxidation changes from Na+ diffusion to oxygen diffusion. The mechanism study showed that the volume of liquid phase increased while raising the reaction temperature or prolonging the reaction time. Based on the role of both liquid phase and Fe, the oxidation process of chromium was summarized as a three-stage model: the Na+ diffusion-controlled stage, the O2 diffusion-controlled stage, and the oxidation reaction halted stage.
Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.
Raut, Ashlesha S; Kalonia, Devendra S
2016-05-02
Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coal-Face Fracture With A Two-Phase Liquid
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr.
1985-01-01
In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.
Analysis of effluent after anaerobic digestion of liquid phase separated from liquidized garbage.
Inoue, Seiichi; Tsukahara, Kenichiro; Sawayama, Shigeki
2002-01-01
The organic compositions of the liquid phase separated from liquidized garbage as the influent and its effluent after anaerobic digestion at an overloading rate were analyzed. A large amount of organic acids was found in the effluent. The accumulation of organic acids suggests that the rate of methanogenesis is lower than that of acidogenesis.
Oda, Shinobu; Isshiki, Kunio
2008-05-01
The asymmetric reduction of benzyl to (S)-benzoin with Penicillium claviforme IAM 7294 was applied to a liquid-liquid interface bioreactor (L-L IBR) using a unique polymeric material, ballooned microsphere (MS). The L-L IBR showed superior performance, as compared with suspension, organic-aqueous two-liquid-phase, and solid-liquid interface bioreactor (S-L IBR) systems, affording 14.4 g/l-organic phase of (S)-benzoin (99.0% ee).
Chow, Lorac S.; Leonard, Ralph A.
1993-01-01
A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.
Chow, L.S.; Leonard, R.A.
1993-10-19
A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
NASA Astrophysics Data System (ADS)
Różycka, Anna; Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Węgłowska, Dorota; Marzec, Monika
2018-02-01
Physical properties of a new ferroelectric liquid crystal have been studied by complementary methods: differential scanning calorimetry, polarizing optical microscopy, dielectric and X-ray diffraction. It was found that next to enantiotropic ferroelectric smectic C* phase, the monotropic smectic phase appears at cooling. X-ray diffraction measurements allowed to identify this phase as hexatic tilted smectic. Temperature dependence of spontaneous polarization, tilt angle of molecules and switching time were found in both liquid crystalline phases at cooling. Based on the dielectric results, the dielectric processes were identified as Goldstone mode in the smectic C* phase, whereas as the bond-orientation-like phason and the bulk domain mode in the monotropic hexatic tilted smectic phase.
Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal.
Lavrič, Marta; Cordoyiannis, George; Kralj, Samo; Tzitzios, Vassilios; Nounesis, George; Kutnjak, Zdravko
2013-08-01
Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.
Liquid Chromatography in 1982.
ERIC Educational Resources Information Center
Freeman, David H.
1982-01-01
Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)
t'Kindt, Ruben; Jorge, Lucie; Dumont, Emmie; Couturon, Pauline; David, Frank; Sandra, Pat; Sandra, Koen
2012-01-03
An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%). © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Thompson, G. E.
1984-12-01
For transmitting digital information over bandpass channels, M-ary Phase Shift Keying 8(PSK) schemes are used to conserve bandwidth at the expense of signal power. A block of k bits is used to change the phase of the carrier. These k bits represent M possible phase shifts since M = 2. Common forms of M-ary PSK use equally spaced phase angles. For example, if M = 8 and k=3, 8-ary PSK uses eight phase angles spaced 45 degrees apart. This thesis considers a hybrid form of PSK when M = 8 and k = 3. Each of eight blocks of data with three bits per block are represented by different phase shifts of the carrier. The phase angles are chosen to give an equal distance between states (symbols) when projected onto the sine axis and the cosine axis of a phasor diagram. Thus, when the three bits are recovered, using two coherent phase detectors, the separation of the decision regions (voltage levels) are equal.
Quantitative determination of atmospheric hydroperoxyl radical
Springston, Stephen R.; Lloyd, Judith; Zheng, Jun
2007-10-23
A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.
Dynamics and diffusion mechanism of low-density liquid silicon
Shen, B.; Wang, Z. Y.; Dong, F.; ...
2015-11-05
A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themore » classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.« less
NASA Technical Reports Server (NTRS)
2003-01-01
By investigating the properties of quasicrystals and quasicrystal-forming liquid alloys, we may determine the role of ordering of the liquid phase in the formation of quasicrystals, leading to a better fundamental understanding of both the quasicrystal and the liquid. A quasicrystal is solid characterized by a symmetric but non-periodic arrangement of atoms, usually in the form of an icosahedron (12 atoms, 20 triangular faces). It is theorized that the short-range order in liquids takes this same form. The degree of ordering depends on the temperature of the liquid, and affects many of the liquid s properties, including specific heat, viscosity, and electrical resistivity. The MSFC role in this project includes solidification studies, phase diagram determination, and thermophysical property measurements on the liquid quasicrystal-forming alloys, all by electrostatic levitation (ESL). The viscosity of liquid quasicrystal-forming alloys is measured by the oscillating drop method, both in the stable and undercooled liquid state. The specific heat of solid, undercooled liquid, and stable liquid are measured by the radiative cooling rate of the droplets.
Discovery of a Frank-Kasper [sigma] Phase in Sphere-Forming Block Copolymer Melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangwoo; Bluemle, Michael J.; Bates, Frank S.
Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma ({sigma}) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the {sigma} phase in undiluted linear block copolymers (and certain branchedmore » dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.« less
Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.
2011-01-01
Atmospheric blocking over the northern North Atlantic involves isolation of large regions of air from the westerly circulation for 5-14 days or more. From a recent 20th century atmospheric reanalysis (1,2) winters with more frequent blocking persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability (AMV). Ocean circulation is forced by wind-stress curl and related air/sea heat exchange, and we find that their space-time structure is associated with dominant blocking patterns: weaker ocean gyres and weaker heat exchange contribute to the warm phase of AMV. Increased blocking activity extending from Greenland to British Isles is evident when winter blocking days of the cold years (1900-1929) are subtracted from those of the warm years (1939-1968).
Two-dimensional lattice-fluid model with waterlike anomalies.
Buzano, C; De Stefanis, E; Pelizzola, A; Pretti, M
2004-06-01
We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.
NASA Astrophysics Data System (ADS)
Deepak, H. S. Vinay; Yelamaggad, C. V.; Khetrapal, C. L.; Ramanathan, K. V.
2016-09-01
We report here the measurement of the Csbnd H and the Hsbnd H dipolar couplings of the methyl group of acetonitrile oriented in the biaxial liquid crystal potassium laurate/1-decanol/water system. These parameters show large variations when measured as a function of temperature. The variations follow the symmetry of the phase as the liquid crystal goes through the sequence of uniaxial - biaxial - uniaxial phases and show a close correspondence to the phase changes that occur in the liquid crystalline solvent coinciding with the onset of biaxiality. The Hsbnd Csbnd H bond angle calculated after incorporating vibrational corrections to the dipolar couplings is discussed in terms of contributions in the case of the biaxial liquid crystal arising from vibration-rotation interaction effects.
Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd
2015-04-01
The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.
Local geology controlled the feasibility of vitrifying Iron Age buildings.
Wadsworth, Fabian B; Heap, Michael J; Damby, David E; Hess, Kai-Uwe; Najorka, Jens; Vasseur, Jérémie; Fahrner, Dominik; Dingwell, Donald B
2017-01-12
During European prehistory, hilltop enclosures made from polydisperse particle-and-block stone walling were exposed to temperatures sufficient to partially melt the constituent stonework, leading to the preservation of glassy walls called 'vitrified forts'. During vitrification, the granular wall rocks partially melt, sinter viscously and densify, reducing inter-particle porosity. This process is strongly dependent on the solidus temperature, the particle sizes, the temperature-dependence of the viscosity of the evolving liquid phase, as well as the distribution and longevity of heat. Examination of the sintering behaviour of 45 European examples reveals that it is the raw building material that governs the vitrification efficiency. As Iron Age forts were commonly constructed from local stone, we conclude that local geology directly influenced the degree to which buildings were vitrified in the Iron Age. Additionally, we find that vitrification is accompanied by a bulk material strengthening of the aggregates of small sizes, and a partial weakening of larger blocks. We discuss these findings in the context of the debate surrounding the motive of the wall-builders. We conclude that if wall stability by bulk strengthening was the desired effect, then vitrification represents an Iron Age technology that failed to be effective in regions of refractory local geology.
1985-06-01
packed column, with low liquid loading (2. 0 mm ID, 4% liquid phase loading on diatomaceous earth *) 0.3 Medium bore analytical packed column, with...moderate liquid loading (4. 5 mm ID, 8%16 liquid phase loading on diatomaceous earth *) 3.0 -3 * diatomaceous earth density 0.24 gm cm 12 associated with the...hydrocarbon fuels. Certain injector inserts have contained packed chromatographic media, e.g., stationary phases coated onto diatomaceous earth . This type
Yu, H; Qiu, X; Behzad, A R; Musteata, V; Smilgies, D-M; Nunes, S P; Peinemann, K-V
2016-10-04
Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.
Metastable phase selection from undercooled Zr 77 Rh 23 liquid alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, M. L.; Gibbons, P. C.; Vogt, A. J.
2017-11-01
From measurements of X-ray and neutron scattering of electrostatically levitated Zr77Rh23 liquids, a variety of metastable crystallization behavior was observed. The metastable phase selection in deeply undercooled liquid droplets is characterized and their crystallization pathways discussed. A metastable phase previously identified as a primary devitrification product from the metallic glass formed when undercooling was maximized to near the hypercooling limit. The direct formation of α–Zr and the equilibrium C16 phase as well as a newly discovered Zr5Rh3 (Mg5Si3-type) phase are also reported.
Impact of Atmospheric Blocking on South America in Austral Summer
NASA Astrophysics Data System (ADS)
Rodrigues, Regina; Woollings, Tim
2017-04-01
In this study, we investigate atmospheric blocking over east South America in austral summer for the period of 1979-2014. Our results show that blocking over this area is a consequence of propagating Rossby waves that grow to large amplitudes and eventually break anticyclonically over subtropical South America (SSA). The SSA blocking can prevent the establishment of the South Atlantic Convergence Zone (SACZ). As such, years with more blocking days coincide with years with fewer SACZ days and reduced precipitation. Convection mainly over the Indian Ocean associated with Madden-Julian Oscillation (MJO) phases 1 and 2 can trigger the wave train that leads to SSA blocking whereas convection over the western/central Pacific associated with phases 6 and 7 is more likely to lead to SACZ events. We find that MJO is a key source of long-term variability in SSA blocking frequency. The wave packets associated with SSA blocking and SACZ episodes differ not only in their origin but also in their phase and refraction pattern. The tropopause-based methodology used here is proven to reliably identify events that lead to extremes of surface temperature and precipitation over SSA. Up to 80% of warm surface air temperature extremes occur simultaneously with SSA blocking events. They are also responsible for the warming of western South Atlantic. The frequency of SSA blocking days is highly anti-correlated with the rainfall over southeast Brazil. The worst droughts in this area, during the summers of 1984, 2001 and 2014, are linked to record high numbers of SSA blocking days. The persistence of these events is also important in generating the extreme impacts.
First-order wetting transition at a liquid-vapor interface
NASA Technical Reports Server (NTRS)
Schmidt, J. W.; Moldover, M. R.
1983-01-01
Evidence from reflectance and contact angle measurements is presented that three-phase mixtures of i-C3H7OH-C7F14 exhibit a first-order wetting phase transition at the liquid-vapor interface at 38 C. Equilibration phenomena support this interpretation. Ellipsometry was used to measure the apparent thickness of the intruding layer in the three-phase mixture. At temperatures slightly above the wetting temperature T(w), the intruding layer's thickness is several hundred angstroms and its variation with temperature is extremely weak. Below T(w), three-phase contact can occur between the vapor and both the upper and lower liquid phases; one of the angles which characterizes this contact has a very simple temperature dependence. The thickness of the intruding layer, monitored as the solutions approached equilibrium, is found to depend quite weakly on the height spanned by the upper liquid phase in the vicinity of a first-order wetting transition.
Kris, M G; Yeh, S D; Gralla, R J; Young, C W
1986-01-01
To develop an additional method for the measurement of gastric emptying in supine subjects, 10 normal subjects were given a test meal containing 99Tc-labelled scrambled egg as the "solid" phase marker and 111In in tapwater as the marker for the "liquid" phase. The mean time for emptying 50% of the "solid" phase (t1/2) was 85 min and 29 min for the "liquid" phase. Three individuals were restudied with a mean difference between the two determinations of 10.8% for the "solid" phase and 6.5% for the "liquid" phase. Twenty-six additional studies attempted have been successfully completed in symptomatic patients with advanced cancer. This method provides a simple and reproducible procedure for the determination of gastric emptying that yields results similar to those reported for other test meals and can be used in debilitated patients.
Temperature tuning of lasing emission from dye-doped liquid crystal at intermediate twisted phase
NASA Astrophysics Data System (ADS)
Liao, Kuan-Cheng; Lin, Ja-Hon; Jian, Li-Hao; Chen, Yao-Hui; Wu, Jin-Jei
2015-07-01
Temperature tuning of lasing emission from dye-doped cholesteric liquid crystal (CLC) at intermediate twisted phase has been demonstrated in this work. With heavily doping of 42.5% chiral molecules into the nematic liquid crystals, the shifts of photonic bandgap versus temperature is obviously as thermal controlling of the sample below the certain value. By the differential scanning calorimetr measuremet, we demonstrate the phase transition from the CLC to the smectic phase when the temperature is lowered to be about 15°C. Between CLC and smectic phase, the liquid crystal mixtures are operated at intermediate twisted phase that can be used the temperature related refractive mirror. After pump by the Q-switched Nd:YAG laser, the lasing emission from this dye doped LC mixtures has been demonstrated whose emission wavelength can be tuned from 566 to 637 nm with 1.4°C variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, J.; Cease, H.; Jaskierny, W. F.
2014-10-23
We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less
Polymer-stabilized liquid crystal blue phases.
Kikuchi, Hirotsugu; Yokota, Masayuki; Hisakado, Yoshiaki; Yang, Huai; Kajiyama, Tisato
2002-09-01
Blue phases are types of liquid crystal phases that appear in a temperature range between a chiral nematic phase and an isotropic liquid phase. Because blue phases have a three-dimensional cubic structure with lattice periods of several hundred nanometres, they exhibit selective Bragg reflections in the range of visible light corresponding to the cubic lattice. From the viewpoint of applications, although blue phases are of interest for fast light modulators or tunable photonic crystals, the very narrow temperature range, usually less than a few kelvin, within which blue phases exist has always been a problem. Here we show the stabilization of blue phases over a temperature range of more than 60 K including room temperature (260-326 K). Furthermore, we demonstrate an electro-optical switching with a response time of the order of 10(-4) s for the stabilized blue phases at room temperature.
High-pressure phase diagrams of liquid CO2 and N2
NASA Astrophysics Data System (ADS)
Boates, Brian; Bonev, Stanimir
2011-06-01
The phase diagrams of liquid CO2 and N2 have been investigated using first-principles theory. Both materials exhibit transitions to conducting liquids at high temperatures (T) and relatively modest pressures (P). Furthermore, both liquids undergo polymerization phase transitions at pressures comparable to their solid counterparts. The liquid phase diagrams have been divided into several regimes through a detailed analysis of changes in bonding, as well as structural and electronic properties for pressures and temperatures up to 200 GPa and 10 000 K, respectively. Similarities and differences between the high- P and T behavior of these fluids will be discussed. Calculations of the Hugoniot are in excellent agreement with available experimental data. Work supported by NSERC, LLNL, and the Killam Trusts. Prepared by LLNL under Contract DE-AC52-07NA27344.
Rosero-Moreano, Milton; Canellas, Elena; Nerín, Cristina
2014-02-01
The present study deals with the development of a liquid microextraction procedure for enhancing the sensitivity of the determination of 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one in adhesives. The procedure involves a three-phase hollow-fiber liquid-phase microextraction using a semipermeable polypropylene membrane, which contained 1-octanol as the organic phase in the pores of the membrane. The donor and acceptor phases are aqueous acidic and alkaline media, respectively, and the final liquid phase (acceptor) is analyzed by HPLC coupled with diode array detection. The most appropriate conditions were extraction time 20 min, stirring speed 1400 rpm, extraction temperature 50°C. The quantification limits of the method were 0.123 and 0.490 μg/g for 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, respectively. Three different adhesive samples were successfully analyzed. The procedure was compared to direct analysis using ultra high pressure liquid chromatography coupled with TOF-MS, where the identification of the compounds and the quantification values were confirmed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko
2016-04-01
Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.
de Souza Melo, Marcelo Rodrigo; Sabey, Mark Jon Santana; Lima, Carla Juliane; de Almeida Souza, Liane Maciel; Groppo, Francisco Carlos
2015-01-01
This randomized double-blind crossover trial investigated the discomfort associated with 2 injection speeds, low (60 seconds) and slow (100 seconds), during inferior alveolar nerve block by using 1.8 mL of 2% lidocaine with 1 : 100,000 epinephrine. Three phases were considered: (a) mucosa perforation, (b) needle insertion, and (c) solution injection. Thirty-two healthy adult volunteers needing bilateral inferior alveolar nerve blocks at least 1 week apart were enrolled in the present study. The anesthetic procedure discomfort was recorded by volunteers on a 10-cm visual analog scale in each phase for both injection speeds. Comparison between the 2 anesthesia speeds in each phase was performed by paired t test. Results showed no statistically significant difference between injection speeds regarding perforation (P = .1016), needle placement (P = .0584), or speed injection (P = .1806). The discomfort in all phases was considered low. We concluded that the 2 injection speeds tested did not affect the volunteers' pain perception during inferior alveolar nerve blocks.
Thermoset molecular composites
Benicewicz, Brian C.; Douglas, Elliot P.; Hjelm, Jr., Rex P.
1996-01-01
A polymeric composition including a liquid crystalline polymer and a thermosettable liquid crystalline monomer matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms and a polymeric composition including a liquid crystalline polymer and a liquid crystalline thermoset matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms are disclosed.
Helium dilution refrigeration system
Roach, Patrick R.; Gray, Kenneth E.
1988-01-01
A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.
Helium dilution refrigeration system
Roach, P.R.; Gray, K.E.
1988-09-13
A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.
Liquid-liquid phase separation and core-shell structure of ternary Al-In-Sn immiscible alloys
NASA Astrophysics Data System (ADS)
Zhao, Degang; Bo, Lin; Wang, Lin; Li, Shanshan
2018-04-01
In this study, the liquid-liquid phase separation of four kinds of ternary immiscible Al-In-Sn melts was investigated with resistivity and thermodynamics method. The nonlinear changes in ρ-T and DSC curves of Al-In-Sn immiscible alloys above monotectic reaction temperature revealed the occurrence of liquid-liquid phase separation of Al-In-Sn melts. The monotectic temperature, liquid phase separation temperature and immiscible gap of ternary Al-In-Sn alloys were lower than those of binary Al-In alloy. With the Al content decreasing, the immiscible gap of Al-In-Sn alloy decreased. The composition of Al80In10Sn10, Al70In15Sn15, Al60In20Sn20 and Al50In25Sn25 was located in the immiscible zone of Al-In-Sn system. Due to the differences of Stokes effect, Marangoni convection and immiscible gap, the solidification morphology of four kinds of Al-In-Sn monotectic alloy was different. The core–shell structure of Al-In-Sn monotectic alloy can form within a certain range of composition.
Interaction between phases in the liquid–gas system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R. S., E-mail: bmsmirnov@gmail.com; Smirnov, B. M.
This work analyzes the equilibrium between a liquid and a gas over this liquid separated by an interface. Various gas forms exist inside the liquid: dissolved gas molecules attached to solvent molecules, free gas molecules, and gaseous bubbles. Thermodynamic equilibrium is maintained between two phases; the first phase is the liquid containing dissolved and free molecules, and the second phase is the gas over the liquid and bubbles inside it. Kinetics of gas transition between the internal and external gas proceeds through bubbles and includes the processes of bubbles floating up and bubble growth as a result of association duemore » to the Smoluchowski mechanism. Evolution of a gas in the liquid is considered using the example of oxygen in water, and numerical parameters of this system are given. In the regime under consideration for an oxygen–water system, transport of oxygen into the surrounding air proceeds through micron-size bubbles with lifetimes of hours. This regime is realized if the total number of oxygen molecules in water is small compared with the numbers of solvated and free molecules in the liquid.« less
Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo
2012-09-12
In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Berthod, Alain; Hassoun, Mahmoud
2006-05-26
The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.
High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.
Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L
2014-01-24
The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather accurate and reproducible measurements in a timely fashion.
Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng
2015-08-05
Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.
Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong
2015-01-01
In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437
Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung
2015-10-14
In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.
Use of free silicon in liquid phase sintering of silicon nitrides and sialons
Raj, R.; Baik, S.
1985-11-12
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.
Use of free silicon in liquid phase sintering of silicon nitrides and sialons
Raj, Rishi; Baik, Sunggi
1985-11-12
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.
Scaling analysis of gas-liquid two-phase flow pattern in microgravity
NASA Technical Reports Server (NTRS)
Lee, Jinho
1993-01-01
A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.
Block entropy and quantum phase transition in the anisotropic Kondo necklace model
NASA Astrophysics Data System (ADS)
Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.
2010-06-01
We study the von Neumann block entropy in the Kondo necklace model for different anisotropies η in the XY interaction between conduction spins using the density matrix renormalization group method. It was found that the block entropy presents a maximum for each η considered, and, comparing it with the results of the quantum criticality of the model based on the behavior of the energy gap, we observe that the maximum block entropy occurs at the quantum critical point between an antiferromagnetic and a Kondo singlet state, so this measure of entanglement is useful for giving information about where a quantum phase transition occurs in this model. We observe that the block entropy also presents a maximum at the quantum critical points that are obtained when an anisotropy Δ is included in the Kondo exchange between localized and conduction spins; when Δ diminishes for a fixed value of η, the critical point increases, favoring the antiferromagnetic phase.
Binary Solid-Liquid Phase Equilibria
ERIC Educational Resources Information Center
Ellison, Herbert R.
1978-01-01
Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)
APPLICATION OF A SPRAY DEPOSITION METHOD FOR REVERSED PHASE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY
Four coal gasification wastewater samples were analyzed for nonvolatile and polar organics by liquid chromatography-mass spectrometry (LC/MS). Samples were separated on a reverse phase liquid chromatographic column using an aqueous solvent as the eluant. A special spray depositio...
NASA Astrophysics Data System (ADS)
Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang
2018-03-01
The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.
NASA Astrophysics Data System (ADS)
Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Wang, Zhe; Chen, Sow-Hsin
2015-10-01
The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the ( P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the "low-density liquid" (LDL) and "high-density liquid" (HDL) phases in deeply cooled bulk water.Moreover, the BP properties afford a further confirmation of theWidom line temperature T W as the ( P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.
NASA Technical Reports Server (NTRS)
Schreifels, W. A.; Muan, A.
1975-01-01
Phase relations in the liquidus temperature region of the system 'FeO'-Al2O3-TiO2 in contact with metallic iron, at a total pressure below 1 atm, have been determined by the quenching technique. Four invariant points have been located, with phase assemblages and temperatures as follows; wuestite, ulvoespinel, nercynite and liquid, 1306 C; ulvoespinel, ilmenite, ferropseudobrookite and liquid, 1340 C; ulvoespinel, hercynite, ferropseudobrookite and liquid, 1367 C; hercynite, ferropseudobrookite, corundum and liquid, 1465 C. The data obtained confirm the presence of a miscibility gap between titanate and aluminate spinels, and provide quantitative data for the effect of Al2O3 on mutual stability relations among spinel, ilmenite, and ferropseudobrookite phases in the presence of liquid at high temperatures and strongly reducing conditions. It is shown that Al2O3 has a strong stabilizing effect on the phase assemblage ferropseudobrookite and spinel relative to ilmenite.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.
2009-04-01
The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part 2: Consideration of phase separation effects by an XUNIFAC model, Atmos. Environ., 40, 6422-6436, 2006. Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds, Atmos. Environ., 38, 1005-1013, 2004. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.
Chembio extraction on a chip by nanoliter droplet ejection.
Yu, Hongyu; Kwon, Jae Wan; Kim, Eun Sok
2005-03-01
This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.
Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.
Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M
1989-08-01
In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.
Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions
NASA Technical Reports Server (NTRS)
Ding, Z.; Anghaie, S.
1996-01-01
A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.
Lin, Che-Yi; Fuh, Ming-Ren; Huang, Shang-Da
2011-02-01
A method termed liquid-liquid-liquid microextraction (LLLME) was utilized to extract 4-t-butylphenol, 4-t-octylphenol, 4-n-nonylphenol, and bisphenol-A from water. The extracted target analytes were separated and quantified by high-performance liquid chromatography using a fluorescence detector. In LLLME, the donor phase (i.e. water sample) was made weakly acidic by adding monobasic potassium phosphate (KH(2) PO(4)); the organic phase adopted was 4-chlorotoluene; the acceptor phase (i.e. enriched extract) was 0.2 M tetraethylammonium hydroxide dissolved in ethylene glycol. This study solves a problem associated with the surface activity of long-chain alkylphenolate ions, permitting LLLME to extract long-chain alkylphenols. Experimental conditions such as acceptor phase composition, organic phase identity, acceptor phase volume, sample agitation, extraction time, and salt addition were optimized. The relative standard deviation (RSD, 2.0-5.8%), coefficient of determination (r(2) 0.9977-0.9999), and detection limit (0.017-0.0048 ng/mL) of the proposed method were achieved under the selected optimized conditions. The method was successfully applied to analyses of lake and tap water samples, and the relative recoveries of target analytes from the spiked lake and tap water samples were 92.8-106.3 and 93.6-105.6%, respectively. The results obtained with the proposed method confirm this microextraction technique to be reliable for the monitoring of alkylphenols and bisphenol-A in water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal
2009-01-01
Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.
Liquid?solid helium interface: some conceptual questions
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2003-12-01
I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.
Recovery of sugars from ionic liquid biomass liquor by solvent extraction
Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.
2015-10-13
The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.
Phase behavior of thermotropic chiral liquid crystal with wide blue phase
NASA Astrophysics Data System (ADS)
Jessy, P. J.; Radha, S.; Nainesh, Patel
2018-04-01
We modified the phase transitions of a thermotropic chiral nematic liquid crystal system with various concentrations of chiral component and investigated their phase behavior and optical properties. The study shows that coupling between chirality and nematicity of liquid crystals lead to changes in phase morphology with extended temperature window of blue phase including human body temperatures and enhanced thermochromism performance. The temperature dependent refractive index analysis in the visible spectral region reveals that the optical modulation due to pitch variation of helical pattern results in the creation of new mesophases and more pronounced chirality in mixtures leading to blue phase which can be controlled by the chiral concentration. The appearance of extended blue phases with primary colors will pave way for the development of new photonic devices.
Reduced Basis and Stochastic Modeling of Liquid Propellant Rocket Engine as a Complex System
2015-07-02
additions, the approach will be extended to a real- gas system so that it can be used to investigate model multi-element liquid rocket combustors in a...Sirignano (2010). In the following discussion, we examine the various conservation principles for the gas and liquid phases. The hyperbolic nature of the...conservation equations for the gas and liquid phases. Mass conservation of individual chemical species or of individual classes of liquid droplets will
Metastable liquid-liquid transition in a molecular model of water
NASA Astrophysics Data System (ADS)
Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.
2014-06-01
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.
Metastable liquid-liquid transition in a molecular model of water.
Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G
2014-06-19
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.
pH Variance in Aerosols Undergoing Liquid-Liquid Phase Separation
NASA Astrophysics Data System (ADS)
Eddingsaas, N. C.; Dallemagne, M.; Huang, X.
2014-12-01
The water content of aerosols is largely governed by relative humidity (RH). As the relative humidity decreases, and thus the water content of aerosols, a number of processes occur including the shrinking of aerosols, the increase in concentration of components, and potentially the formation of liquid liquid phase separation (llps) due to the salting out of inorganic salts. The most ubiquitous salt in atmospheric aerosols is ammonium sulfate which results in many aerosols to be at least mildly acidic. However, during llps, the pH of the different phases is not necessarily the same. Many reactions that take place within atmospheric aerosols are acid catalyzed so a better understanding of the pH of the individual phases as well as the interface between the phases is important to understanding aerosol processing and aging. Through the use of pH sensitive dyes and confocal microscopy we have directly measured the pH of micron sized model aerosols during high RH where the aerosols are in a single phase, at intermediate while the aerosols are in llps, and low RH where the aerosols consist of one liquid phase and one solid phase. We will discuss the variation in RH during these different phase states in the presence and absence of excess sulfuric acid. We will also discuss how this variation in pH affects aging of aerosols.
Liquid-liquid transition in the ST2 model of water
NASA Astrophysics Data System (ADS)
Debenedetti, Pablo
2013-03-01
We present clear evidence of the existence of a metastable liquid-liquid phase transition in the ST2 model of water. Using four different techniques (the weighted histogram analysis method with single-particle moves, well-tempered metadynamics with single-particle moves, weighted histograms with parallel tempering and collective particle moves, and conventional molecular dynamics), we calculate the free energy surface over a range of thermodynamic conditions, we perform a finite size scaling analysis for the free energy barrier between the coexisting liquid phases, we demonstrate the attainment of diffusive behavior, and we perform stringent thermodynamic consistency checks. The results provide conclusive evidence of a first-order liquid-liquid transition. We also show that structural equilibration in the sluggish low-density phase is attained over the time scale of our simulations, and that crystallization times are significantly longer than structural equilibration, even under deeply supercooled conditions. We place our results in the context of the theory of metastability.
Formation of porous crystals via viscoelastic phase separation
NASA Astrophysics Data System (ADS)
Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime
2017-10-01
Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.
Possible Existence of Two Amorphous Phases of D-Mannitol Related by a First-Order Transition
NASA Astrophysics Data System (ADS)
Zhu, Men; Wang, Jun-Qiang; Perepezko, John; Yu, Lian
We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above Tg (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase (Phase X). The enthalpy of Phase X is roughly halfway between those of the known amorphous and crystalline phases. The amorphous nature of Phase X is suggested by its absence of birefringence, transparency, broad X-ray diffraction, and broad Raman and NIR spectra. Phase X has greater molecular spacing, higher molecular order, fewer intra- and more inter-molecular hydrogen bonds than the normal liquid. On fast heating, Phase X transforms back to SCL near 330 K. Upon temperature cycling, it shows a glass-transition-like change of heat capacity. The presence of D-sorbitol enables a first-order liquid-liquid transition (LLT) from SCL to Phase X. This is the first report of polyamorphism at 1 atm for a pharmaceutical relevant substance. As amorphous solids are explored for many applications, polyamorphism could offer a tool to engineer the properties of materials. (Ref: M. Zhu et al., J. Chem. Phys. 2015, 142, 244504)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver; Siemon, John
The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation andmore » phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.« less
Topological Luttinger liquids from decorated domain walls
NASA Astrophysics Data System (ADS)
Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain
2018-04-01
We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.
Janney, Mark A.; Kiggans, Jr., James O.
1999-01-01
A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.
Two-dimensional lattice-fluid model with waterlike anomalies
NASA Astrophysics Data System (ADS)
Buzano, C.; de Stefanis, E.; Pelizzola, A.; Pretti, M.
2004-06-01
We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the “Mercedes Benz” type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...
Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide
NASA Astrophysics Data System (ADS)
Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li
2014-12-01
In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.
Wang, Qing; Chen, Xianbo; Qiu, Bin; Zhou, Liang; Zhang, Hui; Xie, Juan; Luo, Yan; Wang, Bin
2016-04-01
In the present study, 11 4,4'-diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high-performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04-0.07 ng/mL) and wide linearity ranges (0.30-20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85-105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Karaszi, Zoltan; Konya, Andrew; Dragan, Feodor; Jakli, Antal; CPIP/LCI; CS Dept. of Kent State University Collaboration
Polarizing optical microscopy (POM) is traditionally the best-established method of studying liquid crystals, and using POM started already with Otto Lehman in 1890. An expert, who is familiar with the science of optics of anisotropic materials and typical textures of liquid crystals, can identify phases with relatively large confidence. However, for unambiguous identification usually other expensive and time-consuming experiments are needed. Replacement of the subjective and qualitative human eye-based liquid crystal texture analysis with quantitative computerized image analysis technique started only recently and were used to enhance the detection of smooth phase transitions, determine order parameter and birefringence of specific liquid crystal phases. We investigate if the computer can recognize and name the phase where the texture was taken. To judge the potential of reliable image recognition based on this procedure, we used 871 images of liquid crystal textures belonging to five main categories: Nematic, Smectic A, Smectic C, Cholesteric and Crystal, and used a Neural Network Clustering Technique included in the data mining software package in Java ``WEKA''. A neural network trained on a set of 827 LC textures classified the remaining 44 textures with 80% accuracy.
NASA Astrophysics Data System (ADS)
Zhu, Lian; Weber, Stephanie; Berry, Joel; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford
2015-03-01
The nucleolus is a liquid-like membrane-less nuclear body which plays an important role in cell growth and size control. By modulating nucleolar component concentration through RNAi conditions that change C. elegans cell size, we find that nucleoli only assemble above a threshold concentration; moreover, the ripening dynamics of nucleated droplets are consistent with the hypothesis that the assembly of the nucleolus represents an intracellular liquid-liquid phase transition. A key question is how this phase-transition is linked to the primary function of the nucleolus, in transcribing and processing ribosomal RNA. To address this, we characterize the localization of RNA Polymerase I, a key transcriptional enzyme, into nucleolar foci as a function of nucleolar component concentration. Our results suggest that there are a small number of key disordered phosphoproteins that may serve as a link between transcription and assembly. Finally, we present preliminary results using a reduced model system consisting of purified nucleolar proteins to assess the ability of nucleolar proteins to drive liquid-liquid phase separation in vitro. These results lay the foundation for a quantitative understanding of intracellular phase transitions and their impact on biomedically-critical RNA-processing steps.
Centrifugal contactor modified for end stage operation in a multistage system
Jubin, Robert T.
1990-01-01
A cascade formed of a plurality of centrifugal contactors useful for countercurrent solvent extraction processes such as utilizable for the reprocessing of nuclear reactor fuels is modified to permit operation in the event one or both end stages of the cascade become inoperative. Weir assemblies are connected to each of the two end stages by suitable conduits for separating liquids discharged from an inoperative end stage based upon the weight of the liquid phases uses in the solvent extraction process. The weir assembly at one end stage is constructed to separate and discharge the heaviest liquid phase while the weir assembly at the other end stage is constructed to separate and discharge the lightest liquid phase. These weir assemblies function to keep the liquid discharge from an inoperative end stages on the same weight phase a would occur from an operating end stage.
NASA Astrophysics Data System (ADS)
Whitehead, J. Christopher; Prantsidou, Maria
2016-04-01
The degradation of liquid dodecane was studied in a gliding arc discharge (GAD) of humid argon or nitrogen. A batch or recirculating configuration was used. The products in the gaseous and liquid phase were analysed by infrared and chromatography and optical emission spectroscopy was used to identify the excited species in the discharge. The best degradation performance comes from the use of humid N2 but a GAD of humid argon produces fewer gas-phase products but more liquid-phase end-products. A wide range of products such as heavier saturated or unsaturated hydrocarbons both aliphatic and aromatic, and oxidation products mainly alcohols, but also aldehydes, ketones and esters are produced in the liquid-phase. The recirculating treatment mode is more effective than the batch mode increasing the reactivity and changing the product selectivities. Overall, the study shows promising results for the organic liquid waste treatment, especially in the recirculating mode.
Composite Materials for Maxillofacial Prostheses.
1979-08-01
block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS; MICROCAPSULES ; SOFT FILLERS; ELASTuMER COMPOSITES 20,_ ABSTRACT ’Continue on reverse side...approaches were pursued toward making such microcapsules . One approach involves coaxial extrusion of a catalyzed elastomer precursor and core liquid into a...fabrication of maxillofacial prostheses. The projected composite systems are elastomeric-shelled, liquid-filled microcapsules . Two experimental approaches were
Code of Federal Regulations, 2014 CFR
2014-07-01
... alarm and shutdown shown on the piping and instrumentation diagrams (P&IDs) and reviewed in the hazard... cleaning facility; and that (5) The automatic liquid block valve successfully stops flow of liquid to the... automatically stop the cargo flow to each transfer hose simultaneously, in the event an upset condition occurs...
The Effect of Fluid Properties on Two-Phase Regimes of Flow in a Wide Rectangular Microchannel
NASA Astrophysics Data System (ADS)
Ronshin, F. V.; Cheverda, V. V.; Chinnov, E. A.; Kabov, O. A.
2018-04-01
We have experimentally studied a two-phase flow in a microchannel with a height of 150 μm and a width of 20 mm. Different liquids have been used, namely, a purified Milli-Q water, an 50% aqueous-ethanol solution, and FC-72. Before and after the experiment, the height of the microchannel was controlled, as well as the wettability of its walls and surface tension of liquids. Using the schlieren method, the main characteristics of two-phase flow in wide ranges of gas- and liquid-flow rates have been revealed. The flow regime-formation mechanism has been found to depend on the properties of the liquid used. The flow regime has been registered when the droplets moving along the microchannel are vertical liquid bridges. It has been shown that, when using FC-72 liquid, a film of liquid is formed on the upper channel wall in the whole range of gas- and liquid-flow rates.
Development of a passive phase separator for space and earth applications
Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.
2018-01-01
The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785
Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides
NASA Astrophysics Data System (ADS)
Ma, Zhijie; Hanham, Stephen M.; Arroyo Huidobro, Paloma; Gong, Yandong; Hong, Minghui; Klein, Norbert; Maier, Stefan A.
2017-11-01
We present a highly sensitive microfluidic sensing technique for the terahertz (THz) region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs). By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide's fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.