Sample records for liquid rocket systems

  1. Liquid Rocket Booster (LRB) for the Space Transportion System (STS) systems study. Appendix D: Trade study summary for the liquid rocket booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Trade studies plans for a number of elements in the Liquid Rocket Booster (LRB) component of the Space Transportation System (STS) are given in viewgraph form. Some of the elements covered include: avionics/flight control; avionics architecture; thrust vector control studies; engine control electronics; liquid rocket propellants; propellant pressurization systems; recoverable spacecraft; cryogenic tanks; and spacecraft construction materials.

  2. Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet

    DTIC Science & Technology

    2016-12-06

    suitable for certain thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas ...turbines, gas generators, liquid rocket engines, and multi grain solid rocket motors. photoignition, fuel spray ignition, high pressure ignition...thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas turbines, gas

  3. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix A: Stress analysis report for the pump-fed and pressure-fed liquid rocket booster

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Pressure effects on the pump-fed Liquid Rocket Booster (LRB) of the Space Transportation System are examined. Results from the buckling tests; bending moments tests; barrel, propellant tanks, frame XB1513, nose cone, and intertank tests; and finite element examination of forward and aft skirts are presented.

  4. Hybrid propulsion technology program: Phase 1, volume 4

    NASA Technical Reports Server (NTRS)

    Claflin, S. E.; Beckman, A. W.

    1989-01-01

    The use of a liquid oxidizer-solid fuel hybrid propellant combination in booster rocket motors appears extremely attractive due to the integration of the best features of liquid and solid propulsion systems. The hybrid rocket combines the high performance, clean exhaust, and safety of liquid propellant engines with the low cost and simplicity of solid propellant motors. Additionally, the hybrid rocket has unique advantages such as an inert fuel grain and a relative insensitivity to fuel grain and oxidizer injection anomalies. The advantages mark the hybrid rocket as a potential replacement or alternative for current and future solid propellant booster systems. The issues are addressed and recommendations are made concerning oxidizer feed systems, injectors, and ignition systems as related to hybrid rocket propulsion. Early in the program a baseline hybrid configuration was established in which liquid oxygen would be injected through ports in a solid fuel whose composition is based on hydroxyl terminated polybutadiene (HTPB). Liquid oxygen remained the recommended oxidizer and thus all of the injector concepts which were evaluated assumed only liquid would be used as the oxidizer.

  5. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  6. Developments in REDES: The rocket engine design expert system

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  7. Developments in REDES: The Rocket Engine Design Expert System

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  8. Diagram of Liquid Rocket Systems General Arrangement

    NASA Technical Reports Server (NTRS)

    1964-01-01

    General arrangement of the liquid rocket systems on the Gemini spacecraft are shown. The locations of the 25 pound, 85 pound and 100 pound trusters of the orbital attitude and maneuver system and the 25 pound thrusters of the reentry control system are shown.

  9. An Introduction to Rockets - or - Never Leave Geeks Unsupervised

    NASA Technical Reports Server (NTRS)

    Mellett, Kevin

    2006-01-01

    An introduction to rockets along with a brief history Newton's third law is presented. The contents include: 1) What is a Rocket?; 2) A Brief History; 3) Newton's Third Law; 4) A Brief History; 5) Mission Requirements; 6) Some Orbital Measurements; 7) Self Eating Watermelon; 8) Orbital Inclinations; 9) 28.5 Equatorial Orbit; 10) 51.6 Orbit (ISS); 11) Polar Orbit; 12) Geostationary Orbit; 13) Liquid Rocket; 13) Liquids vs. Solids; 14) Liquids; 15) Systems Integration; 16) Integration (NFL!); 17) Guidance Systems; 18) Vectored Thrust; 19) Spin Stabilization; 20) Aerodynamic Stability (Fire Arrows); and 21) Center of Gravity & Center of Pressure.

  10. Diagram of Liquid Rocket Systems General Arrangement

    NASA Image and Video Library

    1964-05-21

    S64-05966 (1964) --- Diagram shows the general arrangement of the liquid rocket systems on the Gemini spacecraft are shown. The locations of the 25-pound, 85-pound and 100-pound thrusters of the orbital attitude and maneuver system and the 25-pound thrusters of the re-entry control system are shown.

  11. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  12. Rocket nozzle coolant channel thermal analysis program (E25107)

    NASA Technical Reports Server (NTRS)

    Thompson, W. R.

    1972-01-01

    A complete description of the liquid cooled rocket nozzle analysis program (E25107) is presented, including a users manual, program listing, and a sample problem. The program is recommended for use in designing liquid cooled rocket nozzles. In addition, it is adaptable to any system in which a liquid-cooled tubular structure is used to contain and direct the flow of a hot gas.

  13. Liquid rocket booster study addendum

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Liquid rocket booster study (LRB) addendum to final report is presented in the form of the view-graphs. The following subject areas are covered: LRB launch vehicle concepts; LRB design; propulsion system configurations; LRB boattail for Shuttle-C application; and manned transportation systems.

  14. Hybrid rocket propellants from lunar material

    NASA Astrophysics Data System (ADS)

    Sparks, Douglas R.

    This paper examines the use of lunar material for hybrid rocket propellants. Liquid oxygen is identified as the primary oxidizer and metals such as aluminum, magnesium, calcium, titanium and silicon are compared as possible fuels. Due to the reduced transportation costs, the use of lunar materials for both oxidizer and fuel will dramatically reduce the cost of a sustained space program. The advantage of hybrid rocket systems over liquid and solid rockets is discussed. It is pointed out that this type of hybrid rocket propellant could also be obtained from asteroidal and planetary soils, thereby facilitating the exploration and industrialization of the inner solar system.

  15. Reduced Basis and Stochastic Modeling of Liquid Propellant Rocket Engine as a Complex System

    DTIC Science & Technology

    2015-07-02

    additions, the approach will be extended to a real- gas system so that it can be used to investigate model multi-element liquid rocket combustors in a...Sirignano (2010). In the following discussion, we examine the various conservation principles for the gas and liquid phases. The hyperbolic nature of the...conservation equations for the gas and liquid phases. Mass conservation of individual chemical species or of individual classes of liquid droplets will

  16. Large Liquid Rocket Testing: Strategies and Challenges

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or development, the appropriate plan and strategy must be put in place at the outset of the development effort. A deferment of this test planning, or inattention to strategy, will compromise the ability of the development program to achieve its systems reliability requirements and/or its development milestones. It is important for the government leadership and support team, as well as the vehicle and propulsion development team, to give early consideration to this aspect of space propulsion and space transportation work.

  17. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  18. Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro

    2017-04-01

    A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.

  19. Advanced active health monitoring system of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  20. Engineers demonstrate the pocket rocket

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Part of Stennis Space Center's mission with its traveling exhibits is to educate the younger generation on how propulsion systems work. A popular tool is the 'pocket rocket,' which demonstrates how a hybrid rocket works. A hybrid rocket is a cross breed between a solid fuel rocket and a liquid fuel rocket.

  1. Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines

    NASA Astrophysics Data System (ADS)

    Candelaria, Jonathan

    Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic dampening system for a 500 lbf and a 2000 lbf throttleable liquid oxygen liquid methane pintle injector rocket engine.

  2. [Progress in the protective medicine against [correction of aganist] rocket propellents].

    PubMed

    Hu, W X; Tan, C Y; Tan, S J; Jiang, J

    1999-12-01

    To review the progress in the major assignment, the organization and implementation of protection against liquid rocket propellent. The safety detection methods of the rocket [correction of rocked] propellent in the launching field were also discussed. Three steps of the sanitation and protection of the liquid propellent, the toxicity and the toxicology of hydrazine on central nervous system, blood circulatory system, assimilation system, respiratory system, immune system, liver, kidney, eye, skin and its hereditary toxicology were described. In addition, the clinical types of poisoning, the current principle and the common ways of the prevention and treatment of hydrazine and nitrogen oxides poisoning were summarized.

  3. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application

    NASA Technical Reports Server (NTRS)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.

    2017-01-01

    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in order to advance the state of the practice. The full participation of the entire U.S. rocket propulsion industrial base is invited and expected at this opportune moment in the continuing advancement of spaceflight technology.

  4. Analytical concepts for health management systems of liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Williams, Richard; Tulpule, Sharayu; Hawman, Michael

    1990-01-01

    Substantial improvement in health management systems performance can be realized by implementing advanced analytical methods of processing existing liquid rocket engine sensor data. In this paper, such techniques ranging from time series analysis to multisensor pattern recognition to expert systems to fault isolation models are examined and contrasted. The performance of several of these methods is evaluated using data from test firings of the Space Shuttle main engines.

  5. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  6. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  7. Development of Mechanics in Support of Rocket Technology in Ukraine

    NASA Astrophysics Data System (ADS)

    Prisnyakov, Vladimir

    2003-06-01

    The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented

  8. Liquid Rocket Propulsion Technology: An evaluation of NASA's program. [for space transportation systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The liquid rocket propulsion technology needs to support anticipated future space vehicles were examined including any special action needs to be taken to assure that an industrial base in substained. Propulsion system requirements of Earth-to-orbit vehicles, orbital transfer vehicles, and planetary missions were evaluated. Areas of the fundamental technology program undertaking these needs discussed include: pumps and pump drives; combustion heat transfer; nozzle aerodynamics; low gravity cryogenic fluid management; and component and system life reliability, and maintenance. The primary conclusion is that continued development of the shuttle main engine system to achieve design performance and life should be the highest priority in the rocket engine program.

  9. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Volume 2: Addendum 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The potential of a common Liquid Rocket Booster (LRB) design was evaluated for use with both the Space Transportation System (STS) and the Advanced Launch System (ALS). A goal is to have a common Liquid Oxygen/Liquid Hydrogen (LO2/LH2) engine developed for both the ALS booster and the core stage. The LO2/LH2 option for the STS was evaluated to identify potential LRB program cost reductions. The objective was to identify the structural impacts to the external tank (ET), and to determine if any significant ET re-development costs are required as a result of the larger LO2/LH2 LRB. The potential ET impacts evaluated are presented.

  10. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    NASA Technical Reports Server (NTRS)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  11. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  12. Turbopump systems for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The turbopump system, from preliminary design through rocket engine testing is examined. Selection of proper system type for each application and integration of the components into a working system are dealt with. Details are also given on the design of various components including inducers, pumps, turbines, gears, and bearings.

  13. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch labor required, and increases reliability. When certification is achieved, NASA missions will be able to realize these benefits.

  14. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    NASA Technical Reports Server (NTRS)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  15. Evaluation of Foam Coolants.

    DTIC Science & Technology

    HYPERGOLIC ROCKET PROPELLANTS, * FOAM , FILM COOLING, FILM COOLING, LIQUID COOLING, LIQUID ROCKET FUELS, ADDITIVES, HEAT TRANSFER, COOLANTS, LIQUID PROPELLANT ROCKET ENGINES, LIQUID COOLING, CAPTIVE TESTS, FEASIBILITY STUDIES.

  16. Simulation of Liquid Injection Thrust Vector Control for Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Gudenkauf, Jared

    2017-01-01

    The Jet Propulsion Laboratory is currently in the initial design phase for a potential Mars Ascent Vehicle; which will be landed on Mars, stay on the surface for period of time, collect samples from the Mars 2020 rover, and then lift these samples into orbit around Mars. The engineers at JPL have down selected to a hybrid wax-based fuel rocket using a liquid oxidizer based on nitrogen tetroxide, or a Mixed Oxide of Nitrogen. To lower the gross lift-off mass of the vehicle the thrust vector control system will use liquid injection of the oxidizer to deflect the thrust of the main nozzle instead of using a gimbaled nozzle. The disadvantage of going with the liquid injection system is the low technology readiness level with a hybrid rocket. Presented in this paper is an effort to simulate the Mars Ascent Vehicle hybrid rocket nozzle and liquid injection thrust vector control system using the computational fluid dynamic flow solver Loci/Chem. This effort also includes determining the sensitivity of the thrust vector control system to a number of different design variables for the injection ports; including axial location, number of adjacent ports, injection angle, and distance between the ports.

  17. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system was designed to initiate control procedures to minimize damage to the engine or vehicle or test stand in the event of an engine failure. The features and the implementation issues associated with rocket engine safety systems are discussed, as well as the specific concerns of safety systems applied to a space-based engine and long duration space missions. Examples of safety system features and architectures are given, based on recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, the general design and implementation process for rocket engine safety systems is presented.

  18. Liquid rocket engine centrifugal flow turbopumps. [design criteria

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design criteria and recommended practices are discussed for the following configurations selected from the design sequence of a liquid rocket engine centrifugal flow turbopump: (1) pump performance including speed, efficiency, and flow range; (2) impeller; (3) housing; and (4) thrust balance system. Hydrodynamic, structural, and mechanical problems are addressed for the achievement of required pump performance within the constraints imposed by the engine/turbopump system. Materials and fabrication specifications are also discussed.

  19. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Liquid Rocket Booster (LRB) Systems Definition Handbook presents the analyses and design data developed during the study. The Systems Definition Handbook (SDH) contains three major parts: the LRB vehicles definition; the Pressure-Fed Booster Test Bed (PFBTB) study results; and the ALS/LRB study results. Included in this volume are the results of all trade studies; final configurations with supporting rationale and analyses; technology assessments; long lead requirements for facilities, materials, components, and subsystems; operational requirements and scenarios; and safety, reliability, and environmental analyses.

  20. Liquid-propellant rocket engines health-monitoring—a survey

    NASA Astrophysics Data System (ADS)

    Wu, Jianjun

    2005-02-01

    This paper is intended to give a summary on the health-monitoring technology, which is one of the key technologies both for improving and enhancing the reliability and safety of current rocket engines and for developing new-generation high reliable reusable rocket engines. The implication of health-monitoring and the fundamental principle obeyed by the fault detection and diagnostics are elucidated. The main aspects of health-monitoring such as system frameworks, failure modes analysis, algorithms of fault detection and diagnosis, control means and advanced sensor techniques are illustrated in some detail. At last, the evolution trend of health-monitoring techniques of liquid-propellant rocket engines is set out.

  1. High-speed schlieren imaging of rocket exhaust plumes

    NASA Astrophysics Data System (ADS)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  2. Data Mining for ISHM of Liquid Rocket Propulsion Status Update

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok; Schwabacher, Mark; Oza, Nijunj; Martin, Rodney; Watson, Richard; Matthews, Bryan

    2006-01-01

    This document consists of presentation slides that review the current status of data mining to support the work with the Integrated Systems Health Management (ISHM) for the systems associated with Liquid Rocket Propulsion. The aim of this project is to have test stand data from Rocketdyne to design algorithms that will aid in the early detection of impending failures during operation. These methods will be extended and improved for future platforms (i.e., CEV/CLV).

  3. Liquid rocket propulsion: Retrospective and prospects

    NASA Astrophysics Data System (ADS)

    Rosenberg, Sanders D.

    1993-02-01

    Rocket propulsion has made a fundamental contribution to change in the human condition during the second half of the 20th Century. This paper presents a survey of the basic elements of and future prospects for liquid rocket propulsion systems, with emphasis placed on their bipropellant engines, which have contributed profoundly to the successes of this 'aerospace century.' Many technologies had to reach maturity simultaneously to enable our current progress: materials, electronics, guidance and control, systems engineering, and propulsion, made major contributions. However, chemical propellants and the engine systems required to extract and control their propulsive power successfully are at the heart of all that humankind has accomplished through space flight and the use of space for the betterment of all. And it is a fascinating story to tell.

  4. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a ceramic composite of mixed hafnium carbide and tantalum carbide reinforced with graphite fibers.

  5. Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines

    NASA Technical Reports Server (NTRS)

    Brockmeyer, Jerry W.; Schnittgrund, Gary D.

    1990-01-01

    Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.

  6. Theoretical Studies of Ionic Liquids and Nanoclusters as Hybrid Fuels

    DTIC Science & Technology

    2016-08-17

    Acknowledgements Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16409 Aerospace Systems Directorate RQ-West (EAFB, CA)  Rocket ...Engines & Motors  Satellite Propulsion  Combustion Devices  Fuels and Propellants  System Analysis  R&D Rocket Testing RQ-East (WPAFB, OH)  Air...Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16409 5 Identify and develop advanced chemical propellants for rocket

  7. KSC-05pd2558

    NASA Image and Video Library

    2005-12-05

    KENNEDY SPACE CENTER, FLA. - The Lockheed Martin Atlas V rocket (center) undergoes a tanking test on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket was fully fueled with liquid hydrogen, liquid oxygen and RP 1 kerosene fuel. Seen surrounding the rocket are lightning towers that support the catenary wire that provides lightning protection. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch during a 35-day window that opens Jan. 11, and fly through the Pluto system as early as summer 2015.

  8. KSC-05pd2559

    NASA Image and Video Library

    2005-12-05

    KENNEDY SPACE CENTER, FLA. - The Lockheed Martin Atlas V rocket (center) undergoes a tanking test on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket was fully fueled with liquid hydrogen, liquid oxygen and RP 1 kerosene fuel. Seen surrounding the rocket are lightning towers that support the catenary wire that provides lightning protection. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch during a 35-day window that opens Jan. 11, and fly through the Pluto system as early as summer 2015.

  9. A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Frederick, Robert A., Jr.

    2010-01-01

    This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.

  10. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.

  11. A digital controller for variable thrust liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Feng, X.; Zhang, Y. L.; Chen, Q. Z.

    1993-06-01

    The paper describes the design and development of a built-in digital controller (BDC) for the variable thrust liquid rocket engine (VTLRE). Particular attention is given to the function requirements of the BDC, the hardware and software configuration, and the testing process, as well as to the VTLRE real-time computer simulation system used for the development of the BDC. A diagram of the VLTRE control system is presented as well as block diagrams illustrating the hardware and software configuration of the BDC.

  12. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  13. Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis

    DTIC Science & Technology

    2016-07-31

    fueled liquid rocket engine, enthalpy is removed from the combustion chamber by a regenerative cooling system comprising a series of passages through... rocket engine, enthalpy is removed from the combustion chamber by a regenerative cooling system comprising a series of passages through which fuel flows...the unprecedented correlation of comprehensive two-dimensional gas chromatographic (GC×GC) rocket fuel data with physical and thermochemical

  14. Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines. Task 4. Post-Fire Diagnostic System for the SSME System Architecture Study.

    DTIC Science & Technology

    1991-07-31

    90 START MCC LN CAV PR 3 UNDERSHOOT ABOVE THRESHOLD YES MI A2-492 2/13/90 MAINSTAGE HPOT DS TMP CHANNEL A/B DIVERGENCE NO MI A2-492 2/13/90 MAINSTAGE ...System for the SSME System Architecture Study Y, , Contract NAS 3 -25883 JUL 31󈧣 CR-187112 Prepared for: National Aeronautics and Space...Liquid Propellant Rocket Engines Contract No. NAS 3 -25883 Eli Ki ,,, July 31, 1991 BY Dist Prepared By.: Mr. Mark Gage Aerojet Propulsion Division Box

  15. Injector Design Tool Improvements: User's manual for FDNS V.4.5

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen

    1998-01-01

    The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.

  16. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix B: Liquid rocket booster acoustic and thermal environments

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.

  17. 38th JANNAF Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Eggleston, Debra S. (Editor); Gannaway, Mary T. (Editor)

    2002-01-01

    This volume, the first of two volumes, is a collection of 55 unclassified/unlimited-distribution papers which were presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 38th Combustion Subcommittee (CS), 26 th Airbreathing Propulsion Subcommittee (APS), 20th Propulsion Systems Hazards Subcommittee (PSHS), and 21 Modeling and Simulation Subcommittee. The meeting was held 8-12 April 2002 at the Bayside Inn at The Sandestin Golf & Beach Resort and Eglin Air Force Base, Destin, Florida. Topics cover five major technology areas including: 1) Combustion - Propellant Combustion, Ingredient Kinetics, Metal Combustion, Decomposition Processes and Material Characterization, Rocket Motor Combustion, and Liquid & Hybrid Combustion; 2) Liquid Rocket Engines - Low Cost Hydrocarbon Liquid Rocket Engines, Liquid Propulsion Turbines, Liquid Propulsion Pumps, and Staged Combustion Injector Technology; 3) Modeling & Simulation - Development of Multi- Disciplinary RBCC Modeling, Gun Modeling, and Computational Modeling for Liquid Propellant Combustion; 4) Guns Gun Propelling Charge Design, and ETC Gun Propulsion; and 5) Airbreathing - Scramjet an Ramjet- S&T Program Overviews.

  18. Design of a 500 lbf liquid oxygen and liquid methane rocket engine for suborbital flight

    NASA Astrophysics Data System (ADS)

    Trillo, Jesus Eduardo

    Liquid methane (LCH4)is the most promising rocket fuel for our journey to Mars and other space entities. Compared to liquid hydrogen, the most common cryogenic fuel used today, methane is denser and can be stored at a more manageable temperature; leading to more affordable tanks and a lighter system. The most important advantage is it can be produced from local sources using in-situ resource utilization (ISRU) technology. This will allow the production of the fuel needed to come back to earth on the surface of Mars, or the space entity being explored, making the overall mission more cost effective by enabling larger usable mass. The major disadvantage methane has over hydrogen is it provides a lower specific impulse, or lower rocket performance. The UTEP Center for Space Exploration and Technology Research (cSETR) in partnership with the National Aeronautics and Space Administration (NASA) has been the leading research center for the advancement of Liquid Oxygen (LOX) and Liquid Methane (LCH4) propulsion technologies. Through this partnership, the CROME engine, a throattable 500 lbf LOX/LCH4 rocket engine, was designed and developed. The engine will serve as the main propulsion system for Daedalus, a suborbital demonstration vehicle being developed by the cSETR. The purpose of Daedalus mission and the engine is to fire in space under microgravity conditions to demonstrate its restartability. This thesis details the design process, decisions, and characteristics of the engine to serve as a complete design guide.

  19. Liquid Rocket Engine Testing Overview

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  20. NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Arrighi, Robert S.

    2016-01-01

    "There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best Oklahoma oil field tradition." Besides the Rocket Systems Area, Plum Brook Station also included a nuclear test reactor, a large vacuum tank, a hypersonic wind tunnel, and a full-scale upper-stage rocket stand. The Rocket Systems Area operated from 1961 until NASA shut down all of Plum Brook in 1974. The center reopened Plum Brook in the late 1980s and continues to use several test facilities. The Rocket Systems Area, however, was not restored. Today Plum Brook resembles a nature preserve more than an oil refinery. Lush fields and forests separate the large test facilities. Until recently, the abandoned Rocket Systems Area structures and equipment were visible amongst the greenery. These space-age ruins, particularly the three towers, stood as silent sentinels over the sparsely populated reservation. Few knew the story of these mysterious facilities when NASA removed them in the late 2000s.

  1. Demonstrated survivability of a high temperature optical fiber cable on a 1500 pound thrust rocket chamber

    NASA Technical Reports Server (NTRS)

    Sovie, Amy L.

    1992-01-01

    A demonstration of the ability of an existing optical fiber cable to survive the harsh environment of a rocket engine was performed at the NASA Lewis Research Center. The intent of this demonstration was to prove the feasibility of applying fiber optic technology to rocket engine instrumentation systems. Extreme thermal transient tests were achieved by wrapping a high temperature optical fiber, which was cablized for mechanical robustness, around the combustion chamber outside wall of a 1500 lb Hydrogen-Oxygen rocket engine. Additionally, the fiber was wrapped around coolant inlet pipes which were subject to near liquid hydrogen temperatures. Light from an LED was sent through the multimode fiber, and output power was monitored as a function of time while the engine was fired. The fiber showed no mechanical damage after 419 firings during which it was subject to transients from 30 K to 350 K, and total exposure time to near liquid hydrogen temperatures in excess of 990 seconds. These extreme temperatures did cause attenuation greater than 3 dB, but the signal was fully recovered at room temperature. This experiment demonstrates that commercially available optical fiber cables can survive the environment seen by a typical rocket engine instrumentation system, and disclose a temperature-dependent attenuation observed during exposure to near liquid hydrogen temperatures.

  2. Liquid rocket disconnects, couplings, fittings, fixed joints, and seals

    NASA Technical Reports Server (NTRS)

    1976-01-01

    State of the art and design criteria for components used in liquid propellant rocket propulsion systems to contain and control the flow of fluids involved are discussed. Particular emphasis is placed on the design of components used in the engine systems of boosters and upper stages, and in spacecraft propulsion systems because of the high pressure and high vibration levels to which these components are exposed. A table for conversion of U.S. customary units to SI units is included with a glossary, and a list of NASA space vehicle design criteria monographs issued to September 1976.

  3. Liquid Rocket Engine Testing

    DTIC Science & Technology

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This

  4. Large Eddy Simulations of Transverse Combustion Instability in a Multi-Element Injector

    DTIC Science & Technology

    2016-07-27

    plagued the development of liquid rocket engines and remains a large riskin the development and acquisition of new liquid rocket engines. Combustion...simulations to better understand the physics that can lead combustion instability in liquid rocket engines. Simulations of this type are able to...instabilities found in liquid rocket engines are transverse. The motivating of the experiment behind the current work is to subject the CVRC injector

  5. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    NASA Astrophysics Data System (ADS)

    Porter, F. S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C. K.; Szymkowiak, A. E.; Sanders, W. T.

    2000-04-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  6. PC programs for the prediction of the linear stability behavior of liquid propellant propulsion systems and application to current MSFC rocket engine test programs, volume 1

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Armstrong, W. C.

    1990-01-01

    Research on propulsion stability (chugging and acoustic modes), and propellant valve control was investigated. As part of the activation of the new liquid propulsion test facilities, it is necessary to analyze total propulsion system stability. To accomplish this, several codes were built to run on desktop 386 machines. These codes enable one to analyze the stability question associated with the propellant feed systems. In addition, further work was adapted to this computing environment and furnished along with other codes. This latter inclusion furnishes those interested in high frequency oscillatory combustion behavior (that does not couple to the feed system) a set of codes for study of proposed liquid rocket engines.

  7. Efficiency of the rocket engines with a supersonic afterburner

    NASA Astrophysics Data System (ADS)

    Sergienko, A. A.

    1992-08-01

    The paper is concerned with the problem of regenerative cooling of the liquid-propellant rocket engine combustion chamber at high pressures of the working fluid. It is shown that high combustion product pressures can be achieved in the liquid-propellant rocket engine with a supersonic afterburner than in a liquid-propellant rocket engine with a conventional subsonic combustion chamber for the same allowable heat flux density. However, the liquid-propellant rocket engine with a supersonic afterburner becomes more economical than the conventional engine only at generator gas temperatures of 1700 K and higher.

  8. Experimental research and design planning in the field of liquid-propellant rocket engines conducted between 1934 - 1944 by the followers of F. A. Tsander

    NASA Technical Reports Server (NTRS)

    Dushkin, L. S.

    1977-01-01

    The development of the following Liquid-Propellant Rocket Engines (LPRE) is reviewed: (1) an alcohol-oxygen single-firing LPRE for use in wingless and winged rockets, (2) a similar multifiring LPRE for use in rocket gliders, (3) a combined solid-liquid propellant rocket engine, and (4) an aircraft LPRE operating on nitric acid and kerosene.

  9. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-10-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.

  10. Reliability evaluation methodology for NASA applications

    NASA Technical Reports Server (NTRS)

    Taneja, Vidya S.

    1992-01-01

    Liquid rocket engine technology has been characterized by the development of complex systems containing large number of subsystems, components, and parts. The trend to even larger and more complex system is continuing. The liquid rocket engineers have been focusing mainly on performance driven designs to increase payload delivery of a launch vehicle for a given mission. In otherwords, although the failure of a single inexpensive part or component may cause the failure of the system, reliability in general has not been considered as one of the system parameters like cost or performance. Up till now, quantification of reliability has not been a consideration during system design and development in the liquid rocket industry. Engineers and managers have long been aware of the fact that the reliability of the system increases during development, but no serious attempts have been made to quantify reliability. As a result, a method to quantify reliability during design and development is needed. This includes application of probabilistic models which utilize both engineering analysis and test data. Classical methods require the use of operating data for reliability demonstration. In contrast, the method described in this paper is based on similarity, analysis, and testing combined with Bayesian statistical analysis.

  11. Liquid lift for the Shuttle

    NASA Astrophysics Data System (ADS)

    Demeis, Richard

    1989-02-01

    After the operational failure of a Solid Rocket Booster (SRB) led to the Space Shuttle Challenger accident, NASA reexamined the use of liquid-fueled units in place of the SRBs in order to ascertain whether they could improve safety and payload. In view of favorable study results obtained, the posibility has arisen of employing a common liquid rocket booster for the Space Shuttle, its cargo version ('Shuttle-C'), and the next-generation Advanced Launch System. The system envisioned would involve two booster units, whose four engines/unit would be fed by integral LOX and kerosene tanks. Mission aborts with one-booster unit and two-unit failures would not be catastrophic, and would respectively allow LEO or an emergency landing in Africa.

  12. B-1 and B-3 Test Stands at NASA’s Plum Brook Station

    NASA Image and Video Library

    1966-09-21

    Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.

  13. Investigation of low cost material processes for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Nguyentat, Thinh; Kawashige, Chester M.; Scala, James G.; Horn, Ronald M.

    1993-01-01

    The development of low cost material processes is essential to the achievement of economical liquid rocket propulsion systems in the next century. This paper will present the results of the evaluation of some promising material processes including powder metallurgy, vacuum plasma spray, metal spray forming, and bulge forming. The physical and mechanical test results from the samples and subscale hardware fabricated from high strength copper alloys and superalloys will be discussed.

  14. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  15. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  16. Materials for Liquid Propulsion Systems. Chapter 12

    NASA Technical Reports Server (NTRS)

    Halchak, John A.; Cannon, James L.; Brown, Corey

    2016-01-01

    Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton's third law: for every action there is an equal and opposite reaction. Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned. They also have a considerably higher thrust to weigh ratio. Since liquid rocket engines can be tested several times before flight, they have the capability to be more reliable, and their ability to shut down once started provides an extra margin of safety. Liquid propellant engines also can be designed with restart capability to provide orbital maneuvering capability. In some instances, liquid engines also can be designed to be reusable. On the solid side, hybrid solid motors also have been developed with the capability to stop and restart. Solid motors are covered in detail in chapter 11. Liquid rocket engine operational factors can be described in terms of extremes: temperatures ranging from that of liquid hydrogen (-423 F) to 6000 F hot gases; enormous thermal shock (7000 F/sec); large temperature differentials between contiguous components; reactive propellants; extreme acoustic environments; high rotational speeds for turbo machinery and extreme power densities. These factors place great demands on materials selection and each must be dealt with while maintaining an engine of the lightest possible weight. This chapter will describe the design considerations for the materials used in the various components of liquid rocket engines and provide examples of usage and experiences in each.

  17. The microspace launcher: first step to the fully air-breathing space launcher

    NASA Astrophysics Data System (ADS)

    Falempin, F.; Bouchez, M.; Calabro, M.

    2009-09-01

    A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated booster, the main stage ensuring the initial acceleration in liquid rocket mode and a complementary acceleration phase in rocket mode beyond the air-breathing propulsion system operation. Finally, the liquid rocket engine of this third variant can be replaced by a continuous detonation wave rocket engine. The paper describes the main guidelines for the design of these variants and provides their main characteristics. On this basis, the achievable performance, estimated by trajectory simulation, are detailed.

  18. Predicting the velocity and azimuth of fragments generated by the range destruction or random failure of rocket casings and tankage

    NASA Technical Reports Server (NTRS)

    Eck, Marshall; Mukunda, Meera

    1988-01-01

    A calculational method is described which provides a powerful tool for predicting solid rocket motor (SRM) casing and liquid rocket tankage fragmentation response. The approach properly partitions the available impulse to each major system-mass component. It uses the Pisces code developed by Physics International to couple the forces generated by an Eulerian-modeled gas flow field to a Lagrangian-modeled fuel and casing system. The details of the predictive analytical modeling process and the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed. Methods for applying similar modeling techniques to liquid-tankage-overpressure failures are also discussed. Good agreement between predictions and observations are obtained for five specific events.

  19. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A 10,000-pound thrust hybrid rocket motor is tested at Stennis Space Center's E-1 test facility. A hybrid rocket motor is a cross between a solid rocket and a liquid-fueled engine. It uses environmentally safe solid fuel and liquid oxygen.

  20. Integrated model development for liquid fueled rocket propulsion systems

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.

  1. Unsteady response of flow system around balance piston in a rocket pump

    NASA Astrophysics Data System (ADS)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  2. Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames

    DTIC Science & Technology

    2016-05-15

    serious problems in the development of liquid rocket engines. In order to understand and predict them, it is necessary to understand how representative...liquid rocket injector flames react to acoustic waves. In this study, a representative coaxial gaseous hydrogen / liquid oxygen (LOX) jet flame is...Combustion instabilities can pose serious problems in the development of liquid rocket engines. In order to under- stand and predict them, it is

  3. Liquid Rocket Propulsion for Atmospheric Flight in the Proposed ARES Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.; Wright, Henry S.; Hunter, Craig A.; Guernsey, Carl S.; Colozza, Anthony J.

    2004-01-01

    Flying above the Mars Southern Highlands, an airplane will traverse over the terrain of Mars while conducting unique science measurements of the atmosphere, surface, and interior. This paper describes an overview of the ARES (Aerial Regional-scale Environmental Survey) mission with an emphasis on airplane propulsion needs. The process for selecting a propulsion system for the ARES airplane is also included. Details of the propulsion system, including system schematics, hardware and performance are provided. The airplane has a 6.25 m wingspan with a total mass of 149 kg and is propelled by a bi-propellant liquid rocket system capable of carrying roughly 48 kg of MMH/MON3 propellant.

  4. Video of SLS Liquid Hydrogen Tank Qualification Structural Test Article Being Moved to Cell E at NASA’s Michoud Assembly Facility

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System liquid hydrogen tank structural qualification test article being moved to Building 110, Cell at NASA's Michoud Assembly Facility in New Orleans. The rocket's liquid hydrogen tank, which is the propellant tank that joins to the engine section of the 212-foot tall core stage, will carry cryogenic liquid hydrogen that propels the rocket. This test article build at Michoud is being prepared for testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.

  5. Catalytic decomposition of nitrous oxide monopropellant for hybrid motor ignition

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew

    Nitrous oxide (N2O) is an inexpensive and readily available non-toxic rocket motor oxidizer. It is the most commonly used oxidizer for hybrid bipropellant rocket systems, and several bipropellant liquid rocket designs have also used nitrous oxide. In liquid form, N2O is highly stable, but in vapor form it has the potential to decompose exothermically, releasing up to 1865 Joules per gram of vapor as it dissociates into nitrogen and oxygen. Consequently, it has long been considered as a potential "green" replacement for existing highly toxic and dangerous monopropellants. This project investigates the feasibility of using the nitrous oxide decomposition reaction as a monopropellant energy source for igniting liquid bipropellant and hybrid rockets that already use nitrous oxide as the primary oxidizer. Because nitrous oxide is such a stable propellant, the energy barrier to dissociation is quite high; normal thermal decomposition of the vapor phase does not occur until temperatures are above 800 C. The use of a ruthenium catalyst decreases the activation energy for this reaction to allow rapid decomposition below 400 C. This research investigates the design for a prototype device that channels the energy of dissociation to ignite a laboratory scale hybrid rocket motor.

  6. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  7. Focused Rocket-Ejector RBCC Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  8. Design considerations for a pressure-driven multi-stage rocket

    NASA Astrophysics Data System (ADS)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  9. Liquid rocket booster study. Volume 2, book 3, appendices 2-5: PPIP, transition plan, AMOS plan, and environmental analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Preliminary Project Implementation Plan (PPIP) was used to examine the feasibility of replacing the current Solid Rocket Boosters on the Space Shuttle with Liquid Rocket Boosters (LRBs). The need has determined the implications of integrating the LRB with the Space Transportation System as the earliest practical date. The purpose was to identify and define all elements required in a full scale development program for the LRB. This will be a reference guide for management of the LRB program, addressing such requirement as design and development, configuration management, performance measurement, manufacturing, product assurance and verification, launch operations, and mission operations support.

  10. Experimental Altitude Performance of JP-4 Fuel and Liquid-Oxygen Rocket Engine with an Area Ratio of 48

    NASA Technical Reports Server (NTRS)

    Fortini, Anthony; Hendrix, Charles D.; Huff, Vearl N.

    1959-01-01

    The performance for four altitudes (sea-level, 51,000, 65,000, and 70,000 ft) of a rocket engine having a nozzle area ratio of 48.39 and using JP-4 fuel and liquid oxygen as a propellant was evaluated experimentally by use of a 1000-pound-thrust engine operating at a chamber pressure of 600 pounds per square inch absolute. The altitude environment was obtained by a rocket-ejector system which utilized the rocket exhaust gases as the pumping fluid of the ejector. Also, an engine having a nozzle area ratio of 5.49 designed for sea level was tested at sea-level conditions. The following table lists values from faired experimental curves at an oxidant-fuel ratio of 2.3 for various approximate altitudes.

  11. Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations

    DTIC Science & Technology

    2017-05-08

    NUMBER (Include area code) 08 May 2017 Briefing Charts 05 April 2017 - 08 May 2017 Using Kokkos for Performant Cross-Platform Acceleration of Liquid ...ERC Incorporated RQRC AFRL-West Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations 2DISTRIBUTION A: Approved for... Liquid Rocket Combustion Simulation SPACE simulation of rotating detonation engine (courtesy of Dr. Christopher Lietz) 3DISTRIBUTION A: Approved

  12. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    NASA Technical Reports Server (NTRS)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  13. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success

    NASA Technical Reports Server (NTRS)

    Seiler, James; Brasfield, Fred; Cannon, Scott

    2008-01-01

    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  14. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V.; Shatrov, Ya.

    2017-09-01

    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  15. Independent Review of the Failure Modes of F-1 Engine and Propellants System

    NASA Technical Reports Server (NTRS)

    Ray, Paul

    2003-01-01

    The F-1 is the powerful engine, that hurdled the Saturn V launch vehicle from the Earth to the moon on July 16,1969. The force that lifted the rocket overcoming the gravitational force during the first stage of the flight was provided by a cluster of five F-1 rocket engines, each of them developing over 1.5 million pounds of thrust (MSFC-MAN-507). The F-1 Rocket engine used RP-1 (Rocket Propellant-1, commercially known as Kerosene), as fuel with lox (liquid Oxygen) as oxidizer. NASA terminated Saturn V activity and has focused on Space Shuttle since 1972. The interest in rocket system has been revived to meet the National Launch System (NLS) program and a directive from the President to return to the Moon and exploration of the space including Mars. The new program Space Launch Initiative (SLI) is directed to drastically reduce the cost of flight for payloads, and adopt a reusable launch vehicle (RLV). To achieve this goal it is essential to have the ability of lifting huge payloads into low earth orbit. Probably requiring powerful boosters as strap-ons to a core vehicle, as was done for the Saturn launch vehicle. The logic in favor of adopting Saturn system, a proven technology, to meet the SLI challenge is very strong. The F-1 engine was the largest and most powerful liquid rocket engine ever built, and had exceptional performance. This study reviews the failure modes of the F-1 engine and propellant system.

  16. DOD Ammunition and Explosives Safety Standards

    DTIC Science & Technology

    2008-02-29

    8. The equivalent explosive weight of the hybrid rocket system N2O4 liquid oxidizer combined with PBAN solid fuel was evaluated as 15 percent for an...separate isolated system and fitting types to preclude intermixing, and the energetic liquids are of required purity. Otherwise, equivalent...Water outlets in a toxic chemical agent operational facility shall be fitted with backflow devices. C11.8.2.7. Dedicated liquid waste systems

  17. Design of a Six Degree of Freedom Thrust Sensor for a Hybrid Rocket

    NASA Astrophysics Data System (ADS)

    McGehee, Tripp

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spatial dimensions. The current design mounts the rocket in a rigid cage and connects the cage to a solid table by six sensor legs. The legs utilize strain gauges and a Wheatstone bridge to produce a voltage proportional to the force on the leg. A detailed description of the cage design and the design process will be given.

  18. Materials Problems in Chemical Liquid-Propellant Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, L. L.

    1959-01-01

    With the advent of the space age, new adjustments in technical thinking and engineering experience are necessary. There is an increasing and extensive interest in the utilization of materials for components to be used at temperatures ranging from -423 to over 3500 deg F. This paper presents a description of the materials problems associated with the various components of chemical liquid rocket systems. These components include cooled and uncooled thrust chambers, injectors, turbine drive systems, propellant tanks, and cryogenic propellant containers. In addition to materials limitations associated with these components, suggested research approaches for improving materials properties are made. Materials such as high-temperature alloys, cermets, carbides, nonferrous alloys, plastics, refractory metals, and porous materials are considered.

  19. Liquid rocket booster study. Volume 2, book 6, appendix 10: Vehicle systems effects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three tasks were undertaken by Eagle Engineering as a part of the Liquid Rocket Booster (LRB) study. Task 1 required Eagle to supply current data relative to the Space Shuttle vehicle and systems affected by an LRB substitution. Tables listing data provided are presented. Task 2 was to evaluate and compare shuttle impacts of candidate LRB configuration in concert with overall trades of analysis activity. Three selected configurations with emphasis on flight loads, separation dynamics, and cost comparison are presented. Task 3 required the development of design guidelines and requirements to minimize impacts to the Space Shuttle system from all LRB substitution. Results are presented for progress to date.

  20. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience

    NASA Technical Reports Server (NTRS)

    Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.

    2005-01-01

    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  1. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience

    NASA Technical Reports Server (NTRS)

    Martin, Michael A.; Nguyen, Huy H.; Greene, William D.; Seymout, David C.

    2003-01-01

    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  2. Determination of local values of gas and liquid mass flux in highly loaded two-phase flow

    NASA Technical Reports Server (NTRS)

    Burick, R. J.; Scheuerman, C. H.; Falk, A. Y.

    1974-01-01

    A measurement system using a deceleration probe was designed for determining the local values of gas and liquid mass flux in various gas/liquid droplet sprayfields. The system was used to characterize two-phase flowfields generated by gas/liquid rocket-motor injectors. Measurements were made at static pressures up to 500 psia and injected mass flow ratios up to 20. The measurement system can also be used at higher pressures and in gas/solid flowfields.

  3. Internship at NASA Kennedy Space Center's Cryogenic Test laboratory

    NASA Technical Reports Server (NTRS)

    Holland, Katherine

    2013-01-01

    NASA's Kennedy Space Center (KSC) is known for hosting all of the United States manned rocket launches as well as many unmanned launches at low inclinations. Even though the Space Shuttle recently retired, they are continuing to support unmanned launches and modifying manned launch facilities. Before a rocket can be launched, it has to go through months of preparation, called processing. Pieces of a rocket and its payload may come in from anywhere in the nation or even the world. The facilities all around the center help integrate the rocket and prepare it for launch. As NASA prepares for the Space Launch System, a rocket designed to take astronauts beyond Low Earth Orbit throughout the solar system, technology development is crucial for enhancing launch capabilities at the KSC. The Cryogenics Test Laboratory at Kennedy Space Center greatly contributes to cryogenic research and technology development. The engineers and technicians that work there come up with new ways to efficiently store and transfer liquid cryogens. NASA has a great need for this research and technology development as it deals with cryogenic liquid hydrogen and liquid oxygen for rocket fuel, as well as long term space flight applications. Additionally, in this new era of space exploration, the Cryogenics Test Laboratory works with the commercial sector. One technology development project is the Liquid Hydrogen (LH2) Ground Operations Demonstration Unit (GODU). LH2 GODU intends to demonstrate increased efficiency in storing and transferring liquid hydrogen during processing, loading, launch and spaceflight of a spacecraft. During the Shuttle Program, only 55% of hydrogen purchased was used by the Space Shuttle Main Engines. GODU's goal is to demonstrate that this percentage can be increased to 75%. Figure 2 shows the GODU layout when I concluded my internship. The site will include a 33,000 gallon hydrogen tank (shown in cyan) with a heat exchanger inside the hydrogen tank attached to a refrigerator capable of removing 850 Watts at 20 Kelvin (shown in green). The refrigerator and most of its supporting equipment will be kept in a standard shipping container (shown in pink). Currently, GODU is in the fabrication process and some of the large components have already been purchased.

  4. Core Length and Spray Width Measurements in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    DTIC Science & Technology

    2015-05-01

    liquid jet core; elliptical EPL is what would be expected from a cylinder of liquid and has previously been observed in diesel injector studies [22...and liquid rocket engines) shear coaxial jets have been stud- ied for over sixty years and have become a canonical problem for the study of rocket...research has been done using a single phase (either gas-gas or liquid - liquid mixing). A brief review of single-phase coaxial jet research can be

  5. Liquid Rocket Engine Testing - Historical Lecture: Simulated Altitude Testing at AEDC

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.

    2010-01-01

    The span of history covered is from 1958 to the present. The outline of this lecture draws from historical examples of liquid propulsion testing done at AEDC primarily for NASA's Marshall Space Flight Center (NASA/MSFC) in the Saturn/Apollo Program and for USAF Space and Missile Systems dual-use customers. NASA has made dual use of Air Force launch vehicles, Test Ranges and Tracking Systems, and liquid rocket altitude test chambers / facilities. Examples are drawn from the Apollo/ Saturn vehicles and the testing of their liquid propulsion systems. Other examples are given to extend to the family of the current ELVs and Evolved ELVs (EELVs), in this case, primarily to their Upper Stages. The outline begins with tests of the XLR 99 Engine for the X-15 aircraft, tests for vehicle / engine induced environments during flight in the atmosphere and in Space, and vehicle staging at high altitude. The discussion is from the author's perspective and background in developmental testing.

  6. Liquid rocket booster integration study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the executive summary of the five volume series.

  7. Liquid rocket booster integration study. Volume 5, part 1: Appendices

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the appendices of the five volume series.

  8. Liquid Rocket Booster Integration Study. Volume 2: Study synopsis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the study summary of the five volume series.

  9. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Bond, W. H.; Yi, A. C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  10. First Flight of a Liquid Propellant Rocket

    NASA Image and Video Library

    2010-01-04

    Dr. Robert H. Goddard and a liquid oxygen-gasoline rocket in the frame from which it was fired on March 16, 1926, at Auburn, Massachusetts. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology. He is considered one of the fathers of rocketry along with Konstantin Tsiolovsky (1857-1935) and Hermann Oberth (1894-1989). NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  11. Feasibility of rocket propellant production on Mars

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Dowler, W. L.; Varsi, G.

    1978-01-01

    In situ production of rocket propellant to reduce landed mass requirements for Mars return missions has been investigated. The analysis has shown that a system which utilizes atmospheric carbon dioxide and soil moisture to produce liquid methane-oxygen propellant requires a landed mass which is less than half the mass of the ascent vehicle it produces.

  12. Space Launch System Resource Reel 2017

    NASA Image and Video Library

    2017-12-01

    NASA's new heavy-lift rocket, the Space Launch System, will be the most powerful rocket every built, launching astronauts in NASA's Orion spacecraft on missions into deep space. Two solid rocket boosters and four RS-25 engines will power the massive rocket, providing 8 million pounds of thrust during launch. Production and testing are underway for much of the rocket's critical hardware. With major welding complete on core stage hardware for the first integrated flight of SLS and Orion, the liquid hydrogen tank, intertank and liquid oxygen tank are ready for further outfitting. NASA's barge Pegasus has transported test hardware the first SLS hardware, the engine section to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. In preparation for testing and handling operations, engineers have built the core stage pathfinder, to practice transport without the risk of damaging flight hardware. Integrated structural testing is complete on the top part of the rocket, including the Orion stage adapter, launch vehicle stage adapter and interim cryogenic propulsion stage. The Orion Stage Adapter for SLS's first flight, which will carry 13 CubeSats as secondary payloads, is ready to be outfitted with wiring and brackets. Once structural testing and flight hardware production are complete, the core stage will undergo "green run" testing in the B-2 test stand at NASA's Stennis Space Center in Bay St. Louis, Mississippi. For more information about SLS, visit nasa.gov/sls.

  13. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  14. Performance and Stability Analyses of Rocket Thrust Chambers with Oxygen/Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, James R.; Jones, Gregg W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for future in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems developed by NASA, so limited test data and analysis results are available at this stage of early development. As part of activities for the Propulsion and Cryogenic Advanced Development (PCAD) project funded under the Exploration Technology Development Program, the NASA Marshall Space Flight Center (MSFC) has been evaluating capability to model combustion performance and stability for oxygen and methane propellants. This activity has been proceeding for about two years and this paper is a summary of results to date. Hot-fire test results of oxygen/methane propellant rocket engine combustion devices for the modeling investigations have come from several sources, including multi-element injector tests with gaseous methane from the 1980s, single element tests with gaseous methane funded through the Constellation University Institutes Program, and multi-element injector tests with both gaseous and liquid methane conducted at the NASA MSFC funded by PCAD. For the latter, test results of both impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interactive Design and Analysis code and the Coaxial Injector Combustion Model. Special effort was focused on how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied, improved or developed in the future. Low frequency combustion instability (chug) occurred, with frequencies ranging from 150 to 250 Hz, with several multi-element injectors with liquid/liquid propellants, and was modeled using techniques from Wenzel and Szuch. High-frequency combustion instability also occurred at the first tangential (1T) mode, at about 4500 Hz, with several multi-element injectors with liquid/liquid propellants. Analyses of the transverse mode instability were conducted by evaluating injector resonances and empirical methods developed by Hewitt.

  15. Novel Techniques for Quantification of Correlation Between Primary Liquid Jet Breakup and Downstream Spray Characteristics

    DTIC Science & Technology

    2016-05-08

    unlimited. 5 1. Introduction Several liquid -fuelled combustion systems, such as liquid propellant rocket engines and gas turbines...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics...to 17 Apr 2016 4.  TITLE AND SUBTITLE Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray

  16. Novel Techniques for Quantification of Correlation Between Primary Liquid Jet Breakup and Downstream Spray Characteristics

    DTIC Science & Technology

    2016-10-05

    unlimited. 5 1. Introduction Several liquid -fuelled combustion systems, such as liquid propellant rocket engines and gas turbines...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics...to 17 Apr 2016 4.  TITLE AND SUBTITLE Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray

  17. Chemical propulsion - The old and the new challenges

    NASA Technical Reports Server (NTRS)

    Mccarty, J. P.; Lombardo, J. A.

    1973-01-01

    The historical background concerning the application of liquid propellant rockets is considered. Progress to date in chemical liquid propellant rocket engines can be summarized as an increase in performance through the use of more energetic propellant combinations and increased combustion pressure. New advances regarding liquid propellant rocket engines are related to the requirement for reusability in connection with the development of the Space Shuttle.

  18. Design of Force Sensor Leg for a Rocket Thrust Detector

    NASA Astrophysics Data System (ADS)

    Woten, Douglas; McGehee, Tripp; Wright, Anne

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.

  19. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Stewart

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less

  20. Liquid rocket booster integration study. Volume 3: Study products. Part 2: Sections 8-19

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part two of the study products section of the five volume series.

  1. Liquid rocket booster study. Volume 2, book 5, appendix 9: LRB alternate applications and evolutionary growth

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The analyses performed in assessing the merit of the Liquid Rocket Booster concept for use in alternate applications such as for Shuttle C, for Standalone Expendable Launch Vehicles, and possibly for use with the Air Force's Advanced Launch System are presented. A comparison is also presented of the three LRB candidate designs, namely: (1) the LO2/LH2 pump fed, (2) the LO2/RP-1 pump fed, and (3) the LO2/RP-1 pressure fed propellant systems in terms of evolution along with design and cost factors, and other qualitative considerations. A further description is also presented of the recommended LRB standalone, core-to-orbit launch vehicle concept.

  2. Liquid rocket booster integration study. Volume 3, part 1: Study products

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part one of the study products section of the five volume series.

  3. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    NASA Astrophysics Data System (ADS)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  4. Feasibility study using large ribbon parachutes, retrorockets, and hydrodynamic attenuation to recover liquid rocket boosters for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pepper, William B.; Wailes, William K.

    1989-01-01

    A new three-phase approach to recovery of the large liquid rocket boosters being studied for the Space Shuttle is proposed. The concept consists of a cluster of larger ribbon parachutes, retrorockets, and spar mode flotation. The two inert liquid rocket boosters weighing 115,000 lb to 183,000 lb descend from high altitude in a side-on coning attitude to 16,000 ft altitude where a cluster of large ribbon parachutes are deployed. The terminal velocity near water landing is 80 ft/sec. Retrorockets are used to decrease the velocity to about 40 ft/sec. The third phase is opening of the front end of the cylindrical rocket case to allow flooding to cushion impact and allow vertical flotation in the spar mode keeping the four expensive liquid rocket engines dry.

  5. Characterization and Analyses of Valves, Feed Lines and Tanks used in Propellant Delivery Systems at NASA SSC

    NASA Technical Reports Server (NTRS)

    Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin

    2006-01-01

    Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.

  6. Injector element characterization methodology

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr.

    1988-01-01

    Characterization of liquid rocket engine injector elements is an important part of the development process for rocket engine combustion devices. Modern nonintrusive instrumentation for flow velocity and spray droplet size measurement, and automated, computer-controlled test facilities allow rapid, low-cost evaluation of injector element performance and behavior. Application of these methods in rocket engine development, paralleling their use in gas turbine engine development, will reduce rocket engine development cost and risk. The Alternate Turbopump (ATP) Hot Gas Systems (HGS) preburner injector elements were characterized using such methods, and the methodology and some of the results obtained will be shown.

  7. Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950

    NASA Technical Reports Server (NTRS)

    Osborn, G. H.; Gordon, R.; Coplen, H. L.; James, G. S.

    1977-01-01

    This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants.

  8. Comprehensive modeling of a liquid rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Liang, P.-Y.; Fisher, S.; Chang, Y. M.

    1985-01-01

    An analytical model for the simulation of detailed three-phase combustion flows inside a liquid rocket combustion chamber is presented. The three phases involved are: a multispecies gaseous phase, an incompressible liquid phase, and a particulate droplet phase. The gas and liquid phases are continuum described in an Eulerian fashion. A two-phase solution capability for these continuum media is obtained through a marriage of the Implicit Continuous Eulerian (ICE) technique and the fractional Volume of Fluid (VOF) free surface description method. On the other hand, the particulate phase is given a discrete treatment and described in a Lagrangian fashion. All three phases are hence treated rigorously. Semi-empirical physical models are used to describe all interphase coupling terms as well as the chemistry among gaseous components. Sample calculations using the model are given. The results show promising application to truly comprehensive modeling of complex liquid-fueled engine systems.

  9. Dr. Robert Goddard

    NASA Image and Video Library

    2010-01-04

    The Goddard Space Flight Center was named in honor of Dr. Robert Goddard, a pioneer in rocket development. Dr. Goddard received patents for a multi-stage rocket and liquid propellants in 1914 and published a paper describing how to reach extreme altitudes six years later. That paper, "A Method of Reaching Extreme Altitudes," detailed methods for raising weather-recording instruments higher than what could be achieved by balloons and explained the mathematical theories of rocket propulsion. The paper, which was published by the Smithsonian Institution, also discussed the possibility of a rocket reaching the moon-a position for which the press ridiculed Goddard. Yet several copies of the report found their way to Europe, and by1927, the German Rocket Society was established, and the German Army began its rocket program in 1931. Goddard, meanwhile, continued his work. By 1926, he had constructed and tested the first rocket using liquid fuel. Goddard's work largely anticipated in technical detail the later German V-2 missiles, including gyroscopic control, steering by means of vanes in the jet stream of the rocket motor, gimbal-steering, power-driven fuel pumps and other devices. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  10. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  11. Rocket Engine Numerical Simulator (RENS)

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1997-01-01

    Work is being done at three universities to help today's NASA engineers use the knowledge and experience of their Apolloera predecessors in designing liquid rocket engines. Ground-breaking work is being done in important subject areas to create a prototype of the most important functions for the Rocket Engine Numerical Simulator (RENS). The goal of RENS is to develop an interactive, realtime application that engineers can utilize for comprehensive preliminary propulsion system design functions. RENS will employ computer science and artificial intelligence research in knowledge acquisition, computer code parallelization and objectification, expert system architecture design, and object-oriented programming. In 1995, a 3year grant from the NASA Lewis Research Center was awarded to Dr. Douglas Moreman and Dr. John Dyer of Southern University at Baton Rouge, Louisiana, to begin acquiring knowledge in liquid rocket propulsion systems. Resources of the University of West Florida in Pensacola were enlisted to begin the process of enlisting knowledge from senior NASA engineers who are recognized experts in liquid rocket engine propulsion systems. Dr. John Coffey of the University of West Florida is utilizing his expertise in interviewing and concept mapping techniques to encode, classify, and integrate information obtained through personal interviews. The expertise extracted from the NASA engineers has been put into concept maps with supporting textual, audio, graphic, and video material. A fundamental concept map was delivered by the end of the first year of work and the development of maps containing increasing amounts of information is continuing. Find out more information about this work at the Southern University/University of West Florida. In 1996, the Southern University/University of West Florida team conducted a 4day group interview with a panel of five experts to discuss failures of the RL10 rocket engine in conjunction with the Centaur launch vehicle. The discussion was recorded on video and audio tape. Transcriptions of the entire proceedings and an abbreviated video presentation of the discussion highlights are under development. Also in 1996, two additional 3year grants were awarded to conduct parallel efforts that would complement the work being done by Southern University and the University of West Florida. Dr. Prem Bhalla of Jackson State University in Jackson, Mississippi, is developing the architectural framework for RENS. By employing the Rose Rational language and Booch Object Oriented Programming (OOP) technology, Dr. Bhalla is developing the basic structure of RENS by identifying and encoding propulsion system components, their individual characteristics, and cross-functionality and dependencies. Dr. Ruknet Cezzar of Hampton University, located in Hampton, Virginia, began working on the parallelization and objectification of rocket engine analysis and design codes. Dr. Cezzar will use the Turbo C++ OOP language to translate important liquid rocket engine computer codes from FORTRAN and permit their inclusion into the RENS framework being developed at Jackson State University. The Southern University/University of West Florida grant was extended by 1 year to coordinate the conclusion of all three efforts in 1999.

  12. Prediction of explosive yield and other characteristics of liquid rocket propellant explosions

    NASA Technical Reports Server (NTRS)

    Farber, E. A.; Smith, J. H.; Watts, E. H.

    1973-01-01

    Work which has been done at the University of Florida in arriving at credible explosive yield values for liquid rocket propellants is presented. The results are based upon logical methods which have been well worked out theoretically and verified through experimental procedures. Three independent methods to predict explosive yield values for liquid rocket propellants are described. All three give the same end result even though they utilize different parameters and procedures. They are: (1) mathematical model; (2) seven chart approach; and (3) critical mass method. A brief description of the methods, how they were derived, how they were applied, and the results which they produced are given. The experimental work used to support and verify the above methods both in the laboratory and in the field with actually explosive mixtures are presented. The methods developed are used and their value demonstrated in analyzing real problems, among them the destruct system of the Saturn 5, and the early configurations of the space shuttle.

  13. Amplification of Reynolds number dependent processes by wave distortion. [acoustic instability of liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Ventrice, M. B.; Fang, J. C.; Purdy, K. R.

    1975-01-01

    A system using a hot-wire transducer as an analog of a liquid droplet of propellant was employed to investigate the ingredients of the acoustic instability of liquid-propellant rocket engines. It was assumed that the combustion process was vaporization-limited and that the combustion chamber was acoustically similar to a closed-closed right-circular cylinder. Before studying the hot-wire closed-loop system (the analog system), a microphone closed-loop system, which used the response of a microphone as the source of a linear feedback exciting signal, was investigated to establish the characteristics of self-sustenance of acoustic fields. Self-sustained acoustic fields were found to occur only at resonant frequencies of the chamber. In the hot-wire closed-loop system, the response of hot-wire anemometer was used as the source of the feedback exciting signal. The self-sustained acoustic fields which developed in the system were always found to be harmonically distorted and to have as their fundamental frquency a resonant frequency for which there also existed a second resonant frequency which was approximately twice the fundamental frequency.

  14. Control Room at the NACA’s Rocket Engine Test Facility

    NASA Image and Video Library

    1957-05-21

    Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.

  15. Pressure-Equalizing Cradle for Booster Rocket Mounting

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  16. A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.; Gordon, S. V.

    1976-01-01

    A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.

  17. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    NASA Astrophysics Data System (ADS)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  18. Comparison of Laminar and Linear Eddy Model Closures for Combustion Instability Simulations

    DTIC Science & Technology

    2015-07-01

    14. ABSTRACT Unstable liquid rocket engines can produce highly complex dynamic flowfields with features such as rapid changes in temperature and...applicability. In the present study, the linear eddy model (LEM) is applied to an unstable single element liquid rocket engine to assess its performance and to...Sankaran‡ Air Force Research Laboratory, Edwards AFB, CA, 93524 Unstable liquid rocket engines can produce highly complex dynamic flowfields with features

  19. Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Cikanek, H. A., III

    1986-01-01

    Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.

  20. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2015-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  1. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2014-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  2. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  3. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  4. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  5. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    NASA Astrophysics Data System (ADS)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up for liquid breakup phenomenon observation. The liquid water material in this experiment will play a comparison role as liquid alumina in high temerature enviornment. The method proposed to control the liquid breakup size of liquid droplet is done by the means of changing the liquid properties of surface tension. The surface tenion of liquid plays an inportant role of providing major liquid droplet bounding pressure or Laplace pressure. By reduceing surface tension of liquid leads to lower Laplace pressure of droplet and result in less droplet dynamic stability which could be breakup under external pressure difference. The reduction of surface tension of liquid aluminum could be achieved by adding magnisium and strontium, it is reported that the surface tension reeducation level could reach 10%˜15% when those additive mension above are adding to aluminum. This study of liquid breakup mechanism include two major part, first part is straight two-phase channel experiment and simulation comparison which provide a validation work of CFD simulation performance when compare to experiment. Second part is single droplet breakup experiment, in this experiment the relation of surface tension and liquid breakup behavior is carefully studied. The straight two-phase flow channel experiment setting will enable to us to study the liquid breakup process in macro scale. The quantification method is achieved by analyzing high-speed camera image by MatLab image process code develop in UW-Milwaukee wind tunnel lab which extract data in images and provide information including liquid droplet count and size distribution, wave frequency and time averaging two-phase free boundary. It was found that liquid breakup mechanism proportional to gas-droplet velocity difference square, gas density and liquid droplet size and inverse proportional to liquid surface tension. The single droplet experiment part is provide a close up view of liquid breakup and prove the reduced surface tension will enhance liquid breakup activity. In this study, we could observe the evidence of enhance liquid breakup activity by the reduced surface tension of liquid. Therefor the approach of reducing surface tension of Solid Rocket Motor (SRM) fuel reacting product is a high potential solution to SRM nozzle erosion.

  6. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  7. Researcher Poses with a Nuclear Rocket Model

    NASA Image and Video Library

    1961-11-21

    A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.

  8. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  9. JANNAF 35th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 63 unclassified/unlimited distribution technical papers presented at the 35th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee (CS) held jointly with the 17th Propulsion Systems Hazards Subcommittee (PSHS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7-11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include solid gun propellant processing, ignition and combustion, charge concepts, barrel erosion and flash, gun interior ballistics, kinetics and molecular modeling, ETC gun modeling, simulation and diagnostics, and liquid gun propellant combustion; solid rocket motor propellant combustion, combustion instability fundamentals, motor instability, and measurement techniques; and liquid and hybrid rocket combustion.

  10. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    DTIC Science & Technology

    2016-07-27

    for liquid propellant atomization in rocket engines1- 2. Liquid rocket engines like the F-1 have successfully used like-on-like impinging jet...impingement of the two cylindrical jets. Another drawback, perhaps the most critical, is that rocket engine using impinging jets sacrifice performance in...The experimental results also suggested that impact waves seem to dominate the atomization process over most of the conditions relevant to rocket

  11. Robert H. Goddard and His Liquid-Gasoline Rocket

    NASA Technical Reports Server (NTRS)

    1926-01-01

    Dr. Goddard's 1926 rocket configuration. Dr. Goddard's liquid oxygen-gasoline rocket was fired on March 16, 1926, at Auburn, Massachusetts. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  12. Liquid Rocket Booster Study. Volume 2, Book 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.

  13. Performance and Stability Analyses of Rocket Combustion Devices Using Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, James R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented programs with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations on these programs. This paper summarizes these analyses. Test and analysis results of impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Several cases with gaseous methane are included for reference. Several different thrust chamber configurations have been modeled, including thrust chambers with multi-element like-on-like and swirl coax element injectors tested at NASA MSFC, and a unielement chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods.

  14. Liquid Methane/Liquid Oxygen Propellant Conditioning Feed System (PCFS) Test Rigs

    NASA Technical Reports Server (NTRS)

    Skaff, A.; Grasl, S.; Nguyen, C.; Hockenberry S.; Schubert, J.; Arrington, L.; Vasek, T.

    2008-01-01

    As part of their Propulsion and Cryogenic Advanced Development (PCAD) program, NASA has embarked upon an effort to develop chemical rocket engines which utilize non-toxic, cryogenic propellants such as liquid oxygen (LO2) and liquid methane (LCH4). This effort includes the development and testing of a 100 lbf Reaction Control Engine (RCE) that will be used to evaluate the performance of a LO2/LCH4 rocket engine over a broad range of propellant temperatures and pressures. This testing will take place at NASA-Glenn Research Center's (GRC) Research Combustion Laboratory (RCL) test facility in Cleveland, OH, and is currently scheduled to begin in late 2008. While the initial tests will be performed at sea level, follow-on testing will be performed at NASA-GRC's Altitude Combustion Stand (ACS) for altitude testing. In support of these tests, Sierra Lobo, Inc. (SLI) has designed, developed, and fabricated two separate portable propellant feed systems under the Propellant Conditioning and Feed System (PCFS) task: one system for LCH4, and one for LO2. These systems will be capable of supplying propellants over a large range of conditions from highly densified to several hundred pounds per square inch (psi) saturated. This paper presents the details of the PCFS design and explores the full capability of these propellant feed systems.

  15. Daniel Sokolowski in the Rocket Operations Building

    NASA Image and Video Library

    1966-06-21

    Dan Sokolowski worked as an engineering coop student at the National Aeronautics and Space Administration (NASA) Lewis Research Center from 1962 to 1966 while earning his Mechanical Engineering degree from Purdue. At the time of this photograph Sokolowski had just been hired as a permanent NASA employee in the Chemical Rocket Evaluation Branch of the Chemical Rocket Division. He had also just won a regional American Institute of Aeronautics and Astronautics competition for his paper on high and low-frequency combustion instability. The resolution of the low-frequency combustion instability, or chugging, in liquid hydrogen rocket systems was one of Lewis’ more significant feats of the early 1960s. In most rocket engine combustion chambers, the pressure, temperature, and flows are in constant flux. The engine is considered to be operating normally if the fluctuations remain random and within certain limits. Lewis researchers used high-speed photography to study and define Pratt and Whitney’s RL-10’s combustion instability by throttling the engine under the simulated flight conditions. They found that the injection of a small stream of helium gas into the liquid-oxygen tank immediately stabilized the system. Sokolowski’s later work focused on combustion in airbreathing engines. In 1983 was named Manager of a multidisciplinary program aimed at improving durability of combustor and turbine components. After 39 years Sokolowski retired from NASA in September 2002.

  16. Liquid rocket performance computer model with distributed energy release

    NASA Technical Reports Server (NTRS)

    Combs, L. P.

    1972-01-01

    Development of a computer program for analyzing the effects of bipropellant spray combustion processes on liquid rocket performance is described and discussed. The distributed energy release (DER) computer program was designed to become part of the JANNAF liquid rocket performance evaluation methodology and to account for performance losses associated with the propellant combustion processes, e.g., incomplete spray gasification, imperfect mixing between sprays and their reacting vapors, residual mixture ratio striations in the flow, and two-phase flow effects. The DER computer program begins by initializing the combustion field at the injection end of a conventional liquid rocket engine, based on injector and chamber design detail, and on propellant and combustion gas properties. It analyzes bipropellant combustion, proceeding stepwise down the chamber from those initial conditions through the nozzle throat.

  17. Animation: What makes up the Space Launch System’s massive core stage

    NASA Image and Video Library

    2017-04-24

    NASA’s new rocket, the Space Launch System, will be the most powerful rocket ever built for deep-space missions. The 212-foot core stage is the largest rocket stage ever built and will fuel four RS-25 engines that will help launch SLS. This animation depicts the parts that make up the core stage and how these parts will be joined to form the entire stage. The five major parts include: the engine section, the hydrogen tank, the intertank, the liquid oxygen tank and the forward skirt.

  18. Solid rocket motors for the Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Odom, J. B.

    1972-01-01

    The evolution of the space shuttle booster system is reviewed from its initial concepts based on liquid-propellant reusable boosters to the final selection of recoverable, solid-fuel rocket motors. The rationale associated with each of the several major decisions in the evolution process is discussed. It is shown that the external tank orbiter configuration emerging from the latest studies takes maximum advantage of the solid rocket motor development experience and promises to be the optimum configuration for fulfilling the paramount shuttle program requirements of minimum total development risk within acceptable costs.

  19. Design criteria monograph on turbopump systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Turbopump assembly for modern liquid propellant rocket engine is complete system in itself. It consists of many components, some of which are themselves subsystems. Monograph deals with turbopump as system, covering selection of proper system type for each application and integration of components into working system.

  20. Acoustically Forced Coaxial Hydrogen/Liquid Oxygen Jet Flames

    DTIC Science & Technology

    2016-05-15

    Briefing Charts 3. DATES COVERED (From - To) 25 April 2016 - 15 May 2016 4. TITLE AND SUBTITLE Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames...propellants be stored in condensed form – e.g., kerosene, liquid oxygen in rockets • Combustion systems can no longer be designed to meet modern

  1. History of Solid Rockets

    NASA Technical Reports Server (NTRS)

    Green, Becky; Hales, Christy

    2017-01-01

    Solid rockets were created by accident and their design and uses have evolved over time. Solid rockets are more simple and reliable than liquid rockets, but they have reduced performance capability. All solid rockets have a similar set of failure modes.

  2. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  3. Liquid rocket booster study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The purpose of this study was to determine the feasibility of Liquid Rocket Boosters (LRBs) replacing Solid Rocket Boosters on the Space Shuttle program. The major findings are given. The most significant conclusion is that LRBs offer significantly safety and performance advantages over the SRBs currently used by the STS without major impact to the ongoing program.

  4. Design of a Hybrid Propulsion System for Orbit Raising Applications

    NASA Astrophysics Data System (ADS)

    Boman, N.; Ford, M.

    2004-10-01

    A trade off between conventional liquid apogee engines used for orbit raising applications and hybrid rocket engines (HRE) has been performed using a case study approach. Current requirements for lower cost and enhanced safety places hybrid propulsion systems in the spotlight. For evaluating and design of a hybrid rocket engine a parametric engineering code is developed, based on the combustion chamber characteristics of selected propellants. A single port cylindrical section of fuel grain is considered. Polyethylene (PE) and hydroxyl-terminated polybutadiene (HTPB) represents the fuels investigated. The engine design is optimized to minimize the propulsion system volume and mass, while keeping the system as simple as possible. It is found that the fuel grain L/D ratio boundary condition has a major impact on the overall hybrid rocket engine design.

  5. Nonlinear Combustion Instability Prediction

    NASA Technical Reports Server (NTRS)

    Flandro, Gary

    2010-01-01

    The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH2 propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.

  6. A Heated Tube Facility for Rocket Coolant Channel Research

    NASA Technical Reports Server (NTRS)

    Green, James M.; Pease, Gary M.; Meyer, Michael L.

    1995-01-01

    The capabilities of a heated tube facility used for testing rocket engine coolant channels at the NASA Lewis Research Center are presented. The facility uses high current, low voltage power supplies to resistively heat a test section to outer wall temperatures as high as 730 C (1350 F). Liquid or gaseous nitrogen, gaseous helium, or combustible liquids can be used as the test section coolant. The test section is enclosed in a vacuum chamber to minimize heat loss to the surrounding system. Test section geometry, size, and material; coolant properties; and heating levels can be varied to generate heat transfer and coolant performance data bases.

  7. Video Intertank for the Core Stage for the first SLS Flight

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System interank, which recently completed assembly at NASA's Michoud Assembly Facility in New Orleans. This tank was bolted together with more than 7,000 bolts. It is the only part of the SLS core stage assembly with bolts rather than by welding. The rocket's interank is located between the core stage liquid oxygen and liquid hydrogen fuel tanks. It has to be strong because the two SLS solid rocket boosters attache to the sides of it. This flight article will be connected to four other parts to form the core stage for the first integrated flight of SLS and Orion.

  8. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Greene, William D.

    2017-01-01

    Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters

  9. Mixing in Shear Coaxial Jets with and without Acoustics

    DTIC Science & Technology

    2012-03-29

    Distribution Unlimited Combustion Instability Lab - Background • Combustion instability is an unsustainable growth of pressure and heat transfer ...beyond liquid, gas states. Shear coaxial injectors are a common choice for cryogenic liquid rocket engines. Interactions of transverse acoustics with...and combustion beyond liquid, gas states • Shear coaxial injectors are a common choice for cryogenic liquid rocket engines • Interactions of

  10. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each approximately 10 cm long and are heated via direct electric resistive heating. This heating brings the gasses to their minimum required ignition temperature, which is lower than the auto-thermal ignition temperature, and causes the onset of both surface and gas phase ignition producing hot temperatures and a highly reacting flame. The combustion products from the catalytic tubes, which are below the melting point of platinum, are injected into the center of another combustion stage, called the primary augmenter. The reactants for this combustion stage come from the same source but the flows of non-premixed methane and oxygen gas are split off to a secondary mixing apparatus and can be mixed in a near-stoichiometric to highly lean mixture ratio. The primary augmenter is a component that has channels venting this mixed gas to impinge on each other in the center of the augmenter, perpendicular to the flow from the catalyst. The total crosssectional area of these channels is on a similar order as that of the catalyst. The augmenter has internal channels that act as a manifold to distribute equally the gas to the inward-venting channels. This stage creates a stable flame kernel as its flows, which are on the order of 0.01 g/s, are ignited by the combustion products of the catalyst. This stage is designed to produce combustion products in the flame kernel that exceed the autothermal ignition temperature of oxygen and methane.

  11. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    NASA Astrophysics Data System (ADS)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  12. Atomization characteristics of swirl injector sprays

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.

    1996-01-01

    Stable combustion within rocket engines is a continuing concern for designers of rocket engine systems. The swirl-coaxial injector has demonstrated effectiveness in achieving atomization and mixing, and therefore stable combustion. Swirl-coaxial injector technology is being deployed in the American RL1OA rocket design and Russian engine systems already make wide spread use of this technology. The present requirement for swirl injector research is derived from NASA's current Reusable Launch Vehicle (RLV) technology program. This report describes some of the background and literature on this topic including drop size measurements, comparison with theoretical predictions, the effect of surface tension on the atomization process, and surface wave characteristics of liquid film at the exit of the injector.

  13. A review of liquid rocket propulsion programs in Japan

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    An assessment of Japan's current capabilities in the areas of space and transatmospheric propulsion is presented. The primary focus is upon Japan's programs in liquid rocket propulsion and in space plane and related transatmospheric areas. Brief reference is also made to their solid rocket programs, as well as to their supersonic air breathing propulsion efforts that are just getting underway.

  14. Turbo Pump Fed Micro-Rocket Engine

    NASA Astrophysics Data System (ADS)

    Miotti, P.; Tajmar, M.; Seco, F.; Guraya, C.; Perennes, F.; Soldati, A.; Lang, M.

    2004-10-01

    Micro-satellites (from 10kg up to 100kg) have mass, volume, and electrical power constraints due to their low dimensions. These limitations lead to the lack in currently available active orbit control systems in micro-satellites. Therefore, a micro-propulsion system with a high thrust to mass ratio is required to increase the potential functionality of small satellites. Mechatronic is presently working on a liquid bipropellant micro-rocket engine under contract with ESA (Contract No.16914/NL/Sfe - Micro-turbo-machinery Based Bipropellant System Using MNT). The advances in Mechatronic's project are to realise a micro-rocket engine with propellants pressurised by micro-pumps. The energy for driving the pumps would be extracted from a micro-turbine. Cooling channels around the nozzle would be also used in order to maintain the wall material below its maximum operating temperature. A mass budget comparison with more traditional pressure-fed micro-rockets shows a real benefit from this system in terms of mass reduction. In the paper, an overview of the project status in Mechatronic is presented.

  15. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  16. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1991-01-01

    A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.

  17. NASA Engineer Examines the Design of a Regeneratively-Cooled Rocket Engine

    NASA Image and Video Library

    1958-12-21

    An engineer at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a drawing showing the assembly and details of a 20,000-pound thrust regeneratively cooled rocket engine. The engine was being designed for testing in Lewis’ new Rocket Engine Test Facility, which began operating in the fall of 1957. The facility was the largest high-energy test facility in the country that was capable of handling liquid hydrogen and other liquid chemical fuels. The facility’s use of subscale engines up to 20,000 pounds of thrust permitted a cost-effective method of testing engines under various conditions. The Rocket Engine Test Facility was critical to the development of the technology that led to the use of hydrogen as a rocket fuel and the development of lightweight, regeneratively-cooled, hydrogen-fueled rocket engines. Regeneratively-cooled engines use the cryogenic liquid hydrogen as both the propellant and the coolant to prevent the engine from burning up. The fuel was fed through rows of narrow tubes that surrounded the combustion chamber and nozzle before being ignited inside the combustion chamber. The tubes are visible in the liner sitting on the desk. At the time, Pratt and Whitney was designing a 20,000-pound thrust liquid-hydrogen rocket engine, the RL-10. Two RL-10s would be used to power the Centaur second-stage rocket in the 1960s. The successful development of the Centaur rocket and the upper stages of the Saturn V were largely credited to the work carried out Lewis.

  18. Space Shuttle Projects

    NASA Image and Video Library

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  20. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust. The test was the first test ever anywhere outside Russia of a Russian designed and built engine.

  1. Experimental and computational data from a small rocket exhaust diffuser

    NASA Astrophysics Data System (ADS)

    Stephens, Samuel E.

    1993-06-01

    The Diagnostics Testbed Facility (DTF) at the NASA Stennis Space Center in Mississippi is a versatile facility that is used primarily to aid in the development of nonintrusive diagnostics for liquid rocket engine testing. The DTF consists of a fixed, 1200 lbf thrust, pressure fed, liquid oxygen/gaseous hydrogen rocket engine, and associated support systems. An exhaust diffuser has been fabricated and installed to provide subatmospheric pressures at the exit of the engine. The diffuser aerodynamic design was calculated prior to fabrication using the PARC Navier-Stokes computational fluid dynamics code. The diffuser was then fabricated and tested at the DTF. Experimental data from these tests were acquired to determine the operational characteristics of the system and to correlate the actual and predicted flow fields. The results show that a good engineering approximation of overall diffuser performance can be made using the PARC Navier-Stokes code and a simplified geometry. Correlations between actual and predicted cell pressure and initial plume expansion in the diffuser are good; however, the wall pressure profiles do not correlate as well with the experimental data.

  2. Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander

    NASA Astrophysics Data System (ADS)

    Lopez, Israel

    Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.

  3. Unmanned planetary spacecraft chemical rocket propulsion.

    NASA Technical Reports Server (NTRS)

    Burlage, H., Jr.; Gin, W.; Riebling, R. W.

    1972-01-01

    Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.

  4. The Technique for CFD-Simulation of Fuel Valve from Pneumatic-Hydraulic System of Liquid-Propellant Rocket Engine

    NASA Astrophysics Data System (ADS)

    Shabliy, L. S.; Malov, D. V.; Bratchinin, D. S.

    2018-01-01

    In the article the description of technique for simulation of valves for pneumatic-hydraulic system of liquid-propellant rocket engine (LPRE) is given. Technique is based on approach of computational hydrodynamics (Computational Fluid Dynamics - CFD). The simulation of a differential valve used in closed circuit LPRE supply pipes of fuel components is performed to show technique abilities. A schematic and operation algorithm of this valve type is described in detail. Also assumptions made in the construction of the geometric model of the hydraulic path of the valve are described in detail. The calculation procedure for determining valve hydraulic characteristics is given. Based on these calculations certain hydraulic characteristics of the valve are given. Some ways of usage of the described simulation technique for research the static and dynamic characteristics of the elements of the pneumatic-hydraulic system of LPRE are proposed.

  5. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between themore » two.« less

  6. NASA Collaborative Design Processes

    NASA Technical Reports Server (NTRS)

    Jones, Davey

    2017-01-01

    This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.

  7. The techniques of quality operations computational and experimental researches of the launch vehicles in the drawing-board stage

    NASA Astrophysics Data System (ADS)

    Rozhaeva, K.

    2018-01-01

    The aim of the researchis the quality operations of the design process at the stage of research works on the development of active on-Board system of the launch vehicles spent stages descent with liquid propellant rocket engines by simulating the gasification process of undeveloped residues of fuel in the tanks. The design techniques of the gasification process of liquid rocket propellant components residues in the tank to the expense of finding and fixing errors in the algorithm calculation to increase the accuracy of calculation results is proposed. Experimental modelling of the model liquid evaporation in a limited reservoir of the experimental stand, allowing due to the false measurements rejection based on given criteria and detected faults to enhance the results reliability of the experimental studies; to reduce the experiments cost.

  8. X-ray Radiography Measurements of Shear Coaxial Rocket Injectors

    DTIC Science & Technology

    2013-05-07

    injector EPL profiles have elliptical shape expected from a solid liquid jet  EPL decreases as liquid core is atomized and droplets are...study diesel, swirl, gas-centered swirl-coaxial, impingers, and aerated liquid jet injectors  Use a monochromatic beam of x-rays at a synchrotron...Shear coaxial jets can be found in a number of combustion devices – Turbofan engine exhaust, air blast furnaces, and liquid rocket engines

  9. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  10. Liquid rocket combustion computer model with distributed energy release. DER computer program documentation and user's guide, volume 1

    NASA Technical Reports Server (NTRS)

    Combs, L. P.

    1974-01-01

    A computer program for analyzing rocket engine performance was developed. The program is concerned with the formation, distribution, flow, and combustion of liquid sprays and combustion product gases in conventional rocket combustion chambers. The capabilities of the program to determine the combustion characteristics of the rocket engine are described. Sample data code sheets show the correct sequence and formats for variable values and include notes concerning options to bypass the input of certain data. A seperate list defines the variables and indicates their required dimensions.

  11. Hybrid rockets - Combining the best of liquids and solids

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.; Goldberg, Ben E.; Estey, Paul N.; Wiley, Dan R.

    1992-01-01

    Hybrid rockets employing liquid oxidizer and solid fuel grain answers to cost, safety, reliability, and environmental impact concerns that have become as prominent as performance in recent years. The oxidizer-free grain has limited sensitivity to grain anomalies, such as bond-line separations, which can cause catastrophic failures in solid rocket motors. An account is presently given of the development effort associated with the AMROC commercial hybrid booster and component testing efforts at NASA-Marshall. These hybrid rockets can be fired, terminated, inspected, evaluated, and restarted for additional testing.

  12. Early Rockets

    NASA Image and Video Library

    2004-04-15

    By the end of the 19th Century, a Russian theorist, Konstantian Tsiolkovsky, was examining the fundamental scientific theories behind rocketry. He made some pioneering studies in liquid chemical rocket concepts and recommended liquid oxygen and liquid hydrogen as the optimum propellants. In the 1920's, Tsiolkovsky analyzed and mathematically formulated the technique for staged vehicles to reach escape velocities from Earth.

  13. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  14. Around Marshall

    NASA Image and Video Library

    1998-11-04

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  15. Thermal and convection analyses of the dendrite remelting rocket experiment; Experiment 74-21 in the space processing rocket program

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Pond, J. E.; Spradley, J. W.; Johnson, M. H.

    1976-01-01

    The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g.

  16. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    NASA Technical Reports Server (NTRS)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  17. A-1 Test Stand modifications

    NASA Image and Video Library

    2011-09-14

    Team members check the progress of a liquid nitrogen cold shock test on the A-1 Test Stand at Stennis Space Center on Sept. 15. The cold shock test is used to confirm the test stand's support system can withstand test conditions, when super-cold rocket engine propellant is piped. The A-1 Test Stand is preparing to conduct tests on the powerpack component of the J-2X rocket engine, beginning in early 2012.

  18. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix G: LRB for the STS system study level 2 requirements, revision 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Requirements are presented for shuttle system definition; performance and design characteristics; shuttle vehicle end item performance and design characteristics; ground operations complex performance and design characteristics; operability and system design and construction standards; and quality control.

  19. Current and Future Critical Issues in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  20. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  1. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  2. Direct electrical arc ignition of hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  3. Review on pressure swirl injector in liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Kang, Zhongtao; Wang, Zhen-guo; Li, Qinglian; Cheng, Peng

    2018-04-01

    The pressure swirl injector with tangential inlet ports is widely used in liquid rocket engine. Commonly, this type of pressure swirl injector consists of tangential inlet ports, a swirl chamber, a converging spin chamber, and a discharge orifice. The atomization of the liquid propellants includes the formation of liquid film, primary breakup and secondary atomization. And the back pressure and temperature in the combustion chamber could have great influence on the atomization of the injector. What's more, when the combustion instability occurs, the pressure oscillation could further affects the atomization process. This paper reviewed the primary atomization and the performance of the pressure swirl injector, which include the formation of the conical liquid film, the breakup and atomization characteristics of the conical liquid film, the effects of the rocket engine environment, and the response of the injector and atomization on the pressure oscillation.

  4. System Engineering and Technical Challenges Overcome in the J-2X Rocket Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2012-01-01

    Beginning in 2006, NASA initiated the J-2X engine development effort to develop an upper stage propulsion system to enable the achievement of the primary objectives of the Constellation program (CxP): provide continued access to the International Space Station following the retirement of the Space Station and return humans to the moon. The J-2X system requirements identified to accomplish this were very challenging and the time expended over the five years following the beginning of the J- 2X effort have been noteworthy in the development of innovations in both the fields for liquid rocket propulsion and system engineering.

  5. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Liquid Oxygen Systems Engineer Quinten Jones, left and Liquid Oxygen Systems Engineer Andrew "Kody" Smitherman, both of Jacobs, monitor operation from his position in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  6. [Integral evaluation of immune homeostasis in rockets liquidators and role of this evaluation for prophylaxis].

    PubMed

    2010-01-01

    Long-standing clinical and immunologic monitoring and integral evaluation of immune homeostasis (through generalized parameter) in personnel of Center for liquid-fuel rockets liquidation demonstrated diagnostically reliable immunity parameters that enable to forecast changes in the workers' health state. The authors defined boundary values of the generalized parameter to form risk groups for specific entities formation.

  7. Main lines of scientific and technical research at the Soviet Jet Propulsion Research Institute (RNII), 1933 - 1942

    NASA Technical Reports Server (NTRS)

    Shchetinkov, Y. S.

    1977-01-01

    The rapid development of rocketry in the U.S.S.R. during the post-war years was due largely to pre-war activity; in particular, to investigations conducted in the Jet Propulsion Research Institute (RNII). The history of RNII commenced in 1933, resulting from the merger of two rocket research organizations. Previous research was continued in areas of solid-propellant rockets, jet-assisted take-off of aircraft, liquid propellant engines (generally with nitric acid as the oxidizer), liquid-propellant rockets (generally with oxgen as the oxidizer), ram jet engines, rockets with and without wings, and rocket planes. RNII research is described and summarized for the years 1933-1942.

  8. Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Cost, Thomas L.; Hofmann, Martin O.

    1990-01-01

    A prototype of an expert system was developed which applies qualitative or model-based reasoning to the task of post-test analysis and diagnosis of data resulting from a rocket engine firing. A combined component-based and process theory approach is adopted as the basis for system modeling. Such an approach provides a framework for explaining both normal and deviant system behavior in terms of individual component functionality. The diagnosis function is applied to digitized sensor time-histories generated during engine firings. The generic system is applicable to any liquid rocket engine but was adapted specifically in this work to the Space Shuttle Main Engine (SSME). The system is applied to idealized data resulting from turbomachinery malfunction in the SSME.

  9. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  10. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2006-09-09

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  11. Illustration of Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  12. Fiberoptic sensors for rocket engine applications

    NASA Technical Reports Server (NTRS)

    Ballard, R. O.

    1992-01-01

    A research effort was completed to summarize and evaluate the current level of technology in fiberoptic sensors for possible applications in integrated control and health monitoring (ICHM) systems in liquid propellant engines. The environment within a rocket engine is particuarly severe with very high temperatures and pressures present combined with extremely rapid fluid and gas flows, and high-velocity and high-intensity acoustc waves. Application of fiberoptic technology to rocket engine health monitoring is a logical evolutionary step in ICHM development and presents a significant challenge. In this extremely harsh environment, the additional flexibility of fiberoptic techniques to augment conventional sensor technologies offer abundant future potential.

  13. NASA Researchers Examine a Pratt and Whitney RL-10 Rocket Engine

    NASA Image and Video Library

    1962-04-21

    Lead Test Engineer John Kobak (right) and a technician use an oscilloscope to test the installation of a Pratt and Whitney RL-10 engine in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In 1955 the military asked Pratt and Whitney to develop hydrogen engines specifically for aircraft. The program was canceled in 1958, but Pratt and Whitney decided to use the experience to develop a liquid-hydrogen rocket engine, the RL-10. Two of the 15,000-pound-thrust RL-10 engines were used to power the new Centaur second-stage rocket. Centaur was designed to carry the Surveyor spacecraft on its mission to soft-land on the Moon. Pratt and Whitney ran into problems while testing the RL-10 at their facilities. NASA Headquarters assigned Lewis the responsibility for investigating the RL-10 problems because of the center’s long history of liquid-hydrogen development. Lewis’ Chemical Rocket Division began a series of tests to study the RL-10 at its Propulsion Systems Laboratory in March 1960. The facility contained two test chambers that could study powerful engines in simulated altitude conditions. The first series of RL-10 tests in early 1961 involved gimballing the engine as it fired. Lewis researchers were able to yaw and pitch the engine to simulate its behavior during a real flight.

  14. Spread Across Liquids: The World's First Microgravity Combustion Experiment on a Sounding Rocket

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Spread Across Liquids (SAL) experiment characterizes how flames spread over liquid pools in a low-gravity environment in comparison to test data at Earth's gravity and with numerical models. The modeling and experimental data provide a more complete understanding of flame spread, an area of textbook interest, and add to our knowledge about on-orbit and Earthbound fire behavior and fire hazards. The experiment was performed on a sounding rocket to obtain the necessary microgravity period. Such crewless sounding rockets provide a comparatively inexpensive means to fly very complex, and potentially hazardous, experiments and perform reflights at a very low additional cost. SAL was the first sounding-rocket-based, microgravity combustion experiment in the world. It was expected that gravity would affect ignition susceptibility and flame spread through buoyant convection in both the liquid pool and the gas above the pool. Prior to these sounding rocket tests, however, it was not clear whether the fuel would ignite readily and whether a flame would be sustained in microgravity. It also was not clear whether the flame spread rate would be faster or slower than in Earth's gravity.

  15. Despin System for Hydrogen Tank in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1962-04-21

    Mechanic Howard Wine inspects the setup of a spin isolator in Cell 2 of the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Photographer Al Jecko filmed the proceedings. This test was unique in that the chamber’s altitude system was used, but not its inlet air flow. The test was in preparation for an upcoming launch of modified liquid hydrogen propellant tank on a sounding rocket. This Weightlessness Analysis Sounding Probe (WASP) was part of Lewis investigation into methods for controlling partially filled liquid hydrogen fuel tanks during flight. Second-stage rockets, the Centaur in particular, were designed to stop their engines and coast, then restart them when needed. During this coast period, the propellant often shifted inside the tank. This movement could throw the rocket off course or result in the sloshing of fuel away from the fuel pump. Wine was one of only three journeymen mechanics at Lewis when he was hired in January 1954. He spent his first decade in the Propulsion Systems Laboratory and was soon named a section head. Wine went on to serve as Assistant Division Chief and later served as an assistant to the director. Jecko joined the center in 1947 as a photographer and artist. He studied at the Cleveland School or Art and was known for his cartoon drawing. He worked at the center for 26 years.

  16. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  17. Convection and dendrite crystallization. [during coasting phase of sounding rocket flight

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Johnston, M. H.; Griner, C. S.

    1977-01-01

    The convection and thermal conditions in aqueous and metallic liquid systems under conditions of the Dendrite Remelting Rocket Experiment were assessed to help establish the relevance of the rocket experiment to the metals casting phenomena. The results of the study indicate that aqueous or metallic convection velocities in the cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the rocket experiment, therefore, may be indicative of how metals will solidify in low-g. The influence of possibly differing thermal fields, however, remains to be assessed. The rocket experiment may also be relevant to how metals solidify on the ground at temperature differences and in cell configurations such that the flow velocities are not high enough to break or bend delicate dendrite arms. Again, however, the influence of the thermal fields must be assessed.

  18. Scaled Rocket Testing in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  19. Illustration of Ares I During Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the Ares I is illustrated during lift off. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. With a primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I uses a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine, derived from the J-2 engine used on the second stage of the Apollo vehicle, will power the Ares I second stage. Ares I can lift more than 55,000 pounds to low Earth orbit. The Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  20. Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hulka, James; Yang, Virog

    2009-01-01

    Liquid-Propellant Rocket Engines (LREs) are capable of on-command variable thrust or thrust modulation, an operability advantage that has been studied intermittently since the late 1930s. Throttleable LREs can be used for planetary entry and descent, space rendezvous, orbital maneuvering including orientation and stabilization in space, and hovering and hazard avoidance during planetary landing. Other applications have included control of aircraft rocket engines, limiting of vehicle acceleration or velocity using retrograde rockets, and ballistic missile defense trajectory control. Throttleable LREs can also continuously follow the most economical thrust curve in a given situation, compared to discrete throttling changes over a few select operating points. The effects of variable thrust on the mechanics and dynamics of an LRE as well as difficulties and issues surrounding the throttling process are important aspects of throttling behavior. This review provides a detailed survey of LRE throttling centered around engines from the United States. Several LRE throttling methods are discussed, including high-pressure-drop systems, dual-injector manifolds, gas injection, multiple chambers, pulse modulation, throat throttling, movable injector components, and hydrodynamically dissipative injectors. Concerns and issues surrounding each method are examined, and the advantages and shortcomings compared.

  1. Cryostatless high temperature supercurrent bearings for rocket engine turbopumps

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Dill, James F.

    1989-01-01

    The rocket engine systems examined include SSME, ALS, and CTV systems. The liquid hydrogen turbopumps in the SSME and ALS vehicle systems are identified as potentially attractive candidates for development of Supercurrent Bearings since the temperatures around the bearings is about 30 K, which is considerably lower than the 95 K transition temperatures of HTS materials. At these temperatures, the current HTS materials are shown to be capable of developing significantly higher current densities. This higher current density capability makes the development of supercurrent bearings for rocket engines an attractive proposition. These supercurrent bearings are also shown to offer significant advantages over conventional bearings used in rocket engines. They can increase the life and reliability over rolling element bearings because of noncontact operation. They offer lower power loss over conventional fluid film bearings. Compared to conventional magnetic bearings, they can reduce the weight of controllers significantly, and require lower power because of the use of persistent currents. In addition, four technology areas that require further attention have been identified. These are: Supercurrent Bearing Conceptual Design Verification; HTS Magnet Fabrication and Testing; Cryosensors and Controller Development; and Rocket Engine Environmental Compatibility Testing.

  2. High-temperature, high-pressure optical port for rocket engine applications

    NASA Technical Reports Server (NTRS)

    Delcher, Ray; Nemeth, ED; Powers, W. T.

    1993-01-01

    This paper discusses the design, fabrication, and test of a window assembly for instrumentation of liquid-fueled rocket engine hot gas systems. The window was designed to allow optical measurements of hot gas in the SSME fuel preburner and appears to be the first window designed for application in a rocket engine hot gas system. Such a window could allow the use of a number of remote optical measurement technologies including: Raman temperature and species concentration measurement, Raleigh temperature measurements, flame emission monitoring, flow mapping, laser-induced florescence, and hardware imaging during engine operation. The window assembly has been successfully tested to 8,000 psi at 1000 F and over 11,000 psi at room temperature. A computer stress analysis shows the window will withstand high temperature and cryogenic thermal shock.

  3. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    DTIC Science & Technology

    2014-06-01

    to the shape of the liquid jet core, elliptical EPL is what would be expected from a cylinder of liquid and has previously been observed in diesel...rely on the shear between an outer lower-density high velocity annulus and a higher- density low-velocity inner jet to atomize and mix a liquid and a...of combustion devices (turbofan engine exhaust, air blast furnaces, and liquid rocket engines) shear coaxial jets have been studied for over sixty

  4. Parallel Unsteady Turbopump Simulations for Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan; Chan, William

    2000-01-01

    This paper reports the progress being made towards complete turbo-pump simulation capability for liquid rocket engines. Space Shuttle Main Engine (SSME) turbo-pump impeller is used as a test case for the performance evaluation of the MPI and hybrid MPI/Open-MP versions of the INS3D code. Then, a computational model of a turbo-pump has been developed for the shuttle upgrade program. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbo-pump, which contains 136 zones with 35 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from time-accurate simulations with moving boundary capability, and the performance of the parallel versions of the code will be presented in the final paper.

  5. Nonlinear Modeling and Control of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.

  6. Acoustic effects of sprays

    NASA Technical Reports Server (NTRS)

    Pindera, Maciej Z.; Przekwas, Andrzej J.

    1994-01-01

    Since the early 1960's, it has been known that realistic combustion models for liquid fuel rocket engines should contain at least a rudimentary treatment of atomization and spray physics. This is of particular importance in transient operations. It has long been recognized that spray characteristics and droplet vaporization physics play a fundamental role in determining the stability behavior of liquid fuel rocket motors. This paper gives an overview of work in progress on design of a numerical algorithm for practical studies of combustion instabilities in liquid rocket motors. For flexibility, the algorithm is composed of semi-independent solution modules, accounting for different physical processes. Current findings are report and future work is indicated. The main emphasis of this research is the development of an efficient treatment to interactions between acoustic fields and liquid fuel/oxidizer sprays.

  7. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Propulsion Fuel Pumps and Fuel Systems Liquid Rockets and Combustion Gas Generators Micropropulsion Gears Monopropellants High-Cycle Fatigue and Its... Systems Electric Propulsion Engine Health Monitoring Systems High-Energy-Density Matter Exhaust Nozzles Injectors and Spray Measurements Fans Laser...of software models to drive development of component-based systems and lightweight domain-specific specification and verification technology. Highly

  8. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  9. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  10. Analysis and Evaluation of German Attainments and Research in the Liquid Rocket Engine Field. Volume 8. Rocket Engine Control and Safety Circuits

    DTIC Science & Technology

    1951-02-01

    the pressure switch (16) is activated. This causes the-electrical circuit to open valve (11) and start the igniter (17). The nitrogen pressure...activates the pressure switch (11) at approximately 7 psi before it flows through the Injector (9) into the chamber. ATI-85«’󈧕 - -A 11...precluded. Accordingly, pressure switch (11) is inserted in the system in parallel (electrically) with the flow indicator (17), and the circuit may

  11. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  12. Combustion dynamics in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Mclain, W. H.

    1971-01-01

    A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.

  13. Size Distribution and Velocity of Ethanol Drops in a Rocket Combustor Burning Ethanol and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1961-01-01

    Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.

  14. Liquid Rocket Lines, Bellows, Flexible Hoses, and Filters

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Fluid-flow components in a liquid propellant rocket engine and the rocket vehicle which it propels are interconnected by lines, bellows, and flexible hoses. Elements involved in the successful design of these components are identified and current technologies pertaining to these elements are reviewed, assessed, and summarized to provide a technology base for a checklist of rules to be followed by project managers in guiding a design or assessing its adequacy. Recommended procedures for satisfying each of the design criteria are included.

  15. Experimental analysis of SiC-based refractory concrete in hybrid rocket nozzles

    NASA Astrophysics Data System (ADS)

    D'Elia, Raffaele; Bernhart, Gérard; Hijlkema, Jouke; Cutard, Thierry

    2016-09-01

    Hybrid propulsion represents a good alternative to the more widely used liquid and solid systems. This technology combines some important specifications of the latters, as the possibility of re-ignition, thrust modulation, a higher specific impulse than solid systems, a greater simplicity and a lower cost than liquid systems. Nevertheless the highly oxidizing environment represents a major problem as regards the thermo-oxidation and ablative behavior of nozzle materials. The main goal of this research is to characterize a silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidizing polyethylene/nitrous oxide hybrid environment, under temperatures up to 2900 K. Three tests were performed on concrete-based nozzles in HERA Hybrid Rocket Motor (HRM) test bench at ONERA. Pressure chamber evolution and observations before and after tests are used to investigate the ablated surface at nozzle throat. Ablation behavior and crack generation are discussed and some improvements are proposed.

  16. Integrated Design Methodology for Highly Reliable Liquid Rocket Engine

    NASA Astrophysics Data System (ADS)

    Kuratani, Naoshi; Aoki, Hiroshi; Yasui, Masaaki; Kure, Hirotaka; Masuya, Goro

    The Integrated Design Methodology is strongly required at the conceptual design phase to achieve the highly reliable space transportation systems, especially the propulsion systems, not only in Japan but also all over the world in these days. Because in the past some catastrophic failures caused some losses of mission and vehicle (LOM/LOV) at the operational phase, moreover did affect severely the schedule delays and cost overrun at the later development phase. Design methodology for highly reliable liquid rocket engine is being preliminarily established and investigated in this study. The sensitivity analysis is systematically performed to demonstrate the effectiveness of this methodology, and to clarify and especially to focus on the correlation between the combustion chamber, turbopump and main valve as main components. This study describes the essential issues to understand the stated correlations, the need to apply this methodology to the remaining critical failure modes in the whole engine system, and the perspective on the engine development in the future.

  17. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Ballard, RIchard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  18. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  19. Ionic Fluorine Chemistry.

    DTIC Science & Technology

    SOLID ROCKET OXIDIZERS, *LIQUID ROCKET OXIDIZERS, CHLORATES, FLUORIDES, ACETONES, CHLORINE COMPOUNDS, NITROSO COMPOUNDS, *HALOGEN COMPOUNDS, ADDITION REACTIONS, CESIUM COMPOUNDS, CHLORIDES, COMPLEX COMPOUNDS

  20. Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster

    NASA Astrophysics Data System (ADS)

    Eilers, Shannon

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

  1. Hybrid rocket motor testing at Nammo Raufoss A/S

    NASA Astrophysics Data System (ADS)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  2. Analysis of liquid-propellant rocket engines designed by F. A. Tsander

    NASA Technical Reports Server (NTRS)

    Dushkin, L. S.; Moshkin, Y. K.

    1977-01-01

    The development of the oxygen-gasoline OR-2 engines and the oxygen-alcohol GIRD-10 rocket engine is described. A result of Tsander's rocket research was an engineering method for propellant calculation of oxygen-propellant rocket engines that determined the basic parameters of the engine and the structural elements.

  3. Spacecraft boost and abort guidance and control systems requirement study, boost dynamics and control analysis study. Exhibit A: Boost dynamics and control anlaysis

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Price, J. B.; Lemon, R. S.

    1972-01-01

    The simulation developments for use in dynamics and control analysis during boost from liftoff to orbit insertion are reported. Also included are wind response studies of the NR-GD 161B/B9T delta wing booster/delta wing orbiter configuration, the MSC 036B/280 inch solid rocket motor configuration, the MSC 040A/L0X-propane liquid injection TVC configuration, the MSC 040C/dual solid rocket motor configuration, and the MSC 049/solid rocket motor configuration. All of the latest math models (rigid and flexible body) developed for the MSC/GD Space Shuttle Functional Simulator, are included.

  4. Liquid propellant rocket combustion instability

    NASA Technical Reports Server (NTRS)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  5. Combustion and Performance Analyses of Coaxial Element Injectors with Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations. This paper summarizes the analyses of combustion and performance as a follow-up to a paper published in the 2008 JANNAF/LPS meeting. Combustion stability analyses are presented in a separate paper. The current paper includes test and analysis results of coaxial element injectors using liquid oxygen and liquid methane or gaseous methane propellants. Several thrust chamber configurations have been modeled, including thrust chambers with multi-element swirl coax element injectors tested at the NASA MSFC, and a uni-element chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods

  6. Liquid booster engine reuse - A recovery system

    NASA Technical Reports Server (NTRS)

    Von Eckroth, Wulf; Rohrkaste, Gary R.; Delurgio, Phillip R.

    1991-01-01

    The paper presents the design of a recovery system for a suborbital payload of an Atlas E rocket. This program utilizes off-the-shelf and previously qualified avionics, flotation, and decelerator systems. A brief history of liquid-engine recoveries is presented first, then the system design utilizing two self-contained structurally-identical pods diametrically mounted to the thrust section is outlined. A mortar-deployed drogue and the main parachute are described, and experimental procedures are considered. Data obtained from one tricluster drop employing a cylindrical test vehicle and helicopter is analyzed, and a satisfactory load balance between the parachutes is observed.

  7. Primary atomization of liquid jets issuing from rocket engine coaxial injectors

    NASA Astrophysics Data System (ADS)

    Woodward, Roger D.

    1993-01-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid-propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their optical opacity. This work focuses on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact liquid core. The specific application considered is that of shear-coaxial type rocket engine injectors. Real-time x-ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, has been used to make the measurements. Nitrogen and helium were employed as the fuel simulants while an x-ray absorbing potassium iodide aqueous solution was used as the liquid oxygen (LOX) simulant. The intact-liquid-core length data have been obtained and interpreted to illustrate the effects of chamber pressure (gas density), injected-gas and liquid velocities, and cavitation. The results clearly show that the effect of cavitation must be considered at low chamber pressures since it can be the dominant breakup mechanism. A correlation of intact core length in terms of gas-to-liquid density ratio, liquid jet Reynolds number, and Weber number is suggested. The gas-to-liquid density ratio appears to be the key parameter for aerodynamic shear breakup in this study. A small number of hot-fire, LOX/hydrogen tests were also conducted to attempt intact-LOX-core measurements under realistic conditions in a single-coaxial-element rocket engine. The tests were not successful in terms of measuring the intact core, but instantaneous imaging of LOX jets suggests that LOX jet breakup is qualitatively similar to that of cold-flow, propellant-simulant jets. The liquid oxygen jets survived in the hot-fire environment much longer than expected, and LOX was even visualized exiting the chamber nozzle under some conditions. This may be an effect of the single element configuration.

  8. On use of hybrid rocket propulsion for suborbital vehicles

    NASA Astrophysics Data System (ADS)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  9. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Astrophysics Data System (ADS)

    Leone, D. M.; Turns, S. R.

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  10. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Technical Reports Server (NTRS)

    Leone, D. M.; Turns, S. R.

    1994-01-01

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  11. US Rocket Propulsion Industrial Base Health Metrics

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector.

  12. X-Ray Radiography Measurements of Shear Coaxial Rocket Injectors

    DTIC Science & Technology

    2013-02-01

    turbofan engine exhaust, air blast furnaces, and liquid rocket engines) shear coaxial jets have been stud- ied for over sixty years [1]. In all applications...fluids as either single or multiple phases. Most of the fundamental coaxial jet research has been done using a single phase (either gas-gas or liquid ... liquid mixing). A brief review of single-phase coaxial jet research can be found in Schumaker and Driscoll [5]. Single-phase cases also include work

  13. Combustion of metal agglomerates in a solid rocket core flow

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  14. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  15. An overview of in-flight plume diagnostics for rocket engines

    NASA Technical Reports Server (NTRS)

    Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.

    1992-01-01

    An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.

  16. History of Sulphur Content Effects on the Thermal Stability of RP-1 under Heated Conditions

    NASA Technical Reports Server (NTRS)

    Irvine, Solveig A.; Schoettmer, Amanda K.; Bates, Ronald W.; Meyer, Michael L.

    2004-01-01

    As technologies advance in the aerospace industry, a strong desire has emerged to design more efficient, longer life, reusable liquid hydrocarbon fueled rocket engines. To achieve this goal, a more complete understanding of the thermal stability and chemical makeup of the hydrocarbon propellant is needed. Since the main fuel used in modern liquid hydrocarbon systems is RP-1, there is concern that Standard Grade RP-1 may not be a suitable propellant for future-generation rocket engines due to concern over the outdated Mil-Specification for the fuel. This current specification allows high valued limits on contaminants such as sulfur compounds, and also lacks specification of required thermal stability qualifications for the fuel. Previous studies have highlighted the detrimental effect of high levels of mercaptan sulfur content (^50 ppm) on copper rocket engine materials, but the fuel itself has not been studied. While the role of sulfur in other fuels (e.g., aviation, diesel, and automotive fuels) has been extensively studied, little has been reported on the effects of sulfur levels in rocket fuels. Lower RP-1 sulfur concentrations need to be evaluated and an acceptable sulfur limit established before RP-1 can be recommended for use as the propellant for future launch vehicles. (5 tables, 8 figures, 9 refs.)

  17. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  18. Droplet-turbulence interactions in subcritical and supercritical evaporating sprays

    NASA Technical Reports Server (NTRS)

    Santavicca, Domenic A.; Coy, Edward; Greenfield, Stuart; Song, Young-Hoon

    1991-01-01

    The objective of this research is to obtain an improved understanding of droplet turbulence interactions in vaporizing liquid sprays under conditions typical of those encountered in liquid fueled rocket engines. The interaction between liquid droplets and the surrounding turbulent gas flow affects droplet dispersion, droplet collisions, droplet vaporization and gas-phase, fuel-oxidant mixing, and therefore has a significant effect on the engine's combustion characteristics. An example of this is the role which droplet-turbulence interactions are believed to play in combustion instabilities. Despite their importance, droplet-turbulence interactions and their effect on liquid fueled rocket engine performance are not well understood. This is particularly true under supercritical conditions, where many conventional concepts, such as surface tension, no longer apply. Our limited understanding of droplet-turbulence interactions, under both subcritical conditions, represents a major limitation in our ability to design improved liquid previously unavailable information and valuable new insights which will directly impact the design of future liquid fueled rocket engines, as well as, allow for the development of significantly improved spray combustion models, making such models useful design tools.

  19. Extended temperature range ACPS thruster investigation

    NASA Technical Reports Server (NTRS)

    Blubaugh, A. L.; Schoenman, L.

    1974-01-01

    The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.

  20. Predicting performance of axial pump inducer of LOX booster turbo-pump of staged combustion cycle based rocket engine using CFD

    NASA Astrophysics Data System (ADS)

    Mishra, Arpit; Ghosh, Parthasarathi

    2015-12-01

    For low cost, high thrust, space missions with high specific impulse and high reliability, inert weight needs to be minimized and thereby increasing the delivered payload. Turbopump feed system for a liquid propellant rocket engine (LPRE) has the highest power to weight ratio. Turbopumps are primarily equipped with an axial flow inducer to achieve the high angular velocity and low suction pressure in combination with increased system reliability. Performance of the turbopump strongly depends on the performance of the inducer. Thus, for designing a LPRE turbopump, demands optimization of the inducer geometry based on the performance of different off-design operating regimes. In this paper, steady-state CFD analysis of the inducer of a liquid oxygen (LOX) axial pump used as a booster pump for an oxygen rich staged combustion cycle rocket engine has been presented using ANSYS® CFX. Attempts have been made to obtain the performance characteristic curves for the LOX pump inducer. The formalism has been used to predict the performance of the inducer for the throttling range varying from 80% to 113% of nominal thrust and for the different rotational velocities from 4500 to 7500 rpm. The results have been analysed to determine the region of cavitation inception for different inlet pressure.

  1. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket, 1958-2002

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    During its maiden voyage in May 1962, a Centaur upper stage rocket, mated to an Atlas booster, exploded 54 seconds after launch, engulfing the rocket in a huge fireball. Investigation revealed that Centaur's light, stainless-steel tank had split open, spilling its liquid-hydrogen fuel down its sides, where the flame of the rocket exhaust immediately ignited it. Coming less than a year after President Kennedy had made landing human beings on the Moon a national priority, the loss of Centaur was regarded as a serious setback for the National Aeronautics and Space Administration (NASA). During the failure investigation, Homer Newell, Director of Space Sciences, ruefully declared: "Taming liquid hydrogen to the point where expensive operational space missions can be committed to it has turned out to be more difficult than anyone supposed at the outset." After this failure, Centaur critics, led by Wernher von Braun, mounted a campaign to cancel the program. In addition to the unknowns associated with liquid hydrogen, he objected to the unusual design of Centaur. Like the Atlas rocket, Centaur depended on pressure to keep its paper-thin, stainless-steel shell from collapsing. It was literally inflated with its propellants like a football or balloon and needed no internal structure to give it added strength and stability. The so-called "pressure-stabilized structure" of Centaur, coupled with the light weight of its high- energy cryogenic propellants, made Centaur lighter and more powerful than upper stages that used conventional fuel. But, the critics argued, it would never become the reliable rocket that the United States needed.

  2. Hybrid rocket propulsion systems for outer planet exploration missions

    NASA Astrophysics Data System (ADS)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  3. Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems

    NASA Astrophysics Data System (ADS)

    Ryzhkov, V.; Lapshin, E.

    2018-01-01

    The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.

  4. KSC-2010-5768

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket awaits a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, in which all nine Merlin engines will fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Rusty Backer

  5. Performance and heat transfer characteristics of the laser-heated rocket - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.; Larson, V. R.

    1976-01-01

    The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.

  6. High performance dash on warning air mobile, missile system. [intercontinental ballistic missiles - systems analysis

    NASA Technical Reports Server (NTRS)

    Levin, A. D.; Castellano, C. R.; Hague, D. S.

    1975-01-01

    An aircraft-missile system which performs a high acceleration takeoff followed by a supersonic dash to a 'safe' distance from the launch site is presented. Topics considered are: (1) technological feasibility to the dash on warning concept; (2) aircraft and boost trajectory requirements; and (3) partial cost estimates for a fleet of aircraft which provide 200 missiles on airborne alert. Various aircraft boost propulsion systems were studied such as an unstaged cryogenic rocket, an unstaged storable liquid, and a solid rocket staged system. Various wing planforms were also studied. Vehicle gross weights are given. The results indicate that the dash on warning concept will meet expected performance criteria, and can be implemented using existing technology, such as all-aluminum aircraft and existing high-bypass-ratio turbofan engines.

  7. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  8. Development of 90 kgf Class CAMUI Hybrid Rocket for a CanSat Experiment

    NASA Astrophysics Data System (ADS)

    Nagata, Harunori; Uematsu, Tsutomu; Ito, Mitsunori; Kakikura, Akihito; Kaneko, Yudai; Mori, Kazuhiro; Murai, Norikazu; Sato, Tatsuhiro; Mitsuhashi, Ryuichi; Totani, Tsuyoshi

    A newly designed CAMUI hybrid rocket motor of 900 N (90 kgf) thrust class, CAMUI-90, was developed. It uses a combination of polyethylene and liquid oxygen as propellants. CAMUI hybrid rocket is an explosive-flee small rocket motor to realize a small launch system with low cost and flexibility. The motor produces a thrust of 900 N for four seconds, keeping the optimal characteristic exhaust velocity of the fuel-oxidizer combination (exceeding 1800 m/s). A main application of the CAMUI-90 motor is for a CanSat experiment. A launch vehicle employing CAMUI-90 motor, 120 mm in diameter and 3.05 m in length, accelerates a payload of 500 g to 140 m/s in four seconds and reaches to an altitude of about 1 km. The first launch of this vehicle was on December 2006.

  9. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  10. Design criteria monograph for valve components

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Monograph treats valve design technology problems as they were solved in successful development of flightweight operational valves for liquid rocket systems. General practices for cleaning and contamination prevention are summarized. Balance of information is arranged by topic, since detail design requirements apply to most types of valves.

  11. Model of the Ares V Launch System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This is a studio photograph of a model of the Ares V rocket. Named for the Greek god associated with Mars, Ares vehicles will return humans to the moon and later take them to Mars and other destinations. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars, while the Crew will be carried by the Ares I. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  12. Development of the platelet micro-orifice injector. [for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    La Botz, R. J.

    1984-01-01

    For some time to come, liquid rocket engines will continue to provide the primary means of propulsion for space transportation. The injector represents a key to the optimization of engine and system performance. The present investigation is concerned with a unique injector design and fabrication process which has demonstrated performance capabilities beyond that achieved with more conventional approaches. This process, which is called the 'platelet process', makes it feasible to fabricate injectors with a pattern an order of magnitude finer than that obtainable by drilling. The fine pattern leads to an achievement of high combustion efficiencies. Platelet injectors have been identified as one of the significant technology advances contributing to the feasibility of advanced dual-fuel booster engines. Platelet injectors are employed in the Space Shuttle Orbit Maneuvering System (OMS) engines. Attention is given to injector design theory as it relates to pattern fineness, a description of platelet injectors, and test data obtained with three different platelet injectors.

  13. Boundary layer integral matrix procedure: Verification of models

    NASA Technical Reports Server (NTRS)

    Bonnett, W. S.; Evans, R. M.

    1977-01-01

    The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.

  14. Bonded and Sealed External Insulations for Liquid-Hydrogen-Fueled Rocket Tanks During Atmospheric Flight

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Gelder, T. F.; Cochran, R. P.; Goodykoontz, J. H.

    1960-01-01

    Several currently available nonmetallic insulation materials that may be bonded onto liquid-hydrogen tanks and sealed against air penetration into the insulation have been investigated for application to rockets and spacecraft. Experimental data were obtained on the thermal conductivities of various materials in the cryogenic temperature range, as well as on the structural integrity and ablation characteristics of these materials at high temperatures occasioned by aerodynamic heating during atmospheric escape. Of the materials tested, commercial corkboard has the best overall properties for the specific requirements imposed during atmospheric flight of a high-acceleration rocket vehicle.

  15. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  16. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Technical Reports Server (NTRS)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  17. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  18. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up on the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  19. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan assist with preparations to lift and install the Interim Cryogenic Propulsion Stage Umbilical on the tower of the mobile launcher at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  20. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    Construction workers with JP Donovan install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  1. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  2. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    The mobile launcher (ML) tower is lit up before early morning sunrise at NASA's Kennedy Space Center in Florida. Preparations are underway to lift and install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level on the tower. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  3. Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1992-01-01

    Experimental and computational fluid dynamic activities in rocket propulsion were discussed. The workshop was an open meeting of government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  4. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  5. Progress in incompressible Navier-Stokes computations for propulsion flows and its dual-use applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1995-01-01

    Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.

  6. Dynamics of High Pressure Reacting Shear Flows

    DTIC Science & Technology

    2015-10-02

    liquid rockets, future gas turbines • When the combustion systems are for propulsion, limited tankage dictates that on-board propellants be stored in...system dynamics • Combustion dynamics always includes acoustic waves, which in enclosed systems can sometimes reach detrimental amplitudes – eg...a high pressure, chemically reacting, multiphase, acoustically driven, shear flow in the form of a coaxial jet flame • Explore how the presence of

  7. Combustion stability with baffles, absorbers and velocity sensitive combustion. [liquid propellant rocket combustors

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.

    1980-01-01

    Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.

  8. Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system

    NASA Astrophysics Data System (ADS)

    James, Mark D.

    The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.

  9. Space and Missile Systems Center Standard: Test Requirements for Launch, Upper-Stage and Space Vehicles

    DTIC Science & Technology

    2014-09-05

    adiabatic expansion of a perfect gas ; b. Contains a gas or liquid that would endanger personnel or equipment or create a mis- hap if released; or c...Guidelines for Liquid Rocket Engines 31. TOR-2013(3213)-6 Acoustic Testing on Production Space Vehicle (The Value of the Test and Deletion...materials used in space vehicles, interstages, payload adapters, payload fairings, motor cases, nozzles , propellant tanks, and over-wrapped pressure vessels

  10. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Technical Reports Server (NTRS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  11. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  12. Computational analysis of liquid hypergolic propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Krishnan, A.; Przekwas, A. J.; Gross, K. W.

    1992-01-01

    The combustion process in liquid rocket engines depends on a number of complex phenomena such as atomization, vaporization, spray dynamics, mixing, and reaction mechanisms. A computational tool to study their mutual interactions is developed to help analyze these processes with a view of improving existing designs and optimizing future designs of the thrust chamber. The focus of the article is on the analysis of the Variable Thrust Engine for the Orbit Maneuvering Vehicle. This engine uses a hypergolic liquid bipropellant combination of monomethyl hydrazine as fuel and nitrogen tetroxide as oxidizer.

  13. National Rocket Propulsion Materials Plan: A NASA, Department of Defense, and Industry Partnership

    NASA Technical Reports Server (NTRS)

    Clinton, Raymond G., Jr.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA, Department of Defense, and rocket propulsion industry representatives are working together to create a national rocket propulsion materials development roadmap. This "living document" will facilitate collaboration among the partners, leveraging of resources, and will be a highly effective tool for technology development planning. The structuring of the roadmap, and development plan, which will combine the significant efforts of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Program, and NASA's Integrated Space Transportation Plan (ISTP), is being lead by the IHPRPT Materials Working Group (IMWG). The IHPRPT Program is a joint DoD, NASA, and industry effort to dramatically improve the nation's rocket propulsion capabilities. This phased program is structured with increasingly challenging goals focused on performance, reliability, and cost to effectively double rocket propulsion capabilities by 2010. The IHPRPT program is focused on three propulsion application areas: Boost and Orbit Transfer (both liquid rocket engines and solid rocket motors), Tactical, and Spacecraft. Critical to the success of this initiative is the development and application of advanced materials, processes, and manufacturing technologies. NASA's ISTP is a comprehensive strategy focusing on the aggressive safety, reliability, and affordability goals for future space transportation systems established by the agency. Key elements of this plan are the 2 nd and 3 d Generation Reusable Launch Vehicles (RLV). The affordability and safety goals of these generational systems are, respectively, 10X cheaper and 100X safer by 2010, and 100X cheaper and 10,000X safer by 2025. Accomplishment of these goals requires dramatic and sustained breakthroughs, particularly in the development and the application of advanced material systems. The presentation will provide an overview of the IHPRPT materials initiatives, NASA's 2nd and 3 rd Generation RLV propulsion materials projects, and the approach for the development of the national rocket propulsion materials roadmap.

  14. The hard start phenomena in hypergolic engines. Volume 1: Bibliography

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.

  15. Rho-Isp Revisited and Basic Stage Mass Estimating for Launch Vehicle Conceptual Sizing Studies

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2015-01-01

    The ideal rocket equation is manipulated to demonstrate the essential link between propellant density and specific impulse as the two primary stage performance drivers for a launch vehicle. This is illustrated by examining volume-limited stages such as first stages and boosters. This proves to be a good approximation for first-order or Phase A vehicle design studies for solid rocket motors and for liquid stages, except when comparing to hydrogen-fueled stages. A next-order mass model is developed that is able to model the mass differences between hydrogen-fueled and other stages. Propellants considered range in density from liquid methane to inhibited red fuming nitric acid. Calculated comparisons are shown for solid rocket boosters, liquid first stages, liquid upper stages, and a balloon-deployed single-stage-to-orbit concept. The derived relationships are ripe for inclusion in a multi-stage design space exploration and optimization algorithm, as well as for single-parameter comparisons such as those shown herein.

  16. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  17. Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2008-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  18. From Earth to Orbit: An assessment of transportation options

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur

    1992-01-01

    The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.

  19. KSC-2010-5772

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket awaits a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, in which all nine Merlin engines will fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  20. KSC-2010-5774

    NASA Image and Video Library

    2010-12-04

    CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  1. KSC-2010-5775

    NASA Image and Video Library

    2010-12-04

    CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  2. KSC-2010-5776

    NASA Image and Video Library

    2010-12-04

    CAPE CANAVERAL, Fla. -- During a static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station, all nine Merlin engines of the SpaceX Falcon 9 rocket fire at once. The engines use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust. After the test, SpaceX began to conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which ended after the engines fired at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  3. Moving, Moving, Moving- A Giant Rocket Fuel Tank

    NASA Image and Video Library

    2016-10-07

    Technicians moved a giant fuel tank from the Vertical Assembly Center where the tank recently completed friction stir welding to an adjacent work area at NASA's Michoud Assembly Facility in New Orleans. More than 1.7 miles of welds have been completed for core stage hardware at Michoud. This liquid hydrogen fuel tank is the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank is more than 130 feet long, and together with the liquid oxygen tank holds 733,000 gallons of propellant to feed the vehicle's four RS-25 engines to produce a total of 2 million pounds of thrust. SLS will have the power and capacity to carry humans to Mars. For more information on the core stage: http://www.nasa.gov/exploration/syste... Video Credit: NASA/MAF/Eric Bordelon

  4. Illustration of Ares I Launch Vehicle With Call Outs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  5. A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2002-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.

  6. Observation of rocket pollution with overhead sensors

    NASA Astrophysics Data System (ADS)

    Fisher, Annette

    2011-12-01

    The objective of this thesis is to study the dispersal of rocket pollution through remote sensing techniques. Substantial research with remote sensors has been dedicated to observation of volcanic plumes, particulate dispersion, and aircraft contrails with less emphasis on observing rocket launches and the effects on the surrounding environment. This research focuses on observation of rocket exhaust constituents, particularly carbon soot, alumina, and water vapor. The sensors utilized in this thesis have unique capabilities that provide measurements that are likely capable of detecting the rocket exhaust constituents. Methodology and analysis included choosing an appropriate launch vehicle with obtainable launch data and various booster combinations of liquid propellant only or a combination of liquid and solid propellant, prioritizing the data based on launch time versus sensor passing, processing the data, and applying known constituent properties to the data sets where key areas of work in this endeavor. Results of this work demonstrate a unique capability in monitoring man-made pollution and the extent the pollution can spread to surrounding areas.

  7. Possible Impacts of Major Counter Terrorism Security Actions on Research, Development, and Higher Education

    DTIC Science & Technology

    2002-04-08

    purpose is to avert the spread of weapons of mass destruction and missile delivery systems, maintain U.S. advantage in some militarily critical...the Production and Use of Nuclear Material for Military Applications, 3. Missile / missile Technology: Technologies Associated with Air Vehicles And...Unmanned Missile Systems. 4. Aircraft and Missile Propulsion and Vehicular Systems: Technologies Associated With Liquid and Solid Rocket Propulsion

  8. Electrodynamic actuators for rocket engine valves

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  9. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    The mobile launcher (ML) is reflected in the sunglasses of a construction worker with JP Donovan at NASA's Kennedy Space Center in Florida. A crane is lifting the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the ML. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  10. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    A construction worker with JP Donovan helps prepare the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) for installation high up on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  11. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan attach a heavy-lift crane to the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) to prepare for lifting and installation on the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the ML and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  12. Towards Flange-to-Flange Turbopump Simulations for Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Williams, Robert

    2000-01-01

    The primary objective of this research is to support the design of liquid rocket systems for the Advanced Space Transportation System. Since the space launch systems in the near future are likely to rely on liquid rocket engines, increasing the efficiency and reliability of the engine components is an important task. One of the major problems in the liquid rocket engine is to understand fluid dynamics of fuel and oxidizer flows from the fuel tank to plume. Understanding the flow through the entire turbopump geometry through numerical simulation will be of significant value toward design. This will help to improve safety of future space missions. One of the milestones of this effort is to develop, apply and demonstrate the capability and accuracy of 3D CFD methods as efficient design analysis tools on high performance computer platforms. The development of the MPI and MLP versions of the INS3D code is currently underway. The serial version of INS3D code is a multidimensional incompressible Navier-Stokes solver based on overset grid technology. INS3D-MPI is based on the explicit massage-passing interface across processors and is primarily suited for distributed memory systems. INS3D-MLP is based on multi-level parallel method and is suitable for distributed-shared memory systems. For the entire turbopump simulations, moving boundary capability and an efficient time-accurate integration methods are build in the flow solver. To handle the geometric complexity and moving boundary problems, overset grid scheme is incorporated with the solver that new connectivity data will be obtained at each time step. The Chimera overlapped grid scheme allows subdomains move relative to each other, and provides a great flexibility when the boundary movement creates large displacements. The performance of the two time integration schemes for time-accurate computations is investigated. For an unsteady flow which requires small physical time step, the pressure projection method was found to be computationally efficient since it does not require any subiterations procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in our computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive. The current geometry for the LOX boost turbopump has various rotating and stationary components, such as inducer, stators, kicker, hydrolic turbine, where the flow is extremely unsteady. Figure 1 shows the geometry and computed surface pressure of the inducer. The inducer and the hydrolic turbine rotate in different rotational speed.

  13. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  14. Comparison of super-high-energy-propulsion-systems based on metallic hydrogen propellant for ES to LEO space transportation

    NASA Technical Reports Server (NTRS)

    Thierschmann, M.

    1990-01-01

    The application is studied of metallic H2 as a rocket propellant, which contains a specific energy of about 52 kcal/g in theory yielding a maximum specific impulse of 1700 s. With the convincing advantage of having a density 14 times that of conventional liquid H2/liquid O2 propellants, metallic H2 could satisfy the demands of advanced launch vehicle propulsion for the next millennium. Provided that there is an atomic metallic state of H2, and that this state is metastable at ambient pressure, which still is not proven, the results are given of the study of some important areas, which concern the production of metallic H2, the combustion, chamber cooling, and storage. The results show that the use of metallic H2 as rocket propellant could lead to revolutionary changes in space vehicle philosophy toward small size, small weight, and high performance single stage to orbit systems. The use of high metallic H2 mass fractions results in a dramatic reduction of required propellant volume, while gas temperatures in the combustion chamber exceed 5000 K. Furthermore, it follows, that H2 (liquid or slush) is the most favorable candidate as working fluid. Jet generated noise due to high exhaust velocities could be a problem.

  15. The Effect of Rapid Liquid-Phase Reactions on Injector Design and Combustion in Rocket Motors

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W., Jr.; Staudhammer, Peter

    1959-01-01

    Data are presented indicating the rates and magnitudes of energy released by the liquid-phase reactions of various propellant combinations. The data show that this energy release can contribute significantly to the rate of vaporization of the incoming propellants and thus aid the combustion process. Nevertheless, very low performances were obtained in rocket motors with conventional impinging-jet injectors when highly reactive systems such as N104-N2H4, were employed. A possible explanation for this low performance is that the initial reactions of such systems are so rapid that liquid-phase mixing is inhibited. Evidence for such an effect is presented in a series of color photographs of open flames using various injector elements. Based on these studies, some requirements are suggested for injector elements using highly reactive propellants. Experimental results are presented of motor tests using injector elements in which some of these requirements are met through the use of a set of concentric tubes. These tests, carried out at thrust levels of 40 to 800 lb per element, demonstrated combustion efficiencies of up to 98% based on equilibrium characteristic velocity values. Results are also presented for tests made with impinging-jet and splash-plate injectors for comparison.

  16. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  17. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  18. Early Rockets

    NASA Image and Video Library

    1926-03-16

    Dr. Goddard's 1926 rocket configuration. Dr. Goddard's liquid oxygen-gasoline rocket was fired on March 16, 1926, at Auburn, Massachusetts. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  19. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill (Inventor); Trinh, Huu P. (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  20. Liquid boosters for Shuttle?

    NASA Astrophysics Data System (ADS)

    Robertson, Donald F.

    1989-12-01

    The use of liquid rocket boosters (LRBs) for the Space Shuttle is proposed. The advantages LRBs provide are improved flight safety due to the use of four engines instead of two and less environmental pollution than solid rocket boosters because LRBs utilize clean-burning fuels. The LRBs also permit very high launch rates and increased safety in assembly and mating of the Shuttle. Concerns about LRBs such as costs, diameter, support capability, and water recovery are examined.

  1. Optimizing a liquid propellant rocket engine with an automated combustor design code (AUTOCOM)

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Reichel, R. H.; Jones, R. T.; Glatt, C. R.

    1972-01-01

    A procedure for automatically designing a liquid propellant rocket engine combustion chamber in an optimal fashion is outlined. The procedure is contained in a digital computer code, AUTOCOM. The code is applied to an existing engine, and design modifications are generated which provide a substantial potential payload improvement over the existing design. Computer time requirements for this payload improvement were small, approximately four minutes in the CDC 6600 computer.

  2. Liquid rocket booster integration study. Volume 4: Reviews and presentation material

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Liquid rocket booster integration study is presented. Volume 4 contains materials presented at the MSFC/JSC/KSC Integrated Reviews and Working Group Sessions, and the Progress Reviews presented to the KSC Study Manager. The following subject areas are covered: initial impact assessment; conflicts with the on-going STS mission; access to the LRB at the PAD; the activation schedule; transition requirements; cost methodology; cost modelling approach; and initial life cycle cost.

  3. Spray combustion under oscillatory pressure conditions

    NASA Technical Reports Server (NTRS)

    Jacobs, H. R.; Santoro, R. J.

    1991-01-01

    The performance and stability of liquid rocket engines is often argued to be significantly impacted by atomization and droplet vaporization processes. In particular, combustion instability phenomena may result from the interactions between the oscillating pressure field present in the rocket combustor and the fuel and oxidizer injection process. Few studies have been conducted to examine the effects of oscillating pressure fields on spray formation and its evolution under rocket engine conditions. The pressure study is intended to address the need for such studies. In particular, two potentially important phenomena are addressed in the present effort. The first involves the enhancement of the atomization process for a liquid jet subjected to an oscillating pressure field of known frequency and amplitude. The objective of this part of the study is to examine the coupling between the pressure field and or the resulting periodically perturbed velocity field on the breakup of the liquid jet. In particular, transverse mode oscillations are of interest since such modes are considered of primary importance in combustion instability phenomena. The second aspect of the project involves the effects of an oscillating pressure on droplet coagulation and secondary atomization. The objective of this study is to examine the conditions under which phenomena following the atomization process are affected by perturbations to the pressure or velocity fields. Both coagulation and represent a coupling mechanism between the pressure field and the energy release process in rocket combustors. It is precisely this coupling which drives combustion instability phenomena. Consequently, the present effort is intended to provide the fundamental insights needed to evaluate these processes as important mechanisms in liquid rocket instability phenomena.

  4. Parallelization of Rocket Engine System Software (Press)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  5. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  6. Time-Dependent Simulations of Turbopump Flows

    NASA Technical Reports Server (NTRS)

    Kris, Cetin C.; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort will provide developers with information such as transient flow phenomena at start up, impact of non-uniform inflows, system vibration and impact on the structure. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Time-accuracy of the scheme has been evaluated with simple test cases. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  7. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)

  8. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 seconds. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.

  9. Space Launch System Base Heating Test: Experimental Operations & Results

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  10. Measurement of intact-core length of atomizing liquid jets by image deconvolution

    NASA Technical Reports Server (NTRS)

    Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill

    1993-01-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.

  11. Measurement of intact-core length of atomizing liquid jets by image deconvolution

    NASA Astrophysics Data System (ADS)

    Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill

    1993-11-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.

  12. Project SQUID. A Program of Fundamental Research on Liquid Rocket and Pulse Jet Propulsion

    DTIC Science & Technology

    1947-01-01

    However, while the acoustical case can very well be represented by a correspond- ing linear electrical system, no way lias been found to represent...a carbon tube containing the gas to be decomposed thermally will be heated and its tem- perature determined by an optical pyrometer ; by the ojier

  13. National Institute for Rocket Propulsion Systems 2012 Annual Report: A Year of Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Doreswamy, Rajiv; Fry, Emma Kiele

    2013-01-01

    The National Institute for Rocket Propulsion Systems (NIRPS) maintains and advances U.S. leadership in all aspects of rocket propulsion for defense, civil, and commercial uses. The Institute's creation is in response to widely acknowledged concerns about the U.S. rocket propulsion base dating back more than a decade. U.S. leadership in rocket and missile propulsion is threatened by long-term industry downsizing, a shortage of new solid and liquid propulsion programs, limited ability to attract and retain fresh talent, and discretionary federal budget pressures. Numerous trade and independent studies cite erosion of this capability as a threat to national security and the U.S. economy resulting in a loss of global competitiveness for the U.S. propulsion industry. This report covers the period between May 2011 and December 2012, which includes the creation and transition to operations of NIRPS. All subsequent reports will be annual. The year 2012 has been an eventful one for NIRPS. In its first full year, the new team overcame many obstacles and explored opportunities to ensure the institute has a firm foundation for the future. NIRPS is now an active organization making contributions to the development, sustainment, and strategy of the rocket propulsion industry in the United States. This report describes the actions taken by the NIRPS team to determine the strategy, organizational structure, and goals of the Institute. It also highlights key accomplishments, collaborations with other organizations, and the strategic framework for the Institute.

  14. A Comparison of Propulsion Concepts for SSTO Reusable Launchers

    NASA Astrophysics Data System (ADS)

    Varvill, R.; Bond, A.

    This paper discusses the relevant selection criteria for a single stage to orbit (SSTO) propulsion system and then reviews the characteristics of the typical engine types proposed for this role against these criteria. The engine types considered include Hydrogen/Oxygen (H2/O2) rockets, Scramjets, Turbojets, Turborockets and Liquid Air Cycle Engines. In the authors opinion none of the above engines are able to meet all the necessary criteria for an SSTO propulsion system simultaneously. However by selecting appropriate features from each it is possible to synthesise a new class of engines which are specifically optimised for the SSTO role. The resulting engines employ precooling of the airstream and a high internal pressure ratio to enable a relatively conventional high pressure rocket combustion chamber to be utilised in both airbreathing and rocket modes. This results in a significant mass saving with installation advantages which by careful design of the cycle thermodynamics enables the full potential of airbreathing to be realised. The SABRE engine which powers the SKYLON launch vehicle is an example of one of these so called `Precooled hybrid airbreathing rocket engines' and the concep- tual reasoning which leads to its main design parameters are described in the paper.

  15. High-Energy Propellant Rocket Firing at the Rocket Lab

    NASA Image and Video Library

    1955-01-21

    A rocket using high-energy propellant is fired from the Rocket Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Lab was a collection of ten one-story cinderblock test cells located behind earthen barriers at the western edge of the campus. The rocket engines tested there were comparatively small, but the Lewis researchers were able to study different configurations, combustion performance, and injectors and nozzle design. The rockets were generally mounted horizontally and fired, as seen in this photograph of Test Cell No. 22. A group of fuels researchers at Lewis refocused their efforts after World War II in order to explore high energy propellants, combustion, and cooling. Research in these three areas began in 1945 and continued through the 1960s. The group of rocket researches was not elevated to a division branch until 1952. The early NACA Lewis work led to the development of liquid hydrogen as a viable propellant in the late 1950s. Following the 1949 reorganization of the research divisions, the rocket group began working with high-energy propellants such as diborane, pentaborane, and hydrogen. The lightweight fuels offered high levels of energy but were difficult to handle and required large tanks. In late 1954, Lewis researchers studied the combustion characteristics of gaseous hydrogen in a turbojet combustor. Despite poor mixing of the fuel and air, it was found that the hydrogen yielded more than a 90-percent efficiency. Liquid hydrogen became the focus of Lewis researchers for the next 15 years.

  16. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  17. Uncertainty Quantification of Non-linear Oscillation Triggering in a Multi-injector Liquid-propellant Rocket Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Popov, Pavel; Sideris, Athanasios; Sirignano, William

    2014-11-01

    We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.

  18. KSC-2010-5769

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Rusty Backer

  19. Shadowgraphy of transcritical cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Woodward, R. D.; Talley, D. G.; Anderson, T. J.; Winter, M.

    1994-01-01

    The future of liquid-rocket propulsion depends heavily on continued development of high pressure liquid oxygen/hydrogen systems that operate near or above the propellant critical states; however, current understanding of transcritical/supercritical injection and combustion is yet lacking. The Phillips Laboratory and the United Technologies Research Center are involved in a collaborative effort to develop diagnostics for and make detailed measurements of transcritical droplet vaporization and combustion. The present shadowgraph study of transcritical cryogenic fluids is aimed at providing insight into the behavior of liquid oxygen or cryogenic stimulants as they are injected into a supercritical environment of the same or other fluids. A detailed history of transcritical injection of liquid nitrogen into gaseous nitrogen at reduced pressures of 0.63 (subcritical) to 1.05 (supercritical) is provided. Also, critical point enhancement due to gas phase solubility and mixture effects is investigated by adding helium to the nitrogen system, which causes a distinct liquid phase to re-appear at supercritical nitrogen pressures. Liquid oxygen injection into supercritical argon or nitrogen, however, does not indicate an increase in the effective critical pressure of the system.

  20. Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine

    NASA Image and Video Library

    1964-05-21

    Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.

  1. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  2. Early Rockets

    NASA Image and Video Library

    1953-08-30

    U.S. Army Redstone Rocket: The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone rocket was also known as "Old Reliable" because of its many diverse missions. The first Redstone Missile was launched from Cape Canaveral, Florida on August 30, 1953.

  3. Marshall Team Recreates Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  4. Design and Evaluation of Dual-Expander Aerospike Nozzle Upper Stage Engine

    DTIC Science & Technology

    2014-09-18

    Nozzle , taken from Martin [2] . . . . . 19 2.3 Typical Liquid Rocket Engine Cycles from Huzel and Huang[3], credit J. Hall[4] 21 2.4 Liquid Rocket Engine...giving the maximum thrust. For steady, supersonic flow (no separation from the nozzle ) the exit pressure is constant for a given engine plus nozzle ...performance independent of a rocket’s nozzle . Assuming one-dimensional, steady, and isentropic flow of a perfect gas gives the definition for characteristic

  5. KSC-2012-6222

    NASA Image and Video Library

    2012-11-09

    CAPE CANAVERAL, Fla. -- At the Neo Liquid Propellant Testbed inside a facility near Kennedy Space Center’s Shuttle Landing Facility in Florida, engineers and Rocket University project leads Kyle Dixon, left, and Evelyn Orozco-Smith check the buildup of the Neo test fixture and an Injector 71 engine that uses super-cooled propellants. NASA engineers are working on the design and assembly of the Neo Liquid Propellant Testbed as part of the Engineering Directorate’s Rocket University training program. Photo credit: NASA/Frankie Martin

  6. Coolant-side heat-transfer rates for a hydrogen-oxygen rocket and a new technique for data correlation

    NASA Technical Reports Server (NTRS)

    Schacht, R. L.; Quentmeyer, R. J.

    1973-01-01

    An experimental investigation was conducted to determine the coolant-side, heat transfer coefficients for a liquid cooled, hydrogen-oxygen rocket thrust chamber. Heat transfer rates were determined from measurements of local hot gas wall temperature, local coolant temperature, and local coolant pressure. A correlation incorporating an integration technique for the transport properties needed near the pseudocritical temperature of liquid hydrogen gives a satisfactory prediction of hot gas wall temperatures.

  7. Fiberoptic characteristics for extreme operating environments

    NASA Technical Reports Server (NTRS)

    Delcher, R. C.

    1992-01-01

    Fiberoptics could offer several major benefits for cryogenic liquid-fueled rocket engines, including lightning immunity, weight reduction, and the possibility of implementing a number of new measurements for engine condition monitoring. The technical feasibility of using fiberoptics in the severe environments posed by cryogenic liquid-fueled rocket engines was determined. The issues of importance and subsequent requirements for this use of fiberoptics were compiled. These included temperature ranges, moisture embrittlement succeptability, and the ability to withstand extreme shock and vibration levels. Different types of optical fibers were evaluated and several types of optical fibers' ability to withstand use in cryogenic liquid-fueled rocket engines was demonstrated through environmental testing of samples. This testing included: cold-bend testing, moisture embrittlement testing, temperature cycling, temperature extremes testing, vibration testing, and shock testing. Three of five fiber samples withstood the tests to a level proving feasibility, and two of these remained intact in all six of the tests. A fiberoptic bundle was also tested, and completed testing without breakage. Preliminary cabling and harnessing for fiber protection was also demonstrated. According to cable manufacturers, the successful -300 F cold bend, vibration, and shock tests are the first instance of any major fiberoptic cable testing below roughly -55 F. This program has demonstrated the basic technical feasibility of implementing optical fibers on cryogenic liquid-fueled rocket engines, and a development plan is included highlighting requirements and issues for such an implementation.

  8. Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G.

    1998-01-01

    The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new space vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV), are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine has been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.

  9. Tight Fits for Americas Next Moon Rocket, Ares V

    NASA Technical Reports Server (NTRS)

    Jaap, John; Fisher, Wyatt; Richardson, Lea

    2010-01-01

    America has begun the development of a new heavy lift rocket which will enable humans to return to the moon and reach even farther destinations. Five decades ago, the National Aeronautics and Space Administration designed a system (called Saturn/Apollo) to carry men to the moon and back; the rocket which boosted them to the moon was the Saturn V. Saturn V was huge relative to contemporary rockets and is still the largest rocket ever launched. The new moon rocket is called Ares V. It will insert 40% more payload into low earth orbit than Saturn V; and after docking with the crew spacecraft, it will insert 50% more payload onto the translunar trajectory than Saturn V. The current design of Ares V calls for two liquid-fueled stages and 2 "strap-on" solid rockets. The solid rockets are extended-length versions of the solid rockets used on the Shuttle. The diameter of the liquid stages is at least as large as the first stage of the Saturn V; the height of the lower liquid stage (called the core stage) is longer than the external tank of the Shuttle. Huge rockets require huge infrastructure and, during the Saturn/Apollo era, America invested significantly in manufacturing, assembly and launch facilities which are still in use today. Since the Saturn/Apollo era, America has invested in additional infrastructure for the Shuttle program. Ares V must utilize this existing infrastructure, with reasonable modifications. Building a rocket with 50% more capability in the same buildings, testing it in the same test stands, shipping on the same canals under the same bridges, assembling it in the same building, rolling it to the pad on the same crawler, and launching it from the same launch pad is an engineering and logistics challenge which goes hand-in-hand with designing the structure, tanks, turbines, engines, software, etc. necessary to carry such a large payload to earth orbit and to the moon. This paper quantitatively discusses the significant "tight fits" that are constraining Ares V. The engineers designing and building the infrastructure for the Saturn/Apollo program usually added margins and growth capability; sometimes the size of existing facilities (such as the width of a draw bridge) was not a constraint. Ares V may utilize the "extra" space in the existing facilities and expand other tight fits. Some of the tight fits cannot be overcome without great expense; raising the roof on the Vertical Assembly Building for example. Other tight fits are easily overcome; the transporter at the manufacturing facility for the core stage can pass under low ceilings and later over a dike (without dragging the middle) by retracting or extending the struts which support the stage. Tight fits discussed in this paper include manufacturing (jigs, widths, heights, and local transportation), testing (test stand sizes and crane capability), transportation to the test stands and the launch site (barge, waterway, and rail), assembly (VAB internal dimensions and door size), roll-out limits, and launch pad size.

  10. Bipropellant propulsion with reciprocating pumps

    NASA Astrophysics Data System (ADS)

    Whitehead, John C.

    1993-06-01

    A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.

  11. Large-Scale Cryogen Systems and Test Facilities

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  12. Theoretical Performance of Liquid Hydrogen with Liquid Oxygen as a Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; McBride, Bonnie J.

    1959-01-01

    Theoretical rocket performance for both equilibrium and frozen composition during expansion was calculated for the propellant combination liquid hydrogen and liquid oxygen at four chamber pressures (60, 150, 300, and 600 lb/sq in. abs) and a wide range of pressure ratios (1 to 4000) and oxidant-fuel ratios (1.190 to 39.683). Data are given to estimate performance parameters at chamber pressures other than those for which data are tabulated. The parameters included are specific impulse, specific impulse in vacuum, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivatives, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, thermal conductivity, Mach number, and equilibrium gas compositions.

  13. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  14. Optical Mass Gauging System for Measuring Liquid Levels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Sullenberger, Ryan M.; Munoz, Wesley M.; Lyon, Matt P.; Vogel, Kenny; Yalin, Azer P.; Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    A compact and rugged fiber-coupled liquid volume sensor designed for flight on a sounding rocket platform is presented. The sensor consists of a Mach-Zehnder interferometer capable of measuring the amount of liquid contained in a tank under any gravitational conditions, including a microgravity environment, by detecting small changes in the index of refraction of the gas contained within a sensing region. By monitoring changes in the interference fringe pattern as the system undergoes a small compression provided by a piston, the ullage volume of a tank can be directly measured allowing for a determination of the liquid volume. To demonstrate the technique, data are acquired using two tanks containing different volumes of liquid, which are representative of the levels of liquid in a tank at different time periods during a mission. The two tanks are independently exposed to the measurement apparatus, allowing for a determination of the liquid level in each. In a controlled, laboratory test of the unit, the system demonstrated a capability of measuring a liquid level in an individual tank of 10.53 mL with a 2% error. The overall random uncertainty for the flight system is higher than that one test, at +/- 1.5 mL.

  15. The Aquila launch service for small satellites

    NASA Astrophysics Data System (ADS)

    Whittinghill, George R.; McKinney, Bevin C.

    1992-07-01

    The Aquila launch vehicle is described emphasizing its use in the deployment of small satellites for the commercial sector. The Aquila is designed to use a guidance, navigation, and control system, and the rocket is based on hybrid propulsion incorporating a liquid oxidizer with a solid polybutadiene fuel. The launch vehicle for the system is a ground-launched four-stage vehicle that can deliver 3,200 lbs of payload into a 185-km circular orbit at 90-deg inclination. Aquila avionics include inertial navigation, radar transponder, and an S-band telemetry transmitter. The payload environment minimizes in-flight acoustic levels, and the launch-ascent profile is characterized by low acceleration. The launch vehicle uses low-cost rocket motors, a high-performance LO(x) feed system, and erector launch capability which contribute to efficient launches for commercial payloads for low polar earth orbits.

  16. The alleged contributions of Pedro E. Paulet to liquid-propellant rocketry

    NASA Technical Reports Server (NTRS)

    Ordway, F. I., III

    1977-01-01

    The first practical working liquid propellant rocket motor was claimed by Pedro E. Paulet, a South American engineer from Peru (1895). He operated a conical motor, 10 centimeters in diameter, using nitrogen peroxide and gasoline as propellants and measuring thrust up to 90 kilograms, and apparently used spark ignition and intermittent propellant injection. The test device which he used contained elements of later test stands, such as a spring thrust-measuring device. However, he did not publish his work until twenty-five years later. Evidence is examined concerning this only known claim to liquid propellant rocket engine experiments in the nineteenth century.

  17. Prediction of high frequency combustion instability in liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Chen, C. P.; Ziebarth, J. P.; Chen, Y. S.

    1992-01-01

    The present use of a numerical model developed for the prediction of high-frequency combustion stabilities in liquid propellant rocket engines focuses on (1) the overall behavior of nonlinear combustion instabilities (2) the effects of acoustic oscillations on the fuel-droplet vaporization and combustion process in stable and unstable engine operating conditions, oscillating flowfields, and liquid-fuel trajectories during combustion instability, and (3) the effects of such design parameters as inlet boundary conditions, initial spray conditions, and baffle length. The numerical model has yielded predictions of the tangential-mode combustion instability; baffle length and droplet size variations are noted to have significant effects on engine stability.

  18. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  19. Around Marshall

    NASA Image and Video Library

    2006-07-14

    A model of the new Aries I crew launch vehicle, for which NASA is designing, testing and evaluating hardware and related systems, is seen here on display at the Marshall Space Fight Center (MSFC), in Huntsville, Alabama. The Ares I crew launch vehicle is the rocket that will carry a new generation of space explorers into orbit. Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA’s Constellation Program. These transportation systems will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is led by the Exploration Launch Projects Office at NASA’s MFSC. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module and a launch abort system. The launch vehicle’s first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program’s reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. In addition to its primary mission of carrying crews of four to six astronauts to Earth orbit, the launch vehicle’s 25-ton payload capacity might be used for delivering cargo to space, bringing resources and supplies to the International Space Station or dropping payloads off in orbit for retrieval and transport to exploration teams on the moon. Crew transportation to the space station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe.

  20. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study. Amendment 13: Orientation meeting

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics are presented in viewgraph form and include the following: LRB study results summary -- Feb. 1989; LRB study results -- Jan. 1990; Shuttle configuration with booster options; LRB study results -- Sept. 1990; LRB statement of work tasks; ground rules and assumptions; study flow of design, manufacturing/production, and test program/certification; study products; study schedule; and candidate 1.5 stage engine arrangements.

  1. A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  2. Medium Fidelity Simulation of Oxygen Tank Venting

    NASA Technical Reports Server (NTRS)

    Sweet, Adam; Kurien, James; Lau, Sonie (Technical Monitor)

    2001-01-01

    The item to he cleared is a medium-fidelity software simulation model of a vented cryogenic tank. Such tanks are commonly used to transport cryogenic liquids such as liquid oxygen via truck, and have appeared on liquid-fueled rockets for decades. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model generates simulated readings for the tank pressure and temperature as the simulated cryogenic liquid boils off and is vented. Failures (such as a broken vent valve) can be injected into the simulation to produce readings corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated readings. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.

  3. Integrated High Payoff Rocket Propulsion Technology (IHPRPT) SiC Recession Model

    NASA Technical Reports Server (NTRS)

    Opila, E. J.

    2009-01-01

    SiC stability and recession rates were modeled in hydrogen/oxygen combustion environments for the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program. The IHPRPT program is a government and industry program to improve U.S. rocket propulsion systems. Within this program SiC-based ceramic matrix composites are being considered for transpiration cooled injector faceplates or rocket engine thrust chamber liners. Material testing under conditions representative of these environments was conducted at the NASA Glenn Research Center, Cell 22. For the study described herein, SiC degradation was modeled under these Cell 22 test conditions for comparison to actual test results: molar mixture ratio, MR (O2:H2) = 6, material temperatures to 1700 C, combustion gas pressures between 0.34 and 2.10 atm, and gas velocities between 8,000 and 12,000 fps. Recession was calculated assuming rates were controlled by volatility of thermally grown silica limited by gas boundary layer transport. Assumptions for use of this model were explored, including the presence of silica on the SiC surface, laminar gas boundary layer limited volatility, and accuracy of thermochemical data for volatile Si-O-H species. Recession rates were calculated as a function of temperature. It was found that at 1700 C, the highest temperature considered, the calculated recession rates were negligible, about 200 m/h, relative to the expected lifetime of the material. Results compared favorably to testing observations. Other mechanisms contributing to SiC recession are briefly described including consumption of underlying carbon and pitting. A simple expression for liquid flow on the material surface was developed from a one-dimensional treatment of the Navier-Stokes Equation. This relationship is useful to determine under which conditions glassy coatings or thermally grown silica would flow on the material surface, removing protective layers by shear forces. The velocity of liquid flow was found to depend on the gas velocity, the viscosity of gas and liquid, as well as the thickness of the gas boundary layer and the liquid layer. Calculated flow rates of a borosilicate glass coating compared well to flow rates observed for this coating tested on a SiC panel in Cell 22.

  4. Dr. von Braun With German Rocket Experimenters

    NASA Technical Reports Server (NTRS)

    1930-01-01

    Dr. von Braun was among a famous group of rocket experimenters in Germany in the 1930s. This photograph is believed to be made on the occasion of Herman Oberth's Kegelduese liquid rocket engine being certified as to performance during firing. From left to right are R. Nebel, Dr. Ritter, Mr. Baermueller, Kurt Heinish, Herman Oberth, Klaus Riedel, Wernher von Braun, and an unidentified person.

  5. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  6. Experimental determination of the turbulence in a liquid rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Hara, J.; Smith, L. O.; Partus, F. P.

    1972-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity.

  7. Application of Additively Manufactured Components in Rocket Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Calvert, Marty, Jr.; Hanks, Andrew; Schmauch, Preston; Delessio, Steve

    2015-01-01

    The use of additive manufacturing technology has the potential to revolutionize the development of turbopump components in liquid rocket engines. When designing turbomachinery with the additive process there are several benefits and risks that are leveraged relative to a traditional development cycle. This topic explores the details and development of a 90,000 RPM Liquid Hydrogen Turbopump from which 90% of the parts were derived from the additive process. This turbopump was designed, developed and will be tested later this year at Marshall Space Flight Center.

  8. Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Brooks, R. E.

    1980-01-01

    Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.

  9. Low-Cost Propellant Launch to LEO from a Tethered Balloon - 'Propulsion Depots' Not 'Propellant Depots'

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.; Yu, Chi Yau

    2011-01-01

    As we have previously reported, it may be possible to launch payloads into low-Earth orbit (LEO) at a per-kilogram cost that is one to two orders of magnitude lower than current launch systems, using only a relatively small capital investment (comparable to a single large present-day launch). An attractive payload would be large quantities of high-performance chemical rocket propellant (e.g. Liquid Oxygen/Liquid Hydrogen (LO2/LH2)) that would greatly facilitate, if not enable, extensive exploration of the moon, Mars, and beyond.

  10. Additively Manufactured Main Fuel Valve Housing

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.

  11. Propellant Management and Conditioning within the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; McDonald, J. P.; Hedayat, A.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion ystem as been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents analyses of the MPS subsystems used to manage the liquid propellants. These subsystems include the propellant tanks, the tank vent/relief subsystem, and the dump/fill/drain subsystem. Analyses include LOX tank chill and fill time estimates, LOX boil-off estimates, propellant conditioning simulations, and transient propellant dump simulations.

  12. Lox/Gox related failures during Space Shuttle Main Engine development

    NASA Technical Reports Server (NTRS)

    Cataldo, C. E.

    1981-01-01

    Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures were encountered during the development and testing of the space shuttle main engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.

  13. Schlieren image velocimetry measurements in a rocket engine exhaust plume

    NASA Astrophysics Data System (ADS)

    Morales, Rudy; Peguero, Julio; Hargather, Michael

    2017-11-01

    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  14. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 2: a Study of Low Frequency Combustion Instability in Rocket Engine Preburners Using a Heterogeneous Stirred Tank Reactor Model. Final Report M.S. Thesis - Aug. 1987

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.

    1988-01-01

    During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system. To determine possible causes and fixes for the chug, the fuel preburner was modeled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations. Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated.

  15. High speed cryogenic self-acting, shaft seals for liquid rocket turbopumps

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.

    1983-01-01

    Three self acting lift pad liquid oxygen face seals and two self acting gaseous helium circumferential seals for high speed liquid oxygen turbopump were evaluated. The development of a technology for reliable, 10 hour life, multiple start seals for use in high speed liquid oxygen turbopumps is discussed.

  16. X-34 Main Propulsion System-Selected Subsystem Analyses

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; McDonald, J. P.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion System (MPS) has been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents selected analyses of MPS subsystems and components. Topics include the integration of component and system level modeling of the LOX dump subsystem and a simple terminal bubble velocity analysis conducted to guide propellant feed line design.

  17. NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad track to AF Plant 72 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  18. In-situ propellant rocket engines for Mars missions ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When contemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in situ propellants. But 95 pct of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant combination is a candidate for a Martian in situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  19. In-situ propellant rocket engines for Mars mission ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When comtemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the Earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in-situ propellants. But 95 pct. of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant conbination is a candidate for a Martian in-situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  20. KSC-2010-5773

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  1. KSC-2010-5770

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  2. KSC-2010-5771

    NASA Image and Video Library

    2010-12-03

    CAPE CANAVERAL, Fla. -- The SpaceX Falcon 9 rocket static fire test on Space Launch Complex-40 at Cape Canaveral Air Force Station was aborted at T minus 1.1 seconds due to high engine chamber pressure. During the test, all nine Merlin engines, which use rocket-grade kerosene and liquid oxygen to produce 1 million pounds of thrust, are expected to fire at once. After the test, SpaceX will conduct a thorough review of all data as engineers make final preparations for the first launch of the Commercial Orbital Transportation Services (COTS) Dragon spacecraft to low Earth orbit atop the Falcon 9. This first stage firing is part of a full launch dress rehearsal, which will end after the engines fire at full power for two seconds, with only the hold-down system restraining the rocket from flight. Photo credit: NASA/Tony Gray and Kevin O'Connell

  3. Effects of entrained water and strong turbulence on afterburning within solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Gomberg, R. I.; Wilmoth, R. G.

    1978-01-01

    During the first few seconds of the space shuttle trajectory, the solid rocket boosters will be in the proximity of the launch pad. Because of the launch pad structures and the surface of the earth, the turbulent mixing experienced by the exhaust gases will be greatly increased over that for the free flight situation. In addition, a system will be present, designed to protect the lifting vehicle from launch structure vibrations, which will inject quantities of liquid water into the hot plume. The effects of these two phenomena on the temperatures, chemical composition, and flow field present in the afterburning solid rocket motor exhaust plumes of the space shuttle were studied. Results are included from both a computational model of the afterburning and supporting measurements from Titan 3 exhaust plumes taken at Kennedy Space Center with infrared scanned radiometers.

  4. Verification on spray simulation of a pintle injector for liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye

    2016-02-01

    The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.

  5. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  6. Raman Gas Species Measurements in Hydrocarbon-Fueled Rocket Engine Injector Flows

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph; Hartfield, Roy J., Jr.; Trinh, Huu P.; Dobson, Chris C.; Eskridge, Richard H.

    2000-01-01

    Rocket engine propellent injector development at NASA-Marshall includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellent mass transported to Mars for future manned Mars missions. The Raman technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented, as well as a high pressure demonstration in the NASA-Marshall Modular Combustion Test Artice, using the liquid methane-liquid oxygen propellant system

  7. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE PAGES

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    2015-04-20

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  8. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  9. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  10. Examination of the liver in personnel working with liquid rocket propellant

    PubMed Central

    Petersen, Palle; Bredahl, Erik; Lauritsen, Ove; Laursen, Thomas

    1970-01-01

    Petersen, P., Bredahl, E., Lauritsen, O., and Laursen, T. (1970).Brit. J. industr. Med.,27, 141-146. Examination of the liver in personnel working with liquid rocket propellants. Personnel working with liquid rocket propellants were subjected to routine health examinations, including liver function tests, as the propellant, unsymmetrical dimethylhydrazine (UDMH) is potentially toxic to the liver. In 46 persons the concentrations of serum alanine aminotransferase (SGPT) were raised. Liver biopsy was performed in 26 of these men; 6 specimens were pathological (fatty degeneration), 5 were uncertain, and 15 were normal. All 6 pathological biopsies were from patients with a raised SGPT at the time of biopsy. Of the 15 persons with a normal liver biopsy, 14 had a normal SGPT, while one (who was an alcoholic) had a raised SGPT. The connection between SGPT and histology of the liver, as well as the possible causal relation between the pathological findings and exposure to UDMH, is discussed. Images PMID:5428632

  11. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  12. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2006-12-05

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  13. Illustration of Ares V Launch Vehicle With Call Outs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares V with call outs. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I and past Apollo vehicles. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  14. Graphics enhanced computer emulation for improved timing-race and fault tolerance control system analysis. [of Centaur liquid-fuel booster

    NASA Technical Reports Server (NTRS)

    Szatkowski, G. P.

    1983-01-01

    A computer simulation system has been developed for the Space Shuttle's advanced Centaur liquid fuel booster rocket, in order to conduct systems safety verification and flight operations training. This simulation utility is designed to analyze functional system behavior by integrating control avionics with mechanical and fluid elements, and is able to emulate any system operation, from simple relay logic to complex VLSI components, with wire-by-wire detail. A novel graphics data entry system offers a pseudo-wire wrap data base that can be easily updated. Visual subsystem operations can be selected and displayed in color on a six-monitor graphics processor. System timing and fault verification analyses are conducted by injecting component fault modes and min/max timing delays, and then observing system operation through a red line monitor.

  15. Overview of GX launch services by GALEX

    NASA Astrophysics Data System (ADS)

    Sato, Koji; Kondou, Yoshirou

    2006-07-01

    Galaxy Express Corporation (GALEX) is a launch service company in Japan to develop a medium size rocket, GX rocket and to provide commercial launch services for medium/small low Earth orbit (LEO) and Sun synchronous orbit (SSO) payloads with a future potential for small geo-stationary transfer orbit (GTO). It is GALEX's view that small/medium LEO/SSO payloads compose of medium scaled but stable launch market due to the nature of the missions. GX rocket is a two-stage rocket of well flight proven liquid oxygen (LOX)/kerosene booster and LOX/liquid natural gas (LNG) upper stage. This LOX/LNG propulsion under development by Japan's Aerospace Exploration Agency (JAXA), is robust with comparable performance as other propulsions and have future potential for wider application such as exploration programs. GX rocket is being developed through a joint work between the industries and GX rocket is applying a business oriented approach in order to realize competitive launch services for which well flight proven hardware and necessary new technology are to be introduced as much as possible. It is GALEX's goal to offer “Easy Access to Space”, a highly reliable and user-friendly launch services with a competitive price. GX commercial launch will start in Japanese fiscal year (JFY) 2007 2008.

  16. Small Liquid Hydrogen Tank for Drop Tower Tests

    NASA Image and Video Library

    1964-11-21

    A researcher fills a small container used to represent a liquid hydrogen tank in preparation for a microgravity test in the 2.2-Second Drop Tower at the National Aeronautics and Space Administration (NASA) Lewis Research Center. For over a decade, NASA Lewis endeavored to make liquid hydrogen a viable propellant. Hydrogen’s light weight and high energy made it very appealing for rocket propulsion. One of the unknowns at the time was the behavior of fluids in the microgravity of space. Rocket designers needed to know where the propellant would be inside the fuel tank in order to pump it to the engine. NASA Lewis utilized sounding rockets, research aircraft, and the 2.2 Second Drop Tower to study liquids in microgravity. The drop tower, originally built as a fuel distillation tower in 1948, descended into a steep ravine. By early 1961 the facility was converted into an eight-floor, 100-foot tower connected to a shop and laboratory space. Small glass tanks, like this one, were installed in experiment carts with cameras to film the liquid’s behavior during freefall. Thousands of drop tower tests in the early 1960s provided an increased understanding of low-gravity processes and phenomena. The tower only afforded a relatively short experiment time but was sufficient enough that the research could be expanded upon using longer duration freefalls on sounding rockets or aircraft. The results of the early experimental fluid studies verified predictions made by Lewis researchers that the total surface energy would be minimized in microgravity.

  17. Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1992-01-01

    Presented here are 59 abstracts and presentations and three invited presentations given at the Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 28-30, 1992. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed, including a computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  18. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  19. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1

    NASA Technical Reports Server (NTRS)

    Williams, Robert W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of this workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  20. Early Rockets

    NASA Image and Video Library

    1926-03-16

    Dr. Robert H. Goddard and liquid oxygen-gasoline rocket in the frame from which it was fired on March 16, 1926, at Auburn, Mass. It flew for only 2.5 seconds, climbed 41 feet, and landed 184 feet away in a cabbage patch. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets, which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

  1. XLR-11 - X-1 rocket engine display

    NASA Technical Reports Server (NTRS)

    1996-01-01

    What started as a hobby for four rocket fanatics went on to break the sound barrier: Lovell Lawrence, Hugh Franklin Pierce, John Shesta, and Jimmy Wyld the four founders of Reaction Motors, Inc. that built the XLR-11 Rocket Engine. The XLR-11 engine is shown on display in the NASA Exchange Gift Shop, NASA Hugh L. Dryden Flight Research Center at Edwards, California. This engine, familiarly known as Black Betsy, a 4-chamber rocket that ignited diluted ethyl alcohol and liquid oxygen into 6000 pounds or more of thrust powered the X-1 series airplanes.

  2. Injector for liquid fueled rocket engine

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Myers, W. Neill (Inventor); Shadoan, Michael David (Inventor); Sparks, David L. (Inventor)

    2000-01-01

    An injector for liquid fueled rocket engines wherein a generally flat core having a frustoconical dome attached to one side of the core to serve as a manifold for a first liquid, with the core having a generally circular configuration having an axis. The other side of the core has a plurality of concentric annular first slots and a plurality of annular concentric second slots alternating with the first slots, the second slots having a greater depth than said first slots. A bore extends through the core for inletting a second liquid into said core, the bore intersecting the second slots to feed the second liquid into the second slots. The core also has a plurality of first passageways leading from the manifold to the first annular slots for feeding the first liquid into said first slots. A faceplate brazed to said other side of the core is provided with apertures extending from the first and second slots through said face plate, these apertures being positioned to direct fuel and liquid oxygen into contact with each other in the combustion chamber. The first liquid may be liquid oxygen and the second liquid may be kerosene or liquid hydrogen.

  3. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  4. Handling and Use of Fluorine and Fluorine - Oxygen Mixtures in Rocket Systems,

    DTIC Science & Technology

    1967-01-01

    with nitroso rubber, which could normally be expected to burn when exposed to the flow of liquid fluorine. The materials tested included (1) Nitroso...the system free of contamination. Most common metals of construction are compatible for use in a fluorine environment. Metals can burn with fluorine...conditions of contact), fluorinated compounds in their highest state of oxidation, and a few fluorinated polymers. Even these polymers may burn in fluorine

  5. Bistable (latching) solenoid actuated propellant isolation valve

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  6. Performance analysis of vortex based mixers for confined flows

    NASA Astrophysics Data System (ADS)

    Buschhagen, Timo

    The hybrid rocket is still sparsely employed within major space or defense projects due to their relatively poor combustion efficiency and low fuel grain regression rate. Although hybrid rockets can claim advantages in safety, environmental and performance aspects against established solid and liquid propellant systems, the boundary layer combustion process and the diffusion based mixing within a hybrid rocket grain port leaves the core flow unmixed and limits the system performance. One principle used to enhance the mixing of gaseous flows is to induce streamwise vorticity. The counter-rotating vortex pair (CVP) mixer utilizes this principle and introduces two vortices into a confined flow, generating a stirring motion in order to transport near wall media towards the core and vice versa. Recent studies investigated the velocity field introduced by this type of swirler. The current work is evaluating the mixing performance of the CVP concept, by using an experimental setup to simulate an axial primary pipe flow with a radially entering secondary flow. Hereby the primary flow is altered by the CVP swirler unit. The resulting setup therefore emulates a hybrid rocket motor with a cylindrical single port grain. In order to evaluate the mixing performance the secondary flow concentration at the pipe assembly exit is measured, utilizing a pressure-sensitive paint based procedure.

  7. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our understanding of the stratospheric impact of rocket emissions is significantly improved. (4) Such an improved understanding requires a concerted effort of research including new in situ measurements in a variety of rocket plumes and a multi-scale modeling program similar in scope to the effort required to address the climate and ozone impacts of aircraft emissions.

  8. Liquid rocket engine turbines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

  9. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  10. Comparison of the Effects of using Tygon Tubing in Rocket Propulsion Ground Test Pressure Transducer Measurements

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Wiley, John T.; Vitarius, Patrick

    2005-01-01

    This paper documents acoustics environments data collected during liquid oxygen- ethanol hot-fire rocket testing at NASA Marshall Space Flight Center in November- December 2003. The test program was conducted during development testing of the RS-88 development engine thrust chamber assembly in support of the Orbital Space Plane Crew Escape System Propulsion Program Pad Abort Demonstrator. In addition to induced environments analysis support, coincident data collected using other sensors and methods has allowed benchmarking of specific acoustics test measurement methodologies during propulsion tests. Qualitative effects on data characteristics caused by using tygon sense lines of various lengths in pressure transducer measurements is discussed here.

  11. FNAS/summer faculty fellowship research continuation program. Task 6: Integrated model development for liquid fueled rocket propulsion systems. Task 9: Aspects of model-based rocket engine condition monitoring and control

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael; Helmicki, Arthur J.

    1993-01-01

    The objective of Phase I of this research effort was to develop an advanced mathematical-empirical model of SSME steady-state performance. Task 6 of Phase I is to develop component specific modification strategy for baseline case influence coefficient matrices. This report describes the background of SSME performance characteristics and provides a description of the control variable basis of three different gains models. The procedure used to establish influence coefficients for each of these three models is also described. Gains model analysis results are compared to Rocketdyne's power balance model (PBM).

  12. Robotic Manufacturing of 18-ft (5.5m) Diameter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.; Carter, Robert W.

    2012-01-01

    The Ares I rocket was the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's Constellation program. A series of full-scale Ares I development articles were constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7- axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This paper will focus on the friction stir welding of 18-ft (5.5m) diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome and two common bulkhead manufacturing development articles.

  13. Multiple dopant injection system for small rocket engines

    NASA Technical Reports Server (NTRS)

    Sakala, G. G.; Raines, N. G.

    1992-01-01

    The Diagnostics Test Facility (DTF) at NASA's Stennis Space Center (SSC) was designed and built to provide a standard rocket engine exhaust plume for use in the research and development of engine health monitoring instrumentation. A 1000 lb thrust class liquid oxygen (LOX)-gaseous hydrogen (GH2) fueled rocket engine is used as the subscale plume source to simulate the SSME during experimentation and instrument development. The ability of the DTF to provide efficient, and low cost test operations makes it uniquely suited for plume diagnostic experimentation. The most unique feature of the DTF is the Multiple Dopant Injection System (MDIS) that is used to seed the exhaust plume with the desired element or metal alloy. The dopant injection takes place at the fuel injector, yielding a very uniform and homogeneous distribution of the seeding material in the exhaust plume. The MDIS allows during a single test firing of the DTF, the seeding of the exhaust plume with up to three different dopants and also provides distilled water base lines between the dopants. A number of plume diagnostic-related experiments have already utilized the unique capabilities of the DTF.

  14. n/a

    NASA Image and Video Library

    1961-01-01

    The static firing of a Saturn F-1 engine at the Marshall Space Flight Center's Static Test Stand. The F-1 engine is a single-start, 1,5000,000 Lb fixed-thrust, bipropellant rocket system. The engine uses liquid oxygen as the oxidizer and RP-1 (kerosene) as fuel. The five-engine cluster used on the first stage of the Saturn V produces 7,500,000 lbs of thrust.

  15. The Use of Nuclear Propulsion, Power and 'In-Situ' Resources for Routine Lunar Space Transportation and Commercial Base Development

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2003-01-01

    This viewgraph presentation illustrates possible future strategies for solar system exploration supported by Nuclear Thermal Rocket (NTR) Propulsion. Topics addressed in the presentation include: lunar mining, Liquid Oxygen (LOX) augmented NTR (LANTR), 'Shuttle-Derived' Heavy Lift Vehicle (SDHLV) options for future human Lunar missions, and lunar-produced oxygen (LUNOX).

  16. Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)

    NASA Astrophysics Data System (ADS)

    Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.

    2007-12-01

    The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.

  17. Recent Developments in X-Ray Diagnostics for Cryogenic and Optically Dense Coaxial Rocket Sprays

    NASA Technical Reports Server (NTRS)

    Radke, Christopher D.; Kastengren, Alan L.; Meyer, Terrence R.

    2017-01-01

    The mixing and atomization of propellants is often characterized by optically dense flow fields and complex breakup dynamics. In the development of propulsion systems, the complexity of relevant physics and the range of spatio-temporal scales often makes computational simulation impractical for full scale injector elements; consequently, continued research into improved systems for experimental flow diagnostics is ongoing. One area of non-invasive flow diagnostics which has seen widespread growth is using synchrotron based x-ray diagostics. Over the past 3 years, a series of water and cryogenic based experiments were performed at the Advanced Photon Source, Argonne National Lab, on a NASA in-house designed swirl co-axial rocket injector, designed for operation using liquid oxygen and liquid methane in support of Project Morpheus. A range of techniques, such as x-ray fluorescence and time-averaged radiography were performed providing qualitative and quantitative mass and phase distributions, and were complemented by investigations using time-resolved radiography and white beam imaging, which provided information on breakup and mixing dynamics. Results of these investigations are presented, and conclusions regarding the viability of x-ray based diagnostics are discussed.

  18. Space launch systems using oxidizer collection and storage

    NASA Astrophysics Data System (ADS)

    Leingang, John L.; Maurice, Lourdes Q.; Carreiro, Louis R.

    1992-08-01

    A brief historical review of the development of a propulsion fluid system known as ACES (Air Collection and Enrichment System) is presented. The role of the ACES system is to acquire and store liquid oxygen en route to orbit for rocket use beyond the airbreathing envelope. Earth-to-orbit capability is achieved without carrying liquid oxygen from take-off or relying on scramjets. The performance advantages of using ACES is mathematically formulated. Results from a recent vehicle study aimed at comparing ACES and Sanger type (LOX carrying) propulsion schemes are presented. The payload fractions achievable with ACES are shown to be superior to those of Sanger type vehicles and competitive with scramjet-powered space launch vehicles without relying on airbreathing propulsion beyond the speed of conventional turboramjet engines.

  19. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    NASA Technical Reports Server (NTRS)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  20. ARC-1980-AC80-0107-4

    NASA Image and Video Library

    1980-02-06

    Outfitting the Space Shuttle Orbiter Columbia with the three main rocket engines that will boost the 75 ton spacecraft into orbit on its first flight is completed with the installation of Engine #2007 (top). At liftoff, each engine will be producing about 375,000 pounds of thrust, or about 12 million horsepower each, and gulping down its liquid oxygen and liquid hydrogen propellants at a rate of about 1,100 pounts per second. The Shuttle's main engines, the most efficient rocket engines ever built, are reusable and designed t operate over a life span of 55 missions.

  1. J-2X engine

    NASA Image and Video Library

    2012-09-14

    NASA engineers continued to collect test performance data on the new J-2X rocket engine at Stennis Space Center with a 250-second test Sept. 14. The test on the A-2 Test Stand was the 19th in a series of firings to gather critical data for continued development of the engine. The J-2X is being developed by Pratt and Whitney Rocketdyne for NASA's Marshall Space Flight Center in Huntsville, Ala. It is the first liquid oxygen and liquid hydrogen rocket engine rated to carry humans into space to be developed in 40 years.

  2. The prediction of three-dimensional liquid-propellant rocket nozzle admittances

    NASA Technical Reports Server (NTRS)

    Bell, W. A.; Zinn, B. T.

    1973-01-01

    Crocco's three-dimensional nozzle admittance theory is extended to be applicable when the amplitudes of the combustor and nozzle oscillations increase or decrease with time. An analytical procedure and a computer program for determining nozzle admittance values from the extended theory are presented and used to compute the admittances of a family of liquid-propellant rocket nozzles. The calculated results indicate that the nozzle geometry entrance Mach number and temporal decay coefficient significantly affect the nozzle admittance values. The theoretical predictions are shown to be in good agreement with available experimental data.

  3. Quantifying Instability Sources in Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Cheng, Gary C.

    2000-01-01

    Computational fluid dynamics methodology to predict the effects of combusting flows on acoustic pressure oscillations in liquid rocket engines (LREs) is under development. 'Me intent of the investigation is to develop the causal physics of combustion driven acoustic resonances in LREs. The crux of the analysis is the accurate simulation of pressure/density/sound speed in a combustor which when used by the FDNS-RFV CFD code will produce realistic flow phenomena. An analysis of a gas generator considered for the Fastrac engine will be used as a test validation case.

  4. Around Marshall

    NASA Image and Video Library

    2003-07-01

    In honor of the Centernial of Flight celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has also allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. The replica will undergo ground tests at MSFC this summer.

  5. Study of Rapid-Regression Liquefying Hybrid Rocket Fuels

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; DeZilwa, Shane; Karabeyoglu, M. Arif; Cantwell, Brian J.; Castellucci, Paul

    2004-01-01

    A report describes experiments directed toward the development of paraffin-based hybrid rocket fuels that burn at regression rates greater than those of conventional hybrid rocket fuels like hydroxyl-terminated butadiene. The basic approach followed in this development is to use materials such that a hydrodynamically unstable liquid layer forms on the melting surface of a burning fuel body. Entrainment of droplets from the liquid/gas interface can substantially increase the rate of fuel mass transfer, leading to surface regression faster than can be achieved using conventional fuels. The higher regression rate eliminates the need for the complex multi-port grain structures of conventional solid rocket fuels, making it possible to obtain acceptable performance from single-port structures. The high-regression-rate fuels contain no toxic or otherwise hazardous components and can be shipped commercially as non-hazardous commodities. Among the experiments performed on these fuels were scale-up tests using gaseous oxygen. The data from these tests were found to agree with data from small-scale, low-pressure and low-mass-flux laboratory tests and to confirm the expectation that these fuels would burn at high regression rates, chamber pressures, and mass fluxes representative of full-scale rocket motors.

  6. America's first long-range-missile and space exploration program: The ORDCIT project of the Jet Propulsion Laboratory, 1943 - 1946: A memoir

    NASA Technical Reports Server (NTRS)

    Malina, F. J.

    1977-01-01

    Research and achievements of the wartime Jet Propulsion Laboratory are outlined. Accomplishments included development of the solid-propellant Private A and private R rockets and the liquid-propellant nitric acid-aniline WAC Corporal rocket.

  7. Liquid Propulsion: Propellant Feed System Design. Chapter 2.3.11

    NASA Technical Reports Server (NTRS)

    Cannon, James L.

    2010-01-01

    The propellant feed system of a liquid rocket engine determines how the propellants are delivered from the tanks to the thrust chamber. They are generally classified as either pressure fed or pump fed. The pressure-fed system is simple and relies on tank pressures to feed the propellants into the thrust chamber. This type of system is typically used for space propulsion applications and auxiliary propulsion applications requiring low system pressures and small quantities of propellants. In contrast, the pump-fed system is used for high pressure, high performance applications. The selection of one propellant feed system over another is determined based on design trade studies at both the engine and vehicle levels. This chapter first provides a brief overview of the basic configurations of pressure-fed systems. Pump-fed systems are then discussed with greater detail given to the turbomachinery design. Selected design requirements and configurations are provided.

  8. A concept of highly maneuverable experimental space (HIMES) vehicle

    NASA Astrophysics Data System (ADS)

    Nagatomo, M.; Naruo, Y.; Inatani, Y.

    1985-10-01

    The development of a highly maneuverable experimental space (HIMES) vehicle is proposed. This reusable sounding rocket is to be propelled by a liquid hydrogen/LOX engine, and have a maximum payload mass of 500 kg at an altitude of 300 km. The main subsystems of HIMES, the fuselage and wing structure, propulsion, and navigation, guidance, and control system, are described and a diagram is provided. The operational features of HIMES are defined by three mission models. In the first model the vehicle is used as a stable platform of low velocity relative to the environment; model two represents the suborbital flight of sounding rockets, and model three is used for orbital reentry experiments and the testing of a new system of winged space vehicles. Typical mission profiles for the three models are presented. A cost estimation of the HIMES vehicle is given.

  9. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  10. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Construction workers assist as a crane lifts the Core Stage Forward Skirt Umbilical up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  11. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Cranes and rigging are being used to lift up the Core Stage Forward Skirt Umbilical (CSFSU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  12. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    A construction worker welds a metal part during installation of the Core Stage Forward Skirt Umbilical on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  13. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Construction workers assist as a crane lifts the Core Stage Forward Skirt Umbilical into position for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  14. CLV First Stage Design, Development, Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Burt, Richard K.; Brasfield, F.

    2006-01-01

    The Crew Launch Vehicle (CLV) is an integral part of NASA's Exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster first stage derived from the current Space Shuttle SRB, a LOX/hydrogen liquid fueled second stage utilizing a derivative of the Space Shuttle Main Engine (SSME) for propulsion, and a Crew Exploration Vehicle (GEV) composed of Command and Service Modules. This paper deals with current DDT&E planning for the CLV first stage solid rocket booster. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  15. Experimental Study of Ballistic-Missile Base Heating with Operating Rocket

    NASA Technical Reports Server (NTRS)

    Nettle, J. Cary

    1958-01-01

    A rocket of the 1000-pound-thrust class using liquid oxygen and JP-4 fuel as propellant was installed in the Lewis 8- by 6-foot tunnel to permit a controlled study of some of the factors affecting the heating of a rocket-missile base. Temperatures measured in the base region are presented from findings of three motor extension lengths relative to the base. Data are also presented for two combustion efficiency levels in the rocket motor. Temperature as high as 1200 F was measured in the base region because of the ignition of burnable rocket gases. combustibles that are dumped into the base by accessories seriously aggravate the base-burning temperature rise.

  16. Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Farmer, Richard

    2003-01-01

    The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.

  17. Ley, Willy (1906-69)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Rocket scientist, writer, born in Berlin, Germany. Inspired by reading a work by the space pioneer, HERMANN OBERTH, Ley founded the German Society for Space Travel (1927), enrolled WERNHER VON BRAUN, and helped develop the liquid-fuel rocket. Fled to the USA, and became a science writer, including science fiction and film scripts....

  18. Early Rockets

    NASA Image and Video Library

    1950-01-01

    Test firing of a Redstone Missile at Redstone Test Stand in the early 1950's. The Redstone was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the von Braun Team under the management of the U.S. Army. The Redstone was the first major rocket development program in the United States.

  19. The pasty propellant rocket engine development

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. I.; Ivanchenko, A. N.

    1993-06-01

    The paper describes a newly developed pasty propellant rocket engine (PPRE) and the combustion process and presents results of performance tests. It is shown that, compared with liquid propellant rocket engines, the PPREs can regulate the thrust level within a wider range, are safer ecologically, and have better weight characteristics. Compared with solid propellant rocket engines, the PPREs may be produced with lower costs and more safely, are able to regulate thrust performance within a wider range, and are able to offer a greater scope for the variation of the formulation components and propellant characteristics. Diagrams of the PPRE are included.

  20. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  1. Modelling and experimental verification of a water alleviation system for the NASP. [National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James

    1992-01-01

    One possible low speed propulsion system for the National Aerospace Plane is a liquid air cycle engine (LACE). The LACE system uses the heat sink in the liquid hydrogen propellant to liquefy air in a heat exchanger which is then pumped up to high pressure and used as the oxidizer in a hydrogen liquid air rocket. The inlet airstream must be dehumidified or moisture could freeze on the cryogenic heat exchangers and block them. The main objective of this research has been to develop a computer simulation of the cold tube/antifreeze-spray water alleviation system and to verify the model with experimental data. An experimental facility has been built and humid air tests were conducted on a generic heat exchanger to obtain condensing data for code development. The paper describes the experimental setup, outlines the method of calculation used in the code, and presents comparisons of the calculations and measurements. Cause of discrepancies between the model and data are explained.

  2. Academician V.F. Utkin, General Designer of Space Launch Systems

    NASA Astrophysics Data System (ADS)

    Konyukhov, S.; Novykov, O.

    2002-01-01

    Academician Vladimir Fedorovich Utkin was an outstanding scientist and designer of rocket and space machinery, Doctor of Technical Science, Professor, Twice Hero of Socialist Labor, Lenin Prize and USSR State Prize winner, bearer of six Orders of Lenin and many other government awards. For 19 years, 1971 - 1990, V. F. Utkin held a position of General Designer in Yuzhnoye SDO having inherited this post from Academician Mikhail Kuzmich Yangel - Yuhnoye's founder. From 1990 till 2000 V. F. Utkin headed Central Scientific Research Institute of Machinery of Russia (TsNIIMash) as its General Designer. Under leadership of V. F. Utkin Yuzhnoye SDO designed several generations of unique strategic missile systems that laid the foundation for Rocket Strategic Forces of the Soviet Union and Russia, subsequently, developed one of the largest high-performance liquid- propellant ICBM SS-18 (Satan), solid-propellant ICBM SS-24 designed for both silo and rail- road deployment, environment friendly Zenit launch vehicle, delivered more than three hundred military, scientific and environmental satellites with tasks. A series of complicated scientific and technical problems has been resolved, a number of unique designing and technological solutions has been implemented in course of development, e.g. separating and orbital warheads, pop-up launch of heavy missiles from a container, continuous and persistent combat duty of liquid-propellant missiles, missile tolerance to nuclear explosion damage, liberation of vessels from ice captivity in the Arctic Ocean using Cosmos-1500 satellite - ancestor of the Ocean satellite constellation designed for accomplishment of seafaring tasks. The existing Russian Program for Rocket and Space Machinery development was designed under leadership of V.F. Utkin.

  3. Test Planning Approach and Lessons

    NASA Technical Reports Server (NTRS)

    Parkinson, Douglas A.; Brown, Kendall K.

    2004-01-01

    As NASA began technology risk reduction activities and planning for the next generation launch vehicle under the Space Launch Initiative (SLI), now the Next Generation Launch Technology (NGLT) Program, a review of past large liquid rocket engine development programs was performed. The intent of the review was to identify any significant lessons from the development testing programs that could be applied to current and future engine development programs. Because the primary prototype engine in design at the time of this study was the Boeing-Rocketdyne RS-84, the study was slightly biased towards LOX/RP-1 liquid propellant engines. However, the significant lessons identified are universal. It is anticipated that these lessons will serve as a reference for test planning in the Engine Systems Group at Marshall Space Flight Center (MSFC). Towards the end of F-1 and J-2 engine development testing, NASA/MSFC asked Rocketdyne to review those test programs. The result was a document titled, Study to Accelerate Development by Test of a Rocket Engine (R-8099). The "intent (of this study) is to apply this thinking and learning to more efficiently develop rocket engines to high reliability with improved cost effectivenes" Additionally, several other engine programs were reviewed - such as SSME, NSTS, STME, MC-1, and RS-83- to support or refute the R-8099. R-8099 revealed two primary lessons for test planning, which were supported by the other engine development programs. First, engine development programs can benefit from arranging the test program for engine system testing as early as feasible. The best test for determining environments is at the system level, the closest to the operational flight environment. Secondly, the component testing, which tends to be elaborate, should instead be geared towards reducing risk to enable system test. Technical risk can be reduced at the component level, but the design can only be truly verified and validated after engine system testing.

  4. The use of x-ray radiography for measuring mass distributions of Rocket Injectors

    DTIC Science & Technology

    2013-06-01

    successfully applied to diesel injectors , aerated liquid jets and impinging-jet sprays [7-10]. X-ray radiography can be performed using either a...Rocket Injectors 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) S.A. Schumaker, A.L. Kastengren, M.D.A...measurements for injector design. Unfortunately, the mass flow rates typically encountered in rocket engines create sprays with high optical densities

  5. Marshall Team Fires Recreated Goddard Rocket

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In honor of the Centernial of Flight Celebration and commissioned by the American Institute of Aeronautics and Astronautics (AIAA), a team of engineers from Marshall Space Flight Center (MSFC) built a replica of the first liquid-fueled rocket. The original rocket, designed and built by rocket engineering pioneer Robert H. Goddard in 1926, opened the door to modern rocketry. Goddard's rocket reached an altitude of 41 feet while its flight lasted only 2.5 seconds. The Marshall design team's plan was to stay as close as possible to an authentic reconstruction of Goddard's rocket. The same propellants were used - liquid oxygen and gasoline - as available during Goddard's initial testing and firing. The team also tried to construct the replica using the original materials and design to the greatest extent possible. By purposely using less advanced techniques and materials than many that are available today, the team encountered numerous technical challenges in testing the functional hardware. There were no original blueprints or drawings, only photographs and notes. However, this faithful adherence to historical accuracy has allowed the team to experience many of the same challenges Goddard faced 77 years ago, and more fully appreciate the genius of this extraordinary man. In this photo, the replica is shown firing in the A-frame launch stand in near-flight configuration at MSFC's Test Area 116 during the American Institute of Aeronautics and Astronautics 39th Joint Propulsion Conference on July 23, 2003.

  6. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  7. DISK PUMP FEASIBILITY INVESTIGATION,

    DTIC Science & Technology

    system as an inducer and/or mainstage pump for liquid rocket applications. This investigation consisted of the analysis, design, and test of a disk...pumping action is a function of the viscous properties of the pumped fluid. (2) The pump does not require the conventional pump lifting forces. ( 3 ...with no apparent head deterioration. The representative maximum suction specific speed at a 3 % head drop was never reached. The pump demonstrated

  8. Liquid rocket engine combustion stabilization devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.

  9. Selected Topics in Overset Technology Development and Applications At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents a general overview of overset technology development and applications at NASA Ames Research Center. The topics include: 1) Overview of overset activities at NASA Ames; 2) Recent developments in Chimera Grid Tools; 3) A general framework for multiple component dynamics; 4) A general script module for automating liquid rocket sub-systems simulations; and 5) Critical future work.

  10. JPRS Report, Science & Technology, China

    DTIC Science & Technology

    1991-10-22

    ZHONGGUO KEXUE BAO, 30 Aug 91] .......................................... 22 Shanghai Scientist Develops State-of-the-Art Liquid-Crystal Light Valve...the angle of attack will gradu- direction of the final velocity vector of the satellite are ally decrease under the action of aerodynamic moments...impulse and the direction of the thrust vector of the The recovery system, is located inside the sealed reentry retro-rocket engine, errors in the

  11. Handbook of recommended practices for the determination of liquid monopropellant rocket engine performance

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Rogero, R. S.; Baerwald, R. K.

    1979-01-01

    The design, installation, and operation of systems to be used for directly measuring quantities of fundamental importance to the determination of monopropellant thruster performance is described. Areas covered include: (1) force and impulse measurement; (2) propellant mass usage and flow measurement; (3) pressure measurement; (4) temperature measurement; (5) exhaust gas composition measurement; and (6) data reduction and performance determination.

  12. Intelligent transient transitions detection of LRE test bed

    NASA Astrophysics Data System (ADS)

    Zhu, Fengyu; Shen, Zhengguang; Wang, Qi

    2013-01-01

    Health Monitoring Systems is an implementation of monitoring strategies for complex systems whereby avoiding catastrophic failure, extending life and leading to improved asset management. A Health Monitoring Systems generally encompasses intelligence at many levels and sub-systems including sensors, actuators, devices, etc. In this paper, a smart sensor is studied, which is use to detect transient transitions of liquid-propellant rocket engines test bed. In consideration of dramatic changes of variable condition, wavelet decomposition is used to work real time in areas. Contrast to traditional Fourier transform method, the major advantage of adding wavelet analysis is the ability to detect transient transitions as well as obtaining the frequency content using a much smaller data set. Historically, transient transitions were only detected by offline analysis of the data. The methods proposed in this paper provide an opportunity to detect transient transitions automatically as well as many additional data anomalies, and provide improved data-correction and sensor health diagnostic abilities. The developed algorithms have been tested on actual rocket test data.

  13. Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    2003-12-01

    Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.

  14. Airbreathing space boosters using in-flight oxidizer collection

    NASA Astrophysics Data System (ADS)

    Maurice, Lourdes Q.; Leingang, John L.; Carreiro, Louis R.

    1992-07-01

    A condensed historical review of the development of a propulsion fluid system known as ACES (Air Collection and Enrichment System) is presented. The role of the ACES system is to acquire and store liquid oxygen en route to orbit for rocket use beyond the airbreathing envelope. Earth-to-orbit capability is achieved without carrying liquid oxygen from take-off or relying on scramjets. The performance advantages of using ACES is mathematically formulated. Results from a recent vehicle study aimed at comparing ACES and Sanger type (LOX carrying) propulsion schemes are presented. The payload fractions achievable with ACES are shown to be superior to those of Sanger type vehicles and competitive with scramjet-powered space launch vehicles without relying on airbreathing propulsion beyond the speed of conventional turboramjet engines.

  15. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  16. NiAl Coatings Investigated for Use in Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Ghosn, Louis J.; Barrett, Charles A.

    2003-01-01

    As part of its major investment in the area of advanced space transportation, NASA is developing new technologies for use in the second- and third-generation designs of reusable launch vehicles. Among the prototype rocket engines being considered for these launch vehicles are those designed to use liquid hydrogen as the fuel and liquid oxygen as the oxidizer. Advanced copper alloys, such as copper-chromium-niobium (Cu-8(at.%)Cr- 4(at.%)Nb, also referred to as GRCop-84), which was invented at the NASA Glenn Research Center, are being considered for use as liner materials in the combustion chambers and nozzle ramps of these engines. However, previous experience has shown that, in rocket engines using liquid hydrogen and liquid oxygen, copper alloys are subject to a process called blanching, where the material undergoes environmental attack under the action of the combustion gases. In addition, the copper alloy liners undergo thermomechanical fatigue, which often results in an initially square cooling channel deforming into a dog-house shape. Clearly, there is an urgent need to develop new coatings to protect copper liners from environmental attack inside rocket chambers and to lower the temperature of the liners to reduce the probability of deformation and failure by thermomechanical fatigue.

  17. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  18. Enhanced development of a catalyst chamber for the decomposition of up to 1.0 kg/s hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Božić, Ognjan; Porrmann, Dennis; Lancelle, Daniel; May, Stefan

    2016-06-01

    A new innovative hybrid rocket engine concept is developed within the AHRES program of the German Aerospace Center (DLR). This rocket engine based on hydroxyl-terminated polybutadiene (HTPB) with metallic additives as solid fuel and high test peroxide (HTP) as liquid oxidizer. Instead of a conventional ignition system, a catalyst chamber with a silver mesh catalyst is designed to decompose the HTP. The newly modified catalyst chamber is able to decompose up to 1.0 kg/s of 87.5 wt% HTP. Used as a monopropellant thruster, this equals an average thrust of 1600 N. The catalyst chamber is designed using the self-developed software tool SHAKIRA. The applied kinetic law, which determines catalytic decomposition of HTP within the catalyst chamber, is given and commented. Several calculations are carried out to determine the appropriate geometry for complete decomposition with a minimum of catalyst material. A number of tests under steady state conditions are carried out, using 87.5 wt% HTP with different flow rates and a constant amount of catalyst material. To verify the decomposition, the temperature is measured and compared with the theoretical prediction. The experimental results show good agreement with the results generated by the design tool. The developed catalyst chamber provides a simple, reliable ignition system for hybrid rocket propulsion systems based on hydrogen peroxide as oxidizer. This system is capable for multiple reignition. The developed hardware and software can be used to design full scale monopropellant thrusters based on HTP and catalyst chambers for hybrid rocket engines.

  19. Transient combustion in hybrid rockets

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Mustafa Arif

    1998-09-01

    Hybrid rockets regained interest recently as an alternative chemical propulsion system due to their advantages over the solid and liquid systems that are currently in use. Development efforts on hybrids revealed two important problem areas: (1) low frequency instabilities and (2) slow transient response. Both of these are closely related to the transient behavior which is a poorly understood aspect of hybrid operation. This thesis is mainly involved with a theoretical study of transient combustion in hybrid rockets. We follow the methodology of identifying and modeling the subsystems of the motor such as the thermal lags in the solid, boundary layer combustion and chamber gasdynamics from a dynamic point of view. We begin with the thermal lag in the solid which yield the regression rate for any given wall heat flux variation. Interesting phenomena such as overshooting during throttling and the amplification and phase lead regions in the frequency domain are discovered. Later we develop a quasi-steady transient hybrid combustion model supported with time delays for the boundary layer processes. This is integrated with the thermal lag system to obtain the thermal combustion (TC) coupled response. The TC coupled system with positive delays generated low frequency instabilities. The scaling of the instabilities are in good agreement with actual motor test data. Finally, we formulate a gasdynamic model for the hybrid chamber which successfully resolves the filling/emptying and longitudinal acoustic behavior of the motor. The TC coupled system is later integrated to the gasdynamic model to obtain the overall response (TCG coupled system) of gaseous oxidizer motors with stiff feed systems. Low frequency instabilities were also encountered for the TCG coupled system. Apart from the transient investigations, the regression rate behavior of liquefying hybrid propellants such as solid cryogenic materials are also studied. The theory is based on the possibility of enhancement of regression rate by the entrainment mass transfer from a liquid layer formed on the fuel surface. The predicted regression rates are in good agreement with the cryogenic experimental findings obtained recently at Edwards Airforce Base with a frozen pentane and gaseous oxygen system.

  20. Reduced Order Modeling of SLS Liquid Hydrogen Pre-Valve Flow Guide to Enable Rapid Transient Analysis

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Mulder, Andrew

    2017-01-01

    NASA is developing a new launch vehicle, called the Space Launch System (SLS), which is intended on taking humans out of low earth orbit to destinations including the moon, asteroids, and Mars. The propulsion system for the core stage of this vehicle includes four RS-25 Liquid Hydrogen/Oxygen rocket engines. These engines are upgraded versions of the Space Shuttle Main Engines (SSME); the upgrades include higher power levels and affordability enhancements. As with any new vehicle, the Main Propulsion System (MPS), which include the feedlines and ancillary hardware connecting the engines to the fuel and oxidizer tanks, had to be redesigned (figure 1 - export clearance in progress), as the previous MPS for the SSME's was inherently part of the Space Shuttle System, which had a completely different overall configuration.

  1. Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.

  2. VIABILITY OF BACILLUS SUBTILIS SPORES IN ROCKET PROPELLANTS.

    PubMed

    GODDING, R M; LYNCH, V H

    1965-01-01

    The sporicidal activity of components used in liquid and solid rocket propellants was tested by use of spores of Bacillus subtilis dried on powdered glass. Liquid propellant ingredients tested were N(2)O(4), monomethylhydrazine and 1,1-dimethylhydrazine. N(2)O(4) was immediately sporicidal; the hydrazines were effective within several days. Solid propellants consisted of ammonium perchlorate in combination with epoxy resin (EPON 828), tris-1-(2-methyl) aziridinyl phosphine oxide, bis-1-(2-methyl) aziridinyl phenylphosphine oxide, and three modified polybutadiene polymers. There was no indication of appreciable sporicidal activity of these components.

  3. Fabrication of liquid-rocket thrust chambers by electroforming

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Kazaroff, J. M.

    1974-01-01

    Electroforming has proven to be an excellent fabrication method for building liquid rocket regeneratively cooled thrust chambers. NASA sponsored technology programs have investigated both common and advanced methods. Using common procedures, several cooled spool pieces and thrust chambers have been made and successfully tested. The designs were made possible through the versatility of the electroforming procedure, which is not limited to simple geometric shapes. An advanced method of electroforming was used to produce a wire-wrapped, composite, pressure-loaded electroformed structure, which greatly increased the strength of the structure while still retaining the advantages of electroforming.

  4. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 2: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low thrust high performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm and helirotor pump concepts. The centrifugal and gear pumps were carried through detail design and fabrication. After preliminary testing in Freon 12, the centrifugal pump was selected for further testing and development. It was tested in Freon 12 to obtain the hydrodynamic performance. Tests were also conducted in liquid fluorine to demonstrate chemical compatibility.

  5. Viability of Bacillus subtilis Spores in Rocket Propellants

    PubMed Central

    Godding, Rogene M.; Lynch, Victoria H.

    1965-01-01

    The sporicidal activity of components used in liquid and solid rocket propellants was tested by use of spores of Bacillus subtilis dried on powdered glass. Liquid propellant ingredients tested were N2O4, monomethylhydrazine and 1,1-dimethylhydrazine. N2O4 was immediately sporicidal; the hydrazines were effective within several days. Solid propellants consisted of ammonium perchlorate in combination with epoxy resin (EPON 828), tris-1-(2-methyl) aziridinyl phosphine oxide, bis-1-(2-methyl) aziridinyl phenylphosphine oxide, and three modified polybutadiene polymers. There was no indication of appreciable sporicidal activity of these components. PMID:14264838

  6. Quick trips to Mars

    NASA Technical Reports Server (NTRS)

    Hornung, R.

    1991-01-01

    The design of a Mars Mission Vehicle that would have to be launched by two very heavy lift launch vehicles is described along with plans for a mission to Mars. The vehicle has three nuclear engine for rocket vehicle application (NERVA) boosters with a fourth in the center that acts as a dual mode system. The fourth generates electrical power while in route, but it also helps lift the vehicle out of earth orbit. A Mars Ascent Vehicle (MAV), a Mars transfer vehicle stage, and a Mars Excursion Vehicle (MEV) are located on the front end of this vehicle. Other aspects of this research including aerobraking, heat shielding, nuclear thermal rocket engines, a mars mission summary, closed Brayton cycle with and without regeneration, liquid hydrogen propellant storage, etc. are addressed.

  7. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    NASA Technical Reports Server (NTRS)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  8. Propulsion engineering study for small-scale Mars missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J.

    1995-09-12

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardwaremore » mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.« less

  9. Europa Sample Return Mission Utilizing High Specific Impulse Propulsion Refueled with Indigenous Resources

    NASA Astrophysics Data System (ADS)

    Paniagua, J.; Powell, J. R.; Maise, G.

    2002-01-01

    We have conducted studies of a revolutionary new concept for conducting a Europa Sample Return Mission. Robotic spacecraft exploration of the Solar System has been severely constrained by the large energy requirements of interplanetary trajectories and the inherent delta V limitations of chemical rockets. Current missions use gravitational assists from intermediate planets to achieve these high-energy trajectories restricting payload size and increasing flight times. We propose a 6-year Europa Sample Return mission with very modest launch requirements enabled by MITEE. A new nuclear thermal propulsion engine design, termed MITEE (MIniature reacTor EnginE), has over twice the delta V capability of H2/O2 rockets (and much greater when refueled with H2 propellant from indigenous extraterrestrial resources) enabling unique missions that are not feasible with chemical propulsion. The MITEE engine is a compact, ultra-lightweight, thermal nuclear rocket that uses hydrogen as the propellant. MITEE, with its small size (50 cm O.D.), low mass (200 kg), and high specific impulse (~1000 sec), can provide a quantum leap in the capability for space science and exploration missions. The Robotic Europa Explorer (REE) spacecraft has a two-year outbound direct trajectory and lands on the satellite surface for an approximate 9 month stay. During this time, the vehicle is refueled with H2 propellant derived from Europa ice by the Autonomous Propellant Producer (APP), while collecting samples and searching for life. A small nuclear-heated submarine probe, the Autonomous Submarine Vehicle (ASV), based on MITEE technology, would melt through the ice and explore the undersea realm. The spacecraft has approximately a three year return to Earth after departure from Europa with samples onboard. Spacecraft payload is 430 kg at the start of the mission and can be launched with a single, conventional medium-sized Delta III booster. The spacecraft can bring back 25 kg of samples from Europa. Europa, in the Jovian system, is a high priority target for an outer Solar System exploration mission. More than a decade ago the Voyager spacecraft revealed Europa as a world swathed in ice and geologically young. NASA's Galileo spacecraft passed approximately 500 miles above the surface and provided detailed images of Europa's terrain marked by a dynamic topology that appeared to be remnants of ice volcanoes or geysers. The surface temperature averages a chilly -200° C. The pictures appear to show a relatively young surface of ice, possibly only 1 km thick in some places. Internal heating of Europa from Jupiter's tidal pull could form an ocean of liquid water beneath the surface. More recently, Ganymede and Callisto are believed to be ocean-bearing Jovian moons based on magnetometer measurements from the Galileo spacecraft. If liquid water exists, life may also. NASA plans to send an orbiting spacecraft to Europa to measure the thickness of the ice and to detect if an underlying liquid ocean exists. This mission would precede the proposed Europa Sample Return mission, which includes dispatching an autonomous submarine-like vehicle that could melt through the ice and explore the undersea realm. Because of the large energy requirements typical of these ambitious solar system science missions, use of chemical rockets results in interplanetary spacecraft that are prohibitive in terms of Initial Mass in Low- Earth Orbit (IMLEO) and cost. For example, using chemical rockets to return samples from Europa appears to be technically impractical, as it would require large delta V and launch vehicle capabilities. On the other hand, use of nuclear thermal rockets will significantly reduce IMLEO and, subsequently, costs. Moreover, nuclear thermal rockets can utilize extraterrestrial resources as propellants, an option not practical with chemical rockets. This "refueling" capability would enable nuclear rockets to carry out very high-energy missions, such as the return of large amounts of extraterrestrial material to Earth. The Europa missions considered in this proposal will be restricted to starting from LEO only after being placed in a stable orbit by a launch vehicle. This simplifies and eases the safety issues and mitigates political concerns. High propulsive efficiency of the MITEE engine yields the benefits of reduced transit time and a smaller launch vehicle.

  10. Research of the high performance low temperature vortex street flowmeter

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Chen, Yang; Zhang, Zhen-peng; Geng, Wei-guo

    2007-07-01

    Flow measurement is the key method for R&D and operation monitoring of liquid rocket engine. Therefore, it is important to measure flux of low temperature liquid propellants for the liquid hydrogen/liquid oxygen or the liquid oxygen/kerosene rocket engine. Presently in China, the level meter and the turbine flowmeter are usually used in the experimentation of the liquid hydrogen/liquid oxygen rocket engine. The level meter can only scale average flux and the precision of the turbine flowmeter (the measuring wild point is 1.5%) can not be ensured due to the reason which there is not devices of low temperature real-time demarcation in China. Therefore, it is required to research the high performance low temperature flow measurement equipment and the vortex street flowmeter is selected because of its advantages. In the paper, some key techniques of low temperature vortex street flowmeter are researched from the design aspect. Firstly, the basic theoretical research of vortex street flowmeter includes signal detection method, shape of vortex producer and effects of dimension of vertex producer to vortex quality. Secondly, low temperature vortex street flowmeter adopts the method of piezoelectric components stress mode. As for the weakness of phase-change, lattice change and fragility for many piezoelectric materials in low temperature, it can not be fulfilled piezoelectric signal and mechanism performance under this condition. Some piezoelectric materials which can be used in low temperature are illustrated in the paper by lots of research in order for the farther research. The article places emphasis upon low temperature trait of piezoelectric materials, and the structure designs of signal detector and calculation of stress, electric charge quantity and heat transfer.

  11. Prospects for utilization of air liquefaction and enrichment system (ALES) propulsion in fully reusable launch vehicles

    NASA Technical Reports Server (NTRS)

    Bond, W. H.; Yi, A. C.

    1993-01-01

    A concept is shown for a fully reusable, earth to orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high speed acceleration, both using LH2 fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90 percent pure LOX that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to Mach 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. The paper shows an approach and the corresponding technology needs for using ALES propulsion in a SSTO vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  12. Propulsion Estimates for High Energy Lunar Missions Using Future Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.; Bennett, Gary L.

    2016-01-01

    High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 s. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.

  13. Propulsion systems from takeoff to high-speed flight

    NASA Astrophysics Data System (ADS)

    Billig, F. S.

    Potential applications for missiles and aircraft requiring highly efficient engines serve as the basis for discussing new propulsion concepts and novel combinations of existing cycles. Comparisons are made between rocket and airbreathing powered missiles for anti-ballistic and surface-to-air missions. The properties of cryogenic hydrogen are presented to explain the mechanics and limitations of liquid air cycles. Conceptual vehicle designs of a transatmospheric accelerator are introduced to permit examination of the factors that guide the choice of the optimal propulsion system.

  14. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Kopicz, Charles; Bullard, Brad; Michaels, Scott

    2003-01-01

    NASA Marshall Space Flight Center (MSFC) and the U. S. Army are jointly investigating vortex chamber concepts for cryogenic oxygen/hydrocarbon fuel rocket engine applications. One concept, the Impinging Stream Vortex Chamber Concept (ISVC), has been tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RP-1) propellant system is derived from the one for the gel propellant. An unlike impinging injector is employed to deliver the propellants to the chamber. MSFC has also designed two alternative injection schemes, called the chasing injectors, associated with this vortex chamber concept. In these injection techniques, both propellant jets and their impingement point are in the same chamber cross-sectional plane. One injector has a similar orifice size with the original unlike impinging injector. The second chasing injector has small injection orifices. The team has achieved their objectives of demonstrating the self-cooled chamber wall benefits of ISVC and of providing the test data for validating computational fluids dynamics (CFD) models. These models, in turn, will be used to design the optimum vortex chambers in the future.

  15. Photographic Study of Combustion in a Rocket Engine I : Variation in Combustion of Liquid Oxygen and Gasoline with Seven Methods of Propellant Injection

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Humphrey, Jack C

    1948-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound-thrust rocket engine. The engine consisted of thin contour and injection plates clamped between two clear plastic sheets forming a two-dimensional engine with a view of the entire combustion chamber and nozzle. A photographic investigation was made of the effect of seven methods of propellant injection on the uniformity of combustion. From the photographs, it was found that the flame front extended almost to the faces of the injectors with most of the injection methods, all the injection systems resulted in a considerable nonuniformity of combustion, and luminosity rapidly decreased in the divergent part of the nozzle. Pressure vibration records indicated combustion vibrations that approximately corresponded to the resonant frequencies of the length and the thickness of the chamber. The combustion temperature divided by the molecular weight of the combustion gases as determined from the combustion photographs was about 50 to 70 percent of the theoretical value.

  16. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  17. 17. DETAIL, FOURTEENINCH LIQUID OXYGEN BALL VALVE. Looking south southeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL, FOURTEEN-INCH LIQUID OXYGEN BALL VALVE. Looking south southeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  18. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    A crane has been attached to the Core Stage Forward Skirt Umbilical (CSFSU) to lift it up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  19. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Cranes and rigging are being used to lift the Core Stage Forward Skirt Umbilical (CSFSU) into position for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System (SLS) rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  20. Core Stage Forward Skirt Umbilical Installation onto Mobile Laun

    NASA Image and Video Library

    2017-05-25

    Seeming to hang in midair, the Core Stage Forward Skirt Umbilical (CSFSU) is lifted high up by crane for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The CSFSU will be located at about the 180-foot level on the tower, above the liquid oxygen tank. The CSFSU is an umbilical that will swing into position to provide connections to the core stage forward skirt of the SLS rocket, and then swing away before launch. Its main purpose is to provide conditioned air/GN2 to the SLS core stage forward skirt cavity. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  1. Unsteady Turbopump Flow Simulations

    NASA Technical Reports Server (NTRS)

    Centin, Kiris C.; Kwak, Dochan

    2001-01-01

    The objective of the current effort is two-fold: 1) to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine; and 2) to provide high-fidelity unsteady turbopump flow analysis capability to support the design of pump sub-systems for advanced space transportation vehicle. Since the space launch systems in the near future are likely to involve liquid propulsion system, increasing the efficiency and reliability of the turbopump components is an important task. To date, computational tools for design/analysis of turbopump flow are based on relatively lower fidelity methods. Unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available, at least, for real-world engineering applications. Present effort is an attempt to provide this capability so that developers of the vehicle will be able to extract such information as transient flow phenomena for start up, impact of non-uniform inflow, system vibration and impact on the structure. Those quantities are not readily available from simplified design tools. In this presentation, the progress being made toward complete turbo-pump simulation capability for a liquid rocket engine is reported. Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for the performance evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbopump, which contains 106 zones with 34.5 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability and the performance of the parallel versions of the code will be presented.

  2. KSC-2012-4455

    NASA Image and Video Library

    2012-08-14

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a crane is used to load the aft skirt for a space shuttle solid rocket booster on a truck. A twin set of space shuttle solid rocket boosters and an external fuel tank are being prepared for transport to separate museums. The solid rocket boosters, or SRBs, will be displayed at the California Science Center in Los Angeles. The external tank soon will be transported for display at the Wings of Dreams Aviation Museum at Keystone Heights Airport between Gainesville and Jacksonville, Fla. The 149-foot SRBs together provided six million pounds of thrust. The external fuel tank contained over 500,000 gallons of liquid hydrogen and liquid oxygen propellant for the shuttle orbiters' three main engines. The work is part of Transition and Retirement of the space shuttle. For more information, visit http://www.nasa.gov/transition Photo credit: NASA/ Dimitri Gerondidakis

  3. Cold Flow Propulsion Test Complex Pulse Testing

    NASA Technical Reports Server (NTRS)

    McDougal, Kris

    2016-01-01

    When the propellants in a liquid rocket engine burn, the rocket not only launches and moves in space, it causes forces that interact with the vehicle itself. When these interactions occur under specific conditions, the vehicle's structures and components can become unstable. One instability of primary concern is termed pogo (named after the movement of a pogo stick), in which the oscillations (cycling movements) cause large loads, or pressure, against the vehicle, tanks, feedlines, and engine. Marshall Space Flight Center (MSFC) has developed a unique test technology to understand and quantify the complex fluid movements and forces in a liquid rocket engine that contribute strongly to both engine and integrated vehicle performance and stability. This new test technology was established in the MSFC Cold Flow Propulsion Test Complex to allow injection and measurement of scaled propellant flows and measurement of the resulting forces at multiple locations throughout the engine.

  4. Investigation of Cleanliness Verification Techniques for Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Fritzemeier, Marilyn L.; Skowronski, Raymund P.

    1994-01-01

    Oxidizer propellant systems for liquid-fueled rocket engines must meet stringent cleanliness requirements for particulate and nonvolatile residue. These requirements were established to limit residual contaminants which could block small orifices or ignite in the oxidizer system during engine operation. Limiting organic residues in high pressure oxygen systems, such as in the Space Shuttle Main Engine (SSME), is particularly important. The current method of cleanliness verification for the SSME uses an organic solvent flush of the critical hardware surfaces. The solvent is filtered and analyzed for particulate matter followed by gravimetric determination of the nonvolatile residue (NVR) content of the filtered solvent. The organic solvents currently specified for use (1, 1, 1-trichloroethane and CFC-113) are ozone-depleting chemicals slated for elimination by December 1995. A test program is in progress to evaluate alternative methods for cleanliness verification that do not require the use of ozone-depleting chemicals and that minimize or eliminate the use of solvents regulated as hazardous air pollutants or smog precursors. Initial results from the laboratory test program to evaluate aqueous-based methods and organic solvent flush methods for NVR verification are provided and compared with results obtained using the current method. Evaluation of the alternative methods was conducted using a range of contaminants encountered in the manufacture of rocket engine hardware.

  5. Performance of a Small Gas Generator Using Liquid Hydrogen and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Acker, Loren W.; Fenn, David B.; Dietrich, Marshall W.

    1961-01-01

    The performance and operating problems of a small hot-gas generator burning liquid hydrogen with liquid oxygen are presented. Two methods of ignition are discussed. Injector and combustion chamber design details based on rocket design criteria are also given. A carefully fabricated showerhead injector of simple design provided a gas generator that yielded combustion efficiencies of 93 and 96 percent.

  6. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  7. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety, performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key Criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket-engines characteristics. This includes BME impacts on vehicle system weight, performance, design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  8. Hybrid propulsion for launch vehicle boosters: A program status update

    NASA Technical Reports Server (NTRS)

    Carpenter, R. L.; Boardman, T. A.; Claflin, S. E.; Harwell, R. J.

    1995-01-01

    Results obtained in studying the origin and suppression of large-amplitude pressure oscillations in a 24 in. diameter hybrid motor using a liquid oxygen/hydroxylterminated polybutadiene/polycyclopentadiene propellant system are discussed. Tests conducted with liquid oxygen flow rates varying from 10 to 40 lbm/sec were designed to gauge the effectiveness of various vaporization chamber flow fields, injector designs, and levels of heat addition in suppressing high-frequency longitudinal mode oscillations. Longitudinal acoustic modes did not arise in any tests. However, initial testing revealed the presence of high-amplitude, sinusoidal, nonacoustic oscillations persisting throughout the burn durations. Analysis showed this to be analogous to chug mode instability in liquid rocket engines brought about by a coupling of motor combustion processes and the liquid oxygen feed system. Analytical models were developed and verified by test data to predict the amplitude and frequency of feed-system-coupled combustion pressure oscillations. Subsequent testing showed that increasing the feed system impedance eliminated the bulk mode instability. This paper documents the work completed to date in performance of the Hybrid Propulsion Technology for Launch Vehicle Boosters Program (NAS8-39942) sponsored by NASA's George C. Marshall Space Flight Center.

  9. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  10. 16. DETAIL SHOWING LIQUID OXYGEN TANK FOURTEENINCH BALL VALVE. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL SHOWING LIQUID OXYGEN TANK FOURTEEN-INCH BALL VALVE. Looking southwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  11. On the Behavior of a Shear-Coaxial Jet, Spanning Sub- to Supercritical Pressures, with and without an Externally Imposed Transverse Acoustic Field

    DTIC Science & Technology

    2006-05-01

    rocket engines (LRE) have experienced high-frequency combustion instability, which impose an acoustic field in the combustion chamber. The acoustic...Graduate School iii ABSTRACT In the past, liquid rocket engines (LRE) have experienced high-frequency combustion instability, which impose an...49 3.5 Instrumentation

  12. High altitude chemically reacting gas particle mixtures. Volume 2: Program manual for RAMP2. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    All of the elements used in the Reacting and Multi-Phase (RAMP2) computer code are described in detail. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields.

  13. Improved hybrid rocket fuel

    NASA Technical Reports Server (NTRS)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  14. Advanced Small Rocket Chambers. Basic Program and Option 2: Fundamental Processes and Material Evaluation

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.

    1993-01-01

    Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.

  15. The benefits of in-flight LOX collection for airbreathing space boosters

    NASA Astrophysics Data System (ADS)

    Maurice, Lourdes Q.; Leingang, John L.; Carreiro, Louis R.

    1992-12-01

    In-flight LOX collection using a propulsion fluid system known as ACES (Air Collection and Enrichment System) yields large reductions in launch weights of airbreathing space boosters. The role of the ACES system is to acquire and store liquid oxygen en route to orbit for rocket use beyond the airbreathing envelope. Earth-to-orbit capability is achieved without carrying liquid oxygen from take-off or relying on scramjets. The superiority of ACES type space boosters over their LOX-carrying counterparts has been thoroughly documented in the past. This paper extends that work by presenting a direct comparison between single-stage and two-stage ACES and scramjet powered vehicles carrying similar payloads. ACES vehicles are shown to be weight competitive with scramjet powered vehicles, and require airbreathing function only up to Mach 5 to 8.

  16. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  17. SLS Test Stand Site Selection

    NASA Technical Reports Server (NTRS)

    Crowe, Kathryn; Williams, Michael

    2015-01-01

    Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.

  18. High Fidelity Simulation of Transcritical Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Soteriou, Marios

    2017-11-01

    Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.

  19. Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.

    2016-01-01

    This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).

  20. Launch Architecture Impact on Ascent Abort and Crew Survival

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Lawrence, Scott L.

    2006-01-01

    A study was performed to assess the effect of booster configuration on the ascent abort process. A generic abort event sequence was created and booster related risk drivers were identified. Three model boosters were considered in light of the risk drivers: a solid rocket motor configuration, a side mount combination solid and liquid configuration, and a stacked liquid configuration. The primary risk drivers included explosive fireball, overpressure, and fragment effects and booster-crew module re-contact. Risk drivers that were not specifically booster dependent were not addressed. The solid rocket configuration had the most benign influence on an abort while the side mount architecture provided the most challenging abort environment.

Top