Studies on the reactive melt infiltration of silicon and silicon-molybdenum alloys in porous carbon
NASA Technical Reports Server (NTRS)
Singh, M.; Behrendt, D. R.
1992-01-01
Investigations on the reactive melt infiltration of silicon and silicon-1.7 and 3.2 at percent molybdenum alloys into porous carbon preforms have been carried out by process modeling, differential thermal analysis (DTA) and melt infiltration experiments. These results indicate that the initial pore volume fraction of the porous carbon preform is a critical parameter in determining the final composition of the raction-formed silicon carbide and other residual phases. The pore size of the carbon preform is very detrimental to the exotherm temperatures due to liquid silicon-carbon reactions encountered during the reactive melt infiltration process. A possible mechanism for the liquid silicon-porous (glassy) carbon reaction has been proposed. The composition and microstructure of the reaction-formed silicon carbide has been discussed in terms of carbon preform microstructures, infiltration materials, and temperatures.
High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caër, Charles; Le Roux, Xavier; Cassan, Eric, E-mail: eric.cassan@u-psud.fr
We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics.
Reactive melt infiltration of silicon-molybdenum alloys into microporous carbon preforms
NASA Technical Reports Server (NTRS)
Singh, M.; Behrendt, D. R.
1995-01-01
Investigations on the reactive melt infiltration of silicon-1.7 and 3.2 at.% molybdenum alloys into microporous carbon preforms have been carried out by modeling, differential thermal analysis (DTA), and melt infiltration experiments. These results indicate that the pore volume fraction of the carbon preform is a very important parameter in determining the final composition of the reaction-formed silicon carbide and the secondary phases. Various undesirable melt infiltration results, e.g. choking-off, specimen cracking, silicon veins, and lake formation, and their correlation with inadequate preform properties are presented. The liquid silicon-carbon reaction exotherm temperatures are influenced by the pore and carbon particle size of the preform and the compositions of infiltrants. Room temperature flexural strength and fracture toughness of materials made by the silicon-3.2 at.% molybdenum alloy infiltration of medium pore size preforms are also discussed.
Observations on infiltration of silicon carbide compacts with an aluminium alloy
NASA Technical Reports Server (NTRS)
Asthana, R.; Rohatgi, P. K.
1992-01-01
The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.
Reactive Melt Infiltration Of Silicon Into Porous Carbon
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1994-01-01
Report describes study of synthesis of silicon carbide and related ceramics by reactive melt infiltration of silicon and silicon/molybdenum alloys into porous carbon preforms. Reactive melt infiltration has potential for making components in nearly net shape, performed in less time and at lower temperature. Object of study to determine effect of initial pore volume fraction, pore size, and infiltration material on quality of resultant product.
Tunable two-dimensional photonic crystals using liquid crystal infiltration
NASA Astrophysics Data System (ADS)
Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.
2000-01-01
The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.
NASA Technical Reports Server (NTRS)
Behrendt, D. R.; Singh, M.
1993-01-01
For reaction-formed silicon carbide (RFSC) ceramics produced by silicon melt infiltration of porous carbon preforms, equations are developed to relate the amount of residual silicon to the initial carbon density. Also, for a slurry derived preform containing both carbon and silicon powder, equations are derived which relate the amount of residual silicon in the RFSC to the relative density of the carbon in the preform and to the amount of silicon powder added to the slurry. For a porous carbon preform that does not have enough porosity to prevent choking-off of the silicon infiltration, these results show that complete silicon infiltration can occur by adding silicon powder to the slurry mixture used to produce these preforms.
Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms
NASA Technical Reports Server (NTRS)
Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R.
1999-01-01
The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms have been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances, is in qualitative agreement with the closed-form solution of capillarity driven fluid flow through constant cross section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preforms microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore closing phenomenon.
Melt infiltration of silicon carbide compacts. I - Study of infiltration dynamics
NASA Technical Reports Server (NTRS)
Asthana, Rajiv; Rohatgi, Pradeep K.
1992-01-01
Countergravity, pressure-assisted infiltration with a 2014 Al alloy of suitably tamped porous compacts of platelet shaped single crystals of alpha (hexagonal) silicon carbide was used to measure particulate wettability and infiltration kinetics under dynamic conditions relevant to pressure casting of composites. A threshold pressure P(th) for ingression of the infiltrant was identified based on the experimental penetration length versus pressure profiles for a range of experimental variables which included infiltration pressure, infiltration time, SiC size and SiC surface chemistry. The results showed that P(th) decreased whereas the penetration length increased with increasing SiC size and infiltration time. Cu-coated SiC led to lower P(th) and larger penetration lengths compared to uncoated SiC under identical conditions. These observations have been discussed in the light of theoretical models of infiltration and the kinetics of wetting.
Reactive Melt Infiltration of Silicon-Niobium Alloys in Microporous Carbons
NASA Technical Reports Server (NTRS)
Singh, M.; Behrendt, D. R.
1994-01-01
Studies of the reactive melt infiltration of silicon-niobium alloys in microporous carbon preforms prepared by the pyrolysis of a polymer precursor have been carried out using modeling, Differential Thermal Analysis (DTA), and melt infiltration. Mercury porosimetry results indicate a very narrow pore size distribution with virtually all the porosity within the carbon preforms open to infiltrants. The morphology and amount of the residual phases (niobium disilicide and silicon) in the infiltrated material can be tailored according to requirements by careful control of the properties (pore size and pore volume) of the porous carbon preforms and alloy composition. The average room temperature four-point flexural strength of a reaction-formed silicon carbide material (made by the infiltration of medium pore size carbon preform with Si - 5 at. % Nb alloy) is 290 +/- 40 MPa (42 +/- 6 ksi) and the fracture toughness is 3.7 +/- 0.3 MPa square root of m. The flexural strength decreases at high temperatures due to relaxation of residual thermal stresses and the presence of free silicon in the material.
Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Zunjarrao, Suraj C.; Singh, Raman P.
2008-09-01
Ceramic composite pellets consisting of uranium oxide, UO 2, contained within a silicon carbide matrix, were fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, particles of depleted uranium oxide, in the form of U 3O 8, were dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900 °C under a continuous flow of ultra high purity argon. The pyrolysis of AHPCS, at these temperatures, produced near-stoichiometric amorphous silicon carbide ( a-SiC). Multiple polymer infiltration and pyrolysis (PIP) cycles were performed to minimize open porosity and densify the silicon carbide matrix. Analytical characterization was conducted to investigate chemical interaction between U 3O 8 and SiC. It was observed that U 3O 8 reacted with AHPCS during the very first pyrolysis cycle, and was converted to UO 2. As a result, final composition of the material consisted of UO 2 particles contained in an a-SiC matrix. The physical and mechanical properties were also quantified. It is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix.
Study of silicon carbide formation by liquid silicon infiltration of porous carbon structures
NASA Astrophysics Data System (ADS)
Margiotta, Jesse C.
Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making fully dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure followed by conversion of this carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low reactivity and porosity, and cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose:resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800°C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process were studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Such knowledge can be used to further refine the LSI technique. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal
Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids.
Zhang, Haijuan; Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Wu, Jianmin
2017-02-08
A photonic-nose for the detection and discrimination of volatile organic compounds (VOCs) was constructed. Each sensing element on the photonic sensor array was formed by infiltrating a specific type of ionic liquid (IL) into the pore channel of a patterned porous silicon (PSi) chip. Upon exposure to VOC, the density of IL dramatically decreased due to the nano-confinement effect. As a result, the IL located in pore channel expanded its volume and protrude out of the pore channel, leading to the formation of microdroplets on the PSi surface. These VOC-stimulated microdroplets could scatter the light reflected from the PSi rugate filter, thereby producing an optical response to VOC. The intensity of the optical response produced by IL/PSi sensor mainly depends on the size and shape of microdroplets, which is related to the concentration of VOC and the physi-chemical propertied of ILs. For ethanol vapor, the optical response has linear relationship with its relative vapor pressure within 0-60%. The LOD of the IL/PSi sensor for ethanol detection is calculated to be 1.3 ppm. It takes around 30 s to reach a full optical response, while the time for recovery is less than 1 min. In addition, the sensor displayed good stability and reproducibility. Owing to the different molecular interaction between IL and VOC, the ILs/PSi sensor array can generate a unique cross-reactive "fingerprint" in response to a specific type of VOC analyte. With the assistance of image technologies and principle components analysis (PCA), rapid discrimination of VOC analyte could be achieved based on the pattern recognition of photonic sensor array. The technology established in this work allows monitoring in-door air pollution in a visualized way. Copyright © 2016 Elsevier B.V. All rights reserved.
Use of silicon in liquid sintered silicon nitrides and sialons
Raj, R.; Baik, S.
1984-12-11
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.
Use of silicon in liquid sintered silicon nitrides and sialons
Raj, Rishi; Baik, Sunggi
1984-12-11
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.
Modified Process For Formation Of Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1996-01-01
Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.
Correlation effects during liquid infiltration into hydrophobic nanoporous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borman, V. D., E-mail: vdborman@mephi.ru; Belogorlov, A. A.; Byrkin, V. A.
To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement ofmore » filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.« less
NASA Astrophysics Data System (ADS)
Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori
2017-04-01
The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eres, Gyula
Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars"more » (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Liquid phase sintering of silicon carbide
Cutler, R.A.; Virkar, A.V.; Hurford, A.C.
1989-05-09
Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.
Liquid phase sintering of silicon carbide
Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.
1989-01-01
Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.
Use of free silicon in liquid phase sintering of silicon nitrides and sialons
Raj, R.; Baik, S.
1985-11-12
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.
Use of free silicon in liquid phase sintering of silicon nitrides and sialons
Raj, Rishi; Baik, Sunggi
1985-11-12
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.
Diamond-silicon carbide composite and method
Zhao, Yusheng [Los Alamos, NM
2011-06-14
Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.
Dynamics and diffusion mechanism of low-density liquid silicon
Shen, B.; Wang, Z. Y.; Dong, F.; ...
2015-11-05
A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquid–liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themore » classical Stillinger–Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquid–liquid phase transition such as carbon and germanium.« less
Diamond-silicon carbide composite
Qian, Jiang; Zhao, Yusheng
2006-06-13
Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.
Rapid Chemical Vapor Infiltration of Silicon Carbide Minicomposites at Atmospheric Pressure.
Petroski, Kenneth; Poges, Shannon; Monteleone, Chris; Grady, Joseph; Bhatt, Ram; Suib, Steven L
2018-02-07
The chemical vapor infiltration technique is one of the most popular for the fabrication of the matrix portion of a ceramic matrix composite. This work focuses on tailoring an atmospheric pressure deposition of silicon carbide onto carbon fiber tows using the methyltrichlorosilane (CH 3 SiCl 3 ) and H 2 deposition system at atmospheric pressure to create minicomposites faster than low pressure systems. Adjustment of the flow rate of H 2 bubbled through CH 3 SiCl 3 will improve the uniformity of the deposition as well as infiltrate the substrate more completely as the flow rate is decreased. Low pressure depositions conducted at 50 Torr deposit SiC at a rate of approximately 200 nm*h -1 , while the atmospheric pressure system presented has a deposition rate ranging from 750 nm*h -1 to 3.88 μm*h -1 . The minicomposites fabricated in this study had approximate total porosities of 3 and 6% for 10 and 25 SCCM infiltrations, respectively.
System and method for liquid silicon containment
Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul
2013-05-28
This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.
System and method for liquid silicon containment
Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul
2014-06-03
This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.
Microstructure and Mechanical Properties of Reaction-Formed Silicon Carbide (RFSC) Ceramics
NASA Technical Reports Server (NTRS)
Singh, M.; Behrendt, D. R.
1994-01-01
The microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics fabricated by silicon infiltration of porous carbon preforms are discussed. The morphological characterization of the carbon preforms indicates a very narrow pore size distribution. Measurements of the preform density by physical methods and by mercury porosimetry agree very well and indicate that virtually all of the porosity in the preforms is open to infiltrating liquids. The average room temperature flexural strength of the RFSC material with approximately 8 at.% free silicon is 369 +/- 28 MPa (53.5 +/- 4 ksi). The Weibull strength distribution data give a characteristic strength value of 381 MPa (55 ksi) and a Weibull modulus of 14.3. The residual silicon content is lower and the strengths are superior to those of most commercially available reaction-bonded silicon carbide materials.
Thermal reactor. [liquid silicon production from silane gas
NASA Technical Reports Server (NTRS)
Levin, H.; Ford, L. B. (Inventor)
1982-01-01
A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.
Method of making silicon carbide-silicon composite having improved oxidation resistance
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
2002-01-01
A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.
Porous body infiltrating method
Corman, Gregory Scot
2002-01-01
A mixture is formed that comprises at least some to about 10 wt % boron nitride and silicon. A body comprising a component that is wetted by or reacts with silicon is contacted with the mixture and the contacted body is infiltrated with silicon from the mixture.
Silicon deposition in nanopores using a liquid precursor.
Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya
2016-11-22
Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.
Silicon deposition in nanopores using a liquid precursor
NASA Astrophysics Data System (ADS)
Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya
2016-11-01
Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.
Silicon carbide-silicon composite having improved oxidation resistance and method of making
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
1999-01-01
A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.
Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina
2003-01-01
To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition. Copyright 2002 Elsevier Science Ltd.
Diamond-Silicon Carbide Composite And Method For Preparation Thereof
Qian, Jiang; Zhao, Yusheng
2005-09-06
Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.
Injecting 1000 centistoke liquid silicone with ease and precision.
Benedetto, Anthony V; Lewis, Alan T
2003-03-01
Since the Food and Drug Administration approved the use of the 1000 centistoke liquid silicone, Silikon 1000, for intraocular injection, the off-label use of this injectable silicone oil as a permanent soft-tissue filler for facial rejuvenation has increased in the United States. Injecting liquid silicone by the microdroplet technique is the most important preventive measure that one can use to avoid the adverse sequelae of silicone migration and granuloma formation, especially when injecting silicone to improve small facial defects resulting from acne scars, surgical procedures, or photoaging. To introduce an easy method for injecting a viscous silicone oil by the microdroplet technique, using an inexpensive syringe and needle that currently is available from distributors of medical supplies in the United States. We suggest the use of a Becton Dickinson 3/10 cc insulin U-100 syringe to inject Silikon 1000. This syringe contains up to 0.3 mL of fluid, and its barrel is clearly marked with an easy-to-read scale of large cross-hatches. Each cross-hatch marking represents either a unit value of 0.01 mL or a half-unit value of 0.005 mL of fluid, which is the approximate volume preferred when injecting liquid silicone into facial defects. Because not enough negative pressure can be generated in this needle and syringe to draw up the viscous silicone oil, we describe a convenient and easy method for filling this 3/10 cc diabetic syringe with Silikon 1000. We have found that by using the Becton Dickinson 3/10 cc insulin U-100 syringe, our technique of injecting minute amounts of Silikon 1000 is facilitated because each widely spaced cross-hatch on the side of the syringe barrel is easy to read and measures exact amounts of the silicone oil. These lines of the scale on the syringe barrel are so large and clearly marked that it is virtually impossible to overinject the most minute amount of silicone. Sequential microdroplets of 0.01 cc or less of Silikon 1000 can be
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J
2012-09-28
This work demonstrates electron beam induced deposition of silicon from a SiCl(4) liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Electron beam induced deposition of silicon nanostructures from a liquid phase precursor
NASA Astrophysics Data System (ADS)
Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J.
2012-09-01
This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.
Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores.
Wang, Yunqiang; Shao, Ming'an
2009-01-01
The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.
Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites
Corman, Gregory Scot; Luthra, Krishan Lal
2002-01-01
A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.
Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites
Corman, Gregory Scot; Luthra, Krishan Lal
1999-01-01
A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.
Silicon nanowire synthesis by a vapor-liquid-solid approach.
Mao, Aaron; Ng, H T; Nguyen, Pho; McNeil, Melanie; Meyyappan, M
2005-05-01
Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.
Silicon nanowire synthesis by a vapor-liquid-solid approach
NASA Technical Reports Server (NTRS)
Mao, Aaron; Ng, H. T.; Nguyen, Pho; McNeil, Melanie; Meyyappan, M.
2005-01-01
Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.
Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy
Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.
2015-01-01
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096
Local complications after industrial liquid silicone injection: case series.
Mello, Daniel Francisco; Gonçalves, Karen Chicol; Fraga, Murilo F; Perin, Luis Fernando; Helene, Américo
2013-01-01
To analyze a case series of patients who underwent injection of industrial liquid silicone in a clandestine manner and by unauthorized persons. We conducted a retrospective analysis of medical records of patients treated between September 2003 and December 2010. Data regarding gender, age, location and volume of silicone injected, time between application and clinical manifestations, complications, treatment and outcome were collected. Early manifestations were defined as occurring within 30 days of injection and late manifestations, the ones arising after this period. We treated 12 patients, eight were male, seven transsexuals. The volume injected ranged from 5 ml to 2000 ml, being unknown in three cases. The most often used injected sites were the thighs and buttocks. Eight patients had early manifestations, with inflammation and/or infection. Surgical debridement was necessary in five cases. Three patients with a history of injection in the breast region underwent adenomastectomy. There was one death due to refractory septic shock. The use of industrial liquid silicone should be completely contraindicated as a filling material and modification of body contouring, and may have serious complications, even death.
CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma
NASA Astrophysics Data System (ADS)
Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves
2018-03-01
The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.
CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma
NASA Astrophysics Data System (ADS)
Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves
2018-06-01
The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.
Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo
2016-01-26
Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.
NASA Astrophysics Data System (ADS)
Ikedo, Akihito; Kawashima, Takahiro; Kawano, Takeshi; Ishida, Makoto
2009-07-01
Repeated vapor-liquid-solid (VLS) growth with Au and PH3-Si2H6 mixture gas as the growth catalyst and silicon source, respectively, was used to construct n-type silicon/n-type silicon wire arrays of various lengths. Silicon wires of various lengths within an array could be grown by employing second growth over the first VLS grown wire. Additionally, the junction at the interface between the first and the second wires were examined. Current-voltage measurements of the wires exhibited linear behavior with a resistance of 850 Ω, confirming nonelectrical barriers at the junction, while bending tests indicated that the mechanical properties of the wire did not change.
NASA Astrophysics Data System (ADS)
Hilpert, M.
2008-12-01
Infiltration of liquid droplets into dry porous media occurs when rain drops fall onto soil, when accidentally spilling organic liquid (e.g., gasoline and chlorinated solvents) onto ground, or when aerosol pesticides are not intercepted by the vegetation and then released to soils. If harmful chemicals are released from the droplet into the atmosphere through evaporation, it is important to know the time of infiltration. We developed a theory for infiltration, which accounts for a general model for the dynamic contact angle between the droplet and the porous medium as well as contact angle hysteresis. Our theory assumes the droplet to have the shape of a spherical cap and the pressure within the droplet to be uniform. The theory shows that droplet infiltration involves three phases due to contact angle hysteresis: (1) an increasing drawing area (IDA) phase during which the interface between the droplet and the porous medium increases, (2) a constant drawing area (CDA) phase during which the contact line of the droplet remains pinned, and (3) a decreasing drawing area (DDA) phase. We find that infiltration always consists of a cascade process formed by the IDA, CDA, and DDA phases, where the entire process may begin or end in any of the three phases. The entire process is formulated with four nondimensional parameters: three contact angles (initial, advancing, and receding) and a porous permeability parameter that depends on porous medium geometry. The total time of infiltration and the time dependence of drawing area are critically affected by the occurrence of the IDA, CDA, and DDA phases as well as by the permeability. In general, the IDA and DDA phases are described by integro-differential equations. With ordinary differential equations (ODEs), we are able to approximate the IDA phase and to describe exactly infiltration processes that starts out with the CDA or DDA phase.
NASA Astrophysics Data System (ADS)
Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Lowndes, Douglas H.
2003-10-01
We demonstrate the growth of silicon oxide nanowires through a sandwich-like configuration, i.e., Ga ball/Si polyhedrons/silicon oxide nanowires, by using Ga as the catalyst and SiO powder as the source material. The sandwich-like structures have a carrot-like morphology, consisting of three materials with different morphologies, states, and crystallographic structures. The "carrot" top is a liquid Ga ball with diameter of ˜10-30 μm; the middle part is a Si ring usually composed of about 10 μm-sized, clearly faceted, and crystalline Si polyhedrons that are arranged sequentially in a band around the lower hemisphere surface of the Ga ball; the bottom part is a carrot-shaped bunch of highly aligned silicon oxide nanowires that grow out from the downward facing facets of the Si polyhedrons. This study reveals several interesting nanowire growth phenomena that enrich the conventional vapor-liquid-solid nanowire growth mechanism.
Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng
2017-10-25
Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.
Melt-Infiltration Process For SiC Ceramics And Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1994-01-01
Reactive melt infiltration produces silicon carbide-based ceramics and composites faster and more economically than do such processes as chemical vapor infiltration (CVI), reaction sintering, pressureless sintering, hot pressing, and hot isostatic pressing. Process yields dense, strong materials at relatively low cost. Silicon carbide ceramics and composites made by reactive melt infiltration used in combustor liners of jet engines and in nose cones and leading edges of high-speed aircraft and returning spacecraft. In energy industry, materials used in radiant-heater tubes, heat exchangers, heat recuperators, and turbine parts. Materials also well suited to demands of advanced automobile engines.
Liquid argon scintillation read-out with silicon devices
NASA Astrophysics Data System (ADS)
Canci, N.; Cattadori, C.; D'Incecco, M.; Lehnert, B.; Machado, A. A.; Riboldi, S.; Sablone, D.; Segreto, E.; Vignoli, C.
2013-10-01
Silicon photosensors represent a viable alternative to standard photomultipliers in fields such as communications and medical imaging. We explored the interesting possibility of using these sensors in combination with liquid argon (LAr) for astroparticle physics applications such as neutrino, dark matter and double beta decay experiments. In fact, silicon photosensors have detection efficiencies comparable with those of the highest performance PMTs and can be manufactured with high level of radiopurity. In particular within the on-going R&D activity of the SILENT project (Low background and low noise techniques for double beta decay physics funded by ASPERA) a large area SiPM (Silicon PhotoMultiplier - Hamamatsu S11828-3344M - 1.7 cm2 area) has been installed in a LAr scintillation chamber of 0.5 liters volume together with a cryogenic photomultiplier tube (Hamamatsu R11065) used as a reference. The liquid argon chamber has been exposed to many gamma sources of different energies and single photoelectron response and light yield for the SiPM and PMT have been measured and compared. In this contribution the results of the tests, and the ongoing R&D to optimize the SiPM for cryogenic and for ultralow background applications, are reported, as well as the possible application in the GERDA experiment on Double Beta Decay Searches of 76Ge.
The evaporation study of silicon-containing ionic liquid
NASA Astrophysics Data System (ADS)
Chilingarov, Norbert S.; Medvedev, Artem A.; Deyko, Grigoriy S.; Kustov, Leonid M.; Chernikova, Elena A.; Glukhov, Lev M.; Polyakova, Marina V.; Ioutsi, Vitaliy A.; Markov, Vitaliy Yu.; Sidorov, Lev N.
2016-07-01
1,2-Dimethyl-3-(1‧,1‧,3‧,3‧-tetramethyl-3‧-phenyldisiloxanyl)methylimidazolium bis(trifluoromethanesulfonyl)amide ([PhC5OSi2MMIm+][Tf2N-]) is the first silicon-containing ionic liquid which was characterized with the vaporization enthalpy, (138.5 ± 1.8) kJ mol-1, and saturated vapor pressure, ln(p/Pa) = -(16656 ± 219)/(T/K) + (30.69 ± 0.92). This compound is a unique ionic liquid giving ions, retaining both cationic and anionic portions, in the electron impact ionization (EI) mass spectrum.
Density functional theory calculation of refractive indices of liquid-forming silicon oil compounds
NASA Astrophysics Data System (ADS)
Lee, Sanghun; Park, Sung Soo; Hagelberg, Frank
2012-02-01
A combination of quantum chemical calculation and molecular dynamics simulation is applied to compute refractive indices of liquid-forming silicon oils. The densities of these species are obtained from molecular dynamics simulations based on the NPT ensemble while the molecular polarizabilities are evaluated by density functional theory. This procedure is shown to yield results well compatible with available experimental data, suggesting that it represents a robust and economic route for determining the refractive indices of liquid-forming organic complexes containing silicon.
Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism
Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; ...
2014-01-01
Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.
Atomistic simulations of carbon diffusion and segregation in liquid silicon
NASA Astrophysics Data System (ADS)
Luo, Jinping; Alateeqi, Abdullah; Liu, Lijun; Sinno, Talid
2017-12-01
The diffusivity of carbon atoms in liquid silicon and their equilibrium distribution between the silicon melt and crystal phases are key, but unfortunately not precisely known parameters for the global models of silicon solidification processes. In this study, we apply a suite of molecular simulation tools, driven by multiple empirical potential models, to compute diffusion and segregation coefficients of carbon at the silicon melting temperature. We generally find good consistency across the potential model predictions, although some exceptions are identified and discussed. We also find good agreement with the range of available experimental measurements of segregation coefficients. However, the carbon diffusion coefficients we compute are significantly lower than the values typically assumed in continuum models of impurity distribution. Overall, we show that currently available empirical potential models may be useful, at least semi-quantitatively, for studying carbon (and possibly other impurity) transport in silicon solidification, especially if a multi-model approach is taken.
Narins, Rhoda S; Beer, Kenneth
2006-09-01
For over five decades, liquid injectable silicone has been used for soft-tissue augmentation. Its use has engendered polarized reactions from the public and from physicians. Adherents of this product tout its inert chemical structure, ease of use, and low cost. Opponents of silicone cite the many reports of complications, including granulomas, pneumonitis, and disfiguring nodules that are usually the result of large-volume injection and/or industrial grade or adulterated material. Unfortunately, as recently as 2006, reports in The New England Journal of Medicine and The New York Times failed to distinguish between the use of medical grade silicone injected by physicians trained in the microdroplet technique and the use of large volumes of industrial grade products injected by unlicensed or unskilled practitioners. This review separates these two markedly different procedures. In addition, it provides an overview of the chemical structure of liquid injectable silicone, the immunology of silicone reactions within the body, treatment for cosmetic improvement including human immunodeficiency virus lipoatrophy, technical considerations for its injection, complications seen following injections, and some considerations of the future for silicone soft-tissue augmentation.
NASA Astrophysics Data System (ADS)
Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui
2017-07-01
Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10-6 K-1 (α∥) and 6.15 × 10-6 K-1 (α⊥) at the temperature range of 25-700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.
Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R.
1995-01-01
A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.
Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions
NASA Technical Reports Server (NTRS)
Ownby, D. P.; Barsoum, M. W.
1980-01-01
The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.
Silicon surface barrier detectors used for liquid hydrogen density measurement
NASA Technical Reports Server (NTRS)
James, D. T.; Milam, J. K.; Winslett, H. B.
1968-01-01
Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.
Molecular dynamics study of ionic liquid confined in silicon nanopore
NASA Astrophysics Data System (ADS)
Liu, Y. S.; Sha, M. L.; Cai, K. Y.
2017-05-01
Molecular dynamics simulations was carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like silicon nanopore with pore size of 5.5 nm. It is clearly shown that the mass and number densities of the confined ILs are oscillatory, high density layers are also formed in the vicinity of the silicon surface, which indicates the existence of solid-like high density IL layers. The orientational investigation shows that the imidazolium ring of [BMIM] cation lies preferentially flat on the surface of the silicon pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are significantly slower than those observed in bulk systems. Our results suggest that the interactions between the pore walls and the ILs can strongly affect the structural and dynamical properties of the confined ILs.
Pugar, Eloise A.; Morgan, Peter E. D.
1990-01-01
A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N.sub.n H.sub.(n+m) wherein: n=1-4 and m=2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si-N-H intermediate enables chemical pathways to be explored previously unavailable in conventional solid state approaches to silicon-nitrogen ceramics.
Pugar, E.A.; Morgan, P.E.D.
1987-09-15
A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N/sub n/H/sub (n+m)/ wherein: n = 1--4 and m = 2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200--1700/degree/C for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si/endash/N/endash/H intermediate enables chemical pathways to be explored previously unavailable in conventional solid-state approaches to silicon-nitrogen ceramics
An optical microsystem based on vertical silicon-air Bragg mirror for liquid substances monitoring
NASA Astrophysics Data System (ADS)
De Stefano, Luca; Rendina, Ivo; Rea, Ilaria; Rotiroti, Lucia; De Tommasi, Edoardo; Barillaro, Giuseppe
2007-05-01
In this work, an integrated optical microsystems for the continuous detection of flammable liquids has been fabricated and characterized. The proposed system is composed of a the transducer element, which is a vertical silicon/air Bragg mirror fabricated by silicon electrochemical micromachining, sealed with a cover glass anodically bonded on its top. The device has been optically characterized in presence of liquid substances of environmental interest, such as ethanol and isopropanol. The preliminary experimental results are in good agreement with the theoretical calculations and show the possibility to use the device as an optical sensor based on the change of its reflectivity spectrum.
Anomalous behaviors during infiltration into heterogeneous porous media
NASA Astrophysics Data System (ADS)
Aarão Reis, F. D. A.; Bolster, D.; Voller, V. R.
2018-03-01
Flow and transport in heterogeneous porous media often exhibit anomalous behavior. A physical analog example is the uni-directional infiltration of a viscous liquid into a horizontal oriented Hele-Shaw cell containing through thickness flow obstacles; a system designed to mimic a gravel/sand medium with impervious inclusions. When there are no obstacles present or the obstacles form a multi-repeating pattern, the change of the length of infiltration F with time t tends to follow a Fickian like scaling, F ∼t1/2 . In the presence of obstacle fields laid out as Sierpinski carpet fractals, infiltration is anomalous, i.e., F ∼ tn, n ≠ 1/2. Here, we study infiltration into such Hele-Shaw cells. First we investigate infiltration into a square cell containing one fractal carpet and make the observation that it is possible to generate both sub (n < 1/2) and super (n > 1/2) diffusive behaviors within identical heterogeneity configurations. We show that this can be explained in terms of a scaling analysis developed from results of random-walk simulations in fractal obstacles; a result indicating that the nature of the domain boundary controls the exponent n of the resulting anomalous transport. Further, we investigate infiltration into a rectangular cell containing several repeats of a given Sierpinski carpet. At very early times, before the liquid encounters any obstacles, the infiltration is Fickian. When the liquid encounters the first (smallest scale) obstacle the infiltration sharply transitions to sub-diffusive. Subsequently, around the time where the liquid has sampled all of the heterogeneity length scales in the system, there is a rapid transition back to Fickian behavior. An explanation for this second transition is obtained by developing a simplified infiltration model based on the definition of a representative averaged hydraulic conductivity.
Infiltration processing of metal matrix composites using coated ceramic particulates
NASA Astrophysics Data System (ADS)
Leon-Patino, Carlos Alberto
2001-07-01
A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The
Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid
NASA Astrophysics Data System (ADS)
Martineau, F.; Namur, K.; Mallet, J.; Delavoie, F.; Endres, F.; Troyon, M.; Molinari, M.
2009-11-01
The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P1,4) containing SiCl4 as Si source or GeCl4 as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.
Spencer, James M
2010-07-01
Efforts to improve the size and appearance of scars have included therapies as varied as laser treatments and onion extract gels. Silicone gel sheeting is well know to improve the appearance of hypertrophic scars, and may have a role in the management of routine surgical and traumatic scars. By varying the degree of cross linking, silicone elastomer can be a solid sheet or a liquid gel. In this pilot series, seven patients applied a liquid silicone gel twice a day to one half of a new surgical scar for three months. At the end of this time, the treated side was noticeably better in appearance in five of seven patients while two of seven had no difference. In no patient was the silicone treated side worse in appearance.
NASA Astrophysics Data System (ADS)
Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.
2017-09-01
We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices
Liquid-phase-deposited siloxane-based capping layers for silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja
2015-02-02
We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies ofmore » up to 19.8% on p-type Czochralski silicon.« less
Parametric Study of Reactive Melt Infiltration
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Colella, Phillip
2000-01-01
Reactive melt infiltration is viewed as a promising means of achieving near-net shape manufacturing with quick processing time and at low cost. Since the reactants and products are, in general, of varying density, overall conservation of mass dictates that there is a force related to chemical conversion which can directly influence infiltration behavior. In effect, the driving pressure forces may compete with the forces from chemical conversion, affecting the advancement of the front. We have developed a two-dimensional numerical code to examine these effects, using reaction-formed silicon carbide as a model system for this process. We have examined a range of initial porosities, pore radii, and reaction rates in order to investigate their effects on infiltration dynamics.
Brown, M A; Hutchins, T A; Gamsky, C J; Wagner, M S; Page, S H; Marsh, J M
2010-06-01
An approach is described to increase the deposition efficiency of silicone conditioning actives from a shampoo on colour-treated hair via liquid crystal (LC) colloidal structures, created with a high charge density cationic polymer, poly(diallyldimethyl ammonium chloride) and negatively charged surfactants. LCs are materials existing structurally between the solid crystalline and liquid phases, and several techniques, including polarized light microscopy, small angle X-Ray analysis, and differential scanning calorimetry, were used to confirm the presence of the LC structures in the shampoo formula. Silicone deposition from the LC-containing shampoo and a control shampoo was measured on a range of hair substrates, and data from inductively coupled plasma optical emission spectroscopy analysis and ToF-SIMS imaging illustrate the enhancement in silicone deposition for the LC shampoo on all hair types tested, with the most pronounced enhancement occurring on hair that had undergone oxidative treatments, such as colouring. A model is proposed in which the LC structure deposits from the shampoo onto the hair to: (i) provide 'slip planes' along the hair surface for wet conditioning purposes and (ii) form a hydrophobic layer which changes the surface energy of the fibres. This increase in hydrophobicity of the hair surface thereby increases the deposition efficiency of silicone conditioning ingredients. Zeta potential measurements, dynamic absorbency testing analysis and ToF-SIMS imaging were used to better understand the mechanisms of action. This approach to increasing silicone deposition is an improvement relative to conventional conditioning shampoos, especially for colour-treated hair.
Li, Yongmei; Liu, Yan; Zhang, Zutai; Zhuge, Ruishen; Ding, Ning; Tian, Yueming
2018-01-26
Ca-P spots modified zirconia by liquid precursor infiltration and the cell responses were investigated. Pre-sintered zirconia specimens were immersed in Ca-P precursor solution. After dense sintering, scanning electron microscopy showed Ca-P spots were formed on the zirconia and anchored with zirconia substrates. The distribution density was increased with the extension of immersion time. Energy dispersive spectrometer confirmed the stoichiometric Ca/P ratio was about 1.67. After hydrothermal treatment, Ca-P spots turned into rod crystals where diffraction peaks of tricalcium phosphate and hydroxyapatite were detected by X-ray diffraction, and Ca 2+ and PO 4 3- release decreased slightly (p>0.05). There was no significant decrease on three-point bending strength (p>0.05). Osteoblast-like MC3T3-E1 cells attached and spread well and showed higher proliferation on Ca-P spots modified zirconia (p<0.05), though its initial alkaline phosphatase activity was not significant high (p>0.05). In conclusion, Ca-P liquid precursor infiltration is a potential method to modify the zirconia ceramics for improving bioactivity.
Porous Silicon Structures as Optical Gas Sensors.
Levitsky, Igor A
2015-08-14
We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.
Recovering low-turbidity cutting liquid from silicon slurry waste.
Tsai, Tzu-Hsuan; Shih, Yu-Pei
2014-04-30
In order to recover a low-turbidity polyalkylene glycol (PAG) liquid from silicon slurry waste by sedimentation, temperatures were adjusted, and acetone, ethanol or water was used as a diluent. The experimental results show that the particles in the waste would aggregate and settle readily by using water as a diluent. This is because particle surfaces had lower surface potential value and weaker steric stabilization in PAG-water than in PAG-ethanol or PAG-acetone solutions. Therefore, water is the suggested diluent for recovering a low-turbidity PAG (<100 NTU) by sedimentation. After 50 wt.% water-assisted sedimentation for 21 days, the solid content of the upper liquid reduced to 0.122 g/L, and the turbidity decreased to 44 NTU. The obtained upper liquid was then vacuum-distillated to remove water. The final recovered PAG with 0.37 NTU had similar viscosity and density to the unused PAG and could be reused in the cutting process. Copyright © 2014 Elsevier B.V. All rights reserved.
Resin infiltration transfer technique
Miller, David V [Pittsburgh, PA; Baranwal, Rita [Glenshaw, PA
2009-12-08
A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.
Removal of inclusions from silicon
NASA Astrophysics Data System (ADS)
Ciftja, Arjan; Engh, Thorvald Abel; Tangstad, Merete; Kvithyld, Anne; Øvrelid, Eivind Johannes
2009-11-01
The removal of inclusions from molten silicon is necessary to satisfy the purity requirements for solar grade silicon. This paper summarizes two methods that are investigated: (i) settling of the inclusions followed by subsequent directional solidification and (infiltration by ceramic foam filters. Settling of inclusions followed by directional solidification is of industrial importance for production of low-cost solar grade silicon. Filtration is reported as the most efficient method for removal of inclusions from the top-cut silicon scrap.
Silicon web process development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.
1981-01-01
The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.
On the melt infiltration of copper coated silicon carbide with an aluminium alloy
NASA Technical Reports Server (NTRS)
Asthana, R.; Rohatgi, P. K.
1992-01-01
Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.
Zhang, Kai; Wong, Jon W; Begley, Timothy H; Hayward, Douglas G; Limm, William
2012-08-01
A pressurised solvent extraction procedure coupled with a gas chromatography-mass spectrometry-selective ion monitoring (GC-MS-SIM) method was developed to determine three cyclic siloxanes, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6) and three linear siloxanes, octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5), in silicone products. Additionally, two different extraction methods were developed to measure these siloxanes migrating into milk, infant formula and liquid simulants (50 and 95% ethanol in water). The limits of quantification (LOQs) of the six siloxanes ranged from 6 ng/g (L3) to 15 ng/g (D6). Silicone nipples and silicone bakewares were extracted using pressurised solvent extraction (PSE) and analysed using the GC-MS-SIM method. No linear siloxanes were detected in the silicone nipple samples analysed. The three cyclic siloxanes (D4, D5 and D6) were detected in all silicone nipple samples with concentrations ranging from 0.5 to 269 µg/g. In the bakeware samples, except for L3, the other five siloxanes were detected with concentrations ranging from 0.2 µg/g (L4) to 7030 µg/g (D6). To investigate the potential migration of the six siloxanes from silicone nipples to milk and infant formula, a liquid extraction and dispersive clean-up procedure was developed for the two matrices. The procedure used a mix of hexane and ethyl acetate (1 : 1, v/v) as extraction solvent and C₁₈ powder as the dispersive clean-up sorbent. For the liquid simulants, extraction of the siloxanes was achieved using hexane without any salting out or clean-up procedures. The recoveries of the six siloxanes from the milk, infant formula and simulants fortified at 50, 100, 200, 500 and 1000 µg/l ranged from 70 to 120% with a relative standard derivation (RSD) of less than 15% (n = 4). Migration tests were performed by exposing milk, infant formula and the liquid
Method of producing silicon. [gas phase reactor multiple injector liquid feed system
NASA Technical Reports Server (NTRS)
Wolf, C. B.; Meyer, T. N. (Inventor)
1980-01-01
A liquid reactant injector assembly suited for the injection of liquid reactant into a high temperature metal reductant vapor and carrier gas stream for the production of metal is presented. The assembly is especially adapted for the continuous production of high purity silicon by the reduction of SiCl4 with sodium. The assembly includes a refractory-lined, hollow metal shell having ten equally-spaced, concentric, radially directed ports provided in the shell and wall. A hydraulic, atomizing type spray nozzle is mounted in each of the ports recessed from the inner wall surface.
Porous Silicon Structures as Optical Gas Sensors
Levitsky, Igor A.
2015-01-01
We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed. PMID:26287199
Silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
2001-01-01
This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
Development of refractory armored silicon carbide by infrared transient liquid phase processing
NASA Astrophysics Data System (ADS)
Hinoki, Tatsuya; Snead, Lance L.; Blue, Craig A.
2005-12-01
Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m 2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m 2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.
Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P
2007-08-01
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.
Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting
NASA Astrophysics Data System (ADS)
Zhang, Shaoda; Wang, Qiangqiang; He, Shengping; Wang, Qian
2018-04-01
Consistent and uniform lubrication of the solidifying shell, especially in the meniscus, is crucial for the smooth continuous casting operation and production of strands free of surface defects. Thus, the current study established a coupled model to study the inflow behavior of liquid slag to the mold-strand channel, taking the solidification of steel and slag and the periodic oscillation of mold into account. The difficulties and solutions for the simulation were described in detail. The predicted profiles of the slag rim and initial shell were in good agreement with the reports. The main results indicated that liquid slag could be squeezed out and back into the slag pool in a negative strip period while a large amount of liquid slag could infiltrate into the mold-strand channel. Thus, the amount of slag consumed in the negative strip period was relatively small compared with that in the positive strip period. The predicted variation of slag consumption during mold oscillation was periodic, and the average value was 0.274 kg/m2, which agreed well with the slag consumption in industrial practice. The current model can predict and optimize the oscillation parameters aiming at stable lubrication conditions.
Kumeria, Tushar; Wang, Joanna; Chan, Nicole; Harris, Todd J; Sailor, Michael J
2018-01-26
A porous photonic crystal is integrated with a plastic medical fixture (IV connector hub) to provide a visual colorimetric sensor to indicate the presence or absence of alcohol used to sterilize the fixture. The photonic crystal is prepared in porous silicon (pSi) by electrochemical anodization of single crystal silicon, and the porosity and the stop band of the material is engineered such that the integrated device visibly changes color (green to red or blue to green) when infiltrated with alcohol. Two types of self-reporting devices are prepared and their performance compared: the first type involves heat-assisted fusion of a freestanding pSi photonic crystal to the connector end of a preformed polycarbonate hub, forming a composite where the unfilled portion of the pSi film acts as the sensor; the second involves generation of an all-polymer replica of the pSi photonic crystal by complete thermal infiltration of the pSi film and subsequent chemical dissolution of the pSi portion. Both types of sensors visibly change color when wetted with alcohol, and the color reverts to the original upon evaporation of the liquid. The sensor performance is verified using E. coli-infected samples.
NASA Astrophysics Data System (ADS)
Assael, Marc J.; Armyra, Ivi J.; Brillo, Juergen; Stankus, Sergei V.; Wu, Jiangtao; Wakeham, William A.
2012-09-01
The available experimental data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc have been critically examined with the intention of establishing both a density and a viscosity standard. All experimental data have been categorized into primary and secondary data according to the quality of measurement, the technique employed and the presentation of the data, as specified by a series of criteria. The proposed standard reference correlations for the density of liquid cadmium, cobalt, gallium, indium, silicon, thallium, and zinc are characterized by percent deviations at the 95% confidence level of 0.6, 2.1, 0.4, 0.5, 2.2, 0.9, and 0.7, respectively. In the case of mercury, since density reference values already exist, no further work was carried out. The standard reference correlations for the viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc are characterized by percent deviations at the 95% confidence level of 9.4, 14.0, 13.5, 2.1, 7.3, 15.7, 5.1, and 9.3, respectively.
Process for making silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
1998-01-01
A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
Adjustable Lid Aids Silicon-Ribbon Growth
NASA Technical Reports Server (NTRS)
Mchugh, J. P.; Steidensticker, R. G.; Duncan, C. S.
1985-01-01
Closely-spaced crucible cover speeds up solidification. Growth rate of dendritic-web silicon ribbon from molten silicon increased by controlling distance between crucible susceptor lid and liquid/solid interface. Lid held in relatively high position when crucible newly filled with chunks of polycrystalline silicon. As silicon melts and forms pool of liquid at lower level, lid gradually lowered.
Packaging of ferroelectric liquid crystal-on-silicon spatial light modulators
NASA Astrophysics Data System (ADS)
Lin, W.; Morozova, Nina D.; Ju, TehHua; Zhang, Weidong; Lee, Yung-Cheng; McKnight, Douglas J.; Johnson, Kristina M.
1996-11-01
A self-pulling soldering technology has been demonstrated for assembling liquid crystal on silicon (LCOS) spatial light modulators (SLMs). One of the major challenges in manufacturing the LCOS modules is to reproducibly control the thickness of the gap between the very large scale integrated circuit (VLSI) chip and the cover glass. The liquid crystal material is sandwiched between the VLSI chop and the cover glass which is coated with a transparent conductor. Solder joints with different profiles and sizes have been designed to provide surface tension forces to control the gap accommodating the ferroelectric liquid crystal layer in the range of a micron level with sub- micron uniformity. The optimum solder joint design is defined as a joint that results in the maximum pulling force. This technology provides an automatic, batch assembly process for a LCOS SLM through one reflow process. Fluxless soldering technology is used to assemble the module. This approach avoids residues from chemical of flux and oxides, and eliminates potential contamination to the device. Two different LCOS SLM designs and the process optimization are described.
The temperature dependence of ponded infiltration under isothermal conditions
Constantz, J.; Murphy, F.
1991-01-01
A simple temperature-sensitive modification to the Green and Ampt infiltration equation is described; this assumes that the temperature dependence of the hydraulic conductivity is reciprocally equal to the temperature dependence of the viscosity of liquid water, and that both the transmission zone saturation and the wetting front matric potential gradient are independent of temperature. This modified Green and Ampt equation is compared with ponded, isothermal infiltration experiments run on repacked columns of Olympic Sand and Aiken Loam at 5, 25, and 60??C. Experimental results showed increases in infiltration rates of at least 300% between 5 and 60??C for both soil materials, with subsequent increases in cumulative infiltration of even greater magnitudes for the loam. There is good agreement between measured and predicted initial infiltration rates at 25??C for both soil materials, yet at 60??C, the predicted results overestimate initial infiltration rates for the sand and underestimate initial rates for the loam. Measurements of the wetting depth vs. cumulative infiltration indicate that the transmission zone saturation increased with increasing temperature for both soil materials. In spite of this increased saturation with temperature, the final infiltration rates at both 25 and 60??C were predicted accurately using the modified Green and Ampt equation. This suggests that increased saturation occurred primarily in dead-end pore spaces, so that transmission zone hydraulic conductivities were unaffected by these temperature-induced changes in saturation. In conclusion, except for initial infiltration rates at 60??C, the measured influence of temperature on infiltration rates was fully accounted for by the temperature dependence of the viscosity of liquid water. ?? 1991.
Yacobi, Yacov; Tsivian, Alexander; Grinberg, Roman; Kessler, Oded
2007-05-01
To report our experience with penile girth augmentation using liquid injectable silicone. Between August 2003 and July 2006, 324 men (mean age 35 years, range 19-65 years) received a series of liquid silicone subcutaneous injections between the penile skin and the corpora cavernosa on the dorsal and lateral aspects of the penile shaft, under local anesthesia. Digital photographs taken pre- and post-procedure (n = 324), and penile contour measurements (n = 30) yielded objective results. Subjective results were derived from patient and partner testimony of satisfaction. Follow-up averaged 20 months (range 1-36 months). Three hundred and twenty-four procedures were primary augmentations. Most men (61%) were married, 7% were accompanied by their partners, and 93% were circumcised. The mean measured penile circumference was 9.5 cm (7.5-11.5 cm) pretreatment and 12.1 cm (10.3-15.3 cm) post-treatment (mean increase of 27% in circumference and 0.84 cm in diameter). Patient and partner satisfaction was already expressed after the first two treatments. Sexual activity could be resumed after 8 h. Complications (mild bruising) were easily resolved. Penile girth augmentation using liquid injectable silicone yields very satisfactory short-term results with no immediate or short-term complications.
Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review
NASA Astrophysics Data System (ADS)
Sree Manu, K. M.; Ajay Raag, L.; Rajan, T. P. D.; Gupta, Manoj; Pai, B. C.
2016-10-01
Metal matrix composites (MMC) are one of the advanced materials widely used for aerospace, automotive, defense, and general engineering applications. MMC can be tailored to have superior properties such as enhanced high-temperature performance, high specific strength and stiffness, increased wear resistance, better thermal and mechanical fatigue, and creep resistance than those of unreinforced alloys. To fabricate such composites with ideal properties, the processing technique has to ensure high volume fraction of reinforcement incorporation, uniform distribution of the reinforcement, and acceptable adhesion between the matrix and the reinforcing phase without unwanted interfacial reactions which degrades the mechanical properties. A number of processing techniques such as stir casting/vortex method, powder metallurgy, infiltration, casting etc. have been developed to synthesize MMC employing a variety of alloy and the reinforcement's combinations. Among these, infiltration process is widely used for making MMC with high volume fraction of reinforcements and offers many more advantages compared to other conventional manufacturing processes. The present paper critically reviews the various infiltration techniques used for making the MMC, their process parameters, characteristics, and selected studies carried out worldwide and by authors on the development of metal ceramic composites by squeeze infiltration process.
Gomes de Oliveira, Geilson; Eleutério, Renata Mirian Nunes; Silveira Gonçalves, Ana Katherine; Giraldo, Paulo César; Eleutério, José
2018-01-01
The aim of this study was to assess the correlation between atypical squamous cells (ASC) and inflammatory infiltrate and vaginal microbiota using cervical liquid-based cytological (SurePath®) and high-risk human papillomavirus (HR-HPV) tests. A cross-sectional study was conducted using a 6-year database from a laboratory in Fortaleza (Brazil). Files from 1,346 ASC cases were divided into subgroups and results concerning inflammation and vaginal microorganisms diagnosed by cytology were compared with HR-HPV test results. An absence of specific microorganisms (ASM) was the most frequent finding (ASC of undetermined significance, ASC-US = 74%; ASC - cannot exclude high-grade squamous intraepithelial lesion, ASC-H = 68%), followed by bacterial vaginosis (ASC-US = 20%; ASC- H = 25%) and Candida spp. (ASC-US = 6%; ASC-H = 5%). Leukocyte infiltrate was present in 71% of ASC-US and 85% of ASC-H (p = 0.0040), and in these specific cases HR-HPV tests were positive for 65 and 64%, respectively. A positive HR-HPV test was relatively more frequent when a specific microorganism was present, and Candida spp. was associated with HR-HPV-positive results (p = 0.0156), while an ASM was associated with negative HR-HPV results (p = 0.0370). ASC-US is associated with an absence of inflammation or vaginosis, while ASC-H smears are associated with Trichomonas vaginalis and inflammatory infiltrate. A positive HR-HPV is associated with Candida spp. in ASC cytology. © 2017 S. Karger AG, Basel.
Graphite fiber/copper composites prepared by spontaneous infiltration
NASA Astrophysics Data System (ADS)
Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui
2018-05-01
The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.
Extended vapor-liquid-solid growth of silicon carbide nanowires.
Rajesh, John Anthuvan; Pandurangan, Arumugam
2014-04-01
We developed an alloy catalytic method to explain extended vapor-liquid-solid (VLS) growth of silicon carbide nanowires (SiC NWs) by a simple thermal evaporation of silicon and activated carbon mixture using lanthanum nickel (LaNi5) alloy as catalyst in a chemical vapor deposition process. The LaNi5 alloy binary phase diagram and the phase relationships in the La-Ni-Si ternary system were play a key role to determine the growth parameters in this VLS mechanism. Different reaction temperatures (1300, 1350 and 1400 degrees C) were applied to prove the established growth process by experimentally. Scanning electron microscopy and transmission electron microscopy studies show that the crystalline quality of the SiC NWs increases with the temperature at which they have been synthesized. La-Ni alloyed catalyst particles observed on the top of the SiC NWs confirms that the growth process follows this extended VLS mechanism. The X-ray diffraction and confocal Raman spectroscopy analyses demonstrate that the crystalline structure of the SiC NWs was zinc blende 3C-SiC. Optical property of the SiC NWs was investigated by photoluminescence technique at room temperature. Such a new alloy catalytic method may be extended to synthesis other one-dimensional nanostructures.
Iyer, Ganjigunte R. S.; Hobbie, Erik K.; Guruvenket, Srinivasan; ...
2012-05-23
We report a solution process for the synthesis of crystalline silicon from the liquid silane precursor cyclohexasilane (Si 6H 12). Polysilane films were crystallized through thermal and laser annealing, with plasma hydrogenation at atmospheric pressure generating further structural changes in the films. The evolution from amorphous to microcrystalline is characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and impedance spectroscopy. A four-decade enhancement in the electrical conductivity is attributed to a disorder-order transition in a bonded Si network. Lastly, our results demonstrate a potentially attractive approach that employs a solution process coupled with ambient post-processing tomore » produce crystalline silicon thin films.« less
Chemical-Vapor Deposition Of Silicon Carbide
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Riccitiello, S. R.; Ren, J.; Zaghi, F.
1993-01-01
Report describes experiments in chemical-vapor deposition of silicon carbide by pyrolysis of dimethyldichlorosilane in hydrogen and argon carrier gases. Directed toward understanding chemical-kinetic and mass-transport phenomena affecting infiltration of reactants into, and deposition of SiC upon, fabrics. Part of continuing effort to develop method of efficient and more nearly uniform deposition of silicon carbide matrix throughout fabric piles to make improved fabric/SiC-matrix composite materials.
Vapor-liquid-solid growth of <110> silicon nanowire arrays
NASA Astrophysics Data System (ADS)
Eichfeld, Sarah M.; Hainey, Mel F.; Shen, Haoting; Kendrick, Chito E.; Fucinato, Emily A.; Yim, Joanne; Black, Marcie R.; Redwing, Joan M.
2013-09-01
The epitaxial growth of <110> silicon nanowires on (110) Si substrates by the vapor-liquid-solid growth process was investigated using SiCl4 as the source gas. A high percentage of <110> nanowires was obtained at high temperatures and reduced SiCl4 partial pressures. Transmission electron microscopy characterization of the <110> Si nanowires revealed symmetric V-shaped {111} facets at the tip and large {111} facets on the sidewalls of the nanowires. The symmetric {111} tip faceting was explained as arising from low catalyst supersaturation during growth which is expected to occur given the near-equilibrium nature of the SiCl4 process. The predominance of {111} facets obtained under these conditions promotes the growth of <110> SiNWs.
Cermet materials prepared by combustion synthesis and metal infiltration
Holt, J.B.; Dunmead, S.D.; Halverson, D.C.; Landingham, R.L.
1991-01-29
Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced. 6 figures.
Cermet materials prepared by combustion synthesis and metal infiltration
Holt, Joseph B.; Dunmead, Stephen D.; Halverson, Danny C.; Landingham, Richard L.
1991-01-01
Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.
Roll up nanowire battery from silicon chips
Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M.
2012-01-01
Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li+ gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions. PMID:22949696
An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires.
Yu, Linwei; Alet, Pierre-Jean; Picardi, Gennaro; Roca i Cabarrocas, Pere
2009-03-27
We report an in-plane solid-liquid-solid (IPSLS) mode for obtaining self-avoiding lateral silicon nanowires (SiNW) in a reacting-gas-free annealing process, where the growth of SiNWs is guided by liquid indium drops that transform the surrounding a-SiratioH matrix into crystalline SiNWs. The SiNWs can be approximately mm long, with the smallest diameter down to approximately 22 nm. A high growth rate of >10(2) nm/s and rich evolution dynamics are revealed in a real-time in situ scanning electron microscopy observation. A qualitative growth model is proposed to account for the major features of this IPSLS SiNW growth mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radu, C.; Simion, S.; Zamfirescu, M.
2011-08-01
The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl{sub 4}) and fluorine (C{sub 2}Cl{sub 3}F{sub 3}) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400more » pulses at 330 mJ/cm{sup 2} laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 {mu}m, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 {mu}m in height and with a full width at half maximum of 2.3 {mu}m with irradiation of 700 pulses at 560 mJ/cm{sup 2} laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role
Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes
NASA Astrophysics Data System (ADS)
Boettcher, Shannon W.; Spurgeon, Joshua M.; Putnam, Morgan C.; Warren, Emily L.; Turner-Evans, Daniel B.; Kelzenberg, Michael D.; Maiolo, James R.; Atwater, Harry A.; Lewis, Nathan S.
2010-01-01
Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen2+/+ electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.
Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes.
Boettcher, Shannon W; Spurgeon, Joshua M; Putnam, Morgan C; Warren, Emily L; Turner-Evans, Daniel B; Kelzenberg, Michael D; Maiolo, James R; Atwater, Harry A; Lewis, Nathan S
2010-01-08
Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid-growth process, SiCl4 and BCl3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform.
Long-term inflammatory response to liquid injectable silicone, cartilage, and silicone sheet.
Hizal, Evren; Buyuklu, Fuat; Ozdemir, B Handan; Erbek, Selim S
2014-11-01
To show and compare the long-term inflammatory responses to subdermal microdroplet injections of 1,000 centistoke (cS) and 5,000 cS liquid injectable silicone (LIS), and to assess the applicability of insulin pen as an alternative LIS delivery device in an animal model. Animal study. Eighteen healthy adult Sprague-Dawley rats were used. Two graft recipient sites and four injection sites were prepared on each rat's back for: 1) autogenous auricular cartilage graft; 2) silicone sheet; 3) 1,000 cS LIS injection with insulin syringe; 4) 1,000 cS LIS injection with insulin pen; 5) 5,000 cS LIS injection with insulin syringe; and 6) 5,000 cS LIS injection with insulin pen. The animals were followed up for 6 months, and skin biopsies were examined for the evaluation of LIS microdroplets in situ and the degree of inflammatory tissue response. Immunohistochemistry was used for the examination of macrophages and the density of microvessels. Biopsies from 17 animals were assessed. There was no statistically significant difference among the groups in terms of the number of lymphocytes (P = 0.081), macrophages (P = 0.857), and neutrophils (P = 0.995), the degree of vascular proliferation (P = 0.698), and the mean LIS microdroplet diameter (P = 0.540). Grossly, there was no sign of granuloma formation in any of the specimens. There is a low-grade, well-tolerated long-term inflammatory response to microdroplet injections of 1,000 cS and 5,000 cS LIS that is comparable to autogenous cartilage graft in rats. Standard dose delivery devices such as insulin pens can be used for controlled LIS injections. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Multilayer hexagonal silicon forming in slit nanopore
He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying
2015-01-01
The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518
Robbiano, Valentina; Paternò, Giuseppe M; La Mattina, Antonino A; Motti, Silvia G; Lanzani, Guglielmo; Scotognella, Francesco; Barillaro, Giuseppe
2018-05-22
Silicon photonics would strongly benefit from monolithically integrated low-threshold silicon-based laser operating at room temperature, representing today the main challenge toward low-cost and power-efficient electronic-photonic integrated circuits. Here we demonstrate low-threshold lasing from fully transparent nanostructured porous silicon (PSi) monolithic microcavities (MCs) infiltrated with a polyfluorene derivative, namely, poly(9,9-di- n-octylfluorenyl-2,7-diyl) (PFO). The PFO-infiltrated PSiMCs support single-mode blue lasing at the resonance wavelength of 466 nm, with a line width of ∼1.3 nm and lasing threshold of 5 nJ (15 μJ/cm 2 ), a value that is at the state of the art of PFO lasers. Furthermore, time-resolved photoluminescence shows a significant shortening (∼57%) of PFO emission lifetime in the PSiMCs, with respect to nonresonant PSi reference structures, confirming a dramatic variation of the radiative decay rate due to a Purcell effect. Our results, given also that blue lasing is a worst case for silicon photonics, are highly appealing for the development of low-cost, low-threshold silicon-based lasers with wavelengths tunable from visible to the near-infrared region by simple infiltration of suitable emitting polymers in monolithically integrated nanostructured PSiMCs.
Purdy-Payne, Erin K; Green, Jillian; Zenoni, Scott; Evans, Alexander N; Bilski, Tracy R
2015-08-01
Silicone embolization syndrome, a serious adverse effect of illicit silicone injections by laypersons, occurs when silicone particles enter the circulation and shower the lungs and other vital organs. We review the literature on silicone embolization syndrome and describe a unique case of the syndrome that developed after a latent period of several months, upon surgical debridement of an injection site abscess. In the scientific literature, silicone embolization syndrome has been well described and multiple presentations have been delineated. Immediate presentation with a rapidly fatal course occurs in cases of erroneous intra-vascular injection, in which large volumes of silicone occlude pulmonary arteries and cause cor pulmonale. Insidious presentation of progressive respiratory distress and systemic inflammatory response syndrome occurs in cases of peri-vascular injection, caused by gradual vascular infiltration by smaller silicone emboli that shower pulmonary capillaries diffusely, causing alveolar hemorrhage and inflammation. Rarely, latent cases have presented months to years later upon trauma to the original site, which disrupts the sequestered siliconoma, allowing re-exposure to the immune system and the opportunity for vascular infiltration. To the best of our knowledge, this is the first description of silicone embolization syndrome that occurred after surgical manipulation of the site. It has important management implications for patients with a history of prior silicone injections at a site being considered for surgical intervention. Strategies for managing this potential complication include adding a regimen of daily debridement, aggressive ventilator support, and maintaining close observation in an intensive care unit (ICU) or progressive care unit (PCU) during the high-risk post-operative period. Alternatively, when possible, surgeons may avoid disruption of the siliconoma by trialing medical management of localized inflammation or using alternative
Miranda, C R B; Azevedo, A F; Baldan, M R; Beloto, A F; Ferreira, N G
2009-06-01
Nanocrystalline diamond (NCD) films were formed on porous silicon (PS) substrate by Chemical Vapor Deposition/Infiltration (CVD/CVI) process using a hot filament reactor. This innovative procedure is determinant to grow a controlled three-dimensional diamond structure with diamond grains formation in the pores, covering uniformly the different growth planes. In this CVI process, a piece of reticulated vitreous carbon (RVC) was used, under de PS substrate, as an additional solid source of hydrocarbon that ensures the production of pertinent carbon growth species directly on PS and into its pores. PS substrates were obtained by anodization etching process of n-type silicon wafer in a hydrofluoric acid (HF) solution containing acetonitrile (CH3CN) which result in an uniform and well controlled porous distribution and size when compared with the usual ethanol solution. Depositions were performed using Ar-H2-CH4 where the methane concentration varied from 0 up to 1.0 vol%, to analyze the influence of RVC use as an additional carbon source on growth mechanism. Scanning Electron Microscopy (SEM) and Field Emission Gun (FEG) were used to investigate PS and NCD film morphology. SEM images of NCD showed faceted nanograins with average size from 5 to 16 nm and uniform surface texture covering all the supports among the pores resulting in an apparent micro honeycomb structure. Raman spectra confirmed the existence of sp2-bonded carbon at the grain boundaries. The spectra showed a peak that may be deconvoluted in two components at 1332 cm(-1) (diamond) and 1345 cm(-1) (D band). Two shoulders at 1150 and 1490 cm(-1) also appear and are assigned to transpolyacetylene (TPA) segments at the grain boundaries of NCD surfaces. In addition, X-ray diffraction analyses of all films presented characteristic diamond diffraction peaks corresponding to (111), (220) and (311).
NASA Astrophysics Data System (ADS)
Miranda, C. R. B.; Baldan, M. R.; Beloto, A. F.; Ferreira, N. G.
2011-09-01
Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 °C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm-1 attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.
A useful method to overcome the difficulties of applying silicone gel sheet on irregular surfaces.
Grella, Roberto; Nicoletti, Gianfranco; D'Ari, Antonio; Romanucci, Vincenza; Santoro, Mariangela; D'Andrea, Francesco
2015-04-01
To date, silicone gel and silicone occlusive plates are the most useful and effective treatment options for hypertrophic scars (surgical and traumatic). Use of silicone sheeting has also been demonstrated to be effective in the treatment of minor keloids in association with corticosteroid intralesional infiltration. In our practice, we encountered four problems: maceration, rashes, pruritus and infection. Not all patients are able to tolerate the cushion, especially children, and certain anatomical regions as the face and the upper chest are not easy to dress for obvious social, psychological and aesthetic reasons. In other anatomical regions, it is also difficult to obtain adequate compression and occlusion of the scar. To overcome such problems of applying silicone gel sheeting, we tested the use of liquid silicone gel (LSG) in the treatment of 18 linear hypertrophic scars (HS group) and 12 minor keloids (KS group) as an alternative to silicone gel sheeting or cushion. Objective parameters (volume, thickness and colour) and subjective symptoms such as pain and pruritus were examined. Evaluations were made when the therapy started and after 30, 90 and 180 days of follow-up. After 90 days of treatment with silicone gel alone (two applications daily), HS group showed a significant improvement in terms of volume decrease, reduced inflammation and redness and improved elasticity. In conclusion, on the basis of our clinical data, we find LSG to be a useful method to overcome the difficulties of applying silicone gel sheeting on irregular surface. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.
Liu, Ting; Zhu, Xiaomin; Chen, Kaijian; Bai, Ji
2017-07-01
To evaluate the refractive outcomes of balanced salt solution infiltration during small-incision lenticule extraction (SMILE).This randomized prospective study enrolled 52 patients (104 eyes) with myopic astigmatism. Patients underwent SMILE to correct the myopic astigmatism in Daping Hospital of the Third Military Medical University between January and July 2013. One eye of each patient received traditional SMILE (control group) and the other received a modified SMILE procedure (liquid infiltration group). The corrected distance visual acuity (CDVA), postoperative uncorrected distance visual acuity (UDVA), refraction, wavefront aberration, intraocular pressure (IOP), modulation transfer function (MTF) cut-off frequency, and objective scattering index (OSI) were evaluated.UDVA in the liquid infiltration group was significantly higher than that in the control group at 1 day postoperatively, but not at 1 month after surgery. Moreover, OSI and MTF cut-off frequency in the liquid infiltration group were higher than those in the control group at early follow-up. However, no significant intergroup difference was observed in the OSI and MTF cut-off frequency at 3 months after surgery. In addition, the predictability was better in the liquid infiltration group than in the control group. The changes of horizontal coma in the liquid infiltration group were lesser than those in the control group. However, no intergroup difference was observed in the reduction of IOP at 1 month after surgery.The modified SMILE procedure results in better visual outcomes than did the traditional SMILE procedure when used for treating myopic astigmatism.
Wu, Chong-Yin; Zou, Yi-Hong; Timofeev, Ivan; Lin, Yu-Ting; Zyryanov, Victor Ya; Hsu, Jy-Shan; Lee, Wei
2011-04-11
We investigated the optical properties of a one-dimensional photonic crystal infiltrated with a bistable chiral tilted homeotropic nematic liquid crystal as the central defect layer. By modulating the nematic director orientation with applied voltage, the electrical tunability of the defect modes was observed in the transmission spectrum. The composite not only is a general tunable device but also involves the green concept in that it can operate in two stable states at 0 V. Under the parallel-polarizer scheme, the spectral characteristics suggest a potential application for this device as an energy-efficient multichannel optical switch. © 2011 Optical Society of America
NASA Technical Reports Server (NTRS)
Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz
2004-01-01
In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.
Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Jarmon, David C.; Ojard, Greg; Brewer, David N.
2013-01-01
As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.
A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits
NASA Astrophysics Data System (ADS)
Lee, Sangrok
Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.
Instability in radiatively melted silicon films
NASA Astrophysics Data System (ADS)
Jackson, K. A.; Kurtze, Douglas A.
1985-04-01
Bosch and Lemons [Phys. Rev. Letters 47 (1981) 1151] were first to report that on heating of silicon with a laser, the heated area can break up into small regions of solid and liquid. Thus phenomenon produces undesirable surface roughness on silicon which has been melted using irradiation from a laser or heat lamps. It is due to the higher reflectivity of liquid silicon so that radiative heating produces small regions of superheated solid in contact with small regions of supercooled liquid. In this paper, the instabilities resulting from this unusual thermal situation have been analyzed. It is shown that a stable pattern can develop provided that the spacing between the solid and liquid is small enough. For a 1/2 μm thick layer of polysilicon on silica, the calculated stable spacing is less than about 10 μm, in accord with experiment.
NASA Technical Reports Server (NTRS)
Bates, H. E.; Hill, D. M.; Jewett, D. N.
1983-01-01
Drop length necessary to convert molten silicon to shot reduced by proposed new process. Conversion of silicon from powder or chunks to shot often simplifies processing. Shot is more easily handled in most processing equipment. Drops of liquid silicon fall through protective cloud of argon, then through rapidly cooling bath of methanol, where they quickly turn into solid shot.
Modelling infiltration processes in frozen soils
NASA Astrophysics Data System (ADS)
Ireson, A. M.; Barbour, L. S.
2014-12-01
Understanding the hydrological processes in soils subject to significant freeze-thaw is fraught by "experimental vagaries and theoretical imponderables" (Miller 1980, Applications of soil physics). The infiltration of snowmelt water and the subsequent transmission of unfrozen water during thawing, is governed by hydraulic conductivity values which are changing with both ice and unfrozen water content. Water held within pores is subject to capillary forces, which results in a freezing point depression (i.e. water remains in the liquid state slightly below 0°C). As the temperature drops below zero, water freezes first in the larger pores, and then in progressively smaller pores. Since the larger pores also are the first to empty by drainage, these pores may be air filled during freezing, while smaller water filled pores freeze. This explains why an unsaturated, frozen soil may still have a considerable infiltration capacity. Infiltration into frozen soil is a critical phenomena related to the risk of flooding in the Canadian prairies, controlling the partitioning of snowmelt into either infiltration or runoff. We propose a new model, based on conceptualizing the pore space as a bundle of capillary tubes (with significant differences to the capillary bundle model of Wannatabe and Flury, 2008, WRR, doi:10.1029/2008WR007102) which allows any air-filled macropores to contribute to the potential infiltration capacity of the soil. The patterns of infiltration and water movement during freeze-thaw from the model are compared to field observations from the Canadian prairies and Boreal Plains.
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1987-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
Piercing Ear Keloid: Excision Using Loupe Magnification and Topical Liquid Silicone Gel as Adjuvant
Ramesh, Bellam A.; Mohan, J.
2018-01-01
Background: Keloid is an abnormal growth of scar at the site of skin injury, which usually does not regress. It proliferates beyond the original scar. The ear keloid usually develops after piercing injury to wear ornaments. A patient usually asks for removal of keloid, as it is aesthetically unpleasant. Patient may sometimes complain of itching and pain. Aim: The study was conducted to analyze results following excision of keloid with its tract and topical silicone gel as the postsurgical adjuvant. Materials and Methods: Ear keloids measuring less than 0.5cm or more than 5cm in maximum dimension were excluded from the study. Nonpiercing causes such as burns, trauma, and recurrent keloid were excluded from the study. The study was carried out on 22 patients who had keloid because of piercing injury, including 4 cases with both ear keloids. Of 26 ear keloids, 19 had the tract or connecting tissue. The lesion was excised under anesthesia using magnification. For all the operated cases, topical liquid silicone gel was used as postsurgical adjuvant therapy. The method of application of topical silicone gel was taught to each patient and was considered significant. Result: The magnification helped in identification of tract in 73% of the cases in this study. Twenty patients had successfully responded to proposed treatment, and two patients developed recurrence while using topical silicone gel as the adjuvant. These two patients were managed with conventional triamcinolone injection. Conclusion: The topical silicone gel as postsurgical adjuvant therapy avoided the use of painful postsurgical injection or radiotherapy for the 1–3cm primary ear keloids. The advantages of magnification were better clearance of keloid tissue, easier identification of tract and removal of keloid pseudopods, meticulous suturing, and comfortable elevation of a small local flap. PMID:29731586
Study of properties of modified silicones at solid-liquid interface: fabric-silicone interactions.
Purohit, P; Somasundaran, P; Kulkarni, R
2006-06-15
Silicones are special reagents that impart desired surface properties such as softness, bounciness and antiwrinkle properties to fabrics and related materials. Although these finishing processes have been practiced routinely, very little is known about the mechanisms involved in modification so that they could be improved. The current study was undertaken to develop basic understanding of the mechanisms responsible for surface modification of fibers using silicones. PDMS based amino silicone emulsions, quaternized to various degrees using dimethyl sulphate, were used in the present study. The electrokinetic properties of the modified silicones were studied as a function of pH. It was expected that the silicone emulsions would show a steady positive zeta potential throughout the pH range due to the quaternization by dimethyl sulphate. Surprisingly, a sudden drop in the zeta potential was observed around pH 8 with the samples turning hazy in the pH range of 8-10. Turbidimetric studies also showed a sudden increase in the turbidity in the pH range 8-10 where commercial processes also encounter problems. It was concluded that the emulsions were destabilized at pH 8-10 thus rendering them ineffective for surface treatment. In order to identify reason for the improvement in fabric properties, fiber structure was monitored using atomic force microscopy. It was observed that the treated fibers were far smoother, relaxed and uniform as compared to the untreated fibers. Thus the morphology of the fabric is modified in a specific way by treatment with specialty silicones.
Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C; Gaillard, Frédéric
2016-06-03
The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved.
Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C.; Gaillard, Frédéric
2016-01-01
The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved. PMID:27271608
[Properties and infiltration arts of machinable infiltration ceramic(MIC)].
Yang, H; Xian, S; Liao, Y; Xue, Y; Chai, F
2000-06-01
The purpose of this study is to explore the infiltration arts of MIC and study the effects of different packing density of Al2O3 matrix on the properties of MIC. alpha-Al2O3 specimens were fabricated by pouring alpha-Al2O3 slip with different powder/liquid ratios(P/L = 3.5, 7.5, 10.5) into a mold, and subsequently pre-fired at 1160 degrees C for 6 hours to form Al2O3 matrix. The packing density of the matrices were measured. Infiltration concepts were introduced into this study by infiltrating molten mica micro-crystalline glass into the porous Al2O3 matrix at 1160 degrees C for 6 hours to form a continuous interpenetrating composite. The composite then underwent micro-crystallization by nucleating at 550 degrees C for 1 hour and crystallizing at 900 degrees C for 1 hour, which resulted in the MIC. Mechanical properties including three point flexural strength, elastic modulus, Vicker's hardness, indentation fracture toughness and Weibull's modulus of flexural strength were determined. Parameters of machinability(H/KIC)2 of MIC were calculated. XRD and SEM were employed to study its microstructure. The resulted matrices reached packing densities of 63%, 76%, 78% with P/L of 3.5, 7.5 and 10.5. The MIC attained high strength and good machinability after infiltration. Three-point flexural strength and indentation fracture toughness were 342, 431, 374 MPa and 4.05, 4.14, 5.02 MPa m1/2 for MIC with packing density of 63%, 76%, 78% separately. And parameters of machinability were 5.41, 6.84 and 7.39 respectively. Packing density of Al2O3 matrix significantly influenced the mechanical properties. Maximum properties were obtained with a matrix packing density of 75%(P/L = 7.5), with a Weibull's modulus of flexural strength of 6.8. Machinability decreased with the increase of P/L ratio. Micro-crystallizing treatment resulted in the formation of evenly distributed mica crystalline in the composite, which contributed to the high strength of this composite material. MIC is a
Microbial adhesion to silicone hydrogel lenses: a review.
Willcox, Mark D P
2013-01-01
Microbial adhesion to contact lenses is believed to be one of the initiating events in the formation of many corneal infiltrative events, including microbial keratitis, that occur during contact lens wear. The advent of silicone hydrogel lenses has not reduced the incidence of these events. This may partly be related to the ability of microbes to adhere to these lenses. The aim of this study was to review the published literature on microbial adhesion to contact lenses, focusing on adhesion to silicone hydrogel lenses. The literature on microbial adhesion to contact lenses was searched, along with associated literature on adverse events that occur during contact lens wear. Particular reference was paid to the years 1995 through 2012 because this encompasses the time when the first clinical trials of silicone hydrogel lenses were reported, and their commercial availability and the publication of epidemiology studies on adverse events were studied. In vitro studies of bacterial adhesion to unworn silicone hydrogel lens have shown that generally, bacteria adhere to these lenses in greater numbers than to the hydroxyethyl methacrylate-based soft lenses. Lens wear has different effects on microbial adhesion, and this is dependent on the type of lens and microbial species/genera that is studied. Biofilms that can be formed on any lens type tend to protect the bacteria and fungi from the effects on disinfectants. Fungal hyphae can penetrate the surface of most types of lenses. Acanthamoeba adhere in greater numbers to first-generation silicone hydrogel lenses compared with the second-generation or hydroxyethyl methacrylate-based soft lenses. Microbial adhesion to silicone hydrogel lenses occurs and is associated with the production of corneal infiltrative events during lens wear.
NASA Astrophysics Data System (ADS)
D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico
2018-02-01
Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg0, and PCE for comparison, were determined using Pc(S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19 cm and 12.51 cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg0 entry heads (10.45 and 15.74 cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced
D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico
2018-02-01
Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg 0 , and PCE for comparison, were determined using P c (S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19cm and 12.51cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg 0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg 0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg 0 entry heads (10.45 and 15.74cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury
Pandey, Gaind P; Klankowski, Steven A; Li, Yonghui; Sun, Xiuzhi Susan; Wu, Judy; Rojeski, Ronald A; Li, Jun
2015-09-23
This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and ∼1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes.
JAGUAR Procedures for Detonation Behavior of Silicon Containing Explosives
NASA Astrophysics Data System (ADS)
Stiel, Leonard; Baker, Ernest; Capellos, Christos; Poulos, William; Pincay, Jack
2007-06-01
Improved relationships for the thermodynamic properties of solid and liquid silicon and silicon oxide for use with JAGUAR thermo-chemical equation of state routines were developed in this study. Analyses of experimental melting temperature curves for silicon and silicon oxide indicated complex phase behavior and that improved coefficients were required for solid and liquid thermodynamic properties. Advanced optimization routines were utilized in conjunction with the experimental melting point data to establish volumetric coefficients for these substances. The new property libraries resulted in agreement with available experimental values, including Hugoniot data at elevated pressures. Detonation properties were calculated with JAGUAR using the revised property libraries for silicon containing explosives. Constants of the JWLB equation of state were established for varying extent of silicon reaction. Supporting thermal heat transfer analyses were conducted for varying silicon particle sizes to establish characteristic times for melting and silicon reaction.
Modeling of Melt-Infiltrated SiC/SiC Composite Properties
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.; Lang, Jerry
2009-01-01
The elastic properties of a two-dimensional five-harness melt-infiltrated silicon carbide fiber reinforced silicon carbide matrix (MI SiC/SiC) ceramic matrix composite (CMC) were predicted using several methods. Methods used in this analysis are multiscale laminate analysis, micromechanics-based woven composite analysis, a hybrid woven composite analysis, and two- and three-dimensional finite element analyses. The elastic properties predicted are in good agreement with each other as well as with the available measured data. However, the various methods differ from each other in three key areas: (1) the fidelity provided, (2) the efforts required for input data preparation, and (3) the computational resources required. Results also indicate that efficient methods are also able to provide a reasonable estimate of local stress fields.
Low-Temperature Carrier Transport in Ionic-Liquid-Gated Hydrogen-Terminated Silicon
NASA Astrophysics Data System (ADS)
Sasama, Yosuke; Yamaguchi, Takahide; Tanaka, Masashi; Takeya, Hiroyuki; Takano, Yoshihiko
2017-11-01
We fabricated ionic-liquid-gated field-effect transistors on the hydrogen-terminated (111)-oriented surface of undoped silicon. Ion implantation underneath electrodes leads to good ohmic contacts, which persist at low temperatures down to 1.4 K. The sheet resistance of the channel decreases by more than five orders of magnitude as the gate voltage is changed from 0 to -1.6 V at 220 K. This is caused by the accumulation of hole carriers. The sheet resistance shows thermally activated behavior at temperatures below 10 K, which is attributed to hopping transport of the carriers. The activation energy decreases towards zero with increasing carrier density, suggesting the approach to an insulator-metal transition. We also report the variation of device characteristics induced by repeated sweeps of the gate voltage.
Ionic-Liquid-Infused Nanostructures as Repellent Surfaces.
Galvan, Yaraset; Phillips, Katherine R; Haumann, Marco; Wasserscheid, Peter; Zarraga, Ramon; Vogel, Nicolas
2018-06-12
In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.
Liquid Crystal on Silicon Wavefront Corrector
NASA Technical Reports Server (NTRS)
Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.
2004-01-01
A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.
Method of and apparatus for removing silicon from a high temperature sodium coolant
Yunker, Wayne H.; Christiansen, David W.
1987-05-05
A method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.
Method of and apparatus for removing silicon from a high temperature sodium coolant
Yunker, Wayne H.; Christiansen, David W.
1987-01-01
A method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.
Szczotka-Flynn, Loretta; Lass, Jonathan H; Sethi, Ajay; Debanne, Sara; Benetz, Beth Ann; Albright, Matthew; Gillespie, Beth; Kuo, Jana; Jacobs, Michael R; Rimm, Alfred
2010-11-01
This study determined which microbiologic, clinical, demographic, and behavioral factors are associated with corneal infiltrative events (CIEs) during continuous wear of silicone hydrogel (SH) contact lenses. Subjects (n = 205) were fitted with lotrafilcon A lenses for continuous wear and observed for 1 year. The main exposures of interest were corneal staining and bacterial lens contamination. Kaplan-Meier (KM) plots were used to estimate the cumulative unadjusted probability of remaining CIE free, and Cox proportional hazards regression was used to model the hazard of having a CIE, as a function of key predictor variables. The KM-unadjusted cumulative probability of remaining CIE free was 73.3%. Approximately 53% of subjects had repeated episodes of corneal staining (mild or greater), and 11.3% had repeated episodes of moderate or greater corneal staining. Corneal staining was not associated with the development of a CIE. The frequency of substantial bacterial bioburden on worn lenses at the time of a CIE was 64.7%, compared with only 12.2% during uncomplicated wear. The presence of substantial lens bacterial bioburden was associated with the development of a CIE (adjusted hazards ratio [HR], 8.66; 95% confidence interval [CI], 2.88-26.01). Smoking was also associated with a CIE (adjusted HR, 4.13; 95% CI, 1.27-13.45). Corneal staining is common during continuous wear of SH lenses, but it is not associated with the development of a CIE. Smoking and substantial lens bacterial bioburden pose prominent risks of a CIE. In this study, more than 70% of the total risk of CIE in those with substantial lens bioburden is attributable to this exposure. (ClinicalTrials.gov number, NCT00727402).
Epitaxial insertion of gold silicide nanodisks during the growth of silicon nanowires.
Um, Han-Don; Jee, Sang-Won; Park, Kwang-Tae; Jung, Jin-Young; Guo, Zhongyi; Lee, Jung-Ho
2011-07-01
Nanodisk-shaped, single-crystal gold silicide heterojunctions were inserted into silicon nanowires during vapor-liquid-solid growth using Au as a catalyst within a specific range of chlorine-to-hydrogen atomic ratio. The mechanism of nanodisk formation has been investigated by changing the source gas ratio of SiCl4 to H2. We report that an over-supply of silicon into the Au-Si liquid alloy leads to highly supersaturated solution and enhances the precipitation of Au in the silicon nanowires due to the formation of unstable phases within the liquid alloy. It is shown that the gold precipitates embedded in the silicon nanowires consisted of a metastable gold silicide. Interestingly, faceting of gold silicide was observed at the Au/Si interfaces, and silicon nanowires were epitaxially grown on the top of the nanodisk by vapor-liquid-solid growth. High resolution transmission electron microscopy confirmed that gold silicide nanodisks are epitaxially connected to the silicon nanowires in the direction of growth direction. These gold silicide nanodisks would be useful as nanosized electrical junctions for future applications in nanowire interconnections.
Passivation of silicon surfaces by heat treatment in liquid water at 110 °C
NASA Astrophysics Data System (ADS)
Nakamura, Tomohiko; Sameshima, Toshiyuki; Hasumi, Masahiko; Mizuno, Tomohisa
2015-10-01
We report the effective passivation of silicon surfaces by heating single-crystalline silicon substrates in liquid water at 110 °C for 1 h. High photo-induced effective minority carrier lifetimes τeff were obtained ranging from 8.3 × 10-4 to 3.1 × 10-3 s and from 1.2 × 10-4 to 6.0 × 10-4 s for the n- and p-type samples, respectively, under 635 nm light illumination, while the τeff values of the initial bare samples were lower than 1.2 × 10-5 s. The heat treatment in liquid water at 110 °C for 1 h resulted in low surface recombination velocities ranging from 7 to 34 cm/s and from 49 to 250 cm/s for the n- and p-type samples, respectively. The photo-conductivity of the n-type sample was increased from 3.8 × 10-3 (initial) to 1.4 × 10-1 S/cm by the present heat treatment under air-mass (AM) 1.5 light illumination at 100 mW/cm2. The thickness of the passivation layer was estimated to be only approximately 0.7 nm. Metal-insulator-semiconductor-type solar cells were demonstrated with Al and Au metal formation on the passivated surface. Rectified current voltage and solar cell characteristics were observed. The open circuit voltages were obtained to be 0.52 and 0.49 V under AM 1.5 light illumination at 100 mW/cm2 for the n- and p-type samples, respectively.
Method of and apparatus for removing silicon from a high temperature sodium coolant
Yunker, W.H.; Christiansen, D.W.
1983-11-25
This patent discloses a method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.
Production of electronic grade lunar silicon by disproportionation of silicon difluoride
NASA Technical Reports Server (NTRS)
Agosto, William N.
1993-01-01
Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.
Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Dickerson, R. M.
1996-01-01
Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.
Wetting of silicone oil onto a cell-seeded substrate
NASA Astrophysics Data System (ADS)
Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung
2017-11-01
Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.
LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus
A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the firstmore » surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.« less
Metal/ceramic composites via infiltration of an interconnected wood-derived ceramic
NASA Astrophysics Data System (ADS)
Wilkes, Thomas E.
The use of composites is increasing as they afford scientists and engineers the ability to combine the advantageous properties of each constituent phase, e.g. metal ductility and ceramic stiffness. With respect to materials design, biomimetics is garnering increasing attention due to the complex, yet efficient, natural microstructures. One such biomimetic, or in this case 'bio-derived,' curiosity is wood-derived ceramic, which is made by either replicating or converting wood into a ceramic. The resulting porous and anisotropic material retains the precursor microstructure. The wide variety of precursors can yield materials with a range of pore sizes and distribution of pores. The purpose of this work was to study the processing, microstructure, and properties of aluminum/silicon carbide composites. The composites were made by infiltrating molten aluminum into porous wood-derived SIC, which was produced by the reactive melt-infiltration of silicon into pyrolyzed wood. The composite microstructure consisted of interconnected SiC surrounding Al-alloy 'fibers.' The strength, modulus, and toughness were measured in both longitudinal and transverse orientations. The Al → SiC load transfer was investigated with high-energy X-ray diffraction in combination with in-situ compressive loading. The properties in flexure were found to decrease with increasing temperature. Despite the complex microstructure, predictions of the composite flexural modulus and longitudinal fracture toughness were obtained using simple models: Halpin-Tsai bounds and the Ashby et al. model of the effect of ductile particle-reinforcements on the toughness of brittle materials (Ashby et al. 1989), respectively. In addition, the Al/SiC research inspired the investigation of carbon-reinforced copper composites. The goal was to explore the feasibility of making a high-thermal conductivity composite by infiltrating copper into wood-derived carbon. Results indicated that Cu/C composites could be made with
Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium
NASA Astrophysics Data System (ADS)
Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K.
2016-12-01
We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no
Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium.
Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K
2016-12-07
We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no
Lass, Jonathan H.; Sethi, Ajay; Debanne, Sara; Benetz, Beth Ann; Albright, Matthew; Gillespie, Beth; Kuo, Jana; Jacobs, Michael R.; Rimm, Alfred
2010-01-01
Purpose. This study determined which microbiologic, clinical, demographic, and behavioral factors are associated with corneal infiltrative events (CIEs) during continuous wear of silicone hydrogel (SH) contact lenses. Methods. Subjects (n = 205) were fitted with lotrafilcon A lenses for continuous wear and observed for 1 year. The main exposures of interest were corneal staining and bacterial lens contamination. Kaplan-Meier (KM) plots were used to estimate the cumulative unadjusted probability of remaining CIE free, and Cox proportional hazards regression was used to model the hazard of having a CIE, as a function of key predictor variables. Results. The KM-unadjusted cumulative probability of remaining CIE free was 73.3%. Approximately 53% of subjects had repeated episodes of corneal staining (mild or greater), and 11.3% had repeated episodes of moderate or greater corneal staining. Corneal staining was not associated with the development of a CIE. The frequency of substantial bacterial bioburden on worn lenses at the time of a CIE was 64.7%, compared with only 12.2% during uncomplicated wear. The presence of substantial lens bacterial bioburden was associated with the development of a CIE (adjusted hazards ratio [HR], 8.66; 95% confidence interval [CI], 2.88–26.01). Smoking was also associated with a CIE (adjusted HR, 4.13; 95% CI, 1.27–13.45). Conclusions. Corneal staining is common during continuous wear of SH lenses, but it is not associated with the development of a CIE. Smoking and substantial lens bacterial bioburden pose prominent risks of a CIE. In this study, more than 70% of the total risk of CIE in those with substantial lens bioburden is attributable to this exposure. (ClinicalTrials.gov number, NCT00727402). PMID:20538985
Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Dickerson, Robert M.
1995-01-01
Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.
High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.
Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J
2010-11-15
The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.
NASA Astrophysics Data System (ADS)
LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.
2014-12-01
A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.
On the evaluation of silicon photomultipliers for use as photosensors in liquid xenon detectors
Godfrey, B.; Anderson, T.; Breedon, E.; ...
2018-03-26
Silicon photomultipliers (SiPMs) are potential solid-state alternatives to traditional photomultiplier tubes (PMTs) for single-photon detection. In this paper, we report on evaluating SensL MicroFC-10035-SMT SiPMs for their suitability as PMT alternatives. The devices were successfully operated in a liquid-xenon detector, which demonstrates that SiPMs can be used in noble element time projection chambers as photosensors. The devices were also cooled down to 170 K to observe dark count dependence on temperature. No dependencies on the direction of an applied 3.2 kV/cm electric field were observed with respect to dark-count rate, gain, or photon detection efficiency.
On the evaluation of silicon photomultipliers for use as photosensors in liquid xenon detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, B.; Anderson, T.; Breedon, E.
Silicon photomultipliers (SiPMs) are potential solid-state alternatives to traditional photomultiplier tubes (PMTs) for single-photon detection. In this paper, we report on evaluating SensL MicroFC-10035-SMT SiPMs for their suitability as PMT alternatives. The devices were successfully operated in a liquid-xenon detector, which demonstrates that SiPMs can be used in noble element time projection chambers as photosensors. The devices were also cooled down to 170 K to observe dark count dependence on temperature. No dependencies on the direction of an applied 3.2 kV/cm electric field were observed with respect to dark-count rate, gain, or photon detection efficiency.
Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
Advanced processing techniques for non-CZ silicon sheet material that might improve the cost effectiveness of photovoltaic module production were investigated. Specifically, the simultaneous diffusion of liquid boron and liquid phosphorus organometallic precursors into n-type dendritic silicon web was examined. The simultaneous junction formation method for solar cells was compared with the sequential junction formation method. The electrical resistivity of the n-n and p-n junctions was discussed. Further research activities for this program along with a program documentation schedule are given.
Melt infiltration of silicon carbide compacts. II - Evaluation of solidification microstructures
NASA Technical Reports Server (NTRS)
Asthana, Rajiv; Rohatgi, Pradeep K.
1993-01-01
Microstructural aspects of alloy solidification within the interstices of porous compacts of platelet-shaped single crystals of alpha-SiC, when the latter are infiltrated with a hot metal under pressure, have been described. Microstructural evidence is presented of selective reorientation of platelets and nonhomogeneous solute distribution under shear of pressurized melt, of constrained growth of primary solid within finite width zones, and of the modulation of coring due to microsegregation as a result of variations in the pore size of compacts.
Refining of metallurgical-grade silicon
NASA Technical Reports Server (NTRS)
Dietl, J.
1986-01-01
A basic requirement of large scale solar cell fabrication is to provide low cost base material. Unconventional refining of metallurical grade silicon represents one of the most promising ways of silicon meltstock processing. The refining concept is based on an optimized combination of metallurgical treatments. Commercially available crude silicon, in this sequence, requires a first pyrometallurgical step by slagging, or, alternatively, solvent extraction by aluminum. After grinding and leaching, high purity qualtiy is gained as an advanced stage of refinement. To reach solar grade quality a final pyrometallurgical step is needed: liquid-gas extraction.
Reactive Processing of Environmentally Conscious, Biomorphic Ceramics from Natural Wood Precursors
NASA Technical Reports Server (NTRS)
Singh, M.; Yee, Bo-Moon
2003-01-01
Environmentally conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that are manufactured from renewable resources and wastes. In this study, silicon carbide and oxide-based biomorphic ceramics have been fabricated from pine and jelutong wood precursors. A carbonaceous preform is produced through wood pyrolysis and subsequent infiltration with oxides (ZrO2 sols) and liquid silicon to form ceramics. These biomorphic ceramics show a wide variety of microstructures, densities, and hardness behavior that are determined by the type of wood and infiltrants selected.
Infiltration and Evaporation of Diesel and Gasoline Droplets Spilled onto Concrete Pavement
NASA Astrophysics Data System (ADS)
Hilpert, M.; Adria-Mora, B.
2015-12-01
Pollution at gas stations due to small spills that occur during refueling of customer vehicles has received little attention. We have performed laboratory experiments in order to assess the processes of evaporation and infiltration of fuel spilled onto concrete samples. Changes in mass of both spilled diesel and gasoline droplets as a function of time have been analyzed. The infiltrated mass is affected by variations in humidity, among other parameters, which influence the amount of water condensed onto the concrete. Therefore, we used a humidity data logger and statistical tools to predict the evolution of the real mass of infiltrated fuel. The infiltrated mass roughly decreases exponentially, but the difference in behavior between both fuel types is important. The percentage of evaporated mass is much larger for gasoline, while infiltration is more significant for diesel. Also, the percentage of infiltrated liquid depends on the initial droplet mass. We also developed a multiphysics model, which couples pore-scale infiltration to turbulent atmospheric transport, to explain the experimental data. In conclusion, a substantial amount of fuel could both seep into the ground to contaminate groundwater and be released to the atmosphere. More studies are needed to quantify the public health implications of the released pollutants.
Thermophysical Property Measurements of Silicon-Transition Metal Alloys
NASA Technical Reports Server (NTRS)
Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.
2014-01-01
Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.
Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng
2017-08-01
An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01 nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.
Optical design of ultrashort throw liquid crystal on silicon projection system
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2017-05-01
An ultrashort throw liquid crystal on silicon (LCoS) projector for home cinema, virtual reality, and automobile heads-up display has been designed and fabricated. To achieve the best performance and highest-quality image, this study aimed to design wide-angle projection optics and optimize the illumination for LCoS. Based on the telecentric lens projection system and optimized Koehler illumination, the optical parameters were calculated. The projector's optical system consisted of a conic aspheric mirror and image optics using either symmetric double Gauss or a large-angle eyepiece to achieve a full projection angle larger than 155 deg. By applying Koehler illumination, image resolution was enhanced and the modulation transfer function of the image in high spatial frequency was increased to form a high-quality illuminated image. The partial coherence analysis verified that the design was capable of 2.5 lps/mm within a 2 m×1.5 m projected image. The throw ratio was less than 0.25 in HD format.
Process research on non-CZ silicon material
NASA Technical Reports Server (NTRS)
1982-01-01
High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.
Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, K; Kita, N; Mendybaev, R
2009-06-18
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquidsmore » (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites
Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications
NASA Astrophysics Data System (ADS)
Muñoz-Noval, Álvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Ferro-Llanos, Vicente; Javier Serrano, José; Manso-Silván, Miguel; García-Ruiz, Josefa Predestinación; Del Pozo, Francisco; Martín-Palma, Raúl J.
2011-02-01
This work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character. These particles respond to magnetic fields, emit light in the visible when excited in the UV range, and internalize into human mesenchymal stem cells with no apoptosis induction. Furthermore, cytotoxicity in in-vitro systems confirms their biocompatibility and the viability of the cells after incorporation of the particles. The hybrid nanostructured particles might represent powerful research tools as cellular trackers or in cellular therapy since they allow combining two or more properties into a single particle.
Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications.
Muñoz-Noval, Alvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Ferro-Llanos, Vicente; Serrano, José Javier; Manso-Silván, Miguel; García-Ruiz, Josefa Predestinación; del Pozo, Francisco; Martín-Palma, Raúl J
2011-02-01
This work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character. These particles respond to magnetic fields, emit light in the visible when excited in the UV range, and internalize into human mesenchymal stem cells with no apoptosis induction. Furthermore, cytotoxicity in in-vitro systems confirms their biocompatibility and the viability of the cells after incorporation of the particles. The hybrid nanostructured particles might represent powerful research tools as cellular trackers or in cellular therapy since they allow combining two or more properties into a single particle.
Asymmetric Die Grows Purer Silicon Ribbon
NASA Technical Reports Server (NTRS)
Kalejs, J. P.; Chalmers, B.; Surek, T.
1983-01-01
Concentration of carbide impurities in silicon ribbon is reduced by growing crystalline ribbon with die one wall higher than other. Height difference controls shape of meniscus at liquid/crystal interface and concentrates silicon carbide impurity near one of broad faces. Opposite face is left with above-average purity. Significantly improves efficiency of solar cells made from ribbon.
A comparative flow visualization study of thermocapillary flow in drops in liquid-liquid systems
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Rashidnia, N.
1991-01-01
Experiments are performed to visualize thermocapillary flow in drops in an immiscible host liquid. The host liquid used is silicone oil. Drops of three different liquids are used, viz, vegetable oil, water-methanol mixture anad pure methanol. Clear evidence of thermocapillary flow is seen in vegetable oil drops. For a mixture of water and methanol (approximately 50-50 by weight), natural convection is seen to dominate the flow outside the drop. Pure methanol drops exhibit thermocapillary flow, but dissolve in silicone oil. A small amount of water added to pure methanol significantly reduces the dissolution. Flow oscillations occur in this system for both isothermal and non-isothermal conditions.
NASA Astrophysics Data System (ADS)
Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad
2015-05-01
This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.
Study of silicon crystal surface formation based on molecular dynamics simulation results
NASA Astrophysics Data System (ADS)
Barinovs, G.; Sabanskis, A.; Muiznieks, A.
2014-04-01
The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.
Qin, Fei; Meng, Zi-Ming; Zhong, Xiao-Lan; Liu, Ye; Li, Zhi-Yuan
2012-06-04
We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits.
Teh, Lay K; Yan, Qingfeng; Wong, Chee C
2009-04-01
We develop a new method to fabricate suspended sheets of nanocrystals (NCs) on porous surfaces. The method relies on the resistance of an aqueous suspension droplet to infiltrate a porous network; hence, the method is named anti-infiltration. The process works by combining fluid dynamics of a liquid droplet during impact/absorption onto a porous surface with the convective self-assembly of NCs. The immobilization of the liquid droplet edge due to the self-assembly of NCs at the meniscus is harnessed to halt the lateral spreading of the droplet and, consequently, the capillary penetration of the liquid immediately after droplet impact. Further capillary penetration of the liquid is drastically reduced because of the competition between capillary forces and convective losses as well as the rapid occlusion of the pores as soon as a continuous NC film has formed upon evaporation of the suspension. This method holds promise for a wide variety of optoelectronic, sensing, and separation membrane applications. As an example, we demonstrate that these suspended NC layers are suitable candidates as planar defects embedded within a colloidal photonic crystal.
Process for forming a porous silicon member in a crystalline silicon member
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator.
Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo
2009-06-22
Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.
Process for making silicon from halosilanes and halosilicons
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1988-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC
NASA Technical Reports Server (NTRS)
Asthana, R.; Rohatgi, P. K.
1993-01-01
Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.
Infiltration into Fractured Bedrock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salve, Rohit; Ghezzehei, Teamrat A.; Jones, Robert
One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long-term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) with a head of {approx}0.04 m, over a period of {approx}800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models,more » which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.« less
Investigation of ferroelectric liquid crystal orientation in the silica microcapillaries
NASA Astrophysics Data System (ADS)
Budaszewski, D.; Domański, A. W.; Woliński, T. R.
2013-05-01
In the paper we present our recent results concerning the orientation of ferroelectric liquid crystal molecules inside silica micro capillaries. We have infiltrated the silica micro capillaries with experimental ferroelectric liquid crystal material W-260K synthesized in the Military University of Technology. The infiltrated micro capillaries were observed under the polarization microscope while both a polarizer and an analyzer were crossed. The studies on the orientation of ferroelectric liquid crystal molecules may contribute to further studies on behavior of this group of liquid crystal materials inside photonic crystal fiber. The obtained results may lead to design of a new type of fast optical fiber sensors.
Intartaglia, Romuald; Bagga, Komal; Genovese, Alessandro; Athanassiou, Athanassia; Cingolani, Roberto; Diaspro, Alberto; Brandi, Fernando
2012-11-28
Ultra small silicon nanoparticles (Si-NPs) with narrow size distribution are prepared in a one step process by UV picosecond laser ablation of silicon bulk in liquid. Characterization by electron microscopy and absorption spectroscopy proves Si-NPs generation with an average size of 2 nm resulting from an in situ photofragmentation effect. In this context, the current work aims to explore the liquid medium (water and toluene) effect on the Si-NPs structure and on the optical properties of the colloidal solution. Si-NPs with high pressure structure (s.g. Fm3m) and diamond-like structure (s.g. Fd3m), in water, and SiC moissanite 3C phase (s.g. F4[combining macron]3m) in toluene are revealed by the means of High-Resolution TEM and HAADF-STEM measurements. Optical investigations show that water-synthesized Si-NPs have blue-green photoluminescence emission characterized by signal modulation at a frequency of 673 cm(-1) related to electron-phonon coupling. The synthesis in toluene leads to generation of Si-NPs embedded in the graphitic carbon-polymer composite which has intrinsic optical properties at the origin of the optical absorption and luminescence of the obtained colloidal solution.
Influence of silicone sheets on microvascular anastomosis.
Hoang Nguyen, The; Kloeppel, Marcus; Hoehnke, Christoph; Staudenmaier, Rainer
2008-12-01
The use of silicone products combined with free flap transfer is well established in reconstructive surgery. We determined the risk of thrombosis as a result of direct contact between the silicone sheet and the point of microanastomosis. We performed microvascular surgery in 24 female Chinchilla Bastard rabbits weighing 3500 to 4000 g using two groups: Group 1 (n = 12), microanastomosis directly in contact with silicone sheets; and Group 2 (n = 12), microanastomosis protected by a 2 x 3 x 1-cm muscle cuff before being placed in contact with the silicone. We assessed flow-through of the microanastomosis by selective microangiography and histology at 1 and 3 weeks. All microanastomoses in Group 1 were occluded by postoperative thromboses, whereas all microanastomoses in Group 2 had adequate flow-through. Histologic analysis revealed thromboses in Group 1 formed from collagenous bundles of fiber securely attached to the intraluminal wall of the vessel. Three weeks after the procedure, these thromboses were canalized by varying small vessels. In Group 2, a slight luminal stenosis with evidence of infiltration of inflammatory cells at the microanastomosis line was observed histologically in all cases. Prefabricated flaps using silicone sheets and muscular cuffs placed around the anastomoses appear to reduce the risk of thrombosis and enhance neovascularization.
NASA Astrophysics Data System (ADS)
Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz
2018-01-01
Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.
Environment Conscious, Biomorphic Ceramics from Pine and Jelutong Wood Precursors
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)
2002-01-01
Environment conscious, biomorphic ceramics have been fabricated from pine and jelutong wood precursors. A carbonaceous preform is produced through wood pyrolysis and subsequent infiltration with oxides (ZrO2 sols) and liquid silicon to form ceramics. These biomorphic ceramics show a wide variety of microstructures, densities, and hardness behavior that are determined by the type of wood and infiltrants selected.
Illicit Cosmetic Silicone Injection: A Recent Reiteration of History.
Leonardi, Nicholas R; Compoginis, John M; Luce, Edward A
2016-10-01
The injection of liquid silicone for cosmetic augmentation has a history of both legal as well as illicit practice in the United States and worldwide. Recently, the American Society of Plastic Surgeons has launched a public awareness campaign through patient stories and various statements in response to the rise in deaths related to this illicit practice. A articular segment of the population that has become a target is the transgender patient group. A brief review is provided of the history of industrial liquid silicone injection, including the pathophysiology to fully describe and review silicone injection injury. Three cases of soft tissue cellulitis and wound necrosis treated at our institution are summarized and a treatment algorithm proposed based on literature review of treatment options and our own experience.
Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.
1996-01-01
Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.
A low cost adaptive silicone membrane lens
NASA Astrophysics Data System (ADS)
Schneider, F.; Müller, C.; Wallrabe, U.
2008-04-01
This article introduces adaptive liquid lenses with thick silicone membranes of 5 mm diameter. These membranes are produced by means of casting in a batch process. The lenses feature an integrated piezo-bending actuator, which is also embedded in silicone. The lenses presented comprise areas of application which are not covered by the electrowetting lenses (diameter <3 mm) already established on the market.
Infiltration sintering properties of Ni-4B-4Si(wt.%) alloy powders
NASA Astrophysics Data System (ADS)
Yang, Q.; Zhang, X. C.; Wang, F. L.; Zou, J. T.
2018-01-01
The Ni-4B-4Si(wt.%) alloy powders were infiltrated into the nickel skeletons, the effects of sintering temperatures (1050-1150 °C) and skeletons (loose and compact nickel powders) on the microstructures and hardness of the sintered alloys were investigated. The Ni-B-Si alloy sintered at 1100 °C consisted of γ-Ni and Ni3B, and Si mainly solid soluted in the γ-Ni. The loose nickel powders favored to the infiltration of Ni-B-Si liquid alloy into the nickel skeletons, the sintered alloys exhibited dense microstructures and good interfacial bonding with Ni substrates. The interfacial hardness was equal to that of the sintered alloys and Ni substrates. Loose nickel powders ensured the density and interfacial bonding of the sintered alloys, the infiltration sintering process can be simplified and easily applied to practice.
Continuous planar phospholipid bilayer supported on porous silicon thin film reflector.
Cunin, Frédérique; Milhiet, Pierre-Emmanuel; Anglin, Emily; Sailor, Michael J; Espenel, Cédric; Le Grimellec, Christian; Brunel, Daniel; Devoisselle, Jean-Marie
2007-10-01
Reconstituting artificial membranes for in vitro studies of cell barrier mechanisms and properties is of major interest in biology. Here, artificial membranes supported on porous silicon photonic crystal reflectors are prepared and investigated. The materials are of interest for label-free probing of supported membrane events such as protein binding, molecular recognition, and transport. The porous silicon substrates are prepared as multilayered films consisting of a periodically varying porosity, with pore dimensions of a few nanometers in size. Planar phospholipid bilayers are deposited on the topmost surface of the oxidized hydrophilic mesoporous silicon films. Atomic force microscopy provides evidence of continuous bilayer deposition at the surface, and optical measurements indicate that the lipids do not significantly infiltrate the porous region. The presence of the supported bilayer does not obstruct the optical spectrum from the porous silicon layer, suggesting that the composite structures can act as effective optical biosensors.
NASA Astrophysics Data System (ADS)
Morishita, Tetsuya
2012-07-01
We report a first-principles molecular-dynamics study of the relaxation dynamics in liquid silicon (l-Si) over a wide temperature range (1000-2200 K). We find that the intermediate scattering function for l-Si exhibits a compressed exponential decay above 1200 K including the supercooled regime, which is in stark contrast to that for normal "dense" liquids which typically show stretched exponential decay in the supercooled regime. The coexistence of particles having ballistic-like motion and those having diffusive-like motion is demonstrated, which accounts for the compressed exponential decay in l-Si. An attempt to elucidate the crossover from the ballistic to the diffusive regime in the "time-dependent" diffusion coefficient is made and the temperature-independent universal feature of the crossover is disclosed.
Demonstration of Minimally Machined Honeycomb Silicon Carbide Mirrors
NASA Technical Reports Server (NTRS)
Goodman, William
2012-01-01
Honeycomb silicon carbide composite mirrors are made from a carbon fiber preform that is molded into a honeycomb shape using a rigid mold. The carbon fiber honeycomb is densified by using polymer infiltration pyrolysis, or through a reaction with liquid silicon. A chemical vapor deposit, or chemical vapor composite (CVC), process is used to deposit a polishable silicon or silicon carbide cladding on the honeycomb structure. Alternatively, the cladding may be replaced by a freestanding, replicated CVC SiC facesheet that is bonded to the honeycomb. The resulting carbon fiber-reinforced silicon carbide honeycomb structure is a ceramic matrix composite material with high stiffness and mechanical strength, high thermal conductivity, and low CTE (coefficient of thermal expansion). This innovation enables rapid, inexpensive manufacturing. The web thickness of the new material is less than 1 millimeter, and core geometries tailored. These parameters are based on precursor carbon-carbon honeycomb material made and patented by Ultracor. It is estimated at the time of this reporting that the HoneySiC(Trademark) will have a net production cost on the order of $38,000 per square meter. This includes an Ultracor raw material cost of about $97,000 per square meter, and a Trex silicon carbide deposition cost of $27,000 per square meter. Even at double this price, HoneySiC would beat NASA's goal of $100,000 per square meter. Cost savings are estimated to be 40 to 100 times that of current mirror technologies. The organic, rich prepreg material has a density of 56 kilograms per cubic meter. A charred carbon-carbon panel (volatile organics burnt off) has a density of 270 kilograms per cubic meter. Therefore, it is estimated that a HoneySiC panel would have a density of no more than 900 kilograms per cubic meter, which is about half that of beryllium and about onethird the density of bulk silicon carbide. It is also estimated that larger mirrors could be produced in a matter of weeks
[Investigation of infiltration glass of the machinable infiltrated ceramic(MIC)].
Liao, Y; Yang, H; Xan, S; Xue, Y; Chai, F
2000-03-01
To explore the manufacture arts and determine the properties of the infiltration glass of the MIC. In order to determine the glass forming range of the MIC infiltration glass, molten glass was prepared in Al2O3 crucibles by heating the components to 1450 degrees C. Thermal analytic device was employed to study the thermal properties of the glass. Its crystal phases after micro-crystallization were analyzed with XRD. Flexural strength was measured by means of 3-point bending test. The chemical components of MIC glass were determined. Conventional fluorophlogopite glass was converted into an infiltration glass with low viscosity, good infiltration capability and low fusing temperature by introducing B2O3, La2O3 and Li2O into the glass. Fluorophlogopite crystals formed after crystallization. Conventional mica glass can be changed according to the requirements of properties. Modified mica MIC glass in this study has good infiltration ability in Al2O3 matrix while remains machinability.
Infiltration of Slag Film into the Grooves on a Continuous Casting Mold
NASA Astrophysics Data System (ADS)
Cho, Jung-Wook; Jeong, Hee-Tae
2013-02-01
An analytical model is developed to clarify the slag film infiltration into grooves on a copper mold during the continuous casting of steel slabs. A grooved-type casting mold was applied to investigate the infiltration of slag film into the grooves of a pitch of 0.8 mm, width of 0.7 mm, and depth of 0.6 mm at the vicinity of a meniscus. The plant trial tests were carried out at a casting speed of 5.5 m min-1. The slag film captured at a commercial thin slab casting plant showed that both the overall and the liquid film thickness were decreased exponentially as the distance from the meniscus increases. In contrast, the infiltration of slag film into the grooves had been increased with increasing distance from the meniscus. A theoretic model has been derived based on the measured profile of slag film thickness to calculate the infiltration of slag film into the grooves. It successfully reproduces the empirical observation that infiltration ratio increased sharply along casting direction, about 80 pct at 50 mm and 95 pct at 150 mm below the meniscus. In the model calculation, the infiltration of slag film increases with increasing groove width and/or surface tension of the slag. The effect of groove depth is negligible when the width to depth ratio of the groove is larger than unity. It is expected that the developed model for slag film infiltration in this study will be widely utilized to optimize the design of groove dimensions in continuous casting molds.
Nature of the first-order liquid-liquid phase transition in supercooled silicon
NASA Astrophysics Data System (ADS)
Zhao, G.; Yu, Y. J.; Tan, X. M.
2015-08-01
The first-order liquid-liquid phase transition in supercooled Si is revisited by long-time first-principle molecular dynamics simulations. As the focus of the present paper, its nature is revealed by analyzing the inherent structures of low-density liquid (LDL) and high-density liquid (HDL). Our results show that it is a transition between a sp3-hybridization LDL and a white-tin-like HDL. This uncovers the origin of the semimetal-metal transition accompanying it and also proves that HDL is the metastable extension of high temperature equilibrium liquid into the supercooled regime. The pressure-temperature diagram of supercooled Si thus can be regarded in some respects as shifted reflection of its crystalline phase diagram.
Influence of Silicone Sheets on Microvascular Anastomosis
Kloeppel, Marcus; Hoehnke, Christoph; Staudenmaier, Rainer
2008-01-01
The use of silicone products combined with free flap transfer is well established in reconstructive surgery. We determined the risk of thrombosis as a result of direct contact between the silicone sheet and the point of microanastomosis. We performed microvascular surgery in 24 female Chinchilla Bastard rabbits weighing 3500 to 4000 g using two groups: Group 1 (n = 12), microanastomosis directly in contact with silicone sheets; and Group 2 (n = 12), microanastomosis protected by a 2 × 3 × 1-cm muscle cuff before being placed in contact with the silicone. We assessed flow-through of the microanastomosis by selective microangiography and histology at 1 and 3 weeks. All microanastomoses in Group 1 were occluded by postoperative thromboses, whereas all microanastomoses in Group 2 had adequate flow-through. Histologic analysis revealed thromboses in Group 1 formed from collagenous bundles of fiber securely attached to the intraluminal wall of the vessel. Three weeks after the procedure, these thromboses were canalized by varying small vessels. In Group 2, a slight luminal stenosis with evidence of infiltration of inflammatory cells at the microanastomosis line was observed histologically in all cases. Prefabricated flaps using silicone sheets and muscular cuffs placed around the anastomoses appear to reduce the risk of thrombosis and enhance neovascularization. PMID:18636304
A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.
Jeppesen, Jan; Christensen, Steen
2015-01-01
This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales. © 2014, National Ground Water Association.
Process for coating an object with silicon carbide
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1989-01-01
A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.
Silicon Web Process Development. [for solar cell fabrication
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.
1979-01-01
Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.
Vibration-Induced Gas-Liquid Interface Breakup
NASA Astrophysics Data System (ADS)
O'Hern, Timothy; Torczynski, John; Romero, Ed; Shelden, Bion
2010-11-01
Gas-liquid interfaces can be forced to break up when subjected to vibrations within critical ranges of frequency and amplitude. This breakup mechanism was examined experimentally using deep layers of silicone oils over a range of viscosity and sinusoidal, primarily axial vibration conditions that can produce dramatic disturbances at the gas-liquid free surface. Although small-amplitude vibrations produce standing Faraday waves, large-amplitude vibrations produce liquid jets into the gas, droplets pinching off from the jets, gas cavities in the liquid from droplet impact, and bubble transport below the interface. Experiments used several different silicone oils over a range of pressures and vibration conditions. Computational simulations exhibiting similar behavior will be included in the presentation. Applications include liquid fuel rockets, inertial sensing devices, moving vehicles, mixing processes, and acoustic excitation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon.
Xu, Jingquan; Qin, SiYi; Liu, Chen; Fu, Songnian; Liu, Deming
2018-06-15
In order to calibrate the spatial phase response nonuniformity of liquid crystal on silicon (LCoS), we propose to use a Twyman-Green interferometer to characterize the wavefront distortion, due to the inherent curvature of the device. During the characterization, both the residual carrier frequency introduced by the Fourier transform evaluation method and the lens aberration are error sources. For the tilted phase error introduced by residual carrier frequency, the least mean square fitting method is used to obtain the tilted phase error. Meanwhile, we use Zernike polynomials fitting based on plane mirror calibration to mitigate the lens aberration. For a typical LCoS with 1×12,288 pixels after calibration, the peak-to-valley value of the inherent wavefront distortion is approximately 0.25λ at 1550 nm, leading to a half-suppression of wavefront distortion. All efforts can suppress the root mean squares value of the inherent wavefront distortion to approximately λ/34.
Liquid droplet radiator performance studies
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Hertzberg, A.
1984-01-01
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.
Liquid droplet radiator performance studies
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Hertzberg, A.
1984-10-01
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.
Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W
2007-09-01
The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) compositesmore » are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.« less
Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
1983-01-01
High risk, high payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non- CZ sheet material were investigated. All work was performed using dendritic web silicon. The following tasks are discussed and associated technical results are given: (1) determining the technical feasibility of forming front and back junctions in non-CT silicon using dopant techniques; (2) determining the feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask; (3) determining the feasibility of applying liquid anti-reflective solutions using meniscus coating equipment; (4) studying the production of uniform, high efficiency solar cells using ion implanation junction formation techniques; and (5) quantifying cost improvements associated with process improvements.
Infiltrated carbon foam composites
NASA Technical Reports Server (NTRS)
Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)
2012-01-01
An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.
A planar lens based on the electrowetting of two immiscible liquids
NASA Astrophysics Data System (ADS)
Liu, Chao-Xuan; Park, Jihwan; Choi, Jin-Woo
2008-03-01
This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50-250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate.
Novel duplex vapor-electrochemical method for silicon solar cells
NASA Technical Reports Server (NTRS)
Kapur, V. K.; Nanis, L.; Sanjurjo, A.
1977-01-01
Silicon was produced by alternate pulse feeding of the reactants SiF4 gas and liquid sodium. The average temperature in the reactor could be controlled, by regulating the amount of reactant in each pulse. Silicon tetrafluoride gas was analyzed by mass spectrometry to determine the nature and amount of contained volatile impurities which included silicon oxyfluorides, sulfur oxyfluorides, and sulfur dioxide. Sodium metal was analyzed by emission spectrography, and it was found to contain only calcium and copper as impurities.
Superhydrophobic SERS substrates based on silicon hierarchical nanostructures
NASA Astrophysics Data System (ADS)
Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi
2018-02-01
Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in
The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water
NASA Astrophysics Data System (ADS)
Limmer, David T.; Chandler, David
2011-10-01
We use numerical simulation to examine the possibility of a reversible liquid-liquid transition in supercooled water and related systems. In particular, for two atomistic models of water, we have computed free energies as functions of multiple order parameters, where one is density and another distinguishes crystal from liquid. For a range of temperatures and pressures, separate free energy basins for liquid and crystal are found, conditions of phase coexistence between these phases are demonstrated, and time scales for equilibration are determined. We find that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal. We find a similar result for a related model of silicon. This result excludes the possibility of the proposed liquid-liquid critical point for the models we have studied. Further, we argue that behaviors others have attributed to a liquid-liquid transition in water and related systems are in fact reflections of transitions between liquid and crystal.
Phosphorus out-diffusion in laser molten silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köhler, J. R.; Eisele, S. J.
2015-04-14
Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ionmore » mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].« less
Conductive-probe atomic force microscopy characterization of silicon nanowire
2011-01-01
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated. PMID:21711623
Pugar, Eloise A.; Morgan, Peter E. D.
1990-04-03
A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about 0.degree. C. up to about 300.degree. C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.
Electrically tunable liquid crystal photonic bandgap fiber laser
NASA Astrophysics Data System (ADS)
Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders
2010-02-01
We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.
Progress research of non-Cz silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1983-01-01
The simultaneous diffusion of liquid boron and liquid phosphorus dopants into N-type dendritic silicon web for solar cells was investigated. It is planned that the diffusion parameters required to achieve the desired P(+)NN(+) cell structure be determined and the resultant cell properties be compared to cells produced in a sequential differential process. A cost analysis of the simultaneous junction formation process is proposed.
Sinusoidal nanotextures for light management in silicon thin-film solar cells.
Köppel, G; Rech, B; Becker, C
2016-04-28
Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.
Continuous coating of silicon-on-ceramic
NASA Technical Reports Server (NTRS)
Heaps, J. D.; Schuldt, S. B.; Grung, B. L.; Zook, J. D.; Butter, C. D.
1980-01-01
Growth of sheet silicon on low-cost substrates has been demonstrated by the silicon coating with inverted meniscus (SCIM) technique. A mullite-based ceramic substrate is coated with carbon and then passed over a trough of molten silicon with a raised meniscus. Solidification occurs at the trailing edge of the downstream meniscus, producing a silicon-on-ceramic (SOC) layer. Meniscus shape and stability are controlled by varying the level of molten silicon in a reservoir connected to the trough. The thermal conditions for growth and the crystallographic texture of the SOC layers are similar to those produced by dip-coating, the original technique of meniscus-controlled growth. The thermal conditions for growth have been analyzed in some detail. The analysis correctly predicts the velocity-thickness relationship and the liquid-solid interface shape for dip-coating, and appears to be equally applicable to SCIM-coating. Solar cells made from dip-coated SOC material have demonstrated efficiencies of 10% on 4-sq cm cells and 9.9% on 10-sq cm cells.
Nanoparticle sorting in silicon waveguide arrays
NASA Astrophysics Data System (ADS)
Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.
2017-08-01
This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.
Low temperature electrodeposition of silicon layers
NASA Astrophysics Data System (ADS)
Pauporté, Thierry; Qi, Shuo; Viana, Bruno
2018-02-01
The electrodeposition of silicon at room temperature in 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids containing SiCl4 salt is shown. The electrodeposition window has been determined by cyclic voltammetry. Layers have been deposited in a three electrode cell placed in an inert atmosphere and at constant applied potential. The characterizations by x-ray diffraction and Raman spectroscopy showed the formation of a layer made of amorphous silicon. The scanning electron microscopy examination revealed that the layers were featureless and well-covering.
Deposition of hydrogenated silicon clusters for efficient epitaxial growth.
Le, Ha-Linh Thi; Jardali, Fatme; Vach, Holger
2018-06-13
Epitaxial silicon thin films grown from the deposition of plasma-born hydrogenated silicon nanoparticles using plasma-enhanced chemical vapor deposition have widely been investigated due to their potential applications in photovoltaic and nanoelectronic device technologies. However, the optimal experimental conditions and the underlying growth mechanisms leading to the high-speed epitaxial growth of thin silicon films from hydrogenated silicon nanoparticles remain far from being understood. In the present work, extensive molecular dynamics simulations were performed to study the epitaxial growth of silicon thin films resulting from the deposition of plasma-born hydrogenated silicon clusters at low substrate temperatures under realistic reactor conditions. There is strong evidence that a temporary phase transition of the substrate area around the cluster impact site to the liquid state is necessary for the epitaxial growth to take place. We predict further that a non-normal incidence angle for the cluster impact significantly facilitates the epitaxial growth of thin crystalline silicon films.
Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.
Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala
2014-10-20
Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.
Converting a carbon preform object to a silicon carbide object
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1990-01-01
A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.
Improved reaction sintered silicon nitride. [protective coatings to improve oxidation resistance
NASA Technical Reports Server (NTRS)
Baumgartner, H. R.
1978-01-01
Processing treatments were applied to as-nitrided reaction sintered silicon nitride (RSSN) with the purposes of improving strength after processing to above 350 MN/m2 and improving strength after oxidation exposure. The experimental approaches are divided into three broad classifications: sintering of surface-applied powders; impregnation of solution followed by further thermal processing; and infiltration of molten silicon and subsequent carburization or nitridation of the silicon. The impregnation of RSSN with solutions of aluminum nitrate and zirconyl chloride, followed by heating at 1400-1500 C in a nitrogen atmosphere containing silicon monoxide, improved RSSN strength and oxidation resistance. The room temperature bend strength of RSSN was increased nearly fifty percent above the untreated strength with mean absolute strengths up to 420 MN/m2. Strengths of treated samples that were measured after a 12 hour oxidation exposure in air were up to 90 percent of the original as-nitrided strength, as compared to retained strengths in the range of 35 to 60 percent for untreated RSSN after the same oxidation exposure.
NASA Astrophysics Data System (ADS)
Cofré, Aarón; Vargas, Asticio; Torres-Ruiz, Fabián A.; Campos, Juan; Lizana, Angel; del Mar Sánchez-López, María; Moreno, Ignacio
2017-11-01
We present a quantitative analysis of the performance of a complete snapshot polarimeter based on a polarization diffraction grating (PDGr). The PDGr is generated in a common path polarization interferometer with a Z optical architecture that uses two liquid-crystal on silicon (LCoS) displays to imprint two different phase-only diffraction gratings onto two orthogonal linear states of polarization. As a result, we obtain a programmable PDGr capable to act as a simultaneous polarization state generator (PSG), yielding diffraction orders with different states of polarization. The same system is also shown to operate as a polarization state analyzer (PSA), therefore useful for the realization of a snapshot polarimeter. We analyze its performance using quantitative metrics such as the conditional number, and verify its reliability for the detection of states of polarization.
Review of literature surface tension data for molten silicon
NASA Technical Reports Server (NTRS)
Hardy, S.
1981-01-01
Measurements of the surface tension of molten silicon are reported. For marangoni flow, the important parameter is the variation of surface tension with temperature, not the absolute value of the surface tension. It is not possible to calculate temperature coefficients using surface tension measurements from different experiments because the systematic errors are usually larger than the changes in surface tension because of temperature variations. The lack of good surface tension data for liquid silicon is probably due to its extreme chemical reactivity. A material which resists attack by molten silicon is not found. It is suggested that all of the sessile drip surface tension measurements are probably for silicon which is contaminated by the substrate materials.
Core-shell silicon nanowire solar cells
Adachi, M. M.; Anantram, M. P.; Karim, K. S.
2013-01-01
Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices. PMID:23529071
Eschauzier, Christian; Haftka, Joris; Stuyfzand, Pieter J; de Voogt, Pim
2010-10-01
Different studies have shown that surface waters contain perfluorinated compounds (PFCs) in the low ng/L range. Surface waters are used to produce drinking water and PFCs have been shown to travel through the purification system and form a potential threat to human health. The specific physicochemical properties of PFCs cause them to be persistent and some of them to be bioaccumulative and toxic in the environment. This study investigates the evolvement of PFC concentrations in Rhine water and rainwater during dune water infiltration processes over a transect in the dune area of the western part of The Netherlands. The difference between infiltrated river water and rainwater in terms of PFC composition was investigated. Furthermore, isomer profiles were investigated. The compound perfluorobutanesulfonate (PFBS) was found at the highest concentrations of all PFCs investigated, up to 37 ng/L in infiltrated river water (71 ± 13% of ΣPFCs). This is in contrast with the predominant occurrence of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) reported in literature. The concentrations of PFBS found in infiltrated river Rhine water were significantly higher than those in infiltrated rainwater. For perfluorohexanesulfonate (PFHxS) the opposite was found: infiltrated rainwater contained more than infiltrated river water. The concentrations of PFOA, perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), PFBS, PFOS, and PFHxS in infiltrated river water showed an increasing trend with decreasing age of the water. The relative contribution of the branched PFOA and PFOS isomers to total concentrations of PFOA and PFOS showed a decreasing trend with decreasing age of the water.
Smietana, Mateusz; Bock, Wojtek J.; Mikulic, Predrag; Chen, Jiahua
2010-01-01
The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nd > 1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n > 2.2 at λ = 1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters. PMID:22163527
Smietana, Mateusz; Bock, Wojtek J; Mikulic, Predrag; Chen, Jiahua
2010-01-01
The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD>1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n>2.2 at λ=1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters.
Spraylon fluorocarbon encapsulation for silicon solar cell arrays
NASA Technical Reports Server (NTRS)
1977-01-01
A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, Kurt H.
1998-01-01
A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Pujar, Vijay
2004-01-01
Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.
Gilfedder, B S; Hofmann, H; Cartwright, I
2013-01-15
There is little known about the short-term dynamics of groundwater-surface water exchange in losing rivers. This is partly due to the paucity of chemical techniques that can autonomously collect high-frequency data in groundwater bores. Here we present two new instruments for continuous in situ (222)Rn measurement in bores for quantifying the surface water infiltration rate into an underlying or adjacent aquifer. These instruments are based on (222)Rn diffusion through silicone tube membranes, either wrapped around a pole (MonoRad) or strung between two hollow end pieces (OctoRad). They are combined with novel, robust, low-cost Geiger counter (222)Rn detectors which are ideal for long-term autonomous measurement. The down-hole instruments have a quantitative response time of about a day during low flow, but this decreases to <12 h during high-flow events. The setup was able to trace river water bank infiltration during moderate to high river flow during two field experiments. Mass-balance calculations using the (222)Rn data gave a maximum infiltration rate of 2 m d(-1). These instruments offer the first easily constructible system for continuous (222)Rn analysis in groundwater, and could be used to trace surface water infiltration in many environments including rivers, lakes, wetlands, and coastal settings.
Apparatus for silicon nitride precursor solids recovery
Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.
1995-04-04
Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
Method for silicon nitride precursor solids recovery
Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.
1992-12-15
Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
Combustion synthesis of advanced materials. [using in-situ infiltration technique
NASA Technical Reports Server (NTRS)
Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.
1992-01-01
The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.
Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides
NASA Astrophysics Data System (ADS)
Jiang, Yihong
The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during
Wu, Yugang; Yuan, Lei; Lu, Qicheng; Xu, Haiyan; He, Xiaozhou
2018-03-01
Tumor-infiltrating immune cells are heterogeneous and consist of characteristic compartments, including T helper (Th)1 and regulatory T (Treg) cells that exhibit distinctive biological functions. The present study investigated the profile of infiltrating immune cells from surgically removed tumor tissues from patients with colorectal cancer. The characteristic transcription factors of Th1 and Th2 cells, Treg cells, Th17 cells and T follicular helper (Tfh) cells were analyzed. The results demonstrated that a marked increased number of Treg cells presented in tumor infiltrates when compared with non-tumor adjacent tissues. An increased number of Th1 and Tfh cells existed in tumor infiltrates compared with non-tumorous adjacent tissues, while the infiltration of Th17 and Th2 cells was similar between tumor and non-tumor adjacent tissues. Furthermore, there were an increased number of Treg cells in tumors with low infiltration compared with those with high infiltration. The expression of CXC motif chemokine (CXC) receptor 3, CXC ligand (CXCL)L9 and CXCL10 was significantly increased on infiltrating T cells in tumors with high infiltration as compared with those with low infiltration. Macrophages exhibited a dominant M2 phenotype in tumor infiltrates of colorectal cancer, whereas a balanced M1 and M2 phenotype presented in macrophages from the peripheral blood. In vitro stimulation of macrophages isolated from tumor tissue of colorectal cancer with granulocyte macrophage colony-stimulating factor and lipopolysaccharide did not drive to an inflammatory phenotype. The results provide insights into the pattern of immune cell infiltration in Chinese patients with colorectal cancer. It may be beneficial that patients with colorectal cancer are screened for the defined profile along with the expression of CXCL9 and CXCL10 in order to achieve better efficacy in clinical applications of immune-based therapy, including anti-programmed cell death protein 1 therapy.
NASA Astrophysics Data System (ADS)
Huang, Jian Yu; Lo, Yu-Chieh; Niu, Jun Jie; Kushima, Akihiro; Qian, Xiaofeng; Zhong, Li; Mao, Scott X.; Li, Ju
2013-04-01
The ability to form tiny droplets of liquids and control their movements is important in printing or patterning, chemical reactions and biological assays. So far, such nanofluidic capabilities have principally used components such as channels, nozzles or tubes, where a solid encloses the transported liquid. Here, we show that liquids can flow along the outer surface of solid nanowires at a scale of attolitres per second and the process can be directly imaged with in situ transmission electron microscopy. Microscopy videos show that an ionic liquid can be pumped along tin dioxide, silicon or zinc oxide nanowires as a thin precursor film or as beads riding on the precursor film. Theoretical analysis suggests there is a critical film thickness of ~10 nm below which the liquid flows as a flat film and above which it flows as discrete beads. This critical thickness is the result of intermolecular forces between solid and liquid, which compete with liquid surface energy and Rayleigh-Plateau instability.
USDA-ARS?s Scientific Manuscript database
The estimation of parameters of a flow-depth dependent furrow infiltration model and of hydraulic resistance, using irrigation evaluation data, was investigated. The estimated infiltration parameters are the saturated hydraulic conductivity and the macropore volume per unit area. Infiltration throu...
Infiltration and extravasation.
Hadaway, Lynn
2007-08-01
The Infusion Nurses Society's national standards of practice require that a nurse who administers IV medication or fluid know its adverse effects and appropriate interventions to take before starting the infusion. A serious complication is the inadvertent administration of a solution or medication into the tissue surrounding the IV catheter--when it is a nonvesicant solution or medication, it is called infiltration; when it is a vesicant medication, it is called extravasation. Both infiltration and extravasation can have serious consequences: the patient may need surgical intervention resulting in large scars, experience limitation of function, or even require amputation. Another long-term effect is complex regional pain syndrome, a neurologic syndrome that requires long-term pain management. These outcomes can be prevented by using appropriate nursing interventions during IV catheter insertion and early recognition and intervention upon the first signs and symptoms of infiltration and extravasation. Nursing interventions include early recognition, prevention, and treatment (including the controversial use of antidotes, and heat and cold therapy). Steps to manage infiltration and extravasation are presented.
Recent Advances in the Development of Thick-Section Melt-Infiltrated C/SiC Composites
NASA Technical Reports Server (NTRS)
Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.
2004-01-01
Using a pressureless melt infiltration and in situ reaction process to form the silicon carbide (SiC) matrix, Ultramet has been developing a means to rapidly fabricate ceramic matrix composites (CMCs) targeting thicker sections. The process also employs a unique route for the application of oxide fiber interface coatings designed to protect the fiber and impart fiber-matrix debond. Working toward a 12 inch diameter, 2.5 inch thick demonstrator component, the effect of various processing parameters on room temperature flexure strength is being studied with plans for more extensive elevated temperature mechanical strength evaluation to follow this initial optimization process.
NASA Astrophysics Data System (ADS)
Zeng, Zhi; Peng, Runling; He, Mei
2017-02-01
The double-liquid variable-focus lens based on the electrowetting has the characteristics of small size, light weight, fast response, and low price and so on. In this paper, double-liquid variable-focus lens's Principle and structure are introduced. The reasons for the existence and improvement of contact angle hysteresis are given according improved Young's equation. At last, 1-Bromododecane with silicone oil are mixed to get oil liquid with different viscosity and proportion liquid as insulating liquid. External voltages are applied to these three liquid lens and focal lengths of the lenses versus applied voltage are investigated. Experiments show that, the decreasing of oil liquid viscosity can reduce focal length hysteresis.
Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...
Effect of accelerated aging on the cross-link density of medical grade silicones.
Mahomed, Aziza; Pormehr, Negin Bagheri
2016-11-25
Four specimens of Nagor silicone of different hardness (soft, medium and hard) were swollen, until they reached equilibrium (i.e. constant mass) in five liquids at 25°C, before and after accelerated aging. For the specimens swollen before accelerated aging, the greatest swelling was obtained in methyl cyclohexane, while for the specimens swollen after accelerated aging, the greatest swelling was obtained in cyclohexane. The cross-link density, υ, was also calculated from the swelling measurements for all the specimens, before and after accelerated aging, using the Flory-Rehner equation. The softer silicones, which swelled the most, had lower υ values than harder silicones. The amount of swelling (measured in terms of ϕ) and υ varied significantly (p<0.05) in some cases, between the different silicone hardness and between different liquids. Furthermore, the cross-link density, υ, significantly (p<0.05) increased after accelerated aging in most liquids.Note: ϕ is defined as the volume fraction of polymer in its equilibrium swollen state. A probability value of statistical significance of 0.05 or 5% was selected, hence if a p value of less than 0.05 was obtained, the null hypothesis was rejected (i.e. significant if p<0.05).
Pugar, E.A.; Morgan, P.E.D.
1988-04-04
A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about O/degree/C up to about 300/degree/C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200-1700/degree/C for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.
Modeling the Thermostructural Stability of Melt-infiltrated Sic/sic Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Bhatt, Ramakrishna T.; McCue, Terry R.
2003-01-01
SiC/SiC composites developed by NASA with Sylramic-iBN fibers and melt-infiltrated (MI) SiC-Si matrices have demonstrated 1000-hour rupture life in air at 100 MPa and 1315OC. Recently it has been determined that a major factor controlling the long-term rupture life of these composites is not environment or stress, but an intrinsic microstructural and strength instability caused by a thermally-induced silicon attack of the Sic fibers. The objective of this paper is to present a simple diffusion-based analytical model which predicts well the observed effects of stress-free thermal exposure on the residual tensile strength of Sylramic-iBN/SiC-Si composites. The practical implications of the model for SiC/SiC composites with MI matrices are discussed.
Silicon-based sleeve devices for chemical reactions
Northrup, M. Allen; Mariella, Jr., Raymond P.; Carrano, Anthony V.; Balch, Joseph W.
1996-01-01
A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
Silicon-based sleeve devices for chemical reactions
Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.
1996-12-31
A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.
Solution-processed polycrystalline silicon on paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trifunovic, M.; Ishihara, R., E-mail: r.ishihara@tudelft.nl; Shimoda, T.
Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been mademore » when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.« less
Márquez, A; Moreno, I; Iemmi, C; Lizana, A; Campos, J; Yzuel, M J
2008-02-04
In this paper we characterize the polarimetric properties of a liquid crystal on silicon display (LCoS), including depolarization and diattenuation which are usually not considered when applying the LCoS in diffractive or adaptive optics. On one hand, we have found that the LCoS generates a certain degree (that can be larger than a 10%) of depolarized light, which depends on the addressed gray level and on the incident state of polarization (SOP), and can not be ignored in the above mentioned applications. The main origin of the depolarized light is related with temporal fluctuations of the SOP of the light reflected by the LCoS. The Mueller matrix of the LCoS is measured as a function of the gray level, which enables for a numerical optimization of the intensity modulation configurations. In particular we look for maximum intensity contrast modulation or for constant intensity modulation. By means of a heuristic approach we show that, using elliptically polarized light, amplitude-mostly or phase-mostly modulation can be obtained at a wavelength of 633 nm.
Silicon Nitride Equation of State
NASA Astrophysics Data System (ADS)
Swaminathan, Pazhayannur; Brown, Robert
2015-06-01
This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, K.H.
1998-06-30
A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.
The Earth's core composition from high pressure density measurements of liquid iron alloys
NASA Astrophysics Data System (ADS)
Morard, G.; Siebert, J.; Andrault, D.; Guignot, N.; Garbarino, G.; Guyot, F.; Antonangeli, D.
2013-07-01
High-pressure, high-temperature in situ X-ray diffraction has been measured in liquid iron alloys (Fe-5 wt% Ni-12 wt% S and Fe-5 wt% Ni-15 wt% Si) up to 94 GPa and 3200 K in laser-heated diamond anvil cells. From the analysis of the X-ray diffuse scattering signal of the metallic liquids, we determined density and bulk modulus of the two liquid alloys. Comparison with a reference Earth model indicates that a core composition containing 6% of sulfur and 2% of silicon by weight would best match the geophysical data. Models with 2.5% of sulfur and 4-5% of silicon are still consistent with geophysical constraints whereas silicon only compositions are not. These results suggest only moderate depletion of sulfur in the bulk Earth.
Aradilla, David; Gao, Fang; Lewes-Malandrakis, Georgia; Müller-Sebert, Wolfgang; Gentile, Pascal; Boniface, Maxime; Aldakov, Dmitry; Iliev, Boyan; Schubert, Thomas J S; Nebel, Christoph E; Bidan, Gérard
2016-07-20
A versatile and robust hierarchically multifunctionalized nanostructured material made of poly(3,4-(ethylenedioxy)thiophene) (PEDOT)-coated diamond@silicon nanowires has been demonstrated to be an excellent capacitive electrode for supercapacitor devices. Thus, the electrochemical deposition of nanometric PEDOT films on diamond-coated silicon nanowire (SiNW) electrodes using N-methyl-N-propylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide ionic liquid displayed a specific capacitance value of 140 F g(-1) at a scan rate of 1 mV s(-1). The as-grown functionalized electrodes were evaluated in a symmetric planar microsupercapacitor using butyltrimethylammonium bis((trifluoromethyl)sulfonyl)imide aprotic ionic liquid as the electrolyte. The device exhibited extraordinary energy and power density values of 26 mJ cm(-2) and 1.3 mW cm(-2) within a large voltage cell of 2.5 V, respectively. In addition, the system was able to retain 80% of its initial capacitance after 15 000 galvanostatic charge-discharge cycles at a high current density of 1 mA cm(-2) while maintaining a Coulombic efficiency around 100%. Therefore, this multifunctionalized hybrid device represents one of the best electrochemical performances concerning coated SiNW electrodes for a high-energy advanced on-chip supercapacitor.
Process feasibility study in support of silicon material, task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.
Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping
2014-10-20
A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.
Vapor-liquid-solid growth of silicon and silicon germanium nanowires
NASA Astrophysics Data System (ADS)
Nimmatoori, Pramod
2009-12-01
Si and Si1-xGex nanowires are promising materials with potential applications in various disciplines of science and technology. Small diameter nanowires can act as model systems to study interesting phenomena such as tunneling that occur in the nanometer regime. Furthermore, technical challenges in fabricating nanoscale size devices from thin films have resulted in interest and research on nanowires. In this perspective, vertical integrated nanowire field effect transistors (VINFETs) fabricated from Si nanowires are promising devices that offer better control on device properties and push the transistor architecture into the third dimension potentially enabling ultra-high transistor density circuits. Transistors fabricated from Si/Si 1-xGex nanowires have also been proposed that can have high carrier mobility. In addition, the Si and Si1-xGe x nanowires have potential to be used in various applications such as sensing, thermoelectrics and solar cells. Despite having considerable potential, the understanding of the vapor-liquid-solid (VLS) mechanism utilized to fabricate these wires is still rudimentary. Hence, the objective of this thesis is to understand the effects of nanoscale size and the role of catalyst that mediates the wire growth on the growth rate of Si and Si1-xGe x nanowires and interfacial abruptness in Si/Si1-xGe x axial heterostructure nanowires. Initially, the growth and structural properties of Si nanowires with tight diameter distribution grown from 10, 20 and 50 nm Au particles dispersed on a polymer-modified substrate was studied. A nanoparticle application process was developed to disperse Au particles on the substrate surface with negligible agglomeration and sufficient density. The growth temperature and SiH4 partial pressure were varied to optimize the growth conditions amenable to VLS growth with smooth wire morphology and negligible Si thin film deposition on wire sidewalls. The Si nanowire growth rate was studied as a function of growth
NASA Astrophysics Data System (ADS)
Nahm, Jeong-Yeop
Reflective cholesteric liquid crystal displays (Ch-LCDs) have advantages, such as, high brightness, low power consumption, and wide viewing angle, since they do not need any polarizer, color filter, and backlight. Furthermore, due to their bistability Ch-LCDs can retain their images virtually forever without additional power consumption. But conventional passive-matrix addressing of Ch-LCDs allows only a slow image updating speed. Active-matrix addressing should allow fast image updating or video-rate operation. However, because the threshold voltage of cholesteric, liquid crystal is high (>20V), the switching devices for active-matrix addressing should satisfy required characteristics even under high bias conditions. In order to investigate the applicability of hydrogenated amorphous silicon thin film transistors (a-Si:H TFTs) for the switching devices of active-matrix (AM) Ch-LCDs, the characteristics of conventional and gate offset high voltage a-Si:H TTFs were examined under high bias conditions. And it was concluded that high OFF-current of conventional a-Si:H TFTs and low ON-current of gate offset high voltage a-Si:H TFTs were main problems for reflective AM Ch-LCD applications. In order to improve the TFT characteristics under high bias conditions, we propose two new a-Si:H TFT structures called gate planarized (GP) and buried field plate (BFP) high voltage a-Si:H TFTs. Firstly, in the GP a-Si:H TFTs, we used a thick spin-coated benzocyclobutene (BCB) layer beneath a thin hydrogenated amorphous silicon nitride (a-SiNx:H) layer for gate insulator. The GP a-Si:H TFT showed normal TFT characteristic up to VGS = VDS = ˜100 V without any device failure. But TFT ON-current of GP a-Si:H TFT was reduced due to the introduction of the thick low dielectric BCB layer. Secondly, in the BFP a-Si:H TFT, an offset region and a buried field plate were introduced between the drain/source and gate electrodes to reduce the electric field in the pinch-off region. For this BFP
NASA Astrophysics Data System (ADS)
Marques, Carlos A. F.; Peng, Gang-Ding; Webb, David J.
2015-05-01
Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using
Solutions for care of silicone hydrogel lenses.
Willcox, Mark D P
2013-01-01
During wear of contact lenses on a daily wear basis, it is necessary to disinfect the lens overnight before reinserting the lens the next day. The ability of the solutions used for this to disinfect lenses and lens cases is important for safe lens wear. The literature on the disinfecting ability of multipurpose disinfecting solutions (MPDS) commonly used with silicone hydrogel lenses reported during the period 2000 to 2012 is reviewed, as this is the period of time during which these lenses have been commercially available. Particular emphasis is placed on the ability of disinfecting solutions to control colonization of lens cases by microbes and changes in composition and use of the solutions. In addition, the literature is reviewed on ways of minimizing lens case microbial contamination. Maintaining the hygiene of contact lenses and lens cases is important in minimizing various forms of corneal infiltrative events that occur during lens wear. Although lens case contamination is not associated with different lenses, it is determined by use of different MPDS. MPDS that allow more frequent or heavy contamination of cases by Gram-negative bacteria are associated with a higher incidence of corneal infiltrative events. MPDS are now available that contain dual disinfectants. Wiping lens cases with tissues or using lens cases that incorporate silver are associated with reductions in contamination in clinical trials. Similarly, using MPDS to rub and rinse lenses before disinfection may reduce levels of microbes on lenses. The MPDS also contain surfactants that help reduce deposition and denaturation of proteins on lenses. Improvements in MPDS formulations and hygiene practices may help to reduce the incidence of adverse events that are seen during use with silicone hydrogel lenses.
NASA Astrophysics Data System (ADS)
Ozawa, Haruka; Hirose, Kei; Yonemitsu, Kyoko; Ohishi, Yasuo
2016-12-01
We carried out melting experiments on Fe-Si alloys to 127 GPa in a laser-heated diamond-anvil cell (DAC). On the basis of textural and chemical characterizations of samples recovered from a DAC, a change in eutectic liquid composition in the Fe-FeSi binary system was examined with increasing pressure. The chemical compositions of coexisting liquid and solid phases were quantitatively determined with field-emission-type electron microprobes. The results demonstrate that silicon content in the eutectic liquid decreases with increasing pressure to less than 1.5 ± 0.1 wt.% Si at 127 GPa. If silicon is a single light element in the core, 4.5 to 12 wt.% Si is required in the outer core in order to account for its density deficit from pure iron. However, such a liquid core, whose composition is on the Si-rich side of the eutectic point, crystallizes less dense solid, CsCl (B2)-type phase at the inner core boundary (ICB). Our data also show that the difference in silicon concentration between coexisting solid and liquid is too small to account for the observed density contrast across the ICB. These indicate that silicon cannot be the sole light element in the core. Previous geochemical and cosmochemical arguments, however, strongly require ∼6 wt.% Si in the core. It is possible that the Earth's core originally included ∼6 wt.% Si but then became depleted in silicon by crystallizing SiO2 or MgSiO3.
Infiltration as Ventilation: Weather-Induced Dilution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Max H.; Turner, William J.N.; Walker, Iain S.
The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less
Silicon nitride equation of state
NASA Astrophysics Data System (ADS)
Brown, Robert C.; Swaminathan, Pazhayannur K.
2017-01-01
This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.
Liquid oxygen/metal gelled monopropellants
NASA Technical Reports Server (NTRS)
Wickman, John H.
1991-01-01
The objectives of this program were to establish the feasibility of metallized/liquid oxygen monopropellants and select the best monopropellant formulation for continued study. The metal powders mixed with the liquid oxygen were aluminum/magnesium (80/20), silicon and iron (Iron was only tested for burning properties). The formulations were first evaluated on whether they detonated when ignited or burned. The formulations only burned when ignited. The viscosity for the formulations ranged from 900 cps to 100 cps at shear rates up to 300 seconds(sup -1). Two percent (by weight) of Cab-O-Sil was added to the aluminum and aluminum/magnesium formulations for gelling while the silicon formulation used three percent. Within a seven hour period, settling was suggested only in the 29 percent aluminum and 29 percent aluminum/magnesium formulations. The monopropellants were burned in a cylinder submerged in a liquid nitrogen bath. Experimental data at ambient pressure indicated that the monopropellants were extinguished when the flame front reached regions submerged under the liquid nitrogen. The burn rate increased dramatically when burned in a cylinder enclosure with less heat sink available to the monopropellant. The test results were inconclusive as to whether the increased burn rate was due to the lower heat sink capacity or the small amount of pressure (2 psi) generated during the burning of the monopropellant. The burning of the aluminum and aluminum/magnesium resulted in a brilliant white flame similar to that of an arc welder. These monopropellants burned in a pulsating manner with the aluminum/magnesium appearing to have less pulsating combustion. The silicon monopropellant burned with an orange glow. No sparks or energetic burning was apparent as with the aluminum or aluminum/magnesium.
An Open Pit Nanofluidic Tool: Localized Chemistry Assisted by Mesoporous Thin Film Infiltration.
Mercuri, Magalí; Pierpauli, Karina A; Berli, Claudio L A; Bellino, Martín G
2017-05-17
Nanofluidics based on nanoscopic porous structures has emerged as the next evolutionary milestone in the construction of versatile nanodevices with unprecedented applications. However, the straightforward development of nanofluidically interconnected systems is crucial for the production of practical devices. Here, we demonstrate that spontaneous infiltration into supramolecularly templated mesoporous oxide films at the edge of a sessile drop in open air can be used to connect pairs of landmarks. The liquids from the drops can then join through the nanoporous network to guide a localized chemical reaction at the nanofluid-front interface. This method, here named "open-pit" nanofluidics, allows mixing reagents from nanofluidically connected droplet reservoirs that can be used as reactors to conduct reactions and precipitation processes. From the fundamental point of view, the work contributes to unveiling subtle phenomena during spontaneous infiltration of fluids in bodies with nanoscale dimensions such as the front broadening effect and the oscillatory behavior of the infiltration-evaporation front. The approach has distinctive advantages such as easy fabrication, low cost, and facility of scaling up for future development of ultrasensitive detection, controlled nanomaterial synthesis, and novel patterning methods.
Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved
NASA Astrophysics Data System (ADS)
Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.
2017-07-01
The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1978-01-01
Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.
Rossini, Roberto; Lisi, Giorgio; Pesci, Anna; Ceccaroni, Marcello; Zamboni, Giuseppe; Gentile, Irene; Rettore, Lorenzo; Ruffo, Giacomo
2018-02-01
Intestinal involvement in endometriosis was first described by Sampson in 1922. The reported incidence ranges between 3% and 37% in patients diagnosed with endometriosis. In literature, there are few studies that correlate the severity of endometriosis (in terms of intestinal infiltration) and its clinical presentation. The aim of this study was to review the correlation between the severity of symptoms, the depth of intestinal wall infiltration, and lymph node involvement in our tertiary referral center. We retrospectively analyzed 553 patients who had undergone intestinal resection for deep infiltrating endometriosis at our institution (Sacro Cuore Negrar Hospital) between 2004 and 2009. Based on intestinal wall infiltration, we divided patients into three groups (Group A: intestinal infiltration that reaches the muscle layer, Group B: infiltration to the submucosa, and Group C: endometriosis reaches the mucosa). Symptoms, intestinal stenosis, and positive lymph nodes were compared in the three groups with the chi-square test. No statistical correlation was found between symptoms and the intestinal wall infiltrations. The three groups were also compared on the basis of positive visceral lymph nodes and we did find a statistical difference (P = .05) in the lymph node count in the two main groups. There seems to be no statistically significant difference in symptoms between patients with different degrees of infiltration. Although visceral lymph node involvement has been occasionally described in literature, we found that it is related to submucosal infiltration.
Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Jazwiec, A.; Smith, J. E.
2017-12-01
The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to
Unstable infiltration fronts in porous media on laboratory scale
NASA Astrophysics Data System (ADS)
Schuetz, Cindi; Neuweiler, Insa
2014-05-01
, while the inclusions act as a storage that is filled during the infiltration process. References: Chouke, R.L., van Meurs, P., and van der Poel, C., 1959. The instability of slow immiscible, viscous liquid-liquid displacements in permeable media, Trans. AIME. 216:188-194. Glass, R.J., Steenhuis, T.S., and Parlange J.-Y., 1989a. Mechanism for finger persistence in homogeneous, unsaturated, porous media: Theory and verification, Soil Sci. 148:60-70. Glass R.J., Parlange, J.-Y., and Steenhuis, T.S., 1991. Immiscible displacement in porous media: Stability analysis of three-dimensional, axisymmetric disturbances with application to gravity-driven wetting front instability, Water Resour. Res., 27, 1947-1956. Guarracino, L., 2007. Estimation of saturated hydraulic conductivity Ks from the van Genuchten shape parameter , Water Resour. Res., 43, W11502. Parlange, J.-Y. and Hill, D.E., 1976a. Theoretical analysis of wetting front instability in soils, Soil Sci. 122:236-239. Philip, J. 1975a. Stability analysis of infiltration, Soil Sci. Soc. Am. Proc. 39:1042-1049. Saffman, P.G. and Taylor, G., 1958. The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid, Proc. R. Soc. London, 245:312-329. Wang Z., Feyen, J., Nielsen, D.R., and van Genuchten, M.T., 1997. Two-phase flow infiltration equations accounting for air entrapment effects, Water Resour. Res., 33:2759-2767. Wang, Z., Feyen, J., and Elrick, D.E., 1998c. Prediction of fingering in porous media, Water Resour. Res. 34(9):2183-2190. Wang Z., Wu, L., and Wu, Q.J., 2000. Water-entry value as an alternative indicator of soil water-repellency and wettability, Journal of Hydrology., 231-232, 76-83. White, I., Colombera, P.M., and Philip, J.R., 1976. Experimental studies of wetting front instability induced by sudden changes of pressure gradient, Soil Sci. Soc. Am. Proc., 40:824-829.
Target molecules detection by waveguiding in a photonic silicon membrane
Letant, Sonia E [Livermore, CA; Van Buuren, Anthony [Livermore, CA; Terminello, Louis [Danville, CA; Hart, Bradley R [Brentwood, CA
2006-12-26
Disclosed herein is a porous silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and calculate the concentration of bound target.
Target molecules detection by waveguiding in a photonic silicon membrane
Letant, Sonia; Van Buuren, Anthony; Terminello, Louis
2004-08-31
Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.
Huang, Hongxin; Inoue, Takashi; Tanaka, Hiroshi
2011-08-01
We studied the long-term optical performance of an adaptive optics scanning laser ophthalmoscope that uses a liquid crystal on silicon spatial light modulator to correct ocular aberrations. The system achieved good compensation of aberrations while acquiring images of fine retinal structures, excepting during sudden eye movements. The residual wavefront aberrations collected over several minutes in several situations were statistically analyzed. The mean values of the root-mean-square residual wavefront errors were 23-30 nm, and for around 91-94% of the effective time the errors were below the Marechal criterion for diffraction limited imaging. The ability to axially shift the imaging plane to different retinal depths was also demonstrated.
Silicon accumulation and distribution in petunia and sunflower
USDA-ARS?s Scientific Manuscript database
Silicon (Si) is a beneficial element that has been shown to protect plants during periods of abiotic and biotic stress. Plant-available Si can be supplied through substrate components, substrate amendments, liquid fertilization, or foliar sprays. The objective of this study was to compare Si accum...
24 CFR 3280.505 - Air infiltration.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...
24 CFR 3280.505 - Air infiltration.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...
24 CFR 3280.505 - Air infiltration.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...
24 CFR 3280.505 - Air infiltration.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...
24 CFR 3280.505 - Air infiltration.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...
NASA Technical Reports Server (NTRS)
1981-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.
Resistivity Distribution of Multicrystalline Silicon Ingot Grown by Directional Solidification
NASA Astrophysics Data System (ADS)
Sun, S. H.; Tan, Y.; Dong, W.; Zhang, H. X.; Zhang, J. S.
2012-06-01
The effects of impurities on the resistivity distribution and polarity of multicrystalline silicon ingot prepared by directional solidification were investigated in this article. The shape of the equivalence line of the resistivity in the vertical and cross sections was determined by the solid-liquid interface. Along the solidification height of silicon ingot, the conductive type changed from p-type in the lower part of the silicon ingot to n-type in the upper part of the silicon ingot. The resistivity in the vertical section of the silicon ingot initially increased along the height of the solidified part, and reached its maximum at the polarity transition position, then decreased rapidly along the height of solidified part and approached zero on the top of the ingot because of the accumulation of impurities. The variation of resistivity in the vertical section of the ingot has been proven to be deeply relevant to the distribution of Al, B, and P in the growth direction of solidification.
Development and Properties of Advanced Internal Magnesium Infiltration (AIMI) Processed MgB2 Wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collings, Prof Edward William; Sumption, Prof Michael D; Li, Guangze
The development, processing, properties, and formation mechanisms of Advanced Internal Magnesium Infiltration (AIMI) MgB2 wires are discussed against a background of the related and original processes, Internal-Magnesium-Diffusion (IMD) and Magnesium-Reactive-Liquid-Infiltration (Mg-RLI). First reviewed are the formation, properties and applications of Mg-RLI bulks as basis for discussions of Mg-RLI-processed and IMD-processed wires. The transition from Mg-RLI- and IMD- to AIMI wires is explained, and the relative performances of powder-in-tube (PIT), IMD and AIMI wires are summarized in the form of an iso-Je diagram of Jc,nb versus Anb/ATOT in which ATOT, Anb, Jc,nb, and Je are, respectively, the wire s cross-sectional area,more » the area inside the chemical barrier, the critical current (Ic) normalized to Anb, and Ic normalized to ATOT. After the details of AIMI wire fabrication selection of starting powders, dopants, and reaction heat treatments are introduced the report goes on to describe in detail the development of high performance AIMI wires: layer Jcs, fill factors, Jes, and the effects of wire size, multifilamentarization, doping with C, and co-doping with C and Dy2O3. The two-stage mechanism of layer formation in AIMI wires is discussed: first the reactive infiltration of liquid Mg into a porous B pack, a process that terminates with the formation of a dense MgB2 layer; second the slow diffusion of Mg into any remaining B through that MgB2 layer. The report concludes with a brief general discussion of anisotropy, current percolation, and the Jc field dependence of MgB2 wires.« less
A Simple and Accurate Rate-Driven Infiltration Model
NASA Astrophysics Data System (ADS)
Cui, G.; Zhu, J.
2017-12-01
In this study, we develop a novel Rate-Driven Infiltration Model (RDIMOD) for simulating infiltration into soils. Unlike traditional methods, RDIMOD avoids numerically solving the highly non-linear Richards equation or simply modeling with empirical parameters. RDIMOD employs infiltration rate as model input to simulate one-dimensional infiltration process by solving an ordinary differential equation. The model can simulate the evolutions of wetting front, infiltration rate, and cumulative infiltration on any surface slope including vertical and horizontal directions. Comparing to the results from the Richards equation for both vertical infiltration and horizontal infiltration, RDIMOD simply and accurately predicts infiltration processes for any type of soils and soil hydraulic models without numerical difficulty. Taking into account the accuracy, capability, and computational effectiveness and stability, RDIMOD can be used in large-scale hydrologic and land-atmosphere modeling.
Tulunoglu, Ozlem; Tulunoglu, Ibrahim Fevzi; Antonson, Sibel A; Campillo-Funollet, Marc; Antonson, Donald; Munoz-Viveros, Carlos
2014-11-01
The aim of this in vitro study was to evaluate the effectiveness of a resin infiltrant (ICON) on marginal sealing ability of class II resin restorations with/without-caries. Forty-eight noncarious human pre-molar teeth were embedded and MO and DO preparations of standard dimensions were prepared. The left side of dentin margins of the cavities were left nonbonded (UB) while the right side were bonded using total etch-bonding agent and all restored with a Nanohybrid composite. The teeth were thermocycled and half of the specimens in the UB and B groups were subjected to an artificial caries process. ICON was applied to caries and noncaries subgroups following the manufacturer's directions. Impressions were made at each step: after the restorations were completed, thermocycling, artificial caries procedures, and infiltrant application and the silicone tag lengths were measured with a stereomicroscope. The specimens were immersed in 0.5% basic fuchsine at 37° C for 24 hours, sectioned and microleakage was evaluated with a stereomicroscope. Selected samples and their replicas were assessed for marginal quality under a stereomicroscope and SEM. Statistical evaluation of the data were made using Kruskal-Wallis, Mann-Whitney U and Wilcoxon Sign Rank tests. While bonding application did not create a meaningful difference, the thermocycling and artificial caries significantly increased the gap length and microleakage (p < 0.05). ICON application was decreased the microleakage, created gap-free margins and closed the gaps which were previously occurred at the same cavities (p < 0.05). A resin infiltrant (ICON) application decreased the microleakage, created gap-free margins and closed the gaps, which previously occurred at the same cavities. Approximal application of resin infiltrant may increase the success of the class II composite restorations also reduced the risk of needing more complex restoration therapy.
Low-cost solar array project task 1: Silicon material. Gaseous melt replenishment system
NASA Technical Reports Server (NTRS)
Jewett, D. N.; Bates, H. E.; Hill, D. M.
1980-01-01
The operation of a silicon production technique was demonstrated. The essentials of the method comprise chemical vapor deposition of silicon, by hydrogen reduction of chlorosilanes, on the inside of a quartz reaction vessel having large internal surface area. The system was designed to allow successive deposition-melting cycles, with silicon removal being accomplished by discharging the molten silicon. The liquid product would be suitable for transfer to a crystal growth process, casting into solid form, or production of shots. A scaled-down prototype reactor demonstrated single pass conversion efficiency of 20 percent and deposition rates and energy consumption better than conventional Siemens reactors, via deposition rates of 365 microns/hr. and electrical consumption of 35 Kwhr/kg of silicon produced.
Short-pulse laser interactions with disordered materials and liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, L.M.; Goldman, C.H.; Longtin, J.P.
High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less
Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes
NASA Astrophysics Data System (ADS)
Seo, Sang Won; Han, Seungoh; Seo, Jun Ho; Kim, Young Mok; Kang, Moon Sik; Min, Nam Ki; Choi, Woo Beom; Sung, Man Young
2009-05-01
A liquid lens based on the electrowetting phenomenon was designed to be cylindrical to minimize dead area. The lens was fabricated with microelectromechanical-system (MEMS) technology using silicon thin film and wafer bonding processes. A multiple dielectric layer comprising Teflon, silicon nitride, and thermal oxide was formed on the cylinder wall. With a change of 11 Vrms in the applied bias, the lens module, including the fabricated liquid lens, showed a focal length change of approximately 166 mm. A capsule endoscope was assembled, including the lens module, and was successfully used to take images of a pig colon at various focal lengths.
40 CFR 35.2120 - Infiltration/Inflow.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Infiltration/Inflow. 35.2120 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... infiltration/inflow. For combined sewers, inflow is not considered excessive in any event. (b) Inflow. If the...
40 CFR 35.2120 - Infiltration/Inflow.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Infiltration/Inflow. 35.2120 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... infiltration/inflow. For combined sewers, inflow is not considered excessive in any event. (b) Inflow. If the...
40 CFR 35.2120 - Infiltration/Inflow.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Infiltration/Inflow. 35.2120 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... infiltration/inflow. For combined sewers, inflow is not considered excessive in any event. (b) Inflow. If the...
40 CFR 35.2120 - Infiltration/Inflow.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Infiltration/Inflow. 35.2120 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... infiltration/inflow. For combined sewers, inflow is not considered excessive in any event. (b) Inflow. If the...
Modeling snowmelt infiltration in seasonally frozen ground
NASA Astrophysics Data System (ADS)
Budhathoki, S.; Ireson, A. M.
2017-12-01
In cold regions, freezing and thawing of the soil govern soil hydraulic properties that shape the surface and subsurface hydrological processes. The partitioning of snowmelt into infiltration and runoff has also important implications for integrated water resource management and flood risk. However, there is an inadequate representation of the snowmelt infiltration into frozen soils in most land-surface and hydrological models, creating the need for improved models and methods. Here we apply, the Frozen Soil Infiltration Model, FroSIn, which is a novel algorithm for infiltration in frozen soils that can be implemented in physically based models of coupled flow and heat transport. In this study, we apply the model in a simple configuration to reproduce observations from field sites in the Canadian prairies, specifically St Denis and Brightwater Creek in Saskatchewan, Canada. We demonstrate the limitations of conventional approaches to simulate infiltration, which systematically over-predict runoff and under predict infiltration. The findings show that FroSIn enables models to predict more reasonable infiltration volumes in frozen soils, and also represent how infiltration-runoff partitioning is impacted by antecedent soil moisture.
A Force-Visualized Silicone Retractor Attachable to Surgical Suction Pipes.
Watanabe, Tetsuyou; Koyama, Toshio; Yoneyama, Takeshi; Nakada, Mitsutoshi
2017-04-05
This paper presents a force-visually-observable silicone retractor, which is an extension of a previously developed system that had the same functions of retracting, suction, and force sensing. These features provide not only high usability by reducing the number of tool changes, but also a safe choice of retracting by visualized force information. Suction is achieved by attaching the retractor to a suction pipe. The retractor has a deformable sensing component including a hole filled with a liquid. The hole is connected to an outer tube, and the liquid level displaced in proportion to the extent of deformation resulting from the retracting load. The liquid level is capable to be observed around the surgeon's fingertips, which enhances the usability. The new hybrid structure of soft sensing and hard retracting allows the miniaturization of the retractor as well as a resolution of less than 0.05 N and a range of 0.1-0.7 N. The overall structure is made of silicone, which has the advantages of disposability, low cost, and easy sterilization/disinfection. This system was validated by conducting experiments.
Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction
Goyal, Sachit; Desai, Amit V.; Lewis, Robert W.; Ranganathan, David R.; Li, Hairong; Zeng, Dexing; Reichert, David E.; Kenis, Paul J.A.
2014-01-01
Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE. Fabrication of silicon and glass-based LLE platforms typically requires extensive use of photolithography, plasma or laser-based etching, high temperature (anodic) bonding, and/or wet etching with KOH or HF solutions. In contrast, polymeric microfluidic platforms can be fabricated using less involved processes, typically photolithography in combination with replica molding, hot embossing, and/or bonding at much lower temperatures. Here we report the fabrication and testing of microfluidic LLE platforms comprised of thiolene or a perfluoropolyether-based material, SIFEL, where the choice of materials was mainly guided by the need for solvent compatibility and fabrication amenability. Suitable designs for polymer-based LLE platforms that maximize extraction efficiencies within the constraints of the fabrication methods and feasible operational conditions were obtained using analytical modeling. To optimize the performance of the polymer-based LLE platforms, we systematically studied the effect of surface functionalization and of microstructures on the stability of the liquid-liquid interface and on the ability to separate the phases. As demonstrative examples, we report (i) a thiolene-based platform to determine the lipophilicity of caffeine, and (ii) a SIFEL-based platform to extract radioactive copper from an acidic aqueous solution. PMID:25246730
Solution-grown silicon nanowires for lithium-ion battery anodes.
Chan, Candace K; Patel, Reken N; O'Connell, Michael J; Korgel, Brian A; Cui, Yi
2010-03-23
Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires using the pyrolysis of sugar was found to be crucial for making good electronic contact to the material. Using multiwalled carbon nanotubes as the conducting additive was found to be more effective for obtaining good cycling behavior than using amorphous carbon. Reversible capacities of 1500 mAh/g were observed for 30 cycles.
Amorphous Silicon Nanowires Grown on Silicon Oxide Film by Annealing
NASA Astrophysics Data System (ADS)
Yuan, Zhishan; Wang, Chengyong; Chen, Ke; Ni, Zhonghua; Chen, Yunfei
2017-08-01
In this paper, amorphous silicon nanowires (α-SiNWs) were synthesized on (100) Si substrate with silicon oxide film by Cu catalyst-driven solid-liquid-solid mechanism (SLS) during annealing process (1080 °C for 30 min under Ar/H2 atmosphere). Micro size Cu pattern fabrication decided whether α-SiNWs can grow or not. Meanwhile, those micro size Cu patterns also controlled the position and density of wires. During the annealing process, Cu pattern reacted with SiO2 to form Cu silicide. More important, a diffusion channel was opened for Si atoms to synthesis α-SiNWs. What is more, the size of α-SiNWs was simply controlled by the annealing time. The length of wire was increased with annealing time. However, the diameter showed the opposite tendency. The room temperature resistivity of the nanowire was about 2.1 × 103 Ω·cm (84 nm diameter and 21 μm length). This simple fabrication method makes application of α-SiNWs become possible.
Amorphous Silicon Nanowires Grown on Silicon Oxide Film by Annealing.
Yuan, Zhishan; Wang, Chengyong; Chen, Ke; Ni, Zhonghua; Chen, Yunfei
2017-08-10
In this paper, amorphous silicon nanowires (α-SiNWs) were synthesized on (100) Si substrate with silicon oxide film by Cu catalyst-driven solid-liquid-solid mechanism (SLS) during annealing process (1080 °C for 30 min under Ar/H 2 atmosphere). Micro size Cu pattern fabrication decided whether α-SiNWs can grow or not. Meanwhile, those micro size Cu patterns also controlled the position and density of wires. During the annealing process, Cu pattern reacted with SiO 2 to form Cu silicide. More important, a diffusion channel was opened for Si atoms to synthesis α-SiNWs. What is more, the size of α-SiNWs was simply controlled by the annealing time. The length of wire was increased with annealing time. However, the diameter showed the opposite tendency. The room temperature resistivity of the nanowire was about 2.1 × 10 3 Ω·cm (84 nm diameter and 21 μm length). This simple fabrication method makes application of α-SiNWs become possible.
NASA Technical Reports Server (NTRS)
Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming
2016-01-01
Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.
Nanofabrication of insulated scanning probes for electromechanical imaging in liquid solutions
Noh, Joo Hyon; Nikiforov, Maxim; Kalinin, Sergei V.; Vertegel, Alexey A.; Rack, Philip D.
2011-01-01
In this paper, the fabrication and electrical and electromechanical characterization of insulated scanning probes have been demonstrated in liquid solutions. The silicon cantilevers were sequentially coated with chromium and silicon dioxide, and the silicon dioxide was selectively etched at tip apex using focused electron beam induced etching (FEBIE) with XeF2 The chromium layer acted not only as the conductive path from the tip, but also as an etch resistant layer. This insulated scanning probe fabrication process is compatible with any commercial AFM tip and can be used to easily tailor the scanning probe tip properties because FEBIE does not require lithography. The suitability of the fabricated probes is demonstrated by imaging of standard topographical calibration grid as well as piezoresponse force microscopy (PFM) and electrical measurements in ambient and liquid environments. PMID:20702930
NASA Astrophysics Data System (ADS)
Umishio, Hiroshi; Matsui, Takuya; Sai, Hitoshi; Sakurai, Takeaki; Matsubara, Koji
2018-02-01
Large-grain-size (>1 mm) liquid-phase-crystallized silicon (LPC-Si) films with a wide range of carrier doping levels (1016-1018 cm-3 either of the n- or p-type) were prepared by irradiating amorphous silicon with a line-shaped 804 nm laser, and characterized for solar cell applications. The LPC-Si films show high electron and hole mobilities with maximum values of ˜800 and ˜200 cm2 V-1 s-1, respectively, at a doping level of ˜(2-4) × 1016 cm-3, while their carrier lifetime monotonically increases with decreasing carrier doping level. A grain-boundary charge-trapping model provides good fits to the measured mobility-carrier density relations, indicating that the potential barrier at the grain boundaries limits the carrier transport in the lowly doped films. The open-circuit voltage and short-circuit current density of test LPC-Si solar cells depend strongly on the doping level, peaking at (2-5) × 1016 cm-3. These results indicate that the solar cell performance is governed by the minority carrier diffusion length for the highly doped films, while it is limited by majority carrier transport as well as by device design for the lowly doped films.
NASA Technical Reports Server (NTRS)
1983-01-01
Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.
Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M
2009-01-01
Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement
Porous silicon technology for integrated microsystems
NASA Astrophysics Data System (ADS)
Wallner, Jin Zheng
With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially
NASA Astrophysics Data System (ADS)
Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš
2017-03-01
Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.
Vasić, Borislav; Zografopoulos, Dimitrios C; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš
2017-03-24
Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.
Infiltration into soils: Conceptual approaches and solutions
NASA Astrophysics Data System (ADS)
Assouline, Shmuel
2013-04-01
Infiltration is a key process in aspects of hydrology, agricultural and civil engineering, irrigation design, and soil and water conservation. It is complex, depending on soil and rainfall properties and initial and boundary conditions within the flow domain. During the last century, a great deal of effort has been invested to understand the physics of infiltration and to develop quantitative predictors of infiltration dynamics. Jean-Yves Parlange and Wilfried Brutsaert have made seminal contributions, especially in the area of infiltration theory and related analytical solutions to the flow equations. This review retraces the landmark discoveries and the evolution of the conceptual approaches and the mathematical solutions applied to the problem of infiltration into porous media, highlighting the pivotal contributions of Parlange and Brutsaert. A historical retrospective of physical models of infiltration is followed by the presentation of mathematical methods leading to analytical solutions of the flow equations. This review then addresses the time compression approximation developed to estimate infiltration at the transition between preponding and postponding conditions. Finally, the effects of special conditions, such as the presence of air and heterogeneity in soil properties, on infiltration are considered.
Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sang-gil; Kim, Eunpa; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu
2016-08-15
We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ∼10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystalmore » growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.« less
Chemical vapor deposition of silicon, silicon dioxide, titanium and ferroelectric thin films
NASA Astrophysics Data System (ADS)
Chen, Feng
Various silicon-based thin films (such as epitaxial, polycrystalline and amorphous silicon thin films, silicon dioxide thin films and silicon nitride thin films), titanium thin film and various ferroelectric thin films (such as BaTiO3 and PbTiO3 thin films) play critical roles in the manufacture of microelectronics circuits. For the past few years, there have been tremendous interests to search for cheap, safe and easy-to-use methods to develop those thin films with high quality and good step coverage. Silane is a critical chemical reagent widely used to deposit silicon-based thin films. Despite its wide use, silane is a dangerous material. It is pyrophoric, extremely flammable and may explode from heat, shock and/or friction. Because of the nature of silane, serious safety issues have been raised concerning the use, transportation, and storage of compressed gas cylinders of silane. Therefore it is desired to develop safer ways to deposit silicon-based films. In chapter III, I present the results of our research in the following fields: (1) Silane generator, (2) Substitutes of silane for deposition of silicon and silicon dioxide thin films, (3) Substitutes of silane for silicon dioxide thin film deposition. In chapter IV, hydropyridine is introduced as a new ligand for use in constructing precursors for chemical vapor deposition. Detachement of hydropyridine occurs by a low-temperature reaction leaving hydrogen in place of the hydropyridine ligands. Hydropyridine ligands can be attached to a variety of elements, including main group metals, such as aluminum and antimony, transition metals, such as titanium and tantalum, semiconductors such as silicon, and non-metals such as phosphorus and arsenic. In this study, hydropyridine-containing titanium compounds were synthesized and used as chemical vapor deposition precursors for deposition of titanium containing thin films. Some other titanium compounds were also studied for comparison. In chapter V, Chemical Vapor
Nanoparticles Doped Liquid Crystal Filled Photonic Bandgap Fibers
NASA Astrophysics Data System (ADS)
Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders
2008-10-01
We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum to the one achieved with undoped liquid crystals. New interesting features such as frequency dependent behavior and a transmission spectrum with tunable attenuation on the short wavelength side of the bandgap suggest a potential application of this device as a tunable all-in-fiber gain equalization filter. The tunability of the device is demonstrated by changing the temperature of the liquid crystal and by varying both the amplitude and the frequency of the applied external electric field.
NREL Paves the Way to Commercialization of Silicon Ink (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In 2008, Innovalight, a start-up company in Sunnyvale, California, invented a liquid form of silicon, called Silicon Ink. It contains silicon nanoparticles that are suspended evenly within the solution. Those nanoparticles contain dopant atoms that can be driven into silicon solar cells, which changes the conductivity of the silicon and creates the internal electric fields that are needed to turn photons into electrons -- and thus into electricity. The ink is applied with a standard screen printer, already commonly used in the solar industry. The distinguishing feature of Silicon Ink is that it can be distributed in exact concentrations inmore » precisely the correct locations on the surface of the solar cell. This allows most of the surface to be lightly doped, enhancing its response to blue light, while heavily doping the area around the electrical contacts, raising the conductivity in that area to allow the contact to work more efficiently. The accuracy and uniformity of the ink distribution allows the production of solar cells that achieve higher power production at a minimal additional cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Mahua; Libera, Joseph A.; Darling, Seth B.
Sequential infiltration synthesis (SIS) is a method for growing inorganic materials within polymers in an atomically controlled fashion. This technique can increase the etch resistance of optical, electron-beam, and block copolymer (BCP) lithography resists and is also a flexible strategy for nanomaterials synthesis. Despite this broad utility, the kinetics of SIS remain poorly understood, and this knowledge gap must be bridged in order to gain firm control over the growth of inorganic materials inside polymer films at a large scale. In this paper, we explore the reaction kinetics for Al 2O 3 SIS in PMMA using in situ Fourier transformmore » infrared spectroscopy. First, we establish the kinetics for saturation adsorption and desorption of trimethyl aluminum (TMA) in PMMA over a range of PMMA film thicknesses deposited on silicon substrates. These observations guide the selection of TMA dose and purge times during SIS lithography to achieve robust organic/inorganic structures. Next, we examine the effects of TMA desorption on BCP lithography by performing SIS on silicon surfaces coated with polystyrene-block-poly(methyl methacrylate) films. After etching the organic components, the substrates are examined using scanning electron microcopy to evaluate the resulting Al 2O 3 patterns. Finally, we examine the effects of temperature on Al 2O 3 SIS in PMMA to elucidate the infiltration kinetics. The insights provided by these measurements will help extend SIS lithography to larger substrate sizes for eventual commercialization and expand our knowledge of precursor-polymer interactions that will benefit the SIS of a wide range of inorganic materials in the future.« less
Explosive change in crater properties during high power nanosecond laser ablation of silicon
NASA Astrophysics Data System (ADS)
Yoo, J. H.; Jeong, S. H.; Greif, R.; Russo, R. E.
2000-08-01
Mass removed from single crystal silicon samples by high irradiance (1×109 to 1×1011W/cm2) single pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The craters show a strong nonlinear change in both the volume and depth when the laser irradiance is less than or greater than ≈2.2×1010W/cm2. Time-resolved shadowgraph images of the ablated silicon plume were obtained over this irradiance range. The images show that the increase in crater volume and depth at the threshold of 2.2×1010W/cm2 is accompanied by large size droplets leaving the silicon surface, with a time delay ˜300 ns. A numerical model was used to estimate the thickness of the layer heated to approximately the critical temperature. The model includes transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). In this case, the estimated thickness of the superheated layer at a delay time of 200-300 ns shows a close agreement with measured crater depths. Induced transparency is demonstrated to play an important role in the formation of a deep superheated liquid layer, with subsequent explosive boiling responsible for large-particulate ejection.
Fach, S; Dierkes, C
2011-01-01
The focus in this work was on subsoil infiltration of stormwater from parking lots. With regard to operation, reduced infiltration performance due to clogging and pollutants in seepage, which may contribute to contaminate groundwater, are of interest. The experimental investigation covered a pervious pavement with a subjacent infiltration trench draining an impervious area of 2 ha. In order to consider seasonal effects on the infiltration performance, the hydraulic conductivity was measured tri-monthly during monitoring with a mobile sprinkling unit. To assess natural deposits jointing, road bed, gravel of infiltration trenches and subsoil were analysed prior to commencement of monitoring for heavy metals, polycyclic aromatic and mineral oil type hydrocarbons. Furthermore, from 22 storm events, water samples of rainfall, surface runoff, seepage and ground water were analysed with regard to the above mentioned pollutants. The study showed that the material used for the joints had a major impact on the initial as well as the final infiltration rates. Due to its poor hydraulic conductivity, limestone gravel should not be used as jointing. Furthermore, it is recommended that materials for the infiltration facilities are ensured free of any contaminants prior to construction. Polycyclic aromatic and mineral oil type hydrocarbons were, with the exception of surface runoff, below detection limits. Heavy metal concentrations of groundwater were with the exception of lead (because of high background concentrations), below the permissible limits.
Boron Partitioning Coefficient above Unity in Laser Crystallized Silicon.
Lill, Patrick C; Dahlinger, Morris; Köhler, Jürgen R
2017-02-16
Boron pile-up at the maximum melt depth for laser melt annealing of implanted silicon has been reported in numerous papers. The present contribution examines the boron accumulation in a laser doping setting, without dopants initially incorporated in the silicon wafer. Our numerical simulation models laser-induced melting as well as dopant diffusion, and excellently reproduces the secondary ion mass spectroscopy-measured boron profiles. We determine a partitioning coefficient k p above unity with k p = 1 . 25 ± 0 . 05 and thermally-activated diffusivity D B , with a value D B ( 1687 K ) = ( 3 . 53 ± 0 . 44 ) × 10 - 4 cm 2 ·s - 1 of boron in liquid silicon. For similar laser parameters and process conditions, our model predicts the anticipated boron profile of a laser doping experiment.
Porous silicon structures with high surface area/specific pore size
Northrup, M.A.; Yu, C.M.; Raley, N.F.
1999-03-16
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.
Porous silicon structures with high surface area/specific pore size
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Stretchable inductor with liquid magnetic core
NASA Astrophysics Data System (ADS)
Lazarus, N.; Meyer, C. D.
2016-03-01
Adding magnetic materials is a well-established method for improving performance of inductors. However, traditional magnetic cores are rigid and poorly suited for the emerging field of stretchable electronics, where highly deformable inductors are used to wirelessly couple power and data signals. In this work, stretchable inductors are demonstrated based on the use of ferrofluids, magnetic liquids based on distributed magnetic particles, to create a compliant magnetic core. Using a silicone molding technique to create multi-layer fluidic channels, a liquid metal solenoid is fabricated around a ferrofluid channel. An analytical model is developed for the effects of mechanical strain, followed by experimental verification using two different ferrofluids with different permeabilities. Adding ferrofluid was found to increase the unstrained inductance by up to 280% relative to a similar inductor with a non-magnetic silicone core, while retaining the ability to survive uniaxial strains up to 100%.
Containerless Liquid-Phase Processing of Ceramic Materials
NASA Technical Reports Server (NTRS)
Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.
1996-01-01
The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.
NASA Technical Reports Server (NTRS)
Corman, Gregory S. (Inventor); Steibel, James D. (Inventor); Schikner, Robert C. (Inventor); Szweda, Andrew (Inventor)
2001-01-01
Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers.
NASA Technical Reports Server (NTRS)
Szweda, Andrew (Inventor); Corman, Gregory S. (Inventor); Steibel, James D. (Inventor); Schikner, Robert C. (Inventor)
2000-01-01
Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers.
A simple analytical infiltration model for short-duration rainfall
NASA Astrophysics Data System (ADS)
Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming
2017-12-01
Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
40 CFR 35.927-1 - Infiltration/inflow analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...
Evaluation of infiltration models in contaminated landscape.
Sadegh Zadeh, Kouroush; Shirmohammadi, Adel; Montas, Hubert J; Felton, Gary
2007-06-01
The infiltration models of Kostiakov, Green-Ampt, and Philip (two and three terms equations) were used, calibrated, and evaluated to simulate in-situ infiltration in nine different soil types. The Osborne-Moré modified version of the Levenberg-Marquardt optimization algorithm was coupled with the experimental data obtained by the double ring infiltrometers and the infiltration equations, to estimate the model parameters. Comparison of the model outputs with the experimental data indicates that the models can successfully describe cumulative infiltration in different soil types. However, since Kostiakov's equation fails to accurately simulate the infiltration rate as time approaches infinity, Philip's two-term equation, in some cases, produces negative values for the saturated hydraulic conductivity of soils, and the Green-Ampt model uses piston flow assumptions, we suggest using Philip's three-term equation to simulate infiltration and to estimate the saturated hydraulic conductivity of soils.
Role of water in the tribochemical removal of bare silicon
NASA Astrophysics Data System (ADS)
Chen, Cheng; Xiao, Chen; Wang, Xiaodong; Zhang, Peng; Chen, Lei; Qi, Yaqiong; Qian, Linmao
2016-12-01
Nanowear tests of bare silicon against a SiO2 microsphere were conducted in air (relative humidity [RH] = 0%-89%) and water using an atomic force microscope. Experimental results revealed that the water played an important role in the tribochemical wear of the bare silicon. A hillock-like wear trace with a height of 0.7 nm was generated on the bare silicon surface in dry air. As the RH increased, the wear depth increased and reached the maximum level in water. Analysis of frictional dissipated energy suggested that the wear of the bare silicon was not dominated by mechanical interactions. High-resolution transmission electron microscopy detection demonstrated that the silicon atoms and crystal lattice underneath the worn area maintained integral perfectly and thus further confirmed the tribochemical wear mechanism of the bare silicon. Finally, the role of water in the tribochemical wear of the bare silicon may be explained by the following three aspects: the hydroxylation by hydroxyl ions auto-ionized in water, the hydrolytic reaction of water molecules, and the dissolution of the tribochemical product SiOmHn in liquid water. With increasing RH, a greater water amount would adsorb to the Si/SiO2 interface and induce a more serious tribochemical wear on the bare silicon surface. The results of this paper may provide further insight into the tribochemical removal mechanism of bare monocrystalline silicon and furnish the wider reaction cognition for chemical mechanical polishing.
Magnetic Nanoparticles Embedded in a Silicon Matrix
Granitzer, Petra; Rumpf, Klemens
2011-01-01
This paper represents a short overview of nanocomposites consisting of magnetic nanoparticles incorporated into the pores of a porous silicon matrix by two different methods. On the one hand, nickel is electrochemically deposited whereas the nanoparticles are precipitated on the pore walls. The size of these particles is between 2 and 6 nm. These particles cover the pore walls and form a tube-like arrangement. On the other hand, rather well monodispersed iron oxide nanoparticles, of 5 and 8 nm respectively, are infiltrated into the pores. From their size the particles would be superparamagnetic if isolated but due to magnetic interactions between them, ordering of magnetic moments occurs below a blocking temperature and thus the composite system displays a ferromagnetic behavior. This transition temperature of the nanocomposite can be varied by changing the filling factor of the particles within the pores. Thus samples with magnetic properties which are variable in a broad range can be achieved, which renders this composite system interesting not only for basic research but also for applications, especially because of the silicon base material which makes it possible for today’s process technology. PMID:28879957
NASA Astrophysics Data System (ADS)
Chan, Matthew Wei-Jen
Complex engineering systems ranging from automobile engines to geothermal wells require specialized sensors to monitor conditions such as pressure, acceleration and temperature in order to improve efficiency and monitor component lifetime in what may be high temperature, corrosive, harsh environments. Microelectromechanical systems (MEMS) have demonstrated their ability to precisely and accurately take measurements under such conditions. The systems being monitored are typically made from metals, such as steel, while the MEMS sensors used for monitoring are commonly fabricated from silicon, silicon carbide and aluminum nitride, and so there is a sizable thermal expansion mismatch between the two. For these engineering applications the direct bonding of MEMS sensors to the components being monitored is often required. This introduces several challenges, namely the development of a bond that is capable of surviving high temperature harsh environments while mitigating the thermally induced strains produced during bonding. This project investigates the development of a robust packaging and bonding process, using the gold-tin metal system and the solid-liquid interdiffusion (SLID) bonding process, to join silicon carbide substrates directly to type-316 stainless steel. The SLID process enables bonding at lower temperatures while producing a bond capable of surviving higher temperatures. Finite element analysis was performed to model the thermally induced strains generated in the bond and to understand the optimal way to design the bond. The cross-sectional composition of the bonds has been analyzed and the bond strength has been investigated using die shear testing. The effects of high temperature aging on the bond's strength and the metallurgy of the bond were studied. Additionally, loading of the bond was performed at temperatures over 415 °C, more than 100 °C, above the temperature used for bonding, with full survival of the bond, thus demonstrating the benefit of
Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope
Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo
2014-01-01
In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θ s - θ r), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332
Analysis of rainfall infiltration law in unsaturated soil slope.
Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo
2014-01-01
In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.
Study and development of non-aqueous silicon-air battery
NASA Astrophysics Data System (ADS)
Cohn, Gil; Ein-Eli, Yair
Silicon-air battery utilizing a single-crystal heavily doped n-type silicon wafer anode and an air cathode is reported in this paper. The battery employs hydrophilic 1-ethyl-3-methylimidazolium oligofluorohydrogenate [EMI·(HF) 2.3F] room temperature ionic liquid electrolyte. Electrochemical studies, including polarization and galvanostatic experiments, performed on various silicon types reveal the predominance performance of heavily doped n-type. Cell discharging at constant current densities of 10, 50, 100 and 300 μA cm -2 in ambient atmosphere, shows working voltages of 1.1-0.8 V. The study shows that as discharge advances, the moist interface of the air electrode is covered by discharge products, which prevent a continuous diffusion of oxygen to the electrode-electrolyte interface. The oxygen suffocation, governed by the settlement of the cell reaction products, is the main factor for an early failure of the cells. Based on the results obtained from scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy studies, we propose a series of reactions governing the discharge process in silicon-air batteries, as well as a detailed mechanism for silicon oxide deposition on the air electrode porous carbon.
Stormwater infiltration and the 'urban karst' - A review
NASA Astrophysics Data System (ADS)
Bonneau, Jeremie; Fletcher, Tim D.; Costelloe, Justin F.; Burns, Matthew J.
2017-09-01
The covering of native soils with impervious surfaces (e.g. roofs, roads, and pavement) prevents infiltration of rainfall into the ground, resulting in increased surface runoff and decreased groundwater recharge. When this excess water is managed using stormwater drainage systems, flow and water quality regimes of urban streams are severely altered, leading to the degradation of their ecosystems. Urban streams restoration requires alternative approaches towards stormwater management, which aim to restore the flow regime towards pre-development conditions. The practice of stormwater infiltration-achieved using a range of stormwater source-control measures (SCMs)-is central to restoring baseflow. Despite this, little is known about what happens to the infiltrated water. Current knowledge about the impact of stormwater infiltration on flow regimes was reviewed. Infiltration systems were found to be efficient at attenuating high-flow hydrology (reducing peak magnitudes and frequencies) at a range of scales (parcel, streetscape, catchment). Several modelling studies predict a positive impact of stormwater infiltration on baseflow, and empirical evidence is emerging, but the fate of infiltrated stormwater remains unclear. It is not known how infiltrated water travels along the subsurface pathways that characterise the urban environment, in particular the 'urban karst', which results from networks of human-made subsurface pathways, e.g. stormwater and sanitary sewer pipes and associated high permeability trenches. Seepage of groundwater into and around such pipes is possible, meaning some infiltrated stormwater could travel along artificial pathways. The catchment-scale ability of infiltration systems to restore groundwater recharge and baseflow is thus ambiguous. Further understanding of the fate of infiltrated stormwater is required to ensure infiltration systems deliver optimal outcomes for waterway flow regimes.
Role of slope on infiltration: A review
NASA Astrophysics Data System (ADS)
Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Govindaraju, Rao S.
2018-02-01
Partitioning of rainfall at the soil-atmosphere interface is important for both surface and subsurface hydrology, and influences many events of major hydrologic interest such as runoff generation, aquifer recharge, and transport of pollutants in surface waters as well as the vadose zone. This partitioning is achieved through the process of infiltration that has been widely investigated at the local scale, and more recently also at the field scale, by models that were designed for horizontal surfaces. However, infiltration, overland flows, and deep flows in most real situations are generated by rainfall over sloping surfaces that bring in additional effects. Therefore, existing models for local infiltration into homogeneous and layered soils and those as for field-scale infiltration, have to be adapted to account for the effects of surface slope. Various studies have investigated the role of surface slope on infiltration based on a theoretical formulations for the dynamics of infiltration, extensions of the Green-Ampt approach, and from laboratory and field experiments. However, conflicting results have been reported in the scientific literature on the role of surface slope on infiltration. We summarize the salient points from previous studies and provide plausible reasons for discrepancies in conclusions of previous authors, thus leading to a critical assessment of the current state of our understanding on this subject. We offer suggestions for future efforts to advance our knowledge of infiltration over sloping surfaces.
Infiltration of MHD liquid into a deformable porous material
NASA Astrophysics Data System (ADS)
Naseem, Anum; Mahmood, Asif; Siddique, J. I.; Zhao, Lifeng
2018-03-01
We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable porous material in the presence of gravity effects. The modeling is performed using mixture theory approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid case. Numerical solutions are obtained using a method of lines approach. The graphical results are presented for important physical parameters, and comparison is presented with Newtonian fluid case.
Cohn, Gil; Eichel, Rüdiger A; Ein-Eli, Yair
2013-03-07
The mechanism of discharge termination in silicon-air batteries, employing a silicon wafer anode, a room-temperature fluorohydrogenate ionic liquid electrolyte and an air cathode membrane, is investigated using a wide range of tools. EIS studies indicate that the interfacial impedance between the electrolyte and the silicon wafer increases upon continuous discharge. In addition, it is shown that the impedance of the air cathode-electrolyte interface is several orders of magnitude lower than that of the anode. Equivalent circuit fitting parameters indicate the difference in the anode-electrolyte interface characteristics for different types of silicon wafers. Evolution of porous silicon surfaces at the anode and their properties, by means of estimated circuit parameters, is also presented. Moreover, it is found that the silicon anode potential has the highest negative impact on the battery discharge voltage, while the air cathode potential is actually stable and invariable along the whole discharge period. The discharge capacity of the battery can be increased significantly by mechanically replacing the silicon anode.
Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations
NASA Astrophysics Data System (ADS)
Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar
2016-11-01
Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.
Silicon nitride/silicon carbide composite powders
Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.
1996-06-11
Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.
NASA Astrophysics Data System (ADS)
Abt, I.; Fox, H.; Moshous, B.; Richter, R. H.; Riechmann, K.; Rietz, M.; Riedl, J.; Denis, R. St; Wagner, W.
1998-02-01
Problems and solutions concerning the gluing of silicon detectors are discussed. The R & D work for the HERA- B vertex detector system led to gluing studies with epoxy and silicone-based adhesives used on ceramics and carbon fibre. The HERA- B solution using a silicone glue is presented.
The paradox of characteristics of silicon detectors operated at temperature close to liquid helium
NASA Astrophysics Data System (ADS)
Eremin, V.; Shepelev, A.; Verbitskaya, E.; Zamantzas, C.; Galkin, A.
2018-05-01
The aim of this study is to give characterization of silicon p+/n/n+ detectors for the monitoring systems of the Large Hadron Collider machine at CERN with the focus on justifying the choice of silicon resistivity for the detector operation at the temperature of 1.9-10 K. The detectors from n-type silicon with the resistivity of 10, 4.5, and 0.5 kΩ cm were investigated at the temperature from 293 up to 7 K by the Transient Current Technique with a 660 nm pulse laser and alpha-particles. The shapes of the detector current pulse response allowed revealing a paradox in the properties of shallow donors of phosphorus, i.e., native dopants in the n-type Si. There was no carrier freeze-out on the phosphorus energy levels in the space charge region (SCR), and they remained positively charged irrespective of temperature, thus limiting the depleted region depth. As for the base region of a partially depleted detector, the levels became neutral at T < 28 K, which transformed silicon to an insulator. The reduction of the activation energy for carrier emission in the detector SCR estimated in the scope of the Poole-Frenkel effect failed to account for the impact of the electric field on the properties of phosphorus levels. The absence of carrier freeze-out in the SCR justifies the choice of high resistivity silicon as the only proper material for detector operation in a fully depleted mode at extremely low temperature.
NASA Technical Reports Server (NTRS)
1983-01-01
Meniscus coates tests, back junction formation using a new boron containing liquid, tests of various SiO2 and boron containing liquids, pelletized silicon for replenishment during web growth, and ion implantation compatibility/feasibility study are discussed.
NASA Technical Reports Server (NTRS)
1982-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.
Development of a process for high capacity arc heater production of silicon for solar arrays
NASA Technical Reports Server (NTRS)
Meyer, T. N.
1980-01-01
A high temperature silicon production process using existing electric arc heater technology is discussed. Silicon tetrachloride and a reductant, liquid sodium, were injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction occurred, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon were developed. The desired degree of separation was not achieved. The electrical, control and instrumentation, cooling water, gas, SiCl4, and sodium systems are discussed. The plasma reactor, silicon collection, effluent disposal, the gas burnoff stack, and decontamination and safety are also discussed. Procedure manuals, shakedown testing, data acquisition and analysis, product characterization, disassembly and decontamination, and component evaluation are reviewed.
The importance of Soret transport in the production of high purity silicon for solar cells
NASA Technical Reports Server (NTRS)
Srivastava, R.
1985-01-01
Temperature-gradient-driven diffusion, or Soret transport, of silicon vapor and liquid droplets is analyzed under conditions typical of current production reactors for obtaining high purity silicon for solar cells. Contrary to the common belief that Soret transport is negligible, it is concluded that some 15-20 percent of the silicon vapor mass flux to the reactor walls is caused by the high temperature gradients that prevail inside such reactors. Moreover, since collection of silicon is also achieved via deposition of silicon droplets onto the walls, the Soret transport mechanism becomes even more crucial due to size differences between diffusing species. It is shown that for droplets in the 0.01 to 1 micron diameter range, collection by Soret transport dominates both Brownian and turbulent mechanisms.
Infiltration modeling guidelines for commercial building energy analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.
This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistentmore » with building location and weather data.« less
Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings
NASA Astrophysics Data System (ADS)
Moroz, N. A.; Umapathy, H.; Mohanty, P.
2010-01-01
The Anatase phase of Titania (TiO2) in nanocrystalline form is a well known photocatalyst. Photocatalysts are commercially used to accelerate photoreactions and increase photovoltaic efficiency such as in solar cells. This study investigates the in-flight synthesis of Titania and its doping into a Silicon matrix resulting in a catalyst-dispersed coating. A liquid precursor of Titanium Isopropoxide and ethanol was coaxially fed into the plasma gun to form Titania nanoparticles, while Silicon powder was externally injected downstream. Coatings of 75-150 μm thick were deposited onto flat coupons. Further, Silicon powder was alloyed with aluminum to promote crystallization and reduce the amorphous phase in the Silicon matrix. Dense coatings containing nano-Titania particles were observed under electron microscope. X-ray diffraction showed that both the Rutile and Anatase phases of the Titania exist. The influence of process parameters and aluminum alloying on the microstructure evolution of the doped coatings is analyzed and presented.
NASA Astrophysics Data System (ADS)
Smallenburg, Frank; Filion, Laura; Sciortino, Francesco
2014-09-01
One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point located in the `no-man’s land’. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, as spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon, carbon and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.
Green-ampt infiltration parameters in riparian buffers
L.M. Stahr; D.E. Eisenhauer; M.J. Helmers; Mike G. Dosskey; T.G. Franti
2004-01-01
Riparian buffers can improve surface water quality by filtering contaminants from runoff before they enter streams. Infiltration is an important process in riparian buffers. Computer models are often used to assess the performance of riparian buffers. Accurate prediction of infiltration by these models is dependent upon accurate estimates of infiltration parameters....
Self-Assembly in Systems Containing Silicone Compounds
NASA Astrophysics Data System (ADS)
Ferreira, Maira Silva; Loh, Watson
2009-01-01
Chemical systems formed by silicone solvents and surfactants have potential applications in a variety of industrial products. In spite of their technological relevance, there are few reports on the scientific literature that focus on characterizing such ternary systems. In this work, we have aimed to develop a general, structural investigation on the phase diagram of one system that typically comprises silicone-based chemicals, by means of the SAXS (small-angle X-ray scattering) technique. Important features such as the presence of diverse aggregation states in the overall system, either on their own or in equilibrium with other structures, have been detected. As a result, optically isotropic chemical systems (direct and/or reversed microemulsions) and liquid crystals with lamellar or hexagonal packing have been identified and characterized.
Comparison of infiltration models in NIT Kurukshetra campus
NASA Astrophysics Data System (ADS)
Singh, Balraj; Sihag, Parveen; Singh, Karan
2018-05-01
The aim of the present investigation is to evaluate the performance of infiltration models used to calculate the infiltration rate of the soils. Ten different locations were chosen to measure the infiltration rate in NIT Kurukshetra. The instrument used for the experimentation was double ring infiltrometer. Some of the popular infiltration models like Horton's, Philip's, Modified Philip's and Green-Ampt were fitted with infiltration test data and performance of the models was determined using Nash-Sutcliffe efficiency (NSE), coefficient of correlation (C.C) and Root mean square error (RMSE) criteria. The result suggests that Modified Philip's model is the most accurate model where values of C.C, NSE and RMSE vary from 0.9947-0.9999, 0.9877-0.9998 to 0.1402-0.6913 (mm/h), respectively. Thus, this model can be used to synthetically produce infiltration data in the absence of infiltration data under the same conditions.
Producing Silicon Carbide for Semiconductor Devices
NASA Technical Reports Server (NTRS)
Hsu, G. C.; Rohatgi, N. K.
1986-01-01
Processes proposed for production of SiC crystals for use in semiconductors operating at temperatures as high as 900 degrees C. Combination of new processes produce silicon carbide chips containing epitaxial layers. Chips of SiC first grown on porous carbon matrices, then placed in fluidized bed, where additional layer of SiC grows. Processes combined to yield complete process. Liquid crystallization process used to make SiC particles or chips for fluidized-bed process.
Hermannsdörfer, Justus; de Jonge, Niels
2017-02-05
Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline.
Hermannsdörfer, Justus; de Jonge, Niels
2017-01-01
Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline. PMID:28190028
Ogawa, Sachie; Watanabe, Masahiro; Kawaai, Hiroyoshi; Tada, Hitoshi; Yamazaki, Shinya
2014-01-01
It has been reported that the action of infiltration anesthesia on the jawbone is attenuated significantly by elevation of the periosteal flap with saline irrigation in clinical studies; however, the reason is unclear. Therefore, the lidocaine concentration in mandibular bone after subperiosteal infiltration anesthesia was measured under several surgical conditions. The subjects were 48 rabbits. Infiltration anesthesia by 0.5 mL of 2% lidocaine with 1 : 80,000 epinephrine (adrenaline) was injected into the right mandibular angle and left mandibular body, respectively. Under several surgical conditions (presence or absence of periosteal flap, and presence or absence of saline irrigation), both mandibular bone samples were removed at a fixed time after subperiosteal infiltration anesthesia. The lidocaine concentration in each mandibular bone sample was measured by high-performance liquid chromatography. As a result, elevation of the periosteal flap with saline irrigation significantly decreased the lidocaine concentration in the mandibular bone. It is suggested that the anesthetic in the bone was washed out by saline irrigation. Therefore, supplemental conduction and/or general anesthesia should be utilized for long operations that include elevation of the periosteal flap with saline irrigation. PMID:24932978
Insights into gold-catalyzed plasma-assisted CVD growth of silicon nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere
2016-07-25
Understanding and controlling effectively the behavior of metal catalyst droplets during the Vapor-Liquid-Solid growth of nanowires are crucial for their applications. In this work, silicon nanowires are produced by plasma-assisted Chemical Vapor Deposition using gold as a catalyst. The influence of hydrogen plasma on nanowire growth is investigated experimentally and theoretically. Interestingly, in contrast to conventional chemical vapor deposition, the growth rate of silicon nanowires shows a decrease as a function of their diameters, which is consistent with the incorporation of silicon via sidewall diffusion. We show that Ostwald ripening of catalyst droplets during nanowire growth is inhibited in themore » presence of a hydrogen plasma. However, when the plasma is off, the diffusion of Au atoms on the nanowire sidewall can take place. Based on this observation, we have developed a convenient method to grow silicon nanotrees.« less
Dubal, Deepak P.; Aradilla, David; Bidan, Gérard; Gentile, Pascal; Schubert, Thomas J.S.; Wimberg, Jan; Sadki, Saïd; Gomez-Romero, Pedro
2015-01-01
Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO2@silicon nanowires (MnO2@SiNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO2@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm−2. The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO2 nanoflakes are responsible for the remarkable performance of these MnO2@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors. PMID:25985388
Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds
Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie
2013-01-01
Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774
[Effect of resin infiltration on microhardness of artificial caries lesions].
Liu, Yonghong; Deng, Hui; Tang, Longmei; Zhang, Zhiyong
2015-12-01
To compare the changes of enamel surface and cross-sectional microhardness of artificial caries immediately and after the twice demineralization through coating resin infiltration, fluoride varnish and fissure sealant. A total of forty bovine lower incisors enamel samples with artificial caries lesions by the demineralization liquid were used in the experiment. The specimens were then randomly divided into four groups as group A(resin infiltration), B(fluoride varnish), C (fissure sealant), D(control), 10 specimens in each group. The samples were sectioned vertically into two halves through the centre. One half of each sample the surface and cross-sectional microhardness was measured. The other half was put into demineralization liquid for 14 days, then the surface and cross-sectional microhardness was measured again. The cross section morphology of the samples was observed by scanning electron microscope. The surface of enamel had the highest microhardness value, and with the increase of cross- sectional depth, the microhardness value declined gradually. Variance analysis showed that the difference was statistically significant in the cross-section of different depth among the four groups(P<0.05). The microhardness values of the surface and the cross- section at 40 µm of each group in immediate measure showed the values were significantly higher in group A, B and C than in group D. There was no significant difference in the microhardness value of cross-section at 80 µm between group A[(324 ± 17) kg/mm(2)] and group C[(316 ± 20) kg/mm(2)], but they were significantly higher than group D. There was no significant difference between group B[(303 ± 13) kg/mm(2)] and group D[(294 ± 23) kg/mm(2)]. At 120 µm level, the microhardness value of group A was significantly higher than those of the other three groups. After the twice demineralization, the enamel surface microhardness value of the specimens was the same as the first measurement. In the cross-section at 40
Smallenburg, Frank; Filion, Laura; Sciortino, Francesco
2014-09-01
One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point [1] located in the "no-man's land" [2]. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, since spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water [3, 4]. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon [5], carbon [6] and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.;
2001-01-01
Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.;
2001-01-01
Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and Fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub element tests will be presented.
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.;
2002-01-01
Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary toolless pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.
Wan, Jiamin; Tokunaga, Tetsu K; Kim, Yongman; Wang, Zheming; Lanzirotti, Antonio; Saiz, Eduardo; Serne, R Jeffrey
2008-03-15
The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 t of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes that occurred during the initial infiltration and to help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using synthesized metal waste solution. We found that, as the plume propagated through sediments, pH decreased greatly (as much as 4 units) at the moving plume front. Infiltration flow rates strongly affect U behavior. Slower flow rates resulted in higher sediment-associated U concentrations, and higher flow rates (> or =5 cm/day) permitted practically unretarded U transport. Therefore, given the very high Ksat of most of Hanford formation, the low permeability zones within the sediment could have been most important in retaining high concentrations of U during initial release into the vadose zone. Massive amount of colloids, including U-colloids, formed at the plume fronts. Total U concentrations (aqueous and colloid) within plume fronts exceeded the source concentration by up to 5-fold. Uranium colloid formation and accumulation at the neutralized plume front could be one mechanism responsible for highly heterogeneous U distribution observed in the contaminated Hanford vadose zone.
Fabrication of focus-tunable liquid crystal microlens array with spherical electrode
NASA Astrophysics Data System (ADS)
Huang, Wei-Ming; Su, Guo-Dung J.
2016-09-01
In this paper, a new approach to fabricate a liquid crystal (LC) microlens array with spherical-shaped electrode is demonstrated, which can create the inhomogeneous electric field. Inkjet-printing, hydrophilic confinement, self-assemble and replication process is used to form the convex microlens array on glass. After the spherical-shaped electrode is done, we assemble it with ITO glass to form a liquid crystal cell. We used Zemax® to simulate the liquid crystal lens as a Gradient-index (GRIN) lens. The simulation results show that a GRIN lens model can well match with the theoretical focal length of liquid crystal lens. The dimension of the glass is 1.5 cm x 1.5 cm x 0.7 mm which has 7 concave microlens on the top surface. These microlens have same diameter and height about 300 μm and 85 μm. The gap between each other is 100 μm. We first fabricate microlens array on silicon substrate by hydrophilic confinement, which between hydrophilicity of silicon substrate and hydrophobicity of SU-8, and inkjet printing process. Then we start replication process with polydimethylsiloxane (PDMS) to transfer microlens array form silicon to glass substrate. After the transparent conducted polymer, PEDOT:PSS, is spin-coated on the microlens arrays surface, we flatten it by NOA65. Finally we assemble it with ITO glass and inkjet liquid crystal. From measuring the interference rings, the optical power range is from 47.28 to 331 diopter. This will be useful for the optical zoom system or focus-tunable lens applications.
NASA Astrophysics Data System (ADS)
Cao, Haitao; Moutalbi, Nahed; Harnois, Christelle; Hu, Rui; Li, Jinshan; Zhou, Lian; Noudem, Jacques G.
2010-01-01
Mono-domain YBa 2Cu 3O 7-x (Y123) bulk superconductors have been processed using seeded infiltration growth technique (SIG). The combination of melt infiltrated liquid source (Ba 3Cu 5O 8) into the Y 2BaCuO 5 (Y211) pre-form and the nucleation of Y123 domain from SmBa 2Cu 3O 7 crystal seed has been investigated. The different configurations of SIG process were compared in this study. In addition, the effect of the starting Y211 particles size has been studied. The results reveal that, the Y211 particle size and different configurations strongly influence the properties of the final bulk superconductor sample.
A Heat and Mass Transfer Model of a Silicon Pilot Furnace
NASA Astrophysics Data System (ADS)
Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald
2017-10-01
The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.
2012-01-01
The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells. PMID:22846070
Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient
NASA Technical Reports Server (NTRS)
Cohen, R. A.; Wheeler, R. K. (Inventor)
1974-01-01
A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.
Silicon nanowire arrays as thermoelectric material for a power microgenerator
NASA Astrophysics Data System (ADS)
Dávila, D.; Tarancón, A.; Fernández-Regúlez, M.; Calaza, C.; Salleras, M.; San Paulo, A.; Fonseca, L.
2011-10-01
A novel design of a silicon-based thermoelectric power microgenerator is presented in this work. Arrays of silicon nanowires, working as thermoelectric material, have been integrated in planar uni-leg thermocouple microstructures to convert waste heat into electrical energy. Homogeneous, uniformly dense, well-oriented and size-controlled arrays of silicon nanowires have been grown by chemical vapor deposition using the vapor-liquid-solid mechanism. Compatibility issues between the nanowire growth method and microfabrication techniques, such as electrical contact patterning, are discussed. Electrical measurements of the nanowire array electrical conductivity and the Seebeck voltage induced by a controlled thermal gradient or under harvesting operation mode have been carried out to demonstrate the feasibility of the microdevice. A resistance of 240 Ω at room temperature was measured for an array of silicon nanowires 10 µm -long, generating a Seebeck voltage of 80 mV under an imposed thermal gradient of 450 °C, whereas only 4.5 mV were generated under a harvesting operation mode. From the results presented, a Seebeck coefficient of about 150-190 µV K-1 was estimated, which corresponds to typical values for bulk silicon.
Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...
2017-07-31
Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.
Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less
A field method for measurement of infiltration
Johnson, A.I.
1963-01-01
The determination of infiltration--the downward entry of water into a soil (or sediment)--is receiving increasing attention in hydrologic studies because of the need for more quantitative data on all phases of the hydrologic cycle. A measure of infiltration, the infiltration rate, is usually determined in the field by flooding basins or furrows, sprinkling, or measuring water entry from cylinders (infiltrometer rings). Rates determined by ponding in large areas are considered most reliable, but the high cost usually dictates that infiltrometer rings, preferably 2 feet in diameter or larger, be used. The hydrology of subsurface materials is critical in the study of infiltration. The zone controlling the rate of infiltration is usually the least permeable zone. Many other factors affect infiltration rate--the sediment (soil) structure, the condition of the sediment surface, the distribution of soil moisture or soil- moisture tension, the chemical and physical nature of the sediments, the head of applied water, the depth to ground water, the chemical quality and the turbidity of the applied water, the temperature of the water and the sediments, the percentage of entrapped air in the sediments, the atmospheric pressure, the length of time of application of water, the biological activity in the sediments, and the type of equipment or method used. It is concluded that specific values of the infiltration rate for a particular type of sediment are probably nonexistent and that measured rates are primarily for comparative use. A standard field-test method for determining infiltration rates by means of single- or double-ring infiltrometers is described and the construction, installation, and operation of the infiltrometers are discussed in detail.
Surface and Interface Chemistry for Gate Stacks on Silicon
NASA Astrophysics Data System (ADS)
Frank, M. M.; Chabal, Y. J.
This chapter addresses the fundamental silicon surface science associated with the continued progress of nanoelectronics along the path prescribed by Moore's law. Focus is on hydrogen passivation layers and on ultrathin oxide films encountered during silicon cleaning and gate stack formation in the fabrication of metal-oxide-semiconductor field-effect transistors (MOSFETs). Three main topics are addressed. (i) First, the current practices and understanding of silicon cleaning in aqueous solutions are reviewed, including oxidizing chemistries and cleans leading to a hydrogen passivation layer. The dependence of the final surface termination and morphology/roughness on reactant choice and pH and the influence of impurities such as dissolved oxygen or metal ions are discussed. (ii) Next, the stability of hydrogen-terminated silicon in oxidizing liquid and gas phase environments is considered. In particular, the remarkable stability of hydrogen-terminated silicon surface in pure water vapor is discussed in the context of atomic layer deposition (ALD) of high-permittivity (high-k) gate dielectrics where water is often used as an oxygen precursor. Evidence is also provided for co-operative action between oxygen and water vapor that accelerates surface oxidation in humid air. (iii) Finally, the fabrication of hafnium-, zirconium- and aluminum-based high-k gate stacks is described, focusing on the continued importance of the silicon/silicon oxide interface. This includes a review of silicon surface preparation by wet or gas phase processing and its impact on high-k nucleation during ALD growth, and the consideration of gate stack capacitance and carrier mobility. In conclusion, two issues are highlighted: the impact of oxygen vacancies on the electrical characteristics of high-k MOS devices, and the way alloyed metal ions (such as Al in Hf-based gate stacks) in contact with the interfacial silicon oxide layer can be used to control flatband and threshold voltages.
Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler
NASA Astrophysics Data System (ADS)
Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing
2016-05-01
Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.
Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater
NASA Astrophysics Data System (ADS)
Oh, Dong-Wook
2017-10-01
In this paper, the traditional 3ω method is modified in order to measure the thermal conductivity of a droplet of liquid. The 3ω sensor is microfabricated using bulk silicon etching on a silicon wafer to form a microheater on a suspended bridge structure. The Si substrate of over 400 μ m thickness beneath the microheater is etched away so that the sample liquid can fill the gap created between the heater and the bottom boundary of the sensor. The frequency of the sinusoidal heating pulses that are generated from the heater is controlled such that the thermal penetration depth is much smaller than the thickness of the liquid layer. The temperature oscillation of the sample fluid is measured at the thin-film heater to calculate the thermal conductivity of the surrounding fluid. The thermal conductivity and measured values of the de-ionized water and ethanol show a good agreement with the theoretical values at room temperature.
NASA Astrophysics Data System (ADS)
Hernandez, Margarita; Recio, Gonzalo; Martin-Palma, Raul J.; Garcia-Ramos, Jose V.; Domingo, Concepcion; Sevilla, Paz
2012-07-01
Fluorescence spectra of anti-tumoral drug emodin loaded on nanostructured porous silicon have been recorded. The use of colloidal nanoparticles allowed embedding of the drug without previous porous silicon functionalization and leads to the observation of an enhancement of fluorescence of the drug. Mean pore size of porous silicon matrices was 60 nm, while silver nanoparticles mean diameter was 50 nm. Atmospheric and vacuum conditions at room temperature were used to infiltrate emodin-silver nanoparticles complexes into porous silicon matrices. The drug was loaded after adsorption on metal surface, alone, and bound to bovine serum albumin. Methanol and water were used as solvents. Spectra with 1 μm spatial resolution of cross-section of porous silicon layers were recorded to observe the penetration of the drug. A maximum fluorescence enhancement factor of 24 was obtained when protein was loaded bound to albumin, and atmospheric conditions of inclusion were used. A better penetration was obtained using methanol as solvent when comparing with water. Complexes of emodin remain loaded for 30 days after preparation without an apparent degradation of the drug, although a decrease in the enhancement factor is observed. The study reported here constitutes the basis for designing a new drug delivery system with future applications in medicine and pharmacy.
NASA Technical Reports Server (NTRS)
Breneman, W. C.
1978-01-01
Silicon epitaxy analysis of silane produced in the Process Development Unit operating in a completely integrated mode consuming only hydrogen and metallurgical silicon resulted in film resistivities of up to 120 ohms cm N type. Preliminary kinetic studies of dichlorosilane disproportionation in the liquid phase have shown that 11.59% SiH4 is formed at equilibrium after 12 minutes contact time at 56 C. The fluid-bed reactor was operated continuously for 48 hours with a mixture of one percent silane in helium as the fluidizing gas. A high silane pyrolysis efficiency was obtained without the generation of excessive fines. Gas flow conditions near the base of the reactor were unfavorable for maintaining a bubbling bed with good heat transfer characteristics. Consequently, a porous agglomerate formed in the lower portion of the reactor. Dense coherent plating was obtained on the silicon seed particles which had remained fluidizied throughout the experiment.
Method to measure soil matrix infiltration in forest soil
NASA Astrophysics Data System (ADS)
Zhang, Jing; Lei, Tingwu; Qu, Liqin; Chen, Ping; Gao, Xiaofeng; Chen, Chao; Yuan, Lili; Zhang, Manliang; Su, Guangxu
2017-09-01
Infiltration of water into forest soil commonly involves infiltration through the matrix body and preferential passages. Determining the matrix infiltration process is important in partitioning water infiltrating into the soil through the soil body and macropores to evaluate the effects of soil and water conservation practices on hillslope hydrology and watershed sedimentation. A new method that employs a double-ring infiltrometer was applied in this study to determine the matrix infiltration process in forest soil. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station. Nylon cloth was placed on the soil surface in the inner ring and between the inner and outer rings of infiltrometers. A thin layer of fine sands were placed onto the nylon cloth to shelter the macropores and ensure that water infiltrates the soil through the matrix only. Brilliant Blue tracers were applied to examine the exclusion of preferential flow occurrences in the measured soil body. The infiltration process was measured, computed, and recorded through procedures similar to those of conventional methods. Horizontal and vertical soil profiles were excavated to check the success of the experiment and ensure that preferential flow did not occur in the measured soil column and that infiltration was only through the soil matrix. The infiltration processes of the replicates of five plots were roughly the same, thereby indicating the feasibility of the methodology to measure soil matrix infiltration. The measured infiltration curves effectively explained the transient process of soil matrix infiltration. Philip and Kostiakov models fitted the measured data well, and all the coefficients of determination were greater than 0.9. The wetted soil bodies through excavations did not present evidence of preferential flow. Therefore, the proposed method can determine the infiltration process through the forest soil matrix. This
Liquid carbon dioxide absorbents, methods of using the same, and related system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Robert James; Soloveichik, Grigorii Lev; Rubinsztajn, Malgorzata Iwona
A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO 2 or have a high-affinity for CO 2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO 2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
Nutrient infiltrate concentrations from three permeable pavement types.
Brown, Robert A; Borst, Michael
2015-12-01
While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m(2), lined sections that direct all infiltrate into 5.7-m(3) tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry deposition. Similar to other permeable pavement studies, nitrate was the dominant nitrogen species in the infiltrate. The PA infiltrate had significantly larger nitrite and ammonia concentrations than PICP and PC, and this was presumably linked to unexpectedly high pH in the PA infiltrate that greatly exceeded the optimal pH range for nitrifying bacteria. Contrary to the nitrogen results, the PA infiltrate had significantly smaller orthophosphate concentrations than in rainwater, runoff, and infiltrate from PICP
Trends in heteroepitaxy of III-Vs on silicon for photonic and photovoltaic applications
NASA Astrophysics Data System (ADS)
Lourdudoss, Sebastian; Junesand, Carl; Kataria, Himanshu; Metaferia, Wondwosen; Omanakuttan, Giriprasanth; Sun, Yan-Ting; Wang, Zhechao; Olsson, Fredrik
2017-02-01
We present and compare the existing methods of heteroepitaxy of III-Vs on silicon and their trends. We focus on the epitaxial lateral overgrowth (ELOG) method as a means of achieving good quality III-Vs on silicon. Initially conducted primarily by near-equilibrium epitaxial methods such as liquid phase epitaxy and hydride vapour phase epitaxy, nowadays ELOG is being carried out even by non-equilibrium methods such as metal organic vapour phase epitaxy. In the ELOG method, the intermediate defective seed and the mask layers still exist between the laterally grown purer III-V layer and silicon. In a modified ELOG method called corrugated epitaxial lateral overgrowth (CELOG) method, it is possible to obtain direct interface between the III-V layer and silicon. In this presentation we exemplify some recent results obtained by these techniques. We assess the potentials of these methods along with the other existing methods for realizing truly monolithic photonic integration on silicon and III-V/Si heterojunction solar cells.
Peripheral corneal infiltrates associated with contact lens wear.
Donshik, P C; Suchecki, J K; Ehlers, W H
1995-01-01
PURPOSE: A retrospective study was performed to review the clinical characteristics of peripheral corneal infiltrates in contact lens wearers. METHODS: The charts of all contact lens patients with peripheral corneal infiltrates 1.5 mm or less in size who presented to the office from 1987 to 1994 were reviewed. RESULTS: The epidemiological and clinical characteristics of peripheral corneal infiltrates associated with contact lens wear were reviewed in 52 patients (64 infiltrates). Forty-four patients presented with a single infiltrate, while the remaining 8 patients had multiple infiltrates. While there was no predilection for a specific quadrant of the cornea, when a subgroup of patients who wore extended wear lenses was analyzed, 19 of the 40 infiltrates were located in the superior quadrant. Forty percent of the patients were wearing disposable extended wear contact lenses, 21% were wearing conventional extended wear lenses, 33% were wearing conventional or frequent replacement/disposable daily wear contact lenses and 6% were wearing rigid gas permeable lenses. The majority of patients had minimal conjunctival inflammation, an anterior stromal cellular reaction and minimal anterior chamber activity. A subgroup of 16 patients had corneal cultures of their infiltrates. In this group, 8 of the 16 had positive cultures. All patients had a resolution of the infiltrates without complications and the majority were refitted to daily wear soft or rigid contact lenses. CONCLUSION: Peripheral corneal infiltrates in contact lens wearers appears to be more common in patients wearing extended wear soft contact lenses. While often considered "sterile" in the literature, a significant number have been shown to be culture-positive. The organisms that have been associated with peripheral infiltrates appear to be less "pathogenic" than those that have been reported to be associated with central corneal ulcer. However, it is probably advisable that patients with peripheral corneal
High Temperature Silicon Carbide (SiC) Traction Motor Drive
2011-08-09
UNCLASSIFIED Distribution Statement A. Approved for public release; distribution is unlimited. UNCLASSIFIED HIGH TEMPERATURE SILICON CARBIDE...be modular and conveniently distributed. Small component size and operation with high - temperature liquid coolant are essential factors in the...these densities, power modules capable of high - temperature operation were developed using SiC normally-off JFETs. This paper will discuss the unique
Bn and Si-Doped Bn Coatings on Woven Fabrics
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Scott, John M.; Wheeler, Donald R.; Chayka, Paul V.; Gray, Hugh R. (Technical Monitor)
2002-01-01
A computer controlled, pulsed chemical vapor infiltration (CVI) system has been developed to deposit BN from a liquid borazine (B3N3H6) source, as well as silicon doped BN coatings using borazine and a silicon source, into 2-D woven ceramic fabric preforms. The coating process was evaluated as a function of deposition temperature, pressure, and precursor flow rate. Coatings were characterized by field emission scanning electron microscopy, electron dispersive spectroscopy and Auger spectroscopy. By controlling the reactant feed ratios, Si incorporation could be controlled over the range of 6-24 atomic percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe
The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) ormore » silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.« less
Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments
NASA Astrophysics Data System (ADS)
Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.
2015-10-01
Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.
Cho, H. Jean; Jaffe, Peter R.; Smith, James A.
1993-01-01
This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the
[Local infiltration analgesia in total joint replacement].
de Jonge, Tamás; Görgényi, Szabolcs; Szabó, Gabriella; Torkos, Miklós Bulcsú
2017-03-01
Total hip and knee replacment surgeries are characterized by severe postoperative pain. Local infiltration analgesia is proved to be very effective. However this method has not been widely used in Hungary. To evaluate the efficacy of the local infiltration analgesia with modified components in patients underwent total hip or knee replacement surgery. Data of 99 consecutive patients underwent primary total hip or knee replacement surgery were evaluated prospectively. In all the 99 surgeries modified local infiltration analgesia was applied. Postoperative pain reported on a visual analog scale was recorded as well as the need for further analgetics during the first 18 hours after surgery. The cost of the analgetic drugs was calculated. The control group comprised 97 consecutive patients underwent total hip or knee replacement, where local infiltration analgesia was not applied. Statistical analysis was done. Patients received local infiltration analgesia reported significantly less pain (p<0.001). The need for postoperatively given analgetics was almost 50% less, and the cost of all postoperative analgetics was 47% less than in the control group. In total hip and knee replacement surgeries the modified local infiltration analgesia decreases postoperative pain effectively and contribute to the early mobilization of the patients. Orv. Hetil., 2017, 158(9), 352-357.
Xie, Haifeng; Wang, Xiaozu; Wang, Yu; Zhang, Feimin; Chen, Chen; Xia, Yang
2009-02-01
The aim of this study was to verify the effects of sol-gel processed silica coating on the bond strength between resin cement and glass-infiltrated aluminum oxide ceramic. Silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surface via the sol-gel process. Atomic Force Microscope (AFM), Fourier Transmission Infrared spectrum (FTIR), and Energy Dispersive X-ray Spectroscopy (EDS) were used for coating characterization. Forty-eight blocks of glass-infiltrated aluminum oxide ceramic were fabricated. The ceramic surfaces were polished following sandblasting. Three groups of specimens (16 for each group) with different surface treatment were prepared. Group P: no treatment; group PO: treated with silane solution; group PTO: silica coating via sol-gel process, followed by silane application. Composite cylinders were luted with resin cement to the test specimens. Half of the specimens in each group were stored in distilled water for 24 h and the other half were stored in distilled water for 30 days before shear loading in a universal testing machine until failure. Selected ceramic surfaces were analyzed to identify the failure mode using a scanning electron microscopy (SEM). Nanostructured silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surfaces by the sol-gel process. The silicon element on the ceramic surface increased significantly after the coating process. The mean shear bond strength values (standard deviation) before artificial aging were: group P: 1.882 +/- 0.156 MPa; group PO: 2.177 +/- 0.226 MPa; group PTO: 3.574 +/- 0.671 MPa. Statistically significant differences existed between group PTO and group P, and group PTO and groups PO. The failure mode for group P and group PO was adhesive, while group PTO was mixed. The mean shear bond strength values (standard deviation) after artificial aging were: group P: 1.594 +/- 0.111 MPa; group PO: 2.120 +/- 0.339 MPa; group PTO: 2.955 +/- 0.113 MPa. Statistically significant
Material properties that predict preservative uptake for silicone hydrogel contact lenses.
Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B
2012-11-01
To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.
Rim, Taiuk; Baek, Chang-Ki; Kim, Kihyun; Jeong, Yoon-Ha; Lee, Jeong-Soo; Meyyappan, M
2014-01-01
The interest in biologically sensitive field effect transistors (BioFETs) is growing explosively due to their potential as biosensors in biomedical, environmental monitoring and security applications. Recently, adoption of silicon nanowires in BioFETs has enabled enhancement of sensitivity, device miniaturization, decreasing power consumption and emerging applications such as the 3D cell probe. In this review, we describe the device physics and operation of the silicon nanowire BioFETs along with recent advances in the field. The silicon nanowire BioFETs are basically the same as the conventional field-effect transistors (FETs) with the exceptions of nanowire channel instead of thin film and a liquid gate instead of the conventional gate. Therefore, the silicon device physics is important to understand the operation of the BioFETs. Herein, physical characteristics of the silicon nanowire FETs are described and the operational principles of the BioFETs are classified according to the number of gates and the analysis domain of the measured signal. Even the bottom-up process has merits on low-cost fabrication; the top-down process technique is highlighted here due to its reliability and reproducibility. Finally, recent advances in the silicon nanowire BioFETs in the literature are described and key features for commercialization are discussed.
Novel Infiltration Diagnostics based on Laser-line Scanning and Infrared Temperature Field Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xinwei
This project targets the building energy efficiency problems induced by building infiltration/leaks. The current infiltration inspection techniques often require extensive visual inspection and/or whole building pressure test. These current techniques cannot meet more than three of the below five criteria of ideal infiltration diagnostics: 1. location and extent diagnostics, 2. building-level application, 3. least surface preparation, 4. weather-proof, and 5. non-disruption to building occupants. These techniques are either too expensive or time consuming, and often lack accuracy and repeatability. They are hardly applicable to facades/facades section. The goal of the project was to develop a novel infiltration diagnostics technology basedmore » on laser line-scanning and simultaneous infrared temperature imaging. A laboratory scale experimental setup was designed to mimic a model house of well-defined pressure difference below or above the outside pressure. Algorithms and Matlab-based programs had been developed for recognition of the hole location in infrared images. Our experiment based on laser wavelengths of 450 and 1550 nm and laser beam diameters of 4-25 mm showed that the location of the holes could be identified using laser heating; the diagnostic approach however could not readily distinguish between infiltration and non-infiltration points. To significantly improve the scanning throughput and recognition accuracy, a second approach was explored, developed, and extensively tested. It incorporates a liquid spray on the surface to induce extra phase change cooling effect. In this spray method, we termed it as PECIT (Phase-change Enhanced Cooling Infrared Thermography), phase-change enhanced cooling was used, which significantly amplifies the effect of air flow (infiltration and exfiltration). This heat transfer method worked extremely well to identify infiltration and exfiltration locations with high accuracy and increased throughput. The PECIT technique
Dosimetric implications of the infiltrated injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castronovo, F.P.; McKusick, K.A.; Strauss, H.W.
1984-01-01
Following inadvertent infiltration of a radiopharmaceutical, there is variable and uncertain uptake in target tissue. Concomitantly, there is also a concern for the radiation dose to the infiltrated site. This investigation determined the clearance and radiation burdens from various radiopharmaceutical infiltrates in a rat model. Nine separate sites were studied for: Tc-99m microspheres; Tc-99m MDP; Ga-67 citrate; and Tl-201 chloride. Following sc injection on the shaven posteriors of anesthetized adult male Sprague-Dawley rats, gamma camera and computer data were collected up to 24 hours. The resulting data were expressed semilogarithmically as the mean (N = 9) of the ''% retainedmore » at site'' as a f(time) after injection. Nonparticulate agents showed a tri-exponential release pattern from each site, whereas the microspheres remained for an extended period of time. Using these pharma-cokinetic curves, the % remaining at each site for various times, and rems/mCi per lcc infiltrate was determined.« less
Stability and electrokinetic potential of silicon carbide suspensions in aqueous organic media
NASA Technical Reports Server (NTRS)
Yeremenko, B. V.; Lyubchenko, I. N.; Skobets, I. Y.
1984-01-01
The method of electroosmosis was used to study the dependence of the electrokinetic potential of silicon carbide suspensions in mixtures of water -n. alcohol. The reasons for the dependence of the electrokinetic potential on the composition of the intermicellar liquid are discussed.
Comparative assessment of five water infiltration models into the soil
NASA Astrophysics Data System (ADS)
Shahsavaramir, M.
2009-04-01
The knowledge of the soil hydraulic conditions particularly soil permeability is an important issue hydrological and climatic study. Because of its high spatial and temporal variability, soil infiltration monitoring scheme was investigated in view of its application in infiltration modelling. Some of models for infiltration into the soil have been developed, in this paper; we design and describe capability of five infiltration model into the soil. We took a decision to select the best model suggested. In this research in the first time, we designed a program in Quick Basic software and wrote algorithm of five models that include Kostiakove, Modified Kostiakove, Philip, S.C.S and Horton. Afterwards we supplied amounts of factual infiltration, according of get at infiltration data, by double rings method in 12 series of Saveh plain which situated in Markazi province in Iran. After accessing to models coefficients, these equations were regenerated by Excel software and calculations related to models acuity rate in proportion to observations and also related graphs were done by this software. Amounts of infiltration parameters, such as cumulative infiltration and infiltration rate were obtained from designed models. Then we compared amounts of observation and determination parameters of infiltration. The results show that Kostiakove and Modified Kostiakove models could quantify amounts of cumulative infiltration and infiltration rate in triple period (short, middle and long time). In tree series of soils, Horton model could determine infiltration amounts better than others in time trinal treatments. The results show that Philip model in seven series had a relatively good fitness for determination of infiltration parameters. Also Philip model in five series of soils, after passing of time, had curve shape; in fact this shown that attraction coefficient (s) was less than zero. After all S.C.S model among of others had the least capability to determination of infiltration
Human Apolipoprotein A1 at Solid/Liquid and Liquid/Gas Interfaces.
Dogan, Susanne; Paulus, Michael; Forov, Yury; Weis, Christopher; Kampmann, Matthias; Cewe, Christopher; Kiesel, Irena; Degen, Patrick; Salmen, Paul; Rehage, Heinz; Tolan, Metin
2018-04-12
An X-ray reflectivity study on the adsorption behavior of human apolipoprotein A1 (apoA1) at hydrophilic and hydrophobic interfaces is presented. It is shown that the protein interacts via electrostatic and hydrophobic interactions with the interfaces, resulting in the absorption of the protein. pH dependent measurements at the solid/liquid interface between silicon dioxide and aqueous protein solution show that in a small pH range between pH 4 and 6, adsorption is increased due to electrostatic attraction. Here, the native shape of the protein seems to be conserved. In contrast, the adsorption at the liquid/gas interface is mainly driven by hydrophobic effects, presumably by extending the hydrophobic regions of the amphipathic helices, and results in a conformational change of the protein during adsorption. However, the addition of differently charged membrane-forming lipids at the liquid/gas interface illustrates the ability of apoA1 to include lipids, resulting in a depletion of the lipids from the interface.
Liquid carbon dioxide absorbents, methods of using the same, and related systems
O'Brien, Michael Joseph; Perry, Robert James; Lam, Tunchiao Hubert; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lewis, Larry Neil; Rubinsztajn, Malgorzata Iwona; Hancu, Dan
2016-09-13
A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO.sub.2 or have a high-affinity for CO.sub.2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO.sub.2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
Verch, Andreas; Pfaff, Marina; de Jonge, Niels
2015-06-30
Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.
Wood, Mark; Reader, Al; Nusstein, John; Beck, Mike; Padgett, David; Weaver, Joel
2005-06-01
The purpose of this prospective, randomized study was to compare the venous blood levels of lidocaine and heart rate changes after intraosseous and infiltration injections of 1.8 ml of 2% lidocaine with 1:100,000 epinephrine. Using a crossover design, 20 subjects randomly received an intraosseous and infiltration injection at two separate appointments. The heart rate was measured using a pulse oximeter. Venous blood samples were collected before the injections and at 2, 5, 10, 15, 20, 25, 30, 45, and 60 min after the injections. The blinded plasma samples were analyzed for lidocaine concentrations using high-performance liquid chromatography (HPLC). The intraosseous injection resulted in a statistically significant increase in heart rate, when compared to the infiltration injection, during solution deposition and for 2 min after the injection. The plasma levels of lidocaine were not statistically different for maxillary anterior intraosseous and infiltration injections when using 1.8 ml of 2% lidocaine with 1:100,000 epinephrine.
NASA Astrophysics Data System (ADS)
Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi
2017-09-01
The performance of an adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid crystal on silicon spatial light modulator and Shack-Hartmann wavefront sensor was investigated. The system achieved high-resolution and high-contrast images of human retinas by dynamic compensation for the aberrations in the eyes. Retinal structures such as photoreceptor cells, blood vessels, and nerve fiber bundles, as well as blood flow, could be observed in vivo. We also investigated involuntary eye movements and ascertained microsaccades and drifts using both the retinal images and the aberrations recorded simultaneously. Furthermore, we measured the interframe displacement of retinal images and found that during eye drift, the displacement has a linear relationship with the residual low-order aberration. The estimated duration and cumulative displacement of the drift were within the ranges estimated by a video tracking technique. The AO-SLO would not only be used for the early detection of eye diseases, but would also offer a new approach for involuntary eye movement research.
The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II
NASA Astrophysics Data System (ADS)
Limmer, David T.; Chandler, David
2013-06-01
This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.
The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II.
Limmer, David T; Chandler, David
2013-06-07
This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.
Evaluation of an Infiltration Model with Microchannels
NASA Astrophysics Data System (ADS)
Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.
2015-12-01
This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were
Infiltration in soils with a saturated surface
NASA Astrophysics Data System (ADS)
Hogarth, W. L.; Lockington, D. A.; Barry, D. A.; Parlange, M. B.; Haverkamp, R.; Parlange, J.-Y.
2013-05-01
An earlier infiltration equation relied on curve fitting of infiltration data for the determination of one of the parameters, which limits its usefulness in practice. This handicap is removed here, and the parameter is now evaluated by linking it directly to soil-water properties. The new predictions of infiltration using this evaluation are quite accurate. Positions and shapes of soil-water profiles are also examined in detail and found to be predicted analytically with great precision.
Thematic issue on soil water infiltration
USDA-ARS?s Scientific Manuscript database
Infiltration is the term applied to the process of water entry into the soil, generally by downward flow through all or part of the soil surface. Understanding of infiltration concept and processes has greatly improved, over the past 30 years, and new insights have been given into modeling of non-un...
NASA Astrophysics Data System (ADS)
Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.
2016-03-01
Bulk (RE)-Ba-Cu-O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE)2BaCuO5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (˜41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique.
Choroidal Infiltration by Retinoblastoma: Predictive Clinical Features and Outcome.
Kaliki, Swathi; Tahiliani, Prerana; Iram, Sadiya; Ali, Mohammed Hasnat; Mishra, Dilip K; Reddy, Vijay Anand P
2016-11-01
To identify the clinical features predictive of choroidal infiltration by retinoblastoma on histopathology and to report the outcome in these patients. Retrospective study. Of the 403 patients who underwent primary enucleation for retinoblastoma, 113 patients had choroidal tumor infiltration and 290 patients had no choroidal tumor infiltration. There was a higher incidence of metastasis and related death in the choroidal tumor infiltration group compared to the no choroidal tumor infiltration group (4% vs 1%; P = .02). On multivariate analysis, the clinical features predictive of histopathologic massive choroidal infiltration included prolonged duration of symptoms for more than 6 months (hazard ratio [HR] = 3.04; P = .001) and secondary glaucoma (HR = 2.24; P = .005). In this study, the patients with retinoblastoma with prolonged duration of symptoms (> 6 months) had a three-fold greater risk and those with secondary glaucoma at presentation had a two-fold greater risk of massive choroidal tumor infiltration. [J Pediatr Ophthalmol Strabismus. 2016;53(6):349-356.]. Copyright 2016, SLACK Incorporated.
Pressure cell for investigations of solid-liquid interfaces by neutron reflectivity.
Kreuzer, Martin; Kaltofen, Thomas; Steitz, Roland; Zehnder, Beat H; Dahint, Reiner
2011-02-01
We describe an apparatus for measuring scattering length density and structure of molecular layers at planar solid-liquid interfaces under high hydrostatic pressure conditions. The device is designed for in situ characterizations utilizing neutron reflectometry in the pressure range 0.1-100 MPa at temperatures between 5 and 60 °C. The pressure cell is constructed such that stratified molecular layers on crystalline substrates of silicon, quartz, or sapphire with a surface area of 28 cm(2) can be investigated against noncorrosive liquid phases. The large substrate surface area enables reflectivity to be measured down to 10(-5) (without background correction) and thus facilitates determination of the scattering length density profile across the interface as a function of applied load. Our current interest is on the stability of oligolamellar lipid coatings on silicon surfaces against aqueous phases as a function of applied hydrostatic pressure and temperature but the device can also be employed to probe the structure of any other solid-liquid interface.
Silicon surface passivation by silicon nitride deposition
NASA Technical Reports Server (NTRS)
Olsen, L. C.
1984-01-01
Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.
NASA Astrophysics Data System (ADS)
Roman, C.; García-Morales, M.; Goswami, S.; Marques, A. C.; Cidade, M. T.
2018-07-01
The potential of electrorheological (ER) suspensions based on polarizable particles in simple liquids relies on the particles arrangements which turn their quasi Newtonian behavior into gel-like. However, minor attention has been paid to the effect provoked by the liquid viscosity on the ease of orientation and assembly of the particles. With this aim, a study on the ER behavior, at 25 °C, of 1 wt% suspensions of polyaniline (PANI)-based hybrid particles (—graphene or —tungstene oxide) in silicone oil with varying viscosities (20, 50 and 100 cSt) was carried out. The electric field effect was higher for the PANI-graphene particles suspension in the less viscous silicone oil. However, two drawbacks were observed: (a) higher leakage current flows; and (b) reduced reversibility upon the electric field was turned off. The use of silicone oil with higher viscosity solved these issues.
Method Developed for Improving the Thermomechanical Properties of Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; DiCarlo, James A.
2004-01-01
Today, a major thrust for achieving engine components with improved thermal capability is the development of fiber-reinforced silicon-carbide (SiC) matrix composites. These materials are not only lighter and capable of higher use temperatures than state-of-the-art metallic alloys and oxide matrix composites (approx. 1100 C), but they can provide significantly better static and dynamic toughness than unreinforced silicon-based monolithic ceramics. However, for successful application in advanced engine systems, the SiC matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetime. Since the high-temperature structural life of ceramic materials is typically controlled by creep-induced flaw growth, a key composite property requirement is the ability to display high creep resistance under these conditions. Also, because of the possibility of severe thermal gradients in the components, the composites should provide maximum thermal conductivity to minimize the development of thermal stresses. State-of-the-art SiC matrix composites are typically fabricated via a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by high-performance fibers, (2) chemical vapor infiltration of a fiber coating material such as boron nitride (BN) into the preform, and (3) infiltration of a SiC matrix into the remaining porous areas in the preform. Generally, the highest performing composites have matrices fabricated by the CVI process, which produces a SiC matrix typically more thermally stable and denser than matrices formed by other approaches. As such, the CVI SiC matrix is able to provide better environmental protection to the coated fibers, plus provide the composite with better resistance to crack propagation. Also, the denser CVI SiC matrix should provide optimal creep resistance and thermal conductivity to the composite. However, for adequate preform infiltration, the CVI SiC matrix
Ion assisted deposition of SiO2 film from silicon
NASA Astrophysics Data System (ADS)
Pham, Tuan. H.; Dang, Cu. X.
2005-09-01
Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.
Flux pinning properties of GdBCO bulk through the infiltration and growth process
NASA Astrophysics Data System (ADS)
Zhang, Y. F.; Wang, J. J.; Zhang, X. J.; Pan, C. Y.; Zhou, W. L.; Xu, Y.; Liu, Y. S.; Izumi, M.
2017-06-01
REBa2Cu3O7-δ(RE123 or REBCO, RE=rare earth elements, Gd, Y, Nd, etc.) bulk high temperature superconductors (HTS) have been used in lots of aspects, such as in magnetic levitation, et al., owing to the performance of high magnetic flux trapping. GdBCO superconductor bulk with 25 mm diameter has been successfully fabricated by top-seeded infiltration and growth (TSIG) method. We chose YBa2Cu3O7-δ (Y123) particles as the liquid source, which provide enough liquid sources during the growth and encourage the growth along a-b plane of GdBCO bulk. Then the existence of Y123 liquid source partly decreases the effect of the sub-grain boundaries in a-growth sectors and improves the properties of GdBCO bulk. The shape of the trapped field is close to circle. The critical current density of C2 and B2 (JC ) enhances. The superconducting transition temperature (TC ) is around 94.5K in the different position and keeps the superconducting properties. It is the important experimental data for the engineering applications of the superconductor bulk.
Mechanisms of water infiltration into conical hydrophobic nanopores.
Liu, Ling; Zhao, Jianbing; Yin, Chun-Yang; Culligan, Patricia J; Chen, Xi
2009-08-14
Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement.
Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.
Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary
2016-11-01
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.
40 CFR 35.2120 - Infiltration/Inflow.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... events, or the rainfall-induced total flow rate exceeds 275 gpcd during storm events, the applicant shall...) Infiltration. (1) If the flow rate at the existing treatment facility is 120 gallons per capita per day or less...
Studies of material and process compatibility in developing compact silicon vapor chambers
NASA Astrophysics Data System (ADS)
Cai, Qingjun; Bhunia, Avijit; Tsai, Chialun; Kendig, Martin W.; DeNatale, Jeffrey F.
2013-06-01
The performance and long-term reliability of a silicon vapor chamber (SVC) developed for thermal management of high-power electronics critically depend on compatibility of the component materials. A hermetically sealed SVC presented in this paper is composed of bulk silicon, glass-frit as a bonding agent, lead/tin solder as an interface sealant and a copper charging tube. These materials, in the presence of a water/vapor environment, may chemically react and release noncondensable gas (NCG), which can weaken structural strength and degrade the heat transfer performance with time. The present work reports detailed studies on chemical compatibility of the components and potential solutions to avoid the resulting thermal performance degradation. Silicon surface oxidation and purification of operating liquid are necessary steps to reduce performance degradation in the transient period. A lead-based solder with its low reflow temperature is found to be electrochemically stable in water/vapor environment. High glazing temperature solidifies molecular bonding in glass-frit and mitigates PbO precipitation. Numerous liquid flushes guarantee removal of chemical residual after the charging tube is soldered to SVC. With these improvements on the SVC material and process compatibility, high effective thermal conductivity and steady heat transfer performance are obtained.
NASA Astrophysics Data System (ADS)
Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong
2016-05-01
This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels-Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching-releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.
Xu, Tianfu; Sonnenthal, Eric; Bodvarsson, Gudmundur
2003-06-01
The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition.
Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.
Constantinou, Achilleas; Ghiotto, Francesco; Lam, Koon Fung; Gavriilidis, Asterios
2014-01-07
Stripping of acetone from water utilizing nitrogen as a sweeping gas in co-current flow was conducted in a microfabricated glass/silicon gas-liquid contactor. The chip consisted of a microchannel divided into a gas and a liquid chamber by 10 μm diameter micropillars located next to one of the channel walls. The channel length was 35 mm, the channel width was 220 μm and the microchannel depth 100 μm. The micropillars were wetted by the water/acetone solution and formed a 15 μm liquid film between them and the nearest channel wall, leaving a 195 μm gap for gas flow. In addition, acetone stripping was performed in a microchannel membrane contactor, utilizing a hydrophobic PTFE membrane placed between two microstructured acrylic plates. Microchannels for gas and liquid flows were machined in the plates and had a depth of 850 μm and 200 μm respectively. In both contactors the gas/liquid interface was stabilized: in the glass/silicon contactor by the hydrophilic micropillars, while in the PTFE/acrylic one by the hydrophobic membrane. For both contactors separation efficiency was found to increase by increasing the gas/liquid flow rate ratio, but was not affected when increasing the inlet acetone concentration. Separation was more efficient in the microfabricated contactor due to the very thin liquid layer employed.
Pseudomonas keratitis associated with daily wear of silicone hydrogel contact lenses.
Schornack, Muriel M; Faia, Lisa J; Griepentrog, Gregory J
2008-03-01
To report two cases of pseudomonas keratitis associated with daily wear of silicone hydrogel contact lenses. Medical records of two patients who developed pseudomonas keratitis while wearing silicone hydrogel lenses on a daily-wear schedule are reviewed and discussed. A 13-year-old girl who wore ACUVUE Advance lenses (Johnson & Johnson Vision Care, Jacksonville, FL) 12 to 14 hours daily developed a paracentral corneal ulcer in her left eye 4 months after beginning contact lens use. Cultures were positive for Pseudomonas aeruginosa. The ulcer responded to fortified antibiotics and resolved in 10 days. Best-corrected visual acuity after resolution of the ulcer was 20/25. A 58-year-old woman with a 30-year history of rigid gas-permeable contact lens wear was refitted with O2 Optix lenses (CIBA Vision, Duluth, GA). Six months later, she had a 4.9 x 4.0 mm epithelial defect with an underlying stromal infiltrate in the right eye. Cultures were positive for P. aeruginosa. The ulcer responded to fortified antibiotics and resolved in 30 days. Best-corrected visual acuity after resolution of the ulcer was 20/30. Increased oxygen permeability associated with silicone hydrogel contact lenses may reduce, but does not eliminate, the risk of pseudomonas keratitis. Studies have yet to quantify the risk of keratitis associated with daily wear of these lens materials. Further study is necessary to identify the risks of complications with daily wear of silicone hydrogel lenses and to determine which factors may contribute to those risks.
Contact lines on silicone elastomers promote contamination
NASA Astrophysics Data System (ADS)
Hourlier-Fargette, Aurelie; Antkowiak, Arnaud; Neukirch, Sebastien
2017-11-01
Silicone elastomers are used in contact with aqueous liquids in a large range of applications. Due to numerous advantages such as its flexibility, optical transparency, or gas permeability, polydimethylsiloxane is widely spread in rapid prototyping for microfluidics or elastocapillarity experiments. However, silicone elastomers are known to contain a small fraction of uncrosslinked low-molecular-weight oligomers, the effects of which are not completely understood. We show that in various setups involving an air-water-silicone elastomer contact line, a capillarity-induced extraction of uncrosslinked oligomers occurs, leading to a contamination of water-air interfaces. We investigate the case of a static air-water-PDMS contact line, before focusing on moving contact lines. A water droplet sliding down on a PDMS inclined plane or an air bubble rising on an immersed PDMS plane exhibits two successive speed regimes: the second regime is reached only when a monolayer of oligomers completely covers the water-air interface. These experiments involve processes occurring at the polymer network scale that have significant macroscopic consequences, and therefore provide a simple test to evaluate the presence of uncrosslinked oligomers in an elastomer sample.
Mathematical Analysis and Optimization of Infiltration Processes
NASA Technical Reports Server (NTRS)
Chang, H.-C.; Gottlieb, D.; Marion, M.; Sheldon, B. W.
1997-01-01
A variety of infiltration techniques can be used to fabricate solid materials, particularly composites. In general these processes can be described with at least one time dependent partial differential equation describing the evolution of the solid phase, coupled to one or more partial differential equations describing mass transport through a porous structure. This paper presents a detailed mathematical analysis of a relatively simple set of equations which is used to describe chemical vapor infiltration. The results demonstrate that the process is controlled by only two parameters, alpha and beta. The optimization problem associated with minimizing the infiltration time is also considered. Allowing alpha and beta to vary with time leads to significant reductions in the infiltration time, compared with the conventional case where alpha and beta are treated as constants.
Liquid droplet radiator performance studies
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Hertzberg, A.
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.
GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION
Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...
Physical Properties of Polyester Fabrics Treated with Nano, Micro and Macro Emulsion Silicones
NASA Astrophysics Data System (ADS)
Parvinzadeh, M.; Hajiraissi, R.
2007-08-01
The processing of textile to achieve a particular handle is one of the most important aspects of finishing technology. Fabrics softeners are liquid composition added to washing machines during the rinse cycle to make clothes feel better to the touch. The first fabric softeners were developed by the textile industry during the early twentieth century. In this research polyester fabrics were treated with nano, micro and macro emulsion silicone softeners. Some of the physical properties of the treated fabric samples are discussed. The drapeability of treated samples was improved after treatment with nano silicone softeners. The colorimetric measurement of softener-treated fabrics is evaluated with a reflectance spectrophotometer. Moisture regain of treated samples is increased due to coating of silicone softeners. There is some increase in the weight of softener-treated samples. Samples treated with nano emulsion silicones gave better results compared to micro- and macro-emulsion treated ones.
Method for producing silicon nitride/silicon carbide composite
Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.
1996-07-23
Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.
NASA Astrophysics Data System (ADS)
Santosa, Slamet
2018-03-01
The infiltration of water into the soil decreases due to the transfer of soill function or the lack of soil biopores. This study aims to determine the effectiveness of the use of fruits waste toward the water infiltration rate. Observation of the water level decrease is done every 5 minutes interval. Observation of biopore water infiltration rate was done after fruits waste decomposed for 15 and 30 days. Result of standard water infiltration rate at the first of 5 minutes is 2.18 mm/min, then decreases at interval of 5 minutes on next time as the soil begins to saturate the water. Baraya campus soil observed in soil depths of 100cm has a dusty texture character, grayish brown color and clumping structure. Soil character indicates low porosity. While biopore water infiltration rate at the first of 5 minute interval is 6.61and 6.95 mm/min on banana waste; 5.55 and 6.61mm/min on papaya waste and 4.26 and 5.39 mm/min on mango waste. The effectiveness of water infiltration rate is 44.45% and 41.93% on banana; 44.61% and 30.09% on papaya and 15.79% and 28.36% on mango. Study concluded that banana waste causes the water infiltration rate most effective in biopore infiltration hole.
Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA
2006-12-05
A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.
Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie
2008-12-09
A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.
Mixing liquid-liquid stratified flows using transverse jets in cross flows
NASA Astrophysics Data System (ADS)
Wright, Stuart; Matar, Omar K.; Markides, Christos N.
2017-11-01
Low pipeline velocities in horizontal liquid-liquid flows lead to gravitationally-induced stratification. This results in flow situations that have no point where average properties can be measured. Inline mixing limits the stratification effect by forming unstable liquid-liquid dispersions. An experimental system is used to measure the mixing performance of various jet-in-cross-flow (JICF) configurations as examples of active inline mixers. The test section consists of a 8.5-m long ETFE pipe with a 50-mm diameter, which is refractive index-matched to both a 10 cSt silicone oil and a 51 wt% glycerol solution. This practice allows advanced laser-based optical techniques, namely PLIF and PIV/PTV, to be applied to these flows in order to measure the phase fractions and velocity fields, respectively. A volume of a fluid (VOF) CFD code is then used to simulate simple jet geometries and to demonstrate the breakup and dispersion capabilities of JICFs in stratified pipeline flows by predicting their mixing efficiency. These simulation results are contrasted with the experimental results to examine the effectiveness of these simulations in predicting the dispersion and breakup. Funding from Cameron/Schlumberger, and the TMF Consortium gratefully acknowledged.
The Effect of Intravenous Infiltration Management Program for Hospitalized Children.
Park, Soon Mi; Jeong, Ihn Sook; Kim, Kyoung Lae; Park, Kyung Ju; Jung, Moon Ju; Jun, Seong Suk
2016-01-01
This study aimed to identify the effect of IV infiltration management program among hospitalized children. This was a quasi-experimental study with history comparison group design with 2,894 catheters inserted during 3 months comparison phase and 3,651 catheters inserted during 4 months experimental phase. The intervention was composed of seven activities including applying poster, documentation of catheter insertion, parents education, making infiltration report, assessment of vein condition before inserting catheter, appropriate site selection, and documentation of catheter insertion, and assessment of peripheral catheter insertion site every shift. Data were analyzed using of X2-test, Fisher's exact test. The infiltration incidence rate was 0.9% for experimental group and 4.4% for comparison group, which was significantly different (x2=80.42, p<.001). The catheter maintenance period (p=.035) and infiltration state (p=.039) were significantly different among participants with infiltration between comparison and experimental groups. IV Infiltration management program was founded to be effective in reducing the IV infiltration incidence rate and increasing early detection of IV infiltration. Considering the effect of IV Infiltration management program, we recommend that this infiltration management program would be widely used in the clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.
A Microsystem Based on Porous Silicon-Glass Anodic Bonding for Gas and Liquid Optical Sensing
De Stefano, Luca; Malecki, Krzysztof; Della Corte, Francesco G.; Moretti, Luigi; Rea, Ilaria; Rotiroti, Lucia; Rendina, Ivo
2006-01-01
We have recently presented an integrated silicon-glass opto-chemical sensor for lab-on-chip applications, based on porous silicon and anodic bonding technologies. In this work, we have optically characterized the sensor response on exposure to vapors of several organic compounds by means of reflectivity measurements. The interaction between the porous silicon, which acts as transducer layer, and the organic vapors fluxed into the glass sealed microchamber, is preserved by the fabrication process, resulting in optical path increase, due to the capillary condensation of the vapors into the pores. Using the Bruggemann theory, we have calculated the filled pores volume for each substance. The sensor dynamic has been described by time-resolved measurements: due to the analysis chamber miniaturization, the response time is only of 2 s. All these results have been compared with data acquired on the same PSi structure before the anodic bonding process.
Deml, Moritz C; Buhr, Michael; Wimmer, Matthias D; Pflugmacher, Robert; Riedel, Rainer; Rommelspacher, Yorck; Kabir, Koroush
2015-07-01
Infiltration procedures are a common treatment of lumbar radiculopathy. There is a wide variety of infiltration techniques without an established gold standard. Therefore, we compared the effectiveness of CT-guided transforaminal infiltrations versus anatomical landmark-guided transforaminal infiltrations at the lower lumbar spine in case of acute sciatica at L3-L5. A retrospective chart review was conducted of 107 outpatients treated between 2009 and 2011. All patients were diagnosed with lumbar radiculopathic pain secondary to disc herniation in L3-L5. A total of 52 patients received CT-guided transforaminal infiltrations; 55 patients received non-imaging-guided nerve root infiltrations. The therapeutic success was evaluated regarding number of physician contacts, duration of treatment, type of analgesics used and loss of work days. Defined endpoint was surgery at the lower lumbar spine. In the CT group, patients needed significantly less oral analgesics (p < 0.001). Overall treatment duration and physician contacts were significantly lower in the CT group (p < 0.001 and 0.002) either. In the CT group, patients lost significant fewer work days due to incapacity (p < 0.001). Surgery had to be performed in 18.2 % of the non-imaging group patients (CT group: 1.9 %; p = 0.008). This study shows that CT-guided periradicular infiltration in lumbosciatica caused by intervertebral disc herniation is significantly superior to non-imaging, anatomical landmark-guided infiltration, regarding the parameters investigated. The high number of treatment failures in the non-imaging group underlines the inferiority of this treatment concept.
Fabrication of W-Cu alloy via combustion synthesis infiltration under an ultra-gravity field
NASA Astrophysics Data System (ADS)
Song, Yuepeng; Li, Qian; Li, Jiangtao; He, Gang; Chen, Yixiang; Kim, Hyoung Seop
2014-11-01
Tungsten copper alloy with a tungsten concentrate of 70 vol% was prepared by self-propagating high-temperature synthesis in an ultra-gravity field. The phase structures and components of the W-Cu alloy fabricated via this approach were the same as those via traditional sintering methods. The temperature and stress distributions during this process were simulated using a new scheme of the finite element method. The results indicated that nonequilibrium crystallization conditions can be created for combustion synthesis infiltration in an ultra-gravity field by the rapid infiltration of the liquid copper product into the tungsten compact at high temperature and low viscosity. The cooling rate can be above 100,000 K/s and high stresses in tungsten ( 5 GPa) and copper ( 2.6 GPa) were developed, which passivates the tungsten particle surface, resulting in easy sintering and densifying the W-Cu alloy. The reliability of the simulation was verified through temperature measurement and investigation of the microstructure. The W-Cu composite-formation mechanism was also analyzed and discussed with the simulation results.
NASA Astrophysics Data System (ADS)
Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.
2018-03-01
Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.
CT imaging spectrum of infiltrative renal diseases.
Ballard, David H; De Alba, Luis; Migliaro, Matias; Previgliano, Carlos H; Sangster, Guillermo P
2017-11-01
Most renal lesions replace the renal parenchyma as a focal space-occupying mass with borders distinguishing the mass from normal parenchyma. However, some renal lesions exhibit interstitial infiltration-a process that permeates the renal parenchyma by using the normal renal architecture for growth. These infiltrative lesions frequently show nonspecific patterns that lead to little or no contour deformity and have ill-defined borders on CT, making detection and diagnosis challenging. The purpose of this pictorial essay is to describe the CT imaging findings of various conditions that may manifest as infiltrative renal lesions.
Nested potassium hydroxide etching and protective coatings for silicon-based microreactors
NASA Astrophysics Data System (ADS)
de Mas, Nuria; Schmidt, Martin A.; Jensen, Klavs F.
2014-03-01
We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significantly different depths (50-650 µm) with sloped walls (54.7° with respect to the (1 0 0) wafer surface) and precise control over their geometry. The wetted areas were coated with thermally grown silicon oxide and electron-beam evaporated nickel films to protect them from the corrosive fluorination environment. Up to four Pyrex layers were anodically bonded to three silicon layers in a total of six bonding steps to cap the microchannels and stack the reaction layers. The average pinhole density in as-evaporated films was 3 holes cm-2. Heating during anodic bonding (up to 350 °C for 4 min) did not significantly alter the film composition. Upon fluorine exposure, nickel films (160 nm thick) deposited on an adhesion layer of Cr (10 nm) over an oxidized silicon substrate (up to 500 nm thick SiO2) led to the formation of a nickel fluoride passivation layer. This microreactor was used to investigate direct fluorinations at room temperature over several hours without visible signs of film erosion.
Silva, Pollyanna Nogueira Ferreira da; Martinelli-Lobo, Carolina Machado; Bottino, Marco Antonio; Melo, Renata Marques de; Valandro, Luiz Felipe
2018-01-01
The effects of several ceramic surface treatments on bond strength of a polymer-infiltrated ceramic network and resin composite as repair material were evaluated. CAD-CAM blocks of a polymer-infiltrated ceramic network (Vita Enamic) were sliced and subjected to aging process, followed by embedding in acrylic resin. The bonding/repair area was treated as follows (n = 30): C- without treatment; UA- universal adhesive application; FM- 10% hydrofluoric acid and silane application; OM-airborne-particle abrasion with aluminum oxide and silane application; RP- tribochemical silica coating; and CA- surface grinding and application of universal adhesive. Composite resin cylinders were made on the treated surface. Specimens from each group were assigned randomly to two subgroups (n = 15) considering storage condition: Baseline (shear tests after 48 hours) or Storage (tests after 6 months under distilled water). The treated surfaces were analyzed by goniometry, roughness, and SEM. Two-way ANOVA and 1-way ANOVA were applied to analyze the bond data and roughness / contact angle data, respectively, followed by Tukey's test (α = 5%). Surface treatments and storage conditions affected bond strengths (p < 0.01). Surface grinding (CA) followed by universal adhesive promoted the highest value of bond strength (14.5 ± 4.8 MPa for baseline, 8.5 ± 3.4 MPa for storage) and the roughest ceramic surface. Grinding with silicon carbide paper (simulating diamond bur) followed by the application of a universal adhesive system is the best option for repairing fractures of the polymer-infiltrated ceramic network.
Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes.
Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael
2014-01-01
In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g.
Caroli, Guido; Dell'Amore, Andrea; Cassanelli, Nicola; Dolci, Giampiero; Pipitone, Emanuela; Asadi, Nizar; Stella, Franco; Bini, Alessandro
2015-10-01
We wanted to determine the accuracy of transthoracic ultrasound in the prediction of chest wall infiltration by lung cancer or lung infiltration by chest wall tumours. Patients having preoperative CT-scan suspect for lung/chest wall infiltration were prospectively enrolled. Inclusion criteria for lung cancer were: obliteration of extrapleural fat, obtuse angle between tumour and chest wall, associated pleural thickening. The criteria for chest wall tumours were: rib destruction and intercostal muscles infiltration with extrapleural fat obliteration and intrathoracic extension. Lung cancer patients with evident chest wall infiltration were excluded. Transthoracic ultrasound was preoperatively performed. Predictions were checked during surgical intervention. Twenty-three patients were preoperatively examined. Sensitivity, specificity, positive and negative predictive values of transthoracic ultrasound were 88.89%, 100%, 100% and 93.3%, respectively. Youden index was used to determine the best cut-off for tumour size in predicting lung/chest wall infiltration: 4.5cm. At univariate logistic regression, tumour size (<4.5 vs ≥ 4.5cm) (p=0.0072) was significantly associated with infiltration. Transthoracic ultrasound is a useful instrument for predicting neoplastic lung or chest wall infiltration in cases of suspect CT-scans and could be used as part of the preoperative workup to assess tumour staging and to plan the best surgical approach. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru
This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.
Obermayer, David; Kappe, C Oliver
2010-01-07
The temperature profiles obtained from both an external infrared and internal fiber-optic sensor were compared for heating and synthesizing the ionic liquid 1-butyl-3-methylimidazolium bromide (bmimBr) under microwave conditions. Utilizing a single-mode microwave reactor that allows simultaneous infrared/fiber-optic temperature measurements, significant differences between the two methods of temperature monitoring were revealed. Due to the strong microwave absorptivity of ionic liquids and the delay experienced in monitoring temperature on the outer surface of a heavy-walled glass vial, external infrared temperature sensors can not be used to accurately control the temperature in the heating of ionic liquids under microwave conditions. The use of internal fiber-optic probes allows the monitoring and control of the heating behavior in a much better way. In order to prevent the strong exotherm in the synthesis of bmimBr under microwave conditions the use of a reaction vessel made out of silicon carbide is the method of choice. Because of the high thermal conductivity and effusivity of silicon carbide, the heat generated during the ionic liquid formation is efficiently exchanged with the comparatively cool air in the microwave cavity via the silicon carbide ceramic.
Sensitized Liquid Hydrazine Detonation Studies
NASA Technical Reports Server (NTRS)
Rathgeber, K. A.; Keddy, C. P.; Bunker, R. L.
1999-01-01
Vapor-phase hydrazine (N2H4) is known to be very sensitive to detonation while liquid hydrazine is very insensitive to detonation, theoretically requiring extremely high pressures to induce initiation. A review of literature on solid and liquid explosives shows that when pure explosive substances are infiltrated with gas cavities, voids, and/or different phase contaminants, the energy or shock pressure necessary to induce detonation can decrease by an order of magnitude. Tests were conducted with liquid hydrazine in a modified card-gap configuration. Sensitization was attempted by bubbling helium gas through and/or suspending ceramic microspheres in the liquid. The hydrazine was subjected to the shock pressure from a 2 lb (0.9 kg) Composition C-4 explosive charge. The hydrazine was contained in a 4 in. (10.2 cm) diameter stainless steel cylinder with a 122 in(sup 3) (2 L) volume and sealed with a polyethylene cap. Blast pressures from the events were recorded by 63 high speed pressure transducers located on three radial legs extending from 4 to 115 ft (1.2 to 35.1 in) from ground zero. Comparison of the neat hydrazine and water baseline tests with the "sensitized" hydrazine tests indicates the liquid hydrazine did not detonate under these conditions.
Liquid phase sintered compacts in space
NASA Technical Reports Server (NTRS)
Mookherji, T. K.; Mcanelly, W. B.
1974-01-01
A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.
Fabrication of titania inverse opals by multi-cycle dip-infiltration for optical sensing
NASA Astrophysics Data System (ADS)
Chiang, Chun-Chen; Tuyen, Le Dac; Ren, Ching-Rung; Chau, Lai-Kwan; Wu, Cheng Yi; Huang, Ping-Ji; Hsu, Chia Chen
2016-04-01
We have demonstrated a low-cost method to fabricate TiO2 inverse opal photonic crystals with high refractive index skeleton. The TiO2 inverse opal films were fabricated from a polystyrene opal template by multi-cycle dip-infiltration-coating method. The properties of the TiO2 inverse opal films were characterized by scanning electron microscopy and Bragg reflection spectroscopy. The reflection spectroscopic measurements of the TiO2 inverse opal films were compared with theories of photonic band calculations and Bragg law. The agreement between experiment and theory indicates that we can precisely predict the refractive index of the infiltrated liquid sample in the TiO2 inverse opal films from the measurement results. The red-shift of the peak wavelength in the Bragg reflection spectra for both alcohol mixtures and aqueous sucrose solutions of increasing refractive index was observed and respective refractive index sensitivities of 296 and 286 nm/RIU (refractive index unit) were achieved. As the fabrication of the TiO2 inverse opal films and reflection spectroscopic measurement are fairly easy, the TiO2 inverse opal films have potential applications in optical sensing.
Bai, Ling; Mai, Van Cuong; Lim, Yun; Hou, Shuai; Möhwald, Helmuth; Duan, Hongwei
2018-03-01
Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Negative-tone development of photoresists in environmentally friendly silicone fluids
NASA Astrophysics Data System (ADS)
Ouyang, Christine Y.; Lee, Jin-Kyun; Ober, Christopher K.
2012-03-01
The large amount of organic solvents and chemicals that are used in today's microelectronic fabrication process can lead to environmental, health and safety hazards. It is therefore necessary to design new materials and new processes to reduce the environmental impact of the lithographic process. In addition, as the feature sizes decrease, other issues such as pattern collapse, which is related to the undesirable high surface tension of the developers and rinse liquids, can occur and limit the resolution. In order to solve these issues, silicone fluids are chosen as alternative developing solvents in this paper. Silicone fluids, also known as linear methyl siloxanes, are a class of mild, non-polar solvents that are non-toxic, not ozone-depleting, and contribute little to global warming. They are considered as promising developers because of their environmental-friendliness and their unique physical properties such as low viscosity and low surface tension. Recently, there have been emerging interests in negative-tone development (NTD) due to its better ability in printing contact holes and trenches. It is also found that the performance of negative-tone development is closely related to the developing solvents. Silicone fluids are thus promising developers for NTD because of their non-polar nature and high contrast negative-tone images are expected with chemical amplification photoresists due to the high chemical contrast of chemical amplification. We have previously shown some successful NTD with conventional photoresists such as ESCAP in silicone fluids. In this paper, another commercially available TOK resist was utilized to study the NTD process in silicone fluids. Because small and non-polar molecules are intrinsically soluble in silicone fluids, we have designed a molecular glass resist for silicone fluids. Due to the low surface tension of silicone fluids, we are able achieve high aspect-ratio, high-resolution patterns without pattern collapse.
Phase behavior of metastable liquid silicon at negative pressure: Ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Zhao, G.; Yu, Y. J.; Yan, J. L.; Ding, M. C.; Zhao, X. G.; Wang, H. Y.
2016-04-01
Extensive first-principle molecular dynamics simulations are performed to study the phase behavior of metastable liquid Si at negative pressure. Our results show that the high-density liquid (HDL) and HDL-vapor spinodals indeed form a continuous reentrant curve and the liquid-liquid critical point seems to just coincide with its minimum. The line of density maxima also has a strong tendency to pass through this minimum. The phase behaviour of metastable liquid Si therefore tends to be a critical-point-free scenario rather than a second-critical-point one based on SW potential.
Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite
NASA Technical Reports Server (NTRS)
Rogers, D. C.; Shuford, D. M.; Mueller, J. I.
1975-01-01
Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.
Montes, María; Veiga, María C; Kennes, Christian
2012-02-20
Recently, research on the use of binary aqueous-organic liquid phase systems for the treatment of polluted air has significantly increased. This paper reports the removal of α-pinene from a waste air stream in a continuous stirred tank bioreactor (CSTB), using either a single-liquid aqueous phase or a mixed aqueous-organic liquid phase. The influence of gas flow rate, load and pollutant concentration was evaluated as well as the effect of the organic to aqueous phase ratio. Continuous experiments were carried out at different inlet α-pinene concentrations, ranging between 0.03 and 25.1 g m⁻³ and at four different flow rates, corresponding to residence times (RTs) of 120 s, 60 s, 36 s and 26 s. The maximum elimination capacities (ECs) reached in the CSTB were 382 g m⁻³ h⁻¹ (without silicone oil) and 608 g m⁻³ h⁻¹ (with 5%v/v silicone oil), corresponding to a 1.6-fold improvement using an aqueous-organic liquid phase. During shock-loads experiments, the performance and stability of the CSTB were enhanced with 5% silicone oil, quickly recovering almost 100% removal efficiency (RE), when pre-shock conditions were restored. The addition of silicone oil acted as a buffer for high α-pinene loads, showing a more stable behaviour in the case of two-liquid-phase systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Estimating the Limits of Infiltration in the Urban Appalachian Plateau
NASA Astrophysics Data System (ADS)
Lavin, S. M.; Bain, D.; Hopkins, K. G.; Pfeil-McCullough, E. K.; Copeland, E.
2014-12-01
Green infrastructure in urbanized areas commonly uses infiltration systems, such as rain gardens, swales and trenches, to convey surface runoff from impervious surfaces into surrounding soils. However, precipitation inputs can exceed soil infiltration rates, creating a limit to infiltration-based storm water management, particularly in urban areas covered by impervious surfaces. Given the limited availability and varied quality of soil infiltration rate data, we synthesized information from national databases, available field test data, and applicable literature to characterize soil infiltration rate distributions, focusing on Allegheny County, Pennsylvania as a case study. A range of impervious cover conditions was defined by sampling available GIS data (e.g., LiDAR and street edge lines) with analysis windows placed randomly across urbanization gradients. Changes in effective precipitation caused by impervious cover were calculated across these gradients and compared to infiltration rate distributions to identify thresholds in impervious coverage where these limits are exceeded. Many studies have demonstrated the effects of urbanization on infiltration, but the identification of these thresholds will clarify interactions between impervious cover and soil infiltration. These methods can help identify sections of urban areas that require augmentation of infiltration-based systems with additional infrastructural strategies, especially as green infrastructure moves beyond low impact development towards more frequent application during infilling of existing urban systems.
Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces.
Amorim, Patrícia M; Ferraria, Ana M; Colaço, Rogério; Branco, Luís C; Saramago, Benilde
2017-01-01
In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified. Although the use of ionic liquids (ILs) as additives to base oils in the lubrication of steel/steel or other types of metal/ metal tribological pairs has been investigated, the number of studies involving Si is very low. In this work, we tested imidazolium-based ILs as additives to the base oil polyethylene glycol (PEG) to lubricate Si surfaces. The friction coefficients were measured in a nanotribometer. The viscosity of the PEG + IL mixtures as well as their contact angles on the Si surface were measured. The topography and chemical composition of the substrates surfaces were determined with atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. Due to the hygroscopic properties of PEG, the first step was to assess the effect of the presence of water. Then, a series of ILs based on the cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-vinylimidazolium [EVIM], 1-(2-hydroxyethyl)-3-methylimidazolium [C 2 OHMIM] and 1-allyl-3-methylimidazolium [AMIM] combined with the anions dicyanamide [DCA], trifluoromethanesulfonate [TfO], and ethylsulfate [EtSO 4 ] were added to dry PEG. All additives (2 wt %) led to a decrease in friction coefficient as well as an increase in viscosity (with the exception of [AMIM][TfO]) and improved the Si wettability. The additives based on the anion [EtSO 4 ] exhibited the most promising tribological behavior, which was attributed to the strong interaction with the Si surface ensuring the formation of a stable surface layer, which hinders the contact between the sliding surfaces.
Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees?
NASA Astrophysics Data System (ADS)
Thissandier, Fleur; Gentile, Pascal; Brousse, Thierry; Bidan, Gérard; Sadki, Saïd
2014-12-01
Silicon nanotrees (SiNTrs) have been grown by Chemical Vapor Deposition (CVD) via gold catalysis and a three steps process: trunks and branches growth are separated by a new gold catalyst deposition. The influence of growth conditions and the second gold catalyst deposition method on SiNTrs morphology are investigated. SiNTrs based electrodes show a capacitive behavior and better capacitance than the corresponding silicon nanowires (SiNWs) electrode. Electrode capacitance is increased up to 900 μF cm-2, i.e. 150 fold higher than for bulk silicon. Micro-supercapacitors with SiNTrs electrodes have a remarkable stability (only 1.2% loses of their initial capacitance after more than one million cycles). The use of an ionic liquid based electrolyte leads to a high maximum power density (around 225 mW cm-2) which is competitive with Onion Like Carbon based micro-supercapacitors.
Rainfall infiltration-induced landslides
Collins, Brian D.; Znidarcic, Dobroslav
2011-01-01
Unfavorable groundwater conditions are often the determining factor in triggering landslides. Whereas regional hydrogeology typically determines overall groundwater conditions, surficial rainfall infiltration into slopes also drives potential instability.
NASA Astrophysics Data System (ADS)
Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.
2009-11-01
The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.
Overview of chemical vapor infiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmann, T.M.; Stinton, D.P.; Lowden, R.A.
1993-06-01
Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.
Performances of metal concentrations from three permeable pavement infiltrates.
Liu, Jiayu; Borst, Michael
2018-06-01
The U.S. Environmental Protection Agency constructed a 4000-m 2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each permeable pavement infiltrate, surface runoff from traditional asphalt, and rainwater were analyzed in duplicate for 22 metals (total and dissolved) for 6 years. In more than 99% of the samples, the concentration of barium, chromium, copper, manganese, nickel and zinc, and in 60%-90% of the samples, the concentration of arsenic, cadmium, lead, and antimony in infiltrates from all three permeable pavements met both the groundwater effluent limitations (GEL) and maximum contaminant levels (MCL). The concentration of aluminum (50%) and iron (93%) in PICP infiltrates samples exceed the GELs; however, the concentration in more than 90% samples PA and PC infiltrates met the GELs. No measurable difference in metal concentrations was found from the five sources for arsenic, cadmium, lead, antimony, and tin. Large concentrations of eleven metals, including manganese, copper, aluminum, iron, calcium, magnesium, sodium, potassium, silica, strontium and vanadium, were detected in surface runoff than the rainwater. Chromium, copper, manganese, nickel, aluminum, zinc, iron and magnesium concentrations in PICP infiltrates; calcium, barium, and strontium concentrations in PA infiltrates; sodium, potassium and vanadium concentrations in PC infiltrates were statistically larger than the other two permeable pavement infiltrates. Published by Elsevier Ltd.
Novel fabrication of silicon carbide based ceramics for nuclear applications
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar
Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous
The use of the mandibular infiltration anesthetic technique in adults.
Meechan, John G
2011-09-01
The author describes the use of the infiltration anesthetic technique to anesthetize mandibular teeth in adults and explores its mechanism of action. The author reviewed articles describing randomized controlled trials of the mandibular infiltration anesthetic technique in healthy participants. The author found that using the mandibular infiltration anesthetic technique can produce anesthesia in adult mandibular teeth. The success was dose dependent and the choice of anesthetic solution was significant; 4 percent articaine with 1:100,000 epinephrine was more effective than 2 percent lidocaine with 1:100,000 epinephrine. Combining buccal and lingual infiltrations increased success in the mandibular incisor region. The success of the mechanism of infiltration of anesthetic at the mandibular first molar appeared to depend on the mental foramen. The mandibular infiltration anesthetic technique is an effective method of anesthetizing mandibular incisors. Four percent articaine with epinephrine appears to be the preferred solution. The choice of anesthetic solution is important when using the infiltration anesthetic technique in the adult mandible.
Pinsornsak, P; Nangnual, S; Boontanapibul, K
2017-04-01
Multimodal infiltration of local anaesthetic provides effective control of pain in patients undergoing total knee arthroplasty (TKA). There is little information about the added benefits of posterior capsular infiltration (PCI) using different combinations of local anaesthetic agents. Our aim was to investigate the effectiveness of the control of pain using multimodal infiltration with and without infiltration of the posterior capsule of the knee. In a double-blind, randomised controlled trial of patients scheduled for unilateral primary TKA, 86 were assigned to be treated with multimodal infiltration with (Group I) or without (Group II) PCI. Routine associated analgesia included the use of bupivacaine, morphine, ketorolac and epinephrine. All patients had spinal anaesthesia and patient-controlled analgesia (PCA) post-operatively. A visual analogue scale (VAS) for pain and the use of morphine were recorded 24 hours post-operatively. Side effects of the infiltration, blood loss, and length of stay in hospital were recorded. There were no statistically significant differences between the groups in relation to: VAS pain scores in the first 24 hours post-operatively (p = 0.693), the use of morphine in the PCA (p = 0.647), blood loss (p = 0.625), and length of stay (p = 0.17). There were no neurovascular complications in either group. The multimodal infiltration of local anaesthetic with infiltration of the posterior capsule did not provide significant added analgesic benefits or reduce the use of morphine after TKA. Multimodal infiltration is a satisfactory technique for the management of pain in these patients without the attendant risks of PCI. Cite this article: Bone Joint J 2017; 99-B:483-8. ©2017 The British Editorial Society of Bone & Joint Surgery.
Atrazine distribution measured in soil and leachate following infiltration conditions.
Neurath, Susan K; Sadeghi, Ali M; Shirmohammadi, Adel; Isensee, Allan R; Torrents, Alba
2004-01-01
Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.
Eosinophilic Esophagitis: Relevance of Mast Cell Infiltration.
Strasser, Daniel S; Seger, Shanon; Bussmann, Christian; Pierlot, Gabin M; Groenen, Peter M A; Stalder, Anna K; Straumann, Alex
2018-05-17
Eosinophilic esophagitis (EoE) is a chronic-inflammatory disease characterized clinically by symptoms of esophageal dysfunction and histopathologically by a prominent eosinophilic inflammation. Despite eosinophils having histologically a pre-dominant position, their role in the immunopathogenesis of the disease is still questionable. Several other inflammatory cells are involved and may play a critical role as well. The purpose of this study was to characterize the mast cell infiltration, and to correlate it with clinical state of EoE. Using immunohistochemistry and quantitative morphometry, we extensively investigated eosinophils and mast cells in esophageal biopsies from patients with active EoE and from patients with EoE in remission, and compared the findings with healthy individuals. In EoE, epithelium and lamina propria were similarly infiltrated with eosinophils. In contrast, mast cells infiltration was limited to the epithelium, displaying a localized immune response. Interestingly, whereas epithelial mast cells and eosinophils were high in active EoE, some patients in remission e.g. normalized epithelial eosinophils, showed remaining high numbers of mast cells. Patient clustering supported 2 groups of patients in clinical remission, differentiating based on presence or absence of epithelial mast cells. Active EoE is characterized - in addition to the well-known tissue eosinophilia by a marked epithelium-restricted mast cell infiltration. Of interest, in a subgroup of patients, mast cell infiltration persisted despite clinical remission. To elucidate the clinical consequence of persistent epithelial mast cells infiltration further studies are required following patients in clinical remission longitudinally. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem; Hocini, Abdesselam
2017-02-01
A Bio-sensing platform based on an infiltrated photonic crystal ring shaped holes cavity-coupled waveguide system is proposed for glucose concentration detection. Considering silicon-on-insulator (SOI) technology, it has been demonstrated that the ring shaped holes configuration provides an excellent optical confinement within the cavity region, which further enhances the light-matter interactions at the precise location of the analyte medium. Thus, the sensitivity and the quality factor (Q) can be significantly improved. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte glucose concentration are analyzed by performing finite-difference time-domain (FDTD) simulations. Accordingly, an improved sensitivity of 462 nm/RIU and a Q factor as high as 1.11х105 have been achieved, resulting in a detection limit of 3.03х10-6 RIU. Such combination of attributes makes the designed structure a promising element for performing label-free biosensing in medical diagnosis and environmental monitoring.
A metastable liquid melted from a crystalline solid under decompression
NASA Astrophysics Data System (ADS)
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin
2017-01-01
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.
A metastable liquid melted from a crystalline solid under decompression
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin
2017-01-01
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152
Hybrid Quantum Cascade Lasers on Silicon-on-Sapphire
2016-11-23
on-SOS devices mounted on a copper heat sink. The liquid crystal thermal absorber is attached to block mid-IR emission from any sections of the laser...directions. 2. Statement of the problem studied Short-wavelength infrared (SWIR, ~1-3 m) photonics systems based on silicon-on- insulator (SOI...Table 1. Layer type Layer thickness and doping Thickness (nm) Doping (cm-3) InP substrate 350000 Semi- insulating InP buffer layer 2000 2.00E
Pedrazzani, Corrado; Menestrina, Nicola; Moro, Margherita; Brazzo, Gianluca; Mantovani, Guido; Polati, Enrico; Guglielmi, Alfredo
2016-11-01
Few data are available on TAP block in laparoscopic colorectal surgery and ERAS program. The aim of this prospective study was to evaluate local wound infiltration plus TAP block compared to local wound infiltration in the management of postoperative pain, nausea and vomiting, ileus and use of opioids in the context of laparoscopic colorectal surgery and ERAS program. From March 2014 to March 2015, 48 patients were treated by laparoscopic resection and ERAS program for colorectal cancer and diverticular disease at the Division of General and Hepatobiliary Surgery, University of Verona Hospital Trust. Among these, 24 patients received local wound infiltration plus TAP block (TAP block group) and 24 patients received local wound infiltration (control group). No differences were observed in baseline patient characteristics, clinical variables and surgical procedures between the two groups. Local wound infiltration plus TAP block allowed to achieve pain control despite a reduced use of opioid analgesics (P = 0.009). The adoption of TAP block resulted beneficial on the prevention of postoperative nausea (P = 0.002) and improvement of essential outcomes of ERAS program as recovery of bowel function (P = 0.005), urinary catheter removal (P = 0.003) and capability to tolerate oral diet (P = 0.027). TAP block plus local wound infiltration in the setting of laparoscopic colorectal surgery and ERAS program guarantees a reduced use of opioid analgesics and good pain control allowing the improvement of essential items of enhanced recovery pathways.
Low loss liquid crystal photonic bandgap fiber in the near-infrared region
NASA Astrophysics Data System (ADS)
Scolari, Lara; Wei, Lei; Gauza, Sebastian; Wu, Shin-Tson; Bjarklev, Anders
2011-01-01
We infiltrate a perdeuterated liquid crystal with a reduced infrared absorption in a photonic crystal fiber. The H atoms of this liquid crystal were substituted with D atoms in order to move the vibration bands which cause absorption loss to longer wavelengths and therefore reduce the absorption in the spectral range of 1-2 μm. We achieve in the middle of the near-infrared transmission bandgap the lowest loss (about 1 dB) ever reported for this kind of devices.
Liquid metal micro heat pipes for space radiator applications
NASA Technical Reports Server (NTRS)
Gerner, F. M.; Henderson, H. T.
1995-01-01
Micromachining is a chemical means of etching three-dimensional structures, typically in single-crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (micro electro mechanical systems), where in addition to the ordinary two dimensional (planar) microelectronics, it is possible to build three-dimensional micromotors, electrically-actuated microvalves, hydraulic systems, and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor microfabrication. The University of Cincinnati group in collaboration with NASA Lewis formed micro heat pipes in silicon by the above techniques. Work is ongoing at a modest level, but several essential bonding and packaging techniques have been recently developed. Currently, we have constructed and filled water/silicon micro heat pipes. Preliminary thermal tests of arrays of 125 micro heat pipes etched in a 1 inch x 1 inch x 250 micron silicon wafer have been completed. These pipes are instrumented with extremely small P-N junctions to measure their effective conductivity and their maximum operating power. A relatively simple one-dimensional model has been developed in order to predict micro heat pipes' operating characteristics. This information can be used to optimize micro heat pipe design with respect to length, hydraulic diameter, and number of pipes. Work is progressing on the fabrication of liquid-metal micro heat pipes. In order to be compatible with liquid metal (sodium or potassium), the inside of the micro heat pipes will be coated with a refractory metal (such as tungsten, molybdenum, or titanium).
Modelling of convective processes during the Bridgman growth of poly-silicon
NASA Astrophysics Data System (ADS)
Popov, V. N.
2009-09-01
An original 3D model was used to numerically examine convective heat-and-mass transfer processes in the melt during the growth of polycrystalline silicon in vertical Bridgman configuration. The flow in the liquid was modelled using the Navier — Stokes equations in the Boussinesq approximation. The distribution of dissolved impurities was determined by solving the convective diffusion equation. The effects due to non-uniform heating of the lateral wall of the vessel and due to the shape of the crystallization front on the structure of melt flows and on the distribution of dissolved impurities in the liquid are examined.
Field-Measured Infiltration Properties of Mojave Desert Soils
NASA Astrophysics Data System (ADS)
Perkins, K. S.; Nimmo, J. R.; Winfield, K. A.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.
2005-12-01
Characteristics typical of alluvial desert soils, such as depositional stratification, desert pavement, biotic crusts, and vesicular horizons strongly influence soil moisture and its variability. Knowledge of infiltration capacity, water retention, and unsaturated hydraulic conductivity is central to the assessment of water availability to plants and animals after infiltration events. These hydraulic parameters are directly related to the degree of soil development. The frequency and magnitude of storm events in conjunction with degree of soil development also affect runoff and erosion. Our purpose is to examine field soil-water behavior and determine unsaturated hydraulic properties needed for large-scale modeling of soil moisture. The results of this study will be used in conjunction with surficial geologic mapping of the Mojave Desert in evaluations of ecological habitat quality. We conducted infiltration/redistribution experiments on three different-aged deposits in the Mojave National Preserve: (1) recently deposited wash sediments, (2) a soil of early Holocene age, and (3) a highly developed soil of late Pleistocene age. In each experiment we ponded water in a 1-m-diameter infiltration ring for 2.3 hr. For several weeks we monitored water content and matric pressure to depths of 1.5 m, and distances of 6 m from the infiltration ring. Measuring techniques included surface electrical resistance tomography, dielectric-constant probes, heat-dissipation probes, and tensiometers. Analysis of the subsurface measurements using an instantaneous-profile technique gives the retention and K properties that will be used in predictive modeling. In each experiment the infiltration rate was nearly constant in time, with infiltration capacity 4 times greater in the youngest than in the oldest soil. Average infiltration flux densities within the ring during the period of ponding were 0.80 m/hr in the active wash, 0.45 m/hr in the Holocene soil, and 0.21 m/hr in the Pleistocene
Wetting and drying of liquid on crossed fibers
NASA Astrophysics Data System (ADS)
Sauret, Alban; Bick, Alison D.; Stone, Howard A.; Complex Fluids Group Team
2013-11-01
Fibrous media are common in various engineered systems such as filters, paper or the textile industry. Many of these materials can be described as a network of fibers in which a wetting liquid tends to accumulate at its nodes and changes the bulk properties. Here we study a drop of silicone oil sitting on the simplest element of the array: two rigid crossed fibers. In particular, we investigate experimentally how the structure of the material affects the wetting and drying dynamics of that liquid drop. We first show that the liquid can adopt different shapes from a long liquid column to a drop. The transition between these morphologies depends on the volume of liquid, the tilting angle between the fibers, as well as the fiber radius. The wetting length in the column state can be predicted analytically. Because of these different shapes, the liquid exhibits different drying kinetics, which effects the overall drying time. Our study suggests that shearing a wetted array of fibers, by tuning the liquid morphology, may enhance the drying rate.
Infiltrating to Win: The Conduct of Border Denial Operations
2016-04-04
Infiltrating to Win: The Conduct of Border Denial Operations A Monograph by MAJ Craig A. Broyles United...YYYY) 12. REPORT TYPE 3. DATES COVERED (From - To) 04/04/2016 Monograph JUN 2015 - MAY 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Infiltrating ...for public release; Distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Covert cross border infiltration plays a critical role in
Wetting in color: colorimetric differentiation of organic liquids with high selectivity.
Burgess, Ian B; Koay, Natalie; Raymond, Kevin P; Kolle, Mathias; Lončar, Marko; Aizenberg, Joanna
2012-02-28
Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. Expansion of colorimetry to new sensing paradigms is challenging because macroscopic color changes are seldom coupled to arbitrary differences in the physical/chemical properties of a system. Here we present in detail the design of a "Wetting In Color Kit" (WICK), an inexpensive and highly selective colorimetric indicator for organic liquids that exploits chemically encoded inverse-opal photonic crystals to project minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize structural color patterns. We show experimentally and corroborate with theoretical modeling using percolation theory that the highly symmetric structure of our large-area, defect-free SiO(2) inverse-opal films leads to sharply defined threshold wettability for liquid infiltration, occurring at intrinsic contact angles near 20° with an estimated resolution smaller than 5°. The regular structure also produces a bright iridescent color, which disappears when infiltrated with liquid, naturally coupling the optical and fluidic responses. To deterministically design a WICK that differentiates a broad range of liquids, we introduced a nondestructive quality control procedure to regulate the pore structure and developed two new surface modification protocols, both requiring only silanization and selective oxidation. The resulting tunable, built-in horizontal and vertical chemistry gradients let us tailor the wettability threshold to specific liquids across a continuous range. With patterned oxidation as a final step, we control the shape of the liquid-specific patterns displayed, making WICK easier to read. Using these techniques, we demonstrate the applicability of WICKs in several exemplary systems that colorimetrically distinguish (i) ethanol-water mixtures varying by only 2.5% in concentration; (ii) methanol, ethanol, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu.
2014-12-28
We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, whichmore » depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.« less
Miller, Eric; Ellis, Daniel; Charles, Duran; McKenzie, Jason
2016-01-01
A materials fabrication study of a photodiode array for possible application of retina prosthesis was undertaken. A test device was fabricated using a glassy carbon electrode patterned with SU-8 photoresist. In the openings, p-type polypyrrole was first electrodeposited using 1-butyl-1-methylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquid. The polypyrrole was self-doped with imide ion at ~1.5 mole %, was verified as p-type, and had a resistivity of ~20 Ωcm. N-type Silicon was then electrodeposited over this layer using silicon tetrachloride / phosphorus trichloride in acetonitrile and passivated in a second electrodeposition using trimethylchlorosilane. Electron microscopy revealed the successful electrodeposition of silicon over patterned polypyrrole. Rudimentary photodiode behavior was observed. The passivation improved but did not completely protect the electrodeposited silicon from oxidation by air. PMID:27616940
Oscillation-Mark Formation and Liquid-Slag Consumption in Continuous Casting Mold
NASA Astrophysics Data System (ADS)
Yang, Jie; Meng, Xiangning; Wang, Ning; Zhu, Miaoyong
2017-04-01
Traditional understanding on the complex multiphysics phenomenon of the meniscus in the oscillating mold for continuously cast steel, including oscillation-mark formation and liquid-slag consumption, has never considered the shape influence of the flux channel between the mold wall and the solidifying shell surface. Based on the reciprocating oscillation of mold, this study was carried out to calculate theoretically the periodic pressure and the liquid-slag layer thickness in the flux channel for the upper and the lower meniscus that possess different shapes in combination with a transient equilibrium profile of the flux channel as well as the sinusoidal and the nonsinusoidal oscillation modes of mold. The effect of flux channel shape on the multiphysics phenomenon in the meniscus was determined by the physical oscillation simulation by using an experimental cold model mold. The results show that the shape difference between the upper and the lower meniscus leads to the opposite direction of pressure in the flux channel. The pressure in the opposite direction plays a respective role in oscillation-mark formation and liquid-slag consumption in an oscillation cycle of mold, and thus, it makes a new mechanism for explaining the multiphysics phenomenon in the meniscus. The oscillation mark is initially formed by the rapid increase of positive channel pressure in the upper meniscus, and most of the liquid slag is infiltrated into the flux channel by the negative channel pressure in the lower meniscus from the end of a positive strip time to the beginning of the next positive strip time, including the negative strip time in between. Furthermore, the physical characteristics of the lubrication behavior in the meniscus are summarized, including liquid-slag infiltration, solidifying shell deformation, and the thickness change of the liquid-slag layer.
Spectral parameters and Hamaker constants of silicon hydride compounds and organic solvents.
Masuda, Takashi; Matsuki, Yasuo; Shimoda, Tatsuya
2009-12-15
Cyclopentasilane (CPS) and polydihydrosilane, which consist of hydrogen and silicon only, are unique materials that can be used to produce intrinsic silicon film in a liquid process, such as spin coating or an ink-jet method. Wettability and solubility of general organic solvents including the above can be estimated by Hamaker constants, which are calculated according to the Lifshitz theory. In order to calculate a Hamaker constant by the simple spectral method (SSM), it is necessary to obtain absorption frequency and function of oscillator strength in the ultraviolet region. In this report, these physical quantities were obtained by means of an optical method. As a result of examination of the relation between molecular structures and ultraviolet absorption frequencies, which were obtained from various liquid materials, it was concluded that ultraviolet absorption frequencies became smaller as electrons were delocalized. In particular, the absorption frequencies were found to be very small for CPS and polydihydrosilane due to sigma-conjugate of their electrons. The Hamaker constants of CPS and polydihydrosilane were successfully calculated based on the obtained absorption frequency and function of oscillator strength.
Opal photonic crystals infiltrated with chalcogenide glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astratov, V. N.; Adawi, A. M.; Skolnick, M. S.
Composite opal structures for nonlinear applications are obtained by infiltration with chalcogenide glasses As{sub 2}S{sub 3} and AsSe by precipitation from solution. Analysis of spatially resolved optical spectra reveals that the glass aggregates into submillimeter areas inside the opal. These areas exhibit large shifts in the optical stop bands by up to 80 nm, and by comparison with modelling are shown to have uniform glass filling factors of opal pores up to 40%. Characterization of the domain structure of the opals prior to infiltration by large area angle-resolved spectroscopy is an important step in the analysis of the properties ofmore » the infiltrated regions. {copyright} 2001 American Institute of Physics.« less
Impact of water repellency on infiltration of differently concentrated ethanol solutions
NASA Astrophysics Data System (ADS)
Dlapa, Pavel; Hrabovský, Andrej; Hriník, Dávid; Kuric, Peter
2017-04-01
Infiltration experiments were carried out on an extremely (WDPT > 3600 s) water repellent forest soil in the Little Carpathians Mts (SW Slovakia). Measurements were performed following a long dry warm period using the Mini Disk Infiltrometer (Decagon). Replicated infiltration experiments were conducted with water and five different ethanol solutions. The infiltrometer was set to a capillary pressure head of -2 cm and filled with solutions containing 0, 5, 10, 20, 40, and 95% of ethanol by volume, respectively. Solutions used in infiltration experiments differed in density, viscosity, and surface tension. Combined effect of solution properties on infiltration into soil is strongly dependent on soil surface properties. This may lead to a decrease of infiltration rate with increasing ethanol concentration. Such behaviour should be observable in wettable soils. However, the infiltration experiments revealed a significant increase in the rate of infiltration for increasing concentrations of ethanol. The solutions showed infiltration rates of 10-4, 10-3, and 10-2 cm/s for the 5, 20, and 95% ethanol solutions, respectively. This trend suggests the dominant influence of contact angle (affected by ethanol concentration) on infiltration process. Measurements allow quantifying changes of various infiltration parameters as a function of the solution properties. The obtained results showed that similar approach can be a valuable alternative to other methods used for the evaluation of severity of soil repellency and impacts to hydrological processes.
Solar silicon from directional solidification of MG silicon produced via the silicon carbide route
NASA Technical Reports Server (NTRS)
Rustioni, M.; Margadonna, D.; Pirazzi, R.; Pizzini, S.
1986-01-01
A process of metallurgical grade (MG) silicon production is presented which appears particularly suitable for photovoltaic (PV) applications. The MG silicon is prepared in a 240 KVA, three electrode submerged arc furnace, starting from high grade quartz and high purity silicon carbide. The silicon smelted from the arc furnace was shown to be sufficiently pure to be directionally solidified to 10 to 15 kg. After grinding and acid leaching, had a material yield larger than 90%. With a MG silicon feedstock containing 3 ppmw B, 290 ppmw Fe, 190 ppmw Ti, and 170 ppmw Al, blended with 50% of off grade electronic grade (EG) silicon to reconduct the boron content to a concentration acceptable for solar cell fabrication, the 99% of deep level impurities were concentrated in the last 5% of the ingot. Quite remarkably this material has OCV values higher tham 540 mV and no appreciable shorts due to SiC particles.
Liquid crystal droplet formation and anchoring dynamics in a microfluidic device
NASA Astrophysics Data System (ADS)
Steinhaus, Ben; Shen, Amy; Feng, James; Link, Darren
2004-11-01
Liquid crystal drops dispersed in a continuous phase of silicon oil are generated with a narrow distribution in droplet size in microfluidic devices both above and below the nematic to isotropic transition temperature. For these two cases, we observe not only the different LC droplet generation and coalescence dynamics, but also distinct droplet morphology. Our experiments show that the nematic liquid crystalline order is important for the LC droplet formation and anchoring dynamics.
Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces
Amorim, Patrícia M; Ferraria, Ana M; Colaço, Rogério; Branco, Luís C
2017-01-01
In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified. Although the use of ionic liquids (ILs) as additives to base oils in the lubrication of steel/steel or other types of metal/ metal tribological pairs has been investigated, the number of studies involving Si is very low. In this work, we tested imidazolium-based ILs as additives to the base oil polyethylene glycol (PEG) to lubricate Si surfaces. The friction coefficients were measured in a nanotribometer. The viscosity of the PEG + IL mixtures as well as their contact angles on the Si surface were measured. The topography and chemical composition of the substrates surfaces were determined with atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. Due to the hygroscopic properties of PEG, the first step was to assess the effect of the presence of water. Then, a series of ILs based on the cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-vinylimidazolium [EVIM], 1-(2-hydroxyethyl)-3-methylimidazolium [C2OHMIM] and 1-allyl-3-methylimidazolium [AMIM] combined with the anions dicyanamide [DCA], trifluoromethanesulfonate [TfO], and ethylsulfate [EtSO4] were added to dry PEG. All additives (2 wt %) led to a decrease in friction coefficient as well as an increase in viscosity (with the exception of [AMIM][TfO]) and improved the Si wettability. The additives based on the anion [EtSO4] exhibited the most promising tribological behavior, which was attributed to the strong interaction with the Si surface ensuring the formation of a stable surface layer, which hinders the contact between the sliding surfaces. PMID:29046844
Colloidal characterization of ultrafine silicon carbide and silicon nitride powders
NASA Technical Reports Server (NTRS)
Whitman, Pamela K.; Feke, Donald L.
1986-01-01
The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.
Effect of Injection Pressure of Infiltration Anesthesia to the Jawbone.
Yoshida, Kenji; Tanaka, Eri; Kawaai, Hiroyoshi; Yamazaki, Shinya
To obtain effective infiltration anesthesia in the jawbone, high concentrations of local anesthetic are needed. However, to reduce pain experienced by patients during local anesthetic administration, low-pressure injection is recommended for subperiosteal infiltration anesthesia. Currently, there are no studies regarding the effect of injection pressure on infiltration anesthesia, and a standard injection pressure has not been clearly determined. Hence, the effect of injection pressure of subperiosteal infiltration anesthesia on local anesthetic infiltration to the jawbone was considered by directly measuring lidocaine concentration in the jawbone. Japanese white male rabbits were used as test animals. After inducing general anesthesia with oxygen and sevoflurane, cannulation to the femoral artery was performed and arterial pressure was continuously recorded. Subperiosteal infiltration anesthesia was performed by injecting 0.5 mL of 2% lidocaine containing 1/80,000 adrenaline, and injection pressure was monitored by a pressure transducer for 40 seconds. After specified time intervals (10, 20, 30, 40, 50, and 60 minutes), jawbone and blood samples were collected, and the concentration of lidocaine at each time interval was measured. The mean injection pressure was divided into 4 groups (100 ± 50 mm Hg, 200 ± 50 mm Hg, 300 ± 50 mm Hg, and 400 ± 50 mm Hg), and comparison statistical analysis between these 4 groups was performed. No significant change in blood pressure during infiltration anesthesia was observed in any of the 4 groups. Lidocaine concentration in the blood and jawbone were highest 10 minutes after the infiltration anesthesia in all 4 groups and decreased thereafter. Lidocaine concentration in the jawbone increased as injection pressure increased, while serum lidocaine concentration was significantly lower. This suggests that when injection pressure of subperiosteal infiltration anesthesia is low, infiltration of local anesthetic to the jawbone may
Effect of Injection Pressure of Infiltration Anesthesia to the Jawbone
Yoshida, Kenji; Tanaka, Eri; Kawaai, Hiroyoshi; Yamazaki, Shinya
2016-01-01
To obtain effective infiltration anesthesia in the jawbone, high concentrations of local anesthetic are needed. However, to reduce pain experienced by patients during local anesthetic administration, low-pressure injection is recommended for subperiosteal infiltration anesthesia. Currently, there are no studies regarding the effect of injection pressure on infiltration anesthesia, and a standard injection pressure has not been clearly determined. Hence, the effect of injection pressure of subperiosteal infiltration anesthesia on local anesthetic infiltration to the jawbone was considered by directly measuring lidocaine concentration in the jawbone. Japanese white male rabbits were used as test animals. After inducing general anesthesia with oxygen and sevoflurane, cannulation to the femoral artery was performed and arterial pressure was continuously recorded. Subperiosteal infiltration anesthesia was performed by injecting 0.5 mL of 2% lidocaine containing 1/80,000 adrenaline, and injection pressure was monitored by a pressure transducer for 40 seconds. After specified time intervals (10, 20, 30, 40, 50, and 60 minutes), jawbone and blood samples were collected, and the concentration of lidocaine at each time interval was measured. The mean injection pressure was divided into 4 groups (100 ± 50 mm Hg, 200 ± 50 mm Hg, 300 ± 50 mm Hg, and 400 ± 50 mm Hg), and comparison statistical analysis between these 4 groups was performed. No significant change in blood pressure during infiltration anesthesia was observed in any of the 4 groups. Lidocaine concentration in the blood and jawbone were highest 10 minutes after the infiltration anesthesia in all 4 groups and decreased thereafter. Lidocaine concentration in the jawbone increased as injection pressure increased, while serum lidocaine concentration was significantly lower. This suggests that when injection pressure of subperiosteal infiltration anesthesia is low, infiltration of local anesthetic to the jawbone may
OPTIC NERVE INFILTRATION BY RETINOBLASTOMA: Predictive Clinical Features and Outcome.
Kaliki, Swathi; Tahiliani, Prerana; Mishra, Dilip K; Srinivasan, Visweswaran; Ali, Mohammed Hasnat; Reddy, Vijay Anand P
2016-06-01
To identify the clinical features predictive of any optic nerve infiltration and postlaminar optic nerve infiltration by retinoblastoma on histopathology and to report the outcome (metastasis and death) in these patients. Retrospective study. Of the 403 patients who underwent primary enucleation for retinoblastoma, 196 patients had optic nerve tumor infiltration (Group 1) and 207 patients had no evidence of optic nerve tumor infiltration (Group 2). Group 1 included patients with prelaminar (n = 47; 24%), laminar (n = 74; 38%), and postlaminar tumor infiltration with or without involving optic nerve transection (n = 74; 38%). Comparing Group 1 and Group 2, the patients in Group 1 had prolonged duration of symptoms (>6 months) (16% vs. 8%; P = 0.02) and were associated with no vision at presentation (23% vs. 10%; P = 0.01), higher rates of secondary glaucoma (42% vs. 12%; P < 0.0001), iris neovascularization (39% vs. 23%; P < 0.001), and larger tumors (mean tumor thickness, 12.8 mm vs. 12 mm; P = 0.0001). There was a higher prevalence of metastasis in Group 1 than in Group 2 (4% vs. 0%; P = 0.006). On multivariate analysis, clinical features predictive of any optic nerve tumor infiltration secondary glaucoma (hazard ratio = 5.38; P < 0.001) and those predictive of postlaminar optic nerve tumor infiltration included iris neovascularization (hazard ratio = 2.66; P = 0.001) and secondary glaucoma (hazard ratio = 3.13; P < 0.001). In this study, clinical features predictive of any optic nerve tumor infiltration included secondary glaucoma and those predictive of postlaminar optic nerve tumor infiltration included iris neovascularization and secondary glaucoma. Despite adjuvant treatment in those with postlaminar optic nerve tumor infiltration, metastasis occurred in 8% of patients.
Novel hydroxyapatite nanorods improve anti-caries efficacy of enamel infiltrants.
Andrade Neto, D M; Carvalho, E V; Rodrigues, E A; Feitosa, V P; Sauro, S; Mele, G; Carbone, L; Mazzetto, S E; Rodrigues, L K; Fechine, P B A
2016-06-01
Enamel resin infiltrants are biomaterials able to treat enamel caries at early stages. Nevertheless, they cannot prevent further demineralization of mineral-depleted enamel. Therefore, the aim of this work was to synthesize and incorporate specific hydroxyapatite nanoparticles (HAps) into the resin infiltrant to overcome this issue. HAps were prepared using a hydrothermal method (0h, 2h and 5h). The crystallinity, crystallite size and morphology of the nanoparticles were characterized through XRD, FT-IR and TEM. HAps were then incorporated (10wt%) into a light-curing co-monomer resin blend (control) to create different resin-based enamel infiltrants (HAp-0h, HAp-2h and HAp-5h), whose degree of conversion (DC) was assessed by FT-IR. Enamel caries lesions were first artificially created in extracted human molars and infiltrated using the tested resin infiltrants. Specimens were submitted to pH-cycling to simulate recurrent caries. Knoop microhardness of resin-infiltrated underlying and surrounding enamel was analyzed before and after pH challenge. Whilst HAp-0h resulted amorphous, HAp-2h and HAp-5h presented nanorod morphology and higher crystallinity. Resin infiltration doped with HAp-2h and HAp-5h caused higher enamel resistance against demineralization compared to control HAp-free and HAp-0h infiltration. The inclusion of more crystalline HAp nanorods (HAp-2h and HAp-5h) increased significantly (p<0.05) the DC. Incorporation of more crystalline HAp nanorods into enamel resin infiltrants may be a feasible method to improve the overall performance in the prevention of recurrent demineralization (e.g. caries lesion) in resin-infiltrated enamel. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Transient Point Infiltration In The Unsaturated Zone
NASA Astrophysics Data System (ADS)
Buecker-Gittel, M.; Mohrlok, U.
The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration
Calibration and validation of a general infiltration model
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.
1999-08-01
A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.